
Take the steps...

Transportation Research

Research...Knowledge...In
novative Solutions!

 2009-33

Development of Data Warehouse and Applications

for Continuous Vehicle Class and

Weigh-in-Motion Data

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.
MN/RC 2009-33
4. Title and Subtitle 5. Report Date

Development of Data Warehouse and Applications for
Continuous Vehicle Class and Weigh-in-Motion Data

October 2009
6.

7. Author(s) 8. Performing Organization Report No.
Taek M. Kwon
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
Transportation Data Research Laboratory
Department of Electrical and Computer Engineering
University of Minnesota Duluth
271 Marshall W. Alworth Hall
1023 University Drive
Duluth, Minnesota 55812

11. Contract (C) or Grant (G) No.

(c) 89261 (wo) 41

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Minnesota Department of Transportation
395 John Ireland Boulevard Mail Stop 330
St. Paul, Minnesota 55155

Final Report
14. Sponsoring Agency Code

15. Supplementary Notes
http://www.lrrb.org/pdf/200933.pdf
16. Abstract (Limit: 250 words)

Presently, the Office of Transportation Data & Analysis (TDA) at the Minnesota Department of
Transportation (Mn/DOT) manages 29 Vehicle Classification (VC) sites and 12 Weigh-in-Motion (WIM)
sites installed on various Minnesota roadways. The data is collected 24/7 from all sites, resulting in a
large amount of data. The total amount of data is expected to substantially grow with time due to the
continuous accumulation of data from the present sites and future expansion of sites. Therefore, there is
an urgent need to develop an efficient data management strategy for dealing with the present needs and
future growth of this data. The solution proposed in this research project is to develop a centralized data
warehouse from which all applications can acquire the data. The objective of this project was to develop
software for creating a VC/WIM data warehouse and example applications that utilize it. This project was
successfully completed by developing the software necessary to build the VC/WIM data warehouse and
the application software packages that utilize the data. The main contribution of this project is that it
provides a single access point for querying all of the Mn/DOT’s WIM and VC data, from which many
more applications can be developed without concerns of proprietary binary formats.

17. Document Analysis/Descriptors 18. Availability Statement
Data warehouses, Weigh in motion, Vehicle classification,
Mechanistic design, Pavement design, MEPDG, Data reports,
Reports

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price
Unclassified Unclassified 106

Development of Data Warehouse and Applications for
Continuous Vehicle Class and Weigh-in-Motion Data

Final Report

Prepared by

Taek Mu Kwon

Transportation Data Research Laboratory
Department of Electrical and Computer Engineering

University of Minnesota Duluth

October 2009

Published by

Minnesota Department of Transportation
Research Services Section

395 John Ireland Boulevard, MS 330
St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the author and does not necessarily represent the view or
policy of the Minnesota Department of Transportation and/or the Center for Transportation Studies. This report does
not contain a standard or specified technique.

The author and the Minnesota Department of Transportation and/or the Center for Transportation Studies do not
endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered
essential to this report.

ACKNOWLEGEMENTS

 This research was supported by the Minnesota Department of Transportation (Mn/DOT).
The author would like to thank the technical advisory panel members for this project: Bill
Martinson, Mark Novak, Matt Oman, Chu Wei and Tom Nelson. They provided many valuable
suggestions that made the deliverables of this project directly applicable for vehicle classification
and weigh-in-motion data. Research associate Ryan Weidemann helped to initially formulate pdf
pages.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Overall System Model 3

CHAPTER 2: DATA FORMAT STANDARDIZATION AND ARCHIVE 6

2.1 Data Standardization 6
2.1.1 Standard WIM data format 6
2.1.2 Standard VC data formats 9

2.2 Data Warehouse Organization 12
2.2.1 The directory structures of VC and WIM 13
2.2.2 Filenames 15

CHAPTER 3: BINARY DATA TRANSLATION 16

3.1 Binary Data 16

3.2 WIM Binary Data 17
3.2.1 IRD 1068 format 17
3.2.2 iSinc format 19
3.2.3 PVR format 20

3.3 VC Binary Data 20

3.4 Conversion Software 21

CHAPTER 4: DEVELOPMENT OF DATA REPORTING APPLICATIONS 24

4.1 Application Development 24

4.2 BullReport 24
4.2.1 Introduction 24
4.2.2 Station definition 25
4.2.3 Load Spectra 26
4.2.4 TMG reporting 27
4.2.5 TMG-2001 data analysis 29
4.2.6 Summary reports 31

4.3 BullGuide 34
4.3.1 Introduction 34
4.3.2 MEPDG input computation 35
4.3.3 BullGuide output files 37
4.3.4 BullGuide user instruction 40

4.4 BullPiezo 44
4.4.1 Introduction 44
4.4.2 Computation 45
4.4.3 User instruction 45

CHAPTER 5: CONCLUSION 54

REFERENCES 56

APPENDIX-A: PVR AND VC FORMAT

APPENDIX-B: BULLREPORT REPORT SAMPLES

APPENDIX-C: BULLPIEZO SAMPLE OUTPUTS

LIST OF FIGURES

FIGURE 1: ORIGINALLY PROPOSED DATA SYSTEM MODEL .. 4
FIGURE 2: MODIFIED DATA SYSTEM MODEL ... 5
FIGURE 3: SCREEN CAPTURE OF A WIM VEHICLE RECORD FILE READ BY NOTEPAD. .. 9
FIGURE 4: VOLUME DATA EXAMPLE ... 10
FIGURE 5: SPEED DATA EXAMPLE ... 11
FIGURE 6: CLASSIFICATION DATA EXAMPLE ... 12
FIGURE 7: ROOT DIRECTORY OF VC AND WIM .. 13
FIGURE 8: EACH SITE DIRECTORY OF VC RAWCSV DATA IS ORGANIZED AS YEAR DIRECTORIES................................... 14
FIGURE 9: WIM SITE DIRECTORY ... 14
FIGURE 10: PROCESSED DIRECTORY EXAMPLE ... 15
FIGURE 11: A SCREEN CAPTURE OF BULL CONVERTER, WHICH CONVERTS ALL OF MN/DOT BINARY WIM DATA TO A

CSV WIM FORMAT. ... 22
FIGURE 12: A SCREEN CAPTURE OF PEAK BINARY CONVERTER ... 23
FIGURE 13: BULLREPORT USER INTERFACE .. 25
FIGURE 14: SITE EDIT GROUP AND LANE EDIT WINDOW ... 26
FIGURE 15: A SCREEN CAPTURE OF THE BULLREPORT’S LOAD SPECTRUM TAB ... 27
FIGURE 16: SCREEN CAPTURE OF THE BULLREPORT TMG REPORTING UTILITY ... 28
FIGURE 17: TMG STATION DESCRIPTION UTILITY PAGE 1 ... 28
FIGURE 18: TMG STATION DESCRIPTION UTILITY PAGE 2 ... 29
FIGURE 19: TMG ANALYSIS TAB .. 30
FIGURE 20: AN EXAMPLE PLOT OF TMG VOLUME DATA .. 30
FIGURE 21: SUMMARY REPORT TAB ... 31
FIGURE 22: USER ENTRY SCREEN OF WEIGHT LIMIT .. 33
FIGURE 23: IMPORT TRAFLOAD UTILITY OF THE MEPDG TOOLS MENU .. 39
FIGURE 24: THE “LOAD MAF FROM FILE” BUTTON IS USED TO LOAD THE CORRECTED MAF...................................... 39
FIGURE 25: BULLGUIDE SOFTWARE ... 40
FIGURE 26: UTILITY FUNCTIONS IN EXPORT/GRAPHS TAB .. 41
FIGURE 27: NORMALIZED LOAD SPECTRA OF TANDEM AXLES OF THE TYPE-9 VEHICLES AT SITE 25 41
FIGURE 28: PLOT OF AGPV DATA FOR SITE 25 ... 42
FIGURE 29: A PLOT EXAMPLE OF NORMALIZED HOURLY DISTRIBUTION FACTORS (HDF) ... 42
FIGURE 30: PLOT OF AADT FOR SITE 25 .. 43
FIGURE 31: PLOT OF MONTHLY DISTRIBUTION FACTORS (MDF) OF THE SITE 25 .. 43
FIGURE 32: BULLPIEZO SCREEN ... 44
FIGURE 33: ROOT FOLDER ENTRY EXAMPLE ... 47
FIGURE 34: A SCREEN EXAMPLE OF STEPS 2-4 FOR PRODUCING THE OUTPUT FILES .. 48
FIGURE 35: BULLPIEZO PLOT UTILITY SCREEN ... 49
FIGURE 36: AN EXAMPLE PLOT OF AVERAGE DAILY VOLUME DISTRIBUTION .. 50
FIGURE 37: AN EXAMPLE PLOT OF MONTHLY CHANGE OF AVERAGE DAILY TRUCK VOLUME .. 50
FIGURE 38: A PLOT EXAMPLE OF SEASONAL ADJUSTMENT FACTORS .. 51
FIGURE 39: AN EXAMPLE OF SAF TABLE IN A PDF FORMAT .. 51
FIGURE 40: SAF, AADT, MADT DATA COMPUTATION UTILITIES FOR WIM CSV FILES ... 52
FIGURE 41: DATA CONVERSION UTILITY --- FROM VC DATA TO TMG 2001 FORMATS ... 53

LIST OF TABLES

TABLE 1: COLUMN DESCRIPTION OF STANDARDIZED VEHICLE RECORD FILE .. 7
TABLE 2: WIM VEHICLE RECORD ERROR CODE .. 8
TABLE 3: SITE HEADER .. 9
TABLE 4: SPEED BIN RANGE .. 11
TABLE 5: FILENAME EXAMPLES ... 15
TABLE 6: IRD 1068 BINARY FORMAT .. 17
TABLE 7: IRD ISINC FORMAT ... 19
TABLE 8: LOAD RANGE INDEX FOR LOAD SPECTRA ... 37
TABLE 9: VEHICLE CLASS GROUPING .. 46

EXECUTIVE SUMMARY

 Presently, the Office of Transportation Data & Analysis (TDA) at the Minnesota
Department of Transportation (Mn/DOT) manages 29 Vehicle Classification (VC) sites and 12
Weigh-in-Motion (WIM) sites installed on various Minnesota roadways. The data is collected
24/7 from all sites, resulting in a large amount of data. The total amount of data is expected to
substantially grow with time due to the continuous accumulation of data from the present sites
and future expansion of sites. Therefore, there is an urgent need to develop an efficient data
management strategy for dealing with the present needs and future growth of this data. The
solution proposed in this research project is to develop a centralized data warehouse from which
all applications can acquire the data. The objective of this project was to develop software for
creating a VC/WIM data warehouse and example applications that utilize it.
 The data polled from the VC and WIM sites is in proprietary binary formats that can only
be read and processed by the proprietary software packages supplied by device manufacturers.
Since Mn/DOT uses several different types and models of VC and WIM data collection devices,
the binary formats are diverse and no single software package is presently able to read and
process the data. This creates a problem, especially when a data summary report or a statistical
analysis for all sites is needed. In order to solve this problem, this project developed two
standardized unified formats: one for WIM and another for VC data. The unified formats were
developed using ASCII comma-separated values (csv) and can be read by any text editors or
spreadsheet programs. The data warehouse was constructed using the daily data files formatted
according to the unified formats. Since the data warehouse is built on sharable network storage
and the data formats are standardized, it provides a single access point to any application that
needs a query of the VC and WIM data. In order to provide efficiency in data query, a tree data
structure was used for the organization of the data warehouse.
 Along with the development of a VC/WIM data warehouse, three application software
packages were developed. They are BullReport, BullGuide, and BullPiezo, all of which can be
installed and run from any personal computer (PC) as long as it has network access to the data
warehouse. These applications maximally utilize the data warehouse and were developed
according to the present and future needs specified by the Mn/DOT TDA. The BullReport was
developed as an analysis tool for the WIM data and includes a load spectra analysis utility for
single, tandem, tridem, quadem, and steer axles; TMG (Traffic Monitoring Guide) reporting and
analysis tools; and 21 data summary reporting utilities. The BullGuide was developed to generate
MEPDG (Mechanistic-Empirical Pavement Design Guide) input data for Mn/DOT’s WIM sites,
which provides a new way of designing pavement. The BullPiezo was developed as a VC data
application and is capable of generating seasonal adjustment factors for short-count stations,
AADT (Annual Average Daily Traffic), and monthly average truck traffic.
 This project was successfully completed by developing the software necessary to build
the VC/WIM data warehouse and the application software packages that utilize the data. The
data warehouse was successfully built at Mn/DOT and utilized in daily tasks. The main
contribution of this project is that it provides a single access point for querying all of the
Mn/DOT’s WIM and VC data, from which many more applications can be developed without
concerns of proprietary binary formats.

 1

CHAPTER 1: INTRODUCTION

1.1 Background

 The main idea of this project was born out of the successes in the previous project
entitled “TMC Traffic Data Automation for Mn/DOT’s Traffic Monitoring Program,” through
which remote continuous count data (also called ATR data) and short-duration count (also called
short count) data services were established [1]. One of the plausible aspects of this system is that
the Office of Transportation Data and Analysis (TDA) at the Minnesota Department of
Transportation (Mn/DOT) can create ATR and short count stations at arbitrary locations without
actually installing vehicle counters, as long as ITS generated loop data is available. To facilitate
this data service, the Northland Advanced Transportation Systems Research Laboratories
(NATSRL) at the University of Minnesota Duluth (UMD) provided funding for building a Data
Center (DC) which can house a data warehouse for TC traffic and statewide Road Weather
Information System (RWIS) data. Presently, Mn/DOT TDA defines ATR and short count
stations using a TC loop-detector map and then sends the station definitions to the UMD DC
through an on-line data entry table. The UMD DC then generates and delivers the requested data
to Mn/DOT TDA through an on-line automated delivery system. ATR data is continuously
generated 24/7 once it is defined while the short count data is generated per year. In this model,
only the final processed data sets, which are customized for Mn/DOT TDA data needs, are
generated and delivered through the Internet, while the computing software and raw data are
maintained by the UMD DC. This model combines the software development capabilities of
UMD researchers and the practical application knowledge of Mn/DOT employees to share and
utilize the available resources. The implemented system is still in operation and has worked well
for both UMD and Mn/DOT, providing data research opportunities to UMD and operational
benefits to Mn/DOT.
 Mn/DOT TDA recognized the benefits of the UMD DC operation and proposed to
develop a similar process for their Weigh-in-Motion (WIM) and continuous vehicle
classification (VC or also called piezo data at Mn/DOT) data, by creating a data warehouse for
WIM and VC data at the UMD DC. Once a VC/WIM data warehouse is established, the UMD
DC could develop and run WIM and VC data applications whose specifications are developed by
Mn/DOT. Similarly to the ATR and short count data, Mn/DOT then would receive the processed
data through the Internet. With the potential growth of the number of VC and WIM sites at
Mn/DOT and the corresponding growth in data size, utilization of a large networked data
warehouse and high performance computers at UMD DC is an attractive solution. Consequently,
the original proposal of this project was developed based on the needs described above.
However, this remote data model was later modified to directly build the data warehouse at
Mn/DOT instead of UMD DC and also to run the applications directly from Mn/DOT. The main
reason for this change was due to the uncertainty of the UMD DC in securing future funds for
maintaining the facility and researcher supports. NATSRL has been providing the funds for the
UMD DC, but the policy recently changed to only support pure research related activities. It
decided not to support any on-going non-research related activities, such as the present data
support to Mn/DOT. UMD DC requested operational funds for the present data service, but
Mn/DOT also could not secure the funds for the present data services. This created problems for

 2

this project. Finally, the scope of the project was modified to establish a data warehouse on
Mn/DOT network storage and run the software directly from Mn/DOT desktop PCs. This
modified approach has opposing aspects. The positive aspect is that the dependence to UMD DC
is totally removed, i.e., Mn/DOT can freely generate the processed data at any time. Also,
communication problems such as Internet failures are no longer a concern. On the other hand,
the negative aspect is that Mn/DOT now has to maintain the software after the project is
completed. For example, if WIM or VC vendors change their data formats, the software must be
modified to incorporate the format changes. Also, if a new data utility or modification to existing
functions of applications is needed, Mn/DOT is now responsible for the changes, instead of
UMD DC researchers. To mitigate the future software upgrade needs, the PI and Technical
Advisory Panel (TAP) of this project put their best efforts to ensure that the final software
packages delivered incorporate present and future needs and that the software is tested
thoroughly.
 There are four main tasks in this project: Task-1, Analysis of raw data; Task-2,
Development of remote data export systems; Task-3, Development of data warehouse; and Task-
4, development of reporting functionalities. The rest of tasks are writing the draft and final
reports. In order to incorporate the changes in the UMD DC policy, Task-3 was modified to build
a data warehouse at Mn/DOT. Below each task is further described.
 In Task-1, WIM and VC raw binary data were analyzed to develop decoding logics.
There were three different types of WIM systems used at Mn/DOT which have unique binary
formats. VC systems had several versions of binary formats within the same type of systems.
Mn/DOT did not have any information on binary formats from any of the products they use, and
the information was not available from the companies either. Therefore, the binary formats were
decoded purely based on the analysis of binary bit patterns and then verified using the outputs of
the software that the companies sold to Mn/DOT. After decoding logics were established, the
binary data was translated into unified formats by creating one standard for WIM and another
one for VC data. After translation into a unified format, the format differences between
manufacturers or different hardware versions no longer exist. The data sets organized using
standard formats generally improve the query efficiency because it eliminates the decoding time
and does not require use of multiple proprietary software packages for different data collection
devices. The VC/WIM data warehouse was thus created using the standardized data formats. The
structure used for the data warehouse is also important for query efficiency and maintenance of
data. A hierarchical tree structure was implemented to allow fast searches. The binary data
decoding software was written to create an organized tree structure at the specified network
storage as soon as decoding is completed. Thus, the translated data is immediately organized into
a tree structure data warehouse as the raw binary data is decoded. The details on binary formats
are discussed in Chapter 3. The VC/WIM data warehouse structure is discussed in Chapter 2.
 Task-2 was to develop several pieces of data transport software to create a data
warehouse at UMD DC. Three different pieces of software were created, all of which were
designed for scheduled runs without any human intervention. The first piece transfers the raw
binary data from Mn/DOT sources to a UMD DC server; the second piece organizes the raw
data, translates it into a unified format, and then transfers the formatted data to a data server; the
third piece transfers processed data from a UMD DC data server to an export server to deliver
the data to Mn/DOT. Each piece was thoroughly tested to ensure that they are fully functional.
These software pieces created an identical VC/WIM data warehouse at both UMD DC and
Mn/DOT with the result that reporting software (Task-4) can be developed and tested from UMD

 3

DC. Because of the identical data structure used at both sides, several software applications
created at UMD DC were able to run from Mn/DOT without any modification.
Task-3 was to build a data warehouse. The data tree is automatically constructed when the
decoding software developed in Task-1 runs. Mn/DOT successfully installed the decoding
software called BullConverter and PeakConverter, and created a data warehouse for WIM and
VC data in a network storage. The data can be accessed from desktop PCs as long as the network
drive is mounted.
 Task-4 was to develop reporting software utilizing the data warehouse previously created.
Three main pieces of software were developed, which are BullReport, BullGuide, and BullPiezo.
BullReport reads in standardized WIM data and provides three main functions: generation of
various data summary reports (21 different report types are presently implemented), TMG
formatted data for FHWA submission, and graphical analysis tools for load spectra and TMG
formatted data. BullGuide also reads in the standardized WIM data but produces data inputs for
MEPDG pavement design. BullPiezo reads in standardized VC data and generates seasonal
adjustment factors, AADT for each vehicle type, and monthly traffic distribution. The software
was developed as installation packages that can be installed on any PC and can be run as long as
the PC has access to the data warehouse. The details on the software packages are described in
Chapter 4.

1.2 Overall System Model

 The term data warehouse was coined by William Inmon in the 1990s [2], which he
defined in the following way: “A data warehouse is a subject-oriented, integrated, time-variant
and non-volatile collection of data in support of management’s decision making process.”
Subject oriented refers to data that gives information about a particular subject instead of the
organization’s ongoing operations. Time-variant indicates all data in the data warehouse is
identified with a particular time period. Non-volatile implies that data is stable and should not be
modified. This definition is reasonably accurate to describe the UMD DC since it houses a
collection of traffic, WIM, VC, and statewide RWIS data with the data storage exceeding 4
terabytes. In general, data warehouse refers to a collection of many types of databases structured
for query and analysis. If a data warehouse holds only a single-subject data, it is often referred to
as a “data mart” instead of a data warehouse. Therefore, the data warehouse created at Mn/DOT
might be better suited with the name, data mart. Nevertheless, the term data warehouse is used
for the Mn/DOT data to minimize confusion.
 Regardless of the definition of the terminologies, the originally proposed data system is
depicted in Figure 1. At Mn/DOT, raw binary data is collected from VC or WIM sites through
modem lines, which are then stored to a network storage. This raw data is transferred to the
UMD DC through an on-line automation. UMD DC then reorganizes this raw data and translates
them into unified data formats, which are stored into the main network storage where the data is
organized for efficient query and analysis. This organized data is called the data warehouse. An
application server processes the data to produce various reports or data summaries which are
transferred to Mn/DOT through an export server. In this model, Mn/DOT simply requests the
type of data they need, and the UMD DC computers produce and deliver the requested data. In
effort to minimize the recurring cost of maintenance, all transactions are automated through
networking software.

 4

 The modified data system model due to the uncertainty of the future of UMD DC policy
is shown in Figure 2, which simplifies and moves the function of UMD DC to Mn/DOT. In this
model, decoding software packages translate the raw data into unified formats and then organize
them into a WIM/VC data warehouse for query and analysis. Application software packages are
directly installed on Mn/DOT PCs, from which it directly queries and analyzes the unified
format data to produce the final intended results. The application software packages that can be
installable on Mn/DOT PCs are supplied by the UMD DC. The responsibility of Mn/DOT is first
to regularly run the decoding software to maintain the translated data at the Mn/DOT data
warehouse and then to run the application software to produce the final results.

Figure 1: Originally proposed data system model

 5

Raw Binary Data

WIM/VC Data Warehouse

Office PCs
Figure 2: Modified data system model

 6

CHAPTER 2: DATA FORMAT STANDARDIZATION
AND ARCHIVE

2.1 Data Standardization

 The raw data produced by WIM/VC data collection devices are mostly encoded in
proprietary binary formats that can only be understood by the vendor specific software. Even
within the same product line, binary formats often change over time because of changes in the
operating system, microprocessors, etc. Such discrepancies and protective nature of binary
formats limit development of a new application because of unavailability of data decoding
information. Therefore, there is a need for unifying the various binary formats into one
standardized format that is easy to understand and can remain unchanged for a long time.
 Binary formats are compact, so they are often used in data collection devices to cope with
the limited storage spaces in the device. Since the objective in this project is to build a data
warehouse in a large storage, the storage size is no longer a concern. Hence, it is proposed that
ASCII (American Standard Code for Information Exchange) characters are used for all data
formats, instead of binary codes. ASCII characters require more storage space, but they are a
universally accepted character set that can be read from virtually all computers in any operating
system. The data can be either numeric values or text, both of which can be expressed in ASCII
codes. Both WIM and VC data can be expressed as a table consisting of multiple columns and
rows. It is proposed that each data item, which corresponds to a cell in a row, is separated by a
comma and each row is separated by a line break (carriage return and line feed). This format is
often referred to as a csv (comma-separated values) format and widely used and accepted by
many databases and spreadsheet programs. Another principle used in the standardization is
inclusion of information from all manufacturers, i.e., the information encoded in the binary data
from all manufacturers should be translated into the standardized ASCII csv format as much as
possible. The detailed format definitions of WIM and VC data are described in the subsequent
subsections.

2.1.1 Standard WIM data format
 WIM data is recorded as a collection of vehicle records. The important information of a
vehicle record is the lane of the vehicle traveled, speed, time, axle spacing, axle weights, and
error conditions. Standardized WIM files are ASCII text files and can be read by any text editor,
such as a Notepad or a spreadsheet program like Microsoft Excel. The columns of the standard
WIM format used in this project are summarized in Table 1. The first line of the file is the
column headings; and the second line is a marking line that should be ignored in reading it. The
error codes are summarized in Table 2. Equivalent Single Axle Loads (ESALs) are not included
as one of the columns, but it can be easily computed using the axle spacing, weights, and
pavement type data. Figure 3 shows a screen capture of a WIM data file read by the Notepad
program.

 7

Table 1: Column Description of Standardized Vehicle Record File

Column # Column Heading Description

1 Veh# Count or index of vehicles from 12:00AM
(midnight).

2 Lane# Lane number (1, 2, 3, or 4, etc)

3 Time Time at which vehicle recorded. It is written
using the format, hour(0-23):min(0-59):sec (0-
59).

4 Axle# Number of axles of the vehicle.

5 Speed Speed of the vehicle in miles per hour

6-16
(11 columns)

AxleSpacing
(AS1,AS2,…,AS11)

Axle spacing in feet. This distance data is filled
between Column 6 and Column 16. Eleven
columns are allocated for axle spacing. The
unfilled columns are left empty.
Example: If a vehicle has 3 axles, it has two
axle spacings, which will look like:
 10,12,,,,,,,,,,
and indicates that the spacing between the first
and second axle is 10 feet and the spacing
between the second to third axle is 12 feet

17-28
(12 columns)

AxleWeight
(AW1,AW2,…,AW12)

Axle weights in Kips (Kilo-pounds). This
weight data is filled between Column 17 and
Column 28. Twelve columns are allocated for
axle weights, and the unfilled columns are left
empty.
Example:
If a vehicle has 3 axles, and the axle weighs are
4.5, 3.6, 7.5 Kips, then the columns should look
like:
 4.5,3.6,7.5,,,,,,,,,,

29 GVW Gross Vehicle Weight (GVW) is the total load
of the vehicle in Kips. It is the sum of each axle
weights. In the above example, GVW is 15.6
Kips

30 Class Vehicle type is displayed in this column.
Presently, Mn/DOT uses 1-16.

31 ERR Shows the error codes in numeric number

 8

Table 2: WIM Vehicle Record Error Code

Error Code Description
0 Normal, no error
101 Upstream loop failure
102 Downstream loop failure
103 Upstream & downstream loop failure
104 Loop in wrong order
105 Signal idle level too high or too low
106 Maximum number of axles exceeded, max=12
107 Zero axle detected by both up- and downstream axle load sensors
108 Unequal axle counts. Up- and downstream axle counts are not equal
109 Zero axle detected by upstream axle load sensor
110 Axle sensors in wrong order
111 Axle spacing too short
112 Zero axle found by downstream axle load sensor
113 Vehicle too slow
14 Memory buffer failure, queue overflow
15 Not defined
16 Axle on sensor too long
17 Vehicle too fast (likely an error)
18 Loop bounce
19 One axle detected
20 Unknown error
31 Off-scale hit
32 Over height (from height sensor if exists)
33 Significant speed change
34 Significant weight difference
35 Vehicle headway too short
36 Unequal axle detected
37 Wrong lane
38 Tailgating
39 On-scale missed

 9

Figure 3: Screen capture of a WIM vehicle record file read by Notepad.

2.1.2 Standard VC data formats
 Vehicle classification (VC) data at Mn/DOT refers to binary files that are collected from
the data collection devices that operate based on piezoelectric wires, developed by the Peek
Traffic Corporation. The data file may contain a number of possible combinations of data, e.g.,
volume only, volume and speed, or volume, speed, and classification. In the standardized format,
each file contains only one of the following types: volume, speed, or classification. Each
standardized VC file consists of two header lines followed by data lines. The first header line
describes the site and data information. It consists of five fields: siteID, numOfLanes, dataType,
date, and lane-by-lane flag, each separated by a comma. Each field of the site header line is
summarized in Table 3.

Table 3: Site Header

Header Name Description
siteID Three digit site ID
numOfLanes Number of lanes in the data file
dataType It is one of vol, spd, or cls.
date Date expressed in yyyymmdd.
lane-by-lane True, if the data was collected lane-by-lane. False, if

the data was collected without distinction of each lane.

 10

Each item in the first header line is expressed using an equal sign (=) as shown in the
following example.

SiteID=054,numOfLanes=2,dataType=spd,date=20070114,lane-by-lane=False

The second line contains the headers of the data that immediately follows. The three

different data types are illustrated one by one using an example.

Volume data
 Volume data is recorded as hourly volume with each line starting with the corresponding
hour followed by the volumes of each lane. Twenty four data lines, corresponding to each hour
of the day, are in the volume data file. An example data file that consists of four lanes is shown
in Figure 4. As shown in the first line, the data was collected on Jan 15, 2006 from Site 101
which has four lanes. Presently, all Mn/DOT volume data are collected lane-by-lane, thus the
lane-by-lane flag in the first line header appears as true. The time is the beginning time of each
hour period.

Figure 4: Volume data example

 11

Speed data
 Speed data contains the volume of a specific speed range (speed bins). The range of
speed bins are summarized in Table 4. An example is shown in Figure 5. The data header
specifies the speed bins in Table 4. The speed bin ranges are set during the device setup.

Table 4: Speed Bin Range

Speed bin Range
0 0-40 mph
40 40-45 mph
45 45-50 mph
50 50-55 mph
55 55-60 mph
60 60-65 mph
65 65-70 mph
70 70-75 mph
75 75-80 mph
80 80-85 mph
85 85-100 mph
100 100-111 mph
111 111-above mph

Figure 5: Speed data example

 12

 Notice from Figure 5 that the lane-by-lane flag is false. If this is a lane-by-lane data file, a
Lane column is added right after the Time column. The data is then recorded one line per each
lane for the same hour.

Classification data
 Classification data contains the volume of each vehicle type at each hour. The type
corresponds to FHWA classification which defines types 1 trough 15. An example of
classification data expressed in lane-by-lane is shown in Figure 6. This site has four lanes, thus
it consists of a total of 96 data lines. A classification algorithm is directly implemented into the
data collection device and not adjustable from the data.

Figure 6: Classification data example

 Standardized data formats for VC and WIM data shown above are used to build a
VC/WIM data warehouse. Because all formats are a csv text format, it is easy to read and
significantly reduces application development time. In preparation to efficiently retrieve the
data, these csv formatted data files must be well organized, which is discussed in the next
section.

2.2 Data Warehouse Organization

 After standardized formats are established, it is important to organize the data using an
efficient data structure. The objectives set forth in this project for the data structure include:

• Simple to understand and use
• Easy to manage
• Easy to distribute and share large amounts of data
• No cost in adopting the technology

 13

• Fast and easy to retrieve the data
• Adaptable for changes in data collection device location
• Easy to develop data applications
• Robust

 There are many ways of organizing the data. The method adopted in this project was a
tree structure which is commonly used in file systems. This structure is proven robust and
efficient, as demonstrated by many file systems in various operating systems. This structure has
been also successfully used at UMD DC [3] for managing a large quantity of data (e.g.,
terabytes). Since file systems are used in all PCs, many maintenance utilities, such as file backup
utilities and monitoring of status are readily available. Therefore, the data warehouse structure
for this project was chosen as a tree structure in networked disk storage. A networked storage is
required because the data must be shared.

2.2.1 The directory structures of VC and WIM
 In a tree structure, the files are organized as directories and subdirectories. At the root of
the data warehouse tree, VC and WIM directories are created as shown in Figure 7. Under each
root, the data types are divided into three categories: “Processed”, “Raw”, and “Rawcsv”. The
“Raw” directory houses all of the Mn/DOT’s raw binary data. The “Rawcsv” directory houses
the standardized csv formatted files. In the “Processed” directory, processed data, which are
produced by processing the standardized csv data, are stored. The directory structure shown in
Figure 7 is used at UMD DC and a similar structure is created at Mn/DOT.

Figure 7: Root directory of VC and WIM

 Inside the “Rawcsv” directory, the subdirectories are categorized by site IDs. For VC, six
digit site ID numbers were used. Each site directories are automatically created when raw binary
data is translated into the standard csv files. Within each site, the data is further divided into year
directories. Each year directory contains daily files of that year. This relation is shown in Figure
8.

 14

Figure 8: Each site directory of VC Rawcsv data is organized as year directories.

 For WIM data, the sites directories incorporate the site names along with the site ID as
shown in Figure 9. This was to improve readability of the directories but not necessary.

Figure 9: WIM site directory

 The “Processed” directory contains different types of processed data which are produced
as a result of processing the Rawcsv data. Figure 10 shows examples of “Processed”
subdirectories, all of which are based on actual implementation as a part of this project. VC data
is often used to create Monthly Adjustment Factors (MAF) for short count stations, which was
developed as a part of applications in this project. MEPDG houses the pavement design input
files that are processed using the csv WIM data. The details of these applications will be covered
in Chapter 4. The “TMG” directory contains the monthly TMG reporting files.

 15

Figure 10: Processed directory example

2.2.2 Filenames
 The leaves of the data tree in this project are the csv data files. Each csv data file contains
data collected for a single day from the data collection site in a format defined in Section 2.1.
The filename consists of three fields: date, site ID, and an extension, as shown below.

yyyymmdd.siteID.ext

yyyy: year
mm: month
dd: day
siteID: numeric site ID
ext: three letter extension. “vol” for volume, “cls” for classification, “spd” for speed, and

csv for WIM.

 With this filename convention, the date, the site ID, and the data type are immediately
recognized from the filename. Also, data files from different sites can be mixed together and still
be recognized. Examples of filenames are shown in Table 3.

Table 5: Filename Examples

Data Type Filename Example Description
Volume 20060423.000053.vol Site 53, volume data for April 23, 2006
Speed 20071212.000100.spd Site 100, speed data for Dec 12, 2007
Classification 20080120.000191.cls Site 191, classification data for Jan 20, 2008
WIM 20080712.188.csv Site 188, WIM data for July 12, 2008

 16

CHAPTER 3: BINARY DATA TRANSLATION

3.1 Binary Data

 There are a number of reasons that traffic data collection devices use proprietary binary
formats. First, binary data formats create a compact format, and thus they reduce the usage of
valuable memory space of the device. Second, binary formats are difficult to understand and can
hide the format. Proprietary software, developed by the device company, is often required to read
the binary data. Third, companies can change binary formats without acknowledging the users
but by providing a new version of software. The hidden format changes provide a non-
competitive advantage in providing new versions of the software. Fourth, the errors in the
software are less exposed since other competing sources of software are not available. Therefore,
binary data formats are often not disclosed.
 For data sharing and application developments, proprietary binary formats are less
desirable in several respects. When transportation departments use multiple data collection
devices produced by separate vendors, different software packages must be purchased and used
for producing the same type of data. This increases the cost, but also presents problems of non-
uniform reports or even unavailability of a certain functions in different software packages. Also,
when the quality of software is not satisfactory, there is no alternative and departments have to
use the same unsatisfactory product. Different versions of a device within the same product line
often require a different software package, resulting in inefficiency of developing data
applications, such as an analysis of historic trends. Therefore, a standard binary format for data
collection devices is more desirable, which is the case in communication and computer industry.
However, such industry standards have not been created in traffic data collection devices.
 For data warehousing, creating a standard format is imperative to allow data applications
to freely query and share the data. This is the reason that this project created standard data
formats. It adopted the most widely accepted character encoding standard and the data format,
i.e., ASCII character set and csv data format. It should be noted that Mn/DOT has the ownership
of all data collected from the devices that are owned by Mn/DOT. However, the data formats are
proprietary and owned by the device companies. This means that Mn/DOT has the right to use
the data without knowing the data format. This is the problem faced in this project. One solution
would be creating a non-disclosure agreement for a specific Mn/DOT use with each and every
company for the binary data format. Such an agreement could be legally complicated and may
take a long time. Also, the usage limits placed on the non-disclosure agreement may create
additional problems. Therefore, a different route was taken in this project. Since Mn/DOT owns
the binary data, what to do with it is the right of Mn/DOT. If the binary data is read by
Mn/DOT’s own software at its own risk, there are no ownership issues for using the binary data.
After a few meetings with Mn/DOT and the PI of this project, Mn/DOT granted use of the binary
data by UMD DC for translating them to a standard ASCII csv format, as a part of this project.
This chapter describes decoding of the binary formats into understandable information on all of
the formats used by the present Mn/DOT WIM and VC data collection devices. The formats
were decoded by a pattern analysis of binary bits, so the absolute accuracy is not guaranteed.
However, the accuracy of data translation was verified against the output of each company’s
software package that Mn/DOT purchased.

 17

3.2 WIM Binary Data

 Mn/DOT presently uses four different types of WIM systems, which are IRD 1068, IRD
iSync, PEEK PVR, and Bulldog. The Bulldog system was developed by UMD and directly
outputs ASCII csv data, so no translation is required. Therefore, the three binary formats of the
IRD 1068, IRD iSync, and PVR are described. The basic unit of binary is a byte which consists
of 8-bits. The formats are described byte-by-byte in the order it appears in the binary file.

3.2.1 IRD 1068 format
 IRD 1068 was developed using a DOS based embedded PC. Since DOS does not allow
multitasking, it runs on a batch mode and can only perform one task at a time. For example,
while the data is downloaded, the data collection function must stop. It also uses the old 32-bit
DOS timestamp, which starts from Jan 1st, 1970. The binary data consists of a collection of
vehicle records, each of which are composed of a timestamp, error number, lane number, record
type, speed, number of axles, axle spacing, and axle weights. The data follows the byte order of
“Little Endian” which stores the least significant byte at the lowest address. The data format is
summarized in Table 6 in the byte order that appears in each file.

Table 6: IRD 1068 Binary Format

Bytes Description
16 bytes Header information:

It represents system type, number of lanes, etc. An example
byte pattern is1,8,4,0,0,0,0,0 (or 264193 in integer) or
0,0,0,0,0,0,0,0.

3 bytes Index or count of the vehicle record
4 bytes Timestamp

It is a 32-bit integer representing, number of seconds since
Jan 1st 1970, 00:00:00 GMT. Hence, direct translation of
this timestamp is GMT, and the local time must be obtained
by subtracting a proper number of hours. In general, 8
hours should be subtracted to get the local time because the
DOS timestamp routine was originally written in California
and uses the PST.

1 byte Error number
1 byte Lane number. This number starts from 0, so the lane

number is obtained by adding 1. For example, 2 indicates
lane #3.

1 byte Status.
This field actually represents error/warning numbers
specified in the DOS Office program. If status =0, it means
the data is good. If status>=15, it is a warning. If
0<status<15, it is a critical error and the next record starts
right after this status byte.

 18

1 byte Record Type
10 = classification only
11 = normal axle weight record, i.e., space 1, space2,
weight1, weight2, weight3, … order
12 = split weights record, i.e., space1, space2,
…,weight1_left, weight1_right, …
30-34=calibration mode
41-44=diagnostic mode

2 bytes Vehicle length in cm.
This is not useful data since the length is not measured but
estimated based on axle spacing.

1 byte Speed. Km/hour

1 byte Number of axles.
This number determines the subsequent number of data
items.

Array of 2 bytes (array of
16-bit integers)

Axle Spacing in Cm. (2 bytes per each spacing)
The number of bytes is (#_of_axles -1) * 2 bytes

Array of 2 bytes (array of
16-bit integers)

Weights in Kg (2 bytes per each axle weight)
Data size and order depends on the record types.
type 11: #_of_axles * 2 bytes
type 12: #_of_axles * 4 bytes (left and right per each axle)

type 41, 42, 43, 44: calibration mode
 NumOfWeightRecords = type - 40
 #_of_axles * NumOfWeightRecords * 2 bytes

type 30,31,32,33,34: diagnostic mode
 NumOfWeightRecords = type -30
 #_of_axles * NumOfWeightRecords * 2 bytes

type 20 : it is a special type of record. This record always

shows up before the diagnostic records.
 If the data byte at the number of axles indicates how

many words must advance, e.g. if #_of_axles=12, 12
words must advance and then next record starts. Note
that no spacing data appears in this case.

2 bytes End of record mark

Most of time, it is 0000.

 19

3.2.2 iSinc format
 This format is used by a newer type of WIM system provided by IRD (International Road
Dynamics Inc). However, it still uses the old DOS time stamp. The binary ordering follows the
“Little Endian” order. The header is clearly different from IRD 1068, but similarities exist in the
rest of data. There are several unidentified fields but the critical information such as axle spacing
and weights were identified. The summary of binary format is shown in Table 7 in the order of
the bytes that appear in a file.

Table 7: IRD iSinc Format

Bytes Description
16 bytes Header information:

System type, number of lanes, etc…
Typically, it is 1,10,255,0,0,0,0,75 (or
5404319552861309441 in Int64) or 0,0,0,0,0,0,0,0

2 bytes Index or counter of the vehicle record
1 byte Lane number. This number starts from 0, so the

lane number is obtained by adding 1. Example) 2
indicates lane #3.

7 bytes Unknown. It appears the 6th of this 7 bytes looks
like a status.

4 bytes Timestamp.
It is a 32bit integer representing, number of seconds
since Jan 1st 1970, 00:00:00 GMT.
Hence, direct translation of this timestamp is GMT,
and the local time must be obtained by subtracting a
proper number of hours. In general, you must
subtract 8 hours to get the local time because the
DOS timestamp routine was originally written in
California.

1 byte Error number. This is a guess and not clearly
identified.

3 bytes Unknown

1 byte Record type.
10 = classification only, contains only axle spaces.
 Data to read=(AxleNum -1)*2

11 = normal axle weight record, i.e.,
space 1, space2, weight1, weight2, weight3, … order

12 = split weights record, i.e.,
space1, space2,
weight1_left, weight1_right, …

 20

weight2_left, weight2_right, …
weight3_left, weight3_right, …

30-34=calibration mode
41-44=diagnostic mode

1 byte Speed. Km/hour
2 bytes Vehicle length in cm.

This is not useful data since the length is not
measured but estimated based on axle spacing.

4 bytes Unknown

1 byte Number of axles.
This number determines the subsequent number of
data items.

Array of 2 bytes (int16) Axle Spacing in Cm.
The size of this field is (# of axle -1) * 2 bytes.

Array of 2 bytes (int16) Weights in Kg
It depends on type 11 or 12.
If the record type is 11, each axle weight is recorded
using one 2-byte word. If the record type is 12, it is a
split axle record and recorded using two 2-byte
words.

25 bytes Unknown
It appears as an External data tag and information
field.
The size is computed by,
 13 + (#_of_axles * 6) bytes

2 bytes End of record mark
Usually, it is 0x0000.

3.2.3 PVR format
 Another type of WIM system used by Mn/DOT is provided by PEEK, and the binary data
is formatted using PVR (Peek Vehicle Record) format. This format is completely different from
the IRD 1068 or iSinc and much more complex. Each vehicle record includes timestamp, number
of axles, speed, vehicle class, axle spacing, axle weights, and error code. Due to the complexity,
this format is shown in Appendix-A.

3.3 VC Binary Data

 This format is designed to handle several different configurations. It can be configured
for a single loop ([]), two piezoelectric sensors (| |), two loops ([] []), or two piezoelectric sensors
with a loop (| [] |). The data type can be volume, speed, classification, or a combination of them.
In the header, it also defines a flow assignment which is basically a lane assignment. The data

 21

collection methods are defined by three studies (Study 1, Study 2, and Study 3). Each study
consists of three headings, and the heading can be empty. For example, if Study 1 is to collect
volume and speed data, the heading 1 defines the volume definition; heading 2 defines the speed
definition; and heading 3 is left empty (i.e. 0’s). The data is recorded not as vehicle records but
as hourly counts in a bin. For example, classification data is recorded as 15 bins that contain
counts of 15 FHWA vehicle types in that hour period. The bins are sometimes allocated for each
lane or sometimes combined for all lanes. Again this format is fairly complicated, and thus the
details are attached in Appendix-A.

3.4 Conversion Software

 For converting binary data to the standard csv formats, two software packages were
developed in this project. The first one is called “Bull Converter” which was developed as a
converter for all of Mn/DOT’s WIM binary data. A screen capture of this software utility is
shown in Figure 11. This software converts IRD 1068 and iSinc binary data files into the
standard csv WIM format defined in Section 2.1. The software identifies the format differences
of 1068 and iSinc from the header file and automatically translates them into the standard WIM
csv format. It also recognizes PVR binary format and converts them into the standard WIM csv
format. The conversion is done file-by-file and it has an option that only new files are converted.
The conversion can be done for multiple years, from a start year to current, or month by month.
As each file is converted, the Bull Converter organizes them into the directory structure
described in Section 2.2. This organization can be defined through the “Site Name Edit” tab. It
also provides a utility to read the log file that contains conversion status information of all
converted files, such as conversion time, errors during the conversion, and the original binary file
information. Another useful utility included is that the user can look at the header and other
details of a binary file. If a conversion error was noted from the log information, this utility can
be used to track down the cause of the error. During the conversion process, the Bull Converter
also computes vehicle type using a class definition file. This utility was added in order to apply
the same classification scheme to all WIM data, regardless of the differences in WIM devices
(i.e. manufactured by different companies).

 22

Figure 11: A screen capture of Bull Converter, which converts all of Mn/DOT binary WIM data to a csv
WIM format.

 The second software package developed is called “Peak Binary Converter” and can
convert all of the present and past Mn/DOT’s VC data into the standard VC csv format defined
in Section 2.2. A screen capture of this software is shown in Figure 12. The conversion utilities
are similar to the Bull Converter. The binary data can be converted site-by-site or all of the sites
at once. Also, the data can be converted from a starting year to current, specific year, or specific
month. The converted files are automatically organized into the directory structure described in
Section 2.2.

 23

Figure 12: A Screen capture of Peak Binary Converter

 24

CHAPTER 4: DEVELOPMENT OF DATA REPORTING
APPLICATIONS

4.1 Application Development

 After creating the data warehouse as a part of the network storage at Mn/DOT, several
applications that utilize the data in the data warehouse were developed for Mn/DOT. The
applications introduced in this project were devised based on the present and future needs of
Mn/DOT. The accuracy of the final outputs of the applications was extensively tested by
comparing them to the outputs of exiting proprietary software as well as using the past records.
Each application was developed as a complete software package that can be installed on any PC
using a standard Windows Installer. Only requirement is that the PC must have an access to the
data warehouse structure described in Chapter 2. The three software packages developed in this
project are BullReport, BullPiezo, and BullGuide. Because all of the binary data was already
converted into the standard csv formats, the main advantage of using these software packages is
that all of them seamlessly work on the data produced by the data collection devices that are
manufactured by different companies or different models within the same company. Much effort
has been made to ensure that the quality, performance, and reliability of the software are
equivalent or better than the commercial grade software packages supplied by the device
manufacturer. Some of the functionalities that are not available from commercial software but
needed for the operation of MN/DOT TDA were carefully developed and tested for accuracy.
Special attention was paid to the software design, to ensure the software was easy to use and that
minimum training is required for using the software. The user interface was mostly implemented
using visual components, and the software can run mostly using mouse clicks, i.e., no command
lines are used. The capability and functionalities of each package are described in the subsequent
sections.

4.2 BullReport

4.2.1 Introduction
 BullReport (a short name of Bulldog Report) was developed as an analysis tool for the
WIM data, as well as for a data summary reporting tool. Its functions include load spectra
analysis of single, tandem, tridem, quadem, steer, and GVW (Gross Vehicle Weight), TMG
reporting and analysis tools, and data summary and analysis reporting tools. It consists of four
tabs: Station Def, Load Spectrum, TMG Reporting, and Summary Reports. The first tab of this
software is shown in Figure 13.

 25

Figure 13: BullReport user interface

4.2.2 Station definition
 As the first step of using this software, stations must be defined using the Station Def
Tab. Station information include site ID, site name, and lane descriptions and can be added,
deleted, or edited. The site information is managed using the buttons and lists shown in the Site
Edit group. Doubling clicking the site ID in the Site IDs list box or the Add New button pops up
a Lane Edit window at which the user can add or edit the site information. Lanes can be defined
up to eight and must specify the directions. The standard TMG-2001 direction code is used, i.e.,
1=North, 2=Northeast, 3=East, 4=Southeast, 5=South, 6=Southwest, 7=West, and 8=Northwest.
Clicking the Save button saves the all entries. The lane numbers should be check marked,
starting from 1 and then consecutively marking without skipping the numbers. The site
information needs to be defined only once.

 26

Figure 14: Site Edit group and Lane Edit window

4.2.3 Load Spectra
 Load spectrum is a histogram of axle group loads and has become increasingly an
important tool for the analysis of pavement maintenance and design [5]. It is also a useful tool
for a diagnostic analysis of the data. For example, Figure 15 shows a screen capture of a tandem
axle load spectra of types 9 and 16 (9 in FHWA scheme). It shows an overlap of two Gaussian
curves with different means, one at 10 Kips and the other at 30 Kips. It is known that tandem
axles of type-9 vehicles have a stable distribution as shown in Figure 15 [8]. This distribution
property can be used for calibration or diagnostics of a WIM system.
 For using this functionality, the user can select the period, vehicle classes, axle groups,
bin sizes, and bin ranges. In addition, different types of classification schemes can be chosen.
The load spectra data can also be exported as csv text file and can be read using a text editor,
such as a Notepad. In addition to the normal axle groups, the load spectra of steer and GVW can
also be plotted.

 27

Figure 15: A screen capture of the BullReport’s Load Spectrum tab

4.2.4 TMG reporting
 FHWA collects a nation-wide WIM data using the data format defined in Section 6
(Traffic Monitoring Data Formats) of TMG-2001 [4]. Mn/DOT participates in this program and
submits the data monthly for all WIM sites. The TMG-2001 format defines four different types
of data formats, which are station description data, traffic volume data, vehicle classification
data, and truck weight data [4]. The TMG Reporting tab in the BullReport provides utilities for
producing these four types of data using the csv WIM data. The screens of this utility are shown
in Figure 16-18.
 The volume, classification, and truck weight reports can be produced for a single day or
for single or multiple months. Also, all three types of data reports can be produced at once by
using the “All Three” button. The station description data is produced by the “Build a TMG
Station Description Report” button, which opens a window shown in Figure 17 and 18. It
consists of two tabs with mostly user selectable items. Pre-existing station description files can
be loaded, modified, and saved as a new file, or a new file can be easily created. The sample
TMG-2001 data files produced by the BullReport are attached in Appendix-B.

 28

Figure 16: Screen capture of the BullReport TMG reporting utility

Figure 17: TMG station description utility page 1

 29

Figure 18: TMG station description utility page 2

4.2.5 TMG-2001 data analysis
 Once TMG-2001 formatted data is produced, it can be used as inputs to other analysis
tools and software packages. The TMG Analysis tab shown in Figure 19 can load and visualize
TMG-2001 volume and classification files through several types of plots. This tool is useful
when the format needs to be verified. If the format of the data is correct, it loads successfully, but
it produces error messages if the data format has an error. Due to inter-operability, TMG-2001
formatted data produced by other software can be loaded and used for analysis.
 The plot utility included can plot any TMG-2001 classification data by each lane, all
lanes, or selected lanes. In additions, it can plot any selected date or the whole month. For TMG-
2001 volume data, the daily volume can be plotted by hour or the whole month. Figure 20 shows
an example plot of TMG volume data. In addition to plots, this utility computes and displays
daily volume or monthly total volume, depending on the data selected. The users can modify
much of the display options in the “Graph/Print Control” button and that it works similar to the
graphing options in Excel.

 30

Figure 19: TMG analysis tab

Figure 20: An example plot of TMG volume data

 31

4.2.6 Summary reports
 Utilizing the csv WIM data, the BullReport can generate many different types of data
reports. It presently can generate twenty one different types of reports, and each report can be
formatted in four different formats, which are text, Excel, pdf, and XPS (web format). The
reporting tool was implemented in the Summary Reports tab and a sample screen is shown in
Figure 21. As a report type is selected, different types of user selectable parameters are displayed
in the “Select Reporting Parameters” group. In Figure 21, “Load Spectrum” was selected from
the “Report Type” combo-box, which brings up the user selectable parameters: the period
defined by the “Start” and “End” calendar box, “Classification Scheme” combo-box, “Lanes”
check boxes, bin size, and vehicle types. The report is created when the user presses the “Create
Report” button located at the lower right corner of the window.

Figure 21: Summary report tab

 Each report type is briefly described next. A sample PDF file for each type of report is
attached in Appendix-B.

Class by Hour Report
 This report shows volume distribution of each type of vehicle per each hour of the
selected period. The data table consists of 16 columns representing vehicle Types 1-16 (type-16
is used at Mn/DOT) and 24 rows for 24 hours. The table also includes a total and percent for

 32

each column. The percent indicates the percent distribution of the vehicle type during the period
and the lane(s) selected. The user has options to select a single or multiple lanes, start and end
dates of the reporting period, and the classification scheme.

Speed by Hour Report
 This report shows the number of vehicles at a certain range of speeds per each hour. The
speed bins can be customized using the number of bins, the first bin range, and bin size. The
table consists of 24 rows for each hour of day and the number of columns for the speed bins.
Using this report, one can quickly identify how many vehicles exceeded speed limits at what
hour. The user can select a particular lane or lanes and the period of the data.

Lane by Hour Report
 This report summarizes lane-by-lane volumes by hour. It consists of number of columns
for the selected lanes and 24 rows for each hour. The table also includes the total volume and
percent of each lane and hourly total volumes for all lanes. Using this table, utilization rate of
each lane can be observed.

Lane by Class Report
 This report shows lane volume distribution by class. Large trucks more frequently use the
driving lanes, which can be observed from this table. This table consists of rows corresponding
to the lanes and columns corresponding to the number of vehicle types used in the classification.

Lane by Error Report
 This report summarizes error frequencies by lane and error type. Error codes used are
101-113 and 14-39, totaling 39 codes. Code 0 denotes no error case. The table consists of rows
corresponding to the lanes and columns corresponding to error codes. The meaning of each error
code is provided under the table.

Error Vehicle by Hour Report
 This report summarizes frequencies of errors by hour of the day and error type. The error
codes used are same as the Lane by Error Report. This table can be used to identify which hour
had most errors.

Class by Day of Month Report
 This report summarizes each class volume by day-of-week. It includes total, percent, and
average volumes in additional rows. The columns correspond to the number of vehicle types
defined in the classification scheme, and the rows correspond to day of month.

Truck Count by Day of Month Report
 This report is identical to the Class by Day of Month report, except that it only includes
trucks. Vehicle types 4 and above are considered as trucks.

Class by Front Axle Weight Report
 Front axle weights provide useful diagnostic information. This report consists of weight
bin rows and vehicle type columns, by which it shows the front axle weight distribution for each

 33

vehicle type. The user can select the weight bin size, classification scheme, and the lanes to be
included in the report.

Class by Gross Vehicle Weight Report
 This report is identical to the “Class by Front Axle Weight Report,” except that the
weight distribution is computed using gross vehicle weights (GVW).

Weight Violation by Class Report
 This report summarizes over-weight violations by class, axle group (single, tandem,
tridem, and quadem), GVW, and bridge weight. The user can specify the weight limit of each
violation type, using the parameters shown in Figure 22. Bridge formula weights follow the
FHWA guideline published in Aug 2006, ref [9].

Figure 22: User entry screen of weight limit

Weight Violation by Hour Report
 This report is similar to the Weight Violation by Class Report. The difference is that
weight violations are shown by hour, instead of class.

18Kip ESALs by Hour Report
 This report summarizes equivalent single axle loads (ESALs) by hour and class. ESALs
are computed according to the user selection of pavement type (flexible or rigid). For flexible
pavements, SN (Structure Number) = 5 and Pt = 2.5 are used as the default values. For rigid
pavements, D (pavement thickness) = 10” and Pt = 2.5 are used as the default values. This report
only includes trucks.

Axle Count by Axle Weight Report
 This report summarizes axle counts, total weights, and ESALs for each weight range in
kips. In addition, totals of axle counts, weights, and ESALS are shown at the last row. The user
can select the bin size by defining the weight ranges in kips. The default bin size is 2 kips.

Single Axle Load Spectra by Class Report
 This report summarizes load distribution of single axles for each vehicle type.

 34

Tandem Axle Load Spectra by Class Report
 This report summarizes load distribution of tandem axles for each vehicle type.

Tridem Axle Load Spectra by Class Report
 This report summarizes load distribution of tridem axles for each vehicle type.

Quadem Axle Load Spectra by Class Report
 This report summarizes load distribution of quadem axles for each vehicle type.

Load Spectra Report
 This report summarizes load spectra by single, tandem, tridem, and quadem axles, GVW,
and steer axles. The user selectable parameters include the reporting period, lanes, classification
scheme, bin size, and vehicle types to include in the load spectra.

Speed by Class Report
 This report summarizes the speed distribution of each vehicle type. The user selectable
parameters include the speed bin size, number of bins, and the first bin range. Using this report,
the user may check the vehicle distribution of average and/or violated speeds for each vehicle
type.

Site Summary Report
 This report provides a quick summary of several key data for the selected WIM site and
period. The types of data summary include vehicle counts and percent, error counts and percent,
valid weights, total GVW, average GVW, total ESAL, overweight vehicle counts and percent,
and average front axle weight, all of which are tabulated for each vehicle type.

 In summary, BullReport can generate a total, 21 different types of formal reports in pdf,
text, excel, and web formats. Each report type has its own user selectable parameters such as bin
size and can be generated for any time period. It also includes a utility that can generate TMG
2001 formatted station description, traffic volume data, vehicle classification data, and truck
weight data. Several graphic utilities are provided for load spectra and TMG 2001 formatted data
analysis. These versatile and flexible tools are developed to meet the present and future needs of
WIM data analysis, summary, and reports.

4.3 BullGuide

4.3.1 Introduction
 In the late 1950s, a series of road tests called the American Association for State
Highway Officials (AASHO) Road Test was carried out by the American Association of State
Highway and Transportation Officials (AASHTO). This study is frequently used as a primary
source of experimental data when vehicle damage to highways is considered for the purposes of
road design, vehicle taxation, and costing. One of the significant findings of this study was the
concept of load equivalency factors. This concept is used to simplify a complex stream of traffic
information into a single design parameter --- the number of equivalent single axle loads
(ESALs).

 35

 ESALs are still used in many design procedures today but the validity of using a single
parameter has been questioned over time. NCHRP Project 1-37A, which was completed in 2004,
eventually established the mechanistic-empirical pavement design guide (MEPDG) which
utilizes both mechanistic principles and empirical performance observations [5]. The final
product was a software package that is known as the MEPDG software [6]. The number of inputs
is significantly greater than the traditional ESAL based design, which makes preparation for
MEPDG more complicated. NCHRP Project 1-39 was later established and produced a software
package called the TrafLoad for collecting and processing traffic data for the MEPDG software
[7].
 The BullGuide software package was developed to generate MEPDG input data for
Mn/DOT’s WIM data. It generates the same export output files as those produced by the
TrafLoad, but the procedure is much simpler and easier to use, due in part to the customization to
Mn/DOT data and a simplified user interface. The BullGuide directly reads in Mn/DOT’s csv
WIM data and generates MEPDG inputs with just few mouse clicks. TrafLoad, on the other
hand, uses TMG formatted data and requires manual entries of pre-processed data. The
BullGuide typically takes only a fraction of time to produce MEPDG inputs, in comparison to
TrafLoad.

4.3.2 MEPDG input computation
 The inputs required for the MEPDG software are AADT for vehicle classes 4-13,
Monthly Distribution Factors (MDF) for classes 4-13 for each month, Hourly Distribution
Factors (HDF) for classes 4-13 for each hour, Axle Group per Vehicle (AGPV) for each class,
and load spectra for single, tandem, tridem, and quadem axle groups. Among them, load spectra
computation is the most complicated, and the algorithm used is described.
From each daily WIM data, a load spectra (denoted LS_1day() and a three dimensional array of
bins) is first constructed as:

 _1 (, ,)LS day i j k (1)

where i is the vehicle classes 1 through 13, j is the axle groups 1 through 4, and k is the load
range index 1 through 39. The load range index is determined according to Table 8. For each
month, a daily array is organized as day-of-week (DOW), i.e.,

 _ (, , , ,)LS DOW w d i j k (2)

where w is the week index for the month (i.e., wth week of the month) and d is an index of DOW
(0=Sunday, 1=Monday, …, 6=Saturday). Next, average DOW load spectra are computed for
each month m, i.e.,

 _ _ (, , , ,)LS DOW Avg m d i j k (3)

 By averaging the seven days of LS_DOW_Avg, monthly load spectra for class i, axle
group j, load range k, and for the month m are computed as,

 _ (, , ,)LS Month m i j k (4)

 36

 The array LS_Month() is used to construct the load spectra input file for the MEPDG
software. Similarly, volume data is used to construct AADT for each class. That is, volume data
is organized as average DOW for each month and class. Monthly AADT is then computed by
averaging the average DOW volume for the month for each class. The final AADT is the average
of each month for the year for each class.
 If multiple years of data are used for data preparation, an exponential average is
computed to put more weights on the most recent year, i.e., 10.5 0.5y y yx x x −= + where

yx denotes the current year data and 1yx − denotes an exponential average up to one year past data.

 37

Table 8: Load Range Index for Load Spectra

4.3.3 BullGuide output files
 BullGuide produces nine different files in a directory named using the site ID and the
ending year of the data used. Suppose that the site ID is 25 and the ending year of the data is
2008. The directory name is then assigned as 025-2008. The road orientation is used as a part of
file names. This inclusion is to maintain the compatibility to the TrafLoad. Suppose that the road

Load Range

Upper Limit of Load Range (kips) by Type of Axle group
Single Tandem Tridem Quadem

1 3 6 12 12
2 4 8 15 15
3 5 10 18 18
4 6 12 21 21
5 7 14 24 24
6 8 16 27 27
7 9 18 30 30
8 10 20 33 33
9 11 22 36 36

10 12 24 39 39
11 13 26 42 42
12 14 28 45 45
13 15 30 48 48
14 16 32 51 51
15 17 34 54 54
16 18 36 57 57
17 19 38 60 60
18 20 40 63 63
19 21 42 66 66
20 22 44 69 69
21 23 46 72 72
22 24 48 75 75
23 25 50 78 78
24 26 52 81 81
25 27 54 84 84
26 28 56 87 87
27 29 58 90 90
28 30 60 93 93
29 31 62 96 96
30 32 64 99 99
31 33 66 102 102
32 34 68
33 35 70
34 36 72
35 37 74
36 38 76
37 39 78
38 40 80
39 41 82

 38

orientation of this site is 8 (Northwest). The files produced by BullGuide in the directory “025-
2008” are then:

• 025-8.trfl
• AGPV.025-8.txt
• SingleAxle.025-8.txt
• TandemAxle.025-8.txt
• TridemAxle.025-8.txt
• QuadAxle.025-8.txt
• MAF.025-8.txt
• Summary.txt

 The first six files in the list are compatible to the TrafLoad export files. These files can be
directly imported using the “Import TrafLoad” utility available under the “Tools” menu of the
MEPDG software (see Figure 23). When these files are imported to the MEPDG software, the
respective fields are populated. Unfortunately, the present Version 1.003 MEPDG has a
normalization error when it populates inputs for the monthly adjustment factors (MAF) using
TrafLoad export files. The file “MAF.025-8.txt” in the list is the corrected version of the MAF
table, which can be loaded to the MEPDG software using the “Load MAF From File” button in
the “Traffic Volume Adjustment Factors” window (see Figure 24).
 The “summary.txt” file in the above list includes summary information about the site and
data. It contains start and end date of the data used, the site name, the site ID, lane direction,
pavement type, total number of days, total number of week days, total volumes of type 4-13
vehicles processed, truck AADT, and AADT. This data is useful in building a new MEPDG
Project, as well as for other applications.

 39

Figure 23: Import TrafLoad utility of the MEPDG tools menu

Figure 24: The “Load MAF From File” button is used to load the corrected MAF.

 40

4.3.4 BullGuide user instruction
 BullGuide consists of two tab pages as shown in Figure 25. The main functions are (1) to
produce the import files for the MEPDG software and (2) to visualize and analyze the data. It
first tests data availability and provides choices of data filtering for quality control. The steps of
producing the MEPDG input files are:

• Set the root folder of the WIM csv data
• Select the site
• Select the design lane and pavement type
• Select the start and end dates of the data to be used
• Select the data filtering choices
• Set the folder for the output files in the Export/Graphs tab
• Click the “Run MEPDG Export” button in the Export/Graphs tab

Figure 25: BullGuide software

 The BullGuide includes a data visualization tool for analyzing the export data. The graph
utility screen is shown in Figure 26. The data plotting utilities implemented include AGPV data,
AADT, HDF, MDF, and load spectra. The load spectra are plotted by class and axle groups. The
plot examples of the data from site 25 are shown in Figures 27-31. These plots can be used for
checking the quality or validity of the data. For example, the load spectra of tandem axles of
type-9 vehicles must have two peaks in a certain range. This pattern is shown in Figure 27. If this

 41

pattern is not observed from the graph, the user must suspect the data quality is poor and may
select a different data period.

Figure 26: Utility functions in Export/Graphs tab

Figure 27: Normalized load spectra of tandem axles of the type-9 vehicles at Site 25

 42

Figure 28: Plot of AGPV data for site 25

Figure 29: A plot example of normalized hourly distribution factors (HDF)

 43

Figure 30: Plot of AADT for site 25

Figure 31: Plot of monthly distribution factors (MDF) of the site 25

 44

4.4 BullPiezo

4.4.1 Introduction
 The BullPiezo software package was developed as a VC data application for this project.
The software consists of three tabs, as shown in Figure 32. It initially started by writing codes to
compute seasonal adjustment factors for VC sites, and then more functions were gradually
added. The present version provides four main functions:

• data computation of seasonal adjustment factors (SAF), AADT, and monthly average
daily traffic (MADT) using VC data

• plot of AADT, average daily truck volume, SAF of each vehicle type
• data computation of SAF, AADT, and MADT using WIM data
• generation of TMG reporting data

 The computational procedures of SAF, AADT, and MADT data were implemented by
following the guidelines provided in FHWA TMG 2001 [1].
 In the past, SAF were only generated using VC data at Mn/DOT. This software
demonstrates that SAF can also be generated using WIM data. This was easily accomplished,
due to the network access of the data warehouse created and the unified standard format.

Figure 32: BullPiezo screen

 45

4.4.2 Computation
 Average annual daily traffic (AADT) can be computed in two ways, i.e., by a simple
average or an average of an average. AASHTO recommends the average of an average approach,
i.e.,

7 12

1 1 1

1 1 1
7 12

n

ijk
i j k

AADT Vol
n= = =

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ ∑ (5)

where:

Vol = daily traffic for day k, of day-of-week i, and month j
i = day of week
j = month of year
k = week of the month
n = the number of days of that day of the week during that month

 This computation starts by computing the average day of week traffic volume for each
month. Each day of week traffic volume is averaged over 12 months, which results in seven
values. An average of the seven values becomes AADT.

 Let jMADT denote the average daily traffic for month j. Seasonal adjustment factor for
month j (jSAF) is then computed using:

j
j

AADTSAF
MADT

=

 In BullPiezo an option for selecting a week as weekdays only or all seven days was
implemented. If the “week days only” option is selected, MADT and SAF are computed using
only weekdays. However, AADT is always computed using seven days of week. The “week days
only” option should be used if the short count data are collected only during the weekdays
(Monday through Friday).

4.4.3 User instruction
 BullPiezo runs on one VC site at a time and produces four output files. Suppose that the
site ID is 101 and the ending year of the data computed is 2008, then the output files are:

• AADT-101-2008.txt
• MADT-101-2008.txt
• MAF-101-2008.txt
• availDates-101-2008.txt

 All of the output files are written in ASCII text, so that they can be read using any text
editor. The AADT-101-2008.txt file contains AADT of the site 101 for each vehicle type.
Similarly, MADT-101-2008.txt contains monthly average daily traffic, and MAF-101-2008.txt
contains monthly adjustment factors, which Mn/DOT refers as seasonal adjustment factors

 46

(SAF). In all files, the first line shows the file information which consists of data type, year, site
ID, and 5 or 7 days of week used. The second line is the header for the actual data. The Type
column specifies vehicle class groups which are defined in Table 9. This grouping is used at
Mn/DOT for VC data. Group types 2-8 are considered as Trucks.

Table 9: Vehicle Class Grouping

Group Type Type Name Grouping by FHWA Class
1 PASSVEH Class 1 + 2 + 3
2 2AXSU Class 5
3 3+AXSU Class 6 + 7
4 3AXSEMI (Class 8) * 0.35
5 4AXSEMI (Class 8) * 0.65
6 5+AXSEMI Class 9 + 10
7 TRKTRLF/BUS Class 4
8 TWINS Class 11 + 12 + 13

 The availDates-101-2008.txt file contains the dates of data used for the computation in a
calendar format. If no data is present for a certain day, that day is marked with “0”. A sample file
for each listed above is attached in Appendix-C. Next, how to actually use the BullPiezo to
produce the output files is described.

How to produce the data
 Step 1: Select the “Piezo csv Archive Root Folder” and the “Output Data Root Folder”
using the “Browse” buttons. According to the data warehouse organization defined in Section
2.2, the root folders are selected. Figure 33 illustrates which folder should be placed where.

 47

Figure 33: Root folder entry example

 Step 2: Select a site from the “Piezo Sites” list box. If the site is not present, define it
using the “Add New” button.
 Step 3: Enter the “Begin” and “End” dates of the year. Check data availability of the site
by pressing the “Check Data Availability” button. (It should be noted that the Year does not have
be defined from Jan 1st to Dec 31st. It can be any period, for example, 6/1/2007 to 8/1/2008 or
multiple years.)
 Step 4: Click the “Compute All” button to produce all necessary files.
 Steps 2-4 are illustrated using Figure 34. It should be noted that SAF can be produced
using only weekdays, all seven days of week, or excluding holidays. These selections are not
affected for the AADT computation. AADT is always computed using all available data. It is
recommended that user produce multiple years of output files for each site to make it more
convenient for later comparative plotting.

 48

Figure 34: A screen example of Steps 2-4 for producing the output files

Data plotting
 Plotting utilities are included as a part of the software package for reporting applications.
The plotting routines include plots of average daily volumes, monthly average daily truck
volume, and seasonal adjustment factors. These plotting routines were developed according to
the suggestions provided by Mn/DOT. Figure 35 shows the final plot utility screen implemented.
 As the first step of using the plot utility, the “Site Output Folder” should be specified
using the “Browse” button, followed by a click the “Refresh” button. This creates a list of the
sites and years of the data available as shown in Figure 35. Selecting multiple items using the
check marks allows for a plot of multiple years on the same graph.

 49

Figure 35: BullPiezo plot utility screen

Below shows examples of the plots implemented.

Plot of Average Daily Volume: Average daily volume per each vehicle group type can be either
plotted by volume or percent. Also, this routine has an option that can exclude the PASSVEH
group. This exclusion can be useful if the user wishes to include only trucks. Figure 36 shows an
example that plots traffic volume distribution for the years 2007 and 2008 of site 198. The
AADT information is shown under the title of the graph. This example plot shows the
distribution changes from year to year for different vehicle groups. In this example, it can be
noted that the volumes of passenger vehicles and five axle semi-trucks were increased while the
other types are decreased. The edit button is used to modify the appearance of the graph, such as
change of the title, 3-D bar to 2-D bar, export of image files, etc.

 50

Figure 36: An example plot of average daily volume distribution

Plot of Monthly Average Daily Truck Volume: This plot shows monthly change of average
daily truck volume. An example plot is shown in Figure 37.

Figure 37: An example plot of monthly change of average daily truck volume

 51

Plot of Seasonal Adjustment Factors: Seasonal adjustment factors (SAF) are plotted for
multiple years on the same graph for the selected vehicle group (combo box selection). The
months are always plotted from Jan first to Dec last, even if the actual order is different. For
example, if the data period was from June 2007 to August 2008, Jan 2008 is plotted first and Dec
2007 last. If the selected period contains more than one year, an exponential average is used to
give more weights on the current year. Figure 38 shows an example plot of SAF. SAF can also
be displayed in a table form for reporting applications. This table is outputted as a pdf file and an
example screen is shown in Figure 39.

Figure 38: A plot example of seasonal adjustment factors

Figure 39: An example of SAF table in a pdf format

 52

 It was shown above that SAF, MADT, and AADT data are computed from the csv VC
data. Considering that WIM data is more detailed than VC data, it is not too difficult to produce
the SAF, MADT, and AADT data. Therefore, BullPiezo implemented utilities that produce the
same SAF, MADT, and AADT data using the WIM csv files. The screen for this utility is shown
in Figure 40. Notice that the screen is nearly identical to the VC data portion. Only differences
are the data source and the sites. This utility demonstrates that WIM data can be used for VC
data applications.

Figure 40: SAF, AADT, MADT data computation utilities for WIM csv files

 Another useful application of BullPiezo is to produce TMG 2001 formatted data for
sharing and submittals to FHWA using the VC data. The VC data can be converted to TMG
2001 Traffic Volume and Vehicle Classification formats. However, the VC data cannot be
converted to the TMG 2001 Truck Weight format, since no individual vehicle weight records are
available from the VC data. The screen of this utility is shown in Figure 41. At the time of this

 53

writing, only the TMG Station Description Report was implemented. The rest of functions will
be added in the future versions.

Figure 41: Data conversion utility --- from VC data to TMG 2001 formats

 54

CHAPTER 5: CONCLUSION

 This project was formulated based on the experience of a past project that successfully
implemented a networked data automation system for ATR and short-count data based on a
traffic data warehouse [1]. The key to the success of this past project was the traffic data
warehouse that housed large scale loop data and the development of software that can freely
generate ATR and short-count data without installing data collection devices. The present project
is to expand the data warehouse functionality to include Mn/DOT’s VC and WIM data.
 Mn/DOT presently manages twenty-nine VC sites and twelve WIM sites installed on
various Minnesota roadways. The number of VC and WIM sites is expected to continuously
grow. One of the main challenges is management of the large amount of data and extraction of
information from the data pool. Building a well organized data warehouse using inexpensive
network storage devices is a solution that this project pursued. However, unlike the loop data, the
VC and WIM raw data did not have a uniform format because of a mix of devices from different
manufacturers and models. Moreover, all of them were proprietary binary formats that can only
be understood by the manufacturer provided software. Therefore, the first task was to develop
data translation software that translates binary data to standardized unified formats. The research
team successfully decoded all of the binary formats of VC and WIM data and implemented the
decoding logic into two software packages: one for WIM data and the other for VC data. The
unified formats were developed as a table that consists of ASCII encoded text strings separated
by commas. These formats are simple and can be easily read by common text editors,
spreadsheet programs, and databases. The increased size by using ASCII codes was not a
concern for data warehousing since network storages have a large capacity. For the organization
of the data, a hierarchical tree structure was used for a fast search. The data organization function
was directly implemented in the decoding software, so that the translated data is immediately
organized into the data hierarchy as the raw binary data is translated into the unified formats. The
software was delivered to Mn/DOT and a VC/WIM data warehouse was successfully
constructed.
 Three application software packages were developed as a part of the project. These
software packages can be installed on any Mn/DOT PC that has the network access to the
VC/WIM data warehouse. They are BullReport, BullGuide, and BullPiezo. The BullReport
provides functionalities of load spectra analysis, TMG formats, and 21 data summary reporting
utilities in pdf, text, web, and spread sheet formats. The BullGuide directly generates MEPDG
traffic input data for the WIM sites. The BullPiezo generates seasonal adjustment factors for
short-count stations, AADT (Annual Average Daily Traffic), and monthly average truck traffic
using VC data. All of the functionalities of these software packages were suggested by Mn/DOT.
 This project was successful in several aspects. The first is that the data warehouse
solution provided a better solution to existing data problems. The second is that the tools
developed are actually used for the present Mn/DOT tasks and improved efficiency. The third is
that the new system produces the outputs much faster than the proprietary software used in the
past. The fourth is that Mn/DOT can install the software in unlimited number of PCs without
licensing concerns.
 For future work, implementation of security functions is recommended. For example,
several data access security levels can be developed for different user levels. Also, further

 55

automation in the data warehousing is recommended. This includes automated data polling,
decoding, and organization.
 The lessons learned from this project are: (1) a large amount of VC/WIM data can be
easily managed and shared by creating a simple networked data warehouse; (2) unified format
translation can solve diverse nature of data collection devices; (3) a single point network access
provides simplicity in data application developments; (4) VC applications such as seasonal
adjustment factors can be derived from the WIM data, providing additional VC sites without
installing the VC data collection devices.

 56

REFERENCES

[1] T.M. Kwon, TMC Traffic Data Automation for Mn/DOT’s Traffic Monitoring Program,
Minnesota Department of Transportation, Report No. MN-RC-02004-29, July, 2004, St. Paul,
MN.

[2] W.H. Inmon, Building the Data Warehouse, New York: John Wiley & Sons, 1993. ISBN 0-
471-56960-7.

[3] T.M. Kwon, Transportation Data Research Laboratory: Data Acquisition and Archiving of
Large Scaled Transportation Data, Analysis Tool Developments, and On-Line Data Support,
Report #: CTS 09-07, ITS Institute, Center for Transportation Studies, Minneapolis, MN, March
9, 2009.

[4] Federal Highway Administration (FHWA), Traffic Monitoring Guide, U.S. Department of
Transportation, Federal Highway Administration, and Office of Highway Policy Information,
Washington D.C., May 1, 2001.

[5] NCHRP 1-37A, “Using Mechanistic Principles to Implement Pavement Design,” 2002,
FHWA, Washington D.C.

[6] MEPDG software, Version 1.003, May 24, 2007, Applied Research Associates, Inc.,
Washington, D.C. www.trb.org/mepdg/software.htm. Accessed October 30, 2008.

[7] Cambridge Systematics, Inc., Washington State Transportation Center, and Chaparral
Systems, Inc., NCHRP Report 538: Traffic Data Collection, Analysis, and Forecasting for
Mechanistic Pavement Design, Transportation Research Board of the National Academies,
Washington, D.C., 2005 (NCHRP 1-39).

[8] C. Dahlin, “Proposed method for calibrating Weigh-in-Motion systems and for monitoring
that calibration over time,” Transportation Research Record, 1364, pp. 161-168.

[9] FHWA, “Bridge formula weights,” FHWA-HOP-06-105, Office of Freight Management and
Operations, U.S. Department of Transportation, Washington D.C., Aug. 2006.

http://www.trb.org/mepdg/software.htm�

APPENDIX-A: PVR AND VC FORMAT

 A-1

PEEK PVR Binary Format (WIM data)

The binary file consists of heading information followed by repetition of several record types.

Heading information
Index Bytes Example

value(s)
Description

1 1 255 Start of file mark
2 1 2 Version Number (could be a mark)
3 6 Sec, min, hr, day, mo, yr, Start time, one byte per

each item
4 1 4 Could be a mark
5 6 Sec, min, hr, day, mo, yr, End time, one byte per

each item
6 1 5 Could be a mark
7 8 02F4CC96

02610011
Serial number, It should be printed as Hex

8 2 $6, $6 Firmware version no: 6.6, must printed as Hex
9 1 1 Comm port number or ID
10 1 0 Separation mark
11 12 “000188000000” Station ID (a 12-digit numeric number). In some

file it is used for Site ID (non numeric). ASCII
characters.

12 1 0 Separation mark
13 12 “188-4L-

CLASS”
Station ID, 12 ASCII characters

14 1 0 Separation mark

15 1 4 Number of arrays. Equivalent to number of

lanes
16 1 8 Number of sensors, two per array
17 1 4 Count of subsequent sensor definitions
18 4 17 Sensor type for each array:

11=loops [], 7=axle sensors | |,
17=WIM | [] |

19 1 2 Version Number. It appears define header version
20 1 C7 Type 1, Info mask
21 1 BD Type 2, Info mask
22 1 OC Type 3, Info mask
23 8 “MN022008” Name of classification table in ASCII characters

24 1 0 Separation mark
25 2 41, 4 ? Expect 4 bytes.
26 2 176,166 Max Veh Length in mm

(166*256 + 176)/304.8=140ft

 A-2

27 2 148,53 Max inter-axle distance in mm
(53*256 + 148)/304.8=45ft

28 2 41,8 ? Expect 8 records
29 8*(1+4)

(0) 242,3,232,3
(1) 242,3,232,3
(2) 212,3,232,3
(3) 212,3,232,3
(4) 212,3,232,3
(5) 212,2,232,3
(6) 147,3,232,3
(7) 147,3,232,3

Initial Sensor Calibration
1.010000=(3*256 + 242)/(3*256+232)
1.010000
0.980000
0.980000
0.980000
0.980000
0.915000
0.915000

30 2 21, 4 Expect initial Autocal for 4 records
31 8*(1+4)

(0) 242,3,232,3
(1) 212,3,232,3
(2) 212,3,232,3
(3) 147,3,232,3

Initial Autocal for 4 records
1.010000, for array1
0.980000, for array 2
0.980000, for array 3
0.915000, for array 4

32 4*(4)
248,255,255,255
248,255,255,255
248,255,255,255
248,255,255,255

Class masks
F8FFFFFF, array 1 of 4
F8FFFFFF, array 1 of 4
F8FFFFFF, array 1 of 4
F8FFFFFF, array 1 of 4

There are several different types of records that are repeated, followed by the header information.
Four record types are summarized below.

Record Type=199
Index Bytes Example

value(s)
Description

1 1 199 Record type. Two types are used
199: Normal record
135: When status is 236 or 172 which are error
conditions, the record starts with 135.

2 2 49,1 Timestamp, min:sec
Min=(1*256 + 49)\1024=0
Sec = [(1*256 + 49) and 0x3ff]/10=30

3 1 128 Timestamp, hr, only five LSB are used
Hr=128 and 0x1f=0

4 1 14 or 242 ???, unknown.
5 1 6 Lane # = (divided by 2) + 1

0 Lane 1
2 Lane 2
4 Lane 3
6 Lane 4

 A-3

6 1 5 Number of axles, 5 axles in this case
7 2 173,104 Speed

60mph=(104*256+173)/447
8 1 8 Vehicle class Number, need to add one.

This example is class 9.
9 1 194 ?? Don’t know. Need to figure out
10 1 61 ??

This byte become the record-length byte when the
record type is 135

11 1 60 Error code
60=normal
61=indicates that the status byte is next followed by
 the length byte.
 It leads to two bytes for GVW for length=13
236 (EC)=critical error, no axle spacing, no axle
 weights. 3 more bytes after the length byte
172 (AC)=critical error, No axle distance.
 The end of record should be searched by 199 or
 135. The length byte does not work in this case.
20=no axle weight data

12 1 25 Length
(25 – 2) bytes ahead until the end of this vehicle
record

13 1 or 0 0xCE Status byte, it only exists if err-61
14 2 B1, B2 Vehicle #=(B2*256 + B1)
15 2 192,171 GVW in gram, 48.4 Kips, need further investigation

(171*256 + 192)*2.205/2=48.4
16 1 117 ??? Unknown, need to figure out

This byte exists only in the following cases:
- if length byte > 13
- if (length byte=13) and (error code=60)

This byte does not exist
- if length byte =12
- if length byte = odd and error=61

17 4*(2)

150,17
6,5
85,34
209,4

Two bytes for each axle spacing in mm. Since this is a
5 axle vehicle, four axle spaces are in the record.
Axle space 1, 14.8 ft = (17*256 + 150)/304.8

18 5*(2)
75,37
120,34
44,32

Axle weights. five records in this case
(37*256+75)*2.205/2=10.5 Kips

 A-4

253,33
137,33

Record type-135, Vehicle Records

Index Bytes Example

value
Description

1 1 135 Record type 135: error conditions
When the status is 236 or 172, the vehicle record starts
with 135.

2 2 49,1 Timestamp, min:sec
Min=(1*256 + 49)\1024=0
Sec = [(1*256 + 49) and 0x3ff]/10=30

3 1 128 Timestamp, hr, only five LSB are used
Hr=128 and 0x1f=0

4 1 14 ?, 14 classes
5 1 6 Lane # = (divided by 2) + 1

0 Lane 1
2 Lane 2
4 Lane 3
6 Lane 4

6 1 1 Number of axles.
One axle in this case.

7 2 173,104 Speed
60mph=(104*256+173)/447

8 1 14 Vehicle class, need to add one.
This example is class 15.

9 1 13 ?? Don’t know. It appears err. 60,61
10 1 7 Length or count that indicates number of bytes

remaining minus 2 for this record. Call it n.
11 2 1,0 Vehicle number, 1 in this case
11 1 236 Error code

236 (EC)=critical error, no axle spacing, no axle
 weights. 3 more bytes after the length byte
172 (AC)=critical error, No axle distance.
 The end of record should be searched by 199 or
 135. The length byte does not work in this case.

12 n-3

The remaining bytes of the record.
These bytes could be axle spacing or weights, but it
should be interpreted as raw bytes.

 A-5

Record type-4, Auto-calibration Records (8 bytes)

Index Bytes Example value Description
1 1 4 Record type 4: auto-calibration value
2 1 8 Count, count-2 bytes are ahead
3 1 1 Start mark
4 5 255,142,3,127,3 1.016760

Record type-128, Auto-calibration Records (8 bytes)

Index Bytes Example value Description
1 1 128 Record type 128: calibration of a form of

maintenance record
2 2 Val1,val2 Timestamp, min:sec

Min=(val2*256 + val1)\1024
Sec = [(val2*256 + val1) and 0x3ff]/10

3 1 81 Timestamp, hr, only five LSB are used
Hr=(81 and 0x1f)=5

4 1 242 mark
5 4 6,128,2,4 Four bytes, not understood yet
6 1 8 Count, (count-2) bytes are ahead
7 Count-

2
1,255,117,3,232,3 (count-2) data bytes

 A-6

PEEK Binary Volume/Speed/Classification Format

Index Bytes Typical value Description
1 1 255 Start of file mark
2 1 2 Version Number (could be a separation mark)
3 6 Sec, min, hr, day, mo, yr, Start time, one byte per

each item
4 1 2 or 3 Could be a mark
5 6 Sec, min, hr, day, mo, yr, End time, one byte per

each item
6 1 3 or 4 Could be a mark
7 8 02F4CC96

02610011
Serial number, It should be printed as Hex

8 2 $29, $4 Firmware version no: 4.29, must printed as Hex
9 1 1 Comm port number or ID
10 1 0 Separation mark
11 12 “000103000000” Station ID (a 12-digit numeric number in ASCII).

Some file it is used for Site ID (non numeric)
12 1 0 Separation mark
13 12 “103-

4LCLSSPD”
Site ID, 12 ASCII characters.
It is some times switched with Station ID.

14 1 0 Separation mark
15 1 4 Number of arrays. Equivalent to number of lanes
16 1 8 Number of sensors, two per array
17 1 4 Count of subsequent sensor definitions
18 4 11, 12 or 7 Sensor type for each array:

11=loop [], 7=axle sensor | |, 12=loops [] []
17=WIM | [] |

19 1 2 Version Number. It appears define header version
20 1 60 Data interval in minutes, usually 60 min

This value could be used to determine how many
rows of data in the data file.

21 1 0 Speed units, 0=mph
22 1 0 Length units, 0=feet
23 1 0 Weight units, 0=Kips
24 1 0 Separation mark
25 1 1-3 Number of active studies
26 8 MN03F___ Name of classification table in ASCII

The default is “FHWA-USA” It is ignored for
volume data.

27 1 0 Separation mark
28 1 14 or 15 Number of classes
29 1 0 Separation mark
30 1 4 or 8 Number of active flows, 4=volume, 8=classification
31 2 1,0 Three bytes of numeric number. It reads as 401.

 A-7

32 1 4 Number of subsequent bytes for maximum vehicle
Length and inter-axle distance

33 2 40, 107 Maximum vehicle length in millimeter. Example,
107 * 256 + 40 = 27,432mm
(27,432mm)/304.8=90feet

34 2 160, 47 Maximum inter-axle distance. Example,
47*256 + 160=12,192mm
12,192/304.8=40feet

35 1 0 Separation Mark

Subsequent data defines active studies, which depends on the Item 25, the number of active
studies. For example, if the number of active studies is 3, then it has the following structure for
defining the data format.

Study 1 of 3
 Flow assignment
 Heading 1:
 Heading 2:
 Heading 3:

Study 2 of 3
 Flow assignment
 Heading 1:
 Heading 2:
 Heading 3:

Study 3 of 3
 Flow assignment
 Heading 1:
 Heading 2:
 Heading 3:
 *Note: A separation mark “0” is present between the Study definitions.

Flow assignment: The number of bytes used for defining the flow assignment appears to
depend on the number of active flows. The format may depend on the sensor type.

 1,2 two active flows, two lanes, vol
 1,2,3,4 four active flows, four lanes, vol

 0,1,1,2 four active flows, two lanes, piezo, speed
 01,1,2,2,3,3,4 eight active flows, four lanes, piezo, speed

 255, 1, 255, 2, 255, 3, 255, 4 eight active flows, four lanes, piezo, cls

Heading Formats
 *Note: No separation mark is present between Headings, nor before or after.

 A-8

 Volume=1
 1,4, 0,0,0,1,0,2,0,254,255
 volume, 4 bins (for 4 lanes).
 When 254 appears, it should read the following byte 255

 Speed=3
 3,13, 0,218, 69,148, 78,79, 87,11, 96,198, 104,129, 113,60, 122,247, 130,178,

139,109, 148,159, 174,21, 192,254, 255
 Speed, 13 bins
 Each pair denotes speed, i.e., (A,B)=(A*256 + B)/447 mph
 Example, (69,148) = (69*256 + 148)/147 = 40mph
 Above example is translated into mph as
 0, 40, 45, 50, 55, 60, 65, 70, 75, 80, 100, 110 mph bins, which represents
 0-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-100, 100-110,

110-above, in which 13 bins are formed.

 Classification=2
 2,15 0,0, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,10, 0,11, 0,12, 0,13, 0,254,255
 Classification, 15 bins

 None=0
 0,0,0
 Heading None is represented by three zeros.

 Each study always consists of three headings. For example
 1,4, 0,0,0,1,0,2,0,254,255, Heading 1
 0,0,0, Heading 2
 0,0,0 Heading 3

In each study, Heading 1 seems the only one actually recorded.

Data:

• After study definitions and a separation mark, bin data follows.
• The first byte is always the counter for each record that corresponds to a time slot. If the

data interval is 60min, the counter sequence goes, 1,2,3,…,23,0. If the start time is not
midnight, the counter starts with the corresponding hour.

• In the bin data, if the byte data has MSB=1000 0000 then it needs to read one more byte
and should be read. Suppose that val1 and val2 are the read bytes, then the magnitude is
computed as: num = (val1 And &H3F) * 256 + val2. Only six bits of the high order byte
is used. If the value exceeds six bit, three byte format is used as described in the next
bullet.

• Large values are in three byte sequence. Let val1, val2, val3 are data sequence. If (val1
and &Hcf)=1100 0000, then num=val2 * 256 + val3. Example, 192,128,64. In this case,
since 192=&HC0, num=128*256 + 64.

 A-9

• At the end of a set bin data, a separation mark 0 is inserted.

Data format

The key for data decoding is determining how may each types of data saved in the bins. There
are several cases. In some cases, bins are combined for all lanes, which is referred to as
“combined.” Here are several cases observed.

Vol: 2 * numArray
Spd: numLanes * spdBins
Cls: numLanes * clsBins

Vol: numArray
Cls: numLanes * clsBins

Vol: 2 * numArray
Spd: spdBins (combined)

Vol: 2 * numArray
Spd: spdBins (combined)
Cls: numLanes * clsBins

The number of data points can only be determined by checking different possibilities of
combinations by confirming through the hour counter.

Index Bytes Typical value Description
41 1 0,1,2,…,23 A counter equivalent to ending hour of the data. The

counter for 24th hour is 0.
42 variable (Total

number of
bins) * 2

Bin data. The total number of bins is determined from
the number of studies and type.

43 1 0 Separation mark
 Repeat of bin data for each time slot

Exceptions:

• When all three study types are volume, only the first two studies are in the data.

APPENDIX-B: BULLREPORT REPORT SAMPLES

 B-1

 B-2

 B-3

 B-4

 B-5

 B-6

 B-7

 B-8

 B-9

 B-10

 B-11

 B-12

 B-13

 B-14

 B-15

 B-16

 B-17

 B-18

 B-19

 B-20

 B-21

 B-22

 B-23

 B-24

 B-25

 B-26

 B-27

APPENDIX-C: BULLPIEZO SAMPLE OUTPUTS

 C-1

AADT-101-2008.txt

MADT-101-2008.txt

MAF-101-2008.txt

 C-2

availDates-101-2008.txt

	TECHNICAL REPORT DOCUMENTATION PAGE

	EXECTUIVE SUMMARY

	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Overall System Model

	CHAPTER 2: DATA FORMAT STANDARDIZATION AND ARCHIVE
	2.1 Data Standardization
	2.1.1 Standard WIM data format
	2.1.2 Standard VC data formats

	2.2 Data Warehouse Organization
	2.2.1 The directory structures of VC and WIM
	2.2.2 Filenames

	CHAPTER 3: BINARY DATA TRANSLATION
	3.1 Binary Data
	3.2 WIM Binary Data
	3.2.1 IRD 1068 format
	3.2.2 iSinc format
	3.2.3 PVR format

	3.3 VC Binary Data
	3.4 Conversion Software

	CHAPTER 4: DEVELOPMENT OF DATA REPORTING APPLICATIONS
	4.1 Application Development
	4.2 BullReport
	4.2.1 Introduction
	4.2.2 Station definition
	4.2.3 Load Spectra
	4.2.4 TMG reporting
	4.2.5 TMG-2001 data analysis
	4.2.6 Summary reports

	4.3 BullGuide
	4.3.1 Introduction
	4.3.2 MEPDG input computation
	4.3.3 BullGuide output files
	4.3.4 BullGuide user instruction

	4.4 BullPiezo
	4.4.1 Introduction
	4.4.2 Computation
	4.4.3 User instruction

	CHAPTER 5: CONCLUSION
	REFERENCES
	APPENDIX-A: PVR AND VC FORMAT

	APPENDIX-B: PULLREPORT REPORT SAMPLES

	APPENDIX-C: BULLPIEZO SAMPLE OUTPUTS

