

Moisture Effects on PVD and DCP Measurements

....

Technical Report Documentation Page

		1 0
1. Report No. MN/RC-2006-26	2.	3. Recipients Accession No.
4. Title and Subtitle		5. Report Date
Moisture Effects on PVD and DC	P Measurements	June 2006
		6.
7. Author(s)		8. Performing Organization Report No.
Joel Swenson, Bojan Guzina, Jose	ph Labuz, and Andrew	
Drescher		
9. Performing Organization Name and Address	3	10. Project/Task/Work Unit No.
University Of Minnesota – TC		
Dept. of Civil Engineering		11. Contract (C) or Grant (G) No.
500 Pillsbury Drive SE		(c) 81655 (w) 57
Minneapolis, MN 55455		
12. Sponsoring Organization Name and Addres	SS	13. Type of Report and Period Covered
Minnesota Department of Transpo	ortation	
395 John Ireland Boulevard Mail	Stop 330	14. Sponsoring Agency Code
St. Paul, Minnesota 55155		
15. Supplementary Notes	10	
http://www.lrrb.org/PDF/200626.j	pdf	
16. Abstract (Limit: 200 words)		
This study deals with the exper	imental investigation of the	effects of moisture and density on the elastic
moduli and strength of four sub	grade soils generally represe	enting the range of road conditions in
Minnesota. The testing approach involved i) reduced-scale simulation of field compaction, ii) field-type		
testing on prismatic soil volume	es, and iii) element testing or	n cylindrical soil specimens. The field-type
testing included: i) the GeoGau	ge ii) the PRIMA 100 device	re iii) the modified light weight deflectometer
(I WD) device iv) the portable	vibratory deflectomator (DV)	(D) and w) the Dynamic Cone Penetrometer
(LwD) device, w) the portable	violatory deflectometer (PV	D) and v) the Dynamic Cone reneuronneler

(DCP). To compare the Young's modulus values stemming from the field-type and laboratory experiments, cylindrical specimens were extracted from the prismatic soil volumes and tested for the resilient modulus (M_r), small-strain Young's modulus using bender elements.

The results reveal that both moisture and density have a measurable effect on the elastic modulus and strength of all four soils. On the element testing side, the small strain estimates from the bender element tests were in good agreement with the resilient modulus values. In the context of field testing, there was significant scatter of the estimated Young's moduli depending upon the particular testing device.

17. Document Analysis/Descriptors Resilient Modulus, Field Devices, Laboratory tests, Small Strain Young's Modulus, Fine- Grained Soil		^{18.} Availability StatementNo restrictions. Document available from:National Technical Information Services,Springfield, Virginia 22161	
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	549	

Moisture Effects on PVD and DCP Measurements

Final Report

Prepared by:

Joel N. Swenson, Bojan B. Guzina, Joseph F. Labuz, Andrew Drescher Department of Civil Engineering University of Minnesota

June 2006

Published by:

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, Mail Stop 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation and/or the Center for Transportation Studies. This report does not contain a standard or specific technique.

The authors and the Minnesota Department of Transportation and/or Center for Transportation Studies do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

Table of Contents

Li	st of	Tables	5	v
\mathbf{Li}	st of	Figure	es	xvi
1	Intr	oducti	on	1
	1.1	Object	tives	1
	1.2	Scope		2
	1.3	Organi	ization	3
2	Bac	kgrour	nd	4
	2.1	Labora	atory Testing Methods	4
		2.1.1	Resilient Modulus	4
		2.1.2	Bender Element	8
		2.1.3	Triaxial Compression	10
	2.2	Field-	Type Testing Methods	12
		2.2.1	GeoGauge	12
		2.2.2	PRIMA 100	15
		2.2.3	Modified LWD	18
		2.2.4	Portable Vibratory Deflectometer	20
		2.2.5	Dynamic Cone Penetrometer	24
		2.2.6	Percometer	25
3	Enh	anced	Data Interpretation	26
	3.1	PRIM.	A Device	26
		3.1.1	Data Acquisition	27
		3.1.2	Fourier Transform and Frequency Response Function	29
		3.1.3	Mobility Function	30
		3.1.4	Young's Modulus from PRIMA Test	31

	3.2	Portab	ble Vibratory Deflectometer	35
		3.2.1	Accelerance Function	35
		3.2.2	Interfacial Accelerance Function	37
		3.2.3	Interfacial Compliance Function	39
		3.2.4	Young's Modulus from PVD Test	40
4	Lab	orator	y Tests	43
	4.1	Steel C	Container	43
	4.2	Verific	ation Tests	44
	4.3	Fine-C	Grained Soils	51
		4.3.1	Soil Description	51
		4.3.2	Preparation of Soil Samples	52
	4.4	Tests i	n Steel Container	57
	4.5	Tests of	on Cylindrical Specimens	60
		4.5.1	Extraction and Storage of Cylindrical Specimens	60
		4.5.2	Specimen Preparation for Testing	62
		4.5.3	Resilient Modulus Testing	68
		4.5.4	Bender Element Testing	72
		4.5.5	Strength Testing	74
5	Exp	erime	ntal Data and Comparison	76
5	Exp 5.1	erimer Compa	ntal Data and Comparison	76 76
5	Exp 5.1 5.2	erimer Compa Moistu	Intal Data and Comparison action Stresses	76 76 80
5	Exp 5.1 5.2 5.3	erimer Compa Moistu Labora	Antal Data and Comparison action Stresses ure Contents and Unit Weights actory Tests on Cylindrical Specimens	76 76 80 86
5	Exp 5.1 5.2 5.3	Compa Compa Moistu Labora 5.3.1	ntal Data and Comparison action Stresses ure Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus	76 76 80 86 86
5	Exp 5.1 5.2 5.3	Compa Compa Moistu Labora 5.3.1 5.3.2	ntal Data and Comparison action Stresses ure Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element	76 76 80 86 86
5	Exp 5.1 5.2 5.3	Compa Compa Moistu Labora 5.3.1 5.3.2 5.3.3	ntal Data and Comparison action Stresses ure Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength	76 76 80 86 86 108 114
5	Exp 5.1 5.2 5.3	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7	action Stresses	76 76 80 86 108 114 117
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1	ntal Data and Comparison action Stresses ure Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength Fype Tests on Prismatic Samples	76 80 86 86 108 114 117
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2	action Stresses	76 76 80 86 108 114 117 117 121
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3	ntal Data and Comparison action Stresses ure Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength Fype Tests on Prismatic Samples GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD)	76 76 80 86 108 114 117 117 121 131
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4	action Stresses	76 80 86 86 108 114 117 117 121 131
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5	action Stresses	76 76 80 86 108 114 117 121 131 135 138
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 5.4.5 Compa	ntal Data and Comparison action Stresses are Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD) Dynamic Cone Penetrometer Percometer arison Between $BE-M_r$ and other Modulus Estimates	76 76 80 86 108 114 117 121 131 135 138 141
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 Compa 5.5.1	ntal Data and Comparison action Stresses are Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD) Dynamic Cone Penetrometer Percometer Arison Between $BE-M_r$ and other Modulus Estimates Bender Element (BE) versus Resilient Modulus (M_r)	76 80 86 108 114 117 121 131 135 138 141 141
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 Compa 5.5.1 5.5.2	ntal Data and Comparison action Stresses are Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength Type Tests on Prismatic Samples GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD) Dynamic Cone Penetrometer Percometer arison Between $BE-M_r$ and other Modulus Estimates Bender Element (BE) versus Resilient Modulus (M_r)	76 80 86 108 114 117 121 131 135 138 141 141 141
5	Exp 5.1 5.2 5.3 5.4	Compa Moistu Labora 5.3.1 5.3.2 5.3.3 Field-7 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 Compa 5.5.1 5.5.2 5.5.3	ntal Data and Comparison action Stresses are Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD) Dynamic Cone Penetrometer Percometer arison Between $BE-M_r$ and other Modulus Estimates Bender Element (BE) versus Resilient Modulus (M_r) PRIMA versus $BE-M_r$	76 80 86 86 108 114 117 121 131 135 138 141 141 145 150
5	Exp 5.1 5.2 5.3 5.4	$\begin{array}{c} \textbf{erimer}\\ \textbf{Compa}\\ \textbf{Moistu}\\ \textbf{Labora}\\ 5.3.1\\ 5.3.2\\ 5.3.3\\ \textbf{Field-7}\\ 5.4.1\\ 5.4.2\\ 5.4.3\\ 5.4.4\\ 5.4.5\\ \textbf{Compa}\\ 5.5.1\\ 5.5.2\\ 5.5.3\\ 5.5.4\\ \end{array}$	ntal Data and Comparison action Stresses are Contents and Unit Weights atory Tests on Cylindrical Specimens Resilient Modulus Bender Element Shear Strength GeoGauge PRIMA and Modified LWD Portable Vibratory Deflectometer (PVD) Dynamic Cone Penetrometer Percometer arison Between $BE-M_r$ and other Modulus Estimates Bender Element (BE) versus Resilient Modulus (M_r) GeoGauge versus $BE-M_r$ PRIMA versus $BE-M_r$ PVD and $BE-M_r$	76 80 86 108 114 117 121 131 135 138 141 141 141 145 150 168

6	Closing Remarks	179	
Re	leferences 1		
A	Container Verification A.1 Description of Soils	A-1 A-1 A-4	
В	Soil Information B.1 Soil A	B-1 B-4 B-7 B-10	
С	Fine-Grained Soil Preparation in Steel Container Procedure		
D	Resilient Modulus System Calibration D.1 LVDTs	D-1 D-1	
Е	Field-Type Testing ProceduresE.1Percometer Testing Procedure	E-1 E-3 E-5 E-9 E-12 E-13	
\mathbf{F}	Fine-Grained Soil Specimen Extraction Procedure		
\mathbf{G}	Fine-Grained Soil Resilient Modulus Testing Procedure		
н	Bender Element Testing Procedure		
Ι	Strength Testing Procedure		
J	Resilient Modulus Data and Resilient Modulus Data with QC/QAJ.1Resilient Modulus Data [SI]	J-1 J-49 J-97	

_

	J.4	Resilient Modulus Data With QC/QA [US Customary] J-145				
K	Geo	Gauge Results [SI]				
	K.1	Soil A				
	K.2	Soil B				
	K.3	Soil C				
	K.4	Soil D				
	K.5	Soil D With a Thin Layer of Sand				
\mathbf{L}	Mod	lified LWD Results				
Μ	M Compaction Stress					
N Surface Plot Information						
0	O PVD Results					
Р	DCF	P Results				

Q Post Test Specimen Pictures

List of Tables

2.1	Resilient modulus test sequence $[45]$	5
4.1	Gradation parameters of tested soils	45
4.2	Inner dimensions for sand containers	46
4.3	Soil descriptions	51
4.4	Number of compacted soil samples in steel container	56
4.5	Matrix of tests conducted in the steel container	59
4.6	Dates soil was compacted in the steel container, field-type device tested, and	
	laboratory tested	63
4.7	Resilient modulus test sequence [45]	69
4.8	Resilient modulus test matrix	71
4.9	GDS software input parameters	72
4.10	Bender element test matrix	73
4.11	Shear strength test matrix $[45]$	75
5.1	Target and actual characteristics of prismatic samples	82
5.2	Target and actual characteristics of cylindrical specimens	83
5.3	Characteristics of actual prismatic samples and cylindrical specimens \ldots .	85
5.4	QC/QA criteria	86
5.5	MnDOT QC/QA passing rate [%]	86
5.6	UM QC/QA passing rate [%] \ldots	87

5.7	Percentages of failed cycles	89
5.8	Raw Resilient modulus values for $D_1_16_103$	91
5.9	QC/QA Resilient modulus values for D_1_16_103	92
5.10	Representative, minimum, and maximum resilient modulus values for the	
	cylindrical specimens of A and B	106
5.11	Representative, minimum, and maximum resilient modulus values for the	
	cylindrical specimens of C and D $\ \ldots \ $	107
5.12	Bender element test results for soil A (Mn/ROAD) $\ . \ . \ . \ . \ . \ .$	110
5.13	Bender element test results for soil B (TH 23)	111
5.14	Bender element test results for soil C (TH 58)	112
5.15	Bender element test results for soil D (TH 32)	113
5.16	Shear strength results for soils A, B, C and D	116
5.17	High, low, median, mean, and COV values for GeoGauge tests: soils A, B, C,	
	and D without sand	120
5.18	High, low, median, mean, and COV values for GeoGauge with sand for soil D	120
5.19	Maximum, minimum, and median Young's modulus estimates combining all	
	drop heights from PRIMA 100 device: P2P and FRF methods \hdots	123
5.20	Maximum, minimum, and median Young's modulus estimates from Modified	
	LWD device: P2P and FRF methods	124
5.21	High, low and median Young's modulus values from PVD tests on prismatic	
	samples: soils B, C and D	134
5.22	Young's modulus and resilient modulus estimated from DCP correlations	137
5.23	Statistical data from Percometer results on soil samples	139
5.24	Statistical data from Percometer results on cylindrical specimens	140
Δ 1	Grain size analysis for Play Sand	Δ1
л.1	Crain size analysis for Silica Sand	л-1 Л 0
$\Pi.\Delta$		п- 2

A.3	Maximum density and dry unit weight for Silica Sand	A-2
A.4	Minimum density and dry unit weight for Silica Sand $\ . \ . \ . \ . \ . \ .$	A-3
A.5	Pluviation results	A-3
B.1	Soil A (MnROAD) Proctor table	B-2
B.2	Soil A (MnROAD) sieve analysis table	B-3
B.3	Soil A (MnROAD) classification	B-3
B.4	Soil B (TH 23) Proctor table	B-4
B.5	Soil B (TH 23) sieve analysis table	B-5
B.6	Soil B (TH 23) classification	B-6
B.7	Soil C (TH 58) Proctor table	B-7
B.8	Soil C (TH 58) sieve analysis table	B-8
B.9	Soil C (TH 58) classification	B-9
B.10	Soil D (TH 32) Proctor table	B-10
B.11	Soil D (TH 32) sieve analysis table	B-11
B.12	Soil D (TH 32) classification	B-12
C.1	Soil Descriptions	C-1
H.1	GDS Bender Element input parameters	H-2
J.1	Resilient modulus data (A_2_135_105)	J-2
J.2	Resilient modulus data (A_1_105_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-3
J.3	Resilient modulus data (A_2_105_105)	J-4
J.4	Resilient modulus data (A_1_75_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-5
J.5	Resilient modulus data (A_2_75_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-6
J.6	Resilient modulus data (A_3_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-7
J.7	Resilient modulus data (A_4_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-8
J.8	Resilient modulus data $(A_1_12_100)$	J-9

J.9	Resilient modulus data (A_2_12_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-10
J.10	Resilient modulus data (A_1_9_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-11
J.11	Resilient modulus data (A_2_9_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-12
J.12	Resilient modulus data (B_1_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-13
J.13	Resilient modulus data (B_2_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-14
J.14	Resilient modulus data (B_1_195_103)	J-15
J.15	Resilient modulus data (B_2_195_103)	J-16
J.16	Resilient modulus data (B_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-17
J.17	Resilient modulus data (B_2_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-18
J.18	Resilient modulus data (B_1_27_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-19
J.19	Resilient modulus data (B_2_27_98) $\ldots \ldots \ldots$	J-20
J.20	Resilient modulus data (B_1_22_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-21
J.21	Resilient modulus data (B_2_298) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-22
J.22	Resilient modulus data (B_1_16_98) $\ldots \ldots \ldots$	J-23
J.23	Resilient modulus data (B_2_16_98) $\ldots \ldots \ldots$	J-24
J.24	Resilient modulus data (C_1_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-25
J.25	Resilient modulus data (C_2_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-26
J.26	Resilient modulus data (C_1_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-27
J.27	Resilient modulus data (C_2_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-28
J.28	Resilient modulus data (C_1_8_103) $\ldots \ldots \ldots$	J-29
J.29	Resilient modulus data (C_2_8_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-30
J.30	Resilient modulus data (C_1_13_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-31
J.31	Resilient modulus data (C_2_13_98)	J-32
J.32	Resilient modulus data (C_1_10_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-33
J.33	Resilient modulus data (C_2_10_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-34
J.34	Resilient modulus data (C_1_8_98)	J-35
J.35	Resilient modulus data (C_2_8_98)	J-36

J.36	Resilient modulus data (D_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-37
J.37	Resilient modulus data $(D_2_16_103)$	J-38
J.38	Resilient modulus data (D_1_13_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-39
J.39	Resilient modulus data (D_2_13_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-40
J.40	Resilient modulus data (D_1_11_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-41
J.41	Resilient modulus data (D_2_11_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-42
J.42	Resilient modulus data $(D_1_18_98)$	J-43
J.43	Resilient modulus data $(D_2_18_98)$	J-44
J.44	Resilient modulus data (D_1_14_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-45
J.45	Resilient modulus data (D_2_14_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-46
J.46	Resilient modulus data $(D_1_1_2)$	J-47
J.47	Resilient modulus data $(D_2_11_98)$	J-48
J.48	Resilient modulus data $(A_2_135_105)$	J-50
J.49	Resilient modulus data $(A_1_105_105)$	J-51
J.50	Resilient modulus data $(A_2_105_105)$	J-52
J.51	Resilient modulus data $(A_1_5_105)$	J-53
J.52	Resilient modulus data (A_2_75_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-54
J.53	Resilient modulus data (A_3_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-55
J.54	Resilient modulus data $(A_4_15_100)$	J-56
J.55	Resilient modulus data (A_1_100)	J-57
J.56	Resilient modulus data $(A_2_12_100)$	J-58
J.57	Resilient modulus data (A_1_9_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-59
J.58	Resilient modulus data (A_2_9_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-60
J.59	Resilient modulus data (B_1_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-61
J.60	Resilient modulus data (B_2_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-62
J.61	Resilient modulus data $(B_1_195_103)$	J-63
J.62	Resilient modulus data (B_2_195_103) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	J-64

J.63	Resilient modulus data (B_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-65
J.64	Resilient modulus data (B_2_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-66
J.65	Resilient modulus data (B_1_27_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-67
J.66	Resilient modulus data (B_2_27_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-68
J.67	Resilient modulus data (B_1_22_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-69
J.68	Resilient modulus data (B_2_298) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-70
J.69	Resilient modulus data (B_1_16_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-71
J.70	Resilient modulus data (B_2_16_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-72
J.71	Resilient modulus data (C_1_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-73
J.72	Resilient modulus data (C_2_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-74
J.73	Resilient modulus data (C_1_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-75
J.74	Resilient modulus data (C_2_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-76
J.75	Resilient modulus data (C_1_8_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-77
J.76	Resilient modulus data (C_2_8_103) $\ldots \ldots \ldots$	J-78
J.77	Resilient modulus data (C_1_13_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-79
J.78	Resilient modulus data (C_2_13_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-80
J.79	Resilient modulus data (C_1_10_98) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-81
J.80	Resilient modulus data (C_2_10_98)	J-82
J.81	Resilient modulus data $(C_1_8_98)$	J-83
J.82	Resilient modulus data $(C_2_8_98)$	J-84
J.83	Resilient modulus data $(D_1_16_103)$	J-85
J.84	Resilient modulus data (D_2_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-86
J.85	Resilient modulus data $(D_1_1_3_1_0_3)$	J-87
J.86	Resilient modulus data $(D_2_13_103)$	J-88
J.87	Resilient modulus data (D_1_103)	J-89
J.88	Resilient modulus data $(D_2_11_103)$	J-90
J.89	Resilient modulus data $(D_1_18_98)$	J-91

J.90 Resilient modulus data (D_2_18_98) $\ldots \ldots \ldots$	J-92
J.91 Resilient modulus data $(D_1_14_98)$	J-93
J.92 Resilient modulus data $(D_2_14_98)$	J-94
J.93 Resilient modulus data $(D_1_1_98)$	J-95
J.94 Resilient modulus data (D_2_11_98) $\ldots \ldots \ldots$	J-96
J.95 Resilient modulus data with $QC/QA(A_2_135_105)$	J-98
J.96 Resilient modulus data with $QC/QA(A_1_105_105)$	J-99
J.97 Resilient modulus data with $QC/QA(A_2_105_105)$	J-100
J.98 Resilient modulus data with $QC/QA(A_{1.75}105)$	J-101
J.99 Resilient modulus data with $QC/QA(A_2_75_105)$	J-102
J.100Resilient modulus data with $QC/QA(A_4_15_100)$	J-103
J.101Resilient modulus data with QC/QA(A_3_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-104
J.102Resilient modulus data with $QC/QA(A_1_12_100)$	J-105
J.103 Resilient modulus data with QC/QA(A_2_12_100) $\hfill \ldots \ldots \ldots \ldots \ldots \ldots$	J-106
J.104Resilient modulus data with $QC/QA(A_1_9_100) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	J-107
J.105Resilient modulus data with $QC/QA(A_2_9_100)$	J-108
J.106Resilient modulus data with QC/QA(B_1_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-109
J.107Resilient modulus data with QC/QA(B_2_24_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-110
J.108 Resilient modulus data with QC/QA(B_1_195_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-111
J.109Resilient modulus data with QC/QA(B_2_195_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-112
J.110Resilient modulus data with QC/QA(B_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-113
J.111R esilient modulus data with QC/QA(B_2_16_103) $\hfill \ldots \ldots \ldots \ldots \ldots \ldots$	J-114
J.112Resilient modulus data with $QC/QA(B_1_27_98)$	J-115
J.113 Resilient modulus data with QC/QA(B_2_27_98)	J-116
J.114 Resilient modulus data with QC/QA(B_1_22_98)	J-117
J.115Resilient modulus data with QC/QA(B_2_298)	J-118
J.116Resilient modulus data with $QC/QA(B_1_698)$	J-119

J.117 Resilient modulus data with QC/QA (B_2_16_98) \ldots	J-120
J.118 Resilient modulus data with QC/QA(C_1_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-121
J.119 Resilient modulus data with QC/QA (C_2_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-122
J.120 Resilient modulus data with QC/QA(C_1_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-123
J.121 Resilient modulus data with QC/QA(C_2_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-124
J.122 Resilient modulus data with QC/QA(C_1_8_103)	J-125
J.123 Resilient modulus data with QC/QA(C_2_8_103)	J-126
J.124 Resilient modulus data with QC/QA(C_1_13_98)	J-127
J.125 Resilient modulus data with QC/QA(C_2_13_98)	J-128
J.126 Resilient modulus data with QC/QA(C_1_10_98)	J-129
J.127 Resilient modulus data with QC/QA(C_2_10_98)	J-130
J.128 Resilient modulus data with QC/QA(C_1_8_98) $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-131
J.129 Resilient modulus data with QC/QA(C_2_8_98) $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-132
J.130 Resilient modulus data with QC/QA (D_1_16_103) $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill$	J-133
J.131 Resilient modulus data with QC/QA (D_2_16_103) $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill$	J-134
J.132Resilient modulus data with QC/QA(D_1_13_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-135
J.133 Resilient modulus data with QC/QA (D_2_13_103) $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill$	J-136
J.134 Resilient modulus data with QC/QA (D_1_11_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-137
J.135Resilient modulus data with QC/QA(D_2_11_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-138
J.136Resilient modulus data with QC/QA(D_1_18_98)	J-139
J.137 Resilient modulus data with QC/QA (D_2_18_98)	J-140
J.138 Resilient modulus data with QC/QA (D_1_14_98)	J-141
J.139 Resilient modulus data with QC/QA (D_2_14_98)	J-142
J.140Resilient modulus data with $QC/QA(D_1_1_98)$	J-143
J.141 Resilient modulus data with QC/QA (D_2_11_98)	J-144
J.142Resilient modulus data with QC/QA(A_2_135_105) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-146
J.143 Resilient modulus data with QC/QA(A_1_105_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-147

J.144 Resilient modulus data with QC/QA(A_2_105_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-148
J.145 Resilient modulus data with QC/QA(A_1_75_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-149
J.146 Resilient modulus data with QC/QA(A_2_75_105) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-150
J.147 Resilient modulus data with QC/QA(A_3_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-151
J.148 Resilient modulus data with QC/QA(A_4_15_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-152
J.149 Resilient modulus data with QC/QA(A_1_12_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-153
J.150Resilient modulus data with QC/QA(A_2_12_100) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-154
J.151Resilient modulus data with $QC/QA(A_1_9_100)$	J-155
J.152 Resilient modulus data with QC/QA(A_2_9_100)	J-156
J.153 Resilient modulus data with QC/QA(B_1_24_103) $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \hfill \ldots \hfill \ldots \hfill \hfill \hfill \hfill \ldots \hfill \hfi$	J-157
J.154 Resilient modulus data with QC/QA (B_2_24_103) $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-158
J.155Resilient modulus data with QC/QA(B_1_195_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-159
J.156Resilient modulus data with QC/QA(B_2_195_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-160
J.157Resilient modulus data with QC/QA(B_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-161
J.158 Resilient modulus data with QC/QA(B_2_16_103) $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \hfill \ldots \hfill $	J-162
J.159Resilient modulus data with QC/QA(B_1_27_98)	J-163
J.160Resilient modulus data with QC/QA(B_2_27_98)	J-164
J.161Resilient modulus data with QC/QA(B_1_22_98)	J-165
J.162Resilient modulus data with QC/QA(B_2_298)	J-166
J.163 Resilient modulus data with QC/QA(B_1_16_98)	J-167
J.164 Resilient modulus data with QC/QA(B_2_16_98)	J-168
J.165Resilient modulus data with QC/QA(C_1_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-169
J.166Resilient modulus data with QC/QA(C_2_12_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-170
J.167Resilient modulus data with $QC/QA(C_1_95_103)$	J-171
J.168 Resilient modulus data with QC/QA(C_2_95_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-172
J.169Resilient modulus data with $QC/QA(C_1_8_103)$	J-173
J.170Resilient modulus data with $QC/QA(C_2_8_103)$	J-174

J.17	1 Resilient modulus data with $QC/QA(C_1_3_98)$	J-175
J.172	2Resilient modulus data with $QC/QA(C_2_13_98)$	J-176
J.17	3Resilient modulus data with $QC/QA(C_1_10_98)$	J-177
J.174	4Resilient modulus data with $QC/QA(C_2_10_98)$	J-178
J.17	5 Resilient modulus data with QC/QA(C_1_8_98) $\ \ldots \ $	J-179
J.17	5 Resilient modulus data with QC/QA(C_2_8_98) $\ \ldots \ $	J-180
J.17'	7 Resilient modulus data with QC/QA(D_1_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-181
J.178	8 Resilient modulus data with QC/QA(D_2_16_103) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	J-182
J.179	9 Resilient modulus data with QC/QA(D_1_13_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-183
J.180	OResilient modulus data with QC/QA(D_2_13_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-184
J.18	1 Resilient modulus data with QC/QA(D_1_11_103) $\dots \dots \dots$	J-185
J.18	2Resilient modulus data with QC/QA(D_2_11_103) $\ldots \ldots \ldots \ldots \ldots \ldots$	J-186
J.18	3Resilient modulus data with $QC/QA(D_1_8_98)$	J-187
J.184	4Resilient modulus data with $QC/QA(D_2_18_98)$	J-188
J.18	5Resilient modulus data with $QC/QA(D_1_498)$	J-189
J.18	5 Resilient modulus data with QC/QA(D_2_14_98)	J-190
J.18'	7Resilient modulus data with $QC/QA(D_1_1_98)$	J-191
J.18	8 Resilient modulus data with $QC/QA(D_2_11_98)$	J-192
K.1	GeoGauge results for A_13.5_105 and A_10.5_105 at loc. $2 \dots \dots \dots \dots$	K-2
K.2	GeoGauge results for A_7.5_105 and A_15_100 at loc. 2	K-3
K.3	GeoGauge results for A_12_1005 and A_9_100 at loc. 2	K-4
K.4	GeoGauge results for B_24_103 and B_19.5_103 at loc. 2	K-6
K.5	GeoGauge results for B_16_103 and B_27_98 at loc. 2	K-7
K.6	GeoGauge results for B_12_98 and B_16_98 at loc. 2	K-8
K.7	GeoGauge results for C_12_103 and C_9.5_103 at loc. 2 $\ldots \ldots \ldots$	K-10
K.8	GeoGauge results for C_8_103 and C_13_98 at loc. 2	K-11

K.9	GeoGauge results for C_10_98 and C_8_98 at loc. 2	K-12
K.10	GeoGauge results for D_16_103 and D_13_103 at loc. 2 $\ldots \ldots \ldots$	K-14
K.11	GeoGauge results for D_11_103 and D_18_98 at loc. 2	K-15
K.12	GeoGauge results for D_14_98 and D_11_98 at loc. 2	K-16
K.13	GeoGauge results for D_16_103 and D_13_103 at loc. 2 with a thin layer of	
	compacted sand	K-18
K.14	GeoGauge results for D_11_103 and D_18_98 at loc. 2 with a thin layer of	
	compacted sand \ldots	K-19
K.15	GeoGauge results for D_14_98 and D_11_98 at loc. 2 with a thin layer of	
	compacted sand	K-20
M.1	Maximum compaction stress for each lift	M-2
M.2	Maximum compaction stress for each lift	M-3

List of Figures

2.1	Test method flow chart $[45]$	6
2.2	Resilient modulus pulse definitions [45]	7
2.3	Bender element wave description [15]	8
2.4	Proper alignment for S-waves [16]	9
2.5	Specimen placed inside rubber membranes	10
2.6	Mohr's diagram	11
2.7	Verification mass and GeoGauge device	12
2.8	Ring shaped loading plate	13
2.9	GeoGauge schematic [34]	13
2.10	PRIMA 100 device	16
2.11	PRIMA 100 sensors	16
2.12	PRIMA 100 loading plate	17
2.13	Beam Verification Testing setup [19]	18
2.14	Lower half of the PRIMA 100	19
2.15	Rubber mallet tapping the modified LWD	19
2.16	PVD test setup	20
2.17	Bruel & Kjaer vibration exciter type 4809	21
2.18	PVD loading plate	21
2.19	PVD loading plate with accelerometers and load cell	22
2.20	PVD loading plate in contact with soil	22

2.21	PVD schematic	23
2.22	Dynamic Cone Penetrometer disassembled	24
2.23	Removable cone tip	25
2.24	Percometer	25
3.1	Data acquisition system for the enhanced interpretation of PRIMA 100 mea-	
	surements [19]	28
3.2	SDOF system [19]	32
3.3	Fitted mobility function for C_9.5_103, $k^{\text{stat}} = 13.3 \text{ MN/m}$	34
3.4	Coherence function for C_9.5_103 \ldots	34
3.5	Schematics of the PVD test	36
3.6	Experimental accelerance function $A(f)$ obtained from the PVD experiment	36
3.7	Inverse of the accelerance function, $1/A^{air}(f)$: the air test	37
3.8	Interfacial accelerance function $A_{vv}(f)$ obtained from the PVD experiment .	38
3.9	Interfacial compliance function $C_{vv}(f)$ obtained from the PVD experiment .	39
3.10	Theoretical variation of $\bar{C}_{vv}(\bar{\omega})$	41
3.11	Experimental accelerance function from the PVD test and its theoretical coun-	
	terpart for $G = G^{\text{opt}}$	42
4.1	Prismatic steel container	44
4.2	Grain size distribution of Quikrete Sand No.1113	45
4.3	Prismatic plywood containers a) small, and b) large	46
4.4	Pluviation setup	47
4.5	Location of the center of the loading plate in the small container	48
4.6	Equivalent shear modulus vs. average contact pressure	49
4.7	Equivalent shear modulus vs. average contact pressure	50
4.8	Schematic of moisture content and dry unit weight selection (Table 4.3)	52
4.9	Mixing blender	53

4.10	Soil can ister with approximately 90 kg (200 lb) of soil D $$.			•	•	•	•			53
4.11	a) MTS load frame b) sheeps foot plate $\hdots \hdots \hdo$	•					•			54
4.12	Compaction process	•					•			55
4.13	Soil D surface after four presses	•		•			•	• •		55
4.14	a) & b) Soil D prepared surfaces	•					•			56
4.15	Testing locations	•		•	•	•	•			58
4.16	Cylindrical specimen locations within soil container $\ . \ . \ .$	•		•		•	•			60
4.17	a) Stainless tubes and b) specimen extraction $\ . \ . \ . \ .$	•	•	•		•	•			61
4.18	Soil extruder	•		•		•	•			62
4.19	Lower platen housing bender element $\ldots \ldots \ldots \ldots$	•		•			•			64
4.20	a) Encased soil specimen and b) LVDTs collar-type holder	•		•			•			65
4.21	Specimen in triaxial chamber	•					•			66
4.22	Resilient modulus, bender element, and triaxial testing lab	•					•			67
4.23	Humboldt Flexpanel I pressure regulator	•	•				•	• •		68
4.24	LVDT response without upper platen rotation $\ . \ . \ .$.	•					•			70
4.25	LVDT response with upper platen rotation	•	•	•	•	•	•			70
5.1	Maximum compaction stress applied to each lift for Soil A		•		•	·				78
5.2	Maximum compaction stress applied to each lift for Soil B	•								78
5.3	Maximum compaction stress applied to each lift for Soil C	•					•			79
5.4	Maximum compaction stress applied to each lift for Soil D	•		•						79
5.5	Resilient modulus for soil A, 100% target standard Proctor	•					•			93
5.6	Resilient modulus for soil A, 105% target standard Proctor	•		•						94
5.7	Resilient modulus for soil B, 98% target standard Proctor .	•		•			•			95
5.8	Resilient modulus for soil B, 103% target standard Proctor	•		•			•			96
5.9	Resilient modulus for soil C, 98% target standard Proctor	•		•			•			97
5.10	Resilient modulus for soil C, 103% target standard Proctor									98

5.11	Resilient modulus for soil D, 98% target standard Proctor	99
5.12	Resilient modulus for soil D, 103% target standard Proctor	100
5.13	Representative resilient modulus for soil A vs. density and moisture content	102
5.14	Representative resilient modulus for soil B vs. density and moisture content	103
5.15	Representative resilient modulus for soil C vs. density and moisture content	104
5.16	Representative resilient modulus for soil D vs. density and moisture content	105
5.17	Bender element test result for S-wave	108
5.18	Bender element test result for P-wave	109
5.19	GeoGauge stiffness readings on verification mass	117
5.20	GeoGauge stiffness measurements on soil A: $w_{\text{targ}} = 13.5\%$, 105% target stan-	
	dard Proctor	119
5.21	Young's modulus (median and range) values from GeoGauge tests: soils A,	
	B, C, and D \ldots	119
5.22	Effect of the contact sand layer on the Young's modulus values from GeoGauge	
	tests: soil D	121
5.23	Young's modulus values from PRIMA test (A_9_100) $\ldots \ldots \ldots \ldots \ldots$	125
5.24	Young's modulus values from PRIMA test (B_19.5_103)	126
5.25	Young's modulus values from PRIMA test (B_16_103) \ldots	126
5.26	Young's modulus values from PRIMA and Modified LWD tests (B_27_98)	126
5.27	Young's modulus values from PRIMA and Modified LWD tests (B_22_98)	127
5.28	Young's modulus values from PRIMA and Modified LWD tests (C_12_103) $$.	127
5.29	Young's modulus values from PRIMA and Modified LWD tests (C_9.5_103) $\ .$	127
5.30	Young's modulus values from PRIMA and Modified LWD tests (C_8_103)	128
5.31	Young's modulus values from PRIMA and Modified LWD tests (C_10_98)	128
5.32	Young's modulus values from PRIMA test (C_8_98) \hdots	128
5.33	Young's modulus values from PRIMA and Modified LWD tests (D_16_103) $$.	129
5.34	Young's modulus values from PRIMA and Modified LWD tests (D_13_103) $\ .$	129

5.35	Young's modulus values from PRIMA and Modified LWD tests (D_11_103) $$.	129
5.36	Young's modulus values from PRIMA and Modified LWD tests (D_18_98)	130
5.37	Young's modulus values from PRIMA test (D_14_98) $\hfill \ldots \ldots \ldots \ldots$	130
5.38	Young's modulus values from PRIMA and Modified LWD tests (D_11_98)	130
5.39	Experimental and fitted accelerance functions, Soil B ($w_{\text{targ}} = 19.5\%, 103\%$	
	target Proctor) at testing location 2	132
5.40	Young's modulus values (median and range) from PVD tests on prismatic	
	samples: soils B, C and D \ldots	133
5.41	DCP penetration index (DPI) vs. depth, Soil A $w_{\rm targ}$ = 12%, 100% target	
	standard Proctor	135
5.42	Bender element vs. resilient modulus for Soil A	143
5.43	Bender element vs. resilient modulus for Soil B	143
5.44	Bender element vs. resilient modulus for Soil C	144
5.45	Bender element vs. resilient modulus for Soil D	144
5.46	GeoGauge vs. resilient modulus for soil A	146
5.47	GeoGauge vs. bender element for soil A	146
5.48	GeoGauge vs. resilient modulus for soil B	147
5.49	GeoGauge vs. bender element for soil B $\hfill B$	147
5.50	GeoGauge vs. resilient modulus for soil C	148
5.51	GeoGauge vs. bender element for soil C $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	148
5.52	GeoGauge vs. resilient modulus for soil D $\ \ldots \ \ldots$	149
5.53	GeoGauge vs. bender element for soil D $\ \ldots \ \ldots$	149
5.54	PRIMA-100 P2P vs. resilient modulus for soil A	151
5.55	PRIMA-100 P2P vs. bender element for soil A	151
5.56	PRIMA-100 P2P vs. resilient modulus for soil B	152
5.57	PRIMA-100 P2P vs. bender element for soil B	152
5.58	PRIMA-100 P2P vs. resilient modulus for soil C	153

5.59	PRIMA-100 P2P vs. bender element for soil C	153
5.60	PRIMA-100 P2P vs. resilient modulus for soil D	154
5.61	PRIMA-100 P2P vs. bender element for soil D	154
5.62	PRIMA-100 FRF vs. resilient modulus for soil A	156
5.63	PRIMA-100 FRF vs. bender element for soil A	156
5.64	PRIMA-100 FRF vs. resilient modulus for soil B	157
5.65	PRIMA-100 FRF vs. bender element for soil B	157
5.66	PRIMA-100 FRF vs. resilient modulus for soil C $\ldots \ldots \ldots \ldots \ldots$	158
5.67	PRIMA-100 FRF vs. bender element for soil C $\ldots \ldots \ldots \ldots \ldots \ldots$	158
5.68	PRIMA-100 FRF vs. resilient modulus for soil D	159
5.69	PRIMA-100 FRF vs. bender element for soil D	159
5.70	Modified LWD P2P vs. resilient modulus for soil B $\ldots \ldots \ldots \ldots \ldots$	161
5.71	Modified LWD P2P vs. bender element for soil B $\ldots \ldots \ldots \ldots \ldots \ldots$	161
5.72	Modified LWD P2P vs. resilient modulus for soil C $\ldots \ldots \ldots \ldots \ldots$	162
5.73	Modified LWD P2P vs. bender element for soil C $\ldots \ldots \ldots \ldots \ldots \ldots$	162
5.74	Modified LWD P2P vs. resilient modulus for soil D	163
5.75	Modified LWD P2P vs. bender element for soil D $\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	163
5.76	Modified LWD FRF vs. resilient modulus for soil B \hdots	165
5.77	Modified LWD FRF vs. bender element for soil B \hdots	165
5.78	Modified LWD FRF vs. resilient modulus for soil C \hdots	166
5.79	Modified LWD FRF vs. bender element for soil C \hdots	166
5.80	Modified LWD FRF vs. resilient modulus for soil D \hdots	167
5.81	Modified LWD FRF vs. bender element for soil D \hdots	167
5.82	PVD vs. resilient modulus for soil B	169
5.83	PVD vs. bender element for soil B	169
5.84	PVD vs. resilient modulus for soil C	170
5.85	PVD vs. bender element for soil C	170

5.86	PVD vs. resilient modulus for soil D	171
5.87	PVD vs. bender element for soil D	171
5.88	DCP-CBR correlation vs. resilient modulus for soil A	172
5.89	DCP-CBR correlation vs. bender element for soil A \hdots	173
5.90	DCP-DPI correlation vs. resilient modulus for soil A	173
5.91	DCP-CBR correlation vs. resilient modulus for soil B \hdots	174
5.92	DCP-CBR correlation vs. bender element for soil B \hdots	174
5.93	DCP-DPI correlation vs. resilient modulus for soil B $\hfill\hfil$	175
5.94	DCP-CBR correlation vs. resilient modulus for soil C \hdots	175
5.95	DCP-CBR correlation vs. bender element for soil C $\ldots \ldots \ldots \ldots$	176
5.96	DCP-DPI correlation vs. resilient modulus for soil C $\ldots \ldots \ldots \ldots$	176
5.97	DCP-CBR correlation vs. resilient modulus for soil D \ldots	177
5.98	DCP-CBR correlation vs. bender element for soil D	177
5.99	DCP-DPI correlation vs. resilient modulus for soil D	178
A.1	Location of the center of the loading plate in the small container	A-4
A.2	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 2.72 \text{ kPa} \dots \dots$	A-5
A.3	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 4.07 \text{ kPa} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	A-5
A.4	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 6.31 \text{ kPa} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	A-6
A.5	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 6.31 \text{ kPa} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	A-6
A.6	Experimental and fitted ordinary accelerance functions for large container, q	
	$= 9.29 \text{ kPa} \dots \dots$	A-7

A.7	Experimental and fitted ordinary accelerance functions for large container, q	
	= 8.18 kPa	A-7
A.8	Experimental and fitted ordinary accelerance functions for small container,	
	q=2.72 kPa	A-8
A.9	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 4.07 \text{ kPa} \dots \dots$	A-9
A.10	Experimental and fitted ordinary accelerance functions for small container, q	
	$= 6.31 \text{ kPa} \dots \dots$	A-9
A.11	Experimental and fitted ordinary accelerance functions for large container, q	
	$= 10.61 \text{ kPa} \dots \dots$	A-10
A.12	2 Experimental and fitted ordinary accelerance functions for large container, q	
	$= 9.29 \text{ kPa} \dots \dots$	A-10
A.13	BExperimental and fitted ordinary accelerance functions for large container, q	
	$= 8.18 \text{ kPa} \dots \dots$	A-11
A.14	Equivalent shear modulus vs. average contact pressure	A-11
A.15	Normal static stiffness vs. average contact stress for various locations of the	
	exciter (small container and large container)	A-12
A.16	Equivalent shear modulus vs. average contact pressure	A-13
B.1	Soil A (MnROAD) Proctor curve	B-1
B.2	Soil A (MnROAD) sieve analysis curve	B-2
B.3	Soil B (TH 23) Proctor curve	B-4
B.4	Soil B (TH 23) sieve analysis curve	B-5
B.5	Soil C (TH 58) Proctor curve	B-7
B.6	Soil C (TH 58) sieve analysis curve	B-8
B.7	Soil D (TH 32) Proctor curve	B-10
B.8	Soil D (TH 32) sieve analysis curve	B-11

C.1	Side view of steel container with first lift of soil	C-3
C.2	Top view of compaction plate location in first and second step of compaction	C-4
D.1	LVDT calibration	D-1
D.2	Load cell calibration	D-2
E.1	Percometer testing locations (top view)	E-1
E.2	GeoGauge testing locations (top view)	E-3
E.3	PVD testing locations (top view)	E-5
E.4	PVD connection schematic	E-7
E.5	Light Weight Deflectometer testing locations (top view)	E-9
E.6	Modified LWD testing locations (top view)	E-12
E.7	DCP testing locations (top view)	E-13
G.1	Specimen for bender element notch location (end view)	G-1
L.1	Modified LWD (mobility, real part) (B_24_103) for loc. 2	L-2
L.2	Modified LWD (mobility, imag. part) (B_24_103) for loc. 2	L-2
L.3	Modified LWD (mobility, real part) (B_19.5_103) for loc. 2 \ldots	L-3
L.4	Modified LWD (mobility, imag. part) (B_19.5_103) for loc. 2	L-3
L.5	Modified LWD (mobility, real part) (B_27_98) for loc. 2	L-4
L.6	Modified LWD (mobility, imag. part) (B_27_98) for loc. 2	L-4
L.7	Modified LWD (mobility, real part) (C_12_103) for loc. 2 $\ldots \ldots \ldots$	L-5
L.8	Modified LWD (mobility, imag. part) (C_12_103) for loc. 2 \ldots	L-5
L.9	Modified LWD (mobility, real part) (C_9.5_103) for loc. 2	L-6
L.10	Modified LWD (mobility, imag. part) (C_9.5_103) for loc. 2	L-6
L.11	Modified LWD (mobility, real part) (C_8_103) for loc. 2	L-7
L.12	Modified LWD (mobility, imag. part) (C_8_103) for loc. 2	L-7
L.13	Modified LWD (mobility, real part) (C_13_98) for loc. 2	L-8

L.14 Modified LWD (mobility, imag. part) (C_13_98) for loc. 2 L	-8
L.15 Modified LWD (mobility, real part) (C_10_98) for loc. 2 L	-9
L.16 Modified LWD (mobility, imag. part) (C_10_98) for loc. 2 L	-9
O.1 PVD result at loc. 2 (B ₂ 4 ₋ 103) \ldots O)-1
O.2 PVD result at loc. 2 (B_19.5_103) $\ldots \ldots $)-2
O.3 PVD result at loc. 2 (B_16_103) $\ldots \ldots \ldots$)-2
O.4 PVD result at loc. 2 (B_27_98))-3
O.5 PVD result at loc. 2 (B_22_98))-3
O.6 PVD result at loc. 2 (B_16_98))-4
O.7 PVD result at loc. 2 (C_ 9.5_103))-4
O.8 PVD result at loc. 2 (C_8_103) O)-5
O.9 PVD result at loc. 2 (C_13_98) O)-5
O.10 PVD result at loc. 2 (C_10_98) O)-6
O.11 PVD result at loc. 2 (C_8_98) $\ldots \ldots \ldots$)-6
O.12 PVD result at loc. 2 (D_16_103) \ldots O)-7
O.13 PVD result at loc. 2 (D_13_103))-7
O.14 PVD result at loc. 2 (D_11_103))-8
O.15 PVD result at loc. 2 (D_18_98) $\ldots \ldots $)-8
O.16 PVD result at loc. 2 (D_14_98) $\ldots \ldots $)-9
O.17 PVD result at loc. 2 (D_11_98) $\ldots \ldots $)-9
P.1 DPI vs. Depth for soil A at 105% target Proctor P	-1
P.2 DPI vs. Depth for soil A at 100% target Proctor P	-2
P.3 DPI vs. depth for soil B at 103% target Proctor P	-2
P.4 DPI vs. depth for soil B at 98% target Proctor P	-3
P.5 DPI vs. depth for soil C at 103% target Proctor P	-3
P.6 DPI vs. depth for soil C at 98% target Proctor P	-4

P.7	DPI vs. depth for soil D at 103% target Proctor	P-4
P.8	DPI vs. depth for soil D at 98% target Proctor	P-5
Q.1	Specimen picA_1_9_100	Q-1
Q.2	Specimens A_2_12_100, A_1_10.5_105, and A_1_9_100	Q-2
Q.3	Specimen $B_1_16_103$	Q-3
Q.4	Specimen B_1_16_98	Q-3
Q.5	Specimen B_1_19.5_103	Q-4
Q.6	Specimen B_1_22_98	Q-4
Q.7	Specimen B_1_24_103	Q-5
Q.8	Specimen B_1_27_98	Q-5
Q.9	Specimen B_2_16_98	Q-6
Q.10	Specimen $B_{2}19.5_{1}03$	Q-6
Q.11	Specimen B_2_22_98	Q-7
Q.12	Specimen $B_2_2_4_103$	Q-7
Q.13	Specimen B_2_27_98	Q-8
Q.14	Specimen C_1_12_103 \ldots Specimen C_1_103	Q-8
Q.15	Specimen C_1_13_98	Q-9
Q.16	Specimen C ₂ 12 ₁ 103 \ldots	Q-9
Q.17	Specimen C_1_8_103	Q-10
Q.18	Specimen C_2_10_98	Q-10
Q.19	Specimen C_1_8_98 \ldots	Q-11
Q.20	Specimen C_1_9.5_103	Q-12
Q.21	Specimen C_2_13_98	Q-13
Q.22	Specimen C_2_8_103	Q-14
Q.23	Specimen C_2_8_98 \ldots Specimen Spe	Q-14
Q.24	Specimen $D_1_1_3_103$	Q-15

Q.25 Specimen D_1_14_98	•		•	•		•	•	•	 •	•		•	•		•		Q-15
Q.26 Specimen $D_{-1}_{-16}_{-103}$	•			•		•	•	•	 •	•			•				Q-16
Q.27 Specimen D_2_18_98	•					•	•						•				Q-16

Executive Summary

This study deals with the experimental investigation of the effects of moisture and density on the elastic moduli and strength of four subgrade soils generally representing the range of road conditions in Minnesota. The test matrix was designed to include three moisture contents and two densities for each of the four soils for a total 24 soil-moisture-density combinations. The testing approach involved i) reduced-scale simulation of field compaction, ii) field-type testing on prismatic soil volumes, and iii) element testing on cylindrical soil specimens. The container for the prismatic soil volumes was designed to minimize boundary effects; the reduced-scale compaction was likewise affected to mimic construction conditions. The fieldtype testing included: i) the GeoGauge, ii) the PRIMA 100 device, iii) the modified light weight deflectometer (LWD) device, iv) the portable vibratory deflectometer (PVD) and v) the Dynamic Cone Penetrometer (DCP). To compare the Young's modulus values stemming from the field-type and laboratory experiments, cylindrical specimens were extracted from the prismatic soil volumes and tested for the resilient modulus (M_r) , small-strain Young's modulus using bender elements.

The results reveal that both moisture and density have a measurable effect on the elastic modulus and strength of all four soils. On the element testing side, the small strain estimates from the bender element tests were in good agreement with the resilient modulus values. In the context of field testing, there was significant scatter of the estimated Young's moduli depending upon the particular testing device. It was found, however, that the values from the modified LWD device correlated reasonably well with the $BE-M_r$ values for all soil conditions. The DCP was effective in quantifying the uniformity of compacted soil volumes, and through empirical formulas, the apparent Young's modulus.

Chapter 1 Introduction

1.1 Objectives

Quantitative in situ assessment of subgrade quality represents one of the key elements for a comprehensive transition from empirical to mechanistic based pavement design. Traditionally, density has been used as an indicator for properly compacted soils. However, proper density does not necessarily guarantee sufficient stiffness or strength. Moreover, the effects of moisture on the mechanical behavior of soils must be included to account for seasonal variations of field measured stiffness and strength. For example, the 2002 Design Guide for New and Rehabilitated Pavement Structures requires flexible pavements to be designed considering the resilient modulus of the soil subgrade, wherein changes in moisture and seasonal effects influence modulus values.

Non-destructive testing devices are being used to evaluate the stiffness of road subgrades in the field whereas laboratory testing typically determines mechanical properties of soils used during pavement design. Field methods are still being evaluated as viable methods to measure in situ stiffness or strength of subgrade soils during construction.

This research is focused on understanding and quantifying the relationship between the

field and laboratory estimates of the soil stiffness and strength under varying moisture conditions. This is project aimed at quantifying the effects of moisture on portable vibratory devices and dynamic cone penetrometer measurements. This research is aimed at providing a link between design specifications and construction practices (in particular quality assurance procedures) and thus elevating the mechanistic-empirical pavement design.

The objective of this research is to quantify the effects of density and moisture on the stiffness of fine-grained subgrade soils. A benefit of this project is the development of laboratory framework for quantitative assessment of the seasonal soil stiffness estimates stemming from portable measurement devices.

1.2 Scope

To elevate the quality assurance practices and field testing of subgrade and granular base profiles, this project is focused on: 1) developing a laboratory procedure for quantifying the effects of moisture on the soil's stiffness and strength characteristics; and 2) relating the laboratory measurements to field-type estimates of the associated soil parameters. Constitutive modeling was beyond the scope of this project and not conducted. A significant portion of this project will be devoted to the analysis and syntheses of experimental data to quantify the relationship between field and laboratory measurements of the soil's stiffness and strength under varying moisture and density conditions.

A prior project [15] developed a systematic procedure for simultaneous testing of the resilient modulus and seismic moduli. The project described in this report is the involved simulating field compaction of fine-grained soils in the laboratory.

To correlate the field and laboratory estimates of soil stiffness and strength, a steel soil container for reduced scale field testing was designed and fabricated. Four fine-grained soils (given generic names A, B, C, and D by the authors) were obtained from Mn/DOT and the soils were mixed to predetermined moisture contents. Two densities and three moisture contents were prepared for each soil resulting in 24 sample subgrades. Each sample consisted of three lifts of known weight compacted with a sheepsfoot plate to specified heights for a given density following the associated sample preparation procedure. The stiffness of the sample was measured with field devices: GeoGauge, PRIMA 100, Modified LWD, Portable Vibratory Deflectometer and Dynamic Cone Penetrometer. Three cylindrical 98.5 mm (3.88 in.) diameter soil specimens were extracted from the sample. Resilient modulus, bender element and triaxial compression tests were performed on two cylindrical specimens while the third was given to the Soil Science Department at the University of Minnesota for unsaturated property testing. A significant portion of this project was devoted to the analysis and comparison of experimental data to quantify the relationship between field-type and laboratory measurements of the soil's stiffness and strength under varying moisture and density conditions.

1.3 Organization

This report consists of six chapters. Chapter 2 describes the laboratory testing techniques and the non-destructive field testing devices used in this research. Chapter 3 presents enhanced testing procedures for the PRIMA 100, Modified LWD, and Portable Vibratory Deflectometer. The steel container dimension verification in addition to a summarized testing procedure is in Chapter 4. Chapter 5 describes the moduli calculations for each device, and Chapter 6 reports conclusions with recommendations for future work.

Chapter 2 Background

Quality control (QC) and quality assurance (QA) involving non-destructive stiffness characterization can prevent over compaction and/or identify problematic areas in road construction. QC/QA can also create standards for contractual items more reliable than density testing. Field tests are a result of a need for rapid QC/QA. This research compares results from various field devices and laboratory tests.

2.1 Laboratory Testing Methods

2.1.1 Resilient Modulus

The resilient modulus M_r is defined as the change in axial stress (deviator or cyclic stress) $\Delta \sigma_a$ divided by the recoverable axial strain $\Delta \varepsilon_a$ at a given level of confinement:

$$M_r = \frac{\Delta \sigma_a}{\Delta \varepsilon_a} \tag{2.1}$$

Resilient modulus of fine-grained soils is affected by confinement, density and water content. NCHRP 1-28A (Table 2.1) is a testing protocol used to measure the resilient modulus of soils. NCHRP 1-28A is expected to become the future standard testing protocol and replace LTPP 46, FHWA T292, and FHWA T294 methods [38]. The flow chart (Fig. 2.1) identifies the appropriate testing procedure for a material. The 1-28A protocol requires a closed-loop,

Sequence	Confining F	ressure	Contact 3	Stress	Cyclic S	Stress	Maximum	Nrep	
-2002 2000 2000 0	kPa	psi	kPa	psi	kPa	psi	kPa	psi	00970402
0	27.6	4.0	5.5	0.8	48.3	7.0	53.8	7.8	1000
1	55.2	8.0	11.0	1.6	27.6	4.0	38.6	5.6	100
2	41.4	6.0	8.3	1.2	27.6	4.0	35.9	5.2	100
3	27.6	4.0	5.5	0.8	27.6	4.0	33.1	4.8	100
4	13.8	2.0	2.8	0.4	27.6	4.0	30.4	4.4	100
5	55.2	8.0	11.0	1.6	48.3	7.0	59,3	8.6	100
6	41.4	6.0	8.3	1.2	48.3	7.0	56,6	8.2	100
7	27.6	4.0	5.5	0.8	48.3	7.0	53.8	7.8	100
8	13.8	2.0	2.8	0.4	48.3	7.0	51.1	7.4	100
9	55.2	8.0	11.0	1.6	69.0	10.0	80.0	11.6	100
10	41.4	6.0	8.3	1.2	69.0	10.0	77.3	11.2	100
11	27.6	4.0	5.5	0.8	69.0	10.0	74.5	10.8	100
12	13.8	2.0	2.8	0.4	69.0	10.0	71.8	10.4	100
13	55.2	8.0	11.0	1.6	96.6	14.0	107.6	15.6	100
14	41.4	6.0	8.3	1.2	96.6	14.0	104.9	15.2	100
15	27.6	4.0	5.5	0.8	96.6	14.0	102.1	14.8	100
16	13.8	2.0	2.8	0.4	96.6	14.0	99.4	14.4	100

Table 2.1: Resilient modulus test sequence [45]

servo-hydraulic load frame with a function generator capable of applying a haversine-shaped load pulse over a range of load durations, load levels, and rest periods [45]. It requires a triaxial cell chamber made of polycarbonate, acrylic, or other suitable see-through material to be pressurized by air and large enough to accept specimens of 152 mm (6.0 in.) in diameter. An internal, electronic load cell is required to record the maximum load within 0.5% and spring loaded linear variable differential transformers (LVDTs) are mounted on the specimen to record deformation [45]. For fine-grained soils, the load pulse (Fig. 2.2) is a 0.2 second sinusoidal loading pulse followed by a 0.8 second rest period.

Figure 2.1: Test method flow chart [45]

Time

Figure 2.2: Resilient modulus pulse definitions [45]

The test sequence requires loading at 17 stress states (Table 2.1). The conditioning cycle is the first step that consists of 1000 repetitions at a confining pressure of 28 kPa (4.0 psi) and a deviator stress of 55 kPa (8.0 psi). The remaining 16 steps consist of 100 repetitions with differing confining pressures and deviator stresses. The recoverable strain from the last five loading pulses of each step are used to calculate the Young's modulus. A resilient modulus is calculated from each of the five last loading pulses of each sequence. These five values are used to calculate the resilient modulus for each cycle, and the five values are then averaged for the M_r value corresponding to that confining pressure and deviator stress combination.

2.1.2 Bender Element

The bender element technique was developed by Shirley and Hampton in 1977 [21]. This test estimates the Young's modulus and shear modulus of a specimen from the primary and secondary wave speeds.

A bender element is an electro-mechanical transducer that either bends or contracts as voltage is applied or generates a voltage as it deforms. A bender element consists of a thin metal shim placed between two piezoelectric ceramic bimorphs that protrudes 1 mm into the specimen. A current passes through the piezoelectric material causing it to contract. As the piezoelectric material contracts, it moves the metal shim such that it generates a wave that travels through the specimen. The wave is received at the opposite end of the specimen by the opposing bender element. The primary wave (Fig. 2.3), or more commonly called P-wave, is generated as the metal shim deforms axially. The P-wave is received by the opposing bender element with a phase shift of 180 degrees. The secondary, shear (Fig. 2.3) or S-wave, is a result of the metal shim in the bender element contracting side to side. The S-wave is read in-phase by the opposing bender element due to the element orientation (Fig. 2.4). The amplitude of the induced P- and S- waves are very small, and the recording

Figure 2.3: Bender element wave description [15]

of the output needs to be very accurate [8, 44]. The obtained (small-strain) moduli are often

Figure 2.4: Proper alignment for S-waves [16]

referred to as E_{MAX} and G_{MAX} . These values are calculated from wave velocities c_P and c_S which are determined from propagation times t_p and t_s of the P- and S-waves and their travel distance L, respectively:

$$c_P = \frac{L}{t_P} \tag{2.2}$$

$$c_S = \frac{L}{t_S} \tag{2.3}$$

A problem with bender element testing is the difficulty in determining the wave arrival time used to calculate wave speeds [21]. Several approaches have been used to determine arrival times: peak signal compared to peak arrival, linearly extrapolating the slope of the sent and received signals to the x-axis and determining the arrival time, or cross correlating the sent signal to the received signal. Averaging the cross correlation of the frequency response function and linearly interpolating the cross power spectrum phase diagram can be regarded as the most accurate method for determining the wave arrival time [44].

Viggiani and Atkinson [44] proposed using sine waves as an input signal instead of square waves. This produced a received signal that was generally of a similar shape. Viggiani and Atkinson state in both slow and dynamic cyclic loading tests stress-strain loops show little or no hysteresis, which means that the behavior is conservative and little or no energy is dissipated [33]. Davich [15] reported good agreement of the bender element results with M_r data, and in most cases, lower moisture contents exhibited larger E_{MAX} values in granular material.

2.1.3 Triaxial Compression

The triaxial compression test is the most widely used shear strength test [12]. A cylindrical specimen of a length to diameter ratio of two is encased by a thin rubber membrane (Fig. 2.5) and placed inside a pressure chamber [14]. The specimen is subjected to a confining

Figure 2.5: Specimen placed inside rubber membranes

pressure and the axial load is increased until failure. Failure occurs on a plane where a critical combination of shear stress and effective normal stress develops. A failure envelope can be constructed from multiple tests performed on specimens at different confining pressures (Fig. 2.6).

Figure 2.6: Mohr's diagram

The confining pressure is the minor principal stress. The combination of the confining pressure and deviatoric stress, provided there are no shear stresses on the ends of the specimen, is the major principal stress. Shear strength is expressed as a linear function of the cohesion c', normal stress at failure σ_n , suction s, and the angle of internal friction ϕ' [12]:

$$\tau = c' + (\sigma_n + s) \tan \phi' \tag{2.4}$$

If soil suction is not measured, the shear strength parameters c and ϕ , estimated from the total stresses, are influenced by suction s.

2.2 Field-Type Testing Methods

2.2.1 GeoGauge

The GeoGauge, manufactured by Humboldt Mfg. (Norridge, IL), is a hand-portable device that evaluates compaction quality control [41]. It weighs 10 kg (22 lb), is 280 mm (11 in.) in diameter and 270 mm (10 in.) tall. Figure 2.7 shows the validation mass that accompanies the device for on site calibration. The device rests on the soil via a ring shaped foot (Fig. 2.8). A schematic of GeoGauge components is shown in Fig. 2.9. Seating the

Figure 2.7: Verification mass and GeoGauge device

GeoGauge can affect performance. The manufacturer's user guide recommends more than 60% [41] or 80% [42] of the ring-shaped foot's area needs to be in contact with the soil. The manufacturer also recommends a thin layer, 3.2 mm (0.13 in.), of moist sand to be placed between the ring-shaped foot and the soil surface to ensure a proper contact area [43]. The GeoGauge operates without a load cell, so its weight is the assumed force during operation. The device consists of two geophones that measure surface velocity (Fig. 2.9). During each test, the mechanical shaker displaces the foot in 25 frequencies. The intervals increase in

Figure 2.8: Ring shaped loading plate

Figure 2.9: GeoGauge schematic [34]

4 Hz segments, from 100 to 196 Hz. The stiffness of the soil is determined by averaging the readings taken at each interval. ASTM designation D6758-02 states, "the stiffness, in force per unit displacement, is determined by imparting a small force to the surface of the ground, measuring the resulting surface velocity and calculating the stiffness. This is done over a frequency range and the results are averaged" [3]. The GeoGauge is capable of storing information for modulus determination on a personal computer. An infrared interface cable transmits information to a computer for further analysis.

Alshibli et al. [6] conducted Geogauge tests on clay and clayey-silt compacted in two 1.52 x 0.91 x 0.91 m (5 x 3 x 3 ft) containers. Coefficients of variation for GeoGauge moduli estimations ranged from 4.3% to 21% while the corresponding elastic moduli were 67 MPa (9717 psi) and 162.3 (23540 psi) on the compacted soil surfaces in these containers. Munir [28] showed that the depth of influence for the GeoGauge was between 190 - 200 mm (7.5 and 8 in.) by testing varying layer thicknesses of different layered materials. Siekmeier et al. [39] performed GeoGauge tests in conjunction with other field-type testing devices on a granular base at the MnROAD facility and concluded that the modulus was lower when compared to other devices due to the lower contact pressure. Chen et al. [11] completed approximately 100 field tests on different subgrade and base material with the GeoGauge, remarking that the device may lose accuracy on materials that exceeded 23 $\frac{kN}{mm}$ (130,000 $\frac{lb}{in}$) in stiffness.

2.2.2 PRIMA 100

The PRIMA 100 is a portable falling weight deflectometer manufactured by Carl Bro Pavement Consultants (Kolding, Denmark). It is also known as a light weight deflectometer (LWD), and it is based on the design of the popular falling weight deflectometers (FWD) [20]. The FWD imparts a force on a circular loading plate in contact with a prepared surface. A series of geophones, located radially away from the center of the loading plate, measure velocity from which moduli can be determined [30]. The PRIMA 100 contains a falling mass that impacts a circular loading plate in contact with the surface, and a geophone measures the surface's velocity response. The PRIMA 100 device is similar to the FWD in that it transmits an impact load on a circular loading plate and the soil response is measured. Typically one geophone placed in-line with the falling mass although additional geophones can be utilized by the PRIMA 100 devices [38].

The PRIMA 100 device, shown in Fig. 2.10, weighs 27 kg (60 lb) and is 1.28 m (50 in.) tall with a 200 mm (8 in.) diameter loading plate, which can be varied to accommodate different soil conditions. The maximum drop height is 850 mm (33 in.). The amount of force generated by the falling mass can be varied by increasing or decreasing the drop height with an adjustable mass release trigger. When released, it slides along the handle and impacts the PRIMA 100 lower unit housing a load cell and a spring mounted geophone (Fig. 2.11).

The impact results in a sine-shaped loading pulse, which simulates loading from a vehicle.

Figure 2.10: PRIMA 100 device

Figure 2.11: PRIMA 100 sensors $% \left({{{\rm{PRIMA}}}} \right)$

The velocity of the soil is measured as the falling mass impacts rubber buffers on the lower unit enclosure. The geophone is centered underneath the loading plate (Fig. 2.12), and it is attached to a spring to remain in contact with the soil as the mass impacts the rubber buffers. After impact, PRIMA 100 software records the maximum force and displacement; these values are used to estimate stiffness and the value is displayed.

Figure 2.12: PRIMA 100 loading plate

Alshibli et al. [6] reported the LWD showed wide scatter and poor repeatability of measurements when testing weak subgrade layers. For example, the coefficient of variations ranged from 1.2% to 46.3% and the LWD moduli estimations were 171.4 MPa (24,860 psi) and 28.5 MPa (4133 psi) respectively on the compacted samples mentioned Section 2.2.1. Nazzal [28] reported PRIMA 100 coefficients of variations ranging from 2.1 to 28 % for modulus values up to 50 MPa (7250 psi) such that it was difficult to conduct the LWD test on very weak material. The general trend for C_{var} decreased as the modulus increased. Camargo et al. [9] performed LWD measurements on three Minnesota trunk highways in 2005 and reported it could be used as a quality assurance tool in conjunction with the BOMAG IC roller.

2.2.3 Modified LWD

The modified procedure was designed as a laboratory setup that verifies stiffness estimations from portable deflectometer devices [19]. The testing apparatus is called the Beam Verification Tester (BVT) (Fig 2.13). The PRIMA 100 is modified by removing the falling weight, as shown in Fig. 2.14. The modified LWD device can be attached to the BVT and tapped to identify steel beam stiffness, as shown in Fig. 2.13. This setup has been tested on the BVT to verify that a smaller load level is independent of the static stiffness for a linear system [19].

Figure 2.13: Beam Verification Testing setup [19]

The modified LWD setup can also be placed on prepared subgrade. The falling mass is removed and a rubber mallet is used to tap the lower unit (Fig. 2.15); a Fast Fourier Transformation is performed on the data collected using a spectral analyzer. Determination of the static stiffness from the frequency response function is the basis for calculating Young's modulus. The use of the modified setup takes advantage of the linearity of materials at low strain levels [19]. Hoffmann et al. [19] reported that the sensor calibration of the PRIMA 100 device was satisfactory. However, the data interpretation method that uses peak values

Figure 2.14: Lower half of the PRIMA 100

Figure 2.15: Rubber mallet tapping the modified LWD

for the load and displacement imbedded in the device at that time disregarded the inertial effects of the peak force to peak displacement resulting in systematic errors. Carl Bro. now markets FFT software for use with the PRIMA 100 [38]. Hoffmann et al. [19] did show that the peak to peak based method of back analysis used by the PRIMA 100 produces incorrect estimates of the static stiffness with an error often exceeding 100%. A spectral-based data interpretation method was proposed and showed good agreement between the true static stiffness of the BVT and its LWD estimates [19].

2.2.4 Portable Vibratory Deflectometer

A portable vibratory deflectometer (PVD) measures the load-frequency response of a rigid plate on a half space. The rigid plate resting on a large volume of flat soil is subjected to random vertical vibration generated by an electromagnetic shaker, as shown in Fig. 2.16 [18].

Figure 2.16: PVD test setup

The 12 mm (0.5 in.) thick and 63 mm (2.5 in.) diameter loading plate (Figs. 2.18) is bolted to model 4809 Bruel & Kjaer (Denmark) shaker. The excitation device produces linear motion over the frequency range of 10 to 20,000 Hz (Fig. 2.17). Two model 352A10 PCB (Depew, NY) accelerometers are mounted on the loading plate shown in Fig. 2.19. The signal from the accelerometers is received by the 482A22 PCB Piezotronics signal conditioner and passed on to a Siglab 20-42 (San Jose, CA) spectrum analyzer. The Kistler 9011A

Figure 2.17: Bruel & Kjaer vibration exciter type 4809

Figure 2.18: PVD loading plate

(Hampshire, UK) load cell has a 15 kN capacity (3370 lb.) and an 18 kN (4045 lb.) overload limit. It is positioned between the excitation device and loading plate, and the signal from the load cell is received by a Kistler dual mode amplifier, and in turn, sent to the Siglab 20-42 spectrum analyzer. Computer software produces a random excitation signal that is sent to the Rockford Fosgate Power 150a1 (Tempe, AZ) amplifier. The signal is then sent to the vibratory device. A schematic describing the setup is shown in Fig. 2.21.

Figure 2.19: PVD loading plate with accelerometers and load cell

The sensors attached to the loading plate monitor the applied vertical load and its corresponding acceleration, both as a function of time. Random oscillations from 0 - 5000 Hz are transmitted to the soil via the exciter and loading plate (Fig. 2.20). Using the

Figure 2.20: PVD loading plate in contact with soil

SigLab 20-42 spectrum analyzer, the analog time signals are digitized and converted to the frequency domain [36]. The test runs stacking data continuously as the system is excited. MATLAB software converts the force and velocity measurements from the time domain into the frequency domain.

Figure 2.21: PVD schematic

2.2.5 Dynamic Cone Penetrometer

The dynamic cone penetrometer (DCP) was developed 1956, and applications of the DCP include correlations to the California Bearing Ratio (CBR), unconfined compressive strength, resilient modulus, and shear strength of soils [7, 22]. The DCP is simple to use and durable to withstand field conditions. The 4.6 kg (10.1 lb) or 8 kg (17.6 lb) sliding mass falls 575 mm (22.6 in.) and impacts the anvil/coupler assembly (Fig. 2.22). The energy is transmitted through the anvil/coupler assembly and 1 m (3.3 ft) drive rod to the cone (Fig. 2.23). The cone is attached to the end of the 1 m (3.3 ft) drive rod, and it is driven into the soil by lifting the sliding hammer and releasing it [4]. The cone is 20 mm (0.67 in.) in diameter with a 60 degree angle. A vertical displacement is recorded after each drop. The DCP penetration

Figure 2.22: Dynamic Cone Penetrometer disassembled

index (DPI) is the only value obtained from this device; all subsequent applications are derived from correlations. The DPI is an average displacement of the apparatus from the falling mass for depth intervals. The DCP produces shear failure in the soil similar to the bearing capacity failure of a foundation [40]. Siekmeier et al. [39] suggest that the DCP is most useful for verifying the consistency and uniformity at constructions sites.

Figure 2.23: Removable cone tip

2.2.6 Percometer

The Percometer estimates volumetric moisture content for soil [9]. This device is manufactured by ADEK (Estonia) [5]. It measures temperature, a dielectric permittivity, and electrical conductivity. The Percometer consists of a hand-held computer, a 2 m (6 ft) cord, and a 200 mm (8 in.) long probe with a 60 mm (2.4 in.) diameter sensor plate as shown in Fig. 2.24. The probe is pressed against a material, and the hand-held computer emits a small electrical current that passes through the sensor plate and material wrapping back to the shell of the probe.

Figure 2.24: Percometer

Chapter 3 Enhanced Data Interpretation

3.1 PRIMA Device

Conventionally, the PRIMA-soil stiffness k is determined from the peak force divided by the peak displacement which inevitably includes inertial effects and thus introduces a systematic error into the estimation of soil's Young modulus E. To overcome the problem, a method proposed by Hoffmann et al. [19] utilizes the frequency-domain analysis to extrapolate the dynamic force and deflection data toward the zero frequency and thus filter out the undesirable inertial effects. In this process, the low-frequency data (0-20 Hz) are disregarded from the fitting process owing to the excessive signal-to noise ratio caused by inherent geophone limitations. As a result, the "true" static stiffness, k^{st} , of the PRIMA-soil system is estimated by fitting the intermediate-frequency (20-150 Hz) values of the FFT-transformed force-deflection ratio. In the context of an elasto-static analysis, such k^{st} can be used, assuming a suitable value for the Poisson's ratio and an appropriate stress distribution factor for beneath the loading plate to calculate the soil's Young's modulus. The superscript distinguishes it from k estimated at high frequencies. On modeling the soil as a semi-infinite, homogeneous, isotropic, linear-elastic half-space, it can be shown that

$$E = \frac{4k^{\rm st}}{\pi d} \left(1 - \nu^2\right) I_s \tag{3.1}$$

where d is the diameter of the circular loading plate, and I_s is a stress distribution factor depending on its flexibility [12]. More precisely,

- $I_s = 1$ for the flexible $(E_{\text{plate}} \ll E_{\text{soil}})$ plate,
- $I_s = \frac{\pi}{4}$ for the rigid $(E_{\text{plate}} \gg E_{\text{soil}})$ plate.

Here it is noted that the second equation for I_s assumes that the soil uniformly displaces under the entire loading plate. Accordingly, it does not account for the fact that the inner geophone moves independently from the loading plate and thus violates the rigid plate assumption. In this context, it may be reasonable to expect that the actual value of I_s characterizing the PRIMA device is somewhere in between the extreme values of $\pi/4 = 0.785$ and 1. Owing to a relatively narrow range characterizing the possible values of I_s , the ensuing analysis assumes $I_s = 1$ for simplicity.

3.1.1 Data Acquisition

To estimate the static stiffness k^{st} in (3.1), the entire PRIMA force and motion records must be utilized to transform the temporal data into the frequency domain. This is achieved by applying the Fast Fourier Transform (FFT) to the transient force and velocity records stemming from the PRIMA 100 device. With reference to Fig. 3.1, the frequency-domain analysis is performed with the aid of the Siglab 20-42 four-channel spectrum analyzer (frequency range 0-20kHz), which stores and processes the entire (i.e. full) force and velocity records.

Figure 3.1: Data acquisition system for the enhanced interpretation of PRIMA 100 measurements [19]

Velocity measurement: The PRIMA 100 geophone rests on a spring; it moves independently of the lower unit housing. As the housing is impacted by the falling weight or the mallet, the load is transmitted from the housing to the loading plate. Movement of the magnet within the geophone induces a current in the coil that is proportional to velocity by applying Faraday's Law of Induction [30]. The geophone outputs a voltage proportional to the difference in vertical motion between the ground surface and the geophone housing. Signal/noise ratios reduce reliability of measurements. For instance, a geophone with a natural frequency of 5 Hz should not be used to measure data with frequencies below 10 to 20 Hertz.

Force measurement: The load cell conditioner for the modified setup is a Vishay strain gage (Malvern, PA) conditioner model 2120 with a model 2110A power supply. The PRIMA 100 load cell contains eight strain gages and outputs a voltage from impact that is conditioned/amplified and sent to the signal conditioner.

Both signals, received by the Siglab 20-42 spectrum analyzer, are sent to the portable computer for further processing and graphical display. All data processing, both within the spectrum analyzer and the portable computer, is performed using MATLAB software.

3.1.2 Fourier Transform and Frequency Response Function

The Fourier transform is used to convert a signal recorded in the time domain, y(t), to a frequency domain representation Y(f) where f denotes the frequency of the excitation. The Fourier transform of a continuous function of time y(t) is given by

$$Y(f) = \int_{-\infty}^{\infty} y(t)e^{-i2\pi ft}dt$$
(3.2)

where $i = \sqrt{-1}$. Conversely, the inverse Fourier transform of a continuous function of frequency Y(f) is defined as

$$y(t) = \int_{-\infty}^{\infty} Y(f) e^{i2\pi ft} df$$
(3.3)

On the basis of (3.2), any *linear* single-input-single-output system with temporal input x(t) and temporal output y(t) can be characterized in the frequency domain in terms of its frequency response function;

$$FRF(f) = \frac{Y(f)}{X(f)}$$
(3.4)

a complex-valued function which signifies the output per unit input as a function of frequency.

For experimental records that are inevitably of finite duration, however, (3.2) must be superseded by its discrete counterpart termed the Discrete Fourier Transform (DFT). With reference to a discrete (i.e. digitized) temporal record $y(t_k)$ $(t_k = k\Delta t, k = 0, 1, 2, ..., M)$, its DFT is given by

$$Y(f_j) = \Delta t \sum_{k=0}^{M} y(t_k) e^{-i(2\pi f_j)t_k}, \qquad j = 0, 1, 2, \dots M$$
(3.5)

On the basis of (3.5), a discrete version of (3.10) that is suitable for engineering applications (in terms of its robustness to experimental noise) can be written as

$$FRF(f_j) = \frac{S_{yx}(f_j)}{S_{xx}(f_j)}, \qquad j = 0, 1, 2, \dots M$$
(3.6)

where, for multiple test realizations $(i=1,2,\ldots,N_T)$

$$S_{yx}(f_j) = \frac{1}{N_T} \sum_{i=1}^{N_T} \left[X^*(f_j) \right]_i \left[Y(f_j) \right]_i, \qquad (3.7)$$

$$S_{xx}(f_j) = \frac{1}{N_T} \sum_{i=1}^{N_T} \left[X^*(f_j) \right]_i \left[X(f_j) \right]_i, \qquad j = 0, 1, 2, \dots M$$
(3.8)

denote respectively the cross-spectral and power-spectral density estimates computed from the discrete input and output records $x(t_k)$ and $y(t_k)$ ($t_k = k\Delta t, k = 0, 1, 2, ..., M$), and "*" stands for complex conjugation. Equations (3.5)–(3.8) form a basis for the operation of the Siglab 20-42 spectrum analyzer.

To estimate the quality of recorded data, the coherence function is used:

$$\gamma_{yz}^2(f_j) = \frac{|S_{yx}(f_j)|^2}{S_{xx}(f_j)G_{yy}(f_j)}$$
(3.9)

The value of the coherence function provides system linearity information as it varies from 0 to 1. If no correlation between the input and output signals is present, the value of $\gamma_{yz}^2(f_s)$ is equal to 0. Conversely, the value of $\gamma_{yz}^2(f_s)$ equal to 1 indicates the perfect linearity of a system without noise contamination. Accordingly, the value between 0 and 1 indicates the presence of noise and non-linearity in the system.

3.1.3 Mobility Function

In the enhanced interpretation of the PRIMA 100 measurements, the force record p(t) is taken as an input, and the geophone (i.e. velocity) record v(t) is taken as an output from the PRIMA-soil system which can accordingly be characterized in terms of its frequency response function

$$M(f) = \frac{V(f)}{P(f)},$$
 (3.10)

herein termed the mobility function. On modeling the PRIMA-soil system as a Single-Degree-of-Freedom (SDOF) system characterized by the spring constant k^{st} , dashpot c, and mass m, the Young modulus of the soil tested can be effectively calculated by first fitting the SDOF model in terms of M(F) to the experimental data as a means to calculate k^{st} and then using (3.1). Here it is noted that the process of fitting the SDOF model to experimental mobility data (in the frequency domain) effectively amounts to the extrapolation of dynamic stiffness to its zero-frequency limit.

3.1.4 Young's Modulus from PRIMA Test

To properly effect the frequency-domain extrapolation of the dynamic records p(t) and v(t) toward the static value, a Single-Degree-of-Freedom (SDOF) model is used in the analysis. On recalling that M(f) is complex-valued, fitting of the SDOF model to the experimental data is performed in terms of the real part of the mobility function.

Single-Degree-of-Freedom system: a SDOF system, shown in Fig. 3.2, consists of a mass m, a massless dashpot with a damping coefficient c, and a massless spring of constant k^{st} . The mass is subjected to a transient force p(t) which results in a dynamic deflection x(t) whose velocity is denoted by $\dot{x}(t) = v(t)$. The governing differential equation for the SDOF can be written in terms of its deflection x(t) as

$$m\ddot{x}(t) + c\dot{x}(t) + k^{\rm st}x(t) = p(t)$$
 (3.11)

Here $\dot{x}(t)$ and $\ddot{x}(t)$ denote respectively the velocity and acceleration of the mass m as elucidated earlier. On employing the definition of the undamped natural (circular) frequency of a SDOF system

$$\omega_n = \sqrt{\frac{k^{\rm st}}{m}} \tag{3.12}$$

Figure 3.2: SDOF system [19]

and that of the damping ratio

 $\xi = \frac{c}{2m\omega_n} \tag{3.13}$

where

$$\omega = 2\pi f$$

denotes the circular frequency in general, governing equation (3.11) can be conveniently rewritten as

$$\ddot{x}(t) + 2\xi\omega_n \dot{x}(t) + \omega_n^2 x(t) = \frac{p(t)}{m}.$$
(3.14)

Mobility function for the SDOF system: as shown in [19], an application of the Fourier transform to (3.14) results in

$$\dot{X}(f)\left[i\omega + 2\xi\omega_n + \frac{\omega_n^2}{i\omega}\right] = \frac{P(f)}{m}$$
(3.15)

On the basis of (3.15), the mobility function for a SDOF system can be computed as

$$M(f) = \frac{\dot{X}(f)}{P(f)} = \frac{i\omega/k^{\text{st}}}{(1-\beta^2) + 2i\xi\beta}, \qquad \beta = \frac{\omega}{\omega_n} = \frac{2\pi f}{\omega_n}$$
(3.16)

Fitting procedure: for fitting purposes, the mobility function in (3.16) can be decomposed into real and imaginary parts as

$$\operatorname{Re}\left[M(\omega)\right] = \frac{2\xi\beta\omega/k^{\mathrm{st}}}{\left(1-\beta^2\right)^2 + \left(2\xi\beta\right)^2}$$
(3.17)

and

$$\operatorname{Im}\left[M(\omega)\right] = \frac{(\omega\omega_n - \beta^3)/(k^{\mathrm{st}}\omega_n)}{(1 - \beta^2)^2 + (2\xi\beta)^2}$$
(3.18)

An example of the fitted (real part of the) mobility function and the resulting value of the static PRIMA-soil stiffness k^{st} are shown in Fig. 3.3. The corresponding plot of the coherence function is shown in Fig. 3.4 which indicates the high quality of dynamic data in light of the fact that the coherence function is close to unity for most frequencies. In the fitting procedure, it is assumed that the mass of the SDOF system corresponds to that of the bottom PRIMA assembly i.e. m = 10 kg, so that the optimal fit between the PRIMA experiment and SDOF theory is achieved via non-linear optimization (implemented in MATLAB) in terms of k^{st} and c. With the k^{st} obtained in this way, the Young's modulus of the soil can be directly estimated from (3.1), i.e. as

$$E = \frac{4k^{\rm st}}{\pi d} \left(1 - \nu^2\right)$$
(3.19)

where it is assumed that $I_s = 1$ as examined earlier.

Figure 3.3: Fitted mobility function for C_9.5_103, $k^{\rm stat}$ = 13.3 MN/m

Figure 3.4: Coherence function for C_9.5_103

3.2 Portable Vibratory Deflectometer

Prior to using the portable vibratory deflectometer (PVD) on the soil specimen, a so-called "air test" is required to determine the apparent mass of the footing attached to the vibratory exciter. This mass, which includes that of the aluminum footing, accelerometers, and participating cables, is a prerequisite for fitting the theoretical PVD transfer function to the experimental data; a process that, similar to the SDOF fitting procedure described in Section 3.1.4, results in an estimate of the Young's modulus of the soil.

3.2.1 Accelerance Function

In the PVD test [18], a rigid plate resting on the surface of a flat, large volume of soil, approximating a semi-infinite solid, is subjected to random vertical vibration generated by an electromagnetic shaker (Fig. 3.5). The sensors attached to the loading plate monitor the applied vertical load (force) and the corresponding acceleration, both as a function of time. The signals from the sensors are sampled, digitized and converted to the frequency domain using the Discrete Fourier Transform described earlier. In this setting, a counterpart of the mobility function M(f) (see Section 3.1.3) that is suitable for synthesizing the dynamic characteristics of the PVD-soil system (Fig. 3.5) is termed the *accelerance function* and defined as

$$A(f) = \frac{\ddot{X}(f)}{P(f)} \tag{3.20}$$

where $\ddot{X}(f)$ and P(f) denote respectively the Fourier transforms of the *average* vertical acceleration of the loading plate and the applied vibratory force. Figure 3.6 shows an example of the experimental accelerance function, in terms of its real and imaginary parts, obtained from the PVD test.

A typical plot of $1/A^{air}(f)$ obtained during PVD testing in air (no soil reaction), the

Figure 3.5: Schematics of the PVD test

Figure 3.6: Experimental accelerance function A(f) obtained from the PVD experiment

so-called air test, is shown in Fig. 3.7. One may note that, by virtue of the Newton's second law, quantity

$$\mathcal{M}(f) = \frac{1}{A^{\mathrm{air}}(f)} \tag{3.21}$$

signifies the apparent mass of the loading plate.

Figure 3.7: Inverse of the accelerance function, $1/A^{\text{air}}(f)$: the air test

3.2.2 Interfacial Accelerance Function

With reference to (3.20), one may note that $\ddot{X}(f)$ denotes the acceleration at the loading *plate/soil interface* when the plate is in contact with the soil, while P(f) describes the frequency content of the dynamic load applied to *the top* of the loading plate. Accordingly, such acceleration-force relationship includes the inertial resistance (i.e. the mass) of the loading plate which must be eliminated before the soil's stiffness and thus modulus can be estimated from A(f). To this end, it is useful to introduce the so-called *interfacial*

accelerance function

$$A_{vv}(f) = \frac{\ddot{X}(f)}{\mathcal{P}(f)} \tag{3.22}$$

which describes the loading plate/soil response in an alternative fashion which takes into account the load applied at the loading plate/soil interface, $\mathcal{P}(f)$, rather than the load P(f)applied to the top of the loading plate. In other words, in the interfacial accelerance function (Fig. 3.8), the effect of the inertia of the loading plate is removed from the experimental accelerance function (3.20) through

$$A_{vv}(f) = \left[\frac{1}{A(f)} - \mathcal{M}(f)\right]^{-1}$$
(3.23)

where $\mathcal{M}(f) = 1/A^{\text{air}}(f)$ denotes the apparent mass of the loading plate as described earlier.

Figure 3.8: Interfacial accelerance function $A_{vv}(f)$ obtained from the PVD experiment

3.2.3 Interfacial Compliance Function

A transfer function that directly reflects the PVD-soil stiffness characteristics relates the vertical *displacement* (as opposed to acceleration) of the loading plate-soil interface to the applied force. This quantity, defined as

$$C_{vv}(f) = \frac{X(f)}{F(f)} \tag{3.24}$$

is termed the *interfacial compliance* function. Employing the basic Fourier transform identities, it can be shown that $\ddot{X}(f) = -(2\pi f)^2 X(f)$ and thus

$$C_{vv}(f) = -\frac{1}{(2\pi f)^2} A_{vv}(f) = -\frac{1}{(2\pi f)^2} \left[\frac{1}{A(f)} - \mathcal{M}(f) \right]^{-1}$$
(3.25)

A typical interfacial compliance function obtained from the PVD experiment is shown in Fig. 3.9.

Figure 3.9: Interfacial compliance function $C_{vv}(f)$ obtained from the PVD experiment

3.2.4 Young's Modulus from PVD Test

A theoretical solution for the interfacial compliance function in the case of a rigid circular plate of diameter d in frictionless contact with the surface of a homogeneous elastic half space [26, 27, 31, 32] can be conveniently written as

$$C_{vv}(f) = C_{vv}(0) \,\bar{C}_{vv}(\bar{\omega}), \qquad \bar{\omega} = \pi df \sqrt{\frac{\rho}{G}}, \qquad (3.26)$$

Here $\bar{\omega}$ denotes the dimensionless circular frequency; G is the shear modulus; ρ is the mass density of the half-space;

$$C_{vv}(0) = \frac{1 - \nu}{2Gd}$$
(3.27)

denotes the static value of the interfacial compliance, and $\bar{C}_{vv}(\bar{\omega})$ is tabulated e.g. in [32]. As an example, variation of \bar{C}_{vv} with $\bar{\omega}$ assuming $\nu = 0.25$ is plotted in Fig. 3.10. It is well known from numerical simulations and tabulated values that $\bar{C}_{vv}(\bar{\omega})$ is relatively insensitive to the Poisson's ratio in the range $0 \leq \nu \leq 0.4$ [37]. As a result, the theoretical values of \bar{C}_{vv} from Fig. 3.10 can be taken as representative for all soils considered in this study. On the basis of this result, formulas (3.25)–(3.27), and the tabulated values of $\bar{C}_{vv}(\bar{\omega})$, a minimization procedure is implemented in MATLAB wherein the theoretical (interfacial) accelerance function A_{vv} stemming from (3.25) and (3.26) is fitted to its experimental counterpart (3.22) by iteratively adjusting the soil's shear modulus G. Upon convergence, such fitting process produces an "optimal" shear modulus, G^{opt} , that minimizes the misfit between the experimental (interfacial) accelerance function and its theoretical counterpart. With this result, the Young's modulus from the PVD test can be calculated (assuming $\nu = 0.4$ for the Poisson's ratio) as

$$E = 2G^{\text{opt}}(1+\nu) = 2.8 \, G^{\text{opt}} \tag{3.28}$$

Figure 3.10: Theoretical variation of $\bar{C}_{vv}(\bar{\omega})$
As an illustration of the quality of the fitting procedure, Fig. 3.11 compares the experimental accelerance function, A(f), with the theoretical result computed from (3.25) and (3.26) with $G = G^{\text{opt}}$.

Figure 3.11: Experimental accelerance function from the PVD test and its theoretical counterpart for $G = G^{\text{opt}}$

Chapter 4 Laboratory Tests

4.1 Steel Container

When conducting field-type tests (e.g., GeoGauge, PRIMA 100, Modified LWD, Portable Vibratory Deflectometer, and Dynamic Cone Penetration) in a laboratory environment, the size of the soil sample should be as large as possible to simulate field (in-situ) conditions. On the other hand, the maximum dimensions of the soil sample that can be used in the laboratory are related to the preparation technique. In this project, the technique selected was quasi-static, kneading compaction of pulverized, dried, fine-grained soils mixed with appropriate amounts of water. The compaction was executed in an MTS 810 load frame, which allowed for accommodating a prismatic steel container with 12.7 mm (0.5 in.) thick walls, and inner dimensions of 584 mm x 584 mm x 381 mm (23 in. x 23 in. x 15 in.), Fig. 4.1. The soil sample compacted in the container was also sufficiently large to extract three cylindrical specimens: two for resilient modulus (M_r) , bender element, and strength testing, and one for soil water retention curve (SWRC) and strength tests conducted at the University of Minnesota Dept. of Soil, Water, and Climate.

The selection of a prismatic container rather than cylindrical was motivated by undesirable reflection of waves induced by the GeoGauge and PVD devices. It is well known [25]

Figure 4.1: Prismatic steel container

that reflected waves in a cylindrical container tend to concentrate in the central region - the walls act as a focusing boundary - and this may affect measurements. In addition, PVD verification tests were conducted to justify that the dimensions of the steel container were sufficient to minimize the effect of wall reflection.

4.2 Verification Tests

One type of soil, Quikrete Sand No.1113 manufactured by the Quikrete Company (Atlanta, Georgia), was used in the verification tests. The results of Grain Size Analysis, ASTM D422 (Appendix A.1), are shown in Fig. 4.2 as the grain size distribution curve. Table 4.1 shows the corresponding gradation parameters; D_{50} is the mean diameter, C_u is the uniformity coefficient, and C_c is the coefficient of gradation. According to AASHTO Classification System, the tested soil is classified as A-1-b material. The maximum and minimum mass

Figure 4.2: Grain size distribution of Quikrete Sand No.1113

Parameters	D ₅₀ [mm]	Cu [-]	C _C [-]	γ _{min(d)} [kN/m ³] [pcf]	γ _{max(d)} [kN/m ³] [pcf]	ρ _{min} [kg/m ³]	ρ _{max} [kg/m ³]
Quikrete Sand No. 1113	0.5	2.14	0.88	15.1 100	17.8 112	1622	1816

Table 4.1: Gradation parameters of tested soils

densities and dry unit weights of the Quikrete Sand No.1113 were determined from tests following ASTM Test Designation D 4253-00 and D 4254-00 (Appendix A.1). The resulting mean densities and unit weights are shown in Table 4.1.

The verification tests on Quikrete Sand No.1113 were conducted in two prismatic containers made of 25.4 mm (1 in.) thick plywood with outer reinforcement: a) small, and b) large (Fig. 4.3 and Table 4.2). The containers were filled with Quikrete Sand No.1113

Figure 4.3: Prismatic plywood containers a) small, and b) large

	Width	Length	Depth
Container	[m]	[m]	[m]
	[in.]	[in.]	[in.]
a 11	0.34	0.42	0.3
Small	13.4	16.5	11.8
- -	1.22	1.52	0.51
Large	48.0	59.8	20.1

Table 4.2: Inner dimensions for sand containers

to predetermined heights by air-pluviation. This technique ensured uniform relative density $D_r \approx 90\%$. The raining device consisted of a plastic bucket with a flexible hose of inner diameter d = 26 mm (1.02 in.) attached to the bottom of the bucket (Fig. 4.4). The lower opening of the hose was controlled by a washer whose size was selected from trial tests (Appendix A.2). The opening diameter of 6.3 mm (0.25 in.) and the raining height 787 mm

(31 in.) were selected. The pluviation height was adjusted after filling each 51 mm (2 in.) layer. During the pluviation, the lower end of the flexible hose was moved to obtain a flat, uniform layer. Eight hours were required to fill the small container up to 262 mm (10.3 in.) height and significantly more for the large container. During this operation, the total weight of material placed was carefully tracked. The resultant density of the sand was calculated from known weight and volume of the sand. The PVD tests were performed by placing the

Figure 4.4: Pluviation setup

circular loading plate of the device directly on the sand surface. The sensors attached to the loading plate measured the force and acceleration in the time domain. With reference to Eqn. 3.10, the vertical dynamic force applied to the loading plate was taken as the input to the system, whereas the vertical acceleration and resulting force at the soil foundation interface was taken as an output.

To investigate the effect of contact pressure q, the static pre-load exerted by the moving armature of the device was varied. As the armature is connected to the body of the device by a set of internal flexures, the magnitude of the downward force on the sand was adjusted by changing the distance between the device's body and the sand. The magnitude of the average static pressure was determined at the end of each test from the load cell readings while lifting up (unloading) the device from the sand surface. To assess the influence of the walls, the location of the device was varied, Fig. 4.5. The experimental data were fitted to

Figure 4.5: Location of the center of the loading plate in the small container

the theoretical solution (Eqn. 3.26) following the methodology described in Section 3.2. In the computations, the Poisson's ratio v = 0.25 was selected [36]. The resulting values of the shear modulus G for an equivalent linear elastic material are shown in Fig. 4.6 as a function of contact pressure q (Appendix A.3). It is noted that the computed values of the equivalent shear modulus G were practically independent of the location of the loading plate on the surface of the sand in the container. This implies insignificant influence of the boundaries of the containers on the values of G. The results shown in Fig. 4.6 can be approximated by

Figure 4.6: Equivalent shear modulus vs. average contact pressure

the expression

$$G = G_0 \frac{q}{q'}^{0.58} \tag{4.1}$$

where q is in kPa, q' = 1 kPa is the reference pressure, and $G_o = 4.23$ MPa. In the tests conducted on Silica Sand by Guzina [18], a similar relationship between the equivalent shear modulus and average contact pressure with n = 0.5 was obtained. As shown in Fig. 4.7, the difference in data fit for Quikrete Sand assuming n = 0.58 and n = 0.5 is small.

Figure 4.7: Equivalent shear modulus vs. average contact pressure

4.3 Fine-Grained Soils

4.3.1 Soil Description

Four fine-grained soils were supplied by the Minnesota Department of Transportation (Mn/DOT). These soils were selected to represent the range of fine-grained soils that would be classified as "fine-grained subgrade soils." The soils were given names for ease of use: A, B, C and D. Mn/DOT had performed gradations and standard Proctor compaction tests for these samples; the data are included in Appendix B. Descriptions of each soil and their target unit weight and moisture contents are shown in Table 4.3. Fig. 4.8 illustrates the target unit weight relations to the maximum dry unit weight.

Nama	Mn Road	Duluth	Red Wing	Red Lake Falls
Name	Soil A	Soil B	Soil C	Soil D
Average Std. Proctor Dry Unit Weight	106 lb/ft3	90 lb/ft ³	112 lb/ft3	103 lb/ft ³
Average Opt. Moisture Content	15%	27%	13%	18%
Average Liquid Limit (%)	28.2	84.6	N/A	38.1
Average Plastic Limit (%)	16.9	32.7	N/A	21.4
Average % Silt	45.7	19.0	81.4	65.4
Average % Clay	13.5	77.0	5.2	25.8
Average R-Value	16.5	10.9	53.8	21.3
Mn/DOT Textural Class.	L	С	Si	SiCL
AASHTO Group	A-4, A-6	A-7-6	A-4	A-4, A-7-6
98% F	Proctor Dry	Unit Weigh	nt	
100% Opt. Moisture Content	15%	27%	13%	18%
80% Opt. Moisture Content	12%	22%	10%	14%
60% Opt. Moisture Content	9%*	16%	8%	11%
103%	Proctor Dry	Unit Weig	ht	N
90% Opt. Moisture Content	13.5%	24%	12%	16%
75% Opt. Moisture Content	11%	19.5%	9.5%	13%
60% Opt. Moisture Content	9%	16%	8%	11%

Table 4.3: Soil descriptions

* Sample A, 7.5% target moisture content = $50\% w_{\text{opt}}$

Figure 4.8: Schematic of moisture content and dry unit weight selection (Table 4.3)

4.3.2 Preparation of Soil Samples

The amount of soil required for preparing prismatic samples in the steel container was determined from the soil's dry unit weight and the moisture content necessary to achieve a target unit weight. Typically, 160 to 180 kg (350 to 400 lb) of soil was broken down in order to dry evenly in an oven for 24 hours. To prevent the soil from collecting excess moisture from the air, the dried soil was stored in sealed plastic buckets. The dry soils were crushed and pulverized. 3 kg (6.6 lb) of soil, and from 100 ml (3.4 oz) to 400 ml (13.6 oz) of water depending on the target moisture content, were mixed in a blender (Fig. 4.9). After the mixing process, the soil was stored in sealed plastic buckets. The buckets were placed in a humidity controlled room for at least 24 hours to temper. Moisture samples were taken at this time in random places within the buckets as shown in Fig. 4.10. After this period, adjustments to the moisture content were made if needed. Approximately 55 kg (120 lb) of tempered soil was placed in the steel container resting on the base of the MTS 810 load frame,

Figure 4.9: Mixing blender

Figure 4.10: Soil can ister with approximately 90 kg (200 lb) of soil ${\rm D}$

with a sheepsfoot plate fixed to the crosshead (Fig. 4.11a). The sheepsfoot plate comprised of 41 protrusions with dimensions $38.1 \ge 50.8 \ge 50.8 \text{ mm} (1.5 \ge 2 \ge 2 \text{ in.})$ corresponding to a 0.106m^2 (164in.²) loading area, Fig. 4.11b. The soil was first slightly pre-compacted with a) b)

Figure 4.11: a) MTS load frame b) sheepsfoot plate

a hand-held mass to obtain a flat surface. Next, the steel container was elevated against the sheepsfoot plate to compact the soil to a known height in order to achieve a predetermined unit weight as specified in Table 4.3.1 and Fig. 4.12. This process was repeated four times per lift with a repositioned sheepsfoot plate to compact the entire surface of the soil (Fig. 4.13).

Two more soil lifts were placed and compacted in the steel container to obtain a desired final thickness of the soil. Between each lift, the surface of the soil was scarified to assure adequate bonding between each lift. After the final soil lift had been compacted, hand tools were used to shave and flatten the surface to ensure proper surface for testing with the portable field devices. For each of the four soils tested, six samples were compacted

Figure 4.12: Compaction process

Figure 4.13: Soil D surface after four presses

and used for testing (Table 4.4). The additional samples for soils A and B were used as trial samples and discarded before testing. The detailed procedure for fine-grained sample preparation in the steel container is included in Appendix C.

a)

Figure 4.14: a) & b) Soil D prepared surfaces

b)

Table 4.4: Number of compacted soil samples in steel container

Soil	Compacted Samples			
А	7			
В	7			
С	6			
D	6			

4.4 Tests in Steel Container

Seven different field-type tests were conducted on the compacted fine-grained soils in the steel container. The field-type devices were described in Chapter 2 and detailed procedures regarding their operation can be found in Appendix E. The tests were performed in the following order: Percometer, GeoGauge, Portable Vibratory Deflectometer, modified LWD, GeoGauge with a layer of wet sand (for soil D), Standard LWD, and Dynamic Cone Penetrometer. The tests were run in the specified locations, as shown in Fig. 4.15. Two testing locations were 127 mm (5 in.) from the sides and one testing location was centered in the steel container. However, the DCP is a destructive test and was conducted at the distance of 146 mm (5.7 in.) away from two corners of the steel container. Table 4.5 shows the matrix of tests conducted in the steel container. After the first Percometer test, the device was sent back to Mn/DOT for calibration and returned for testing soils B, C, and D. The PVD was under repair for soil A and one trial on soil C. The modified LWD was implemented midway through research due to limited resources, and the PRIMA 100 was returned to Mn/DOT before the last two steel containers were compacted. The GeoGauge was tested with sand for soil D after a meeting with Humboldt representatives on February 16, 2005.

Figure 4.15: Testing locations

Prismatic Sample	Perco- meter	Geo- Gauge	PVD	Mod. LWD	Geo- Gauge with sand	PRIMA 100	DCP
A_13.5_105	N/A	x	N/A	N/A	N/A	x	x
A_10.5_105	N/A	x	N/A	N/A	N/A	x	x
A_7.5_105	N/A	x	N/A	N/A	N/A	x	x
A_15_100	x	х	N/A	N/A	N/A	x	x
A_12_100	N/A	x	N/A	N/A	N/A	x	x
A_9_100	N/A	x	N/A	N/A	N/A	X	x
B_24_103	x	x	x	x	N/A	N/A	x
B_19.5_103	x	x	x	x	N/A	x	x
B_16_103	x	x	x	N/A	N/A	x	x
B_27_98	x	x	x	x	N/A	x	x
B_22_98	x	x	x	x	N/A	x	x
B_16_98	X	x	x	N/A	N/A	x	x
C_12_103	x	x	N/A	x	N/A	x	x
C_9.5_103	x	x	x	x	N/A	x	x
C_8_103	x	x	x	x	N/A	x	x
C_13_98	x	x	x	x	N/A	N/A	x
C_10_98	x	x	x	x	N/A	x	x
C_8_98	x	x	x	x	N/A	x	x
D_16_103	x	x	x	x	x	x	x
D_13_103	x	x	x	x	x	x	x
D_11_103	x	x	x	x	x	x	x
D_18_98	x	x	x	x	x	x	x
D_14_98	x	x	x	N/A	x	x	x
D_11_98	X	х	x	X	X	X	x

Table 4.5: Matrix of tests conducted in the steel container

"X" indicates sample was tested

 $"\mathrm{N/A"}$ indicates sample was not tested

4.5 Tests on Cylindrical Specimens

4.5.1 Extraction and Storage of Cylindrical Specimens

Cylindrical thin wall specimens for resilient modulus, bender element, and strength testing were collected the steel container immediately after completion of the field-type testing [1]. These locations are shown in Fig. 4.16. This was done by first replacing the sheepsfoot plate

Figure 4.16: Cylindrical specimen locations within soil container

in the 810 MTS load frame by three 101.6 mm (4 in.) in diameter, 3.2 mm (0.13 in.) in thickness, and 381 mm (15 in.) in length stainless steel tubes attached to the crosshead. Next, the steel container was raised against the thin-walled tubes arranged in a triangle at a constant rate of 1 mm/s (0.04 in./s), Fig. 4.17a. After the steel tubes were pushed into the soil, they were detached from the cross-head, and the steel container with the compacted soil was placed on the floor. The three tubes were then extracted by excavation (Fig. 4.17b).

After the steel tubes were extracted, four moisture content specimens of approximately 80 g each were taken from the excavated soil. Cylindrical soil specimens were extracted from

b)

a)

Figure 4.17: a) Stainless tubes and b) specimen extraction

the stainless steel tubes with a fabricated extruder (Fig. 4.18). The extruder consisted of two hydraulic actuators connected to a hydraulic piston. The hydraulic piston was mounted vertically to prevent lateral stressing of the specimen induced by gravity after Soil A sample completion. The stainless tube was connected to a collar on the hydraulic piston, and the soil was pushed out by pumping the hydraulic actuator by hand. To prevent moisture loss, the soil specimens were immediately covered with plastic wrap and placed inside sealed plastic containers. The plastic containers with soil specimens were placed in a humidity-controlled room until they were laboratory tested. A detailed procedure for extraction and storage of cylindrical specimens is given in Appendix F.

The soil was compacted into the steel container and tested with field devices on a prepared surface the same day. Immediately afterwards, the cylindrical specimens were extracted from the container for laboratory testing. Table 4.6 shows the date the soil was compacted into the steel container, field-type device tested, and laboratory tested. This may have effected

Figure 4.18: Soil extruder

the results, and the aging effects need investigation.

4.5.2 Specimen Preparation for Testing

Upon opening the sealed containers stored in the humidity-controlled room, the cylindrical specimens were carefully removed and plastic wrap discarded. Next, each specimen was trimmed with a carbide blade to a length of approximately 203 mm (8 in.). After trimming, a carpenter's square was used to check if the cylindrical soil specimen needed to be trimmed again. Next, the length and mass of the specimen was recorded. The trimmed specimens were placed in between the two aluminum platens seen in Fig. 4.19. These two platens housed the bender elements (Section 2.1.2). The thin metal shims of the bender elements could not be pushed into the soil specimens A and D with lower moisture contents, so the soil was notched out of the trimmed ends. The notches were just large enough for a tight fit to allow bender elements to excite the specimen. If the notch size was larger than the bender element shim, petroleum jelly was used to fill the notch to create a coupling between the soil specimen and the bender element shim. After the soil specimen was placed on the lower platen, two rubber membranes were slipped over the top to encase the specimen, and

Table 4.6: Dates soil was compacted in the steel container, field-type device tested, and laboratory tested

Spec Name	Date Sample Created	Date Sample Tested	Specimen Testing Date
A 1 13.5 105	6/21/2004	6/21/2004	7/8/2004
A 2 13.5 105	6/21/2004	6/21/2004	11/20/2004
A 1 10.5 105	7/12/2004	7/12/2004	11/21/2004
A 2 10.5 105	7/12/2004	7/12/2004	11/21/2004
A 1 7.5 105	7/28/2004	7/28/2004	11/28/2004
A 2 7.5 105	7/28/2004	7/28/2004	11/28/2004
A 3 15 100	6/1/2004	6/1/2004	11/20/2004
A 4 15 100	6/1/2004	6/1/2004	11/20/2004
A 1 12 100	6/25/2004	6/25/2004	11/21/2004
A 2 12 100	6/25/2004	6/25/2004	11/21/2004
A 1 9 100	7/20/2004	7/20/2004	11/22/2004
A 2 9 100	7/20/2004	7/20/2004	11/28/2004
B 1 24 103	1/27/2005	1/27/2005	10/11/2005
B 2 24 103	1/27/2005	1/27/2005	10/12/2005
B 1 19.5 103	4/11/2005	4/11/2005	10/12/2005
B 2 19.5 103	4/11/2005	4/11/2005	10/12/2005
B 1 16 103	4/29/2005	4/29/2005	10/11/2005
B 2 16 103	4/29/2005	4/29/2005	10/11/2005
B 1 27 98	1/27/2005	1/27/2005	10/10/2005
B 2 27 98	1/27/2005	1/27/2005	10/10/2005
B 1 22 98	7/24/2005	7/24/2005	10/12/2005
B 2 22 98	7/24/2005	7/24/2005	10/12/2005
B 1 16 98	7/16/2005	7/16/2005	7/16/2005
B 2 16 98	7/16/2005	7/16/2005	7/16/2005
C 1 12 103	3/4/2005	3/4/2005	6/21/2005
C 2 12 103	3/4/2005	3/4/2005	6/22/2005
C 1 9.5 103	4/15/2005	4/15/2005	6/28/2005
C 2 9.5 103	4/15/2005	4/15/2005	6/28/2005
C 1 8 103	4/1/2005	4/1/2005	6/23/2005
C 2 8 103	4/1/2005	4/1/2005	6/28/2005
C 1 13 98	2/3/2005	2/3/2005	6/20/2005
C 2 13 98	2/3/2005	2/3/2005	6/20/2005
C 1 10 98	2/11/2005	2/11/2005	6/23/2005
C 2 10 98	2/11/2005	2/11/2005	6/23/2005
C 1 8 98	7/21/2005	7/21/2005	8/19/2005
C 2 8 98	7/21/2005	7/21/2005	8/23/2005
D 1 16 103	8/3/2005	8/3/2005	8/22/2005
D 2 16 103	8/3/2005	8/3/2005	8/22/2005
D 1 13 103	9/4/2005	9/4/2005	10/9/2005
D 2 13 103	9/1/2005	9/1/2005	10/9/2005
D 1 11 103	8/27/2005	8/27/2005	10/9/2005
D 2 11 103	8/27/2005	8/27/2005	10/9/2005
D 1 18 98	9/14/2005	9/14/2005	10/8/2005
D 2 18 98	9/14/2005	9/14/2005	10/8/2005
D 1 14 98	7/18/2005	7/18/2005	8/17/2005
D 2 14 98	7/18/2005	7/18/2005	8/17/2005
D 1 11 98	8/23/2005	8/23/2005	9/26/2005
D_2_11_98	8/25/2005	8/25/2005	9/28/2005

Figure 4.19: Lower platen housing bender element

the upper platen was placed. Two rubber 102 mm (4 in.) in diameter O-rings were placed over the membranes in machined grooves in each platen as shown in Fig. 4.20a.

The axial displacements of the cylindrical specimens were measured by means of Linear Variable Differential Transformers (LVDTs). Two sets of LVDTs were used: 1) long, 1.27 mm/volt (0.05 in./volt) in sensitivity, and 2) short, 0.6 mm/volt (0.025 in./volt) in sensitivity. Upon analyzing the results of tests on soil A with the long LVDTs, it became evident that in some tests the signal-to-noise level was large and the established test criterion for the signal-to-noise ratio (SNR) was not met. Therefore, more sensitive LVDTs were used in all tests on soils B, C, and D. Calibration information regarding the LVDTs is in Appendix D.1, and load cell calibration is in Appendix D.2. Parallel analysis and testing for soil A was not conducted due to load frame availability and time restrictions.

Three LVDTs were mounted in an aluminum collar-type fixture (Fig. 4.20b) placed over the rubber membranes. The LVDTs were positioned at equal distances around the specimen.

b)

a)

Figure 4.20: a) Encased soil specimen and b) LVDTs collar-type holder

The fixture was attached to the specimen by four 19 mm (0.75 in.) in diameter rubber Orings. A second collar-type fixture with columns as contacts for the LVDT spring-loaded tips was placed 102 mm (4 in.) below the upper fixture. Spacers were used to hold both collars 102 mm (4 in.) apart while attaching to the specimen to maintain the gage length. The spacers were removed once the collars were in place, and this allowed the two collars to move independently of each other.

One 102 mm (4 in.) aluminum spacer was placed on the triaxial apparatus base. The specimen enclosed by two platens was placed on the aluminum spacer, and the LVDTs, load cell extension cable and bender element wiring were connected to their corresponding electrical feed-throughs in the triaxial apparatus base. The triaxial apparatus base was set on a steel plate at the base of an MTS 858 table top, servo-hydraulic load frame with an actuator mounted in the crosshead.

After placing the triaxial apparatus base in the load frame (Fig. 4.22), a ball bearing was placed on the top specimen platen, and a plexiglass confining chamber was slid over the specimen (Fig. 4.21). Next, the load cell was screwed into a piston passing through the upper platen of the triaxial apparatus, and its extension cable was connected to the load cell. The upper triaxial apparatus platen was attached to the three steel columns protruding from the base of the apparatus. Care was exercised to align the ball bearing with the load cell. The LVDTs wiring and bender element wiring were connected to their respective signal conditioners. A detailed procedure for specimen preparation for testing is given in Appendix G.

Figure 4.21: Specimen in triaxial chamber

Figure 4.22: Resilient modulus, bender element, and triaxial testing lab

4.5.3 Resilient Modulus Testing

The resilient modulus tests were conducted according to the NCHRP 1-28A protocol. Lab-View software recorded axial load and three LVDT displacements at a rate of 430 points per second due to an increased buffer size (as opposed to 400 points per second recommended by Mn/DOT). The required sequence of deviatoric stresses and the number of cycles were programmed into the MTS TestWare software. The confining pressure was controlled manually with a Humboldt Flexpanel I pressure regulator (Fig. 4.23). The operation of the MTS

Figure 4.23: Humboldt Flexpanel I pressure regulator

858 load frame was controlled by the MTS TestStar hardware (console and computer) and powered by a hydraulic pump. Table 4.7 shows the sequence of confining pressure, contact stress, cyclic stress, maximum (total) stress and the number of cycles applied. Undesirable upper specimen platen rotation and the resulting non-symmetrical deformation of the specimen were assessed by stopping the conditioning sequence at 100 cycles and analyzing LVDT displacement histories. Figures 4.24 and 4.25 show the response of the specimen without and with upper platen rotation, respectively. In case of non-homogeneous deformation, the

Procedure	II (Cohesive	Subgrades	s)						
Sequence	uence Confining Pressure		Contact Stress		Cyclic Stress		Maximum	Nrep	
kPa psi	psi	kPa	psi	kPa	psi	kPa	psi	12023-00404	
0	27.6	4.0	5.5	0.8	48.3	7.0	53.8	7.8	1000
1	55.2	8.0	11.0	1.6	27.6	4.0	38.6	5.6	100
2	41.4	6.0	8.3	1.2	27.6	4.0	35.9	5.2	100
3	27.6	4.0	5.5	0.8	27.6	4.0	33.1	4.8	100
4	13.8	2.0	2.8	0.4	27.6	4.0	30.4	4.4	100
5	55.2	8,0	11.0	1.6	48.3	7.0	59.3	8.6	100
6	41.4	6.0	8.3	1.2	48.3	7.0	56,6	8.2	100
7	27.6	4.0	5.5	0.8	48.3	7.0	53.8	7.8	100
8	13.8	2.0	2.8	0.4	48.3	7.0	51.1	7.4	100
9	55.2	8.0	11.0	1.6	69.0	10.0	80.0	11.6	100
10	41.4	6.0	8.3	1.2	69.0	10.0	77.3	11.2	100
11	27.6	4.0	5.5	0.8	69.0	10.0	74.5	10.8	100
12	13.8	2.0	2.8	0.4	69.0	10.0	71.8	10.4	100
13	55.2	8.0	11.0	1.6	96.6	14.0	107.6	15.6	100
14	41.4	6.0	8.3	1.2	96.6	14.0	104.9	15.2	100
15	27.6	4.0	5.5	0.8	96.6	14.0	102.1	14.8	100
16	13.8	2.0	2.8	0.4	96.6	14.0	99.4	14.4	100

Table 4.7: Resilient modulus test sequence [45]

upper plate of the triaxial apparatus was removed, the specimen platen was realigned, and the test resumed.

Filenames created in TestWare were named using the scheme {soil type}_{specimen number}. For example, A_1_15_100_7, where the letter defines the soil type, the first number is the specimen number, the second number is the target moisture content, the third number is the target percent Proctor unit weight of the specimen, and the last number refers to the step in the sequence. As seen in Table 4.8, there were 17 steps in total for a sequence and therefore 17 appropriately named file for each test. Table 4.8 depicts the matrix of the resilient modulus tests conducted. Specimens C_2_9.5_103 and C_1_98_98 had broken into two equal lengths during sampling and the two pieces were put back together and tested. Samples C_2_8_103 and C_2_10_98 also broke during sampling resulting in two different length specimens; the larger specimen was tested. A detailed procedure for resilient modulus testing is in Appendix G.

Figure 4.24: LVDT response without upper platen rotation

Figure 4.25: LVDT response with upper platen rotation

Table 4.8	3:	Resilient	mo	dulus	test	matrix
F						

Specimen Name	M _r Test
A 1 13 5 105	
A 2 13 5 105	X
A 1 10 5 105	Y
A 2 10 5 105	Y
A 1 7 5 105	Y Y
A 2 7 5 105	X Y
A 2 15 100	v v
A 4 15 100	Y Y
A 1 12 100	x V
A 2 12 100	v v
A 1 0 100	A V
A 2 0 100	A V
P2 1 24 102	A V
D2_1_24_103	A V
D2 2 24 105	A V
B2_1_19.5_105	A V
BZ Z 19.5 105	A V
B2_1_10_103 D2_2_16_102	A V
B2 2 10 103	A
B <u>Z 1 Z/ 98</u> DO 0 07 09	A
BZ Z Z/ 98	A V
BZ 1 ZZ 98	A V
BZ Z ZZ 98	X
B 1 10 98	A V
B <u>2 10 98</u>	X.
	X
	Ă.
C = 1 = 9.5 = 103	A
	A V
	X
	X
C 1 13 98	X
C <u>2 13 98</u>	X
C_1_10_98	X
C_2_10_98	X
C_1_8_98	X
C 2 8 98	X
D_1_16_103	X
D_2_16_103	X
D_1_13_103	X
D 2 13 103	X
D 1 11 103	X
D 2 11 103	X
D 1 18 98	X
D 2 18 98	X
D_1_14_98	X
D_2_14_98	X
D 1 11 98	X
D 2 11 98	X

"X" indicates specimen was tested

4.5.4 Bender Element Testing

After completion of the resilient modulus test, the actuator was raised approximately 25 mm (1 in.), and the hydraulic pump for the loading frame was turned off to eliminate interference with the bender element test. Table 4.9 refers to the information input into the GDS software prior to testing. The P-wave testing and the S-wave testing were performed

Specimen Length	[mm]
Sample Frequency	100000 sec ⁻¹
Sampling Time	10 msec
Wave Form	Sinusiodal
Period	0.8 msec
Amplitude	14
Stacking	Automatic
Trigger Type	S/W
Tests per Stack	50
Delay Between Tests	0.1

Table 4.9: GDS software input parameters

separately. This required switching the cables connecting the bender elements to the signal generator/acquisition controller. Each test was conducted manually at adjusted confining pressure levels of 55.2, 41.4, 27.6 and 13.8 kPa (8, 6, 4 and 2 psi) with no vertical contact stress. The GDS software automatically generated filenames for each test. Table 4.10 shows the bender element test matrix. A detailed procedure for bender element testing is in Appendix H.

Specimen Name	P-wave [8 psi]	P-wave [6 psi]	P-wave [4 psi]	P-wave [2 psi]	S-wave [8 psi]	S-wave [6 psi]	S-wave [4 psi]	S-wave [2 psi]
A 1 13.5 105		2	·		а. С	60 - Os		
A 2 13.5 105	X	X	X	X	X	X	X	X
A 1 10.5 105	X	X	X	X	X	X	X	X
A 2 10 5 105	X	X	X	X	X	X	X	X
A 1 7 5 105	X	X	X	X	X	X	X	X
A 2 7 5 105	X	X	X	X	X	X	X	X
A 3 15 100							2077	
A 4 15 100		-	X	X			X	X
A 1 12 100	-	-	X	X	1	à à	X	X
A 2 12 100	X	X	X	X	X	X	X	X
A 1 9 100	x i	X	X		X	X	X	X
A 2 9 100	X	X	x	x	X	X	X	x
B2 1 24 103	x	x	X	x	X	X	X	X
B2 2 24 103	x X	X	X	X	X	X	X	X
B2 1 19 5 103	X	X	X	X	X	X	X	X
B2 2 19 5 103	X	X	X	X	X	X	X	X
B2 1 16 103	Y	Y	Y	Y	Y	Y	Y	Ŷ
B2 2 16 103	Y X	Y	Y	Y	Y	Y	Y	Y
B2 1 27 98	Y	Y	Y	Y	Y	Y	X	Y
B2 2 27 98	Ŷ	X	X	X	X	X	X	Y
B2 1 22 08	Y	Y	Y	Y	Y	Y	Y	Y
B2 2 22 98	X	X	X	X	X	X	X	X
B 1 16 98	X	X	X	X	X	X	X	X
B 2 16 98	X	X	X	X	X	X	X	X
C = 1 = 12 = 103	X	X	X	X	X	X	X	X
C 2 12 103	X X	X	X	X	X	X	X	X
C 1 9 5 103			**					
C 2 9 5 103	-	-	-	1		20 <u>0</u> 0		-
C 1 8 103	X	x	x	x	X	x	X	X
C 2 8 103								X
C 1 13 98	x	X	X	x	X	X	x	X
C 2 13 98						<u>0. 170 0</u>	- 200	
C 1 10 98	X	X	X	X	X	X	X	X
C 2 10 98	T X	X	X	X	X	X	X	X
C 1 8 98					0.550		0.845	
C 2 8 98	X	X	X	X	X	x	X	X
D 1 16 103	X X	X	X	X	X	X	X	X
D 2 16 103	T X	x	X	X	X	X	X	X
D 1 13 103	x I	X	X	x	X	X	X	
D 2 13 103	x X	X	X	X	X	X	X	X
D 1 11 103	X	X	X	X	X	X	X	X
D 2 11 103	X	X	X	X	X	X	X	X
D 1 18 98	X	X	X	X	X	X	X	X
D 2 18 98	X	X	X	X	X	X	X	1000
D 1 14 98	X	X	X	X	X	X	X	X
D 2 14 98	X	X	X	X	X	X	X	X
D 1 11 98	X	X	X	X	X	X	X	X
D 2 11 98	X	X	X	X	X	X	X	X

Table 4.10: Bender element test matrix

"X" indicates specimen was tested

4.5.5 Strength Testing

The triaxial compression tests to determine soil strength were performed after completion of the bender element tests. The confining pressure within the triaxial chamber was released, the apparatus upper platen and the chamber removed, and the collar-type fixtures holding the LVDTs were carefully detached from the specimen. Next, the triaxial apparatus was reassembled and placed in the MTS 858 load frame. Care was exercised in aligning the cylindrical specimen with the actuator.

Twelve cylindrical specimens were tested following the M_r and bender element procedures for each type of soil. However, the actual number of shear strength tests for soils A and B were eight and ten because some specimens fractured during removal of the LVDTs and were discarded. The specimens were tested with the stroke rate of 0.76 mm/sec (0.03 in./sec), and two confining pressures: 27.6 kPa (4 psi) and 55.2 kPa (8 psi) (Appendix I. One 80 g moisture content was sampled from the shear plane or specimen crush zone. Cylindrical specimens were named using the scheme {soil type}-{specimen number}-{% Target moisture}-{% target Proctor}-{confinement}. For example, A_1_15_100_shear8psi, where the letter defines the soil type, the first number is the specimen number, the second number is the target moisture content, the third number is the target percent Proctor unit weight of the specimen, and the phrase indicated a shear test performed at 4 or 8 psi. Table 4.11 shows the strength testing matrix. A detailed procedure for strength testing is in Appendix I.

Specimen Name	4 psi Confine- ment	8 psi Confine- ment
A 1 13.5 105	×	
A 2 13.5 105		X
A 1 10.5 105	X	60
A 2 10.5 105	5	X
A 1 7.5 105	8	
A 2 7 5 105		
A 3 15 100	X	
A 4 15 100		X
A 1 12 100	x	
A 2 12 100		Y
A 1 9 100	Y	
A 2 9 100	17	
B2 1 24 102		y
B2 1 24 105	0	x v
$D_2 \ 2 \ 24 \ 103$	v	~
D2_1_19.J_103	~	v
B2_2_19.5_105		A
B2_1_10_103		A
B2_2_16_103		17
B2_1_27_98		X
B2_2_27_98	X	
B2_1_22_98		X
B2_2_22_98	X	
B_1_16_98		X
B_2_16_98		
C_1_12_103		X
C_2_12_103	X	
C_1_9.5_103		X
C_2_9.5_103	X	
C_1_8_103		X
C_2_8_103	X	
C_1_13_98		X
C_2_13_98	X	5 399
C_1_10_98		X
C_2_10_98	X	
C 1 8 98		Х
C 2 8 98	X	1
D 1 16 103		X
D 2 16 103	X	
D 1 13 103		X
D 2 13 103	X	
D 1 11 103		X
D 2 11 103	X	
D 1 18 98		X
D 2 18 98	X	
D 1 14 98		X
D 2 14 98	x	
D 1 11 98		x
D 2 11 98	X	
	**	

Table 4.11: Shear strength test matrix [45]

"X" indicates specimen was tested

Chapter 5 Experimental Data and Comparison

In what follows, the data obtained from the laboratory and field-type testing programs are tabulated and discussed. The prismatic soil volumes compacted in a steel container are designated as *prismatic samples* while the elements extracted from the prismatic samples are called *cylindrical specimens*. Chapter 5 contains four major sections: 5.1 lists the compaction stresses applied to obtain the required density at the given moisture content; 5.2 describes the moisture and density characteristics of compacted soil volumes and extruded cylindrical specimens; 5.3 deals with the laboratory tests, while Section 5.4 highlights the results obtained from field-type testing.

5.1 Compaction Stresses

Prismatic samples were named using the scheme {soil type}_{% target moisture}_{% target Proctor}. For example, A_13.5_105 designates soil A with 13.5% target moisture content, and 105% target standard Proctor density.

Each prismatic sample was compacted in the steel container described in Section 4.3.2. The soil compaction load histories for each lift in the soil containers were recorded. Stresses were calculated from the maximum load divided by the nominal area of the compaction plate. Figures 5.1-5.4 show the maximum compaction stress applied to each lift of soil. The conditions are identified above each bar by the target Proctor percentage and target moisture content percentage. If a second or third lift compaction record appears to be missing in a bar (e.g. Fig. 5.2), then the maximum force of that lift was less than the previous lift. For completeness, a table of maximum compaction stresses is listed in Appendix M.

Figures 5.1-5.4 illustrate the significant compaction stresses needed to achieve the target densities above 100% Proctor. For example, the compaction stress for soil A almost doubled when compacting the soil at 9% target moisture and 100% target Proctor to 7.5% target moisture and 105% target Proctor.

Figure 5.1: Maximum compaction stress applied to each lift for Soil A

Figure 5.2: Maximum compaction stress applied to each lift for Soil B

Figure 5.3: Maximum compaction stress applied to each lift for Soil C

Figure 5.4: Maximum compaction stress applied to each lift for Soil D

5.2 Moisture Contents and Unit Weights

The following list summarizes the notation used in Tables 5.1-5.3.

$$w_{\text{targ}}^{\text{box}} = \text{target moisture content for prismatic (box) sample [%]}$$

 $w_{\mathbf{targ}}^{\mathbf{cyl}} =$ target moisture content for cylindrical specimen [%]

 $w_{\rm act}^{\rm box}$ = average (actual) moisture content of the soil compacted into prismatic sample [%]

 w_{act}^{cyl} = average (actual) moisture content of the cylindrical specimen [%]

$$\Delta w^{\mathbf{box}} = \frac{w_{\mathrm{act}}^{\mathrm{box}} - w_{\mathrm{targ}}^{\mathrm{box}}}{w_{\mathrm{targ}}^{\mathrm{box}}} \times 100 \quad [\%]$$

$$\Delta w^{\mathbf{cyl}} = \frac{w_{\mathrm{act}}^{\mathrm{cyl}} - w_{\mathrm{targ}}^{\mathrm{cyl}}}{w_{\mathrm{targ}}^{\mathrm{cyl}}} \times 100 \quad [\%]$$

$$\Delta w = \frac{w_{\mathrm{act}}^{\mathrm{cyl}} - w_{\mathrm{act}}^{\mathrm{box}}}{w_{\mathrm{act}}^{\mathrm{box}}} \times 100 \quad [\%]$$

$$\pm w_{\mathrm{Box}}^{\mathrm{Cyl}} = w_{\mathrm{Act}}^{\mathrm{Cyl}} - w_{\mathrm{Act}}^{\mathrm{Box}}$$

$$\pm w_{\mathrm{box}} = w_{\mathrm{targ}}^{\mathrm{cyl}} - w_{\mathrm{act}}^{\mathrm{box}}$$

$$\pm w_{\mathrm{cyl}} = w_{\mathrm{targ}}^{\mathrm{cyl}} - w_{\mathrm{act}}^{\mathrm{cyl}}$$

 $\gamma_{targ-d}^{box} = target dry unit weight of the prismatic sample [pcf]$

- $\gamma_{targ-d}^{cyl} = target dry unit weight of the cylindrical specimen [pcf]$
- γ_{act-d}^{box} = actual dry unit weight of the prismatic sample [pcf] computed by dividing its weight by (box volume ×(1 + w_{act}^{box}))
- γ_{act-d}^{cyl} = actual dry unit weight of the cylindrical specimen [pcf] computed by dividing its weight by (cylinder volume ×(1 + w_{act}^{cyl}))

 $\rho_{targ-d}^{box} = \text{target dry density of the prismatic sample } [kg/m^3]$

 $\rho^{\rm cyl}_{\rm targ-d} = {\rm target \; dry \; density \; of \; the cylindrical specimen \; [kg/m^3]}$

 ρ_{act-d}^{box} = actual dry density of the prismatic sample [kg/m³] computed by dividing its mass by (box volume ×(1 + w_{act}^{box}))

 ρ_{act-d}^{cyl} = actual dry density of the cylindrical specimen [kg/m³] computed by dividing its mass by (cylinder volume ×(1 + w_{act}^{cyl}))

$$\Delta \rho_{\mathbf{d}}^{\mathbf{box}} = \frac{\rho_{\mathrm{act-d}}^{\mathrm{box}} - \rho_{\mathrm{targ-d}}^{\mathrm{box}}}{\rho_{\mathrm{act-d}}^{\mathrm{box}}} \times 100 \quad [\%]$$

$$\Delta \rho_{\mathbf{d}}^{\mathbf{cyl}} = \frac{\rho_{\mathrm{act-d}}^{\mathrm{cyl}} - \rho_{\mathrm{targ-d}}^{\mathrm{cyl}}}{\rho_{\mathrm{act-d}}^{\mathrm{cyl}}} \times 100 \quad [\%]$$

$$\Delta \rho_{\mathbf{d}} = \frac{\rho_{\mathrm{act-d}}^{\mathrm{cyl}} - \rho_{\mathrm{act-d}}^{\mathrm{box}}}{\rho_{\mathrm{act-d}}^{\mathrm{box}}} \times 100 \quad [\%]$$
Std. Proctor = $\frac{\rho_{\mathrm{act-d}}}{\rho_{\mathrm{peak tar-d}}} \times 100 \quad [\%]$

Cyl. Diameter= actual diameter of the cylindrical specimen.

Table 5.1 presents the moisture and density characteristics of the prismatic samples. As can be seen from the table, the maximum and minimum values of Δw^{box} are respectively 17.4% and -6.2%, with the mean of 1.4%. In this study, emphasis was placed on achieving maximum uniformity within the limits of the preparation procedure. For some samples, the water and soil did not mix thoroughly resulting in minor inhomogeneities within the sample. By nature, no mixing process can result in a perfectly homogenous sample. The maximum and minimum values of $\Delta \rho^{\text{box}}$ are respectively 1.3% and -9.0%, with the mean of -3.3%. During compaction, the edges of the soil surface had to be compacted by hand. For conditions when the soil was stiff, the edges could not be compacted with hand tools to the predetermined level. In addition, as the sheepsfoot form was pressed into the soil, the soil surface would rebound such that the soil lift was not compacted to the predetermined height. As a result, the prismatic samples were slightly under-compacted with respect to the target density as implied by the negative mean value of $\Delta \rho^{\text{box}}$. Furthermore, the displacement of the load point was not measured, so the stiffness of the soil could not be estimated from the compaction process.

Prismatic Sample	${\cal W}_{ m targ}$ [%]	W act [%]	$\pm {\cal W}_{ m opt}$ [%]	∆w [%]	γ _{targ-d} [pcf]	$\gamma_{\tt act-d}$ [pcf]	ρ _{targ-d} [kg/m ³]	ρ _{act-d} [kg/m ³]	Δρ [%]	Std. Proctor [%]
A_13.5_105	13.5	14.1	0.9	4.3	111.3	109.4	1783	1752	-1.8	103.2
A_10.5_105	10.5	11.2	3.8	6.2	111.3	104.7	1783	1678	-6.3	98.8
A_7.5_105	7.5	7.7	7.4	2.0	111.3	104.2	1783	1670	-6.8	98.3
A_15_100	15.0	15.6	-0.6	3.8	106	103.6	1698	1659	-2.4	97.7
A_12_100	12.0	11.5	3.5	-4.3	106	105.2	1698	1685	-0.8	99.2
A_9_100	9.0	10.9	4.1	17.4	106	99.1	1698	1587	-7.0	93.5
B_24_103	24.0	23.6	3.4	-1.7	92.7	92.5	1485	1481	-0.3	102.7
B_19.5_103	19.5	19.2	7.8	-1.6	92.7	90.2	1485	1444	-2.8	100.2
B_16_103	16.0	17.4	9.6	8.0	92.7	93.9	1485	1505	1.3	104.4
B_27_98	27.0	26.1	0.9	-3.4	88.2	87.3	1413	1399	-1.0	97.0
B_22_98	22.0	22.0	5.0	0.0	88.2	86.6	1413	1387	-1.9	96.2
B_16_98	16.0	16.3	10.7	1.8	88.2	88.0	1413	1409	-0.3	97.7
C_12_103	12.0	11.3	1.7	-6.2	115.4	106.1	1848	1700	-8.7	94.8
C_9.5_103	9.5	9.4	3.6	-1.1	115.4	110.9	1848	1777	-4.0	99.1
C_8_103	8.0	8.4	4.6	4.8	115.4	107.7	1848	1725	-7.1	96.2
C_13_98	13.0	12.4	0.6	-4.8	109.8	100.7	1758	1613	-9.0	89.9
C_10_98	10.0	10.1	2.9	1.0	109.8	107.5	1758	1721	-2.1	95.9
C_8_98	8.0	8.4	4.6	4.8	109.8	106.4	1758	1705	-3.1	95.0
D_16_103	16	16.3	1.7	1.8	106.1	102.4	1699	1640	-3.6	99.4
D_13_103	13	13.3	4.7	2.3	106.1	105.9	1699	1697	-0.1	102.9
D_11_103	11	10.6	7.4	-3.8	106.1	104.0	1699	1665	-2.0	100.9
D_18_98	18	18.6	-0.6	3.2	100.9	100.4	1617	1609	-0.5	97.5
D_14_98	14	14.2	3.8	1.4	100.9	100.8	1617	1614	-0.2	97.8
D 11 98	11	10.7	7.3	-2.8	100.9	93.2	1617	1494	-8.3	90.5

Table 5.1: Target and actual characteristics of prismatic samples

Table 5.2 shows the moisture and density values for the cylindrical specimens. The length of the specimen varied because of difficulties in trimming.

Cylindrical Specimen	W ^{Cyl.} [%]	W ^{Cyl.} stt [%]	±W ^{Cyl.} [%]	$\Delta w^{Cyl.}$ [%]	Ler [n [i	ngth m] n.]	Dian [m [ir	ueter m] 1.]	γ ^{Cyl.} /tang [pcf]	γ ^{Cyl.} γ₃t [pcf]	$\begin{array}{c} \rho^{\rm Cyl.}_{\rm targ} \\ [\rm kg/m^3] \end{array}$	$\begin{array}{c} \rho_{\mathtt{act}}^{\mathtt{Cyl.}} \\ [\mathtt{kg/m^3}] \end{array}$	Δρ ^{Су1.} [%]	Std. Proctor [%]
A 2 13.5 105	13.5	12.4	2.6	-8.9	200	7.88	98.4	3.88	111.3	112.3	1783	1798	0.9	105.9
A 1 10.5 105	10.5	11.6	3.4	9.5	203	8.00	98.4	3.88	111.3	108.6	1783	1739	-2.5	102.4
A 2 10.5 105	10.5	11.8	3.2	11.0	203	8.00	98.4	3.88	111.3	109.2	1783	1749	-1.9	103.0
A 1 7.5 105	7.5	7.6	7.4	1.3	154	6.10	98.4	3.88	111.3	111.1	1783	1779	-0.2	104.8
A 2 7.5 105	7.5	7.4	7.7	-2.0	168	6.63	98.4	3.88	111.3	107.8	1783	1727	-3.2	101.7
A_3_15_100	15.0	15.8	-0.8	5.1	203	8.00	98.4	3.88	106.0	108.6	1698	1740	2.4	102.5
A_4_15_100	15.0	15.4	-0.4	2.6	200	7.88	98.4	3.88	106.0	111.1	1698	1780	4.6	104.8
A_1_12_100	12.0	12.4	2.6	3.2	203	8.00	98.4	3.88	106.0	107.0	1698	1714	1.0	101.0
A_2_12_100	12.0	12.2	2.8	1.6	203	8.00	98.4	3.88	106.0	107.4	1698	1720	1.3	101.3
A_1_9_100	9.0	10.7	4.3	15.9	203	8.00	98.4	3.88	106.0	102.6	1698	1643	-3.4	96.8
A_2_9_100	9.0	10.0	5.0	10.0	140	5.50	98.4	3.88	106.0	100.8	1698	1615	-5.1	95.1
B_1_24_103	24.0	22.9	4.1	-4.9	191	7.50	98.4	3.88	92.7	96.2	1485	1542	3.7	106.9
B_2_24_103	24.0	23.0	4.0	-4.4	200	7.88	98.4	3.88	92.7	95.0	1485	1521	2.4	105.5
B_1_19.5_103	19.5	18.5	8.5	-5.3	195	7.69	98.4	3.88	92.7	92.3	1485	1479	-0.4	102.6
B_2_19.5_103	19.5	18.3	8.7	-6.4	200	7.88	98.4	3.88	92.7	98.6	1485	1579	5.9	109.5
B_1_16_103	16.0	16.5	10.5	3.1	191	7.50	98.4	3.88	92.7	98.6	1485	1579	5.9	109.5
B_2_16_103	16.0	16.4	10.6	2.1	192	7.57	98.4	3.88	92.7	102.2	1485	1637	9.3	113.5
B_1_27_98	27.0	23.1	3.9	-16.9	197	7.75	98.4	3.88	88.2	93.9	1413	1504	6.1	104.3
B_2_27_98	27.0	24.0	3.0	-12.5	197	7.75	98.4	3.88	88.2	90.2	1413	1445	2.2	100.2
B_1_22_98	22.0	21.2	5.8	-3.6	196	7.70	98.4	3.88	88.2	90.2	1413	1446	2.3	100.3
B_2_22_98	22.0	21.5	5.5	-2.4	198	7.81	98.4	3.88	88.2	93.0	1413	1490	5.2	103.4
B_1_16_98	16.0	16.0	11.0	-0.2	203	8.00	98.4	3.88	88.2	87.0	1413	1393	-1.4	96.6
B_2_16_98	16.0	16.3	10.7	1.8	205	8.06	98.4	3.88	88.2	90.1	1413	1443	2.1	100.1
C_1_12_103	12.0	10.9	2.1	-10.6	200	7.88	98.4	3.88	115.4	108.1	1848	1732	-6.7	96.6
C_2_12_103	12.0	10.9	2.1	-10.6	197	7.75	98.4	3.88	115.4	107.8	1848	1726	-7.1	96.2
C_1_9.5_103	9.5	8.8	4.2	-8.3	202	7.94	98.4	3.88	115.4	109.6	1848	1756	-5.3	97.9
C_2_9.5_103	9.5	9.1	3.9	-4.5	202	7.94	98.4	3.88	115.4	95.5	1848	1530	-20.8	85.3
C_1_8_103	8.0	8.4	4.6	4.9	194	7.63	98.4	3.88	115.4	109.7	1848	1757	-5.2	97.9
C_2_8_103	8.0	8.2	4.8	2.0	173	6.81	98.4	3.88	115.4	108.6	1848	1740	-6.2	97.0
C_1_13_98	13.0	12.1	0.9	-7.3	216	8.50	98.4	3.88	109.8	102.1	1758	1635	-7.5	91.1
C_2_13_98	13.0	12.3	0.7	-5.6	205	8.06	98.4	3.88	109.8	101.3	1758	1623	-8.3	90.5
C_1_10_98	10.0	9.3	3.7	-7.1	203	8.00	98.4	3.88	109.8	104.2	1758	1669	-5.4	93.0
C_2_10_98	10.0	9.0	4.0	-11.6	162	6.38	98.4	3.88	109.8	103.6	1758	1659	-6.0	92.5
C_1_8_98	8.0	8.4	4.6	4.9	237	9.31	98.4	3.88	109.8	106.0	1758	1698	-3.5	94.7
C_2_8_98	8.0	8.8	4.2	9.5	210	8.25	98.4	3.88	109.8	106.6	1758	1707	-3.0	95.1
D_1_16_103	16.0	15.6	2.4	-2.5	202	7.94	98.4	3.88	106.1	106.1	1699	1700	0.0	103.0
D_2_16_103	16.0	15.6	2.4	-2.7	204	8.03	98.4	3.88	106.1	105.8	1699	1695	-0.3	102.7
D_1_13_103	13.0	13.1	4.9	0.5	210	8.25	98.4	3.88	106.1	111.8	1699	1791	5.1	108.6
D_2_13_103	13.0	13.2	4.8	1.6	211	8.31	98.4	3.88	106.1	110.8	1699	1775	4.3	107.6
D_1_11_103	11.0	10.5	7.5	-4.9	206	8.13	98.4	3.88	106.1	105.7	1699	1693	-0.4	102.6
D_2_11_103	11.0	10.6	7.4	-3.9	205	8.06	98.4	3.88	106.1	105.9	1699	1697	-0.1	102.8
D_1_18_98	18.0	18.3	-0.3	1.6	206	8.13	103.6	4.08	100.9	97.3	1617	1559	-3.7	94.5
D_2_18_98	18.0	18.4	-0.4	2.0	213	8.38	98.4	3.88	100.9	99.8	1617	1598	-1.2	96.9
D_1_14_98	14.0	14.3	3.7	2.2	205	8.06	98.4	3.88	100.9	103.2	1617	1653	2.2	100.2
D_2_14_98	14.0	13.6	4.4	-3.1	203	8.00	98.4	3.88	100.9	104.9	1617	1680	3.8	101.8
D_1_11_98	11.0	10.7	7.3	-3.0	203	8.00	98.4	3.88	100.9	106.7	1617	1710	5.4	103.6
D_2_11_98	11.0	10.7	7.3	-3.0	203	8.00	98.4	3.88	100.9	107.8	1617	1726	6.3	104.6

Table 5.2: Target and actual characteristics of cylindrical specimens

The maximum and minimum values of Δw^{cyl} in Table 5.2 are respectively 15.9% and -16.9%, with the mean of -1.3%. The variation in moisture content between the target and actual values can be attributed to the minor non-uniformities throughout the prismatic sample, moisture loss while handling the cylindrical specimen, and transfer of water through the cellophane wrapping and plastic container while in the humid room. The maximum and minimum values of $\Delta \rho^{\text{cyl}}$ are respectively 9.3% and -20.8%, with the mean of 0.3%. The friction between the steel tubes and soil contributed to specimen compaction as the soil was lifted into steel tubes and as the specimens were extruded from the steel tubes. A non-stick spray was applied to the inside of the steel tubes to minimize this effect.

Table 5.3 highlights the effect of specimen extraction and storage on the change in density and moisture. For example, as the soil was pushed into steel tubes, friction between surfaces resulted in further compaction of the specimen. In addition, the specimens were extruded by pushing them out of the steel tubes causing additional specimen compaction. The maximum and minimum values of Δw in Table 5.3 are respectively 7.8% and -12.1%, with a mean value of -2.4%. The maximum and minimum values of $\Delta \rho$ are respectively 15.6% and -13.9%, with the mean value of 2.9%.

Prismatic Sample	$\mathcal{W}_{ m Act}^{ m Box}$	$\gamma_{ m Act}^{ m Box}$	$\rho_{\rm Act}^{\rm Box}$	Cylindrical Specimen	${\cal W}_{ m Act}^{ m Cyl}$	$\gamma_{\rm Act}^{\rm Cyl}$	$\rho_{\rm Act}^{\rm Cyl}$	$\pm W_{Box}^{Cyl}$	Δw_{Act}	Δρ
Sample	[%]	[pcf]	[kg/m ³]	Specimen	[%]	[pcf]	[kg/m ³]	Dox	[%]	[%]
A_13.5_105	14.1	109.4	1752	A_2_13.5_105	12.4	112.3	1798	-1.70	-12.1	2.6
A 10.5 105	11.2	1047	1470	A_1_10.5_105	11.6	108.6	1739	0.40	3.6	3.6
A_10.5_105	11.2	104.7	1078	A_2_10.5_105	11.8	109.2	1749	0.60	5.4	4.2
A 75 105	77	104.2	1670	A_1_7.5_105	7.6	111.1	1779	-0.05	-0.7	6.6
<u></u> 105	2.4	104.2	10/0	A_2_7.5_105	7.4	107.8	1727	-0.30	-3.9	3.4
A 15 100	156	103.6	1659	A_3_15_100	15.8	108.6	1740	0.21	1.3	4.9
		ಿ ನಗಳನ		A_4_15_100	15.4	111.1	1780	-0.20	-1.3	7.3
A 12 100	11.5	105.2	1685	A_1_12_100	12.4	107.0	1714	0.90	7.8	1.7
	-	10.000		A_2_12_100	12.2	107.4	1720	0.70	6.1	2.1
A 9 100	10.9	99.1	1587	A_1_9_100	10.7	102.6	1643	-0.20	-1.8	3.5
	10110/0	10446-04097		A_2_9_100	10.0	100.8	1615	-0.90	-8.3	1.8
B 24 103	23.6	92.5	1481	B_1_24_103	22.9	96.2	1542	-0.71	-3.0	4.1
		0.0000000		B_2_24_103	23.0	95.0	1521	-0.62	-2.6	2.7
B 19.5 103	19.2	90.2	1444	B_1_19.5_103	18.5	92.3	1479	-0.68	-3.5	2.4
		(1992), (Vende		B_2_19.5_103	18.3	98.6	1579	-0.88	-4.6	9.3
B 16 103	17.4	93.9	1505	B_1_16_103	16.5	98.6	1579	-0.90	-5.1	4.9
		1.17-10.27117		B_2_16_103	16.4	102.2	1637	-1.05	-6.0	8.8
B_27_98	26.1	87.3	1399	B_1_27_98	23.1	93.9	1304	-3.00	-11.5	7.5
				B_2_27_98	24.0	90.2	1445	-2.10	-8.0	3.3
B_22_98	22.0	86.6	1387	B_1_22_98	21.2	90.2	1446	-0.77	-3.5	4.2
				B_2_22_98	21.5	93.0	1490	-0.51	-2.3	7.4
B_16_98	16.3	88.0	1409	B_1_16_98	16.0	87.0	1393	-0.33	-2.0	-1.1
				B_2_10_98	10.3	90.1	1443	-0.01	0.0	2.4
C_12_103	11.3	106.1	1700	C_1_12_103	10.9	108.1	1734	-0.45	-4.0	1.9
				$C_2_{12}_{103}$	10.9	107.8	1720	-0.40	-4.0	1.5
C_9.5_103	9.4	110.9	1777	$C_1_{9.5}_{103}$	0.0	0.50	1520	-0.05	-0.7	-1.2
	2			C 1 8 103	9.1	100.7	1757	-0.51	-5.5	-20.9
C_8_103	8.4	107.7	1725	C 2 8 103	0.4	109.5	17/0	0.01	20	1.0
	2			C 1 13 98	12.1	102.1	1635	-0.24	-2.2	1.4
C_13_98	12.4	100.7	1613	C 2 13 98	12.1	101.3	1623	_0.09	-2.2	0.6
	÷		(C 1 10 98	03	101.5	1669	-0.076	-7.6	-31
C_10_98	10.1	107.5	1721	C 2 10 98	9.0	103.6	1659	-1.14	-11.3	-3.6
	2 7. 			C 1 8 98	8.4	106.0	1698	0.01	0.1	-0.4
C_8_98	8.4	106.4	1705	C 2 8 98	8.8	106.6	1707	0.44	5.2	0.1
	2 			D 1 16 103	15.6	106.1	1700	-0.69	-4.2	3.7
D_16_103	16.3	102.4	1640	D 2 16 103	15.6	105.8	1695	-0.72	-4.4	3.4
21 00000000				D 1 13 103	13.1	111.8	1791	-0.24	-1.8	5.5
D_13_103	13.3	105.9	1697	D 2 13 103	13.2	110.8	1775	-0.09	-0.7	4.6
				D 1 11 103	10.5	105.7	1693	-0.11	-1.1	1.6
D_11_103	10.6	104.0	1665	D_2_11_103	10.6	105.9	1697	-0.01	-0.1	1.9
				D_1_18_98	18.3	97.3	1559	-0.30	-1.6	-3.1
D_18_98	18.6	100.4	1609	D_2_18_98	18.4	99.8	1598	-0.23	-1.3	-0.7
D 14 00	140	100.0	1614	D_1_14_98	14.3	103.2	1653	0.11	0.8	2.4
D_14_98	14.2	100.8	1014	D_2_14_98	13.6	104.9	1680	-0.62	-4.4	4.1
D 11 00	10.7	02.2	1.40.4	D_1_11_98	10.7	106.7	1710	-0.02	-0.2	14.5
D_11_98	10.7	93.2	1494	D_2_11_98	10.7	107.8	1726	-0.02	-0.2	15.6

Table 5.3: Characteristics of actual prismatic samples and cylindrical specimens

5.3 Laboratory Tests on Cylindrical Specimens

Stiffness and strength tests were performed on cylindrical soil specimens. Specifically, resilient modulus and bender element $(BE - M_r)$ testing was conducted on the 48 specimens, followed by triaxial compression experiments with no pore pressure measurements (only total stresses were measured).

5.3.1 Resilient Modulus

D

Total

88.1

71.2

Specimen alignment within the triaxial chamber is important, especially when testing stiff materials. Due to misalignment and/or specimen inhomogeneities, deformation measurements can vary among the LVDTs [15]. As a result, it was important to apply criteria to evaluate the data. The criteria included angle of rotation (θ), signal-to-noise ratio (SNR) and coefficient of variation (COV). Table 5.4 outlines the criteria established by Mn/DOT and the UM, and Tables 5.5 and 5.6 indicate the percent of the data that passed the various criteria.

ĺ	SNR ð	SNR F	θ	COV
UM	>3, 2LVDT >1.5, 1LVDT	>10	<0.04°	<10%
Mn/DOT	>3, 3LVDT	>10	<0.04°	<10%

Table 5.4: QC/QA criteria

SNR $\delta 1$ SNR 82 SNR 83 SNR F θ COV Final Soil >3 >3 >3 >10 <0.04° <10% MnDOT 87.3 99.0 77.3 59.7 8.9 A 35.1 87.6 В 96.6 88.8 100.0 99.7 94.1 99.0 80.4 79.7 С 95.7 99.2 87.0 50.3 62.1 96.7

99.3

99.3

98.3

89.4

91.7

83.0

83.9

56.9

99.8

96.0

97.2

92.6

Table 5.5: MnDOT QC/QA passing rate [%]

To consider the possibility of including more data, the SNR value was reduced for one LVDT, to allow for a situation where the position of the sensor was normal to the axis of rotation, such that the positive displacement from the axial force is reduced by the negative displacement from the rotation. This would then cause the overall displacement measured by the LVDT to be quite small, resulting in a small SNR value. Further analysis needs to be performed for this so-called UM criterion, where one LVDT was allowed to violate SNR > 3 but SNR > 1.5 as long as the other two satisfied the SNR criterion (SNR > 3); the advantage of this criterion would be in an increase of usable resilient modulus data for all soils. Nonetheless, the data that failed to pass the prescribed Mn/DOT limits were not used in the analysis.

0.21	SNR $\delta 1$	SNR 82	SNR 83	SNR F	θ	COV	Final
5011	>1.5	>3	>3	>10	<0.04°	<10%	UM
А	57.2	87.3	87.6	99.0	77.3	59.7	17.6
В	99.1	88.8	100.0	99.7	94.1	99.0	88.1
С	73.5	96.7	95.7	99.2	87.0	79.7	53.0
D	92.1	97.2	99.8	99.3	98.3	91.7	86.0
Total	81.0	92.6	96.0	99.3	89.4	83.0	62.1

Table 5.6: UM QC/QA passing rate [%]

Rotation

Specimen misalignment results in eccentric loading where the top specimen platen rotates causing non-uniform loading. In addition, the three LVDTs recording the specimen response vary from one to the other. It was shown that the mean of the three LVDT displacement readings is equal to the displacement from the axial stress [10, 23], and the angle of rotation, θ , is calculated by using

$$\cos\theta = \frac{\frac{3}{4}D}{\sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2 - \delta_1\delta_2 - \delta_1\delta_3 + \frac{9}{16}D^2}}$$
(5.1)

where δ_i = axial displacement (LVDT_i) and D = diameter of specimen.

For the 16 steps (stress states) in each sequence and the last 5 cycles of each step, the angle of rotation for all specimens was analyzed. Those cycles that exceeded the maximum of angle of rotation limit (0.04°) were not used in the analysis.

Signal-to-Noise Ratio (SNR)

Since the LVDTs measure small displacements, noise during a resilient modulus test adversely affects displacement data. As a result, a coefficient called the Signal-to-Noise Ratio (SNR) was introduced. The SNR compares maximum displacement to instrument noise defined as [10]

$$SNR = \frac{\delta_M}{3 * \sigma_B} \tag{5.2}$$

where δ_M = maximum displacement and σ_B = baseline standard deviation. An SNR value of 3 was chosen by Mn/DOT for the minimum limit for each LVDT at each cycle. Also, a separate SNR limit of 10 was chosen for the quality of force measurements. Both criteria were applied to each cycle's last five loading pulses. If one cycle had either more than one LVDT or force violating the respective SNR limits, the cycle was excluded from further analysis.

Coefficient of Variation (COV)

An M_r value is calculated for each of the last five cycles of every sequence in the NCHRP 1-28A testing protocol, and the resilient modulus values will vary. However, it is important to limit the maximum amount of variance. Accordingly, the coefficient of variation (COV), defined as

$$COV[\%] = \frac{\sigma}{\overline{M_r}} \tag{5.3}$$

was introduced, where σ = standard deviation of the resilient modulus during last five cycles and $\overline{M_r}$ = the mean resilient modulus of the last five cycles. The sequences that failed to pass the maximum COV limit of 10% were excluded from further analysis.

In summary, the resilient modulus results were scrutinized by the maximum angle of rotation, minimum SNR and maximum COV. The resilient modulus results that failed to pass the criteria were excluded. Acceptable criteria for the M_r data were:

- \Box Load Signal-to-Noise Ratio (SNR) ≥ 10
- \square Deflection Signal-to-Noise Ratio (SNR) ≥ 3
- $\square M_r \text{ COV} [\%] \le 10\%$
- \Box Rotation Angle < 0.04⁰

The percentages of failed cycles for each soil are listed in Table 5.7.

Table 5.7: Percentages of failed cycles

		0	J	
Soil A	Soil B	Soil C	Soil D	Total
[%]	[%]	[%]	[%]	[%]
91.1	19.6	49.7	16.1	43.1

Testing Results

As an example, Tables 5.8 and 5.9 show a summary of the last five cycles for one (Soil D) cylindrical specimen before and after applying the QC/QA criteria. On the basis of results such as those in Table 5.9 and Appendix J, a variation of the resilient modulus is plotted in Figs. 5.5–5.12 as a function of the deviator stress and confining pressure for each soil-density-moisture combination. To generate the graphs, the resilient modulus values during the last five cycles of testing were averaged. As each soil-density-moisture combination was tested via two cylindrical specimens, the results of the duplicate tests were also averaged.

In each figure, a single surface was generated using a local smoothing technique available through the plotting software SigmaPlot 9.0 (Appendix N). For the ease of comparison, all graphs carry common scales in terms of deviator stress, confining pressure and modulus. Some surfaces are of limited extent (in particular, soil A) because of the QC/QA criteria for resilient modulus data. With reference to the soil type, it is apparent that soils A and D are characterized by the highest values of M_r . In order of decreasing modulus, soils A and D are followed by soils B and C. As expected, the increase in density invariably results in an increase of M_r .

As can be seen in the plots, soil moisture has a significant effect upon M_r . Depending on the particular values of the deviator stress and confining pressure, the prescribed variation in moisture caused differences in the M_r as high as 100%. Typically, the maximum values of the M_r for a given soil were achieved under the minimum or intermediate moisture contents. Figures 5.5, 5.6, 5.7, and 5.8 summarize the values of M_r for soils A and B grouped according to target Proctor densities. Figures 5.9, 5.10, 5.11 and 5.12 summarize the variation of M_r for soils C and D again grouped according to target Proctor densities. For the actual densities of the specimens, refer to Table 5.2.

σ ₁ [MPa]	q [N]	δ_{LVDTa1} [mm]	δ_{LVDT42} [mm]	δ_{LVDT33} [mm]	σ_{dev} [MPa]	ε [-]	M_R [MPa]
0.06	226	0.010	0.009	0.012	0.030	0.00010	297
0.06	226	0.010	0.009	0.012	0.030	0.00010	296
0.06	216	0.010	0.009	0.012	0.028	0.00010	283
0.06	226	0.010	0.009	0.012	0.030	0.00010	298
0.06	388	0.017	0.017	0.022	0.051	0.00018	275
0.06	381	0.017	0.017	0.022	0.050	0.00018	270
0.06	386	0.016	0.017	0.022	0.051	0.00018	279
0.06	389	0.016	0.017	0.022	0.051	0.00018	200
0.06	551	0.024	0.026	0.032	0.072	0.00027	267
0.06	551	0.024	0.026	0.032	0.072	0.00027	267
0.06	541	0.025	0.026	0.033	0.071	0.00028	256
0.06	552	0.025	0.026	0.033	0.072	0.00028	250
0.06	774	0.037	0.038	0.049	0.101	0.00041	250
0.06	768	0.037	0.038	0.049	0.101	0.00041	248
0.06	758	0.037	0.038	0.049	0.099	0.00041	245
0.06	757	0.037	0.038	0.045	0.035	0.00041	243
0.04	216	0.010	0.003	0.012	0.028	0.00010	286
0.04	217	0.010	0.009	0.012	0.028	0.00010	285
0.04	216	0.010	0.010	0.012	0.028	0.00010	276
0.04	216	0.010	0.003	0.013	0.028	0.00010	276
0.04	378	0.018	0.017	0.022	0.050	0.00019	266
0.04	378	0.016	0.017	0.023	0.050	0.00018	268
0.04	391	0.017	0.017	0.023	0.051	0.00019	274
0.04	408	0.016	0.017	0.023	0.050	0.00018	285
0.04	562	0.025	0.027	0.035	0.074	0.00028	259
0.04	552	0.024	0.027	0.035	0.072	0.00028	257
0.04	540	0.024	0.027	0.035	0.071	0.00028	252
0.04	541	0.024	0.021	0.035	0.071	0.00028	252
0.04	768	0.036	0.040	0.052	0.101	0.00042	240
0.04	768	0.037	0.040	0.051	0.101	0.00042	240
0.04	757	0.037	0.040	0.051	0.033	0.00042	237
0.04	768	0.037	0.040	0.051	0.101	0.00042	238
0.03	216	0.011	0.009	0.012	0.028	0.00010	273
0.03	216	0.011	0.003	0.012	0.028	0.00010	273
0.03	216	0.011	0.010	0.012	0.028	0.00011	264
0.03	216	0.011	0.003	0.012	0.028	0.00010	273
0.03	384	0.017	0.018	0.023	0.050	0.00019	268
0.03	407	0.018	0.017	0.024	0.053	0.00019	275
0.03	373	0.018	0.017	0.024	0.050	0.00019	256
0.03	391	0.018	0.018	0.024	0.051	0.00019	264
0.03	551	0.026	0.028	0.035	0.072	0.00029	248
0.03	552	0.026	0.028	0.036	0.072	0.00029	245
0.03	540	0.021	0.028	0.035	0.071	0.00023	241
0.03	541	0.026	0.027	0.035	0.071	0.00029	247
0.03	773	0.038	0.042	0.055	0.101	0.00044	223
0.03	777	0.037	0.041	0.054	0.102	0.00043	235
0.03	758	0.037	0.042	0.054	0.033	0.00043	229
0.03	768	0.037	0.041	0.055	0.101	0.00044	231
0.01	217	0.012	0.008	0.013	0.028	0.00011	258
0.01	216	0.012	0.008	0.013	0.028	0.00011	258 266
0.01	217	0.011	0.008	0.012	0.028	0.00010	275
0.01	216	0.012	0.008	0.012	0.028	0.00011	266
0.01	390	0.020	0.016	0.024	0.051	0.00020	259
0.01	380	0.021	0.017	0.024	0.051	0.00020	247
0.01	380	0.021	0.017	0.024	0.050	0.00020	245
0.01	385	0.020	0.016	0.024	0.050	0.00020	255
0.01	542	0.028	0.028	0.038	0.071	0.00031	232
0.01	553	0.029	0.028	0.038	0.072	0.00031	236
0.01	542	0.028	0.028	0.036	0.071	0.00030	235
0.01	542	0.028	0.028	0.036	0.071	0.00030	234
0.01	770	0.040	0.043	0.056	0.101	0.00046	221
0.01	759	0.040	0.043	0.056	0.099	0.00046	218
0.01	770	0.041	0.043	0.056	0.101	0.00046	220
0.01	769	0.041	0.043	0.056	0.101	0.00046	220

Table 5.8: Raw Resilient modulus values for D_1_16_103

σ_{i} [MPa]	σ _{dev} [MPa]	$SNR_{LVDTa1} > 3$	SNR _{LVDTa2} > 3	$SNR_{LVDTr3} > 3$	SNR _q > 10	heta < 0.04°	heta < 0.1"	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	297
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	296
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	292
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	298
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	270
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	279
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	280
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.06	0.07	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	261
0.06	0.07	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	261
0.06	0.01	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	206
0.06	0.01	Tes	T es Yva	T es Yea	I es Yes	Tes	Tes	T es Yva	Yes	200
0.06	0.01	Yoc	Yes	Yee	Yes	Yes	Yes	Yes	Yes	201
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	276
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	276
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	276
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	259
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	252
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Tes	252
0.04	0.07	Yes	Tes	Tes	Tes	Yes	Tes	res	Tes	252
0.04	0.10	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	240
0.04	0.10	Tes	T es Via	Tes V.a	1 es	Tes	Tes	Tes	Tes	240
0.04	0.10	Yee	Yee	Yee	Yee	Yes	Yes	Yee	Yes	201
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yac	230
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	264
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	263
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	264
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.10	Yes	Tes	Tes	Tes	Yes	Tes	Tes	Tes	223
0.03	0.10	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	231
0.01	0.03	Tes	Tes	Tes	Tes	Tes	Tes	Tes	Tes	200
0.01	0.03	Tes	T es	i es V	I es	Tes	Tes	T es	Tes	200
0.01	0.03	Tes	T es Via	i es Via	1 es 	Tes	Tes	Tes Vie	Tes	200
0.01	0.03	T CS Via	T es Vez	Tes Ver	Ver 1 CS	Yes	Yee	Yes	Yes	215
0.01	0.05	Yaz	Yes	Yaz	Yaz	Yes	Yes	Yaz	Yer	259
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	232
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220

Table 5.9: QC/QA Resilient modulus values for D_1_16_103

Figure 5.5: Resilient modulus for soil A, 100% target standard Proctor

Figure 5.6: Resilient modulus for soil A, 105% target standard Proctor

Figure 5.7: Resilient modulus for soil B, 98% target standard Proctor

Figure 5.8: Resilient modulus for soil B, 103% target standard Proctor

Figure 5.9: Resilient modulus for soil C, 98% target standard Proctor

Figure 5.10: Resilient modulus for soil C, 103% target standard Proctor

Figure 5.11: Resilient modulus for soil D, 98% target standard Proctor

Figure 5.12: Resilient modulus for soil D, 103% target standard Proctor

To evaluate the effect of density and moisture on stiffness as measured by $BE-M_r$ testing and field devices, a representative value of the modulus at a given level of confinement and deviator stress must be selected. The basis for this stress state was guided by the prismatic samples. Because the state of stress in the container was not uniform, the vertical (σ_v) and horizontal (σ_h) stresses in the middle of the container (0.15 m) were estimated based on a total unit weight of 18.5 kN/m^3 (118 pcf) and K = 0.5: $\sigma_v = 2.8$ kPa, $\sigma_h = 1.4$ kPa. Thus, the mean (confining) stress at a depth of 0.15 m was p = 1.9 kPa and the deviator stress was $\Delta \sigma_a = 0.9$ kPa. This stress state is represented most closely by the loading sequence from the resilient modulus protocol with the (lowest) confining pressure p = 14 kPa (2 psi) and deviator stress $\Delta \sigma_a = 27$ kPa (3.8 psi). If the M_r data did not pass the QC/QA criteria at the p = 14 kPa, $\Delta \sigma_a = 27$ kPa stress state, then the data at the closest stress state but passing the QC/QA criteria were used.

Figures 5.13-5.16 represent the data from the comprehensive testing program involving the 48 resilient modulus tests, where actual (not target) values of density and moisture content are shown. Each plot contains 10-12 data points for the four soils (A, B, C, D) prepared at two densities and three moisture contents with two replicates for each condition. A single surface was generated using a local smoothing technique available through the plotting software SigmaPlot 9.0. For soils A and D (Figs. 5.13 and 5.16), the surfaces illustrate the complex behavior as moisture varies at a given density. For soils B and C (Figs. 5.14 and 5.15), the general trend of increased modulus with increased density and decreased moisture is followed. The values for the representative resilient modulus versus, density and moisture content are listed in Tables 5.10 and 5.11.

Figure 5.13: Representative resilient modulus for soil A vs. density and moisture content

Figure 5.14: Representative resilient modulus for soil B vs. density and moisture content

Figure 5.15: Representative resilient modulus for soil C vs. density and moisture content

Figure 5.16: Representative resilient modulus for soil D vs. density and moisture content

Cylindrical Specimen	W _{act} [%]	ρ _{act} [kg/m³]	Min. M _r [MPa]	Max. M _r [MPa]	Repr. M _r [MPa]	σ ₃ [MPa]	σ _{DEV} [MPa]
A_2_13.5_105	12.4	1798	395	453	427	0.01	0.10
A_1_10.5_105	11.6	1739	406	476	432	0.01	0.07
A_2_10.5_105	11.8	1749	521	724	550	0.01	0.07
A_1_7.5_105	7.6	1779	272	318	272	0.04	0.09
A_2_7.5_105	7.4	1727	344	447	360	0.01	0.07
A_3_15_100	15.8	1740	189	232	206	0.01	0.03
A_4_15_100	15.4	1780	N/A	N/A	N/A	N/A	N/A
A_1_12_100	12.4	1714	377	429	419	0.01	0.09
A_2_12_100	12.2	1720	N/A	N/A	N/A	N/A	N/A
A_1_9_100	10.7	1643	302	573	347	0.01	0.08
A_2_9_100	10.0	1615	259	304	288	0.01	0.07
B_1_24_103	22.9	1542	263	303	271	0.01	0.03
B_2_24_103	23.0	1521	220	272	249	0.01	0.03
B_1_19.5_103	18.5	1479	200	256	232	0.01	0.03
B_2_19.5_103	18.3	1579	101	186	101	0.01	0.03
B_1_16_103	16.5	1579	352	448	387	0.01	0.03
B_2_16_103	16.4	1637	469	530	476	0.01	0.05
B_1_27_98	23.1	1504	186	230	213	0.01	0.03
B_2_27_98	24.0	1445	161	173	169	0.01	0.03
B_1_22_98	21.2	1446	163	210	193	0.01	0.03
B_2_22_98	21.5	1490	232	295	261	0.01	0.05
B_1_16_98	16.0	1393	66	114	76	0.01	0.03
B_2_16_98	16.3	1443	62	112	75	0.01	0.03

Table 5.10: Representative, minimum, and maximum resilient modulus values for the cylindrical specimens of A and B

 $\rm *N/A$ - No data passed Mn/DOT resilient modulus criteria

Cylindrical Specimen	W _{act} [%]	ρ _{act} [kg/m³]	Min. M _r [MPa]	Max. M _r [MPa]	Repr. M _r [MPa]	σ ₃ [MPa]	σ _{DEV} [MPa]
C_1_12_103	10.9	1732	92	144	101	0.01	0.05
C_2_12_103	10.9	1726	102	153	108	0.01	0.05
C_1_9.5_103	8.8	1756	114	180	128	0.01	0.05
C_2_9.5_103	9.1	1530	112	189	122	0.01	0.05
C_1_8_103	8.4	1757	166	203	166	0.03	0.10
C_2_8_103	8.2	1740	162	211	184	0.03	0.10
C_1_13_98	12.1	1635	65	119	71	0.01	0.03
C_2_13_98	12.3	1623	69	120	71	0.01	0.03
C_1_10_98	9.3	1669	110	162	110	0.01	0.05
C_2_10_98	9.0	1659	96	150	103	0.01	0.05
C_1_8_98	8.4	1698	98	191	122	0.01	0.02
C_2_8_98	8.8	1707	101	186	101	0.01	0.03
D_1_16_103	15.6	1700	218	298	266	0.01	0.03
D_2_16_103	15.6	1695	236	336	280	0.01	0.02
D_1_13_103	13.1	1791	407	460	429	0.01	0.03
D_2_13_103	13.2	1775	526	600	538	0.01	0.05
D_1_11_103	10.5	1693	306	399	326	0.01	0.03
D_2_11_103	10.6	1697	122	235	131	0.01	0.03
D_1_18_98	18.3	1559	122	198	165	0.01	0.03
D_2_18_98	18.4	1598	92	169	139	0.01	0.03
D_1_14_98	14.3	1653	150	251	188	0.01	0.03
D_2_14_98	13.6	1680	142	237	188	0.01	0.03
D_1_11_98	10.7	1710	146	278	151	0.01	0.05
D_1_11_98	10.7	1710	146	278	294	0.01	0.05

Table 5.11: Representative, minimum, and maximum resilient modulus values for the cylindrical specimens of C and D

5.3.2 Bender Element

The bender element test used a sine pulse as the input signal. The typical test result for an S-wave is shown in Fig. 5.17. A clear waveform was obtained by filtering the high-frequency noise. However, the first arrival of the S-wave was often masked by an initial deflection due to near field effects. It can be seen that the received signal has the same general form as

Figure 5.17: Bender element test result for S-wave

the input signal. To help in determining the time of the first arrival, a cross-correlation technique was used. Let x(t) represent the input signal; the received signal y(t) can be taken as a time-shifted copy of x(t). The cross-correlation is defined as:

$$CC(t_s) = \sum_{i=0}^{N_r} x(t_i) y(t_i + t_s)$$
(5.4)

where $N_r = T_r \times f_s$, $t_i = \frac{i}{f_s}$, T_r is the record time, f_s is the sampling frequency, and t_s is the time shift. Let $t_s = \frac{n}{f_s}$, n is a shift number. Equation (5.4) can be rewritten as

$$CC(n) = \sum_{i=0}^{N_r} x_i y_{i+n}$$
(5.5)

Let n_m denote the shift number that maximizes CC; then the travel time can be computed as $t_s = \frac{n_m}{f_s}$, which graphically corresponds to the location (time) of the maximum of the dashed CC curve in Fig. 5.17. The S-wave velocity can then be calculated as $c_s = \frac{L}{t_s}$, where L is the travel distance and t_s is the estimated travel time. For the P-wave, the analysis procedure is similar; a typical result is shown in Fig. 5.18. To evaluate the quality of the

Figure 5.18: Bender element test result for P-wave

received signal, the signal-to-noise ratio (S/N) was calculated from the amplitude of the first peak of the received signal divided by the mean amplitude of the noise. The noise was taken as the difference between the received signal and the filtered signal.

Using the S-wave velocity c_s and the P-wave velocity c_p , the material properties of each specimen can be obtained:

$$c_s = \sqrt{\frac{G}{\rho}} \Longrightarrow G = \rho c_s^2 \tag{5.6}$$

$$\frac{c_p}{c_s} = \sqrt{\frac{2 - 2\nu}{1 - 2\nu}} \Longrightarrow \nu = \frac{c_p^2 - 2c_s^2}{2\left(c_p^2 - c_s^2\right)}$$
(5.7)

$$c_p = \sqrt{\frac{E(1-\nu)}{\rho(1+\nu)(1-2\nu)}} \Longrightarrow E = \frac{\rho c_p^2 (1+\nu)(1-2\nu)}{1-\nu}$$
(5.8)

where E is the Young modulus, ν is the Poisson's ratio, and ρ is the measured mass density of the soil. Tables 5.12–5.15 summarize the bender element results for the 48 cylindrical specimens from the four soils.

Specimen	$ ho_{[kg/m^3]}$	P₀ [k₽a]	C _s [m/s]	c _p [m/s]	G [MPa]	ν [-]	E [MPa]	ν [-]	E [MPa]	M _r [MPa]	M _r /E [-]	S/N (S-wave)	S/N (P-wave)
A_2_13.5_105	2021	55.2	317		203				·	445		1.3	×
A_2_13.5_105	2021	44.8	312		197							1.7	
A_2_13.5_105	2021	44.1		448		0.35	253	0.20	365				7.1
A_2_13.5_105	2021	31.7		502		0.35	318	0.20	459	450	0.98		13.6
A_2_13.5_105	2021	17.9		490		0.35	303	0.20	438	438	1.00		14.7
A_1_10.5_105	1941	9.7		448		0.35	242	0.20	350	454	1.30		6.2
A_1_10.5_105	1941	31.0		438		0.35	232	0.20	336	439	1.31		2.6
A_1_10.5_105	1941	43.4		468		0.35	265	0.20	383	431	1.13		11.1
A_1_10.5_105	1941	47.6		624		0.35	471	0.20	681	431	0.63		2.0
A_1_10.5_105	1941	60.7	307		183					442		3.4	
A_1_10.5_105	1941	40.0	275	s	146		-	s		431		7.0	ō
A_1_10.5_105	1941	24.1	264		135				_	439		13.9	
A_1_10.5_105	1941	27.6	261		132					439		14.6	
A_2_10.5_105	1955	14.5		502		0.35	308	0.20	444	573	1.29		2.9
A_2_10.5_105	1955	30.3		515		0.35	323	0.20	467	614	1.31		4.2
A_2_10.5_105	1955	44.8		665		0.35	538	0.20	777	625	0.80		4.3
A_2_10.5_105	1955	61.4		687		0.35	574	0.20	830	668	0.80		3.7
A_2_10.5_105	1955	61.4	361		255					668		3.3	
A_2_10.5_105	1955	35.9	332	s	216		-	s		625		2.7	
A_2_10.5_105	1955	26.2	307		185				_	614		3.9	
A_2_10.5_105	1955	12.4	294		169					573		4.9	
A_4_15_100	2054	13.8	332		227					211		2.0	
A_1_12_100	1927	15.2		515		0.35	318	0.20	460	419	0.91		1.9
A_1_12_100	1927	29.6		448		0.35	241	0.20	348				5.7
A_2_12_100	1930	15.9		429		0.35	222	0.20	320				8.4
A_2_12_100	1930	24.1		438		0.35	231	0.20	334				5.0
A_2_12_100	1930	40.7		438		0.35	231	0.20	334				7.3
A_2_12_100	1930	54.5	349		235							1.1	
A_2_12_100	1930	26.9	271		142							1.8	
A_2_12_100	1930	15.2	271		142							4.1	

Table 5.12: Bender element test results for soil A (Mn/ROAD)

Specimen	ρ [kg/m ³]	p₀ [kPa]	C _s [m/s]	c _p [m/s]	G [MPa]	ν [-]	E [MPa]	Mr [MPa]	M _r /E [-]	S/N (S-wave)	S/N (P-wave)
B 1 24 103	1895	13.8	217	449	89	0.35	240	274	1.14	26.2	16.8
B_1_24_103	1895	27.6	217	460	89	0.36	241	293	1.21	1.9	16.7
B_1_24_103	1895	41.4	236	509	105	0.36	287	281	0.98	12.1	14.7
B_1_24_103	1895	55.2	251	539	120	0.36	326	295	0.90	9.0	14.5
B_2_24_103	1871	13.8	213	550	85	0.41	239	258	1.08	30.3	2.5
B_2_24_103	1871	27.6	300	582	168	0.32	444	253	0.57	33.6	5.7
B_2_24_103	1871	41.4	296	683	163	0.38	452	259	0.57	11.2	1.2
B_2_24_103	1871	55.2	291	683	159	0.39	441	259	0.59	6.8	1.3
B_1_19.5_103	1753	13.8	245	509	105	0.35	283	229	0.81	4.6	6.8
B_1_19.5_103	1753	27.6	254	552	113	0.37	310	228	0.74	3.8	3.6
B_1_19.5_103	1753	41.4	272	569	130	0.35	351	235	0.67	4.1	4.4
B_1_19.5_103	1753	55.2	284	624	142	0.37	388	253	0.65	2.8	4.1
B_2_19.5_103	1868	13.8	257	483	124	0.30	322	101	0.31	9.1	25.7
B_2_19.5_103	1868	27.6	264	521	130	0.33	346	120	0.35	6.8	15.1
B_2_19.5_103	1868	41.4	300	535	168	0.27	427	139	0.32	13.0	16.1
B_2_19.5_103	1868	55.2	314	582	185	0.29	478	183	0.38	7.2	15.5
B_1_16_103	1839	13.8	269	539	133	0.33	356	373	1.05	31.0	14.1
B_1_16_103	1839	27.6	242	589	107	0.40	301	392	1.30	37.1	18.2
B_1_16_103	1839	41.4	248	628	113	0.41	319	419	1.31	19.7	15.2
B_1_16_103	1839	55.2	277	628	141	0.38	390	430	1.10	37.1	16.6
B_2_16_103	1904	13.8	380	497	276	N/A	N/A	476	N/A	6.0	35.0
B_2_16_103	1904	27.6	313	554	186	0.27	472	497	1.05	7.7	19.3
B_2_16_103	1904	41.4	313	669	186	0.36	507	507	1.00	16.4	17.0
B_2_16_103	1904	55.2	323	746	199	0.38	551	501	0.91	6.4	20.3
B_1_27_98	1851	13.8	221	375	91	0.23	223	219	0.98	6.0	11.2
B_1_27_98	1851	27.6	227	414	95	0.29	245	225	0.92	9.4	8.9
B_1_27_98	1851	41.4	260	443	125	0.24	309	226	0.73	1.8	4.0
B_1_27_98	1851	55.2	271	513	136	0.31	354	227	0.64	0.9	1.9
B_2_27_98	1791	13.8	227	406	92	0.27	234	170	0.73	1.3	0.4
B_2_27_98	1791	27.6	235	423	99	0.28	252	169	0.67	S.0	0.3
B_1_22_98	1753	13.8	218	461	83	0.36	225	193	0.86	23.5	1.6
B_1_22_98	1753	27.6	230	509	93	0.37	255	196	0.77	4.6	0.9
B_1_22_98	1753	41.4	230	645	93	0.43	266	199	0.75	5.4	0.5
B_1_22_98	1753	55.2	233	668	95	0.43	273	203	0.74	12.7	0.5
B_2_22_98	1811	13.8	231	427	97	0.29	250	258	1.03	5.4	6.9
B_2_22_98	1811	27.6	237	446	101	0.30	265	271	1.03	2.4	6.5
B_2_22_98	1811	41.4	252	468	115	0.30	298	271	0.91	4.7	5.7
B_2_22_98	1811	55.2	255	517	118	0.34	315	280	0.89	3.1	3.9

Table 5.13: Bender element test results for soil B (TH 23)

Specimen	$ ho_{[kg/m^3]}$	p0 [kPa]	C _s [m/s]	c _p [m/s]	G [MPa]	ν [-]	E [MPa]	Mr [MPa]	M _r /E [-]	S/N (S-wave)	S/N (P-wave)
C_1_12_103	1920	13.8	206	347	82	0.23	201	99	0.49	11.0	11.4
C_1_12_103	1920	27.6	222	381	95	0.24	236	117	0.50	8.3	12.8
C_1_12_103	1920	41.4	233	421	104	0.28	267	128	0.48	19.9	10.7
C_1_12_103	1920	55.2	248	450	118	0.28	302	141	0.47	12.8	12.1
C_2_12_103	1914	13.8	220	381	93	0.25	231	110	0.48	17.4	19.2
C_2_12_103	1914	27.6	233	404	104	0.25	260	118	0.45	22.8	18.9
C_2_12_103	1914	41.4	244	450	114	0.29	295	138	0.47	22.0	14.9
C_2_12_103	1914	41.4	254	471	123	0.30	320	138	0.43	32.4	14.5
C_1_8_103	1904	13.8	240	468	110	0.32	290	N/A	N/A	4.1	8.9
C_1_8_103	1904	27.6	263	549	132	0.35	356	166	0.47	4.1	9.9
C_1_8_103	1904	41.4	278	640	147	0.38	408	182	0.45	3.8	7.6
C_1_8_103	1904	55.2	291	738	161	0.41	454	197	0.43	2.4	4.0
C_1_13_98	1833	13.8	184	293	62	0.17	146	71	0.48	7.9	6.8
C_1_13_98	1833	27.6	196	315	71	0.18	167	83	0.50	12.0	10.3
C_1_13_98	1833	41.4	212	345	82	0.20	197	102	0.52	4.9	8.8
C_1_13_98	1833	55.2	228	375	95	0.21	230	115	0.50	2.7	4.2
C_1_10_98	1824	13.8	204	347	76	0.24	188	116	0.62	18.6	22.1
C_1_10_98	1824	27.6	228	404	94	0.27	240	129	0.54	13.6	17.5
C_1_10_98	1824	41.4	241	450	106	0.30	276	145	0.53	4.3	14.8
C_1_10_98	1824	55.2	257	483	121	0.30	314	158	0.50	19.9	11.0
C_2_8_98	1858	13.8	240	409	107	0.24	265	101	0.38	1.9	8.6
C_2_8_98	1858	27.6	251	440	117	0.26	294	120	0.41	1.7	5.9
C_2_8_98	1858	41.4	265	507	130	0.31	342	139	0.4	1.3	4.8

Table 5.14: Bender element test results for soil C (TH 58)

Specimen	ρ [kg/m [*]]	p₀ [k₽a]	C _s [m/s]	Cp [m/s]	G [MPa]	v [-]	E [MPa]	M _r [MPa]	M _r /E [-]	S/N (S-wave)	S/N (P-wave)
D_1_16_103	1966	13.8	227	475	101	0.35	274	265	0.97	2.3	12.1
D_1_16_103	1966	27.6	246	499	119	0.34	320	271	0.85	4.2	12.8
D_1_16_103	1966	41.4	259	570	132	0.37	362	280	0.77	3.2	12.9
D_2_16_103	1959	13.8	316	505	195	0.18	460	288	0.63	4.2	10.2
D_2_16_103	1959	27.6	342	561	230	0.20	553	304	0.55	5.2	10.2
D_2_16_103	1959	41.4	354	652	246	0.29	635	310	0.49	3.7	6.4
D_2_16_103	1959	55.2	348	721	238	0.35	641	321	0.50	4.0	6.1
D_1_13_103	2025	13.8	310	N/A	194	N/A	N/A	438	N/A	5.7	N/A
D_1_13_103	2025	27.6	324	611	213	0.30	555	442	0.80	7.8	17.8
D_1_13_103	2025	41.4	364	830	269	0.38	742	448	0.60	8.6	24.6
D_1_13_103	2025	55.2	371	N/A	278	N/A	N/A	444	N/A	18.0	N/A
D_2_13_103	2010	13.8	327	634	215	0.32	566	548	0.97	4.5	28.0
D_2_13_103	2010	27.6	349	774	244	0.37	670	556	0.83	6.3	20.2
D_2_13_103	2010	41.4	410	836	338	0.34	907	582	0.64	5.1	18.3
D_2_13_103	2010	55.2	427	1101	366	0.41	1033	572	0.55	4.5	0.8
D_1_11_103	1870	13.8	276	619	143	0.38	393	331	0.84	10.9	32.7
D_1_11_103	1870	27.6	296	705	164	0.39	457	363	0.79	10.9	22.3
D_1_11_103	1870	41.4	305	730	174	0.39	485	380	0.78	2.0	19.3
D_1_11_103	1870	55.2	359	818	241	0.38	664	391	0.59	2.1	14.4
D_2_11_103	1877	13.8	245	461	112	0.30	293	129	0.44	13.5	10.2
D_2_11_103	1877	27.6	267	521	134	0.32	354	164	0.46	19.1	15.6
D_2_11_103	1877	41.4	308	564	178	0.29	457	200	0.44	9.9	15.4
D_2_11_103	1877	55.2	344	752	222	0.37	608	232	0.38	8.1	12.4
D_1_18_98	1844	27.6	179	464	56	0.41	167	180	1.08	2.5	1.4
D_1_18_98	1844	41.4	182	486	61	0.42	174	183	1.05	2.4	0.7
D_1_18_98	1844	55.2	189	474	66	0.41	185	185	1.00	0.9	0.6
D_2_18_98	1891	13.8	237	N/A	106	N/A	N/A	140	N/A	N/A	N/A
D_2_18_98	1891	27.6	251	413	119	0.21	288	146	0.51	9.6	6.2
D_2_18_98	1891	41.4	257	439	125	0.24	310	155	0.50	4.6	3.0
D_2_18_98	1891	55.2	277	514	145	0.29	376	161	0.43	1.7	1.5
D_1_14_98	1889	13.8	232	439	102	0.31	266	219	0.82	2.7	6.3
D_1_14_98	1889	27.6	240	470	109	0.32	289	225	0.78	2.5	6.9
D_1_14_98	1889	41.4	306	202	177	0.21	428	226	0.53	3.1	3.2
D_1_14_98	1889	12.2	328	394	201	0.28	212	227	0.44	4.0	4.5
D_2_14_98	1908	13.8	321	423	197	N/A	N/A	195	N/A	3.1	10.0
D_2_14_98	1908	41.0	221	460	107	A/M	471	194	197A	2.4	د.د
D_2_14_98	1908	41.4	221	505	202	0.20	4/1	199	0.42	2.1	4.0
D_2_14_98	1908	120	320	442	110	0.27	202	155	0.51	10.4	4.5
D_1_11_98	1075	27.6	270	600	147	0.27	403	201	0.50	71	9.4
D_1_11_90	1803	41.4	300	670	197	0.37	405	201	0.00	7.1	11.0
D_1_11_70	1803	55.0	3/1	804	220	0.30	611	200	0.47	43	31
D 2 11 99	1911	13.8	234	543	104	0.39	289	204	1.02	52	33.0
D 2 11 98	1911	27.6	258	648	127	0.35	357	N/4	N/4	11	17.2
D 2 11 98	1911	41.4	275	693	145	0.41	407	450	1 10	19	153
D_2_11_98	1911	55.2	279	804	149	0.43	426	N/A	N/A	2.2	17.4

Table 5.15: Bender element test results for soil D (TH 32)
5.3.3 Shear Strength

The cylindrical specimens were strength tested at the confining pressure of either 28 kPa (4.0 psi) or 55 kPa (8.0 psi) following the resilient modulus testing sequence. Table 5.16 summarizes the results from strength testing in terms of the quantities listed:

Length= actual length of the cylindrical specimen [mm]

 $w_{\mathbf{targ}}^{\mathbf{box}} =$ target moisture content for the prismatic sample [%]

 P_{MAX} = maximum load at specimen failure [N]

 δ_{MAX} = axial deformation at maximum load [mm]

 ε_{MAX} = maximum strain at specimen failure [-]

 $\sigma_{MAX} = \frac{P_{MAX}}{\text{specimen area}} \text{ [kPa]}$

 $\sigma_3 = \text{ confining pressure [kPa]}$

$$\sigma_1 = \sigma_3 + \sigma_{MAX}$$
 [kPa]

 $\beta_{\mathbf{f}}$ = orientation of the failure plane from the σ_3 -direction [deg]

$$\phi_{obs} = 2 * (\beta_{\rm f} - 45^{\rm o}) \text{ [deg]}$$
$$c_{calc} = \frac{\sigma_1 - \sigma_3 k_p}{2\sqrt{k_p}} \text{ [kPa]}$$
$$\phi_{calc} = \sin^{-1} \left(\frac{k_p - 1}{k_p + 1}\right) \frac{180}{\pi} \text{ [deg]}$$

The two cylindrical specimens from one prismatic sample were required to be tested in order to calculate k_p (slope of the failure envelope plotted in the principal stress plane), cohesion c and friction angle ϕ_{calc} . However, some specimens prematurely broke while handling them for strength testing; these are identified in Table 5.16 by hyphens. Typically, lower moisture contents, higher densities and larger confining pressures resulted in larger σ_{MAX} values. For the actual density and moisture content information, refer to Table 5.2.

Specimen	Length [mm]	W _{Act} [%]	ρ _{Act} [kg/m ³]	P _{max} [N]	δ _{MAX} [mm]	^S MAX [-]	σ _{MAX} [kPa]	σ ₃ [kPa]	σ ₁ [kPa]	ф _{оъs} [deg.]	c _{calc} [kPa]	ф _{саlc} [deg.]
A_1_135_105	8	_ ¥ _		<u></u>	192	8	826	325	32	2		22
A_2_135_105	200	12.4	1798	7189	0.020	9.8E-05	947	64	1011	40		
A_1_105_105	203	11.6	1739	5962	0.005	2.6E-05	786	28	813	-		62
A_2_105_105	203	11.8	1749	13	0.022	1.1E-04	2	28	813	50		~ 5
A_1_7.5_100		7.6	1779	1.1	1 95	1 8 1	(.)	0.50	1 se 1	0		
A_2_7.5_100		7.4	1727		-		3553	107.0	20		378	257
A_4_15_100	200	15.8	1740	3475	0.006	3.0E-05	458	55	513	40	64	30
A_3_15_100	203	15.4	1780	2758	0.020	1.0E-04	363	28	391	40	0830	
A_1_12_100	203	12.4	1714	5462	0.005	2.7E-05	720	28	747	40		325
A_2_12_100	203	12.2	1720	5017	0.007	3.3E-05	661	55	716	-	_	
A_1_9_100	203	10.7	1643	1640	0.034	1.7E-04	216	28	244	94 - C		92
A_2_9_100	÷	10.0	1615	1	1. iH		(19)	(140) (140)	1. se	14		0.7
B_1_24_103	191	22.9	1542	4843	0.012	6.2E-05	638	55	693	20	212	18
B_2_24_103	200	23.0	1521	4441	0.016	8.0E-05	- 585	28	640	10	212	10
B_1_195_103	195	18.5	1479	4452	0.005	2.4E-05	587	28	614	0	20	50
B_2_195_103	200	18.3	1579	5853	0.007	3.7E-05	771	55	826	20	14	
B_1_16_103	191	16.5	1579	9133	0.010	S.1E-05	1203	55	1259	12		25
B_1_16_103		16.4	1637	14	14	2	122	322	84	14	-	
B_1_27_98	197	23.1	1504	3627	0.016	7.9E-05	478	55	533	10	61	41
B_2_27_98	203	24.0	1445	2834	0.008	4.2E-05	373	28	401	0		910
B_1_22_98	196	21.2	1446	3475	0.013	6.6E-05	458	55	513	30		
B_2_22_98	198	21.5	1490	3812	0.011	5.SE-05	S02	28	530	0	8 SS	87
B_1_16_98		16.0	1393		1 10 m		32763	8 1078	3 er 1			24
B_2_16_98	205	16.3	1443	2476	0.020	9.8E-05	326	55	381	65		35
C_1_12_103	200	10.9	1732	3540	0.013	6.4E-05	467	55	522	12	110	26
C_2_12_103	197	10.9	1726	3214	0.009	4.8E-05	424	28	451	50	100	20
C_1_95_103	202	8.8	1756	3746	0.008	4.0E-05	494	55	549	50	07	33
C_2_95_103	202	9.1	1530	3236	0.007	3.6E-05	426	28	454	40	5 88 8 800	
C_1_8_103	194	8.4	1757	4637	0.021	1.1E-04	611	55	666	50	138	31
C_2_8_10	173	8.2	1740	4181	0.007	4.1E-05	- 551	28	579	50	100	840
C_1_13_98	216	12.1	1635	2280	0.019	9.0E-05	301	55	356	40	49	32
C_2_13_98	205	12.3	1623	1814	0.027	1.3E-04	239	28	267	40	8352	
C_1_10_98	203	9.3	1669	3540	0.013	6.4E-05	467	55	522	50	23	49
C_2_10_98	162	9.0	1659	2237	0.009	5.7E-05	295	28	322	40	2002	660
C_1_8_98	237	8.4	1698	2997	0.014	5.8E-05	395	55	450	-	118	20
C_2_8_98	210	8.8	1707	2780	0.011	S.0E-05	366	28	394	40		
D_1_16_103	202	15.6	1700	6331	0.023	1.2E-04	834	55	889	36	198	32
D_2_16_103	204	15.6	1695	5864	0.017	8.2E-05	773	28	800	40	1000	
D_1_13_103	210	13.1	1791	9306	0.011	5.1E-05	1226	55	1282	30	-	
D_2_13_103	211	13.2	1775	9991	0.012	5.5E-05	1317	28	1344	30	28	100
D_1_11_103	206	10.5	1693	9578	0.015	7.0E-05	1262	55	1317	12	100	57
D_2_11_103	205	10.6	1697	7374	0.011	5.3E-05	972	28	999	30	0.000	1000
D_1_18_98	206	18.3	1559	3312	0.035	1.7E-04	436	-55	492	40	55	40
D_2_18_98	213	18.4	1598	2552	0.016	7.7E-05	336	28	364	50		
D_1_14_98	205	14.3	1653	4485	0.012	6.0E-05	591	55	646	30	~	-
D_2_14_98	203	13.6	1680	4724	0.014	6.7E-05	622	28	650	36	- 201	296
D_1_11_98	203	10.7	1710	4094	0.013	6.2E-05	485	55	541		8	32
D_2_11_98	203	10.7	1726	7460	0.024	1.2E-04	983	28	1011	<u></u>		<u>.</u>

Table 5.16: Shear strength results for soils A, B, C and D

5.4 Field-Type Tests on Prismatic Samples

This section summarizes the results from the GeoGauge, PRIMA, Modified LWD, PVD and DCP tests performed on prismatic soil samples for four soils, two densities and three moisture contents for a total of 24 tests.

5.4.1 GeoGauge

The GeoGauge tests on every prismatic soil sample were preceded by the verification test (Appendix K) using the supplied reference mass. As an illustration, Fig. 5.19 shows the apparent stiffness variation over the frequency range 100–196 Hz and a line indicating the mean value stemming from one such test. Theoretically, this variation should be a quadratic function of the vibration frequency.

Figure 5.19: GeoGauge stiffness readings on verification mass

When testing soil samples, the average stiffness H_{SG} is displayed on the device after the

completion of every vibration test. On the basis of this quantity, the soil's Young's modulus is calculated as

$$E = H_{SG} * \frac{(1 - \nu^2)}{1.77 * R}$$
(5.9)

where E = Young's modulus (MPa); H_{SG} = GeoGauge reading (MN/m); ν = Poisson's ratio; R = radius of the annular GeoGauge footing (57.15 mm or 2.25 in.) [6]. The Young's modulus is determined from a spreadsheet supplied by Humboldt that utilizes 5.9 where H_{SG} is calculated from the in-phase (real) and out-of-phase (imaginary) force and displacement data from each of the 25 sampling frequencies (100–196 Hz) and a Poisson's ratio of 0.40. As an illustration, Fig. 5.20 shows the GeoGauge-soil stiffness for Soil A and a line indicating the mean value with the target water content of 13.5% and target standard Proctor density of 105%. It is the preference of the author to summarize the GeoGauge results for all soils, moisture contents, and densities in Fig. 5.21 showing the medians and variation of the Young's modulus estimates for each prismatic sample. The data show a significant variability of the modulus estimates for soils A and D. In contrast, the variation in the Young's modulus values for soils B and C is not as great. This observation is consistent with that in [11]. For completeness, Table 5.17 explicitly lists the values from Fig. 5.21. Note that for all tests in Table 5.17, the GeoGauge footing was in *direct contact* with the soil, and Table 5.18 are GeoGauge results for soil D with a thin layer of sand between the footing and compacted soil.

To assess the effect of contact conditions, additional sets of tests were performed with a thin sand layer between the soil and the footing as a means to achieve full contact. As an example, Fig. 5.22 shows the comparison of the Young's modulus estimates with and without the contact sand layer for soil D. It is evident that the presence of the contact layer results in an increase of the apparent Young's modulus of the soil.

Figure 5.20: GeoGauge stiffness measurements on soil A: $w_{\rm targ} = 13.5\%,\,105\%$ target standard Proctor

Figure 5.21: Young's modulus (median and range) values from GeoGauge tests: soils A, B, C, and D

Prismatic	$\mathrm{E}_{\mathrm{HIGH}}$	ELOW	E _{MEDIAN}	Mean	COV
Sample	[MPa]	[MPa]	[MPa]	[Mpa]	[%]
A_13.5_105	195	136	174	174	10
A_10.5_105	231	151	198	202	15
A_7.5_105	194	174	180	182	5
A_15_100	201	144	179	176	12
A_12_100	271	142	185	190	20
A_9_100	229	137	201	192	18
B_24_103	109	89	102	100	7
B_19.5_103	152	111	124	127	10
B_16_103	134	100	112	113	11
B_27_98	107	72	92	89	16
B_22_98	83	66	70	73	9
B_16_98	44	-2	33	29	53
C_12_103	87	64	72	74	10
C_9.5_103	109	80	93	93	9
C_8_103	109	82	99	98	10
C_13_98	85	59	64	67	15
C_10_98	94	45	83	71	28
C_8_98	106	83	95	96	9
D_16_103	212	143	157	165	14
D_13_103	290	131	216	212	25
D_11_103	186	128	151	157	14
D_18_98	128	103	123	119	7
D_14_98	181	98	113	128	23
D_11_98	148	104	120	124	13

Table 5.17: High, low, median, mean, and COV values for GeoGauge tests: soils A, B, C, and D without sand

Table 5.18: High, low, median, mean, and COV values for GeoGauge with sand for soil D

Prismatic Sample	Е _{нісн} [MPa]	E _{low} [MPa]	E _{MEDIAN} [MPa]	Е _{меан} [Mpa]	COV [%]
D_16_103_sand	242	205	224	225	6
D_13_103_sand	298	229	281	270	10
D_11_103_sand	279	192	258	253	10
D_18_98_sand	151	126	146	144	5
D_14_98_sand	177	152	166	165	5
D_11_98_sand	241	143	205	201	14

Figure 5.22: Effect of the contact sand layer on the Young's modulus values from GeoGauge tests: soil D

5.4.2 PRIMA and Modified LWD

Each prescribed location (see Fig. 4.15) on the surface of the prismatic sample was tested using the PRIMA 100 and Modified LWD devices. The results for each location were obtained by calculating the mean of three test replicates. Each (standard) PRIMA test was performed at three different drop heights, namely 100 mm, 500 mm, and 900 mm (see Appendix E). Five drops occured at each height. The first two drops at each drop height were used to seat the device. The following three drops were included in the analysis.

Two methods were used in analyzing data: the peak to peak (P2P) method and the frequency response function (FRF) technique. In the peak to peak method, the values corresponding to the maximum force and the maximum deflection were used to calculate the LWD-soil stiffness according to

$$k = \frac{F_{PEAK}}{x_{PEAK}} \tag{5.10}$$

In the FRF method, a discrete Fast Fourier Transform (DFT) was applied to the time histories of both force and deflection records. By examining the ratio of the cross-spectral and power spectral density functions of the DFT, the frequency response function was determined. Due to inherent limitations of the device's internal geophone, the low frequency range (< 20 Hz) of the motion measurements was characterized by a low SNR ratio and excluded from the analysis. To mitigate the problem, a single-degree-of-freedom (SDOF) system model was fit to experimental data in the range of 20-50 Hz and extrapolated through the "noisy" region. This fitting process resulted in the calculation of the SDOF's spring constant, identified with the static stiffness, k^{st} , of the PRIMA-soil system (see Section 3.1).

Regardless of the method for estimating the stiffness of the PRIMA-soil system, the soil's Young's modulus is computed as

$$E = 4I_s \frac{(1-\nu^2)}{\pi d} * k^* \tag{5.11}$$

where $k^* = k = F_{PEAK}/x_{PEAK}$ for the P2P method, and $k^* = k^{\text{st}}$ following the FRF approach. Here again the assumed value of the flexibility factor is $I_s = 1$, the Poisson's ratio is taken as $\nu = 0.4$, and d is the diameter of the loading plate. Tables 5.19 and 5.20 summarize the Young's modulus estimates stemming respectively from the PRIMA 100 and the Modified LWD device. The maximum, minimum, and median values for these tables combine all drop heights per location and all drops on the respective soil sample. For both devices, the modulus estimates are computed using the alternative P2P and FRF methods.

The gray cells indicate the tests performed using the modified Keros LWD device, and white cells indicate tests from the modified Carl Bro LWD device. For completeness, Figs. 5.23-5.38 show the FRF and P2P estimates for both PRIMA 100 and Modified LWD, three

Prismatic Sample	E _{P2P(MAX)} [MPa]	E _{P2P(MIN)} [MPa]	E _{P2P(MED)} [MPa]	E _{FRF(MAX)} [MPa]	E _{FRF(MIN)} [MPa]	E _{FRF(MED)} [MPa]
A_13.5_105	305	259	265	205	120	166
A_10.5_105		-	-		-	-
A_7.5_105	-	-	640	-	-	4
A_15_100	51	44	48	1040	232	511
A_12_100	213	196	210	273	222	240
A_9_100	237	217	228	229	211	224
B_24_103	÷	1	-			
B_19.5_103	246	158	195	339	212	262
B_16_103	235	142	185	388	196	280
B_27_98	207	116	166	429	247	312
B_22_98	118	44	77	1201	320	665
B_16_98	1	-	-	10 - 10	-	-
C_12_103	118	52	83	951	430	671
C_9.5_103	128	72	92	807	389	616
C_8_103	223	125	165	457	233	325
C_13_98		-				
C_10_98	91	34	56	1857	522	984
C_8_98	191	67	104	870	263	506
D_16_103	241	149	176	389	202	265
D_13_103	458	279	389	230	81	164
D_11_103	434	350	396	203	110	146
D_18_98	188	64	108	1041	232	511
D_14_98	173	105	144	527	268	359
D_11_98	278	188	236	297	154	217

Table 5.19: Maximum, minimum, and median Young's modulus estimates combining all drop heights from PRIMA 100 device: P2P and FRF methods

Prismatic Sample	E _{P2P(MAX)} [MPa]	E _{P2P(MIN)} [MPa]	E _{P2P(MED)} [MPa]	E _{FRF(MAX)} [MPa]	E _{FRF(MIN)} [MPa]	E _{FRF(MED)} [MPa]
A_13.5_105	-		11-1		11-1	
A_10.5_105	-	-	144	-	144	-
A_7.5_105	1-1	1.14	-		-	-
A_15_100			-			1.
A_12_100	-	-	-	-	-	-
A_9_100				-	10 4 0	10 - 0
B_24_103	142	79	115	138	39	69
B_19.5_103	203	56	153	191	71	148
B_16_103	-		1121		1121	-
B_27_98	198	145	157	201	139	161
B_22_98	645	290	360	253	125	173
B_16_98	19 1 7	-	<u>a</u> .	-		1940
C_12_103	129	119	119	84	76	76
C_9.5_103	149	140	142	126	65	86
C_8_103	249	158	198	209	85	141
C_13_98	97	77	83	58	44	52
C_10_98	110	59	99	103	38	48
C_8_98	2025	240	776	215	76	125
D_16_103	689	161	392	389	202	265
D_13_103	698	61	380	575	337	431
D_11_103	556	112	429	473	294	404
D_18_98	740	91	215	454	103	225
D_14_98		1.45	-		-	1920
D_11_98	1121	87	680	454	258	307

Table 5.20: Maximum, minimum, and median Young's modulus estimates from Modified LWD device: P2P and FRF methods

drop heights, and three testing locations. Note that some of the data from the prismatic soil samples were excluded from the figures due to unacceptable SNR because time histories could not be interpreted. This can be partially attributed to the internal resonance phenomena, the so-called "box effect", associated with the limited size and high stiffness of the samples tested. In particular, Figs. 5.23-5.38 include only one density-moisture combination for soil A, four for soil B, five for soil C, and six for soil D. From the trendlines, it appears that the FRF method of interpretation may not be suitable for the PRIMA 100 device on box samples, as it indicates the increase in modulus with the increase in strain (drop height). One of the possible reasons for this apparent behavior is that the falling weight typically produces impacts with higher energy and lower frequency content then the hammer tap thus possibly resulting in amplification of the "box effect". In contrast, the FRF method in combination with the Modified LWD device is expected to yield the most consistent estimates of the small strain Young's modulus from any of the field testing devices in this study.

Figure 5.23: Young's modulus values from PRIMA test (A_9_100)

Figure 5.24: Young's modulus values from PRIMA test (B_19.5_103)

Figure 5.25: Young's modulus values from PRIMA test (B_16_103)

Figure 5.26: Young's modulus values from PRIMA and Modified LWD tests (B_27_98)

Figure 5.27: Young's modulus values from PRIMA and Modified LWD tests (B_22_98)

Figure 5.28: Young's modulus values from PRIMA and Modified LWD tests (C_12_103)

Figure 5.29: Young's modulus values from PRIMA and Modified LWD tests (C_9.5_103)

Figure 5.30: Young's modulus values from PRIMA and Modified LWD tests (C_8_103)

Figure 5.31: Young's modulus values from PRIMA and Modified LWD tests (C_10_98)

Figure 5.32: Young's modulus values from PRIMA test (C_8_98)

Figure 5.33: Young's modulus values from PRIMA and Modified LWD tests (D_16_103)

Figure 5.34: Young's modulus values from PRIMA and Modified LWD tests (D_13_103)

Figure 5.35: Young's modulus values from PRIMA and Modified LWD tests (D_11_103)

Figure 5.36: Young's modulus values from PRIMA and Modified LWD tests (D_18_98)

Figure 5.37: Young's modulus values from PRIMA test (D_14_98)

Figure 5.38: Young's modulus values from PRIMA and Modified LWD tests (D_11_98)

5.4.3 Portable Vibratory Deflectometer (PVD)

During PVD testing, two accelerometers mounted on the PVD loading plate were used to trace the disk acceleration, while the applied, vibratory load was measured by a load cell. Spectrum analyzer Siglab 20-42 generated the discrete Fourier transform (DFT) of the acceleration and force records. A Matlab 7.0 script was used to compute the ratio of the induced plate acceleration and applied force in the frequency domain to determine the FRFs corresponding to each accelerometer. The FRFs from the two accelerometers were averaged to obtain the measured accelerance, less the mass of the PVD's vibrating footing. Using an initial estimate of the soil's shear modulus, the dimensionless theoretical data were "unwrapped" to compute the dimensionless theoretical compliance function. This function was further used to fit the theoretical accelerance to the measured accelerance by varying the soil's shear modulus. Finally, the Young's modulus was estimated from the "optimal" shear modulus, G^{opt} , assuming $\nu = 0.4$ for the Poisson's ratio so that

$$E = 2G^{\text{opt}}(1+\nu) = 2.8\,G^{\text{opt}} \tag{5.12}$$

Figure 5.39 shows an example fit between the experimental and fitted accelerance functions for Soil B ($w_{targ} = 19.5\%$, 103% target standard Proctor). The frequency range chosen for analysis was characterized by satisfactory SNR. For completeness, the actual values are listed in Table 5.21. The Young's modulus estimates from PVD testing are summarized in Fig. 5.40 and Table 5.21 which lists the high, median and low Young's modulus values for the prismatic samples. Note that the data for soil-moisture-density combinations with an unacceptable SNR in terms of the force and acceleration measurements (mostly those for Soil A) are excluded. A second, perhaps more important observation is that the listed Young's modulus estimates (i.e. those stemming from the measurements with acceptable SNR) are characterized by the values that are significantly smaller than those obtained from other field testing devices. A likely reason for such deviation is a relatively low stiffness of the PVD testing frame compared to that of the prismatic soil specimens [24]. If this hypothesis is correct, it can be further concluded that the utility of the PVD device in its present form may be limited to soils with a Young's modulus on the order of 100 MPa or less.

Figure 5.39: Experimental and fitted accelerance functions, Soil B ($w_{\text{targ}} = 19.5\%$, 103% target Proctor) at testing location 2

Figure 5.40: Young's modulus values (median and range) from PVD tests on prismatic samples: soils B, C and D

Table 5.21: High, low and median Young's modulus values from PVD tests on prismatic samples: soils B, C and D

Prismatic Sample	E _{HICH} [MPa]	E _{low} [MPa]	E _{median} [MPa]	
A 13.5 105	3 3	() 3 2	(4)	
A 10.5 105	23	25	322	
A 7.5 105	8	25	350	
A 15_100	-	52 7,8	00 00 0 0	
A 12 100			(99)	
A 9 100	23	28	2420	
B 24 103	25	16	20	
B 19.5 103	136	67	93	
B 16 103	34	28	33	
B 27 98	46	21	28	
B 22 98	58	25	33	
B 16 98	26	13	22	
C 12 103	43	1	029	
C 9.5 103	40	27	39	
C 8 103	59	21	54	
C 13 98	14	13	14	
C 10 98	27	21	23	
C 8 98	37	32	35	
D 16 103	111	33	33	
D 13 103	53	35	36	
D 11 103	102	31	84	
D 18 98	95	43	79	
D 14 98	107	21	66	
D 11 98	106	46	73	

5.4.4 Dynamic Cone Penetrometer

The Dynamic Cone Penetrometer (DCP) consists of a mass that impacts an anvil/coupler assembly, driving a cone into the soil. The corresponding displacements are recorded. The DCP penetration index (DPI) is the average depth per blow. The DPI does not include seating from the weight of the apparatus or the last drop. The first drop is included in the analysis due to the limited depth of the container. Note that typical practice, including the MN/DOT specification, does not include the seating drop in the DPI calculation. A typical penetration index versus depth is shown in Fig. 5.41.

Figure 5.41: DCP penetration index (DPI) vs. depth, Soil A $w_{\text{targ}} = 12\%$, 100% target standard Proctor

The California bearing ratio (CBR) was determined from the DPI following ASTM D 6951 and the Young's modulus was calculated using the method of [35]. In addition, [17] developed a correlation between the penetration index and resilient modulus. The units of DPI for both equations are mm/blow.

Equation 5.13 was used for a CBR greater than 10 percent.

$$CBR_{\%} = \frac{(292)}{(DPI)^{1.12}} \tag{5.13}$$

Equation 5.14 was used for a CBR less than 10 percent.

$$CBR_{\%} = \frac{(1)}{(0.017019 * DPI)^2} \tag{5.14}$$

Young's modulus was calculated from the CBR by using the equation suggested by [35]:

$$E_{MPa}^{(1)} = 17.58 * CBR^{0.64} \tag{5.15}$$

A relationship between DPI (mm/blow) and resilient modulus (MPa) for fine-grained materials was developed by [17]:

$$M_r^{(2)} = 532.1 * DPI^{-0.492} \tag{5.16}$$

Table 5.22 contains the estimates of modulus from the two approaches by utilizing the overall average penetration index. The DPI over the entire depth of the prismatic soil container excluded seating from the weight of the device and the final blow.

Prismatic Sample	E ⁽¹⁾ (Overall Average) [MPa]	M _r ⁽²⁾ (Overall Average) [MPa]			
A_13.5_105	110	154			
A_10.5_105	144	186			
A_7.5_105	213	244			
A_15_100	57	99			
A_12_100	114	158			
A_9_100	153	194			
B_24_103	57	99			
B_19.5_103	104	149			
B_16_103	122	166			
B_27_98	59	100			
B_22_98	67	110			
B_16_98	96	141			
C_12_103	109	154			
C_9.5_103	110	155			
C_8_103	131	174			
C_13_98	74	118			
C_10_98	89	134			
C_8_98	105	150			
D_16_103	105	150			
D_13_103	151	192			
D_11_103	228	255			
D_18_98	63	106			
D_14_98	85	130			
D_11_98	184	220			

Table 5.22: Young's modulus and resilient modulus estimated from DCP correlations

5.4.5 Percometer

The Percometer evaluated dielectric permittivities on compacted soil samples in the testing locations shown in Fig. 4.15. Furthermore, the device also tested soil B and soil D cylindrical specimens. Table 5.23 shows statistical data from Percometer results on the soil samples. Table 5.24 shows statistical data from the tests conducted on the cylindrical specimens. The Percometer was tested in the center of the trimmed end of the cylindrical specimen before resilient modulus testing. Trial Percometer tests were executed at the edge of the crosssectional area of the specimen. If the Percometer was run at the edge, the device would not display a result.

	Permittivity					Conductivity				
Container ID	High [J]	Low [J]	Median [J]	Mean [J]	COV [%]	High [µS/cm]	Low [µS/cm]	Median [µS/cm]	Mean [µS/cm]	cov [%]
A_13.5_105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
A_10.5_105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
A_7.5_105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
A_15_100	27.2	20.8	24.1	24.0	13.3	9	0	4	4.0	93.5
A_12_100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
A_9_100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B_24_103	47.2	34.9	40.0	40.8	14.6	44	8	23	24.4	54.8
B_19.5_103	42.5	18.7	33.0	31.7	24.1	108	0	14	21.3	144.4
B_16_103	30.2	11.2	28.7	26.3	22.9	44	0	18	20.1	93.0
B_27_98	45.4	22.9	32.3	32.2	23.4	21	0	3	5.6	126.3
B_22_98	49.4	31.3	40.3	40.3	14.1	135	0	52	54.4	79.4
B_16_98	24.0	16.0	20.9	20.1	14.3	48	18	23	26.6	42.6
C_12_103	19.3	11.2	17.6	16.4	17.3	117	8	44	46.9	72.9
C_9.5_103	17.9	14.4	16.4	16.2	6.4	60	8	28	25.9	67.6
C_8_103	17.7	10.9	16.2	15.6	14.1	46	0	13	16.3	96.6
C_13_98	18.6	10.5	17.2	15.8	20.6	43	0	0	8.6	223.6
C_10_98	15.3	13.9	14.7	14.5	3.7	90	2	61	45.9	69.8
C_8_98	18.0	15.8	17.1	17.0	3.8	74	25	49	52.9	28.6
D_16_103	45.6	35.4	38.2	39.6	9.3	114	3	57	61.6	59.9
D_13_103	38.6	30.0	34.4	34.6	9.4	54	2	21	22.7	69.6
D_11_103	31.8	23.0	26.1	26.9	13.1	26	0	7	7.6	108.4
D_18_98	49.4	28.5	43.4	41.8	16.7	211	3	16	60.1	142.9
D_14_98	36.6	21.2	30.0	30.1	18.7	185	39	96	105.5	44.5
D_11_98	28.7	17.0	25.5	24.4	15.5	61	0	28	23.1	92.3

Table 5.23: Statistical data from Percometer results on soil samples

 $"\mathrm{N/A"}$ indicates sample was not tested

Spec. #1 Permittivity Conductivity Container ID High Low Medain Mean COV High Low Median Mean COV [µS/cm] [µS/cm] [µS/cm] [µS/cm] [J] [J] [J] [%] [1] [%] A_13.5_105 N/A A_10.5_105 N/A A_7.5_105 N/A A_15_100 N/A A_12_100 N/A N/A N/A N/A N/A N/A N/A N/A N/A A_9_100 N/A B_24_103 N/A B_19.5_103 38.9 37.5 38.3 38.2 1.8 18 4 17 13.0 60.1 B_16_103 39.0 37.9 38.3 38.4 1.4 13 4 5 7.3 67.3 B_27_98 42.5 39.7 42.0 41.4 3.6 90 56 81 75.7 23.3 B_22_98 38.0 37.0 37.2 37.4 1.4 16 2 10 9.3 75.3 B_16_98 N/A C_12_103 N/A C_9.5_103 N/A C 8 103 N/A C_13_98 N/A C_10_98 N/A C_8_98 16.7 15.8 16.3 16.3 2.8 24 12 23 19.7 33.9 21 D_16_103 34.8 24.1 34.1 31.0 19.3 26 10 19.0 43.1 D_13_103 36.1 31.5 35.4 34.6 6.0 б 0 5 4.0 67.7 D_11_103 30.9 29.7 30.1 30.2 2.0 0 1 0.7 86.6 1 D_18_98 38.4 33.1 34.7 35.4 7.7 81 18 57 52.0 61.1 D_14_98 36.4 36.0 36.1 36.2 0.6 40 11 30 27.0 54.6 D_11_98 25.8 20.6 21.3 22.6 12.5 10 3 6 6.3 55.5 Spec. #2 A_13.5_105 N/A A_10.5_105 N/A A_7.5_105 N/A A_15_100 N/A A_12_100 N/A A_9_100 N/A B 24 103 N/A B_19.5_103 35.4 32.6 33.9 34.0 3.4 27 0 9 4.5 139.1 B_16_103 36.6 35.2 36.2 36.0 2.0 20 18 19 19.0 5.3 B_27_98 37.3 37.3 106 93.0 38.1 36.4 3.2 80 93 19.8 B_22_98 44.0 43.4 43.9 43.8 0.7 46 36 39 36.0 14.7 32.2 31.7 32.0 32.0 7 3 B_16_98 1.1 5 5.0 56.6 C_12_103 N/A C_9.5_103 N/A C 8_103 N/A C_13_98 N/A C_10_98 N/A C_8_98 19.1 18.8 19.0 19.0 0.8 18 14 15.0 28.2 10 D_16_103 31.4 30.1 31.0 30.8 2.2 7 8 8.0 18.3 10 D 13 103 36.1 32.3 34.8 34.4 4.5 0 4 1.0 127.6 11 D 11 103 2 30.9 30.2 30.7 30.6 1.2 3 1 1.0 69.3 D_18_98 35.6 34.4 34.4 34.8 2.0 49 21 33 30.0 42.9 D_14_98 33.3 31.7 32.4 32.5 2.5 21 13 18 21.0 25.2 1.8 0 94.4 D_11_98 25.3 24.4 25.0 24.9 5 3 3.0

Table 5.24: Statistical data from Percometer results on cylindrical specimens

[&]quot;N/A" indicates sample was not tested (see Section 4.4)

5.5 Comparison Between $BE-M_r$ and other Modulus Estimates

In what follows, a summary comparison is presented in the form of diagrams where the Young's modulus estimates from the field devices are plotted versus their laboratory counterparts from bender element and resilient modulus $(BE-M_r)$ testing. As explained in Section 5.3.1, a representative value of the modulus from $BE-M_r$ testing is associated with the state of stress corresponding to a confining pressure of 14 kPa (2 psi) and a deviator stress of 27 kPa (3.8 psi). The plots are organized according to the testing device used and the results are presented separately for each soil. For clarity of presentation, different symbols are used to distinguish between varying density and moisture conditions. The detailed information on the particular modulus estimates with density and moisture is contained in Section 5.2.

5.5.1 Bender Element (BE) versus Resilient Modulus (M_r)

As shown in Figs. 5.42-5.45, the bender element estimates of the Young's modulus (E_{BE}) correlate reasonably well with the resilient modulus. This is perhaps not surprising as both tests were performed on common specimens which ensured identical density and moisture conditions under a controlled laboratory setting. Given the fact that the strain levels associated with (seismic) BE testing were significantly smaller that those imposed by the M_r protocol, it was expected that the BE estimates would exceed the resilient modulus values under the same testing conditions. With reference to the relationship

$$E_{BE} = \alpha M_r, \tag{5.17}$$

this was confirmed by the results from soils B, C, and D which show the respective fitted values of $\alpha = 1.14, 2.14$ and 1.51, and $R^2 = 0.40$, N/A, 0.87, 0.47 (An $R^2 = N/A$, not available, was associated with the zero-intercept constraint imposed in the least squares fit.)

The interpretation for soil A was complicated by inconclusive shear wave velocities. As a result, a value of Poisson's ratio needed to be assumed: $\nu = 0.20$ and $\nu = 0.35$. These values bound the results from soil D, which behaved in a similar manner to soil A with respect to elastic response. The results from Soil A with $\nu = 0.35$ do not follow the expected trend, as $\alpha = 0.71$. However, with $\nu = 0.20$, the fitting parameter was $\alpha = 1.02$. Here it is also useful to note that A was the first soil tested and the *BE-M_r* procedures were being fine-tuned.

Figure 5.42: Bender element vs. resilient modulus for Soil A

Figure 5.43: Bender element vs. resilient modulus for Soil B

Figure 5.44: Bender element vs. resilient modulus for Soil C

Figure 5.45: Bender element vs. resilient modulus for Soil D

5.5.2 GeoGauge versus $BE-M_r$

Figures 5.46-5.53 show a comparison of the GeoGauge results with BE and M_r values for soils A–D, respectively. A striking feature of the results is an apparent insensitivity of the GeoGauge modulus estimates to the changes in density and moisture conditions. For the uniformity of presentation, however, a linear relationship is sought in the form

$$E_{GGD} = \alpha M_r, \tag{5.18}$$

yielding the α values in the range 0.34–0.71 for the M_r comparisons and 0.36–0.66 for the BE comparisons. The GeoGauge modulus estimations presented in this section do not include tests performed with sand.

Figure 5.46: GeoGauge vs. resilient modulus for soil A

Figure 5.47: GeoGauge vs. bender element for soil A

Figure 5.48: GeoGauge vs. resilient modulus for soil B

Figure 5.49: GeoGauge vs. bender element for soil B

Figure 5.50: GeoGauge vs. resilient modulus for soil C

Figure 5.51: GeoGauge vs. bender element for soil C

Figure 5.52: GeoGauge vs. resilient modulus for soil D

Figure 5.53: GeoGauge vs. bender element for soil D
5.5.3 PRIMA versus $BE-M_r$

In what follows, the four sets of PRIMA modulus estimates are presented in Figs. 5.54–5.81. In the order of appearance, they describe the results from the PRIMA 100 device (P2P and FRF estimates) and the Modified LWD device (P2P and FRF estimates).

PRIMA-100 P2P

Figures 5.54–5.61 show a comparison of the PRIMA-100 P2P results with $BE-M_r$ values for soils A–D. Note that the graphs incorporate the cumulative results for all featured drop heights and all testing locations. As discussed earlier, the meaningful results for Soil A are scarce owing to the difficulties in applying the established testing procedures to this soil. Regarding soils B, C and D, on the other hand, there is an overall trend of increasing PRIMA values with increasing M_r despite a significant scatter of the experimental data. With reference to the formula

$$E_{P2P} = \alpha M_r, \tag{5.19}$$

the values of α for the four soils are found to be 0.55, 0.53, 0.85 and 0.85 respectively. Here it is interesting to note that the PRIMA-100 P2P trend lines are consistently *below* the 1:1 reference relation despite the fact that the overall strain levels associated with PRIMA 100 testing are lower than those imposed by the M_r testing protocol. Furthermore, the α values for the BE comparisons are 0.80, 0.56, 0.43, and 0.65 respectively.

Figure 5.54: PRIMA-100 P2P vs. resilient modulus for soil A $\,$

Figure 5.55: PRIMA-100 P2P vs. bender element for soil A

Figure 5.56: PRIMA-100 P2P vs. resilient modulus for soil B

Figure 5.57: PRIMA-100 P2P vs. bender element for soil B

Figure 5.58: PRIMA-100 P2P vs. resilient modulus for soil C

Figure 5.59: PRIMA-100 P2P vs. bender element for soil C

Figure 5.60: PRIMA-100 P2P vs. resilient modulus for soil D

Figure 5.61: PRIMA-100 P2P vs. bender element for soil D

PRIMA-100 FRF

Figures 5.62-5.69 compare the PRIMA-100 FRF results with the corresponding $BE-M_r$ values for soils A–D, respectively. On introducing the formula

$$E_{FRF} = \alpha M_r, \tag{5.20}$$

as a means to relate the two sets of data, the values of α for the four soils are found to be 0.47, 1.22, 4.92 and 0.77 for the M_r comparisons and 0.74, 1.36, 2.48, and 0.64 for the BE comparisons. Beyond the aforementioned comment on the measurements from Soil A, it is noted that the PRIMA-100 FRF results are characterized by a significantly higher degree of scatter than their P2P counterparts in Figs. 5.54–5.61. This observation suggests that the enhanced, FRF interpretation of the PRIMA 100 results may not be suitable for the testing configurations considered.

Figure 5.62: PRIMA-100 FRF vs. resilient modulus for soil A

Figure 5.63: PRIMA-100 FRF vs. bender element for soil A

Figure 5.64: PRIMA-100 FRF vs. resilient modulus for soil B

Figure 5.65: PRIMA-100 FRF vs. bender element for soil B

Figure 5.66: PRIMA-100 FRF vs. resilient modulus for soil C

Figure 5.67: PRIMA-100 FRF vs. bender element for soil C

Figure 5.68: PRIMA-100 FRF vs. resilient modulus for soil D

Figure 5.69: PRIMA-100 FRF vs. bender element for soil D

Modified LWD P2P

For completeness, Figs. 5.70–5.75 compare the Modified LWD P2P results with the corresponding M_r and BE values for soils B–D. Here it is noted that the Modified LWD tests were not performed on Soil A. Again, with reference the formula

$$E_{P2P}^{\text{mod}} = \alpha M_r, \tag{5.21}$$

in can be seen that α for the soils B, C, and D takes the respective values of 0.87, 1.11 and 1.25 for M_r and 0.76, 0.60, 1.05 for BE. In light of the preceding presentation (PRIMA-100 FRF), however, the Modified LWD measurements should not be used in conjunction with P2P data interpretation.

Figure 5.70: Modified LWD P2P vs. resilient modulus for soil B

Figure 5.71: Modified LWD P2P vs. bender element for soil B

Figure 5.72: Modified LWD P2P vs. resilient modulus for soil C

Figure 5.73: Modified LWD P2P vs. bender element for soil C

Figure 5.74: Modified LWD P2P vs. resilient modulus for soil D

Figure 5.75: Modified LWD P2P vs. bender element for soil D

Modified LWD FRF

Figures 5.76–5.81 show a comparison of the Modified LWD FRF results with the corresponding $BE-M_r$ values for soils B, C and D, respectively. Similar to the case of the PRIMA-100 P2P results, there is an overall trend of increasing PRIMA values with increasing M_r . The trend lines computed according to

$$E_{FRF}^{\text{mod}} = \alpha M_r, \qquad (5.22)$$

yield the α values that are closer to unity that in any other field test performed on soils B, C and D. In particular, the values of α for these three soils were found to be 0.59, 0.79 and 1.04 for the Modified LWD FRF versus M_r estimates. The Modified LWD FRF versus BE estimates yielded α values of 0.54, 0.41, 0.86. In view of this result, this field device and associated data interpretation is recommended as a tool for relating the laboratory and field measurements of the Young's modulus of subgrade soils.

Figure 5.76: Modified LWD FRF vs. resilient modulus for soil B

Figure 5.77: Modified LWD FRF vs. bender element for soil B

Figure 5.78: Modified LWD FRF vs. resilient modulus for soil C

Figure 5.79: Modified LWD FRF vs. bender element for soil C

Figure 5.80: Modified LWD FRF vs. resilient modulus for soil D

Figure 5.81: Modified LWD FRF vs. bender element for soil D

5.5.4 PVD and $BE-M_r$

Figures 5.82–5.87 compare the respective PVD results with their $BE-M_r$ counterparts for soils B, C and D. Here it is noted that the PVD testing of soil A did not yield meaningful results and is thus omitted from the presentation. An interesting feature of the the plots is that the PVD estimates generally provide a lower bound on all field estimates of the Young's modulus. With reference to the equation

$$E_{PVD} = \alpha M_r, \tag{5.23}$$

this observation is evident from the fact that the values of α are less than 0.3 for all three soils tested. Furthermore, the same can be said for the α values comparing the PVD to BE, where ≤ 0.16 . As examined earlier, this behavior is perhaps a consequence of the relatively low stiffness of the PVD loading frame relative to stiffness of the soils tested. In general, such configurations tend to result in an under-estimation of stiffness [24].

Figure 5.82: PVD vs. resilient modulus for soil B

Figure 5.83: PVD vs. bender element for soil B

Figure 5.84: PVD vs. resilient modulus for soil C

Figure 5.85: PVD vs. bender element for soil C

Figure 5.86: PVD vs. resilient modulus for soil D

Figure 5.87: PVD vs. bender element for soil D

5.5.5 DCP versus $BE-M_r$

Figures 5.88–5.99 compare the respective DCP estimates with the correlated M_r and BE values for soils A, B, C and D. As noted previously, the DCP provides an index for evaluating the uniformity of the subgrade. In addition, the various correlations for strength and stiffness can be used to compare with the laboratory measurements. With reference to the equation

$$E_{DCP} = \alpha M_r, \tag{5.24}$$

the values of α vary from 0.38 to 1.28. The α values for the BE comparisons to the Young's modulus correlations are 0.44, 0.30, 0.46, and 0.35. Thus, the correlations need to be modified for the particular soils tested.

Figure 5.88: DCP-CBR correlation vs. resilient modulus for soil A

Figure 5.89: DCP-CBR correlation vs. bender element for soil A

Figure 5.90: DCP-DPI correlation vs. resilient modulus for soil A

Figure 5.91: DCP-CBR correlation vs. resilient modulus for soil B

Figure 5.92: DCP-CBR correlation vs. bender element for soil B $\,$

Figure 5.93: DCP-DPI correlation vs. resilient modulus for soil B

Figure 5.94: DCP-CBR correlation vs. resilient modulus for soil C

Figure 5.95: DCP-CBR correlation vs. bender element for soil C

Figure 5.96: DCP-DPI correlation vs. resilient modulus for soil C

Figure 5.97: DCP-CBR correlation vs. resilient modulus for soil D

Figure 5.98: DCP-CBR correlation vs. bender element for soil D

Figure 5.99: DCP-DPI correlation vs. resilient modulus for soil D

Chapter 6 Closing Remarks

To elevate the quality assurance practices and field testing of unpaved subgrade and granular base profiles, the project focused on: i) the development of a laboratory procedure for understanding and quantifying the effects of moisture on the soil's stiffness and strength characteristics; and ii) relating the laboratory measurements to field estimates of the associated soil parameters. The test matrix included four fine-grained soils representative of the road conditions in Minnesota. For each soil, two Proctor densities and three moisture contents were tested for a total of 24 soil-moisture-density combinations.

The testing methodology incorporated i) laboratory simulation of the field compaction by means of a servo-hydraulic load frame, ii) field-type testing on prismatic soil samples with approximate volume of 0.1m^3 , and iii) stiffness and strength testing on cylindrical soil specimens. The container for the prismatic soil volumes was designed to minimize the boundary effects; the reduced-scale compaction was designed to minimic the construction conditions. The field-type testing includes i) the GeoGauge, ii) the PRIMA 100 device, iii) the modified LWD device, iv) the Portable Vibratory Deflectometer and v) the Dynamic Cone Penetrometer (DCP). To compare the Young's modulus values stemming from the field and laboratory experiments, cylindrical specimens were extracted from the prismatic soil volumes and tested for the resilient modulus (M_r) and small-strain Young's modulus using bender elements. The results reveal that stress state, moisture, and density have a significant effect on the Young's modulus and strength of all four soils. On the element testing side, the small strain estimates from the bender element tests were in good agreement with the resilient modulus values. In the context of field testing, there was significant variation of the estimated Young's modulus depending upon the particular testing device. It was found, however, that the values from the modified LWD device correlated reasonably well with the M_r values for all soil conditions. The DCP was effective in quantifying the uniformity of compacted soil volumes, and through empirical formulas, the apparent Young's modulus.

Among all field testing and data interpretation schemes, the Modified LWD approach used in conjunction with the frequency response function (FRF) interpretation procedure was found to yield the values of Young's modulus that are, in terms of the trend line, closest to the resilient modulus values. Accordingly, it is recommended for a systematic field trial on fine-grained soils in the State of Minnesota.

Recommendations

• Establishing the relationship of the M_r data with respect to established pavement design modulus values

The relationship of the M_r values with respect to typical pavement design M_r values must be considered within the context of the soil type, stress state, and compacted characteristics (density, soil structure, moisture, and aging). In addition, the compactive effort and method to achieve a density at a given moisture level are parameters that should be considered in evaluating stiffness. It is recommended that future work investigate M_r values at a fixed compactive effort, and compare the measured M_r with design values.

• Validity of M_r data using one lvdt that violates SNR

Evaluation of data to estimate M_r values must involve measurements of deformation from three LVDTs, and this was done for all reported M_r values. In general, two LVDTs cannot provide sufficient information to calculate axial strain. However, the criterion of signal-tonoise ratio being greater than three (SNR > 3) for all LVDTs could be relaxed to allow one LVDT to have an SNR > 1.5 while the other two LVDTs must have an SNR > 3 because of the position of the sensor relative to the axis of rotation. Future work should consider the effect of the lower SNR value for one LVDT in evaluation of M_r .

• MnROAD soil, M_r tests

Based on the bender element results, it appears that the M_r values may have been affected by the sensitivity of the LVDTs. This illustrates the importance of bender element measurements in conjunction with M_r testing. Further testing should be performed on Soil A (MnROAD soil) to verify the reported stiffness values. Bender elements or some other nondestructive seismic procedure should be considered during M_r testing.

• Resilient modulus data as a function of stress state, density, and moisture

The variation of M_r values with stress state, density and moisture is presented in Figures 5.5 - 5.16. Future work should include a regression analysis to quantify the behavior exhibited in these figures.

• Density and moisture changes, and time effects on specimens, field-type tests to M_r

To minimize the changes in moisture from the time of specimen preparation to the time of its testing, prismatic soil containers were tested on the day of their preparation as it was difficult to moisture-seal such large volumes of soil. Due to a broad scope of the project, there was an inherent time delay between the extraction of cylindrical specimens and their (resilient modulus/bender element/strength) testing as summarized in Table 4.6. To prevent significant moisture changes during this delay period, the specimens were i) wrapped in a plastic wrap, ii) placed inside moisture-sealed containers, and iii) stored inside a humidity-controlled room. The "post-mortem" tests on the strength-tested resilient modulus specimens revealed

that the total loss of moisture (from the day of extraction) was typically 0.5-1% and no more than 3% in terms of the specimens' water content (Table 5.3). The effect of aging during this period that ranged from three weeks to nine months is not known.

• Box size boundary effects for each device

The final design of the prismatic soil container (Fig. 4.1) used to evaluate the performance of field testing devices is a result of a year-long study (Chapter 4 and Appendix A). In the investigation, pilot experiments were performed using Quikrete Sand # 1113 and the Portable Vibratory Deflectometer (PVD) as test soil and field device, respectively. A comparison of the PVD results stemming from the use of a "small" and "large" plywood container (see Fig. 4.3 and Table 4.2) led to the conclusion that the "small" container is sufficient size to reasonably simulate the field conditions. The final design resulted in a prismatic steel container (Fig. 4.1) that is measurably larger that the "small" plywood box. The final dimensions were limited by the size of the MTS load frame used to compact the soils. While the particular effect of the container boundaries on the performance of each field device cannot be ascertained at this point, it is expected that "box effect" on "low"-frequency devices is larger than that on a "high"-frequency apparatus. In view of its importance on parametric laboratory studies, this topic is recommended as a topic of future research.

• Device comparison considering stress state, density, and moisture

The comparison of field testing devices is by default limited to the in-situ stress condition (sometimes referred to as the K_0 -condition). Accordingly, no parametric study is possible in this regard. The effects of moisture and density on the device comparison, on the other hand, are summarized qualitatively in Figs. 5.42-5.99 where each data point is marked according to the moisture and density state of soil tested. While some of the figures indicate that the field testing devices may be less sensitive to an increase in soil density than the resilient modulus test, the overall trends vary from one soil (and device) to another, and no overall statement can be made in this regard without further interpretation of the data.

• The objective of this research was the following: To elevate the quality assurance practices and field testing of unpaved subgrade and granular base profiles, the proposed project is focused on: 1) the development of a laboratory procedure for understanding and quantifying the effects of moisture on the soil's stiffness and strength characteristics; and 2) relating the laboratory measurements to field estimates of the associated soil parameters.

To the authors' knowledge, this is one of the first broad-scoped studies aimed at comparing the laboratory and field measures of the soil's Young's modulus under varying density and moisture conditions. In this investigation, we advanced a number of new concepts such as the combined bender element-resilient modulus ($BE-M_r$) testing - Item 1 - and improved (frequency analysis-based) interpretation of LWD measurements - Item 2. While the questions of improving the QC/QA practices and relating the field to laboratory measurements are far too complex to be definitively answered within a single study, we believe that the results of this investigation represent a necessary cornerstone for advancing the theory and practice of pavement construction.

References

- ASTM Desig. 1587, Standard practice for thin-walled tube sampling of soils for geotechnical purposes. In 2000 ASTM International. American Society of Testing Materials, 2000.
- [2] ASTM Desig. 2216-05, Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. In 2005 ASTM International. American Society of Testing Materials, 2002.
- [3] ASTM Desig. 6758-02, Standard test method for measuring stiffness and apparent modulus of soil and soil-aggregate in-place by an electro-mechanical method. In 2006 ASTM International. American Society of Testing Materials, 2002.
- [4] ASTM Desig. 6951-03, Standard test method for use of the Dynamic Cone Penetrometer in shallow pavement applications. In 2005 ASTM International, pages 905–911. American Society of Testing Materials, 2003.
- [5] Adek. http://www.roadscanners.com/en/hardware/percometer_v_7.html. February. 2006.
- [6] K. A. Alshibli, M. Abu-Farsakh, and E. Seyman. Laboratory evaluation of the GeoGauge and light falling weight dflectometer as construction control tools. *Jour*nal of Materials in Civil Engineering ASCE, 17(5):560–569, 2005.
- [7] F. Amini. Potential Application of Dynamic and Static Cone Penetrometers in MDOT Pavement Design and Construction. Master Thesis, Jackson State University, 2003.

- [8] E. G. M. Brignoli and K. H. Stokoe. Measurements of shear waves in laboratory specimens by means of piezoelectric transducers. *Geotechnical Testing Journal, ASTM*, 19 (4):384–397, 1996.
- [9] R. Camargo, B. Larsen, B. Chadbourn, R. Roberson, and J. Siekmeier. Intelligent Compaction: A Minnesota Case History. *Proceedings of the 54th Annual Geotechnical Engineering Conference*, pages 109–128, 2006.
- [10] B. Chadbourn. Determining the Angle and Axis of Rotation of a Resilient Modulus Specimen. Internal Report, Minnesota Department of Transportation, Jan 28 2005.
- [11] D. H. Chen, W. Wu, R. He, J. Bilyeu, and M. Arrelano. Evaluation of In-Situ Resilient Modulus Testing Techniques. Texas DOT, Austin, TX, 2000.
- [12] R. F. Craig. Craig's Soil Mechanics. Spon Press, New York, NY, 7 edition, 2004.
- [13] S. Dai. Personal communication, Minnesota Department of Transportation, 2004.
- B. M. Das. Fundamentals of Geotechnical Engineering. Brooks/Cole, Pacific Grove, CA, 1 edition, 1999.
- [15] P. Davich. Small Strain and Resilient Modulus Testing of Granular Soils. Report, Minnesota Department of Transportation, 2004.
- [16] GDS. GDS Bender Element Software Handbook, 2002.
- [17] K. P. George and W. Uddin. Subgrade Characterization for Highway Pavement Design. Master Thesis, Mississippi Department of Transportation, 2000.
- [18] B. B. Guzina. Dynamic Behavior of Surface Foundations on Heterogeneous Soils. Master Thesis, University of Colorado, Department of Civil, Environmental, and Architectural Engineering, 1992.
- [19] O. J. Hoffmann, B. B. Guzina, and A. Drescher. Verification and Enhancements of Portable Deflectometer Devices. MnDOT report # MNRC 2003-10, Minnesota Department of Transportation, 2003.
- [20] F. Iverson. PRIMA 100 User's Manual, 2003.
- [21] V. Jovicic, M. R. Coop, and M. Simic. Objective criteria for determining G_{max} from bender element tests. *Geotechnique*, 46(2):357–362, 1996.
- [22] K. A. K. Karunaprema and A. G. H. J. Edirisinghe. A laboratory study to establish some useful relationships for the use of Dynamic Cone Penetrometer. In *EJGE*, pages Vol. 7, Bundle B. Electronic Journal of Geotechnical Engineering. http://www.ejge.com/index_ejge.htm, 2002.
- [23] W. Kim, M. Loken, B. Chadbourn, and J. Labuz. Uniformity fo Deformation in Element Testing. In Geotech Testing Journal, Submitted, 2006. ASTM.
- [24] J. F. Labuz. The problem of machine stiffness revisited. Geophysical Research Letters, pages 571–575, 1991.
- [25] L. Lenke, R. Y. S. Pak, and H. Y. Ko. Boundary effects in modeling of foundations subjected to vertical excitation. A A. Balkema Rotterdam, 1991.
- [26] J. E. Luco and R. A. Westmann. Dynamic response of circular footings. Journal of Engineering Mechanics, ASCE, 117:1381–1395, 1971.
- [27] J. Lysmer and J. F. E. Richart. Dynamic response of footings to vertical loading. Journal of Soil Mechanics and Foundation Division, ASCE, 94:65–91, 1966.
- [28] M. D. Nazzal. Field Evaluation of In-Situ Test Technology for Q_C/Q_A During Construciton of Pavement Layers and Embankments. Master Thesis, Louisiana State University and Agricultural and Mechanical College, Louisiana, 2003.

- [29] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308–313, 1965.
- [30] R. H. Osburn. On the Enhancement of Elastostatic Pavement Diagnosis. Master Thesis, University of Minnesota, Department of Civil Engineering, 2004.
- [31] R. Y. S. Pak and A. T. Gobert. Forced vertical vibration of rigid discs with arbitrary movement. *Journal of Engineering Mechanics*, 117(11):2527–2549, 1991.
- [32] R. Y. S. Pak and B. B. Guzina. Dynamic characterization of vertically loaded foundations on granular soils. *Journal of Geotechnical Engineering*, ASCE, 121(3):274–286, 1995.
- [33] V. Papa, F. Silvestri, and F. Vinale. Analisi delle proprieta di un tipico terreno piroclastco mediante prove di taglio semplice. In Atti del I Convegno del Gruppo Naionale di Coordinamento per gli Studi di Ingegneria Geotecnica, pages 265–286, 1988.
- [34] L. D. Phillips. Field Evaluation of Rapid Airfield Assessment Technologies. Master Thesis, Mississippi State University, 2005.
- [35] W. D. Powell, J. F. Potter, H. C. Mayhew, and M. Nunn. The structural design of bituminous roads, TRRL Report LR 1132, 62 pp., 1984.
- [36] P. A. Przesławski. Characterization of Granular Base Materials Using Portable Vibratory Deflectometer and Bender Element Testing. Master Thesis, University of Minnesota, Department of Civil Engineering, 2004.
- [37] F. E. Richard, J. R. Hall, and R. D. Woods. Vibrations of Soils Foundations. Princeton Hall, Englewood Cliffs, 1970.
- [38] J. Siekmeier. Personal communication, Minnesota Department of Transportation, June, 2006.

- [39] J. A. Siekmeier, D. Young, and D. Beberg. Comparison of the Dynamic Cone Penetrometer With Other Tests During subgrade and Granular Base Characterization in Minnesota. In M. G. Pottinger and T. J. Yager, editors, Nondestructive Testing of Pavements and Backcalculation of Moduli, pages 175–188. ASTM, 2000.
- [40] G. F. Sowers and C. S. Hedges. Dynamic Cone Penetrometer for shallow in-situ penetration testing. In Vane Shear and Cone Penetration Resistance Testing of In-Situ Soils, pages 29–37. American Society of Testing Materials, 1966.
- [41] Humboldt Manufacturing. GeoGauge (Soil Stiffness/Modulus) User Guide Version 3.8, 2000.
- [42] Humboldt Manufacturing. GeoGauge (Soil Stiffness/Modulus) User Guide Version A, 2002.
- [43] Humboldt Manufacturing. Personal Communication with Representitives, February 16, 2005.
- [44] G. Viggiani and J. H. Atkinson. Interpretation of bender elements tests. *Geotechnique*, 45(1):149–154, 1995.
- [45] M. W. Witczak. Harmonized test methods for laboratory determination of resilient modulus for flexible pavement design. In NCHRP Research Research Digest, Washington D.C., 2004. Transportation Research Board.

Appendix A Container Verification

A.1 Description of Soils

Sieve analysis results performed on the sands used for container verification are in Table A.1 and A.2. The mean value of the maximum dry unit weight $\gamma_{d(max)} = 17.81 \frac{kN}{m^3}$ (Table A.3). The mean value of the minimum dry unit weight $\gamma_{d(max)} = 15.91 \frac{kN}{m^3}$ (Table A.4).

U.S.	Opening	Percent of soil	Percent
Standard	[mm]	retained on	passing
Sieve		each sieve	
Size			
10	2.000	0.97	99.03
20	0.850	14.86	84.17
40	0.425	43.30	40.87
60	0.250	31.08	9.80
100	0.150	8.40	1.40
200	0.075	1.26	0.14
Pan	2552	0.14	0

Table A.1: Grain size analysis for Play Sand

The maximum and minimum dry unit weight values for the Silica Sand were provided by U.S. Silica Company. According to the test performed by U.s. Silica Company (Certificate of Analysis), the maximum and minimum dry unit weights were $\gamma_{d(max)} = 17.47 \frac{kN}{m^3}$ and $\gamma_{d(min)} = 14.41 \frac{kN}{m^3}$, respectively.

A.2 Experimental Procedure

The height and the opening of the flexible hose were varied to obtain the desired density as shown in Table A.5.

The circular loading plate of the exciter was placed directly on the sand surface. The sensors attached to the loading plate measured the force and acceleration in the time domain.

U.S. Standard	Opening	Percent of soil	Percent
Sieve Size	[mm]	retained on each sieve	passing
20	0.850	0.0	100
40	0.425	0.4	99.8
50	0.300	3.2	99.4
70	0.212	19.5	96.2
100	0.150	48.1	76.7
140	0.106	24.4	28.6
200	0.075	3.8	4.2
270	0.053	0.4	0.4
Pan		0.0	0.0

Table A.2: Grain size analysis for Silica Sand

Table A.3: Maximum density and dry unit weight for Silica Sand

No. of sample	$\rho_{d(max)}$ [kg/m ³]	$\gamma_{d(max)}$ [kN/m ³]
1	1820	17.85
2	1840	18.05
3	1800	17.66
4	1810	17.76
5	1820	17.85
6	1800	17.66

With reference to Eq. 3.10, the vertical dynamic force applied to the loading plate was taken as the input to the system, whereas the vertical acceleration and resulting force at the soil foundation interface was taken as an output.

To investigate the sand stiffness, the static pre-load exerted was varied by the moving armature of the exciter. The armature was connected to the body of the exciter by a set of internal flexures, and the magnitude of the downward force on the sand was adjusted by changing the distance between the exciter's body and the sand. Three different average contact pressures q were selected. The magnitude of the average static pressure was determined

No. of sample	$\rho_{d(max)}$ [kg/m ³]	$\gamma_{d(max)}$ [kN/m ³]
1	1820	17.85
2	1840	18.05
3	1800	17.66
4	1810	17.76
5	1820	17.85
6	1800	17.66

Table A.4: Minimum density and dry unit weight for Silica Sand

 Table A.5: Pluviation results

h [cm]	opening size ϕ [cm]	$\gamma_{d} [kN/m^{3}]$	D _r [%]
48.30	0.74	17.63	82
60.10	1.24	17.37	79
60.10	1.11	17.41	81
60.10	0.81	17.23	83
81.30	0.81	17.33	87
78.70	0.63	17.60	90

at the end of each test from the load cell readings while lifting up (unloading) the exciter from the sand surface. To assess the influence of the walls, the location of the exciter was varied as shown in Fig. A.1. The experimental data were fitted to the theoretical solution, Eq. 3.26 which contains two material parameters, namely, the Poisson's ratio ν and shear modulus G. These parameters pertain to an equivalent, linear elastic material model. To determine the values of ν and G, the accelerance function was used for fitting purposes. As examined earlier, the latter quantity is given by:

$$A(f) = \left[\mathcal{M}(f) - \frac{1}{(2\pi f)^2 C_{vv}(f)}\right]^{-1}$$
(A.1)

where C_{vv} is the interfacial compliance obtained from theoretical solution, (3.24), and $\mathcal{M}(f)$ is the loading-plate transfer function, (3.21). To obtain ν and G, this quantity was fitted to the accelerance function, (3.20), obtained from experimental measurements.

Figure A.1: Location of the center of the loading plate in the small container

A.3 Results

In the fitting procedure, software Matlab 7.0.1 was used. At each frequency point where the experimental data was measured, the theoretical value of the ordinary accelerance A(f) was computed by minimizing a misfit-type objective function for different initial guess values of ν and G. Two different fitting schemes were applied: in the first, the minimization was performed for both parameters ν and G; in the second, a realistic mean value of $\nu = 0.25$ was assumed. A built-in MATLAB algorithm was used based on an unconstrained nonlinear optimization. The algorithm uses the simplex search method of Nelder and Mead [29]. The objective function, D, was defined as a cumulative squared difference between the experimental and analytical values of A(f) in terms of its real and imaginary parts. Figures A.2, A.3, and A.4 illustrate typical results of the ordinary accelerance fitting procedure when minimizing both ν and G for one location of the exciter and different average contact pressure q in the small container. The results for the large container are shown in Figs. A.5, A.6, A.7.

Figure A.2: Experimental and fitted ordinary accelerance functions for small container, $\mathbf{q}=2.72~\mathrm{kPa}$

Figure A.3: Experimental and fitted ordinary accelerance functions for small container, $\mathbf{q}=4.07~\mathrm{kPa}$

Figure A.4: Experimental and fitted ordinary accelerance functions for small container, $\mathbf{q}=6.31~\mathrm{kPa}$

Figure A.5: Experimental and fitted ordinary accelerance functions for small container, $\mathbf{q}=6.31~\mathrm{kPa}$

Figure A.6: Experimental and fitted ordinary accelerance functions for large container, $\mathbf{q}=9.29~\mathrm{kPa}$

Figure A.7: Experimental and fitted ordinary accelerance functions for large container, $\mathbf{q}=8.18~\mathrm{kPa}$

Figures A.8, A.9 and A.10 show the results of minimization with respect to G for = 0.25 in the small container. The results for the large container are shown in Figs. A.11, A.12 and A.13. When comparing the ordinary accelerance function obtained from the tests in

Figure A.8: Experimental and fitted ordinary accelerance functions for small container, q=2.72 kPa

the small and large containers, it is evident that the local fluctuations (caused primarily by the container dimensions) are greater in the case of the small container. However, the fitted ordinary accelerance functions were nearly identical for both tests. In addition, the computed values of the equivalent shear modulus G were practically independent on the location of the exciter on the surface of the sand in the box. This implies insignificant influence of the boundaries of the containers on the values of G. Figure A.14 shows the equivalent shear modulus G as a function of the average contact pressure q. The results can be approximated by the expression

$$G = G_0 \frac{q}{q'}^{0.58}$$
(A.1)

where q' = 1 kpa is the reference pressure, and $G_0 = 4.23MPa$. The values of the equivalent

Figure A.9: Experimental and fitted ordinary accelerance functions for small container, $\mathbf{q}=4.07~\mathrm{kPa}$

Figure A.10: Experimental and fitted ordinary accelerance functions for small container, q = 6.31 kPa

Figure A.11: Experimental and fitted ordinary accelerance functions for large container, q = 10.61 kPa

Figure A.12: Experimental and fitted ordinary accelerance functions for large container, q = 9.29 kPa

Figure A.13: Experimental and fitted ordinary accelerance functions for large container, q = 8.18 kPa

Figure A.14: Equivalent shear modulus vs. average contact pressure

shear modulus G were used to calculate the vertical static stiffness of the circular loading plate/elastic half-space system given by

$$k_v = \frac{4Ga}{1-\nu} \tag{A.2}$$

Figure A.15 shows the computed vertical static stiffness for $\nu = 0.25$. In the tests conducted

Figure A.15: Normal static stiffness vs. average contact stress for various locations of the exciter (small container and large container)

on Silica Sand by Guzina [18], a similar relationship (Eq. A.1) between the equivalent shear modulus and average contact pressure with n = 0.5 was obtained. As shown in Fig. A.16, the difference in data fit for Play Sand assuming n = 0.58 and n = 0.5 is small.

Figure A.16: Equivalent shear modulus vs. average contact pressure

Appendix B Soil Information

B.1 Soil A

Figure B.1: Soil A (MnROAD) Proctor curve

Mass of the Mold and Wet Soil [g]	Mold [g]	Wet Soil and Pan [g]	Dry and Pan [g]	Pan [g]	Moisture Content [%]	Unit Weight [KN/m ³]	Dry Unit Weight [KN/m ³]	Unit Weight [pcf]	Dry Unit Weight [pcf]
6005.60	4238.60	934.50	879.10	352.30	10.52	18.38	16.63	116.94	105.81
6052.00	4238.60	887.80	826.40	359.90	13.16	18.86	16.67	120.01	106.05
6121.70	4238.60	998.00	911.40	371.00	16.03	19.58	16.88	124.62	107.41
6110.70	4238.60	849.60	765.30	359.20	20.76	19.47	16.12	123.90	102.60
6010.00	4238.60	1055.20	980.30	352.20	11.92	18.42	16.46	117.23	104.74
6073.50	4238.60	1084.10	985.40	353.60	15.62	19.08	16.50	121.43	105.03
6062.30	4238.60	942.80	842.50	356.30	20.63	18.97	15.72	120.69	100.05

Table B.1: Soil A (MnROAD) Proctor table

Figure B.2: Soil A (MnROAD) sieve analysis curve

	Test One	Test Two
Sieve Size	Passing [%]	Passing [%]
2 in.	100.00	100.00
1 in.	99.50	100.00
0.75 in.	99.50	99.70
0.375 in.	98.50	98.20
#4	96.90	96.00
#10	93.70	93.80
#20	89.50	89.70
#40	84.30	85.00
#60	77.30	78.20
#100	68.30	69.20
#200	58.60	59.70

Table B.2: Soil A (MnROAD) sieve analysis table

Table B.3: Soil A (MnROAD) classification

	Test One	Test Two	
Liquid Limit	30.50	25.80	
Plastic Limit	17.40	16.40	
Plasticity Index	13.10	9.40	
% Silt	46.00	45.30	
% Clay	12.60	14.50	
Textural Class	L	L	
AASHTO Group	A-6	A-4	
Group Index	5.00	2.90	
Opt. Moisture [%]	14.40	16.10	
Max Dry Unit Weight [pcf]	105.30	107.40	
R-Value	15.60	17.50	
Specific Gravity	-	-	
AASHTO Testing Methods	, T87 T88 T89 T90 T99 T10 T190		

B.2 Soil B

Figure B.3: Soil B (TH 23) Proctor curve

Mass of the Mold and Wet Soil [g]	Mold [g]	Wet Soil and Pan [g]	Dry and Pan [g]	Pan [g]	Moisture Content [%]	Unit Weight [KN/m ³]	Dry Unit Weight [KN/m ³]	Unit Weight [pcf]	Dry Unit Weight [pcf]
5788.50	4214.00	1006.00	895.50	352.60	20.35	16.37	13.61	104.20	86.58
5931.60	4214.00	845.00	742.30	356.80	26.64	17.86	14.10	113.67	89.76
5913.70	4214.00	777.30	660.50	353.30	38.02	17.68	12.81	112.49	81.50
5788.10	4214.00	942.40	844.90	352.80	19.81	16.37	13.66	104.17	86.95
5937.00	4214.00	940.20	819.40	357.20	26.14	17.92	14.21	114.03	90.40
5968.20	4214.00	1016.00	858.50	357.50	31.44	18.24	13.88	116.09	88.33
5914.70	4214.00	898.30	747.60	353.50	38.24	17.69	12.79	112.55	81.42

Table B.4: Soil B (TH 23) Proctor table

Figure B.4: Soil B (TH 23) sieve analysis curve

	Test One	Test Two
Sieve Size	Passing [%]	Passing [%]
2 in.	100.00	100.00
1 in.	100.00	100.00
0.75 in.	99.90	100.00
0.375 in.	98.80	99.90
#4	98.50	99.50
#10	98.00	98.80
#20	97.70	98.40
#40	97.40	98.00
#60	96.90	97.50
#100	96.40	96.60
#200	95.70	96.40

Table B.5: Soil B (TH 23) sieve analysis table

C D.0. D011) Classific	
	Test One	Test Two	
Liquid Limit	84.30	84.90	
Plastic Limit	32.60	32.90	
Plasticity Index	51.70	52.00	
% Silt	16.90	21.20	
% Clay	78.80	75.20	
Textural Class	С	С	
AASHTO Group	A-7-6	A-7-6	
Group Index	59.20	60.30	
Opt. Moisture [%]	27.00	26.50	
Max Dry Unit Weight [pcf]	89.70	90.40	
R-Value	9.30	12.40	
Specific Gravity	2.73	2.73	
AASHTO Testing Methods	T87 T88 T89 T90 T9 T100 T190		

Table B.6: Soil B (TH 23) classification

B.3 Soil C

Figure B.5: Soil C (TH 58) Proctor curve

Mass of the Mold and Wet Soil [g]	Mold [g]	Wet Soil and Pan [g]	Dry and Pan [g]	Pan [g]	Moisture Content [%]	Unit Weight [KN/m ³]	Dry Unit Weight [KN/m ³]	Unit Weight [pcf]	Dry Unit Weight [pcf]
5973.00	4237.50	825.90	793.70	351.80	7.29	18.05	16.82	114.86	107.06
6074.90	4237.50	863.10	815.10	360.30	10.55	19.11	17.28	121.60	109.99
6152.90	4237.50	1007.70	930.20	356.20	13.50	19.92	17.55	126.76	111.68
6121.30	4237.50	1041.10	941.70	359.20	17.06	19.59	16.74	124.67	106.50
5927.90	4237.50	793.80	769.70	349.70	5.74	17.58	16.63	111.87	105.80
6021.00	4237.50	906.70	864.20	352.90	8.31	18.55	17.12	118.03	108.97
6114.10	4237.50	998.70	931.90	359.50	11.67	19.52	17.48	124.19	111.22
6164.80	4237.50	803.10	745.40	360.20	14.98	20.04	17.43	127.55	110.93
6139.90	4237.50	811.50	738.80	355.50	18.97	19.78	16.63	125.90	105.83

Table B.7: Soil C (TH 58) Proctor table

Figure B.6: Soil C (TH 58) sieve analysis curve

	Test One	Test Two
Sieve Size	Passing [%]	Passing [%]
2 in.	100.0	100.0
1 in.	100.0	99.5
0.75 in.	99.5	99.2
0.375 in.	99.1	98.6
#4	96.7	98.2
#10	96.3	97.8
#20	95.1	96.6
#40	93.3	95.1
#60	91.1	93.2
#100	89.0	91.4
#200	85.3	88.1

Table B.8: Soil C (TH 58) sieve analysis table

5 <u></u> 2.6. Som	0 (111 00) 010001110		
	Test One	Test Two		
Liquid Limit	0	0		
Plastic Limit	0	0		
Plasticity	0	0		
Index	0	0		
% Silt	80.4	82.4		
% Clay	4.80	5.70		
Textural	Si	Si		
Class	51			
AASHTO	A_4	A_4		
Group	23-4	A-4		
Group Index	0	0		
Opt.				
Moisture [%]	13.2	13.2		
Mar Der				
Max DIy	111.7	111.5		
Unit weight	111./	111.5		
D Volue	54.6	52.0		
R-value	54.6	52.9		
Specific	2.69	2.69		
Gravity		-107		
AASHTO	T87 T88 T89 T90			
Testing	T99 T1	00 T190		
Methods	177 1100 1190			

Table B.9: Soil C (TH 58) classification

B.4 Soil D

Figure B.7: Soil D (TH 32) Proctor curve

Mass of the Mold and Wet Soil [g]	Mold [g]	Wet Soil and Pan [g]	Dry and Pan [g]	Pan [g]	Moisture Content [%]	Unit Weight [KN/m ³]	Dry Unit Weight [KN/m ³]	Unit Weight [pcf]	Dry Unit Weight [pcf]
5921.60	4215.50	858.50	790.60	360.80	15.80	17.74	15.32	112.91	97.51
6006.10	4215.50	914.10	823.10	352.90	19.35	18.62	15.60	118.50	99.29
6044.20	4215.50	858.20	762.90	359.60	23.63	19.02	15.38	121.02	97.89
5978.60	4215.50	986.30	848.60	353.80	27.83	18.34	14.34	116.68	91.28
5941.10	4215.50	879.80	831.40	348.70	10.03	17.95	16.31	114.20	103.79
6029.70	4215.50	919.70	852.60	354.80	13.48	18.87	16.63	120.06	105.80
6102.30	4215.50	898.80	822.60	353.70	16.25	19.62	16.88	124.87	107.41
6089.60	4215.50	875.10	785.70	353.90	20.70	19.49	16.15	124.03	102.75

Table B.10: Soil D (TH 32) Proctor table

Figure B.8: Soil D (TH 32) sieve analysis curve

	Test One	Test Two	
Sieve Size	Passing [%]	Passing [%]	
2 in.	100	100	
1 in.	100	100	
0.75 in.	100	100	
0.375 in.	100	99.9	
#4	98.6	97.7	
#10	95.0	95.4	
#20	94.8	95.2	
#40	94.5	94.9	
#60	94.2	94.6	
#100	93.9	94.2	
#200	91.1	91.3	

Table B.11: Soil D (TH 32) sieve analysis table

	Test One Test Two			
Liquid Limit	44.4	31.8		
Plastic Limit	21.1	21.7		
Plasticity Index	23.3	10.1		
% Silt	63.8	67.0		
% Clay	27.3	24.3		
Textural Class	SiCL	SiCL		
AASHTO Group	A-7-6	A-4		
Group Index	22.60	9.00		
Opt. Moisture [%]	20.4	16.3		
Max Dry Unit Weight [pcf]	99.4	107.4		
R-Value	17.0	25.6		
Specific Gravity	-	-		
AASHTO Testing Methods	T87 T88 T89 T90 T99 T100 T190			

Table B.12: Soil D (TH 32) classification

Appendix C

Fine-Grained Soil Preparation in Steel Container Procedure

- Pass the desired soil through 1 in. sieve. Place the desired soil in a tray (24 in. x 12 in. x 6 in.). Dry the soil in the tray in an oven for 24 hours at 250°F. Remove the soil from the oven and pulverize it using the Mn/DOT Pulverizer.
- 2. Select the moisture content of the soil from Table 2.

Name	Mn Road	Duluth	Red Wing	Red Lake Falls
Name	Soil A	Soil B	Soil C	Soil D
Average Std. Proctor Dry Unit Weight	106 lb/ft3	90 lb/ft ³	112 lb/ft3	103 lb/ft ³
Average Opt. Moisture Content	15%	27%	13%	18%
Average Liquid Limit (%)	28.2	84.6	N/A	38.1
Average Plastic Limit (%)	16.9	32.7	N/A	21.4
Average % Silt	45.7	19.0	81.4	65.4
Average % Clay	13.5	77.0	5.2	25.8
Average R-Value	16.5	10.9	53.8	21.3
Mn/DOT Textural Class.	L	С	Si	SiCL
AASHTO Group	A-4, A-6	A-7-6	A-4	A-4, A-7-6
98% F	Proctor Dry	Unit Weigh	nt	
100% Opt. Moisture Content	15%	27%	13%	18%
80% Opt. Moisture Content	12%	22%	10%	14%
60% Opt. Moisture Content	9%*	16%	8%	11%
103%	Proctor Dry	Unit Weig	ht	N.
90% Opt. Moisture Content	13.5%	24%	12%	16%
75% Opt. Moisture Content	11%	19.5%	9.5%	13%
60% Opt. Moisture Content	9%	16%	8%	11%

Table C.1: Soil Descriptions

* Sample A, 7.5% target moisture content was $w_{OPT} * 50\%$

- 3. Determine the mass of soil and the volume of water to be mixed for the sample to attain the desired density and moisture content. The sample is required to have a volume of 3.2 ft³ to fill up the steel container to 10.5 in. depth.
- 4. Mix the correct amount of water and soil using an industrial size blender.
- 5. Take approximately 300 g of soil and place in three moisture cups (100 g each). Place the moisture cups in the oven for 24 hours at 260°F [2].

- 6. Remove the cups from the oven and calculate the moisture content. If the moisture content is lower than the target, add water to the soil and mix again. Repeat moisture determination. Place the soil in large plastic buckets, seal the buckets with plastic foil and leave in humidity controlled room for 24 hours to allow the soil to temper.
- 7. Install the aluminum hoisting beam with a rolling cart underneath the MTS 810 loadframe crosshead. Connect the hoisting beam and the 3.2 ft³ steel container by three chains. Raise the crosshead until the bottom of the steel container is slightly above the actuator in the MTS loadframe. Slide the steel container over the actuator and lower it until it sets. Remove the aluminum hoisting beam.
- 8. Attach the square steel plate to the circular plate using steel straps and bolts. Connect the loading plate with knobs and the particle-board plate to the square steel plate using another set of steel straps and bolts. Place planks across the steel container to hold the form stationary, lower the crosshead with the steel plate and attach it to the loading plate with knobs.
- 9. Raise the crosshead so the first lift of loose soil can be poured into the steel container.
- 10. Determine one-third of the total weight of the soil required for the appropriate density. Fill up a 5-gallon bucket resting on a scale with soil to the required weight. Repeat the operation two more times to obtain three lifts of soil, each of which will be compacted to a thickness of 3.5 in for a total thickness of 10.5 in.
- 11. Place the first lift in the steel container and level it. Use a flat, 10 to 15 lb weight to lightly compact the lift by dropping it 3 in. over the entire surface of the lift.
- 12. Open the TestStar file "Rocklab810100KN".
- 13. Open the TestWare file "compactionstroke".
- 14. Lower the sheepsfoot loading plate until first contact with the soil and lock the crosshead in place. Slide the sheepsfoot plate to one edge of the steel container until it is 0.5 in.

Figure C.1: Side view of steel container with first lift of soil

away from the side while neither one of the remaining sides is not in contact with the steel container.

- 15. Measure the distance from the top of the particle-board plate to the top edge of the steel container, Fig. C.1 (Distance "A"). Add 3 in. to this distance. This extra distance accounts for the thickness of the particle-board plate and the loading plate with knobs. Subtract the obtained distance from 15 in. The resulting distance defines the thickness of the first lift of the un-compacted soil in the steel container.
- 16. As the compacted lift requires a thickness of 3.5 in., subtract this value from the thickness of the un-compacted soil determined in step 15. The result defines the distance required for the MTS actuator in the base of the loading frame to rise for the target unit weight.
- 17. Convert the actuator rise distance into millimeters. Input the result in the TestWare program "compactionstroke" window "Ramp up". Next, enter the same distance as negative in the "Ramp down" window. Save the input values before running the test; otherwise, the test will not run with the new input. The compaction sequence run by the "Ramp up" "Ramp down" compaction stroke program is displacement controlled,

and the corresponding force history is recorded.

- 18. Input the maximum force and maximum displacement interlocks in TestStar. Choose reasonable settings for the system. For lower moisture contents, the actuator force required to reach required unit weight will increase significantly (as much as 4 times when compared to higher moisture contents).
- 19. Run the compaction stroke program.

Figure C.2: Top view of compaction plate location in first and second step of compaction

- 20. When the first compaction sequence is complete and the actuator has returned to the initial height, slide the sheepsfoot loading plate 2 in. away from the initial distance of 0.5 in (see Figs. C.1 and C.2). Sliding the sheepsfoot loading plate by 2 in. shifts the knobs, thereby covering the entire surface of the lift with knobs.
- 21. Run the compaction sequence again.
- 22. Compact the soil around the edges of the steel container with a steel block to level the surface over the whole container. Scratch the surface with a shovel and fill the steel

container with the second lift of soil.

- 23. Repeat steps 14-22 for the second and third soil lift.
- 24. After the 3rd lift, remove the sheepsfoot compaction plate, particle board plate, and the steel plate. Attach the aluminum hoisting beam to the crosshead and attach the chains to the steel container. Lift up the steel container, move it outside the loading frame, and lower the container onto the floor. Make sure that the steel container is stable on the floor. Use steel shims if necessary.
- 25. Close out of the TestWare and TestStar software without saving.
- 26. Trim the soil surface by sliding a metal block with sharp edges and corners over the surface to eliminate irregularities on the surface.
- 27. Measure the distance from the top of the soil to the top of the steel container in each corner. Weigh the soil that was trimmed out of the container and subtract it from the total weight of the soil. Determine the unit weight of the soil in the container.
- 28. Cover the steel container with a plastic foil.
Appendix D Resilient Modulus System Calibration

D.1 LVDTs

The 6 mm (0.236 in) LVDTs with the 6 mm range were calibrated using a Vernier scale and a voltmeter. The LVDT was mounted on the Vernier scale and a voltmeter was connected to the LVDT signal conditioner. As the Vernier was adjusted, the induced voltage from the LVDT conditioner was recorded. Fig. D.1 shows Vernier displacement and output voltage. The slopes of the lines were evaluated and input into LabView [13].

Figure D.1: LVDT calibration

D.2 Load Cell

The range of the load cell was 22.2 kN [5000 lb]. It was calibrated using a 22.2 kN [5000 lb] capacity proving ring. To calibrate the load cell, an initial load of 0.044 kN (10 lb) was applied to the proving ring. The load was increased on 0.445 kN (100 lb) increments to a maximum load of 6.23 kN (1400 lb). The corresponding force was calculated knowing the

displacement of the proving ring. The slope of the line in Fig. D.2 was input into TestStar [13].

Figure D.2: Load cell calibration

Appendix E Field-Type Testing Procedures

E.1 Percometer Testing Procedure

Figure E.1: Percometer testing locations (top view)

- 1. Turn the Percometer on.
- 2. Perform validation checks with the Percometer on verification blocks that come with it. The dielectric constant is written on the blocks. Hold the surface probe on one block at a time and press #4 on the keypad to take a measurement. Record the validation measurements every day of use.
- Percometer will be run on the soil in the steel container in locations specified in Fig. E.1.
- 4. Place the probe of the Percometer onto the designated 1 location and hold it in place firmly with approximately 5 lb of force to maintain 100% contact with the soil. Press the #4 button.
- 5. Record the temperature, dielectric value, and electrical conductivity measurements.

- 6. Pick up the probe and re-set on the surface.
- 7. Repeat steps 3-6 three times at each of the three locations on the sample subgrade in the steel container.

E.2 GeoGauge Testing Procedure (** With Sand)

Figure E.2: GeoGauge testing locations (top view)

- 1. Remove the GeoGauge from the case and turn it on. Set the GeoGauge to read S.I. units by pressing the "units" button until SI-S is displayed and erase the memory.
- 2. Place the GeoGauge onto the verification mass and press the "test" button.
- 3. The display first shows the signal to noise ratio, then the density, and finally the stiffness. The stiffness value should range -8.8 to -9.8 $\frac{MN}{m}$. If it is out of this range, seek directions from Humboldt. If the stiffness is in the allowable range, set the GeoGauge onto the surface of the sample subgrade in the steel container at location 1 specified in Fig. E.2. More than 60% [41] or 80% [42] of the GeoGauge foot must be in contact with the soil surface otherwise place an 1/8 in. lift of damp sand between the foot and the soil surface [43].

- 4. Press the test button and allow 90 seconds for the test. After the test, press the 'save' button and write down the data displayed. Pick the GeoGauge up, reset it, and repeat the measurement process.
- 5. Repeat step 4 for the locations 2 and 3 shown in Fig. E.2 with two tests at each location.
- 6. Utilize the GeoGauge Data Download Guide supplied in the user's manual to store the data for future use.
- 7. Turn off the GeoGauge.

E.3 Portable Vibratory Deflectometer Testing Procedure

Figure E.3: PVD testing locations (top view)

- Place the PVD with accelerometers, load cell and loading plate on location 1 (Fig. E.3) on the sample soil subgrade in the steel container.
- 2. Level the PVD by adjusting its feet.
- 3. Connect the accelerometer cables to the PCB piezotronics signal condition channels 1 and 2.
- 4. Connect the signal conditioner cables to the Siglab console channels 2 and 3.
- 5. Connect the load cell cable to the Kislter amplifier.
- 6. Connect the Kistler amplifier cable to the Siglab console channel 1.

- 7. Connect the Rockford Fosgate 150a1 power amplifier to the PVD.
- 8. Connect the Rockford Fosgate 150a1 power amplifier to the Siglab console channel "output."
- 9. Attach the positive and negative power clamps from the Rockford Fosgate 150a1 power amplifier to a 12 volt battery.
- 10. Plug in the signal conditioner and the Siglab console to power outlets.
- 11. Connect the Siglab console to a personal computer with MATLAB 7.0 and Siglab software. Now the setup should be connected as shown in Fig.E.4.
- 12. Turn on the PCB piezotronic amplifier.
- 13. Turn on the Siglab console.
- 14. Turn on the personal computer, open Siglab, and type ".vna" in the command line and press enter.
- 15. Check the calibration numbers and channel configurations for the load cell and accelerometers in Siglab.
- 16. Reset the Kistler dual mode amplifier.
- 17. Click the "run" button and the test will automatically stack 150 trials. Check the coherence curve in the Siglab display as it should read 1. If it does not, stop the test, and reset the PVD on the sample surface.
- 18. Save the test as B_22_98_1. The letter B represents the soil type, the second number is the moisture content of the sample, the third number is the percent Proctor unit weight of the sample, and the last number is the location number.
- 19. Repeat steps 15-17 for the other two locations.

Figure E.4: PVD connection schematic

20. When finished, close out of Siglab and MATLAB. Shut off the personal computer. Disconnect the positive and negative clamps from the 12 volt battery. Remove the PVD from the sample surface and place it on the cart.

E.4 LWD Testing Procedure

Figure E.5: Light Weight Deflectometer testing locations (top view)

The PRIMA 100 comes with software that needs to be installed on the computer. The software installation procedure is found in the user's manual [20].

- 1. Set the LWD with 200 mm diameter plate on location 1 shown in Fig. E.5.
- 2. Connect the LWD control panel to a communications port in the back of the computer.
- 3. Turn on the LWD.
- 4. Open the program "Data Acquisition." Enter your name and the main LWD menu will come up. Click the "save" button, input the file name, e.g. "soilC13_98_1.txt" (C13_98_1 implies soil with 13% moisture content at 98% Proctor unit weight testing at location 1 as shown in Fig. E.5), and select the location where the file is to be saved. Click OK.

- 5. Three different drop heights are used at each location: 100 mm, 500 mm, and 900 mm. Set weight release mechanism to a height of 100 mm. Lock the 10 kg falling weight to the release mechanism.
- 6. Press the "Test Run" button on the right side of the LWD panel.
- The "Ready for Next Drop" message will appear on the LWD panel. Press the "Test Run" button.
- 8. The panel will read, "SAMPLING".
- 9. The LWD shaft should be perpendicular to the plane of the soil; the shaft has a little play in it.
- 10. Wrap one hand around the grip on the shaft of the LWD to steady it, and slowly depress the small, black handle with the free hand to drop the weight.
- 11. The graph on the computer screen will plot two lines indicating the force and displacement versus time, and several numbers will appear in the table on the upper right hand side of the screen. Copy the peak load and displacement to a hard-copy.
- 12. The gauge will prompt you to save or delete the data.
- 13. Press the "Test Run" button on the LWD display panel for 0.5 seconds to save it or press and hold it for 2 seconds to delete it.
- 14. The old data will disappear and the "Ready for Next Drop" button will appear.
- 15. Lift the mass and lock it in place.
- 16. Perform four more drops repeating steps 6-15. Drops one and two are seating drops and drops three, four, and five are measurement drops.
- 17. Repeat steps 4-16 for the other heights (500 mm, 900 mm) for location number one.

- 18. Move on to locations 2 and 3 repeat steps 6-17.
- 19. After the last drop for location 3, turn off the LWD display panel. Close out of the computer program.

E.5 Modified LWD Testing Procedure

Figure E.6: Modified LWD testing locations (top view)

- 1. Remove the sliding handle and falling mass by unscrewing three screws (Alan wrench required) in the from the LWD impact cap.
- 2. Proceed with steps 1-8 in the LWD Testing Procedure.
- 3. Hold the LWD lower unit with one hand to ensure no movement at the loading plate/soil surface.
- 4. Tap the loading cap with a rubber mallet lightly enough for the load cell to trigger.
- 5. Proceed with steps 11-14 in the LWD Testing Procedure.
- 6. Repeat steps 3-5 four more times.
- 7. Move onto locations 2 and 3 and repeat steps 3-6.

E.6 Dynamic Cone Penetrometer Testing Procedure

Figure E.7: DCP testing locations (top view)

- 1. Remove the Dynamic Cone Penetrometer (DCP) from the carrying case and assemble by screwing the two portions together.
- 2. Tighten the DCP tip to the lower half of the apparatus to maintain a strong connection during the test. This has been known to loosen as it is used. Hold the DCP vertically in one of the locations specified in Fig. E.7. Two tests will be performed using the DCP.
- 3. Record in an EXCEL spreadsheet the initial reading on the measuring stick following cone seating instructions in ASTM D 6951 03. Lift the hammer to the handle at the top of the DCP.
- 4. Drop and record the depth of the drive by reading the displacement from the measuring scale.

- 5. Repeat step 4 until 10.5 in. (270 mm) has been reached. Disregard the last reading.
- 6. Remove the DCP from the location by pulling it upwards and repeat steps 2-4 in the other location specified in Fig. E.7.
- 7. Clean the DCP and place it back into the case.

Appendix F

Fine-Grained Soil Specimen Extraction Procedure

- 1. Attach the aluminum hoisting beam to the MTS 810 crosshead and attach the chains to the steel container. Lift up the steel container, move it inside the loading frame, and lower it onto the actuator. Detach the chains from the steel container.
- 2. Fasten the 100 mm (4 in.) in diameter stainless steel tubes into the holes in the circular plate under the crosshead using bolts.
- 3. Open the TestStar file "Rocklab810_100KN".
- 4. Open the TestWare file "compactionstroke".
- 5. Spray a non-stick chemical, i.e. PAM Cooking Spray or silicone, inside the steel tubes.
- 6. Lower the MTS 810 crosshead until the steel tubes contact the soil.
- In the TestWare file "compactionstroke," input 139 mm in the box "Ramp Up" and 0 mm for "Ramp Down." Input the interlock limits.
- 8. Run the program.
- 9. Unscrew the bolts holding the steel tubes from the circular plate.
- Lower the actuator back to its initial position by entering 139 mm in the "Ramp Down" box and zero in the "Ramp Up" box.
- 11. Lower the MTS 810 crosshead to reattach the steel tubes.
- 12. Repeat steps 8 and 9.
- 13. Detach the steel tubes from the circular plate.
- 14. Close out of the TestStar and TestWare programs.
- 15. Attach the aluminum hoisting beam to the MTS 810 crosshead and attach the chains to the steel container. Lift up the steel container, move it outside the loading frame,

and lower the container onto the floor. Make sure that the steel container is stable on the floor. Use steel shims if necessary.

- Extract 1.5 in. thin wall samples for the Soil Science Department of the University of Minnesota for Mn/DOT contract 81655#103 and CFMS#A5762.
- 17. Excavate around the perimeter of the steel container at 51 mm (2 in.) intervals with a tiling spade.
- 18. Place the excavated soil back into sealable containers to prevent drying.
- 19. Use the extruder to vertically extract the specimens from the steel tubes.
- 20. Weigh the specimens and determine its volume to calculate the unit weight. Place the specimens into 152 mm x 304 mm (6 in. x 12 in.) sealed plastic cylindrical containers and label them accordingly for resilient modulus testing. Label the specimen as, for example, B_1_16_103 where the letter defines the soil type, the first number is the specimen number, the second number is the target moisture content, and the third number is the target percent Proctor unit weight of the specimen.
- Store the specimens in a humidity controllable environment for no more than 90 days to reduce aging affects in the specimens.
- 22. Create a table with "Sample ID", "Date Soil Compacted", "Date Container Tested", "Date M_r Tested", "Measured Average Density", and "Measured Average Moisture Content" as headings.

Appendix G

Fine-Grained Soil Resilient Modulus Testing Procedure

- 1. Remove the cylindrical specimens from the storage container.
- 2. Trim the specimen to a length of 203 mm (8 in.). Verify that the ends of the specimen are flat and perpendicular to the specimen's axis of symmetry by placing the specimen's end on a flat surface and check for rocking. If there is rocking, trim.

Figure G.1: Specimen for bender element notch location (end view)

- 3. Scratch a 12.7 mm x 8 mm notch, 8 mm deep (0.5 in. x 0.25 in., 0.25 in. deep) in both ends of the specimen as shown in Fig. G.1: these notches will house the bender element fins. Weigh the specimen and record the final volume dimensions.
- 4. Fill the notch with 2 g of petroleum jelly to ensure bender element contact to the specimen.
- 5. Place the 101.6 mm (4 in.) in diameter, 6 mm (0.25 in.) thick stainless steel spacer on the bottom platen housing the lower bender element. Place the specimen on the stainless steel spacer aligning the bender element fin in the 12.7 mm x 8 mm (0.5 in. x 0.25 in.) notch.
- 6. Place a 101.6 mm (4 in.) in diameter latex membrane inside the 101.6 mm (4 in.) in diameter aluminum membrane mold and wrap 25.4 mm (1 in.) of the latex membrane around the ends of the mold. Apply suction to the membrane mold. Place the aluminum membrane mold with the latex membrane over the specimen.

- 7. Unwrap the latex membrane from the mold and slide it over the bottom bender element platen. Unwrap the top and remove the mold.
- 8. Repeat steps 6 and 7 for one more latex membrane.
- 9. Roll two 101.6 mm (4 in.) O-rings onto the aluminum membrane mold. Place the aluminum membrane mold over the specimen with two latex membranes. Roll the two O-rings onto the bottom bender element platen and place them into the machined groves. Roll two more O-rings onto the specimen for the upper platen.
- 10. Place another 101.6 mm (4 in.) stainless steel spacer on top of the specimen aligning the bender element fin in the notch. Put the upper platen on top of the 101.6 mm (4 in.) stainless steel spacer, wrap the membranes over the upper bender element platen, and secure the membranes in place by rolling up the O-rings from the top of the specimen.
- 11. Place the 101.6 mm (4 in.). thick aluminum spacer on the bottom plate of the triaxial apparatus.
- 12. Place the specimen assembly in the center of the triaxial apparatus on top of the 101.6 mm (4 in.) thick spacer. Use caution when handling the specimen.
- 13. Attach the air hoses from the triaxial apparatus to the upper and lower bender element platens.
- 14. Slide the three-LVDT holder into place over the specimen surrounded by the membrane. Make certain that there is no space between between the LVDT holder and the membrane. Check that the three LVDTs are resting evenly on top of their pedestals and that none of the lead wires in the cell are impeding their movement. Close the three-LVDT holder using rubber O-rings.
- 15. Remove the spacers from the LVDT holder.

- 16. Connect the interior load cell lead wire, the three LVDT lead wires, and both of the bender element lead wires to their respective LEMO connectors on the base of the triaxial apparatus.
- 17. Place a steel ball bearing on top of the upper bender element platen. Carefully slide the plexiglass chamber over the prepared specimen and LVDT holder until it rests on the base of the triaxial apparatus.
- 18. Place the triaxial apparatus inside of the MTS 858 table top system loading frame.
- 19. Place the triaxial apparatus top plate with the load cell attached to the shaft above the plexiglass chamber and screw the shaft to the actuator. Press the triaxial apparatus top plate down into the triaxial chamber. Align the triaxial apparatus holes with the three columns that are connected to the triaxial apparatus base. Secure the triaxial apparatus top plate with three bolts.
- 20. Lock the plexiglass chamber onto the triaxial apparatus by screwing down the circular plates that are on the triaxial apparatus top plate.
- 21. Attach all of the external wiring to the back of the triaxial apparatus and the two air hoses to the front of the triaxial apparatus.
- 22. Look over the entire system to double check everything is connected properly.
- 23. Turn on the air to the system; open the valve on the triaxial apparatus top plate briefly to make certain that air is flowing.
- 24. Close the valve and listen for leaks in the system.
- 25. Pressurize the cell to 8 psi (55.2 kPa).
- 26. Open the TestWare program "Final Mr Testing Procedure External" on the loading frame computer. Also open the LabView program named "Mr Data Collection" on the laptop.

- 27. Define the data channels in LabView and make certain that it records at least 400 points per second.
- 28. Lower the actuator with the load cell attached down onto the steel ball bearing.
- 29. Run the resilient modulus testing procedure following NCHRP 1-28a.
- 30. After the conditioning cycle is finished, open the data file for the conditioning cycle in a spreadsheet. Plot the LVDTs vs. force and check for specimen rotation. Smooth ovals should be seen in the plots; irregular ovals indicate specimen rotation. If they are not, remove the triaxial apparatus from the loading frame, re-position the specimen, and place the specimen back in the loading frame. When lowering the actuator onto the steel ball located on the upper platen of the 101.6 mm (4 in.) specimen, watch the actuator to prevent bending of the specimen. Run the conditioning cycle again and check for specimen rotation again.
- 31. Open the Mr Data Collection screen. Run the data collection; save data under filenames created in TestWare, for example, A_1_15_100_7, where the letter defines the soil type, the first number is the specimen number, the second number is the target moisture content, the third number is the target percent Proctor unit weight of the specimen, and the last number refers to the step in the sequence. Start the data collection at the same moment as the resilient modulus test.
- 32. After the NCHRP 1-28a protocol is finished, the TestWare program will automatically run a shear strength routine unless stopped. Do not run this portion of the test. Acceptable criteria for the specimen are:
 - \Box Load Signal-to-Noise Ratio (SNR) ≥ 10
 - \Box Deflection Signal-to-Noise Ratio (SNR) ≥ 3
 - $\square M_r \text{ COV} [\%] \le 10\%$
 - \Box Rotation Angle < 0.04°

33. Disconnect the load cell from the steel ball bearing by moving the actuator up.

Appendix H Bender Element Testing Procedure

- 1. Place a 101.6 mm (4 in.) in diameter, 6 mm (0.25 in.) thick stainless steel spacer on the bottom specimen platen.
- 2. Place a 98.4 mm (3.88 in.) cylindrical soil specimen on the steel spacer.
- Place two rubber membranes over a 98.4 mm (3.88 in.) diameter cylindrical soil specimen.
- 4. Place a 101.6 mm (4 in.) in diameter, 6 mm (0.25 in.) thick stainless steel spacer on top of the specimen.
- 5. Set the top specimen platen on the steel spacer on top of the specimen followed by setting 4, 101.6 mm (4 in.) rubber O-rings for the machined grooves in the top and bottom specimen platens.
- 6. Seal the cylindrical specimen by rolling the 4 O-rings into the platen machined grooves.
- 7. Place the bottom triaxial apparatus platen on the MTS 858 loading base.
- 8. Set the 101.6 mm (4 in.) thick aluminum spacer on the bottom triaxial apparatus platen.
- 9. Put the specimen on top of the aluminum spacer.
- 10. Connect the bender element cables to the electrical feed-throughs and air pressure tubes to the bottom triaxial apparatus platen.
- 11. Place the plexiglass chamber over the specimen. Make sure the chamber slips over the large rubber O-ring in the bottom triaxial apparatus platen.
- 12. Open the GDS bender element program on the laptop.
- 13. Enter the parameters shown in Table H.1.

Specimen Length	[mm]
Sample Frequency	100000 sec ⁻¹
Sampling Time	10 msec
Wave Form	Sinusiodal
Period	0.8 msec
Amplitude	14
Stacking	Automatic
Trigger Type	S/W
Tests per Stack	50
Delay Between Tests	0.1

Table H.1: GDS Bender Element input parameters

- 14. Loosen the set screw on the top triaxial apparatus platen to allow it to slide along the load cell extension.
- 15. Lower the actuator enough to allow the top triaxial apparatus platen to be fastened to the three steel columns protruding from the bottom triaxial apparatus platen.
- 16. Connect the air pressure line to from the pressure regulator to the bottom triaxial apparatus platen.
- 17. Manually adjust the confining pressure to 8 psi (55.2 MPa).
- 18. Execute the bender element test at confining pressures 55.2, 41.4, 27.6 and 13.8 MPa (8, 6, 4 and 2 psi) without a vertical contact stress. Record the name of the saved files. The cables from the GDS signal conditioner to the bottom triaxial apparatus platen need to be switched when changing from a P-wave test to an S-wave test and vice versa.
- Run and stack a sufficient number of P and S-wave tests to obtain a clear signal (usually 10-50). Save the signals and exit the program.

- 20. Shut off the data collection when the bender element test is completed.
- 21. After the test is completed, remove the specimen from the chamber and return all components in their proper locations.

Appendix I Strength Testing Procedure

- 1. Place a 101.6 mm (4 in.) in diameter, 6 mm (0.25 in.) thick stainless steel spacer on the bottom specimen platen.
- 2. Place a 98.4 mm (3.88 in.) cylindrical soil specimen on the steel spacer.
- Place two rubber membranes over a 98.4 mm (3.88 in.) diameter cylindrical soil specimen.
- 4. Place a 101.6 mm (4 in.) in diameter, 6 mm (0.25 in.) thick stainless steel spacer on top of the specimen.
- 5. Set the top specimen platen on the steel spacer on top of the specimen followed by setting 4, 101.6 mm (4 in.) rubber O-rings for the machined grooves in the top and bottom specimen platens.
- 6. Seal the cylindrical specimen by rolling the 4 O-rings into the platen machined grooves.
- 7. Place the bottom triaxial apparatus platen on the MTS 858 loading base.
- 8. Set the 101.6 mm (4 in.) thick aluminum spacer on the bottom triaxial apparatus platen.
- 9. Put the specimen on top of the aluminum spacer.
- 10. Connect the bender element cables to the electrical feed-throughs and air pressure tubes to the bottom triaxial apparatus platen.
- 11. Place the plexiglass chamber over the specimen. Make sure the chamber slips over the large rubber O-ring in the bottom triaxial apparatus platen.
- 12. Place a steel ball in the top specimen platen.
- 13. Turn on the MTS hydraulic pump.
- 14. Turn on the MTS controller.

- 15. Screw the load cell into the extension shaft. Slide the extension shaft through the top triaxial apparatus platen.
- 16. Screw the extension shaft and top triaxial apparatus platen into the MTS 858 actuator.
- 17. Connect the load cell extension cable to the load cell.
- Loosen the set screw on the top triaxial apparatus platen to allow it to slide along the load cell extension.
- 19. Lower the actuator enough to allow the top triaxial apparatus platen to be fastened to the three steel columns protruding from the bottom triaxial apparatus platen.
- 20. Connect the air pressure line to from the pressure regulator to the bottom triaxial apparatus platen.
- 21. Lower the actuator to the specimen. Exercise care to place the specimen in-line with the actuator.
- 22. Manually adjust the confining pressure to 55.2 or 27.6 kPa (8 or 4 psi).
- 23. Open the LabView program named " M_r Data Collection" on the laptop. Set channel 0 to stroke, channel 1 to load cell, and a sampling rate of at least 400. Filenames created for the strength test are named, for example, A_1_15_100_shear8psi, where the letter defines the soil type, the first number is the specimen number, the second number is the target moisture content, the third number is the target percent Proctor unit weight of the specimen, and the phrase indicated a shear test performed at 4 or 8 psi.
- 24. Open the TestWare program "4 inch Final Shear Strength" on the loading frame computer.
- 25. Lower the actuator and apply a small contact load on the specimen.
- 26. Begin recording data with LabView.

- 27. Run the TestWare shear strength routine.
- 28. After the specimen has failed, stop the TestWare and LabView routines.
- 29. Dismantle the triaxial apparatus.
- 30. Record the angle of the shear plane on the specimen.
- 31. Take one moisture sample from the shear plane of the specimen.

Appendix J

Resilient Modulus Data and Resilient Modulus Data with QC/QA
J.1 Resilient Modulus Data [SI]

σ_3 [MPa]	q [N]	$\delta_{{\scriptscriptstyle LVDT\#1}} \ [mm]$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{\text{LVDT#3}} \text{ [mm]}$	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	228	0.011	0.010	0.005	0.030	0.00009	350
0.06	233	-0.012	0.010	0.006	0.031	0.00001	2476
0.06	238	-0.013	0.010	0.006	0.031	0.00001	3530
0.06	220	-0.008	0.010	0.006	0.030	0.00002	305
0.06	389	0.013	0.018	0.007	0.051	0.00013	406
0.06	390	0.010	0.018	0.010	0.051	0.00013	406
0.06	389	-0.010	0.015	0.007	0.051	0.00004	1323
0.06	390	-0.010	0.018	0.007	0.051	0.00005	1011
0.06	391	0.014	0.018	0.007	0.051	0.00013	396
0.06	551	-0.010	0.023	0.013	0.072	0.00008	427
0.06	553	0.012	0.026	0.013	0.073	0.00017	437
0.06	551	-0.013	0.026	0.013	0.072	0.00008	870
0.06	562	-0.013	0.026	0.013	0.074	0.00008	873
0.06	771	0.017	0.035	0.016	0.101	0.00022	453
0.06	779	0.013	0.035	0.016	0.102	0.00021	486
0.06	767	0.020	0.035	0.019	0.101	0.00023	450
0.06	779	0.010	0.035	0.016	0.102	0.00020	510
0.04	234	-0.008	0.010	0.007	0.031	0.00003	1156
0.04	246	0.011	0.010	0.007	0.032	0.00009	355
0.04	228	0.016	0.010	0.004	0.030	0.00010	308
0.04	228	-0.010	0.010	0.004	0.030	0.00001	2362
0.04	389	0.012	0.018	0.004	0.050	0.00013	401
0.04	391	-0.009	0.018	0.009	0.051	0.00006	878
0.04	389	0.011	0.018	0.009	0.051	0.00013	404
0.04	390	0.015	0.019	0.009	0.051	0.00014	373
0.04	391	-0.011	0.019	0.009	0.051	0.00005	993
0.04	548	0.012	0.026	0.011	0.072	0.00016	453
0.04	551	0.012	0.026	0.010	0.072	0.00016	453
0.04	553	-0.012	0.038	0.026	0.072	0.00017	418
0.04	552	-0.013	0.026	0.011	0.072	0.00008	951
0.04	794	0.012	0.037	0.016	0.104	0.00021	489
0.04	780	0.014	0.037	0.016	0.102	0.00022	469
0.04	780	0.017	0.040	0.016	0.102	0.00024	426
0.04	780	0.018	0.040	0.016	0.102	0.00024	424
0.03	227	0.012	0.010	0.005	0.030	0.00009	349
0.03	226	-0.010	0.009	0.005	0.030	0.00002	1938
0.03	227	-0.010	0.010	0.005	0.030	0.00001	2252
0.03	226	0.012	0.013	0.005	0.030	0.00009	313
0.03	389	0.009	0.013	0.003	0.051	0.00011	470
0.03	389	-0.013	0.017	0.010	0.051	0.00005	1102
0.03	389	-0.011	0.020	0.010	0.051	0.00006	830
0.03	389	0.011	0.020	0.010	0.051	0.00013	381
0.03	389	-0.012	0.020	0.010	0.051	0.00006	848
0.03	555	0.012	0.027	0.012	0.073	0.00017	392
0.03	554	-0.010	0.027	0.012	0.073	0.00009	774
0.03	553	-0.011	0.027	0.012	0.073	0.00009	795
0.03	553	-0.009	0.027	0.012	0.073	0.00010	743
0.03	784	0.012	0.042	0.016	0.103	0.00023	450
0.03	788	0.016	0.038	0.016	0.103	0.00023	443
0.03	782	0.010	0.038	0.016	0,102	0.00023	457
0.03	780	0.021	0.042	0.016	0.102	0.00026	395
0.01	228	0.016	0.013	0.008	0.030	0.00012	253
0.01	231	-0.009	0.009	0.008	0.030	0.00003	1155
0.01	226	-0.009	0.013	0.008	0.030	0.00004	798
0.01	218	-0.012	0.013	0.008	0.029	0.00003	926
0.01	392	-0.013	0.019	0.010	0.051	0.00006	929
0.01	392	-0.012	0.020	0.010	0.051	0.00006	925
0.01	391	0.012	0.019	0.010	0.051	0.00013	381
0.01	391	-0.015	0.019	0.010	0.051	0.00005	1118
0.01	569	-0.012	0.019	0.011	0.051	0.000013	817
0.01	554	0.012	0.029	0.014	0.073	0.00018	397
0.01	554	0.011	0.026	0.011	0.073	0.00016	461
0.01	554	0.012	0.029	0.011	0.073	0.00017	430
0.01	565	0.012	0.029	0.011	0.074	0.00017	434
0.01	782	0.013	0.041	0.016	0.103	0.00023	445
0.01	772	0.012	0.041	0.016	0.102	0.00023	427
0.01	780	0.014	0.041	0.016	0.102	0.00024	435
0.01	792	0.013	0.041	0.016	0.104	0.00023	447

Table J.1: Resilient modulus data (A_2_135_105)

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	227	0.007	0.008	0.003	0.028	0.00006	457
0.06	226	-0.009	0.009	0.004	0.028	0.00001	2405
0.06	228	0.010	0.009	0.003	0.028	0.00007	388
0.06	232	-0.007	0.008	0.003	0.029	0.00002	1668
0.06	389	0.000	0.008	0.003	0.030	0.00000	437
0.06	390	0.010	0.013	0.006	0.048	0.00010	490
0.06	388	0.013	0.013	0.006	0.048	0.00011	447
0.06	389	0.011	0.013	0.006	0.048	0.00010	480
0.06	389	0.011	0.013	0.006	0.048	0.00010	483
0.06	552	0.013	0.022	0.011	0.068	0.00015	454
0.06	552	0.015	0.022	0.008	0.068	0.00015	405
0.06	551	0.012	0.019	0.011	0.068	0.00015	440
0.06	552	0.017	0.019	0.011	0.068	0.00015	444
0.06	768	0.023	0.030	0.014	0.095	0.00022	434
0.06	779	0.026	0.030	0.014	0.096	0.00023	420
0.06	779	0.024	0.030	0.014	0.096	0.00022	430
0.06	767	0.022	0.033	0.014	0.095	0.00023	420
0.04	217	0.009	0.007	0.004	0.027	0.000022	411
0.04	215	0.008	0.007	0.004	0.027	0.00006	430
0.04	216	0.006	0.007	0.004	0.027	0.00006	459
0.04	216	-0.006	0.007	0.004	0.027	0.00002	1629
0.04	216	0.010	0.007	0.004	0.027	0.00007	379
0.04	390	0.011	0.013	0.004	0.048	0.00009	468
0.04	378	0.011	0,013	0.004	0.047	0.00009	523
0.04	391	0.011	0.013	0.007	0.048	0.00010	486
0.04	389	0.013	0.013	0.004	0.048	0.00010	501
0.04	552	0.016	0.020	0.009	0.068	0.00015	455
0.04	552	0.018	0.020	0.009	0.068	0.00016	436
0.04	551	0.018	0.020	0.006	0.068	0.00014	4/4
0.04	551	0.017	0.020	0.009	0.068	0.00015	449
0.04	785	0.024	0.032	0.011	0.097	0.00022	444
0.04	771	0.024	0.032	0.011	0.095	0.00022	435
0.04	769	0.024	0.032	0.011	0.095	0.00022	430
0.04	769	0.028	0.032	0.011	0.095	0.00023	406
0.04	216	0.023	0.032	0.011	0.095	0.00022	442
0.03	210	0.007	0.010	-0.004	0.027	0.00004	629
0.03	217	0.007	0.010	-0.004	0.027	0.00004	635
0.03	216	0.008	0.010	-0.004	0.027	0.00004	600
0.03	215	0.005	0.010	-0.004	0.027	0.00004	725
0.03	380	0.014	0.014	0.003	0.047	0.00010	455
0.03	379	0.011	0.014	0.006	0.047	0.00010	454
0.03	390	0.009	0.014	0.003	0.048	0.00009	554
0.03	379	0.014	0.011	0.006	0.047	0.00010	458
0.03	544	0.016	0.020	0.008	0.067	0.00014	463
0.03	555	0.019	0.020	0.008	0.068	0.00015	444
0.03	553	0.017	0.019	0.008	0.068	0.00015	466
0.03	553	0.016	0.023	0.008	0.068	0.00015	445
0.03	770	0.023	0.031	0.013	0.095	0.00022	434
0.03	781	0.023	0.031	0.010	0.096	0.00021	459
0.03	769	0.028	0.031	0.010	0.095	0.00023	419
0.03	772	0.026	0.031	0.013	0.095	0.00023	411
0.03	219	0.026	0.031	0.010	0.096	0.00022	430
0.01	210	0.005	0.010	-0.003	0.027	0.00002	705
0.01	218	0.011	0.007	-0.003	0.027	0.00005	570
0.01	218	0.008	0.007	0.003	0.027	0.00006	448
0.01	230	0.007	0.010	-0.003	0.028	0.00005	629
0.01	391	0.010	0.014	0.004	0.048	0.00009	524
0.01	392	0.014	0.014	0.004	0.048	0.00011	450
0.01	392	0.009	0.014	0.004	0.048	0.00010	493
0.01	391	0.014	0.014	0.004	0.048	0.00011	456
0.01	553	0.017	0.020	0.007	0.068	0.00014	476
0.01	552	0.016	0.020	0.007	0.068	0.00014	481
0.01	553	0.017	0.020	0.007	0.068	0.00014	476
0.01	552	0.017	0.020	0.007	0.069	0.00014	432
0.01	771	0.022	0.032	0.012	0.095	0.00022	436
0.01	774	0.020	0.032	0.012	0.095	0.00021	455
0.01	782	0.025	0.032	0.012	0.096	0.00023	428
0.01	771	0.025	0.032	0.012	0.095	0.00023	418
0.01	783	0.024	0.031	0.012	0.097	0.00022	434

Table J.2: Resilient modulus data (A_1_105_105)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	215	0.010	-0.016	0.019	0.028	0.00004	650
0.06	216	0.012	-0.013	0.019	0.028	0.00006	471
0.06	220	0.010	-0.013	0.019	0.029	0.00005	531
0.06	343	-0.069	-0.050	0.019	0.045	-0.00033	-137
0.06	389	0.014	-0.021	0.030	0.051	0.00007	702
0.06	390	0.014	-0.021	0.030	0.051	0.00007	704
0.06	378	0.017	-0.021	0.029	0.050	0.00008	599
0.06	390	0.017	-0.021	0.030	0.051	0.00008	623
0.06	389	0.014	-0.021	0.029	0.051	0.00007	712
0.06	551	0.019	-0.021	0.036	0.072	0.00011	639
0.06	555	0.022	-0.021	0.039	0.073	0.00013	540
0.06	556	0.023	-0.024	0.030	0.074	0.00012	601
0.06	551	0.020	-0.020	0.039	0.072	0.00013	573
0.06	770	0.030	-0.023	0.051	0.101	0.00019	529
0.06	770	0.029	-0.023	0.051	0.101	0.00019	532
0.06	770	0.029	-0.023	0.051	0.101	0.00019	533
0.06	770	0.032	-0.023	0.051	0.101	0.00020	510
0.06	769	0.031	-0.023	0.051	0.101	0.00020	515
0.04	215	0.008	-0.012	0.017	0.028	0.00004	705
0.04	217	0.011	-0.012	0.017	0.028	0.00005	568
0.04	217	0.014	-0.012	0.017	0.028	0.00006	477
0.04	216	-0.007	-0.015	0.017	0.028	-0.00002	-1629
0.04	389	0.011	-0.017	0.028	0.051	0.00007	724
0.04	388	0.015	-0.017	0.028	0.051	0.00008	612
0.04	389	0.016	-0.017	0.028	0.051	0.00009	595
0.04	389	0.015	-0.017	0.028	0.051	0.00008	612
0.04	553	0.020	-0.020	0.023	0.072	0.00009	591
0.04	554	0.022	-0.020	0.037	0.073	0.00013	559
0.04	553	0.024	-0.020	0.037	0.072	0.00013	542
0.04	555	0.019	-0.021	0.037	0.073	0.00012	615
0.04	553	0.019	-0.020	0.037	0.073	0.00012	612
0.04	780	0.034	-0.022	0.048	0.102	0.00020	508
0.04	780	0.033	-0.022	0.048	0.102	0.00020	522
0.04	776	0.032	-0.022	0.048	0.101	0.00019	517
0.04	783	0.030	-0.022	0.048	0.102	0.00019	553
0.03	228	0.007	-0.012	0.017	0.030	0.00004	792
0.03	228	0.008	-0.012	0.017	0.030	0.00004	686
0.03	217	0.010	-0.012	0.014	0.028	0.00004	746
0.03	217	0.011	-0.012	0.014	0.028	0.00004	708
0.03	229	0.008	-0.009	0.017	0.030	0.00005	558
0.03	389	0.014	-0.011	0.024	0.050	0.00009	618
0.03	379	0.015	-0.014	0.024	0.050	0.00008	609
0.03	378	0.013	-0.011	0.024	0.050	0.00009	573
0.03	379	0.011	-0.011	0.025	0.050	0.00008	633
0.03	556	0.020	-0.018	0.032	0.073	0.00011	668
0.03	553	0.021	-0.018	0.035	0.072	0.00012	586
0.03	554	0.020	-0.018	0.035	0.073	0.00012	609
0.03	542	0.019	-0.018	0.035	0.071	0.00012	552
0.03	782	0.033	-0.023	0.048	0.103	0.00019	546
0.03	771	0.032	-0.023	0.048	0.101	0.00019	542
0.03	769	0.030	-0.024	0.048	0.101	0.00018	562
0.03	782	0.029	-0.024	0.048	0.102	0.00018	581
0.03	771	0.031	-0.023	0.048	0.101	0.00018	554
0.01	218	0.006	-0.008	0.012	0.029	0.00003	922
0.01	218	0.014	-0.008	0.012	0.029	0.00005	518
0.01	219	0.008	-0.008	0.012	0.029	0.00004	765
0.01	218	0.009	-0.008	0.012	0.029	0.00004	684
0.01	381	0.013	-0.015	0.023	0.050	0.00007	717
0.01	381	0.014	-0.015	0.023	0.050	0.00007	686
0.01	381	0.017	-0.015	0.023	0.050	0.00008	602
0.01	381	0.013	-0.015	0.023	0.050	0.00007	747
0.01	554	0.018	-0.015	0.023	0.050	0.00008	598
0.01	556	0.016	-0.018	0.036	0.073	0.00011	656
0.01	555	0.022	-0.018	0.036	0.073	0.00013	566
0.01	554	0.021	-0.019	0.036	0.073	0.00013	574
0.01	555	0.023	-0.018	0.036	0.073	0.00013	550
0.01	772	0.032	-0.027	0.050	0.101	0.00018	554
0.01	783	0.033	-0.027	0.050	0.103	0.00019	553
0.01	781	0.033	-0.024	0.050	0.102	0.00020	520
0.01	771	0.036	-0.024	0.050	0.101	0.00020	495

Table J.3: Resilient modulus data (A_2_105_105)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	227	-0.009	0.013	0.013	0.030	0.00006	522
0.06	228	0.007	0.013	0.013	0.030	0.00011	277
0.06	229	-0.008	0.013	0.013	0.030	0.00006	495
0.06	227	-0.006	0.013	0.013	0.030	0.00006	458
0.06	392	-0.005	0.023	0.022	0.051	0.00013	392
0.06	398	-0.006	0.023	0.022	0.052	0.00013	403
0.06	387	0.005	0.023	0.022	0.051	0.00017	306
0.06	390	-0.006	0.023	0.022	0.051	0.00013	403
0.06	389	-0.008	0.023	0.022	0.051	0.00012	412
0.06	552	-0.005	0.032	0.032	0.072	0.00019	376
0.06	551	-0.008	0.032	0.032	0.072	0.00018	394
0.06	551	0.005	0.032	0.032	0.072	0.00019	321
0.06	551	-0.005	0.032	0.032	0.072	0.00019	376
0.06	780	0.011	0.043	0.044	0.102	0.00032	318
0.06	769	0.010	0.043	0.044	0.101	0.00032	319
0.06	769	0.009	0.042	0.044	0.101	0.00031	321
0.06	780	0.009	0.043	0.044	0.102	0.00031	325
0.06	769	0.011	0.043	0.044	0.101	0.00032	315
0.04	216	-0.007	0.022	0.012	0.028	0.00009	233
0.04	226	0.006	0.022	0.012	0.030	0.00012	211
0.04	227	0.005	0.022	0.015	0.030	0.00014	219
0.04	227	-0.006	0.022	0.015	0.030	0.00010	298
0.04	389	-0.005	0.033	0.023	0.051	0.00017	304
0.04	389	-0.006	0.033	0.023	0.051	0.00016	309
0.04	389	-0.007	0.030	0.023	0.051	0.00015	339
0.04	393	-0.005	0.033	0.023	0.051	0.00017	309
0.04	553	-0.007	0.043	0.023	0.072	0.00021	316
0.04	553	0.007	0.043	0.034	0.073	0.00028	260
0.04	553	-0.007	0.043	0.034	0.073	0.00023	312
0.04	553	-0.005	0.043	0.034	0.072	0.00024	303
0.04	553	0.008	0.043	0.034	0.072	0.00028	259
0.04	783	0.007	0.055	0.048	0.103	0.00036	286
0.04	780	0.008	0.054	0.048	0.102	0.00036	284
0.04	709	0.007	0.054	0.048	0.101	0.00036	282
0.04	770	0.011	0.054	0.048	0.101	0.00037	272
0.03	217	0.006	0.022	0.014	0.028	0.00014	204
0.03	218	-0.007	0.025	0.014	0.029	0.00011	271
0.03	217	-0.005	0.022	0.014	0.028	0.00010	278
0.03	216	-0.005	0.022	0.014	0.028	0.00010	276
0.03	217	-0.006	0.022	0.014	0.028	0.00010	290
0.03	392	-0.005	0.037	0.022	0.051	0.00018	291
0.03	392	-0.005	0.037	0.022	0.050	0.00021	298
0.03	393	-0.005	0.037	0.022	0.051	0.00018	289
0.03	392	-0.005	0.037	0.022	0.051	0.00018	291
0.03	553	0.007	0.047	0.033	0.072	0.00029	253
0.03	559	0.005	0.047	0.034	0.073	0.00028	258
0.03	574	0.006	0.047	0.037	0.075	0.00030	254
0.03	553	-0.007	0.048	0.034	0.073	0.00028	203
0.03	782	0.006	0.047	0.050	0.103	0.00038	266
0.03	782	-0.007	0.061	0.050	0.102	0.00034	301
0.03	782	0.008	0.061	0.050	0.103	0.00039	262
0.03	781	-0.006	0.061	0.050	0.102	0.00034	299
0.03	780	0.005	0.058	0.050	0.102	0.00037	276
0.01	218	0.008	0.028	0.013	0.029	0.00016	181
0.01	217	-0.009	0.024	0.012	0.028	0.00009	209
0.01	218	-0.008	0.024	0.012	0.029	0.00009	303
0.01	219	0.005	0.024	0.013	0.029	0.00014	207
0.01	382	-0.006	0.038	0.023	0.050	0.00018	277
0.01	392	0.005	0.041	0.023	0.051	0.00023	226
0.01	392	0.008	0.041	0.023	0.051	0.00024	218
0.01	392	-0.006	0.038	0.023	0.051	0.00018	285
0.01	555	-0.008	0.038	0.023	0.051	0.00018	293
0.01	555	-0.007	0.051	0.035	0.073	0.00020	282
0.01	556	0.007	0.051	0.035	0.073	0.00030	240
0.01	554	-0.008	0.051	0.035	0.073	0.00026	284
0.01	566	-0.007	0.051	0.032	0,074	0.00025	300
0.01	784	0.006	0.066	0.050	0.103	0.00040	258
0.01	781	0.009	0.066	0.050	0.102	0.00041	251
0.01	785	-0.005	0.063	0.050	0.103	0.00035	291
0.01	782	0.009	0.066	0.050	0.103	0.00041	252

Table J.4: Resilient modulus data (A_1_75_105)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	239	-0.008	0.009	0.008	0.031	0.00003	1049
0.06	228	0.010	0.009	0.008	0.030	0.00009	346
0.06	228	-0.008	0.009	0.008	0.030	0.00003	1002
0.06	228	-0.010	0.009	0.008	0.030	0.00002	1274
0.06	380	0.012	0.009	0.005	0.030	0.00008	373
0.06	388	-0.007	0.015	0.012	0.051	0.00013	763
0.06	389	0.009	0.015	0.012	0.051	0.00012	425
0.06	388	0.011	0.015	0.012	0.051	0.00012	410
0.06	388	-0.011	0.015	0.012	0.051	0.00005	966
0.06	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.06	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.06	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.06	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.06	770	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.06	768	0.021	0.033	0.023	0.102	0.00023	305
0.06	782	0.021	0.033	0.024	0,102	0.00025	402
0.06	771	0.018	0.033	0.027	0.101	0.00025	398
0.06	770	0.023	0.033	0.024	0.101	0.00026	386
0.04	217	-0.010	0.006	0.007	0.028	0.00001	3486
0.04	217	0.013	0.006	0.007	0.029	0.00008	342
0.04	228	0.009	0.006	0.007	0.030	0.00007	428
0.04	218	0.008	0.006	0.007	0.029	0.00007	423
0.04	227	0.015	0.006	0.007	0.050	0.00009	328
0.04	389	0.009	0.013	0.010	0.051	0.00012	430
0.04	389	0.008	0.013	0.013	0.051	0.00011	453
0.04	389	0.015	0.013	0.010	0.051	0.00012	414
0.04	390	0.013	0.013	0.010	0.051	0.00012	428
0.04	550	0.019	0.021	0.016	0.072	0.00018	392
0.04	552	0.021	0.021	0.016	0.072	0.00019	382
0.04	556	0.015	0.021	0.016	0.073	0.00017	423
0.04	570	0.014	0.021	0.016	0.075	0.00017	447
0.04	770	0.017	0.021	0.016	0.072	0.00018	360
0.04	772	0.020	0.030	0.025	0.101	0.00027	412
0.04	781	0.029	0.033	0.025	0,102	0.00028	361
0.04	780	0.019	0.030	0.025	0.102	0.00024	427
0.04	780	0.020	0.033	0.025	0.102	0.00025	404
0.03	228	0.005	0.008	0.006	0.030	0.00006	476
0.03	227	0.010	0.005	0.006	0.030	0.00007	424
0.03	216	-0.008	0.008	0.006	0.028	0.00002	1254
0.03	216	-0.007	0.005	0.009	0.028	0.00003	1129
0.03	381	0.008	0.005	0.008	0.050	0.00008	405
0.03	392	0.014	0.011	0.013	0.051	0.00012	441
0.03	380	-0.008	0.011	0.013	0.050	0.00005	1031
0.03	381	0.011	0.014	0.012	0.050	0.00012	406
0.03	392	0.010	0.011	0.012	0.051	0.00011	476
0.03	554	0.019	0.019	0.018	0.073	0.00019	390
0.03	551	0.017	0.019	0.019	0.072	0.00018	401
0.03	556	0.021	0.019	0.015	0.073	0.00018	402
0.03	566	0.013	0.019	0.016	0.074	0.00016	4/1
0.03	781	0.032	0.019	0.023	0.073	0.00018	362
0.03	782	0.016	0.031	0.023	0,102	0.00023	445
0.03	782	0.025	0.031	0.023	0.102	0.00026	393
0.03	772	0.025	0.031	0.023	0.101	0.00026	388
0.03	782	0.024	0.031	0.026	0.103	0.00027	384
0.01	219	0.011	0.006	0.008	0.029	0.00008	341
0.01	229	0.006	0.006	0.008	0.030	0.00007	441
0.01	229	-0.009	0.006	0.008	0.030	0.00002	1549
0.01	227	0.012	0.006	0.008	0.030	0.00009	337
0.01	390	-0.013	0.006	0.008	0.030	0.00000	372
0,01	391	0.011	0.013	0,013	0.051	0.00012	430
0.01	390	0.013	0.013	0.013	0.051	0.00012	410
0.01	390	0.020	0.012	0.013	0.051	0.00015	345
0.01	389	-0.019	0.012	0.013	0.051	0.00002	2650
0.01	557	0.024	0.021	0.018	0.073	0.00021	353
0.01	564	0.020	0.021	0.018	0.074	0.00020	376
0.01	558	0.022	0.021	0.018	0.073	0.00020	359
0.01	555	0.022	0.021	0.018	0.073	0.00020	360
0.01	785	0.017	0.021	0.018	0.073	0.00018	394
0.01	783	0.024	0.031	0.026	0.102	0.00020	372
0.01	784	0.026	0.031	0.026	0.103	0.00027	380
0.01	794	0.026	0.031	0.026	0.104	0.00027	386
0.01	783	0.034	0.031	0.026	0.103	0.00030	344

Table J.5: Resilient modulus data (A_2_75_105)

r

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	235	0.023	-0.008	0.031	0.031	0.00015	202
0.06	216	0.021	-0.008	0.031	0.028	0.00015	192
0.06	213	0.020	-0.007	0.028	0.028	0.00013	210
0.06	212	0.020	-0.007	0.031	0.028	0.00014	197
0.06	380	0.030	-0.013	0.052	0.050	0.00023	211
0.06	390	0.040	-0.013	0.052	0.051	0.00026	197
0.06	376	0.035	-0.013	0.052	0.049	0.00024	201
0.06	376	0.039	-0.013	0.052	0.049	0.00026	193
0.06	376	0.038	-0.013	0.052	0.049	0.00025	195
0.06	540	0.052	-0.018	0.082	0.071	0.00038	186
0.06	540	0.054	-0.018	0.082	0.071	0.00039	182
0.06	540	0.050	-0.018	0.082	0.071	0.00040	187
0.06	551	0.057	-0.018	0.082	0.072	0.00040	182
0.06	769	0.077	-0.021	0.128	0.101	0.00060	168
0.06	769	0.083	-0.021	0.125	0.101	0.00061	165
0.06	769	0.082	-0.021	0.124	0.101	0.00061	166
0.06	758	0.085	-0.021	0.127	0.099	0.00063	158
0.06	215	0.078	-0.021	0.124	0.101	0.00039	189
0.04	215	0.026	-0.017	0.029	0.028	0.00013	225
0.04	204	0.024	-0.017	0.029	0.027	0.00012	226
0.04	216	0.026	-0.017	0.029	0.028	0.00012	227
0.04	204	0.023	-0.017	0.029	0.027	0.00012	232
0.04	378	0.046	-0.024	0.054	0.050	0.00025	200
0.04	383	0.046	-0.024	0.057	0.050	0.00026	196
0.04	393	0.049	-0.024	0.057	0.032	0.00025	196
0.04	379	0.044	-0.024	0.054	0.050	0.00025	196
0.04	553	0.066	-0.030	0.085	0.072	0.00040	183
0.04	542	0.065	-0.030	0.088	0.071	0.00040	176
0.04	542	0.068	-0.030	0.088	0.071	0.00041	173
0.04	552	0.072	-0.030	0.088	0.072	0.00043	170
0.04	222	0.065	-0.030	0.085	0.073	0.00039	185
0.04	769	0.094	-0.034	0.136	0.101	0.00064	154
0.04	771	0.097	-0.034	0.136	0.101	0.00065	155
0.04	770	0.093	-0.030	0.136	0.101	0.00065	155
0.04	771	0.096	-0.034	0.136	0.101	0.00065	155
0.03	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.03	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.03	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.03	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.03	373	0.052	-0.030	0.057	0.049	0.00026	191
0.03	378	0.052	-0.030	0.056	0.050	0.00026	193
0.03	383	0.049	-0.030	0.059	0.050	0.00026	195
0.03	379	0.051	-0.027	0.056	0.050	0.00027	188
0.03	544	0.048	-0.030	0.056	0.050	0.00025	203
0.03	544	0.068	-0.035	0.090	0.071	0.00041	176
0.03	544	0.073	-0.034	0.090	0.071	0.00042	168
0.03	554	0.070	-0.034	0.090	0.073	0.00041	176
0.03	542	0.072	-0.034	0.090	0.071	0.00042	170
0.03	760	0.101	-0.038	0.140	0.100	0.00067	149
0.03	759	0.103	-0.037	0.143	0.099	0.00068	145
0.03	771	0.100	-0.037	0.143	0.101	0.00067	150
0.03	770	0.100	-0.037	0.143	0.101	0.00068	149
0.01	204	0.031	-0.021	0.029	0.027	0.00013	209
0.01	204	0.029	-0.018	0.029	0.027	0.00013	206
0.01	205	0.029	-0.018	0.029	0.027	0.00013	203
0.01	205	0.024	-0.018	0.029	0.027	0.00012	232
0.01	370	0.029	-0.030	0.029	0.027	0.00013	187
0.01	380	0.043	-0.031	0.059	0.050	0.00023	213
0.01	381	0.051	-0.031	0.059	0.050	0.00026	192
0.01	371	0.058	-0.031	0.059	0.049	0.00028	172
0.01	370	0.057	-0.031	0.059	0.048	0.00028	173
0.01	551	0.075	-0.039	0.094	0.072	0.00043	169
0.01	5/0	0.072	-0.039	0.094	0.075	0.00042	160
0.01	545	0.074	-0.039	0.094	0.071	0.00044	168
0.01	544	0.074	-0.039	0.094	0.071	0.00042	168
0.01	771	0.107	-0.042	0.145	0.101	0.00069	147
0.01	771	0.102	-0.042	0.144	0.101	0.00067	151
0.01	770	0.109	-0.042	0.144	0.101	0.00069	146
0.01	769	0.105	-0.042	0.144	0.101	0.00068	148

Table J.6: Resilient modulus data (A_3_15_100)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	216	0.029	-0.005	0.005	0.030	0.00010	297
0.06	216	0.028	-0.006	-0.004	0.030	0.00006	483
0.06	217	0.028	-0.006	0.005	0.030	0.00009	309
0.06	218	0.028	-0.006	0.005	0.030	0.00009	320
0.06	217	0.026	-0.006	0.005	0.030	0.00009	333
0.06	388	0.051	-0.010	0.010	0.054	0.00017	301
0.06	379	0.053	-0.000	0.010	0.053	0.00017	203
0.06	390	0.046	-0.009	0.010	0.054	0.00015	335
0.06	389	0.051	-0.010	0.010	0.054	0.00017	305
0.06	553	0.074	-0.016	0.023	0.077	0.00026	274
0.06	552	0.077	-0.016	0.023	0.077	0.00027	263
0.06	541	0.075	-0.016	0.020	0.075	0.00026	276
0.06	551	0.074	-0.016	0.023	0.077	0.00026	274
0.06	552	0.080	-0.016	0.023	0.077	0.00028	256
0.06	770	0.098	-0.023	0.057	0.107	0.00043	232
0.06	770	0.107	-0.023	0.057	0.107	0.00046	218
0.06	770	0.106	-0.023	0.057	0.107	0.00046	220
0.06	781	0.108	-0.022	0.057	0.109	0.00047	220
0.08	215	0.038	-0.022	0.037	0.030	0.00040	431
0.04	215	0.034	-0.013	-0.008	0.030	0.00004	653
0.04	215	0.034	-0.013	-0.005	0.030	0.00005	526
0.04	215	0.030	-0.013	-0.005	0.030	0.00004	727
0.04	215	0.033	-0.013	-0.005	0.030	0.00005	565
0.04	379	0.064	-0.021	-0.012	0.053	0.00010	485
0.04	378	0.062	-0.021	-0.009	0.053	0.00011	467
0.04	377	0.066	-0.021	-0.009	0.053	0.00012	416
0.04	378	0.066	-0.021	-0.009	0.053	0.00012	414
0.04	379	0.062	-0.021	-0.009	0.053	0.00011	466
0.04	568	0.091	-0.029	0.012	0.079	0.00024	309
0.04	553	0.094	-0.029	0.012	0.077	0.00025	288
0.04	554	0.093	-0.029	0.012	0.077	0.00020	305
0.04	553	0.086	-0.029	0.012	0.077	0.00024	320
0.04	771	0.121	-0.037	0.050	0.107	0.00044	229
0.04	770	0.118	-0.036	0.050	0.107	0.00043	233
0.04	771	0.120	-0.036	0.050	0.107	0.00044	230
0.04	770	0.126	-0.036	0.050	0.107	0.00046	220
0.04	770	0.122	-0.036	0.050	0.107	0.00044	227
0.03	208	0.041	-0.013	-0.008	0.029	0.00007	415
0.03	207	0.039	-0.013	-0.008	0.029	0.00006	451
0.03	208	0.040	-0.013	-0.008	0.029	0.00006	450
0.03	207	0.038	-0.016	-0.008	0.029	0.00005	576
0.03	207	0.038	-0.016	-0.008	0.029	0.00004	120
0.03	378	0.071	-0.024	-0.012	0.053	0.00012	422
0.03	389	0.071	-0.024	-0.012	0.054	0.00012	443
0.03	377	0.066	-0.024	-0.012	0.053	0.00010	495
0.03	380	0.064	-0.024	-0.012	0.053	0.00009	532
0.03	554	0.099	-0.032	-0.012	0.077	0.00018	402
0.03	554	0.097	-0.032	0.010	0.077	0.00025	295
0.03	554	0.097	-0.032	-0.009	0.077	0.00018	398
0.03	555	0.098	-0.032	0.010	0.077	0.00025	294
0.03	554	0.096	-0.032	0.010	0.077	0.00024	298
0.03	770	0.131	-0.042	0.047	0.107	0.00045	225
0.03	771	0.134	-0.042	0.047	0.107	0.00044	220
0.03	770	0.129	-0.042	0.047	0,107	0.00044	228
0.03	769	0.134	-0.042	0.047	0.107	0.00046	220
0.01	207	0.042	-0.015	-0.011	0.029	0.00005	494
0.01	207	0.034	-0.015	-0.010	0.029	0.00003	973
0.01	207	0.043	-0.015	-0.011	0.029	0.00006	482
0.01	206	0.038	-0.015	-0.010	0.029	0.00004	641
0.01	206	0.038	-0.015	-0.011	0.029	0.00004	670
0.01	381	0.073	-0.028	-0.013	0.053	0.00010	481
0.01	380	0.079	-0.028	-0.013	0.053	0.00012	599
0.01	381	0.074	-0.028	-0.013	0.053	0.00011	465
0,01	379	0.075	-0.028	-0.013	0.053	0.00011	443
0.01	556	0.107	-0.037	-0.012	0.077	0.00019	382
0.01	555	0.101	-0.037	-0.012	0.077	0.00017	426
0.01	553	0.103	-0.037	-0.012	0.077	0.00018	405
0.01	555	0.102	-0.037	-0.012	0.077	0.00017	416
0.01	555	0.102	-0.037	-0.012	0.077	0.00018	411
0.01	772	0.137	-0.046	0.044	0.108	0.00044	228
0.01	776	0.143	-0.046	0.044	0.108	0.00046	221
0.01	793	0.138	-0.046	0.044	0.110	0.00044	234
0.01	783	0.139	-0.046	0.044	0.109	0.00045	229

Table J.7: Resilient modulus data (A_4_15_100)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	181	0.008	0.009	0.006	0.024	0.00008	307
0.06	181	-0.008	0.010	-0.003	0.024	-0.00001	-4609
0.06	181	-0.009	0.010	0.006	0.024	0.00002	1085
0.06	192	-0.008	0.010	-0.003	0.025	0.00005	-43293
0.06	326	0.010	0.015	0.007	0.043	0.00010	409
0.06	326	0.007	0.018	0.007	0.043	0.00011	400
0.06	336	0.009	0.015	0.007	0.044	0.00010	428
0.06	336	0.008	0.015	0.007	0.044	0.00010	444
0.06	336	0.008	0.015	0.007	0.044	0.00010	453
0.06	500	0.013	0.025	0.008	0.066	0.00015	438
0.06	501	0.013	0.025	0.008	0.066	0.00015	434
0.06	500	0.013	0.025	0.008	0.066	0.00015	436
0.06	500	0.013	0.028	0.008	0.066	0.00016	407
0.06	700	0.017	0.038	0.013	0.092	0.00022	413
0.06	699	0.023	0.035	0.016	0.092	0.00024	377
0.06	700	0.019	0.035	0.013	0.092	0.00022	424
0.06	704	0.015	0.038	0.013	0.092	0.00022	429
0.04	186	-0.007	0.009	0.004	0.024	0.00002	1202
0.04	201	-0.005	0.009	0.004	0.026	0.00003	962
0.04	170	-0.008	0.009	0.004	0.022	0.00002	1416
0.04	180	-0.006	0.009	0.004	0.022	0.00008	295 963
0.04	326	0.005	0.019	0.004	0.043	0.00009	465
0.04	332	-0.008	0.019	0.004	0.044	0.00005	896
0.04	330	0.008	0.019	0.004	0.043	0.00010	424
0.04	324	0.011	0.019	0.004	0.042	0.00011	384
0.04	324	0.008	0.019	0.004	0.042	0.00010	419
0.04	501	0.015	0.028	0.005	0.066	0.00016	414
0.04	500	0.012	0.028	0.005	0.066	0.00015	439
0.04	500	0.009	0.028	0.005	0.066	0.00014	475
0.04	500	0.015	0.028	0.009	0.066	0.00017	392
0.04	701	0.017	0.041	0.010	0.092	0.00022	410
0.04	707	0.023	0.041	0.010	0.093	0.00024	396
0.04	699	0.016	0.041	0.010	0.092	0.00022	412
0.04	700	0.019	0,041	0.010	0.092	0.00023	394
0.03	166	0.008	0.010	-0.003	0.022	0.00005	470
0.03	181	0.007	0.010	-0.003	0.024	0.00004	548
0.03	161	-0.008	0.010	-0.003	0.021	-0.00001	-3354
0.03	161	0.005	0.010	-0.003	0.021	0.00004	547
0.03	316	0.010	0.021	-0.004	0.041	0.00009	475
0.03	320	0.007	0.021	-0.004	0.042	0.00008	538
0.03	333	-0.174	0.086	-0.066	0.044	-0.00051	-86
0.03	327	0.009	0.021	-0.004	0.043	0.00008	526
0.03	502	0.007	0.021	-0.004	0.066	0.00012	543
0.03	502	0.015	0.034	-0.004	0.066	0.00015	450
0.03	502	0.011	0.034	-0.007	0.066	0.00012	531
0.03	502	0.018	0.034	-0.004	0,066	0.00015	427
0.03	491	0.013	0.034	-0.004	0.064	0.00014	461
0.03	700	0.022	0.045	-0.006	0.092	0.00019	451
0.03	700	0.018	0.045	-0.006	0.092	0.00019	486
0.03	700	0.021	0.045	-0.006	0.092	0.00020	461
0.03	689	0.023	0.045	-0.006	0.090	0.00021	439
0.01	0	0.000	0,000	0.000	0.000	0.00000	#DIV/0!
0.01	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.01	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.01	0	0.000	0.000	0.000	0.000	0.00000	#DIV/0!
0.01	316	0.010	0.020	-0.007	0.041	0.00008	534
0.01	316	-0.007	0.020	-0.007	0.041	0.00002	1971
0.01	310	-0.006	0.023	-0.004	0.041	0.00004	482
0.01	315	0.012	0.020	-0.007	0.041	0.00008	503
0.01	496	0.017	0.034	-0.006	0.065	0.00015	433
0.01	496	0.013	0.034	-0.006	0.065	0.00014	474
0.01	496	0.018	0.034	-0.006	0.065	0.00015	426
0.01	496	0.014	0.034	-0.006	0.065	0.00014	465
0.01	690	0.023	0.034	-0.005	0.000	0.00014	430
0.01	689	0.023	0.046	-0.005	0.090	0.00021	432
0.01	700	0.024	0.046	-0.005	0.092	0.00021	428
0.01	700	0.018	0.046	-0.005	0.092	0.00020	468
0.01	700	0.029	0.046	-0.008	0.092	0.00022	419

Table J.8: Resilient modulus data (A_1_12_100)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	226	-0.005	0.002	0.015	0.030	0.00004	744
0.06	231	-0.005	-0.004	0.015	0.030	0.00002	1554
0.06	246	0.008	0.002	0.015	0.032	0.00008	401
0.06	227	-0.009	-0.004	0.015	0.030	0.00001	3142
0.06	389	0.008	0.005	0.028	0.051	0.00013	381
0.06	390	-0.006	-0.004	0.027	0.051	0.00006	904
0.06	390	-0.007	0.005	0.027	0.051	0.00009	594
0.06	389	0.005	0.005	0.027	0.051	0.00012	410
0.06	390	0.007	0.005	0.027	0.051	0.00013	395
0.06	541	-0.009	0.006	0.038	0.072	0.00017	553
0.06	552	-0.006	0.006	0.041	0.072	0.00013	537
0.06	553	0.007	0.006	0.041	0.072	0.00018	402
0.06	552	0.011	0.006	0.041	0.072	0.00019	377
0.06	781	0.011	0.010	0.060	0.102	0.00026	387
0.06	768	0.010	0.010	0.060	0.101	0.00026	385
0.06	768	0.010	0.010	0.060	0.101	0.00026	402
0.06	779	0.011	0.010	0.060	0.102	0.00026	387
0.04	228	0.007	-0.004	0.015	0.030	0.00006	492
0.04	227	-0.008	-0.004	0.015	0.030	0.00001	2797
0.04	228	0.007	-0.004	0.015	0.030	0.00006	512
0.04	228	-0.007	-0.004	0.015	0.030	0.00001	2016
0.04	394	0.003	-0.004	0.013	0.052	0.00003	523
0.04	405	-0.005	-0.004	0.027	0.053	0.00006	907
0.04	389	0.007	0.002	0.030	0.051	0.00013	391
0.04	388	-0.008	-0.004	0.027	0.051	0.00005	1024
0.04	389	0.006	-0.004	0.027	0.051	0.00009	540
0.04	555	-0.008	-0.004	0.042	0.072	0.00010	543
0.04	552	0.007	0.003	0.042	0.072	0.00013	434
0.04	552	-0.005	0.005	0.042	0.072	0.00014	524
0.04	551	0.009	-0.004	0.042	0.072	0.00016	465
0.04	768	0.011	0.005	0.064	0.101	0.00026	384
0.04	768	0.016	0.008	0.064	0.101	0.00029	346
0.04	780	0.001	0.005	0.064	0.102	0.00027	380
0.04	768	-0.050	0.011	0.064	0.101	0.000025	1237
0.03	229	0.005	-0.002	0.017	0.030	0.00007	454
0.03	230	-0.008	-0.002	0.018	0.030	0.00002	1228
0.03	229	-0.007	-0.002	0.017	0.030	0.00003	1064
0.03	230	-0.010	-0.002	0.017	0.030	0.00002	1527
0.03	392	-0.005	-0.002	0.031	0.051	0.00003	451
0.03	397	0.009	-0.004	0.031	0.052	0.00012	426
0.03	401	-0.005	-0.004	0.031	0.053	0.00007	703
0.03	393	0.008	-0.004	0.031	0.052	0.00012	434
0.03	392	0.010	-0.004	0.031	0.051	0.00012	421
0.03	565	0.009	-0.004	0.046	0.073	0.00017	430
0.03	554	0.010	-0.004	0.046	0.073	0.00017	400
0.03	564	0.012	-0.004	0.046	0.074	0.00018	414
0.03	554	0.008	-0.004	0.046	0.073	0.00017	438
0.03	770	0.011	-0.005	0.069	0.101	0.00025	406
0.03	782	0.013	-0.005	0.069	0.103	0.00025	404
0.03	796	0.011	-0.005	0.069	0.102	0.00025	420
0.03	771	0.014	-0.005	0.069	0.101	0.00026	392
0.01	228	-0.006	0.003	0.018	0.030	0.00005	611
0.01	229	0.009	0.003	0.018	0.030	0.00010	301
0.01	217	0.009	0.003	0.018	0.028	0.00010	291
0.01	218	-0.007	0.003	0.018	0.030	0.00010	586
0.01	383	0.007	-0.004	0.034	0.050	0.00012	421
0.01	382	0.009	-0.004	0.034	0.050	0.00013	393
0.01	383	0.009	-0.004	0.031	0.050	0.00012	428
0.01	392	0.010	-0.004	0.030	0.051	0.00012	431
0.01	552	0.009	-0.004	0.034	0.072	0.00012	451
0.01	553	0.009	-0.004	0.047	0.072	0.00017	423
0.01	553	0.008	-0.004	0.047	0.073	0.00017	431
0.01	564	0.012	-0.004	0.047	0.074	0.00018	405
0.01	552	0.010	-0.004	0.047	0.072	0.00017	415
0.01	772	0.011	-0.007	0.070	0.101	0.00024	420
0.01	771	0.014	-0.004	0.070	0.101	0.00025	387
0.01	781	0.015	-0.004	0.070	0.102	0.00026	388
0.01	774	0.013	-0.004	0.073	0.101	0.00027	377

Table J.9: Resilient modulus data (A_2_12_100)

σ _i [MPa]	q [N]	δ_{EVDTS} [mm]	$\delta_{\rm LVDTa2}$ [mm]	δ_{LVDTA3} [mm]	σ_{DEV} [MPa]	ε [-]	M_R [MPa]
0.06	215	0.013	0.016	-0.009	0.032	0.00007	455
0.06	215	0.013	0.013	-0.009	0.032	0.00006	534
0.06	216	0.016	0.013	-0.009	0.031	0.00007	437
0.06	228	0.013	0.015	-0.003	0.032	0.00008	420 540
0.06	380	0.013	0.027	-0.010	0.054	0.00012	435
0.06	391	0.023	0.027	-0.010	0.054	0.00014	389
0.06	379	0.018	0.027	-0.010	0.054	0.00012	437
0.06	381	0.022	0.027	-0.010	0.054	0.00014	399
0.06	552	0.028	0.044	-0.014	0.077	0.00020	382
0.06	554	0.030	0.044	-0.015	0.077	0.00021	373
0.06	557	0.027	0.044	-0.012	0.077	0.00021	369
0.06	557	0.031	0.047	-0.012	0.079	0.00023	337
0.06	769	0.040	0.068	-0.015	0.107	0.00033	330
0.06	768	0.044	0.068	-0.015	0.109	0.00034	319
0.06	769	0.042	0.071	-0.015	0.109	0.00035	315
0.06	772	0.046	0.00	-0.015	0.107	0.00036	238
0.04	217	0.016	0.015	-0.012	0.031	0.00007	481
0.04	217	0.017	0.015	-0.012	0.032	0.00007	444
0.04	217	0.011	0.018	-0.012	0.032	0.00006	539
0.04	218	0.017	0.015	-0.012	0.031	0.00007	458 430
0.04	379	0.025	0.029	-0.018	0.054	0.00013	421
0.04	389	0.022	0.032	-0.018	0.055	0.00013	431
0.04	390	0.024	0.029	-0.018	0.055	0.00012	449
0.04	389	0.026	0.029	-0.018	0.056	0.00013	428
0.04	555	0.020	0.048	-0.021	0.077	0.00023	332
0.04	554	0.040	0.048	-0.021	0.077	0.00023	328
0.04	553	0.039	0.048	-0.021	0.077	0.00023	336
0.04	555	0.038	0.048	-0.021	0.077	0.00023	338
0.04	781	0.049	0.075	-0.021	0.109	0.00036	303
0.04	782	0.047	0.072	-0.021	0.103	0.00034	318
0.04	782	0.045	0.075	-0.021	0.107	0.00034	311
0.04	774	0.046	0.075	-0.021	0.107	0.00035	307
0.04	206	0.040	0.015	-0.012	0.032	0.000009	376
0.03	218	0.015	0.016	-0.012	0.031	0.00007	459
0.03	207	0.014	0.016	-0.012	0.032	0.00007	492
0.03	216	0.014	0.016	-0.012	0.031	0.00006	480
0.03	380	0.029	0.032	-0.012	0.053	0.00015	363
0.03	380	0.027	0.032	-0.019	0.053	0.00014	384
0.03	379	0.027	0.032	-0.019	0.055	0.00014	393
0.03	383	0.026	0.029	-0.019	0.055	0.00013	434
0.03	575	0.037	0.052	-0.023	0.077	0.00022	342
0.03	554	0.039	0.050	-0.023	0.077	0.00023	335
0.03	555	0.036	0.050	-0.023	0.077	0.00022	352
0.03	555	0.040	0.050	-0.023	0.077	0.00024	321
0.03	773	0.050	0.078	-0.022	0.109	0.00037	295
0.03	772	0.051	0.078	-0.022	0.109	0.00037	292
0.03	784	0.050	0.078	-0.022	0.109	0.00037	295
0.03	185	0.050	0.075	-0.025	0.109	0.00034	316 292
0.01	218	0.019	0.016	-0.012	0.031	0.00008	401
0.01	208	0.014	0.016	-0.012	0.031	0.00006	512
0.01	208	0.012	0.016	-0.012	0.031	0.00005	593
0.01	205	0.013	0.015	-0.012	0.031	0.00006	406
0.01	397	0.025	0.034	-0.021	0.054	0.00013	416
0.01	381	0.023	0.030	-0.021	0.053	0.00011	469
0.01	382	0.026	0.033	-0.021	0.053	0.00013	393
0.01	225	0.973	1.380	1.756	0.055	0.01433	4
0.01	555	0.038	0.053	-0.023	0.077	0.00024	326
0.01	555	0.034	0.053	-0.023	0.077	0.00022	350
0.01	555	0.037	0.053	-0.023	0.077	0.00023	334
0.01	555	0.036	0.050	-0.023	0.077	0.00022	330
0.01	772	0.056	0.080	-0.027	0.109	0.00038	288
0.01	782	0.054	0.077	-0.027	0.109	0.00036	300
0.01	782	0.054	0.080	-0.024	0.109	0.00038	284
0.01	783	0.055	0.077	-0.024	0.107	0.00038	285

Table J.10: Resilient modulus data (A_1_9_100)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	229	0.007	0.012	0.009	0.030	0.00009	336
0.06	229	-0.009	0.011	0.009	0.030	0.00004	799
0.06	225	0.010	0.011	0.009	0.030	0.00010	285
0.06	229	0.010	0.011	0.009	0.030	0.00010	280
0.06	387	0.012	0.022	0.003	0.051	0.00015	315
0.06	387	0.011	0.022	0.013	0.051	0.00015	318
0.06	387	0.018	0.021	0.013	0.051	0.00017	279
0.06	388	0.014	0.021	0.013	0.051	0.00016	299
0.06	397	-0.011	0.022	0.013	0.052	0.00008	636
0.06	554	0.012	0.031	0.019	0.073	0.00021	329
0.06	553	0.013	0.031	0.019	0.072	0.00021	326
0.06	564	0.013	0.031	0.022	0.072	0.00023	300
0.06	553	0.012	0.031	0.023	0.074	0.00021	293
0.06	769	0.025	0.046	0.034	0.101	0.00035	275
0.06	781	0.016	0.046	0.034	0.102	0.00032	304
0.06	780	0.015	0.046	0.037	0.102	0.00032	297
0.06	768	0.017	0.046	0.034	0.101	0.00032	296
0.06	784	0.020	0.046	0.034	0.103	0.00033	294
0.04	225	-0.000	0.010	0.008	0.030	0.00004	058
0.04	227	-0.009	0.010	0.008	0.030	0.00003	934
0.04	225	0.009	0.013	0.008	0.030	0.00010	282
0.04	225	0.011	0.010	0.008	0.030	0.00009	297
0.04	388	0.012	0.020	0.013	0.051	0.00015	327
0.04	391	0.012	0.020	0.016	0.051	0.00016	307
0.04	395	0.013	0.020	0.016	0.052	0.00016	303
0.04	403	0.008	0.020	0.013	0.053	0.00013	369
0.04	553	0.014	0.020	0.023	0.030	0.00010	305
0.04	551	0.019	0.032	0.023	0.072	0.00024	282
0.04	553	0.016	0.032	0.023	0.072	0.00023	294
0.04	552	0.010	0.032	0.023	0.072	0.00021	323
0.04	552	0.016	0.032	0.023	0.072	0.00023	296
0.04	781	0.027	0.051	0.036	0.102	0.00037	259
0.04	782	0.023	0.051	0.036	0.102	0.00036	268
0.04	769	0.020	0.050	0.035	0.101	0.00035	2/4
0.04	768	0.019	0.050	0.035	0.101	0.00034	276
0.03	231	-0.010	0.011	0.010	0.030	0.00003	825
0.03	226	-0.012	0.011	0.010	0.030	0.00003	932
0.03	232	0.009	0.011	0.010	0.030	0.00010	291
0.03	220	0.014	0.011	0.010	0.029	0.00011	240
0.03	220	-0.011	0.010	0.010	0.029	0.00003	841
0.03	382	-0.012	0.022	0.017	0.050	0.00017	528
0.03	392	0.012	0.022	0.017	0.051	0.00018	272
0.03	393	0.012	0.022	0.017	0.052	0.00017	290
0.03	381	-0.011	0.022	0.017	0.050	0.00009	509
0.03	552	0.013	0.031	0.024	0.072	0.00022	305
0.03	553	0.016	0.031	0.024	0.072	0.00023	293
0.03	552	-0.012	0.034	0.024	0.072	0.00015	452
0.03	552	0.015	0.034	0.023	0.072	0.00023	295
0.03	782	0.021	0.049	0.036	0.103	0.00035	275
0.03	782	0.022	0.049	0.036	0.103	0.00035	272
0.03	782	0.018	0.049	0.036	0.103	0.00034	284
0.03	781	0.017	0.049	0.036	0.102	0.00034	286
0.03	769	0.023	0.049	0.036	0.101	0.00035	268
0.01	225	-0.013	0.010	0.010	0.030	0.00011	239
0.01	226	-0.013	0.011	0.010	0.030	0.00002	1300
0.01	225	-0.007	0.011	0.010	0.029	0.00004	659
0.01	225	0.010	0.011	0.010	0.029	0.00010	276
0.01	391	-0.009	0.022	0.017	0.051	0.00010	484
0.01	378	0.010	0.022	0.017	0.050	0.00016	293
0.01	382	0.011	0.022	0.017	0.050	0.00016	289
0.01	404	-0.015	0.022	0.017	0.053	0.00018	280
0.01	555	0.014	0.032	0.023	0.073	0.00023	304
0.01	556	0.014	0.035	0.023	0.073	0.00024	288
0.01	554	0.011	0.035	0.023	0.073	0.00023	300
0.01	553	0.013	0.032	0.023	0.073	0.00022	306
0.01	554	0.015	0.032	0.023	0.073	0.00023	299
0.01	782	0.022	0.049	0.038	0.103	0.00036	270
0.01	783	0.024	0.049	0.038	0.103	0.00037	204
0.01	782	0.024	0.052	0.034	0.102	0.00036	266
0.01	770	0.017	0.052	0.034	0.101	0.00034	280

Table J.11: Resilient modulus data (A_2_9_100)

σ_3 [MPa]	q [N]	$\delta_{LVDT\#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	226	0.010	0.003	0.018	0.030	0.00010	298
0.06	227	0.010	0.003	0.018	0.030	0.00010	297
0.06	225	0.010	0.003	0.017	0.030	0.00010	298
0.06	227	0.010	0.003	0.018	0.030	0.00010	297
0.06	378	0.011	0.004	0.031	0.050	0.00017	287
0.06	388	0.018	0.004	0.031	0.051	0.00017	295
0.06	377	0.019	0.004	0.031	0.049	0.00018	281
0.06	390	0.018	0.005	0.031	0.051	0.00018	289
0.06	387	0.019	0.004	0.031	0.051	0.00018	289
0.06	565	0.027	0.006	0.045	0.074	0.00025	291
0.06	551	0.028	0.006	0.046	0.072	0.00026	276
0.06	530	0.028	0.000	0.045	0.071	0.00026	274
0.06	552	0.028	0.006	0.046	0.072	0.00026	277
0.06	768	0.042	0.007	0.067	0.101	0.00038	265
0.06	768	0.042	0.007	0.067	0.101	0.00038	265
0.06	769	0.043	0.007	0.067	0.101	0.00038	263
0.06	767	0.040	0.007	0.067	0.101	0.00038	267
0.06	215	0.041	0.007	0.067	0.101	0.00038	265
0.04	215	0.010	0.003	0.017	0.028	0.00010	277
0.04	216	0.010	0.003	0.017	0.028	0.00010	279
0.04	215	0.009	0.003	0.017	0.028	0.00010	287
0.04	215	0.009	0.003	0.017	0.028	0.00010	287
0.04	376	0.018	0.004	0.031	0.049	0.00017	283
0.04	388	0.019	0.004	0.031	0.051	0.00018	285
0.04	391	0.018	0.004	0.031	0.051	0.00018	293
0.04	397	0.018	0.004	0.031	0.052	0.00018	297
0.04	551	0.019	0.004	0.046	0.072	0.00018	274
0.04	551	0.027	0.005	0.046	0.072	0.00026	281
0.04	551	0.027	0.006	0.047	0.072	0.00026	274
0.04	550	0.028	0.005	0.046	0.072	0.00026	278
0.04	551	0.027	0.005	0.046	0.072	0.00026	282
0.04	767	0.040	0.007	0.069	0.101	0.00038	263
0.04	768	0.040	0.007	0.068	0.101	0.00038	265
0.04	768	0.040	0.007	0.069	0.101	0.00038	263
0.04	767	0.040	0.007	0.068	0.101	0.00038	266
0.03	215	0.010	0.004	0.018	0.028	0.00010	276
0.03	219	0.009	0.003	0.018	0.029	0.00010	301
0.03	228	0.010	0.003	0.018	0.030	0.00010	303
0.03	219	0.009	0.003	0.018	0.029	0.00010	299
0.03	216	0.010	0.003	0.018	0.028	0.00010	286
0.03	390	0.013	0.003	0.032	0.051	0.00013	200
0.03	390	0.016	0.005	0.032	0.051	0.00017	293
0.03	389	0.017	0.005	0.031	0.051	0.00018	288
0.03	379	0.017	0.004	0.032	0.050	0.00017	285
0.03	552	0.026	0.006	0.048	0.072	0.00026	274
0.03	551	0.026	0.006	0.047	0.072	0.00026	278
0.03	553	0.026	0.006	0.047	0.073	0.00026	278
0.03	553	0.025	0.006	0.048	0.072	0.00026	278
0.03	758	0.039	0.006	0.071	0.099	0.00038	262
0.03	769	0.039	0.007	0.072	0.101	0.00039	261
0.03	759	0.039	0.007	0.072	0.099	0.00039	257
0.03	768	0.040	0.007	0.072	0.101	0.00039	259
0.03	769	0.039	0.007	0.071	0.101	0.00038	263
0.01	217	0.008	0.004	0.020	0.029	0.00010	271
0.01	217	0.007	0.004	0.020	0.023	0.00010	280
0.01	218	0.008	0.004	0.020	0.029	0.00011	271
0.01	217	0.008	0.004	0.019	0.028	0.00010	271
0.01	390	0.014	0.007	0.035	0.051	0.00018	281
0.01	382	0.015	0.007	0.035	0.050	0.00019	270
0.01	391	0.014	0.006	0.034	0.051	0.00018	289
0.01	301	0.015	0.006	0.034	0.051	0.00018	261
0.01	554	0.023	0.007	0.051	0.073	0.00027	270
0.01	558	0.023	0.007	0.050	0.073	0.00027	276
0.01	570	0.022	0.007	0.051	0.075	0.00027	281
0.01	553	0.022	0.008	0.052	0.073	0.00027	272
0.01	564	0.535	0.668	0.275	0.074	0.00485	15
0.01	770	0.034	0.008	0.075	0.101	0.00039	261
0.01	769	0.035	0.008	0.075	0.101	0.00039	259
0.01	758	0.034	0.008	0.076	0.099	0.00039	257
0.01	773	0.035	0.008	0.076	0.101	0.00039	259

Table J.12: Resilient modulus data (B_1_24_103)

σ ₂ [MPa]	q [N]	$\delta_{\rm LVDT#1}$ [mm]	$\delta_{\rm LVDT32}$ [mm]	$\delta_{\rm LVDTel}$ [mm]	$\sigma_{\rm DEV}$ [MPa]	ε [-]	M _R [MPa]
0.06	240	0.012	0.011	0.012	0.032	0.00012	272
0.06	240	0.013	0.011	0.012	0.031	0.00012	265
0.06	241	0.014	0.011	0.013	0.032	0.00012	257
0.06	230	0.013	0.012	0.012	0.030	0.00012	252
0.06	399	0.013	0.012	0.012	0.050	0.00012	256
0.06	389	0.023	0.019	0.022	0.051	0.00021	241
0.06	388	0.022	0.019	0.022	0.051	0.00021	245
0.06	388	0.023	0.019	0.022	0.051	0.00021	242
0.06	401	0.022	0.018	0.022	0.053	0.00020	261
0.06	562	0.035	0.027	0.032	0.074	0.00031	240
0.06	564	0.034	0.028	0.032	0.014	0.00031	240
0.06	551	0.034	0.026	0.032	0.072	0.00030	241
0.06	564	0.034	0.028	0.032	0.074	0.00031	240
0.06	767	0.050	0.038	0.047	0.100	0.00044	228
0.06	768	0.051	0.039	0.047	0.101	0.00045	224
0.06	778	0.052	0.038	0.047	0.102	0.00045	228
0.06	779	0.050	0.039	0.041	0.102	0.00044	230
0.00	234	0.001	0.000	0.041	0.02	0.00049	254
0.04	235	0.013	0.012	0.012	0.031	0.00012	254
0.04	234	0.012	0.010	0.012	0.031	0.00011	263
0.04	235	0.012	0.012	0.012	0.031	0.00012	259
0.04	237	0.013	0.012	0.012	0.031	0.00012	257
0.04	388	0.023	0.019	0.022	0.051	0.00021	243
0.04	389	0.022	0.019	0.022	0.051	0.00021	246
0.04	391	0.023	0.019	0.022	0.051	0.00021	244
0.04	394	0.022	0.019	0.022	0.052	0.00021	249
0.04	553	0.033	0.028	0.032	0.072	0.00030	238
0.04	554	0.034	0.027	0.032	0.073	0.00030	238
0.04	562	0.034	0.028	0.032	0.074	0.00031	240
0.04	552	0.034	0.020	0.032	0.072	0.00031	236
0.04	779	0.051	0.040	0.047	0.102	0.00045	227
0.04	784	0.051	0.040	0.048	0.103	0.00046	225
0.04	779	0.050	0.039	0.047	0.102	0.00044	230
0.04	780	0.050	0.041	0.047	0.102	0.00045	227
0.04	181	0.050	0.041	0.048	0.102	0.00046	225
0.03	223	0.013	0.012	0.012	0.030	0.00012	250
0.03	227	0.012	0.011	0.012	0.030	0.00012	258
0.03	228	0.013	0.011	0.012	0.030	0.00012	251
0.03	227	0.012	0.011	0.012	0.030	0.00012	257
0.03	391	0.022	0.020	0.022	0.051	0.00021	243
0.03	400	0.023	0.020	0.022	0.052	0.00021	247
0.03	389	0.022	0.020	0.022	0.051	0.00021	245
0.03	387	0.022	0.019	0.022	0.051	0.00020	248
0.03	552	0.034	0.029	0.031	0.072	0.00031	235
0.03	552	0.033	0.029	0.032	0.072	0.00031	235
0.03	563	0.034	0.029	0.031	0.074	0.00031	240
0.03	550	0.033	0.030	0.032	0.074	0.00031	231
0,03	768	0.050	0.042	0.047	0,101	0.00046	220
0.03	780	0.049	0.042	0.046	0.102	0.00045	226
0.03	780	0.049	0.042	0.046	0.102	0.00045	226
0.03	779	0.050	0.042	0.047	0.102	0.00046	222
0.03	781	0.050	0.041	0.046	0.102	0.00045	226
0.01	230	0.011	0.013	0.013	0.030	0.00012	243
0.01	238	0.010	0.012	0.013	0.031	0.00012	263
0.01	229	0.011	0.012	0.013	0.030	0.00012	253
0.01	227	0.011	0.012	0.013	0.030	0.00012	255
0.01	391	0.021	0.021	0.022	0.051	0.00021	242
0.01	392	0.020	0.021	0.022	0.051	0.00021	246
0.01	391	0,019	0.022	0.022	0.051	0.00022	250
0.01	391	0.021	0.021	0.022	0.051	0.00021	242
0.01	554	0.031	0.030	0.033	0.073	0.00031	235
0.01	555	0.030	0.031	0.033	0.073	0.00031	235
0.01	553	0.032	0.030	0.033	0.072	0.00031	232
0.01	554	0.031	0.031	0.033	0.073	0.00031	233
0.01	782	0.031	0.031	0.033	0.013	0.00031	235
0.01	792	0.048	0.044	0.049	0.104	0.00046	225
0.01	780	0.047	0.045	0.049	0.102	0.00046	221
0.01	781	0.048	0.045	0.049	0.102	0.00047	220
0.01	780	0.048	0.044	0.049	0.102	0.00046	221

Table J.13: Resilient modulus data (B_2_24_103)

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	226	0.013	0.008	0.015	0.030	0.00012	253
0.06	226	0.013	0.008	0.015	0.030	0.00012	255
0.06	227	0.013	0.007	0.015	0.030	0.00012	255
0.06	224	0.013	0.008	0.015	0.029	0.00012	248
0.06	377	0.023	0.015	0.015	0.049	0.00021	230
0.06	388	0.022	0.015	0.027	0.051	0.00021	242
0.06	378	0.022	0.014	0.027	0.050	0.00021	239
0.06	388	0.022	0.014	0.027	0.051	0.00021	246
0.06	379	0.022	0.014	0.027	0.050	0.00021	238
0.06	554	0.032	0.023	0.041	0.072	0.00031	232
0.06	554	0.033	0.023	0.041	0.073	0.00032	230
0.06	552	0.032	0.023	0.040	0.072	0.00031	235
0.06	564	0.033	0.023	0.041	0.074	0.00032	235
0.06	780	0.046	0.035	0.059	0.102	0.00046	223
0.06	784	0.046	0.035	0.059	0.103	0.00046	224
0.06	767	0.047	0.035	0.059	0.103	0.00046	218
0.06	768	0.046	0.035	0.057	0.101	0.00045	222
0.04	226	0.013	0.007	0.016	0.030	0.00012	249
0.04	215	0.013	0.008	0.016	0.028	0.00012	230
0.04	226	0.014	0.008	0.016	0.030	0.00013	235
0.04	216	0.013	0.008	0.016	0.028	0.00012	230
0.04	388	0.014	0.014	0.029	0.028	0.00012	230
0.04	379	0.024	0.014	0.029	0.050	0.00022	228
0.04	390	0.024	0.015	0.029	0.051	0.00022	231
0.04	390	0.023	0.014	0.029	0.051	0.00021	238
0.04	382	0.022	0.014	0.029	0.050	0.00021	234
0.04	557	0.034	0.023	0.042	0.073	0.00032	226
0.04	541	0.034	0.023	0.043	0.073	0.00033	223
0.04	552	0.034	0.022	0.042	0.072	0.00032	227
0.04	551	0.033	0.022	0.042	0.072	0.00032	227
0.04	780	0.048	0.035	0.061	0.102	0.00047	217
0.04	784	0.048	0.035	0.061	0.103	0.00047	218
0.04	800	0.048	0.035	0.061	0.105	0.00047	222
0.04	769	0.048	0.035	0.061	0.101	0.00047	213
0.03	216	0.014	0.008	0.017	0.028	0.00013	213
0.03	215	0.014	0.008	0.017	0.028	0.00013	220
0.03	214	0.014	0.008	0.017	0.028	0.00013	222
0.03	219	0.014	0.006	0.017	0.029	0.00012	234
0.03	232	0.014	0.007	0.017	0.030	0.00013	241
0.03	384	0.025	0.014	0.030	0.050	0.00022	224
0.03	384	0.024	0.014	0.031	0.050	0.00023	221
0.03	398	0.024	0.014	0.030	0.052	0.00022	234
0.03	385	0.025	0.014	0.030	0.050	0.00022	225
0.03	552	0.034	0.022	0.045	0.072	0.00033	219
0.03	561	0.035	0.023	0.045	0.072	0.00034	213
0.03	562	0.035	0.022	0.045	0.074	0.00033	221
0.03	552	0.035	0.023	0.045	0.072	0.00034	215
0.03	769	0.049	0.034	0.064	0.101	0.00048	208
0.03	780	0.049	0.034	0.065	0.102	0.00049	210
0.03	769	0.049	0.034	0.065	0.102	0.00049	208
0.03	768	0.049	0.035	0.064	0.101	0.00049	207
0.01	217	0.016	0.007	0.016	0.028	0.00013	221
0.01	216	0.015	0.007	0.016	0.028	0.00013	226
0.01	215	0.014	0.006	0.016	0.028	0.00012	232
0.01	226	0.014	0.007	0.017	0.030	0.00013	232
0.01	406	0.025	0.014	0.032	0.053	0.00023	229
0.01	391	0.026	0.014	0.032	0.051	0.00023	218
0.01	391	0.025	0.014	0.032	0.051	0.00023	222
0.01	391	0.025	0.014	0.032	0.051	0.00023	222
0.01	389	0.026	0.014	0.032	0.051	0.00023	218
0.01	553	0.030	0.022	0.048	0.074	0.00035	212
0.01	564	0.036	0.022	0.047	0.074	0.00035	214
0.01	553	0.036	0.022	0.047	0.073	0.00035	210
0.01	564	0.036	0.022	0.047	0.074	0.00035	214
0.01	768	0.051	0.034	0.069	0.101	0.00050	200
0.01	7/0	0.051	0.034	0.069	0.101	0.00050	200
0.01	770	0.051	0.034	0.069	0.101	0.00050	200
0.01	780	0.051	0.034	0.069	0.102	0.00050	203

Table J.14: Resilient modulus data (B_1_195_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	226	-0.003	0.018	0.009	0.030	0.00008	368
0.06	237	-0.003	0.018	0.009	0.031	0.00008	386
0.06	226	-0.003	0.018	0.009	0.030	0.00008	370
0.06	228	-0.003	0.019	0.009	0.030	0.00008	353
0.06	391	0.005	0.029	0.016	0.051	0.00016	316
0.06	390	0.005	0.029	0.015	0.051	0.00016	322
0.06	390	0.005	0.030	0.015	0.051	0.00016	315
0.06	390	0.004	0.029	0.016	0.051	0.00016	322
0.06	391	0.004	0.029	0.016	0.051	0.00016	323
0.06	562	0.011	0.040	0.021	0.074	0.00024	311
0.06	551	0.010	0.040	0.020	0.072	0.00023	309
0.06	550	0.011	0.040	0.021	0.072	0.00024	305
0.06	551	0.011	0.040	0.021	0.072	0.00024	306
0.06	768	0.021	0.056	0.029	0.101	0.00034	292
0.06	779	0.021	0.056	0.030	0.102	0.00035	294
0.06	779	0.021	0.056	0.030	0.102	0.00035	294
0.06	789	0.021	0.055	0.029	0.102	0.00033	304
0.04	227	-0.004	0.020	0.010	0.030	0.00009	346
0.04	228	-0.004	0.020	0.010	0.030	0.00009	347
0.04	228	-0.004	0.020	0.010	0.030	0.00009	348
0.04	226	-0.005	0.018	0.010	0.030	0.00008	376
0.04	228	-0.004	0.020	0.010	0.030	0.00009	347
0.04	388	0.004	0.030	0.015	0.053	0.00016	317
0.04	388	0.004	0.031	0.015	0.051	0.00017	305
0.04	388	0.004	0.030	0.017	0.051	0.00016	311
0.04	390	0.004	0.030	0.016	0.051	0.00016	317
0.04	552	0.010	0.042	0.022	0.072	0.00024	300
0.04	561	0.010	0.041	0.021	0.074	0.00024	310
0.04	550	0.010	0.041	0.022	0.074	0.00024	300
0.04	553	0.010	0.043	0.022	0.073	0.00024	296
0.04	777	0.020	0.058	0.030	0.102	0.00035	289
0.04	771	0.019	0.057	0.030	0.101	0.00035	289
0.04	778	0.019	0.057	0.030	0.102	0.00035	292
0.04	770	0.019	0.059	0.030	0.101	0.00035	287
0.04	216	-0.004	0.020	0.011	0.028	0.00033	321
0.03	230	-0.004	0.020	0.011	0.030	0.00009	341
0.03	222	-0.004	0.019	0.011	0.029	0.00008	343
0.03	248	-0.004	0.019	0.011	0.033	0.00008	383
0.03	218	-0.004	0.019	0.011	0.029	0.00009	335
0.03	389	-0.004	0.031	0.016	0.051	0.00014	359
0.03	390	-0.004	0.031	0.017	0.051	0.00015	350
0.03	388	-0.004	0.031	0.016	0.051	0.00014	359
0.03	389	-0.004	0.030	0.016	0.051	0.00014	366
0.03	552	0.010	0.043	0.022	0.072	0.00025	294
0.03	553	0.010	0.044	0.022	0.072	0.00025	294
0.03	553	0.009	0.043	0.022	0.072	0.00024	303
0.03	551	0.009	0.043	0.022	0.072	0.00024	298
0.03	779	0.020	0.060	0.030	0.102	0.00036	286
0.03	768	0.020	0.058	0.030	0.101	0.00035	285
0.03	780	0.020	0.058	0.030	0.102	0.00035	289
0.03	7/9	0.020	0.058	0.030	0.102	0.00035	289
0.01	227	-0.003	0.018	0.010	0.030	0.00008	370
0.01	217	-0.002	0.019	0.010	0.028	0.00009	326
0.01	217	-0.002	0.018	0.010	0.028	0.00008	339
0.01	221	-0.002	0.019	0.010	0.029	0.00009	331
0.01	228	-0.003	0.019	0.010	0.030	0.00008	356
0.01	390	-0.004	0.031	0.016	0.051	0.00014	351
0.01	389	-0.004	0.032	0.016	0.051	0.00015	350
0.01	389	0.003	0.032	0.016	0.051	0.00017	304
0.01	387	-0.004	0.031	0.016	0.051	0.00014	358
0.01	563	0.009	0.044	0.022	0.074	0.00025	299
0.01	564	0.009	0.043	0.021	0.074	0.00024	307
0.01	565	0.009	0.044	0.021	0.073	0.00024	300
0.01	554	0.009	0.044	0.021	0.073	0.00024	298
0.01	770	0.018	0.062	0.029	0.101	0.00036	282
0.01	769	0.018	0.062	0.029	0.101	0.00036	282
0.01	770	0.018	0.062	0.029	0.101	0.00036	282
0.01	779	0.019	0.062	0.028	0.102	0.00036	286

Table J.15: Resilient modulus data (B_2_195_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	236	0.008	0.008	0.005	0.031	0.00007	445
0.06	229	0.008	0.009	0.005	0.030	0.00007	429
0.06	226	0.008	0.008	0.005	0.030	0.00007	426
0.06	225	0.008	0.008	0.005	0.030	0.00007	426
0.06	389	0.014	0.014	0.003	0.051	0.00012	423
0.06	390	0.014	0.014	0.009	0.051	0.00012	412
0.06	390	0.014	0.015	0.008	0.051	0.00012	411
0.06	389	0.014	0.014	0.008	0.051	0.00012	424
0.06	389	0.014	0.014	0.008	0.051	0.00012	423
0.06	566	0.021	0.021	0.014	0.074	0.00018	405
0.06	566	0.021	0.021	0.012	0.074	0.00018	413
0.06	552	0.020	0.021	0.012	0.074	0.00018	418
0.06	552	0.021	0.021	0.012	0.072	0.00018	402
0.06	778	0.029	0.030	0.019	0,102	0.00025	401
0.06	768	0.030	0.030	0.019	0.101	0.00026	390
0.06	779	0.029	0.030	0.019	0.102	0.00025	401
0.06	783	0.030	0.030	0.019	0.103	0.00026	396
0.06	791	0.030	0.030	0.019	0.104	0.00026	402
0.04	239	0.008	0.008	0.005	0.031	0.00007	448
0.04	228	0.009	0.008	0.005	0.030	0.00007	406
0.04	227	0.008	0.008	0.005	0.030	0.00007	426
0.04	227	0.008	0.009	0.005	0.030	0.00007	406
0.04	391	0.014	0.015	0.009	0.051	0.00013	410
0.04	380	0.015	0.015	0.009	0.050	0.00013	387
0.04	389	0.015	0.016	0.009	0.051	0.00013	387
0.04	392	0.015	0.016	0.009	0.051	0.00013	389
0.04	552	0.022	0.021	0.003	0.072	0.00012	385
0.04	552	0.021	0.021	0.013	0.072	0.00018	393
0.04	552	0.022	0.021	0.013	0.072	0.00019	385
0.04	551	0.022	0.021	0.013	0.072	0.00019	385
0.04	563	0.021	0.021	0.013	0.074	0.00018	400
0.04	783	0.030	0.031	0.019	0.103	0.00026	389
0.04	794	0.031	0.031	0.019	0.104	0.00027	389
0.04	779	0.030	0.031	0.019	0.102	0.00020	382
0.04	778	0.031	0.031	0.019	0.102	0.00027	382
0.03	227	0.010	0.008	0.005	0.030	0.00008	395
0.03	227	0.010	0.009	0.005	0.030	0.00008	377
0.03	216	0.009	0.008	0.005	0.028	0.00007	395
0.03	226	0.009	0.009	0.005	0.030	0.00007	397
0.03	226	0.009	0.009	0.005	0.030	0.00008	395
0.03	391	0.017	0.015	0.008	0.051	0.00013	377
0.03	390	0.016	0.016	0.008	0.051	0.00013	386
0.03	399	0.016	0.016	0.008	0.052	0.00013	397
0.03	393	0.017	0.016	0.008	0.052	0.00013	386
0.03	552	0.023	0.022	0.012	0.072	0.00019	385
0.03	551	0.024	0.022	0.013	0.072	0.00019	372
0.03	552	0.024	0.022	0.012	0.074	0.00019	386
0.03	552	0.024	0.023	0.012	0.072	0.00020	366
0.03	781	0.034	0.032	0.019	0.102	0.00028	368
0.03	780	0.033	0.032	0.019	0.102	0.00027	373
0.03	780	0.034	0.032	0.019	0.102	0.00028	369
0.03	780	0.032	0.032	0.019	0.102	0.00027	377
0.03	790	0.034	0.032	0.020	0.104	0.00028	369
0.01	219	0.012	0.009	0.003	0.030	0.00008	369
0.01	219	0.012	0.009	0.003	0.029	0.00008	369
0.01	216	0.012	0.009	0.003	0.028	0.00008	354
0.01	227	0.011	0.009	0.003	0.030	0.00008	385
0.01	390	0.019	0.016	0.007	0.051	0.00014	370
0.01	391	0.020	0.016	0.007	0.051	0.00014	362
0.01	300	0.020	0.016	0.007	0.053	0.00014	373
0.01	393	0.019	0.016	0.007	0.051	0.00014	363
0.01	565	0.028	0.024	0.011	0.074	0.00020	362
0.01	566	0.027	0.024	0.011	0.074	0.00020	367
0.01	554	0.026	0.024	0.011	0.073	0.00020	361
0.01	556	0.027	0.024	0.011	0.073	0.00020	360
0.01	552	0.027	0.024	0.011	0.072	0.00020	355
0.01	783	0.036	0.035	0.018	0.103	0.00029	352
0.01	784	0.036	0.035	0.018	0.103	0.00029	357
0.01	786	0.035	0.035	0.018	0.103	0.00029	356
0.01	787	0.036	0.034	0.018	0.103	0.00029	357

Table J.16: Resilient modulus data (B_1_16_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	226	0.005	0.003	0.010	0.030	0.00006	495
0.06	226	0.004	0.002	0.010	0.030	0.00005	559
0.06	227	0.005	0.003	0.010	0.030	0.00006	498
0.06	227	0.004	0.003	0.010	0.030	0.00006	523
0.06	389	0.003	0.002	0.010	0.051	0.00000	518
0.06	389	0.009	0.003	0.018	0.051	0.00009	553
0.06	390	0.009	0.004	0.018	0.051	0.00010	501
0.06	386	0.008	0.003	0.018	0.051	0.00010	533
0.06	389	0.008	0.003	0.019	0.051	0.00010	515
0.06	555	0.015	0.004	0.026	0.073	0.00014	502
0.06	551	0.013	0.003	0.026	0.072	0.00014	530
0.06	540	0.014	0.003	0.025	0.074	0.00014	408
0.06	551	0.013	0.004	0.025	0.072	0.00014	512
0.06	780	0.023	0.008	0.033	0.102	0.00021	488
0.06	767	0.022	0.008	0.033	0.100	0.00021	489
0.06	777	0.023	0.008	0.033	0.102	0.00021	487
0.06	769	0.022	0.008	0.033	0.101	0.00021	489
0.06	778	0.022	0.008	0.033	0.102	0.00021	495
0.04	220	0.003	0.002	0.011	0.030	0.00006	518
0.04	225	0.005	0.002	0.011	0.030	0.00006	487
0.04	226	0.004	0.002	0.011	0.030	0.00006	515
0.04	226	0.004	0.003	0.011	0.030	0.00006	511
0.04	388	0.008	0.003	0.019	0.051	0.00010	516
0.04	389	0.007	0.004	0.019	0.051	0.00010	514
0.04	388	0.008	0.004	0.019	0.051	0.00010	499
0.04	390	0.003	0.004	0.019	0.051	0.00010	515
0.04	555	0.013	0.004	0.027	0.073	0.00015	496
0.04	566	0.013	0.004	0.027	0.074	0.00015	505
0.04	552	0.013	0.004	0.026	0.072	0.00014	504
0.04	549	0.013	0.004	0.027	0.072	0.00015	492
0.04	554	0.013	0.004	0.028	0.073	0.00015	500
0.04	782	0.020	0.007	0.034	0.102	0.00020	510
0.04	777	0.020	0.007	0.030	0.104	0.00020	497
0.04	777	0.020	0.007	0.034	0.102	0.00020	507
0.04	788	0.020	0.008	0.035	0.103	0.00021	495
0.03	224	0.004	0.002	0.012	0.029	0.00006	501
0.03	231	0.004	0.002	0.012	0.030	0.00006	521
0.03	225	0.003	0.002	0.013	0.030	0.00006	509
0.03	225	0.003	0.002	0.012	0.029	0.00005	543
0.03	390	0.003	0.002	0.021	0.051	0.00010	502
0.03	378	0.007	0.003	0.021	0.050	0.00010	485
0.03	389	0.006	0.003	0.021	0.051	0.00010	516
0.03	388	0.008	0.003	0.021	0.051	0.00011	484
0.03	390	0.007	0.003	0.021	0.051	0.00010	499
0.03	549	0.011	0.003	0.029	0.072	0.00014	512
0.03	551	0.012	0.004	0.029	0.073	0.00015	487
0.03	552	0.013	0.004	0.029	0.072	0.00015	478
0.03	541	0.013	0.004	0.029	0.071	0.00015	469
0.03	781	0.019	0.006	0.039	0.102	0.00021	490
0.03	782	0.019	0.007	0.039	0.102	0.00021	483
0.03	770	0.019	0.007	0.039	0.101	0.00021	476
0.03	769	0.019	0.007	0.039	0.103	0.00021	485
0.01	227	0.003	0.002	0.012	0.030	0.00006	520
0.01	215	0.003	0.002	0.012	0.028	0.00006	495
0.01	226	0.002	0.002	0.012	0.030	0.00005	549
0.01	217	0.003	0.002	0.012	0.028	0.00006	496
0.01	218	0.003	0.002	0.012	0.029	0.00006	497
0.01	393	0.006	0.003	0.022	0.051	0.00010	507
0.01	379	0.006	0.004	0.022	0.050	0.00010	476
0.01	390	0.006	0.003	0.022	0.051	0.00010	505
0.01	379	0.006	0.003	0.022	0.050	0.00010	493
0.01	554	0.009	0.004	0.032	0.073	0.00015	498
0.01	551	0.010	0.004	0.031	0.072	0.00015	488
0.01	556	0.010	0.004	0.032	0.073	0.00015	490
0.01	573	0.010	0.004	0.031	0.075	0.00015	508
0.01	785	0.018	0.005	0.042	0.103	0.00021	487
0.01	781	0.017	0.006	0.043	0.102	0.00022	475
0.01	770	0.016	0.005	0.043	0.101	0.00021	484
0.01	779	0.017	0.006	0.041	0.102	0.00021	484
0.01	779	0.017	0,006	0.042	0.102	0.00021	483

Table J.17: Resilient modulus data (B_2_16_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	226	0.012	0.013	0.015	0.030	0.00013	229
0.06	226	0.012	0.013	0.015	0.030	0.00013	228
0.06	226	0.012	0.013	0.015	0.030	0.00013	228
0.06	220	0.012	0.014	0.015	0.030	0.00013	223
0.06	389	0.022	0.024	0.027	0.051	0.00024	214
0.06	389	0.022	0.024	0.027	0.051	0.00024	215
0.06	381	0.022	0.024	0.027	0.050	0.00024	209
0.06	390	0.023	0.023	0.028	0.051	0.00024	212
0.06	389	0.023	0.024	0.028	0.051	0.00024	210
0.06	552	0.035	0.035	0.039	0.072	0.00036	202
0.06	551	0.033	0.035	0.039	0.072	0.00035	202
0.06	553	0.035	0.035	0.039	0.072	0.00036	203
0.06	558	0.035	0.035	0.039	0.073	0.00036	205
0.06	782	0.052	0.053	0.058	0.102	0.00053	192
0.06	779	0.052	0.053	0.057	0.102	0.00053	192
0.06	780	0.052	0.051	0.057	0.103	0.00053	196
0.06	780	0.053	0.051	0.057	0.102	0.00052	193
0.04	226	0.011	0.013	0.016	0.030	0.00013	230
0.04	227	0.012	0.012	0.016	0.030	0.00013	225
0.04	227	0.011	0.013	0.016	0.030	0.00013	230
0.04	225	0.011	0.012	0.016	0.029	0.00013	230
0.04	225	0.012	0.014	0.016	0.029	0.00014	218
0.04	389	0.021	0.024	0.029	0.051	0.00024	210
0.04	377	0.020	0.024	0.028	0.049	0.00024	210
0.04	390	0.020	0.024	0.029	0.051	0.00024	213
0.04	389	0.020	0.024	0.028	0.051	0.00024	216
0.04	560	0.032	0.035	0.041	0.073	0.00035	209
0.04	550	0.033	0.036	0.040	0.072	0.00036	202
0.04	551	0.033	0.035	0.042	0.072	0.00036	202
0.04	563	0.033	0.035	0.041	0.072	0.00035	202
0.04	770	0.050	0.051	0.058	0.101	0.00052	192
0.04	784	0.052	0.052	0.059	0.103	0.00054	191
0.04	795	0.051	0.051	0.060	0.104	0.00053	197
0.04	778	0.051	0.052	0.059	0.102	0.00053	192
0.04	226	0.051	0.052	0.059	0.102	0.00053	229
0.03	227	0.010	0.013	0.018	0.030	0.00013	223
0.03	227	0.011	0.013	0.017	0.030	0.00013	224
0.03	216	0.010	0.012	0.017	0.028	0.00013	224
0.03	216	0.010	0.012	0.017	0.028	0.00013	224
0.03	389	0.018	0.023	0.030	0.051	0.00023	217
0.03	404	0.018	0.023	0.030	0.053	0.00023	214
0.03	390	0.018	0.023	0.031	0.051	0.00024	216
0.03	389	0.018	0.023	0.031	0.051	0.00024	215
0.03	557	0.030	0.034	0.043	0.073	0.00035	206
0.03	556	0.030	0.034	0.044	0.073	0.00036	204
0.03	557	0.031	0.034	0.043	0.073	0.00036	204
0.03	556	0.030	0.034	0.044	0.073	0.00036	200
0.03	780	0.050	0.052	0.064	0.102	0.00054	188
0.03	769	0.049	0.052	0.063	0.101	0.00054	188
0.03	770	0.048	0.052	0.063	0.101	0.00053	189
0.03	770	0.048	0.051	0.063	0.101	0.00053	190
0.03	216	0.049	0.012	0.019	0.028	0.00013	213
0.01	218	0.009	0.012	0.019	0.029	0.00013	219
0.01	218	0.009	0.012	0.019	0.029	0.00013	218
0.01	217	0.009	0.012	0.019	0.028	0.00013	218
0.01	228	0.010	0.011	0.020	0.030	0.00013	225
0.01	389	0.018	0.021	0.033	0.051	0.00024	215
0.01	389	0.017	0.022	0.033	0.051	0.00024	210
0.01	391	0.018	0.021	0.033	0.051	0.00024	215
0.01	392	0.017	0.021	0.034	0.051	0.00024	215
0.01	559	0.030	0.033	0.047	0.073	0.00036	202
0.01	574	0.030	0.033	0.047	0.075	0.00036	207
0.01	564	0.030	0.033	0.047	0.073	0.00036	200
0.01	553	0.029	0.033	0.047	0.074	0.00036	203
0.01	785	0.050	0.050	0.063	0.103	0.00053	193
0.01	774	0.051	0.051	0.063	0.102	0.00054	188
0.01	774	0.051	0.049	0.065	0.101	0.00054	188
0.01	774	0.052	0.051	0.064	0.101	0.00055	186

Table J.18: Resilient modulus data (B_1_27_98)

$\sigma_{\rm i}$ [MPa]	q _[N]	$\delta_{\rm EVDTRI}$ [mm]	$\delta_{\rm LVDTa2}$ [mm]	δ_{LVDTA3} [mm]	σ_{dev} [MPa]	ε [-]	M_R [MPa]
0.06	225	0.024	0.002	0.021	0.031	0.00015	190
0.06	225	0.024	0.002	0.020	0.032	0.00015	195
0.06	226	0.024	0.002	0.021	0.031	0.00016	188
0.06	225	0.025	0.002	0.020	0.031	0.00015	193
0.06	388	0.043	0.004	0.041	0.052	0.00029	177
0.06	387	0.043	0.004	0.041	0.054	0.00029	177
0.06	378	0.043	0.004	0.041	0.053	0.00023	175
0.06	389	0.042	0.004	0.041	0.053	0.00029	179
0.06	551	0.063	0.006	0.063	0.077	0.00043	167
0.06	550	0.063	0.006	0.063	0.077	0.00043	167
0.06	550	0.063	0.006	0.063	0.077	0.00043	165
0.06	550	0.064	0.006	0.063	0.079	0.00043	168
0.06	768	0.090	0.015	0.093	0.109	0.00065	155
0.06	768	0.091	0.016	0.093	0.109	0.00066	154
0.06	756	0.090	0.016	0.092	0.111	0.00065	152
0.06	771	0.085	0.016	0.031	0.107	0.00065	155
0.04	227	0.026	0.002	0.020	0.031	0.00016	191
0.04	216	0.025	0.002	0.019	0.030	0.00015	186
0.04	216	0.025	0.002	0.019	0.032	0.00015	186
0.04	216	0.025	0.002	0.019	0.030	0.00015	165
0.04	388	0.044	0.004	0.038	0.054	0.00028	179
0.04	379	0.044	0.004	0.039	0.053	0.00029	174
0.04	378	0.043	0.004	0.039	0.054	0.00028	176
0.04	389	0.043	0.004	0.039	0.054	0.00028	181
0.04	547	0.066	0.004	0.062	0.078	0.00044	163
0.04	557	0.066	0.006	0.062	0.078	0.00044	167
0.04	543	0.066	0.006	0.061	0.075	0.00043	164
0.04	542	0.065	0.006	0.062	0.077	0.00043	164
0.04	797	0.065	0.006	0.062	0.077	0.00043	161
0.04	758	0.095	0.013	0.092	0.109	0.00066	151
0.04	768	0.096	0.013	0.092	0.111	0.00066	152
0.04	768	0.095	0.013	0.092	0.107	0.00066	153
0.04	216	0.035	0.013	0.032	0.107	0.00066	153
0.03	216	0.026	0.003	0.019	0.030	0.00016	178
0.03	216	0.025	0.002	0.018	0.030	0.00015	190
0.03	216	0.026	0.003	0.019	0.030	0.00016	178
0.03	228	0.027	0.003	0.019	0.032	0.00016	184
0.00	378	0.047	0.004	0.035	0.054	0.00028	177
0.03	379	0.048	0.004	0.035	0.054	0.00029	174
0.03	378	0.048	0.004	0.035	0.055	0.00028	174
0.03	389	0.049	0.004	0.035	0.054	0.00029	1177
0.03	542	0.070	0.006	0.058	0.077	0.00044	162
0.03	541	0.069	0.006	0.057	0.078	0.00043	164
0.03	551	0.070	0.006	0.058	0.078	0.00044	165
0.03	553	0.069	0.006	0.058	0.077	0.00043	167
0.03	758	0.102	0.011	0.091	0.109	0.00067	149
0.03	758	0.101	0.011	0.090	0.109	0.00066	150
0.03	769	0.102	0.011	0.091	0.107	0.00067	151
0.03	769	0.101	0.011	0.090	0.107	0.00066	152
0.01	217	0.028	0.004	0.017	0.030	0.00016	180
0.01	217	0.028	0.004	0.017	0.030	0.00016	180
0.01	216	0.028	0.004	0.017	0.032	0.00016	180
0.01	217	0.027	0.004	0.017	0.031	0.00015	184
0.01	380	0.043	0.005	0.033	0.051	0.00028	173
0.01	379	0.049	0.005	0.033	0.054	0.00028	175
0.01	379	0.050	0.005	0.034	0.054	0.00029	171
0.01	384	0.049	0.005	0.033	0.054	0.00028	177
0.01	540	0.074	0.006	0.054	0.019	0.00044	162
0.01	552	0.074	0.006	0.055	0.079	0.00044	164
0.01	552	0.074	0.006	0.055	0.077	0.00044	164
0.01	551	0.074	0.005	0.055	0.079	0.00044	164
0.01	761	0.106	0.010	0.087	0.107	0.00067	151
0.01	771	0.106	0.009	0.087	0.107	0.00067	151
0.01	770	0.106	0.010	0.087	0.107	0.00067	152
0.01	760	0.107	0.011	0.087	0.109	0.00067	148

Table J.19: Resilient modulus data (B_2_27_98)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	218	0.009	0.012	0.021	0.029	0.00014	203
0.06	216	0.009	0.013	0.021	0.028	0.00014	201
0.06	218	0.009	0.013	0.021	0.029	0.00014	201
0.06	217	0.009	0.013	0.021	0.028	0.00014	200
0.06	389	0.009	0.015	0.021	0.051	0.00014	196
0.06	388	0.019	0.026	0.034	0.051	0.00026	198
0.06	377	0.020	0.026	0.034	0.049	0.00026	188
0.06	380	0.020	0.027	0.034	0.050	0.00026	189
0.06	379	0.019	0.026	0.034	0.050	0.00026	193
0.06	556	0.033	0.040	0.047	0.073	0.00039	185
0.06	540	0.032	0.041	0.047	0.071	0.00039	180
0.06	550	0.032	0.041	0.047	0.072	0.00039	186
0.06	552	0.032	0.041	0.047	0.072	0.00039	184
0.06	757	0.051	0.063	0.065	0.099	0.00059	168
0.06	769	0.053	0.064	0.066	0.101	0.00060	168
0.06	769	0.051	0.064	0.066	0.101	0.00059	170
0.06	767	0.051	0.062	0.066	0.101	0.00059	171
0.06	768	0.052	0.063	0.066	0.101	0.00060	169
0.04	216	0.008	0.011	0.020	0.029	0.00013	193
0.04	218	0.008	0.011	0.025	0.029	0.00014	198
0.04	217	0.008	0.010	0.024	0.028	0.00014	202
0.04	216	0.008	0.010	0.024	0.028	0.00014	202
0.04	387	0.016	0.024	0.038	0.051	0.00026	197
0.04	377	0.017	0.024	0.038	0.049	0.00026	189
0.04	376	0.017	0.025	0.038	0.049	0.00027	186
0.04	386	0.017	0.023	0.038	0.051	0.00027	191
0.04	549	0.030	0.041	0.051	0.072	0.00040	181
0.04	550	0.029	0.041	0.051	0.072	0.00039	183
0.04	550	0.029	0.041	0.051	0.072	0.00040	182
0.04	551	0.030	0.039	0.051	0.072	0.00040	183
0.04	540	0.030	0.041	0.051	0.071	0.00040	177
0.04	768	0.048	0.064	0.071	0.101	0.00060	168
0.04	758	0.048	0.064	0.071	0.099	0.00039	168
0.04	769	0.047	0.063	0.070	0.101	0.00059	171
0.04	779	0.048	0.064	0.071	0.102	0.00060	170
0.03	218	0.007	0.011	0.027	0.029	0.00015	195
0.03	218	0.008	0.010	0.027	0.029	0.00015	196
0.03	218	0.007	0.011	0.027	0.029	0.00015	195
0.03	218	0.006	0.011	0.027	0.029	0.00014	200
0.03	378	0.013	0.074	0.027	0.050	0.00013	190
0.03	378	0.013	0.023	0.044	0.050	0.00027	187
0.03	377	0.013	0.023	0.044	0.049	0.00026	189
0.03	377	0.013	0.024	0.044	0.049	0.00027	187
0.03	388	0.013	0.024	0.044	0.051	0.00027	192
0.03	550	0.023	0.039	0.058	0.072	0.00040	182
0.03	538	0.023	0.040	0.058	0.072	0.00040	180
0.03	549	0.023	0.040	0.058	0.072	0.00040	179
0.03	549	0.023	0.039	0.058	0.072	0.00039	182
0.03	770	0.042	0.063	0.079	0.101	0.00060	167
0.03	770	0.042	0.064	0.079	0.101	0.00061	166
0.03	769	0.041	0.064	0.079	0.101	0.00060	167
0.03	769	0.041	0.064	0.079	0.101	0.00060	167
0.03	216	0.005	0.004	0.028	0.028	0.00015	193
0.01	215	0.005	0.011	0.028	0.028	0.00015	194
0.01	215	0.006	0.011	0.028	0.028	0.00015	194
0.01	218	0.005	0.011	0.028	0.029	0.00015	195
0.01	216	0.006	0.011	0.028	0.028	0.00015	190
0.01	402	0.009	0.024	0.048	0.053	0.00027	197
0.01	381	0.010	0.023	0.049	0.050	0.00027	182
0.01	382	0.011	0.022	0.049	0.050	0.00028	184
0.01	388	0.010	0.023	0.049	0.051	0.00027	188
0.01	546	0.018	0.040	0.067	0.072	0.00041	174
0.01	546	0.018	0.040	0.067	0.072	0.00041	174
0.01	548	0.018	0.040	0.067	0.072	0.00041	175
0.01	558	0.018	0.039	0.067	0.073	0.00041	179
0.01	551	0.018	0.040	0.067	0.072	0.00041	177
0.01	758	0.034	0.065	0.087	0.099	0.00061	163
0.01	769	0.034	0.065	0.087	0.101	0.00061	165
0.01	759	0.034	0.065	0.087	0.099	0.00061	163
0.01	769	0.034	0.065	0.087	0.101	0.00061	165

Table J.20: Resilient modulus data (B_1_22_98)

σ_3 [MPa]	q [N]	$\delta_{{\scriptscriptstyle LVDT\#1}} \ [mm]$	$\delta_{{\scriptscriptstyle LVDT\#2}} \ [mm]$	$\delta_{\text{LVDT#3}} \text{ [mm]}$	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	244	0.007	0.018	0.010	0.031	0.00011	274
0.06	215	0.005	0.018	0.010	0.032	0.00011	290
0.06	225	0.006	0.018	0.010	0.032	0.00011	283
0.06	214	0.007	0.018	0.010	0.031	0.00011	273
0.06	226	0.007	0.019	0.009	0.031	0.00012	274
0.06	377	0.015	0.030	0.016	0.052	0.00020	258
0.06	300	0.013	0.030	0.017	0.054	0.00020	270
0.06	388	0.013	0.030	0.017	0.054	0.00020	250
0.06	389	0.014	0.030	0.016	0.053	0.00020	264
0.06	549	0.024	0.043	0.025	0.077	0.00030	256
0.06	552	0.024	0.044	0.025	0.077	0.00031	253
0.06	551	0.023	0.043	0.025	0.077	0.00030	259
0.06	551	0.023	0.043	0.025	0.077	0.00030	258
0.06	551	0.024	0.044	0.025	0.079	0.00031	258
0.06	767	0.038	0.061	0.037	0.109	0.00045	243
0.06	769	0.037	0.062	0.037	0.109	0.00045	244
0.06	707	0.038	0.061	0.038	0.107	0.00043	240
0.06	767	0.037	0.062	0.037	0.107	0.00045	239
0.04	223	0.007	0.019	0.011	0.031	0.00012	260
0.04	229	0.005	0.019	0.011	0.030	0.00011	261
0.04	215	0.005	0.018	0.010	0.032	0.00011	295
0.04	215	0.007	0.018	0.010	0.030	0.00011	265
0.04	215	0.006	0.019	0.010	0.030	0.00011	264
0.04	378	0.013	0.033	0.017	0.054	0.00020	264
0.04	379	0.013	0.032	0.017	0.053	0.00020	262
0.04	388	0.013	0.032	0.017	0.054	0.00020	266
0.04	377	0.013	0.033	0.017	0.054	0.00020	265
0.04	551	0.021	0.046	0.026	0.078	0.00020	254
0.04	550	0.021	0.045	0.025	0.078	0.00030	256
0.04	551	0.020	0.046	0.025	0.075	0.00030	252
0.04	552	0.021	0.046	0.025	0.077	0.00030	254
0.04	562	0.022	0.047	0.025	0.077	0.00031	249
0.04	768	0.035	0.064	0.038	0.109	0.00045	242
0.04	768	0.036	0.064	0.037	0.109	0.00045	243
0.04	778	0.036	0.064	0.037	0.111	0.00045	248
0.04	768	0.035	0.065	0.038	0.107	0.00045	236
0.04	768	0.036	0.064	0.038	0.107	0.00045	237
0.03	221	0.003	0.019	0.012	0.030	0.00011	2/1
0.03	217	0.004	0.020	0.011	0.030	0.00011	260
0.03	215	0.003	0.019	0.011	0.030	0.00011	284
0.03	228	0.004	0.020	0.011	0.032	0.00011	283
0.03	380	0.010	0.034	0.019	0.054	0.00021	257
0.03	388	0.009	0.034	0.019	0.054	0.00020	262
0.03	389	0.010	0.033	0.019	0.054	0.00020	262
0.03	387	0.010	0.034	0.019	0.055	0.00021	268
0.03	390	0.011	0.034	0.019	0.054	0.00021	253
0.03	552	0.020	0.047	0.026	0.077	0.00031	231
0.03	561	0.019	0.048	0.026	0.078	0.00031	255
0.03	551	0.019	0.048	0.026	0.078	0.00031	255
0.03	552	0.020	0.047	0.026	0.077	0.00031	251
0.03	769	0.033	0.067	0.038	0.107	0.00045	236
0.03	768	0.032	0.066	0.038	0.109	0.00045	243
0.03	771	0.033	0.067	0.038	0.109	0.00045	240
0.03	776	0.033	0.067	0.038	0.107	0.00045	236
0.03	/84	0.033	0.067	0.038	0.107	0.00045	230
0.01	206	0.003	0.019	0.013	0.030	0.00012	274
0.01	206	0.002	0.019	0.013	0.030	0.00011	271
0.01	217	0.002	0.019	0.013	0.032	0.00011	285
0.01	217	0.002	0.019	0.013	0.031	0.00011	284
0.01	390	0.005	0.036	0.021	0.057	0.00021	275
0.01	390	0.007	0.036	0.021	0.055	0.00021	257
0.01	379	0.006	0.036	0.021	0.054	0.00021	261
0.01	388	0.007	0.035	0.021	0.054	0.00021	262
0.01	554	0.007	0.036	0.021	0.054	0.00021	250
0.01	555	0.014	0.051	0.029	0.077	0.00031	254
0.01	556	0.014	0.051	0.028	0.079	0.00031	257
0.01	554	0.014	0.052	0.029	0.077	0.00031	247
0.01	554	0.015	0.051	0.028	0.079	0.00031	255
0.01	769	0.028	0.071	0.041	0.107	0.00046	232
0.01	768	0.029	0.069	0.040	0.107	0.00045	238
0.01	770	0.029	0.070	0.040	0.107	0.00046	234
0.01	769	0.027	0.069	0.041	0.107	0.00045	238
0.01	/68	0.028	0.070	0.040	0.109	0.00045	240

Table J.21: Resilient modulus data (B_2_28)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	224	0.025	0.027	0.027	0.029	0.00026	113
0.06	211	0.025	0.027	0.026	0.028	0.00025	109
0.06	212	0.026	0.025	0.026	0.028	0.00025	109
0.06	224	0.026	0.027	0.026	0.029	0.00026	114
0.06	374	0.047	0.046	0.047	0.049	0.00046	106
0.06	376	0.048	0.046	0.047	0.049	0.00046	106
0.06	377	0.047	0.046	0.048	0.049	0.00046	107
0.06	375	0.048	0.047	0.047	0.049	0.00047	105
0.06	376	0.048	0.047	0.047	0.049	0.00047	106
0.06	538	0.073	0.069	0.070	0.070	0.00069	102
0.06	549	0.073	0.070	0.070	0.071	0.00070	101
0.06	537	0.072	0.070	0.069	0.070	0.00069	102
0.06	549	0.073	0.070	0.069	0.072	0.00069	104
0.06	755	0.108	0.102	0.103	0.099	0.00103	96
0.06	766	0.108	0.103	0.104	0.100	0.00103	97
0.06	766	0.108	0.102	0.102	0,100	0.00103	98
0.06	754	0.108	0.103	0.104	0.099	0.00103	96
0.04	213	0.028	0.028	0.030	0.028	0.00028	98
0.04	213	0.028	0.027	0.030	0.028	0.00028	99
0.04	214	0.028	0.027	0.029	0.028	0.00028	101
0.04	214	0.028	0.027	0.030	0.028	0.00028	99
0.04	214	0.028	0.028	0.030	0.028	0.00029	98
0.04	375	0.052	0.051	0.054	0.049	0.00051	90
0.04	375	0.051	0.050	0.054	0.049	0.00051	96
0.04	375	0.052	0.051	0.054	0.049	0.00052	95
0.04	376	0.052	0.052	0.054	0.049	0.00052	95
0.04	548	0.080	0.077	0.079	0.072	0.00078	93
0.04	547	0.081	0.077	0.081	0.072	0.00078	92
0.04	537	0.080	0.077	0.080	0.070	0.00078	91
0.04	537	0.080	0.077	0.080	0.070	0.00078	91
0.04	758	0.117	0.112	0.115	0.099	0.00113	88
0.04	753	0.117	0.112	0.115	0.099	0.00113	88
0.04	753	0.118	0.113	0.115	0.099	0.00113	87
0.04	752	0.118	0.112	0.114	0.099	0.00113	87
0.04	765	0.118	0.113	0.115	0.100	0.00113	89
0.03	216	0.032	0.031	0.036	0.028	0.00032	88
0.03	215	0.032	0.032	0.034	0.028	0.00032	88
0.03	215	0.031	0.030	0.034	0.028	0.00031	90
0.03	215	0.032	0.031	0.035	0.028	0.00032	87
0.03	378	0.059	0.057	0.063	0.050	0.00059	85
0.03	377	0.059	0.057	0.062	0.049	0.00059	84
0.03	378	0.059	0.057	0.063	0.049	0.00059	83
0.03	375	0.059	0.056	0.061	0.049	0.00058	85
0.03	538	0.090	0.085	0.092	0.071	0.00088	80
0.03	538	0.089	0.084	0.091	0.071	0.00087	82
0.03	527	0.089	0.085	0.091	0.069	0.00087	79
0.03	542	0.089	0.085	0.091	0.071	0.00087	82
0.03	745	0.131	0.126	0.133	0.098	0.00128	76
0.03	744	0.132	0.126	0.133	0.098	0.00128	76
0.03	758	0.131	0.124	0.132	0.099	0.00127	78
0.03	754	0.132	0.125	0.133	0.099	0.00128	77
0.03	752	0.132	0.126	0.132	0.099	0.00128	77
0.01	215	0.037	0.036	0.040	0.028	0.00037	76
0.01	216	0.036	0.035	0.039	0.028	0.00036	79
0.01	205	0.036	0.035	0.039	0.027	0.00036	74
0.01	216	0.037	0.036	0.040	0.028	0.00037	76
0.01	367	0.071	0.066	0.075	0.048	0.00070	69
0.01	367	0.070	0.066	0.075	0.048	0.00069	70
0.01	379	0.071	0.067	0.075	0.050	0.00070	71
0.01	367	0.071	0.066	0.077	0.049	0.00070	69
0.01	529	0.107	0.100	0.113	0.069	0.00105	66
0.01	530	0.107	0.099	0.111	0.069	0.00104	67
0.01	530	0.107	0.100	0.111	0.069	0.00105	66
0.01	530	0.107	0.100	0.111	0.069	0.00104	67
0.01	529	0.107	0.100	0.111	0.069	0.00104	66
0.01	746	0.153	0,143	0.158	0.098	0.00149	66
0.01	745	0.152	0.143	0.157	0.098	0.00149	66
0.01	745	0.152	0.144	0.157	0.098	0.00149	66
0.01	746	0.152	0.143	0.159	0.098	0.00149	66

Table J.22: Resilient modulus data $(B_{-1}_{-1}6_{-9}8)$

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	216	0.026	0.024	0.028	0.028	0.00026	110
0.06	228	0.027	0.025	0.029	0.030	0.00027	112
0.06	226	0.027	0.025	0.029	0.030	0.00026	112
0.06	227	0.027	0.025	0.029	0.030	0.00027	100
0.06	400	0.050	0.045	0.055	0.052	0.00049	105
0.06	377	0.050	0.045	0.057	0.049	0.00050	99
0.06	380	0.050	0.045	0.055	0.050	0.00049	101
0.06	395	0.050	0.045	0.055	0.052	0.00049	105
0.06	401	0.050	0.046	0.057	0.053	0.00050	105
0.06	551	0.075	0.068	0.086	0.072	0.00075	96
0.06	552	0.075	0.068	0.086	0.072	0.00075	96
0.06	551	0.075	0.068	0.086	0.072	0.00075	96
0.06	551	0.075	0.067	0.086	0.072	0.00075	96
0.06	757	0.112	0.102	0.126	0.099	0.00112	89
0.06	779	0.113	0.103	0.126	0.102	0.00112	91
0.06	758	0.112	0.101	0.125	0.099	0.00111	90
0.06	757	0.112	0.102	0.126	0.099	0.00112	89
0.06	768	0.112	0.102	0.126	0.101	0.00112	90
0.04	230	0.028	0.020	0.032	0.031	0.00028	99
0.04	218	0.028	0.027	0.033	0.029	0.00029	99
0.04	217	0.029	0.026	0.033	0.028	0.00029	100
0.04	217	0.028	0.027	0.033	0.028	0.00029	99
0.04	380	0.053	0.050	0.063	0.050	0.00054	92
0.04	381	0.054	0.049	0.062	0.050	0.00054	93
0.04	381	0.053	0.048	0.064	0.050	0.00054	92
0.04	390	0.054	0.049	0.062	0.051	0.00054	94
0.04	542	0.081	0.073	0.096	0.071	0.00082	87
0.04	541	0.081	0.073	0.097	0.071	0.00082	86
0.04	541	0.081	0.074	0.095	0.071	0.00082	87
0.04	552	0.081	0.074	0.096	0.072	0.00082	88
0.04	556	0.081	0.074	0.096	0.073	0.00082	89
0.04	758	0.122	0.110	0.141	0.099	0.00122	81
0.04	759	0.121	0.110	0,139	0.099	0.00122	82
0.04	758	0.121	0.110	0.139	0.099	0.00122	81
0.04	758	0.121	0.110	0.139	0.099	0.00122	82
0.03	217	0.031	0.028	0.037	0.028	0.00032	90
0.03	219	0.032	0.028	0.038	0.029	0.00032	89
0.03	217	0.032	0.028	0.038	0.028	0.00032	89
0.03	218	0.032	0.028	0.038	0.029	0.00032	89
0.03	217	0.031	0.028	0.037	0.028	0.00031	91
0.03	380	0.060	0.055	0.071	0.050	0.00061	81
0.03	380	0.061	0.055	0.072	0.050	0.00062	81
0.03	378	0.060	0.054	0.071	0.050	0.00061	82
0.03	414	-0.106	-0.873	-0.052	0.054	-0.00338	-16
0.03	542	0.090	0.080	0.109	0.071	0.00092	78
0.03	545	0.090	0.081	0.109	0.071	0.00092	78
0.03	555	0.090	0.081	0.109	0.072	0.00092	79
0.03	543	0.090	0.081	0.109	0.073	0.00092	79
0.03	759	0.135	0.121	0.159	0.099	0.00136	73
0.03	771	0.135	0.121	0.160	0.101	0.00137	74
0.03	760	0.134	0.121	0.159	0.100	0.00136	73
0.03	769	0.135	0.121	0.160	0.101	0.00137	74
0.03	747	0.134	0.121	0.159	0.098	0.00136	72
0.01	200	0.037	0.030	0.041	0.027	0.00035	75
0.01	207	0.037	0.030	0.042	0.027	0.00035	75
0.01	229	0.037	0.030	0.042	0.030	0.00036	84
0.01	218	0.036	0.030	0.042	0.029	0.00035	81
0.01	380	0.074	0.061	0.084	0.050	0.00072	69
0.01	369	0.074	0.061	0.084	0.048	0.00072	67
0.01	369	0.075	0.062	0.084	0.048	0.00072	67
0.01	360	0.075	0.061	0.084	0.050	0.00072	67
0.01	531	0.075	0.001	0.126	0.048	0.00072	66
0.01	531	0.106	0.090	0.126	0.070	0.00106	66
0.01	532	0.106	0.090	0.127	0.070	0.00106	66
0.01	531	0.107	0.090	0.125	0.070	0.00106	66
0.01	532	0.105	0.089	0.125	0.070	0.00105	67
0.01	764	0.159	0.137	0.187	0.100	0.00158	63
0.01	767	0.160	0.136	0.187	0.101	0.00158	63
0.01	700	0.159	0.135	0.187	800.0	0.00158	62
0.01	748	0.158	0.136	0.187	0.098	0.00158	62

Table J.23: Resilient modulus data (B_2_16_98)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	214	-0.017	0.023	0.023	0.028	0.00009	299
0.06	226	-0.013	0.023	0.023	0.030	0.00011	259
0.06	217	-0.016	0.023	0.023	0.028	0.00010	268
0.06	217	-0.014	0.023	0.023	0.028	0.00011	124
0.06	389	0.020	0.042	0.042	0.051	0.00022	140
0.06	378	0.026	0.042	0.042	0.050	0.00036	129
0.06	389	0.025	0.042	0.042	0.051	0.00036	134
0.06	390	0.018	0.042	0.042	0.051	0.00033	144
0.06	427	1.762	3.425	2.891	0.056	0.02650	2
0.06	551	0.033	0.064	0.060	0.072	0.00052	131
0.06	550	0.033	0.064	0.060	0.072	0.00032	140
0.06	555	0.029	0.064	0.060	0.073	0.00051	135
0.06	568	0.033	0.065	0.064	0.074	0.00053	132
0.06	769	0.041	0.092	0.088	0.101	0.00073	130
0.06	771	0.047	0.096	0.089	0.101	0.00076	125
0.06	768	0.041	0.092	0.088	0.101	0.00073	130
0.06	778	0.042	0.092	0.091	0.102	0.00074	130
0.04	216	-0.014	0.024	0.025	0.028	0.00012	229
0.04	216	0.023	0.024	0.026	0.028	0.00024	111
0.04	217	0.016	0.025	0.026	0.028	0.00022	123
0.04	216	0.015	0.024	0.025	0.028	0.00021	125
0.04	390	-0.016	0.024	0.026	0.028	0.00011	130
0.04	390	0.023	0.047	0.046	0.051	0.00038	127
0.04	390	0.027	0.047	0.045	0.051	0.00039	123
0.04	380	0.025	0.047	0.046	0.050	0.00039	122
0.04	391	-0.042	0.047	0.046	0.051	0.00017	292
0.04	554	0.029	0.072	0.069	0.073	0.00056	123
0.04	565	0.032	0.072	0.069	0.073	0.00057	121
0.04	553	0.032	0.072	0.069	0.073	0.00058	117
0.04	553	0.032	0.072	0.069	0.072	0.00057	121
0.04	769	0.053	0.105	0.101	0.101	0.00085	111
0.04	782	0.043	0.108	0.102	0.103	0.00083	116
0.04	769	0.053	0.105	0.101	0.101	0.00085	111
0.04	770	0.031	0.105	0.101	0.101	0.00084	112
0.03	218	0.023	0.029	0.029	0.029	0.00026	102
0.03	218	-0.016	0.029	0.029	0.029	0.00014	195
0.03	217	-0.016	0.029	0.028	0.028	0.00014	197
0.03	217	0.024	0.029	0.032	0.029	0.00028	97
0.03	218	0.021	0.029	0.029	0.029	0.00026	105
0.03	390	0.027	0.055	0.052	0.051	0.00041	108
0.03	392	0.029	0.056	0.052	0.051	0.00045	108
0.03	396	0.030	0.053	0.052	0.052	0.00044	110
0.03	399	0.026	0.053	0.052	0.052	0.00043	114
0.03	553	0.037	0.080	0.078	0.072	0.00064	106
0.03	556	0.042	0.084	0.079	0.073	0.00067	102
0.03	555	0.038	0.084	0.079	0.073	0.00066	104
0.03	554	0.041	0.084	0.078	0.073	0.00066	103
0.03	770	0.053	0.122	0.115	0.101	0.00096	99
0.03	771	0.058	0.125	0.116	0.101	0.00098	97
0.03	770	0.059	0.122	0.115	0.101	0.00097	98
0.03	770	0.055	0.119	0.115	0.101	0.00095	100
0.01	218	0.025	0.030	0.033	0.029	0.00029	93
0.01	218	0.020	0.033	0.033	0.029	0.00028	96
0.01	218	0.022	0.030	0.033	0.029	0.00028	96
0.01	218	-0.018	0.030	0.033	0.029	0.00015	92
0.01	380	0.036	0.061	0.062	0.050	0.00052	90
0.01	380	0.031	0.061	0.059	0.050	0.00050	94
0.01	379	0.034	0.061	0.059	0.050	0.00051	93
0.01	380	0.030	0.061	0.059	0.050	0.00049	95
0.01	379	0.033	0.061	0.062	0.050	0.00051	92
0.01	543	0.046	0.095	0.092	0.071	0.00077	88
0.01	543	0.051	0.095	0.091	0.071	0.00078	86
0.01	543	0.043	0.095	0.091	0.071	0.00075	89
0.01	543	0.048	0.094	0.091	0.071	0.00076	88
0.01	759	0.069	0.147	0.136	0.100	0.00115	81
0.01	770	0.069	0.147	0.136	0.101	0.00114	82
0.01	759	0.072	0.143	0.136	0.100	0.00115	81
0.01	760	0.063	0.146	0.136	0.100	0.00113	83

Table J.24: Resilient modulus data (C_1_12_103)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	228	-0.016	0.023	0.021	0.030	0.00009	328
0.06	227	0.022	0.023	0.021	0.030	0.00022	137
0.06	217	-0.025	0.023	0.021	0.028	0.00006	464
0.06	226	0.022	0.023	0.021	0.030	0.00021	138
0.06	380	0.025	0.039	0.039	0.050	0.00034	146
0.06	390	0.020	0.039	0.039	0.051	0.00032	158
0.06	390	0.025	0.039	0.039	0.051	0.00034	150
0.06	388	0.025	0.039	0.039	0.051	0.00034	150
0.06	389	0.024	0.039	0.039	0.051	0.00033	152
0.06	552	0.032	0.057	0.061	0.072	0.00049	146
0.06	551	0.031	0.057	0.058	0.071	0.00048	147
0.06	551	0.029	0.057	0.058	0.072	0.00047	153
0.06	553	0.033	0.057	0.058	0.072	0.00049	149
0.06	768	0.045	0.080	0.088	0.101	0.00070	144
0.06	769	0.041	0.080	0.088	0.101	0.00069	147
0.06	758	0.042	0.083	0.088	0.099	0.00070	142
0.06	767	0.044	0.083	0.087	0.101	0.00070	143
0.04	217	0.023	0.025	0.022	0.028	0.00023	125
0.04	217	0.016	0.025	0.022	0.028	0.00021	139
0.04	218	0.022	0.025	0.022	0.029	0.00022	128
0.04	217	0.022	0.025	0.022	0.029	0.00022	128
0.04	306	0.018	0.025	0.022	0.029	0.00021	130
0.04	408	0.029	0.045	0.044	0.053	0.00038	139
0.04	380	0.019	0.045	0.040	0.050	0.00034	145
0.04	380	0.022	0.045	0.044	0.050	0.00036	137
0.04	379	0.020	0.045	0.040	0.050	0.00035	144
0.04	553	0.035	0.067	0.067	0.072	0.00055	131
0.04	558	0.035	0.066	0.066	0.073	0.00053	135
0.04	543	0.034	0.067	0.064	0.071	0.00054	132
0.04	543	0.034	0.067	0.067	0.071	0.00055	130
0.04	769	0.044	0.093	0.100	0.101	0.00078	130
0.04	769	0.053	0.096	0.096	0.101	0.00080	126
0.04	769	0.047	0.096	0.096	0.101	0.00079	128
0.04	758	0.048	0.096	0.096	0.099	0.00079	128
0.03	209	0.014	0.029	0.023	0.027	0.00022	127
0.03	197	0.019	0.029	0.023	0.026	0.00023	112
0.03	207	-0.019	0.029	0.023	0.027	0.00011	258
0.03	208	0.019	0.029	0.023	0.027	0.00023	119
0.03	206	0.015	0.028	0.023	0.027	0.00022	124
0.03	301	0.024	0.051	0.045	0.051	0.00023	193
0.03	380	0.019	0.051	0.045	0.050	0.00038	131
0.03	379	0.024	0.051	0.045	0.050	0.00040	125
0.03	380	0.027	0.051	0.045	0.050	0.00041	123
0.03	543	0.034	0.076	0.071	0.071	0.00059	120
0.03	553	0.036	0.076	0.071	0.071	0.00060	119
0.03	543	0.040	0.076	0.071	0.071	0.00062	116
0.03	543	0.038	0.076	0.071	0.071	0.00061	117
0.03	787	0.055	0.111	0.113	0.103	0.00091	113
0.03	772	0.049	0.108	0.109	0.101	0.00087	116
0.03	761	0.055	0.111	0.110	0.100	0.00090	110
0.03	760	0.047	0.111	0.110	0.100	0.00088	113
0.01	216	0.020	0.034	0.020	0.028	0.00024	116
0.01	211	0.022	0.035	0.020	0.028	0.00025	109
0.01	217	0.021	0.038	0.020	0.029	0.00026	110
0.01	206	0.018	0.035	0.020	0.027	0.00024	113
0.01	381	0.021	0.034	0.020	0.027	0.00025	109
0.01	381	0.029	0.063	0.045	0.050	0.00045	111
0.01	392	0.035	0.060	0.045	0.051	0.00046	112
0.01	381	0.032	0.063	0.045	0.050	0.00046	108
0.01	381	0.030	0.063	0.045	0.050	0.00045	111
0.01	542	0.040	0.092	0.076	0.071	0.00068	104
0.01	545	0.045	0.092	0.076	0.073	0.00070	102
0.01	543	0.044	0.092	0.076	0.071	0.00070	102
0.01	543	0.040	0.092	0.076	0.071	0.00068	104
0.01	763	0.063	0.127	0.121	0.100	0.00102	98
0.01	759	0.062	0.130	0.122	0.099	0.00103	96
0.01	760	0.003	0.127	0.122	0.102	0.00102	99
0.01	760	0.059	0.130	0.122	0.100	0.00102	98

Table J.25: Resilient modulus data (C_2_12_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	226	-0.014	0.020	0.011	0.030	0.00006	534
0.06	226	-0.017	0.020	0.011	0.030	0.00005	591
0.06	227	-0.015	0.020	0.011	0.030	0.00005	521
0.06	227	-0.016	0.020	0.011	0.030	0.00003	195
0.06	400	0.025	0.034	0.026	0.052	0.00028	177
0.06	390	0.017	0.037	0.026	0.051	0.00026	184
0.06	389	0.017	0.037	0.026	0.051	0.00026	184
0.06	390	0.021	0.037	0.026	0.051	0.00027	176
0.06	389	0.019	0.037	0.026	0.051	0.00027	179
0.06	563	0.025	0.053	0.043	0.074	0.00040	1/5
0.06	563	0.035	0.050	0.043	0.074	0.00042	166
0.06	563	0.033	0.053	0.043	0.074	0.00042	166
0.06	552	0.025	0.053	0.043	0.072	0.00039	173
0.06	779	0.039	0.075	0.067	0.102	0.00060	161
0.06	780	0.043	0.075	0.067	0.102	0.00061	158
0.06	769	0.043	0.072	0.067	0.101	0.00060	157
0.06	779	0.037	0.072	0.067	0.102	0.00059	164
0.04	226	0.021	0.024	0.011	0.030	0.00018	152
0.04	227	0.015	0.024	0.011	0.030	0.00016	170
0.04	227	0.017	0.024	0.012	0.030	0.00017	164
0.04	238	0.020	0.021	0.011	0.031	0.00017	170
0.04	400	0.015	0.038	0.030	0.052	0.00015	163
0.04	400	-0.026	0.039	0.030	0.052	0.00014	354
0.04	389	0.023	0.038	0.030	0.051	0.00030	161
0.04	399	0.024	0.038	0.030	0.052	0.00030	163
0.04	403	0.020	0.038	0.030	0.053	0.00029	173
0.04	563	0.037	0.057	0.048	0.074	0.00047	149
0.04	552	0.028	0.060	0.049	0.072	0.00044	150
0.04	563	0.033	0.060	0.048	0.074	0.00046	149
0.04	562	0.034	0.060	0.049	0.074	0.00047	148
0.04	759	0.045	0.086	0.075	0.099	0.00068	138
0.04	769	0.039	0.086	0.075	0.101	0.00065	145
0.04	780	0.038	0.086	0.075	0.102	0.00065	147
0.04	780	0.042	0.086	0.075	0.102	0.00067	144
0.03	227	0.015	0.024	0.015	0.030	0.00018	157
0.03	230	0.016	0.024	0.015	0.030	0.00018	156
0.03	234	0.019	0.021	0.015	0.031	0.00018	160
0.03	253	0.019	0.024	0.015	0.033	0.00019	162
0.03	390	0.014	0.024	0.015	0.030	0.00018	138
0.03	390	0.028	0.040	0.031	0.051	0.00032	148
0.03	390	0.022	0.043	0.031	0.051	0.00032	152
0.03	391	0.026	0.044	0.035	0.051	0.00034	141
0.03	390	0.030	0.043	0.034	0.051	0.00035	137
0.03	558	0.032	0.063	0.054	0.073	0.00049	140
0.03	553	0.034	0.065	0.054	0.073	0.00051	135
0.03	553	0.038	0.063	0.055	0.073	0.00051	133
0.03	563	0.037	0.063	0.054	0.074	0.00051	137
0.03	774	0.052	0.093	0.081	0.101	0.00074	128
0.03	769	0.051	0.093	0.081	0.101	0.00074	128
0.03	781	0.052	0.094	0.082	0.102	0.00076	125
0.03	781	0.053	0.097	0.082	0.102	0.00076	127
0.01	227	0.022	0.023	0.016	0.030	0.00020	139
0.01	227	-0.016	0.023	0.016	0.030	0.00008	363
0.01	228	0.023	0.023	0.016	0.030	0.00020	138
0.01	227	0.019	0.026	0.016	0.030	0.00020	139
0.01	390	0.031	0.046	0.037	0.051	0.00038	128
0.01	390	0.028	0.046	0.037	0.051	0.00037	132
0.01	391	0.030	0.046	0.037	0.051	0.00037	129
0.01	390	0.028	0.049	0.037	0.051	0.00038	128
0.01	564	0.025	0.046	0.037	0.051	0.00036	135
0.01	552	0.041	0.073	0.059	0.074	0.00057	122
0.01	553	0.040	0.070	0.059	0.072	0.00055	123
0.01	552	0.040	0.070	0.059	0.072	0.00055	123
0.01	563	0.039	0.070	0.059	0.074	0.00055	127
0.01	770	0.057	0.104	0.092	0.101	0.00083	114
0.01	758	0.059	0.101	0.092	0.099	0.00083	114
0.01	770	0.053	0.104	0.092	0.101	0.00082	116
0.01	780	0.053	0.107	0.092	0.102	0.00082	117

Table J.26: Resilient modulus data (C_1_95_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	226	0.021	0.023	-0.007	0.030	0.00012	240
0.06	225	0.018	0.023	-0.007	0.030	0.00011	266
0.06	237	0.019	0.023	-0.007	0.031	0.00011	270
0.06	237	0.015	0.026	0.005	0.031	0.00015	204
0.06	400	0.025	0.039	0.010	0.052	0.00024	215
0.06	399	0.024	0.039	0.010	0.052	0.00024	218
0.06	399	0.030	0.039	0.010	0.052	0.00026	202
0.06	400	-0.021	0.039	0.010	0.052	0.00009	566
0.06	400	0.032	0.039	0.010	0.052	0.00027	195
0.06	561	0.038	0.059	0.020	0.074	0.00038	192
0.06	552	0.040	0.059	0.020	0.072	0.00039	185
0.06	561	0.030	0.059	0.020	0.074	0.00030	200
0.06	561	0.041	0.059	0.019	0.074	0.00039	189
0.06	778	0.045	0.088	0.042	0.102	0.00057	178
0.06	782	0.051	0.087	0.042	0.103	0.00059	173
0.06	776	0.051	0.084	0.041	0.102	0.00058	176
0.06	792	0.047	0.087	0.041	0.104	0.00058	180
0.06	791	0.049	0.087	0.044	0.104	0.00059	176
0.04	237	0.019	0.026	0.005	0.031	0.00017	188
0.04	237	0.019	0.020	0.005	0.031	0.00017	100
0.04	237	0.017	0.026	0.005	0.031	0.00016	195
0.04	238	-0.015	0.026	0.005	0.031	0.00006	562
0.04	400	0.031	0.044	0.012	0.052	0.00028	185
0.04	401	0.025	0.044	0.012	0.053	0.00026	200
0.04	400	0.029	0.044	0.012	0.052	0.00028	189
0.04	400	0.028	0.043	0.012	0.052	0.00027	192
0.04	399	0.030	0.044	0.012	0.052	0.00028	186
0.04	574	0.042	0.064	0.021	0.074	0.00042	177
0.04	563	0.039	0.068	0.021	0.074	0.00042	176
0.04	562	0.039	0.064	0.021	0.074	0.00041	180
0.04	563	0.040	0.064	0.021	0.074	0.00041	180
0.04	779	0.053	0.095	0.047	0.102	0.00064	160
0.04	768	0.056	0.095	0.050	0.101	0.00066	153
0.04	779	0.050	0.095	0.047	0.102	0.00063	162
0.04	768	0.052	0.095	0.046	0.101	0.00063	159
0.04	227	0.036	0.095	0.046	0.101	0.00004	150
0.03	237	0.017	0.029	0.005	0.031	0.00017	187
0.03	239	0.021	0.032	0.005	0.031	0.00019	167
0.03	233	0.022	0.029	0.005	0.031	0.00018	168
0.03	247	0.022	0.032	0.005	0.032	0.00019	169
0.03	401	0.032	0.049	0.012	0.053	0.00031	172
0.03	400	0.032	0.052	0.012	0.052	0.00032	166
0.03	390	0.039	0.052	0.015	0.051	0.00035	140
0.03	401	0.030	0.052	0.012	0.053	0.00031	170
0.03	563	0.037	0.075	0.027	0.074	0.00046	161
0.03	563	0.036	0.073	0.027	0.074	0.00044	166
0.03	564	0.052	0.072	0.027	0.074	0.00050	148
0.03	552	0.046	0.072	0.027	0.072	0.00047	153
0.03	563	0.044	0.075	0.027	0.074	0.00048	154
0.03	709	0.059	0.107	0.057	0.101	0.00073	137
0.03	770	0.063	0.104	0.058	0.101	0.00072	137
0.03	780	0.060	0.107	0.057	0.102	0.00074	139
0.03	781	0.058	0.108	0.058	0.102	0.00073	140
0.01	228	0.021	0.032	0.007	0.030	0.00020	151
0.01	228	0.025	0.036	0.007	0.030	0.00022	136
0.01	227	-0.019	0.035	-0.006	0.030	0.00003	855
0.01	228	0.027	0.035	0.006	0.030	0.00023	133
0.01	391	0.034	0.058	0.022	0.051	0.00020	137
0.01	389	0.035	0.061	0.022	0.051	0.00039	132
0.01	391	0.029	0.058	0.022	0.051	0.00036	144
0.01	396	0.046	0.061	0.022	0.052	0.00043	122
0.01	411	0.038	0.061	0.022	0.054	0.00040	135
0.01	555	0.047	0.088	0.041	0.073	0.00058	126
0.01	566	0.051	0.084	0.038	0.074	0.00057	130
0.01	565	0.044	0.087	0.038	0.074	0.00056	133
0.01	555	0.052	0.084	0.039	0.073	0.00057	127
0.01	770	0.069	0.125	0.081	0.101	0.00090	112
0.01	769	0.068	0.121	0.081	0.101	0.00088	114
0.01	782	0.067	0.121	0.081	0.102	0.00088	116
0.01	781	0.063	0.124	0.081	0.102	0.00088	116
0.01	781	0.062	0.121	0.081	0.102	0.00086	118

Table J.27: Resilient modulus data (C_2_95_103)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	216	-0.016	0.031	-0.007	0.028	0.00002	1142
0.06	215	-0.012	0.034	-0.007	0.028	0.00005	598
0.06	228	-0.017	0.034	-0.007	0.030	0.00003	973
0.06	221	-0.013	0.034	-0.007	0.029	0.00004	735
0.06	389	0.015	0.046	0.018	0.051	0.00026	195
0.06	388	0.018	0.046	0.018	0.051	0.00027	190
0.06	389	-0.021	0.046	0.018	0.051	0.00014	363
0.06	388	0.014	0.046	0.018	0.051	0.00026	199
0.06	389	-0.021	0.045	0.018	0.051	0.00014	361
0.06	552	0.022	0.058	0.032	0.072	0.00037	196
0.06	552	0.023	0.058	0.032	0.072	0.00037	193
0.06	552	0.018	0.061	0.032	0.072	0.00036	200
0.06	552	0.015	0.058	0.032	0.072	0.00034	211
0.06	768	0.029	0.076	0.052	0.101	0.00052	195
0.06	768	0.029	0.079	0.052	0.101	0.00052	192
0.06	773	0.025	0.075	0.052	0.101	0.00050	203
0.06	769	0.026	0.075	0.055	0.103	0.00051	193
0.04	216	-0.017	0.035	-0.006	0.028	0.000032	756
0.04	216	0.014	0.035	-0.006	0.028	0.00014	201
0.04	215	0.015	0.035	0.006	0.028	0.00018	154
0.04	218	-0.015	0.035	-0.006	0.029	0.00004	662
0.04	222	-0.018	0.035	-0.006	0.029	0.00004	804
0.04	399	0.014	0.049	0.018	0.052	0.00027	195
0.04	385	-0.017	0.049	0.018	0.051	0.00028	312
0.04	392	0.016	0.050	0.018	0.051	0.00027	188
0.04	392	0.013	0.049	0.018	0.051	0.00026	195
0.04	553	0.019	0.065	0.033	0.072	0.00039	188
0.04	553	-0.019	0.065	0.033	0.072	0.00026	278
0.04	553	0.017	0.065	0.033	0.073	0.00038	192
0.04	563	0.021	0.065	0.033	0.073	0.00039	180
0.04	769	0.034	0.081	0.057	0.101	0.00056	179
0.04	780	0.027	0.084	0.057	0.102	0.00055	186
0.04	780	0.030	0.084	0.057	0.102	0.00056	182
0.04	769	0.026	0.084	0.056	0.101	0.00055	184
0.04	769	0.033	0.084	0.056	0.101	0.00057	178
0.03	217	-0.013	0.038	0.008	0.028	0.00011	263
0.03	238	-0.014	0.038	0.003	0.029	0.00019	293
0.03	216	0.014	0.038	0.008	0.028	0.00020	143
0.03	217	-0.016	0.038	0.008	0.028	0.00010	288
0.03	391	0.017	0.054	0.021	0.051	0.00030	170
0.03	390	0.016	0.054	0.021	0.051	0.00030	173
0.03	391	-0.015	0.057	0.018	0.051	0.00020	260
0.03	410	0.018	0.054	0.021	0.054	0.00030	175
0.03	553	0.024	0.071	0.036	0.073	0.00043	168
0.03	552	0.020	0.071	0.036	0.072	0.00042	173
0.03	553	0.022	0.071	0.036	0.072	0.00042	171
0.03	553	0.019	0.071	0.036	0.073	0.00041	175
0.03	552	0.022	0.071	0.036	0.072	0.00042	171
0.03	770	0.028	0.092	0.061	0.101	0.00060	167
0.03	770	0.029	0.092	0.061	0.101	0.00060	169
0.03	770	0.030	0.092	0.061	0.101	0.00060	168
0.03	770	0.033	0.092	0.061	0.101	0.00061	166
0.01	217	-0.016	0.044	0.009	0.028	0.00012	240
0.01	218	-0.016	0.041	0.012	0.029	0.00012	236
0.01	217	-0.016	0.041	0.009	0.020	0.00011	274
0.01	217	-0.016	0.044	0.009	0.028	0.00012	239
0.01	391	-0.018	0.062	0.025	0.051	0.00023	226
0.01	391	0.015	0.062	0.025	0.051	0.00034	153
0.01	381	-0.015	0.062	0.025	0.050	0.00024	211
0.01	380	-0.014	0.062	0.025	0.050	0.00024	206
0.01	554	0.022	0.080	0.042	0.073	0.00048	152
0.01	554	0.018	0.080	0.042	0.073	0.00046	157
0.01	554	0.022	0.080	0.039	0.073	0.00046	156
0.01	554	0.019	0.080	0.042	0.073	0.00046	156
0.01	553	0.014	0.080	0.043	0.073	0.00045	162
0.01	792	0.030	0.103	0.070	0.104	0.00066	156
0.01	771	0.034	0,103	0.070	0,101	0.00068	149
0.01	770	0.036	0.103	0.070	0.101	0.00068	147
0.01	770	0.035	0,103	0.070	0.101	0.00068	148

Table J.28: Resilient modulus data (C_1_8_103)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	231	0.013	-0.013	0.027	0.030	0.00009	340
0.06	234	0.017	-0.013	0.027	0.031	0.00010	307
0.06	262	0.017	-0.013	0.027	0.034	0.00010	344
0.06	241	0.020	-0.013	0.027	0.032	0.00011	289
0.06	401	0.020	-0.012	0.039	0.053	0.00016	338
0.06	400	0.022	-0.012	0.039	0.052	0.00016	329
0.06	404	0.020	-0.012	0.039	0.053	0.00015	345
0.06	426	0.025	-0.012	0.039	0.056	0.00017	330
0.06	391	0.024	-0.012	0.039	0.051	0.00017	304
0.06	554	0.027	0.020	0.053	0.073	0.00033	222
0.06	562	0.024	0.020	0.055	0.074	0.00032	215
0.06	566	0.029	0.020	0.053	0.074	0.00033	223
0.06	571	0.025	0.020	0.053	0.075	0.00032	234
0.06	780	0.035	0.042	0.071	0.102	0.00048	211
0.06	770	0.034	0.042	0.071	0.101	0.00048	209
0.06	790	0.033	0.045	0.074	0.104	0.00050	207
0.06	780	0.035	0.042	0.071	0.101	0.00050	205
0.04	240	0.019	-0.015	0.028	0.031	0.00011	300
0.04	239	0.018	-0.012	0.031	0.031	0.00012	253
0.04	239	0.015	-0.011	0.028	0.031	0.00010	301
0.04	232	0.018	-0.015	0.031	0.030	0.00012	265
0.04	243	0.013	-0.014	0.028	0.032	0.00009	361
0.04	402	0.023	-0.014	0.044	0.053	0.00017	320
0.04	389	0.019	-0.014	0.044	0.051	0.00016	319
0.04	400	0.024	-0.014	0.044	0.052	0.00018	296
0.04	404	0.021	-0.011	0.044	0.053	0.00018	298
0.04	565	0.028	0.020	0.059	0.074	0.00035	210
0.04	553	0.029	0.018	0.058	0.072	0.00034	211
0.04	553	0.029	0.021	0.058	0.074	0.00035	203
0.04	552	0.030	0.021	0.058	0.072	0.00036	203
0.04	781	0.035	0.045	0.079	0.102	0.00052	196
0.04	791	0.039	0.045	0.079	0.104	0.00053	194
0.04	780	0.040	0.045	0.079	0.102	0.00054	190
0.04	769	0.032	0.042	0.079	0.101	0.00050	200
0.04	228	0.032	-0.014	0.031	0.030	0.00030	204
0.03	228	0.013	-0.014	0.034	0.030	0.00011	274
0.03	228	0.019	-0.014	0.031	0.030	0.00012	257
0.03	226	0.016	-0.014	0.031	0.030	0.00011	272
0.03	238	0.020	-0.014	0.031	0.031	0.00012	259
0.03	382	0.028	-0.012	0.048	0.050	0.00021	238
0.03	401	0.025	-0.012	0.048	0.053	0.00019	279
0.03	402	0.022	-0.015	0.051	0.053	0.00019	278
0.03	402	0.023	-0.012	0.051	0.053	0.00020	261
0.03	566	0.031	0.017	0.067	0.074	0.00038	197
0.03	572	0.030	0.017	0.067	0.075	0.00037	201
0.03	555	0.031	0.017	0.067	0.074	0.00038	197
0.03	555	0.029	0.017	0.067	0.073	0.00037	197
0.03	781	0.038	0.042	0.086	0.102	0.00054	188
0.03	781	0.037	0.045	0.086	0.102	0.00055	186
0.03	770	0.036	0.045	0.086	0.101	0.00055	184
0.03	770	0.043	0.045	0.086	0.101	0.00057	177
0.03	230	0.039	-0.011	0.033	0.030	0.00036	215
0.01	233	0.020	-0.008	0.030	0.031	0.00014	221
0.01	247	0.017	-0.008	0.030	0.032	0.00013	251
0.01	228	0.015	-0.008	0.030	0.030	0.00012	241
0.01	227	0.018	-0.008	0.030	0.030	0.00013	222
0.01	400	0.029	-0.009	0.052	0.052	0.00024	222
0.01	392	0.026	-0.009	0.052	0.051	0.00023	225
0.01	391	0.024	-0.009	0.052	0.051	0.00022	234
0.01	390	0.029	-0.009	0.052	0.051	0.00024	217
0.01	564	0.028	0.019	0.073	0.074	0.00039	189
0.01	564	0.035	0.018	0.073	0.074	0.00042	178
0.01	554	0.033	0.019	0.073	0.074	0.00041	181
0.01	553	0.028	0.015	0.073	0.073	0.00038	190
0.01	781	0.045	0.049	0.096	0.102	0.00063	163
0.01	781	0.043	0.049	0.096	0.102	0.00062	166
0.01	781	0.047	0.049	0.096	0.102	0.00063	162
0.01	770	0.043	0.046	0.096	0.101	0.00061	166
0.01	110	0.044	0.049	0.090	0.101	0.00002	105

Table J.29: Resilient modulus data (C_2_8_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	215	0.017	0.027	0.027	0.028	0.00023	120
0.06	214	-0.015	0.027	0.030	0.028	0.00014	199
0.06	226	-0.017	0.027	0.030	0.030	0.00013	222
0.06	216	0.023	0.027	0.030	0.028	0.00026	107
0.06	390	0.022	0.050	0.053	0.051	0.00043	119
0.06	389	0.033	0.050	0.052	0.051	0.00045	114
0.06	391	0.032	0.050	0.053	0.051	0.00044	116
0.06	387	0.034	0.050	0.055	0.051	0.00046	111
0.06	392	0.023	0.050	0.052	0.051	0.00041	125
0.06	541	0.045	0.074	0.079	0.071	0.00065	109
0.00	540	0.041	0.074	0.082	0.071	0.00064	110
0.06	552	0.046	0.074	0.082	0.072	0.00066	109
0.06	552	0.049	0.077	0.079	0.072	0.00067	108
0.06	758	0.063	0.109	0.115	0.099	0.00094	105
0.06	768	0.059	0.109	0.115	0.101	0.00093	109
0.06	769	0.059	0.109	0.115	0.101	0.00093	109
0.06	769	0.060	0.108	0.118	0.101	0.00092	109
0.04	218	-0.018	0.030	0.035	0.029	0.00016	184
0.04	219	0.026	0.031	0.036	0.029	0.00030	95
0.04	217	0.017	0.030	0.032	0.028	0.00026	108
0.04	219	0.028	0.031	0.036	0.029	0.00031	93
0.04	219	0.021	0.031	0.033	0.029	0.00028	104
0.04	3/9	0.032	0.055	0.061	0.050	0.00050	100
0.04	379	0.029	0.058	0.061	0.050	0.00049	102
0.04	378	0.035	0.055	0.061	0.050	0.00049	100
0.04	379	0.029	0.058	0.061	0.050	0.00048	102
0.04	551	0.046	0.087	0.091	0.072	0.00073	99
0.04	552	0.048	0.084	0.090	0.072	0.00073	99
0.04	552	0.053	0.087	0.091	0.072	0.00075	96
0.04	572	2.236	3 954	3 219	0.072	0.03087	2
0.04	769	0.068	0.123	0.136	0.101	0.00107	94
0.04	769	0.065	0.123	0.136	0.101	0.00106	95
0.04	759	0.069	0.126	0.133	0.100	0.00107	93
0.04	759	0.077	0.123	0.136	0.099	0.00110	90
0.04	770	0.064	0.126	0.136	0.101	0.00107	95
0.03	216	0.028	0.035	0.040	0.029	0.00034	84
0.03	207	0.027	0.035	0,040	0.027	0.00033	81
0.03	206	0.023	0.035	0.040	0.027	0.00032	84
0.03	206	0.025	0.035	0.040	0.027	0.00033	82
0.03	380	0.038	0.069	0.074	0.050	0.00060	83
0.03	379	0.041	0.066	0.074	0.050	0.00059	84
0.03	389	0.042	0.066	0.074	0.051	0.00060	84
0.03	386	0.041	0.066	0.075	0.051	0.00060	85
0.03	542	0.052	0.100	0.107	0.071	0.00085	84
0.03	542	0.058	0.100	0.107	0.071	0.00087	82
0.03	542	0.054	0.097	0.106	0.071	0.00084	84
0.03	543	0.059	0.101	0.107	0.071	0.00088	81
0.03	760	0.081	0.145	0.157	0.100	0.00126	79
0.03	770	0.086	0.145	0.157	0.101	0.00127	79
0.03	760	0.079	0.145	0.157	0.100	0.00125	79
0.03	760	0.081	0.145	0.157	0.100	0.00126	79
0.03	759	0.078	0.145	0.157	0.100	0.00125	80
0.01	206	0.035	0.035	0.048	0.027	0.00039	69
0.01	207	0.032	0.036	0.048	0.027	0.00038	71
0.01	206	0.032	0.036	0.048	0.027	0.00038	71
0.01	207	0.026	0.039	0.048	0.027	0.00037	73
0.01	369	0.047	0.076	0.088	0.048	0.00069	70
0.01	369	0.051	0.076	0.089	0.048	0.00071	68
0.01	369	0.057	0.076	0.088	0.048	0.00073	60
0.01	380	0.049	0.076	0.089	0.050	0.00068	73
0.01	532	0.077	0.119	0.131	0.070	0.00107	65
0.01	532	0.069	0.119	0.128	0.070	0.00104	67
0.01	532	0.072	0.119	0.131	0.070	0.00106	66
0.01	532	0.073	0.116	0.131	0.070	0.00105	67
0.01	749	0.077	0.116	0.131	0.070	0.00106	65
0.01	750	0.106	0,176	0.190	0.098	0.00152	64
0.01	756	0.098	0.176	0.190	0.099	0.00152	65
0.01	762	0.093	0.175	0.190	0.100	0.00150	66
0.01	749	0.100	0.175	0.190	0.098	0.00153	64

Table J.30: Resilient modulus data (C_1_13_98)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	215	0.017	0.027	0.027	0.028	0.00023	120
0.06	214	-0.015	0.027	0.030	0.028	0.00014	199
0.06	226	-0.017	0.027	0.030	0.030	0.00013	222
0.06	216	0.023	0.027	0.030	0.028	0.00026	107
0.06	378	0.022	0.049	0.053	0.050	0.00041	120
0.06	378	0.027	0.049	0.053	0.050	0.00042	118
0.06	378	0.030	0.049	0.053	0.050	0.00043	115
0.06	379	0.025	0.049	0.053	0.050	0.00041	120
0.06	379	0.026	0.049	0.053	0.050	0.00042	119
0.06	541	0.037	0.074	0.077	0.071	0.00061	115
0.06	539	0.037	0.075	0.077	0.071	0.00062	113
0.06	551	0.045	0.076	0.077	0.072	0.00065	111
0.06	540	0.039	0.073	0.077	0.071	0.00062	114
0.06	758	0.061	0.110	0.111	0.099	0.00092	108
0.06	759	0.054	0.106	0.114	0.099	0.00090	111
0.06	758	0.061	0.109	0.113	0.099	0.00093	107
0.06	758	0.050	0.109	0.113	0.099	0.00091	109
0.04	216	0.018	0.030	0.034	0.028	0.00027	105
0.04	217	-0.017	0.030	0.034	0.028	0.00016	183
0.04	216	0.022	0.033	0.034	0.028	0.00029	96
0.04	216	0.020	0.030	0.034	0.028	0.00028	103
0.04	215	0.020	0.030	0.034	0.028	0.00028	102
0.04	379	0.028	0.055	0.058	0.050	0.00047	107
0.04	379	0.034	0.059	0.062	0.050	0.00050	100
0.04	389	0.033	0.055	0.062	0.051	0.00049	103
0.04	379	0.025	0.055	0.059	0.050	0.00045	109
0.04	541	0.044	0.086	0.088	0.071	0.00071	99
0.04	541	0.045	0.083	0.088	0.071	0.00071	101
0.04	555	0.044	0.086	0.091	0.073	0.00072	101
0.04	553	0.047	0.086	0.091	0.072	0.00073	98
0.04	756	0.061	0.123	0.128	0.099	0.00102	97
0.04	757	0.063	0.122	0.131	0.099	0.00104	96
0.04	760	0.062	0.126	0.128	0.100	0.00103	96
0.04	765	0.070	0.126	0.131	0.100	0.00107	93
0.04	780	0.063	0.125	0.131	0.102	0.00105	98
0.03	218	0.019	0.039	0.040	0.029	0.00032	89
0.03	200	0.025	0.035	0.037	0.027	0.00034	89
0.03	217	0.019	0.035	0.037	0.028	0.00030	95
0.03	206	0.025	0.038	0.040	0.027	0.00034	79
0.03	387	0.033	0.068	0.073	0.051	0.00057	89
0.03	381	0.040	0.068	0.073	0.050	0.00059	84
0.03	381	0.036	0.068	0.073	0.050	0.00058	80
0.03	380	0.035	0.068	0.073	0.050	0.00059	86
0.03	542	0.048	0.099	0.106	0.071	0.00083	85
0.03	542	0.051	0.102	0.106	0.071	0.00085	83
0.03	542	0.052	0.102	0.103	0.071	0.00084	84
0.03	542	0.051	0.102	0.106	0.071	0.00085	83
0.03	542	0.052	0.102	0.103	0.071	0.00085	84
0.03	770	0.072	0.145	0.152	0.101	0.00124	83
0.03	761	0.067	0.149	0.154	0.100	0.00121	82
0.03	750	0.077	0.148	0.153	0.098	0.00124	79
0.03	748	0.070	0.148	0.153	0.098	0.00122	81
0.01	208	0.025	0.045	0.046	0.027	0.00038	72
0.01	206	0.025	0.045	0.046	0.027	0.00038	71
0.01	206	0.020	0.042	0.043	0.027	0.00034	78
0.01	217	0.024	0.045	0.046	0.028	0.00038	76
0.01	379	0.050	0.081	0.085	0.050	0.00071	70
0.01	369	0.047	0.078	0.086	0.048	0.00069	70
0.01	384	0.043	0.081	0.086	0.050	0.00069	73
0.01	360	0.039	0.084	0.086	0.052	0.00068	/0
0.01	532	0.059	0.122	0.125	0.070	0.00100	69
0.01	531	0.065	0.122	0.125	0.070	0.00102	68
0.01	534	0.055	0.125	0.125	0.070	0.00100	70
0.01	541	0.057	0.125	0.128	0.071	0.00101	70
0.01	536	0.058	0.125	0.128	0.070	0.00102	69
0.01	752	0.085	0.178	0.186	0.099	0.00148	67
0.01	750	0.082	0.182	0.187	0.098	0.00148	66
0.01	747	0.083	0.184	0.186	0.098	0.00149	66
0.01	747	0.090	0.184	0.186	0.098	0.00151	65

Table J.31: Resilient modulus data (C_2_13_98)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	215	-0.015	0.020	0.023	0.028	0.00009	303
0.06	226	-0.017	0.020	0.026	0.030	0.00010	311
0.06	215	-0.016	0.020	0.023	0.028	0.00009	313
0.06	224	-0.013	0.020	0.025	0.029	0.00010	300
0.06	378	0.018	0.036	0.039	0.050	0.00030	163
0.06	377	0.018	0.036	0.039	0.049	0.00030	163
0.06	387	-0.018	0.036	0.042	0.051	0.00020	258
0.06	378	-0.018	0.033	0.039	0.050	0.00018	281
0.06	378	0.017	0.036	0.039	0.050	0.00030	164
0.06	541	0.029	0.051	0.057	0.071	0.00045	158
0.06	540	0.021	0.051	0.057	0.071	0.00042	167
0.06	540	0.027	0.051	0.057	0.071	0.00044	156
0.06	541	0.027	0.054	0.056	0.071	0.00045	157
0.06	758	0.040	0.075	0.079	0.099	0.00064	156
0.06	769	0.042	0.078	0.079	0.101	0.00065	154
0.06	758	0.033	0.075	0.079	0.099	0.00061	162
0.06	769	0.036	0.075	0.079	0.101	0.00062	162
0.06	769	0.043	0.075	0.079	0.101	0.00065	156
0.04	223	-0.012	0.023	0.028	0.029	0.00013	225
0.04	215	0.014	0.023	0.025	0.028	0.00021	137
0.04	217	-0.017	0.020	0.025	0.029	0.00010	298
0.04	216	0.016	0.020	0.028	0.028	0.00021	134
0.04	379	0.019	0.038	0.046	0.050	0.00034	148
0.04	379	0.029	0.038	0.046	0.050	0.00037	134
0.04	391	0.024	0.038	0.046	0.051	0.00036	144
0.04	387	-0.021	0.038	0.046	0.051	0.00034	247
0.04	553	0.034	0.055	0.064	0.072	0.00050	145
0.04	542	0.023	0.055	0.064	0.071	0.00047	153
0.04	542	0.026	0.055	0.064	0.071	0.00047	150
0.04	540	0.032	0.055	0.063	0.071	0.00049	144
0.04	544	0.033	0.055	0.064	0.071	0.00050	143
0.04	769	0.037	0.085	0.092	0.101	0.00070	143
0.04	758	0.043	0.083	0.089	0.099	0.00071	142
0.04	769	0.038	0.082	0.089	0.101	0.00069	147
0.04	769	0.042	0.085	0.089	0.101	0.00071	142
0.03	217	-0.013	0.022	0.031	0.028	0.00013	217
0.03	217	-0.018	0.022	0.031	0.028	0.00012	246
0.03	216	0.018	0.022	0.031	0.028	0.00023	121
0.03	217	0.016	0.022	0.031	0.028	0.00023	125
0.03	380	0.025	0.039	0.053	0.028	0.00023	122
0.03	380	0.020	0.040	0.053	0.050	0.00037	134
0.03	378	0.020	0.039	0.053	0.050	0.00037	135
0.03	381	0.024	0.039	0.053	0.050	0.00038	131
0.03	386	0.020	0.039	0.053	0.051	0.00037	137
0.03	553	0.029	0.061	0.073	0.072	0.00054	135
0.03	556	0.035	0.061	0.073	0.072	0.00055	131
0.03	555	0.031	0.061	0.073	0.073	0.00054	134
0.03	541	0.026	0.064	0.073	0.071	0.00054	132
0.03	770	0.041	0.094	0.105	0.101	0.00079	128
0.03	759	0.044	0.094	0.104	0.099	0.00079	125
0.03	769	0.042	0.093	0.104	0.101	0.00079	128
0.03	769	0.043	0.093	0.104	0.101	0.00079	128
0.03	218	0.042	0.090	0.037	0.029	0.00077	129
0.01	206	0.014	0.019	0.040	0.027	0.00024	113
0.01	207	0.019	0.019	0.037	0.027	0.00025	110
0.01	207	-0.018	0.019	0.037	0.027	0.00012	220
0.01	218	-0.020	0.019	0.040	0.029	0.00013	222
0.01	401	0.028	0.041	0.063	0.053	0.00043	121
0.01	380	0.018	0.041	0.066	0.050	0.00041	122
0.01	380	0.030	0.038	0.063	0.050	0.00043	117
0.01	381	0.020	0.041	0.066	0.050	0.00042	120
0.01	553	0.034	0.064	0.089	0.073	0.00061	118
0.01	553	0.037	0.064	0.089	0.073	0.00062	117
0.01	543	0.035	0.064	0.089	0.071	0.00062	115
0.01	553	0.032	0.064	0.089	0.072	0.00061	119
0.01	542	0.028	0.067	0.089	0.071	0.00060	118
0.01	771	0.047	0.099	0.123	0.101	0.00087	110
0.01	759	0.050	0.099	0.126	0.100	0.00090	110
0.01	770	0.047	0.102	0.126	0.101	0.00090	112
0.01	771	0.049	0.102	0.123	0.101	0.00090	112

Table J.32: Resilient modulus data (C_1_10_98)

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	217	-0.014	0.022	0.023	0.028	0.00010	284
0.06	217	-0.015	0.022	0.023	0.028	0.00010	287
0.06	216	0.013	0.022	0.020	0.028	0.00018	158
0.06	216	0.014	0.025	0.023	0.028	0.00020	139
0.06	388	0.024	0.042	0.041	0.051	0.00035	145
0.06	390	0.024	0.042	0.038	0.051	0.00034	149
0.06	389	0.020	0.042	0.041	0.051	0.00034	150
0.06	389	0.017	0.042	0.038	0.051	0.00032	160
0.06	389	0.023	0.042	0.041	0.051	0.00035	147
0.06	551	0.032	0.062	0.058	0.072	0.00050	144
0.06	552	0.023	0.062	0.058	0.072	0.00049	146
0.06	552	0.024	0.062	0.061	0.072	0.00048	150
0.06	552	0.032	0.062	0.058	0.072	0.00050	145
0.06	767	0.045	0.092	0.089	0.101	0.00074	136
0.06	767	0.039	0.089	0.089	0.101	0.00071	141
0.06	768	0.043	0.092	0.089	0.101	0.00073	137
0.06	768	0.042	0.092	0.089	0.101	0.00073	137
0.04	217	0.019	0.025	0.022	0.028	0.00022	132
0.04	228	-0.015	0.028	0.022	0.030	0.00011	262
0.04	217	0.015	0.025	0.022	0.028	0.00020	142
0.04	216	0.016	0.025	0.025	0.028	0.00021	132
0.04	217	0.013	0.024	0.022	0.028	0.00019	146
0.04	390	0.027	0.047	0.044	0.051	0.00039	131
0.04	390	0.016	0.047	0.045	0.051	0.00036	144
0.04	383	0.025	0.047	0.041	0.050	0.00037	135
0.04	430	-1.474	-3.084	-2.328	0.056	-0.02259	-2
0.04	572	0.034	0.070	0.066	0.075	0.00056	135
0.04	552	0.034	0.070	0.066	0.072	0.00056	130
0.04	552	0.030	0.073	0.066	0.072	0.00055	131
0.04	563	0.039	0.073	0.066	0.072	0.00058	127
0.04	769	0.045	0.102	0.098	0.101	0.00081	125
0.04	769	0.044	0.105	0.098	0.101	0.00081	124
0.04	769	0.052	0,104	0.098	0.101	0.00083	121
0.04	769	0.046	0.104	0.098	0.101	0.00081	124
0.04	769	0.047	0.104	0.098	0.101	0.00082	123
0.03	228	0.022	0.028	0.027	0.030	0.00025	120
0.03	220	0.016	0.020	0.023	0.029	0.00023	125
0.03	212	0.019	0.028	0.026	0.028	0.00024	116
0.03	229	0.019	0.028	0.026	0.030	0.00024	125
0.03	382	0.024	0.054	0.047	0.050	0.00041	122
0.03	390	0.034	0.054	0.047	0.051	0.00044	116
0.03	390	0.030	0.054	0.047	0.051	0.00043	119
0.03	380	0.025	0.054	0.047	0.050	0.00041	120
0.03	543	0.035	0.080	0.072	0.071	0.00062	116
0.03	553	0.033	0.080	0.075	0.073	0.00062	117
0.03	553	0.035	0.083	0.075	0.073	0.00064	114
0.03	553	0.033	0.083	0.075	0.073	0.00063	115
0.03	771	0.057	0.120	0.111	0.101	0.00094	107
0.03	759	0.054	0.119	0.111	0.100	0.00093	107
0.03	781	0.054	0.122	0.111	0.102	0.00094	109
0.03	759	0.051	0.121	0.111	0.099	0.00093	107
0.03	770	0.049	0.118	0.111	0.101	0.00091	111
0.01	218	0.022	0.028	0.033	0.029	0.00027	104
0.01	217	0.015	0.028	0.033	0.029	0.00025	109
0.01	217	0.017	0.028	0.033	0.028	0.00026	111
0.01	216	0.020	0.028	0.033	0.028	0.00027	106
0.01	380	0.026	0.055	0.060	0.050	0.00046	108
0.01	379	0.032	0.059	0.059	0.050	0.00049	101
0.01	380	0.032	0.055	0.059	0.050	0.00048	103
0.01	379	0.030	0.059	0.059	0.050	0.00049	103
0.01	554	0.043	0.089	0.090	0.073	0.00073	100
0.01	554	0.037	0.090	0.087	0.073	0.00070	104
0.01	554	0.037	0.089	0.087	0.073	0.00070	104
0.01	543	0.042	0.090	0.090	0.071	0.00073	98
0.01	543	0.045	0.090	0.090	0.071	0.00074	96
0.01	760	0.066	0.138	0,129	0,100	0.00100	91
0.01	771	0.062	0.138	0.129	0.101	0.00108	94
0.01	771	0.061	0.138	0.129	0.101	0.00108	94
0.01	771	0.066	0.138	0.129	0.101	0.00109	93

Table J.33: Resilient modulus data (C_2_10_98)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	223	0.017	0.015	0.015	0.029	0.00015	191
0.06	213	0.017	0.015	0.015	0.028	0.00015	182
0.06	223	0.018	0.014	0.015	0.029	0.00016	188
0.06	223	0.017	0.015	0.016	0.029	0.00016	187
0.06	386	0.018	0.013	0.013	0.029	0.00010	173
0.06	386	0.033	0.027	0.029	0.051	0.00029	173
0.06	387	0.034	0.027	0.029	0.051	0.00030	171
0.06	387	0.034	0.028	0.029	0.051	0.00030	169
0.06	388	0.034	0.028	0.029	0.051	0.00030	169
0.06	547	0.052	0.043	0.042	0.072	0.00045	161
0.06	548	0.052	0.043	0.043	0.072	0.00045	164
0.06	549	0.051	0.043	0.043	0.073	0.00043	161
0.06	559	0.052	0.043	0.043	0.072	0.00045	164
0.06	776	0.076	0.063	0.064	0.102	0.00067	152
0.06	777	0.076	0.063	0.063	0.102	0.00066	153
0.06	767	0.076	0.063	0.063	0.101	0.00066	151
0.06	777	0.077	0.063	0.062	0.102	0.00067	153
0.06	224	0.077	0.063	0.063	0.100	0.00067	150
0.04	224	0.021	0.016	0.016	0.029	0.00017	170
0.04	223	0.021	0.015	0.016	0.029	0.00017	173
0.04	223	0.021	0.016	0.017	0.029	0.00018	166
0.04	211	0.021	0.015	0.017	0.028	0.00017	161
0.04	397	0.040	0.030	0.030	0.052	0.00033	158
0.04	386	0.040	0.030	0.030	0.051	0.00033	154
0.04	385	0.040	0.030	0.030	0.050	0.00033	153
0.04	397	0.039	0.029	0.030	0.051	0.00032	157
0.04	550	0.059	0.047	0.046	0.072	0.00050	145
0.04	555	0.060	0.046	0.046	0.073	0.00050	146
0.04	569	0.060	0.047	0.046	0.075	0.00050	149
0.04	559	0.059	0.047	0.046	0.073	0.00050	147
0.04	548	0.059	0.046	0.045	0.072	0.00049	145
0.04	767	0.090	0.071	0.069	0.101	0.00076	133
0.04	786	0.089	0.071	0.069	0.103	0.00075	134
0.04	775	0.089	0.070	0.069	0.102	0.00075	136
0.04	776	0.089	0.071	0.069	0.102	0.00075	136
0.03	214	0.024	0.018	0.016	0.028	0.00019	147
0.03	224	0.024	0.018	0.016	0.029	0.00019	152
0.03	214	0.024	0.018	0.016	0.028	0.00019	147
0.03	214	0.025	0.019	0.016	0.028	0.00020	142
0.03	377	0.024	0.035	0.010	0.028	0.00019	133
0.03	389	0.048	0.035	0.032	0.051	0.00037	136
0.03	378	0.048	0.035	0.032	0.050	0.00037	132
0.03	389	0.047	0.035	0.032	0.051	0.00037	137
0.03	376	0.047	0.034	0.031	0.049	0.00037	135
0.03	538	0.071	0.052	0.050	0.071	0.00057	125
0.03	550	0.072	0.052	0.050	0.072	0.00057	127
0.03	550	0.071	0.052	0.050	0.072	0.00057	128
0.03	550	0.072	0.053	0.050	0.072	0.00057	126
0.03	767	0.105	0.078	0.076	0.101	0.00085	118
0.03	756	0.104	0.078	0.076	0.099	0.00085	117
0.03	756	0.104	0.078	0.076	0.099	0.00085	117
0.03	750	0.105	0.078	0.076	0.099	0.00085	117
0.03	174	0.029	0.018	0.011	0.023	0.00083	124
0.01	184	0.030	0.016	0.011	0.024	0.00019	129
0.01	174	0.030	0.016	0.011	0.023	0.00019	122
0.01	173	0.028	0.015	0.010	0.023	0.00017	131
0.01	185	0.031	0.016	0.012	0.024	0.00019	125
0.01	360	0.060	0.036	0.029	0.047	0.00041	115
0.01	360	0.060	0.037	0.029	0.047	0.00041	114
0.01	360	0.060	0.036	0.029	0.047	0.00041	115
0.01	360	0.060	0.036	0.029	0.047	0.00041	115
0.01	533	0.090	0.058	0.049	0.070	0.00065	108
0.01	532	0.090	0.058	0.049	0.070	0.00065	108
0.01	543	0.090	0.059	0.049	0.071	0.00065	109
0.01	533	0.090	0.058	0.049	0.070	0.00065	108
0.01	750	0.090	0.058	0.049	0.070	0.00065	108
0,01	751	0.131	0.088	0.081	0.098	0.00099	100
0.01	750	0.130	0.089	0.082	0.098	0.00099	100
0.01	751	0.131	0.089	0.082	0.098	0.00099	99
0.01	740	0.129	0.089	0.082	0.097	0.00099	98

Table J.34: Resilient modulus data (C_1_8_98)

σ_3 [MPa]	q [N]	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	227	0.018	0.017	0.016	0.030	0.00017	178
0.06	227	0.017	0.016	0.017	0.030	0.00016	182
0.06	227	0.017	0.017	0.016	0.030	0.00016	182
0.06	227	0.017	0.016	0.016	0.030	0.00016	186
0.06	392	0.032	0.032	0.029	0.051	0.00031	168
0.06	390	0.032	0.032	0.029	0.051	0.00031	168
0.06	390	0.033	0.032	0.029	0.051	0.00031	166
0.06	380	0.032	0.031	0.029	0.050	0.00030	165
0.06	392	0.032	0.032	0.029	0.051	0.00031	168
0.06	551	0.048	0.048	0.043	0.072	0.00046	158
0.06	561	0.048	0.048	0.043	0.074	0.00046	160
0.06	551	0.048	0.046	0.043	0.072	0.00045	160
0.06	551	0.048	0.047	0.043	0.072	0.00046	158
0.06	774	0.069	0.069	0.067	0.101	0.00067	152
0.06	790	0.069	0.068	0.065	0.104	0.00067	156
0.06	769	0.068	0.067	0.066	0.101	0.00066	152
0.06	780	0.069	0.068	0.066	0.102	0.00067	153
0.04	227	0.020	0.019	0.017	0.030	0.00018	162
0.04	227	0.019	0.018	0.017	0.030	0.00018	168
0.04	228	0.019	0.019	0.017	0.030	0.00018	165
0.04	227	0.019	0.019	0.017	0.030	0.00018	165
0.04	227	0.019	0.019	0.017	0.030	0.00018	165
0.04	390	0.035	0.035	0.032	0.051	0.00033	134
0.04	392	0.036	0.035	0.032	0.051	0.00034	152
0.04	383	0.034	0.035	0.032	0.050	0.00033	151
0.04	393	0.035	0.035	0.032	0.052	0.00034	153
0.04	563	0.053	0.053	0.048	0.074	0.00051	146
0.04	557	0.054	0.053	0.048	0.073	0.00051	144
0.04	560	0.053	0.052	0.048	0.072	0.00051	145
0.04	553	0.053	0.052	0.048	0.073	0.00050	140
0.04	780	0.077	0.075	0.071	0.102	0.00073	140
0.04	780	0.078	0.075	0.072	0.102	0.00074	138
0.04	780	0.077	0.075	0.072	0.102	0.00074	139
0.04	769	0.076	0.075	0.072	0.101	0.00073	138
0.04	779	0.077	0.075	0.072	0.102	0.00074	139
0.03	227	0.022	0.023	0.019	0.030	0.00021	140
0.03	216	0.021	0.022	0.019	0.028	0.00020	140
0.03	215	0.021	0.022	0.019	0.028	0.00020	138
0.03	216	0.022	0.022	0.019	0.028	0.00021	138
0.03	382	0.041	0.042	0.036	0.050	0.00039	128
0.03	392	0.042	0.042	0.037	0.051	0.00040	129
0.03	379	0.039	0.040	0.035	0.050	0.00038	132
0.03	381	0.040	0.042	0.036	0.050	0.00039	129
0.03	553	0.060	0.061	0.055	0.072	0.00058	126
0.03	542	0.061	0.060	0.055	0.071	0.00058	123
0.03	554	0.061	0.061	0.055	0.073	0.00058	125
0.03	564	0.062	0.061	0.055	0.074	0.00058	127
0.03	770	0.000	0.001	0.055	0.072	0.00058	120
0.03	770	0.088	0.086	0.082	0.101	0.00084	120
0.03	770	0.088	0.086	0.082	0.101	0.00084	120
0.03	769	0.088	0.086	0.082	0.101	0.00084	120
0.03	770	0.087	0.086	0.082	0.101	0.00084	121
0.01	220	0.025	0.027	0.021	0.029	0.00024	122
0.01	220	0.025	0.027	0.022	0.029	0.00024	120
0.01	219	0.026	0.027	0.022	0.029	0.00024	118
0.01	220	0.026	0.027	0.022	0.029	0.00024	118
0.01	391	0.048	0.051	0.041	0.051	0.00046	112
0.01	392	0.049	0.050	0.041	0.051	0.00046	112
0.01	396	0.049	0.051	0.041	0.052	0.00046	112
0.01	394	0.049	0.050	0.041	0.052	0.00046	112
0.01	553	0.071	0.072	0.064	0.072	0.00068	107
0.01	544	0.072	0.072	0.064	0.071	0.00068	105
0.01	542	0.072	0.072	0.064	0.071	0.00068	104
0.01	542	0.072	0.072	0.063	0.071	0.00068	104
0.01	554	0.072	0.072	0.064	0.073	0.00068	106
0.01	765	0.103	0.103	0.097	0.100	0.00100	101
0.01	765	0.102	0.103	0.097	0.100	0.00099	101
0.01	765	0.103	0.105	0.096	0.100	0.00100	101
0.01	765	0.104	0.102	0.098	0.100	0.00100	101

Table J.35: Resilient modulus data (C_2_8_98)

r
σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	226	0.010	0.009	0.012	0.030	0.00010	297
0.06	226	0.010	0.009	0.012	0.030	0.00010	296
0.06	216	0.010	0.009	0.012	0.028	0.00010	283
0.06	230	0.010	0.010	0.012	0.030	0.00010	292
0.06	388	0.017	0.017	0.022	0.051	0.00018	275
0.06	381	0.017	0.017	0.022	0.050	0.00018	270
0.06	386	0.016	0.017	0.022	0.051	0.00018	279
0.06	388	0.016	0.017	0.022	0.051	0.00018	280
0.06	389	0.016	0.017	0.022	0.051	0.00018	281
0.06	551	0.024	0.026	0.032	0.072	0.00027	267
0.06	551	0.024	0.026	0.032	0.072	0.00027	267
0.06	540	0.025	0.026	0.033	0.071	0.00028	256
0.06	552	0.025	0.026	0.033	0.072	0.00028	261
0.06	774	0.037	0.038	0.049	0.101	0.00041	250
0.06	768	0.037	0.038	0.049	0.101	0.00041	248
0.06	758	0.037	0.038	0.049	0.099	0.00041	245
0.06	756	0.037	0.038	0.049	0.099	0.00040	245
0.06	757	0.037	0.038	0.050	0.099	0.00041	243
0.04	210	0.010	0.009	0.012	0.028	0.00010	285
0.04	216	0.010	0.009	0.012	0.028	0.00010	276
0.04	216	0.010	0.009	0.013	0.028	0.00010	276
0.04	216	0.010	0.010	0.012	0.028	0.00010	276
0.04	378	0.018	0.017	0.022	0.050	0.00019	266
0.04	378	0.016	0.017	0.023	0.050	0.00018	268
0.04	391	0.017	0.017	0.023	0.051	0.00019	274
0.04	385	0.016	0.017	0.023	0.050	0.00018	274
0.04	562	0.025	0.017	0.025	0.074	0.00019	259
0.04	552	0.024	0.027	0.035	0.072	0.00028	257
0.04	540	0.024	0.027	0.035	0.071	0.00028	252
0.04	541	0.024	0.027	0.035	0.071	0.00028	252
0.04	541	0.024	0.027	0.035	0.071	0.00028	252
0.04	768	0.036	0.040	0.052	0.101	0.00042	240
0.04	768	0.037	0.040	0.051	0.101	0.00042	240
0.04	756	0.037	0.040	0.051	0.099	0.00042	237
0.04	768	0.037	0.040	0.052	0.101	0.00042	238
0.03	216	0.011	0.009	0.012	0.028	0.00010	273
0.03	216	0.011	0.009	0.012	0.028	0.00010	273
0.03	216	0.011	0.010	0.012	0.028	0.00011	264
0.03	216	0.011	0.009	0.012	0.028	0.00010	273
0.03	216	0.011	0.009	0.012	0.028	0.00010	2/3
0.03	407	0.017	0.018	0.023	0.053	0.00019	208
0.03	379	0.018	0.017	0.024	0.050	0.00019	256
0.03	390	0.018	0.017	0.024	0.051	0.00019	263
0.03	391	0.018	0.018	0.024	0.051	0.00019	264
0.03	551	0.026	0.028	0.035	0.072	0.00029	248
0.03	552	0.026	0.028	0.036	0.072	0.00029	245
0.03	540	0.027	0.028	0.035	0.071	0.00029	241
0.03	541	0.026	0.023	0.035	0.071	0.00029	241
0.03	773	0.038	0.042	0.055	0.101	0.00044	229
0.03	777	0.037	0.041	0.054	0.102	0.00043	235
0.03	769	0.038	0.042	0.054	0.101	0.00044	229
0.03	758	0.037	0.041	0.054	0.099	0.00043	229
0.03	768	0.037	0.041	0.055	0.101	0.00044	231
0.01	217	0.012	0.008	0.013	0.028	0.00011	258
0.01	217	0.011	0.008	0.013	0.028	0.00011	266
0.01	217	0.011	0.008	0.012	0.028	0.00010	275
0.01	216	0.012	0.008	0.012	0.028	0.00011	266
0.01	390	0.020	0.016	0.024	0.051	0.00020	259
0.01	390	0.021	0.017	0.024	0.051	0.00020	251
0.01	380	0.020	0.017	0.024	0.050	0.00020	247
0.01	385	0.021	0.017	0.024	0.050	0.00020	245
0.01	542	0.028	0.028	0.038	0.071	0.00031	232
0.01	552	0.028	0.028	0.038	0.072	0.00031	236
0.01	553	0.029	0.028	0.038	0.072	0.00031	234
0.01	542	0.028	0.028	0.036	0.071	0.00030	235
0.01	542	0.028	0.028	0.036	0.071	0.00030	234
0.01	770	0.040	0.043	0.056	0.101	0.00046	221
0.01	759	0.040	0.043	0.056	0.000	0.00046	221
0.01	770	0.041	0.043	0.056	0.101	0.00046	220
0.01	769	0.041	0.043	0.056	0.101	0.00046	220

Table J.36: Resilient modulus data (D_1_16_103)

r

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	225	0.016	0.006	0.006	0.030	0.00009	314
0.06	224	0.015	0.006	0.006	0.029	0.00009	323
0.06	214	0.015	0.006	0.006	0.028	0.00009	308
0.06	225	0.015	0.005	0.006	0.030	0.00009	336
0.06	377	0.015	0.000	0.000	0.049	0.00017	300
0.06	388	0.025	0.013	0.013	0.051	0.00017	308
0.06	388	0.025	0.013	0.013	0.051	0.00017	308
0.06	388	0.026	0.013	0.013	0.051	0.00017	303
0.06	389	0.026	0.013	0.013	0.051	0.00017	303
0.06	551	0.035	0.021	0.020	0.072	0.00025	290
0.06	550	0.034	0.021	0.022	0.072	0.00025	290
0.06	563	0.033	0.022	0.021	0.072	0.00026	203
0.06	545	0.034	0.021	0.020	0.071	0.00025	288
0.06	756	0.048	0.034	0.034	0.099	0.00038	262
0.06	758	0.048	0.033	0.034	0.099	0.00038	265
0.06	762	0.047	0.033	0.034	0.100	0.00037	269
0.06	775	0.049	0.033	0.034	0.102	0.00038	269
0.06	750	0.048	0.033	0.033	0.099	0.00037	314
0.04	235	0.017	0.005	0.006	0.030	0.00009	313
0.04	226	0.017	0.005	0.006	0.030	0.00009	314
0.04	226	0.017	0.005	0.007	0.030	0.00010	302
0.04	216	0.016	0.005	0.006	0.028	0.00009	310
0.04	378	0.028	0.012	0.013	0.050	0.00017	289
0.04	378	0.027	0.011	0.013	0.050	0.00016	301
0.04	378	0.028	0.012	0.013	0.051	0.00017	297
0.04	389	0.027	0.012	0.013	0.051	0.00017	302
0.04	541	0.037	0.020	0.021	0.071	0.00025	280
0.04	551	0.037	0.019	0.021	0.072	0.00025	290
0.04	552	0.038	0.020	0.021	0.072	0.00026	282
0.04	552	0.038	0.020	0.020	0.072	0.00026	283
0.04	771	0.052	0.020	0.020	0.072	0.00028	283
0.04	767	0.053	0.032	0.033	0.101	0.00038	261
0.04	769	0.052	0.032	0.033	0.101	0.00038	264
0.04	768	0.052	0.033	0.033	0.101	0.00039	260
0.04	757	0.051	0.032	0.033	0.099	0.00038	261
0.03	216	0.017	0.004	0.007	0.028	0.00009	305
0.03	227	0.018	0.004	0.007	0.030	0.00010	311
0.03	227	0.018	0.005	0.007	0.030	0.00010	309
0.03	216	0.018	0.004	0.007	0.028	0.00010	286
0.03	389	0.030	0.010	0.014	0.051	0.00018	291
0.03	378	0.030	0.010	0.014	0.050	0.00018	283
0.03	390	0.030	0.010	0.014	0.051	0.00018	291
0.03	389	0.030	0.010	0.012	0.051	0.00017	296
0.03	541	0.030	0.010	0.014	0.051	0.00018	291
0.03	551	0.043	0.017	0.019	0.072	0.00026	277
0.03	551	0.043	0.017	0.019	0.072	0.00026	277
0.03	541	0.043	0.017	0.019	0.071	0.00026	272
0.03	540	0.043	0.018	0.021	0.071	0.00027	264
0.03	757	0.058	0.030	0.032	0.099	0.00040	251
0.03	769	0.058	0.030	0.032	0.099	0.00040	253
0.03	769	0.059	0.030	0.032	0.101	0.00040	253
0.03	768	0.058	0.030	0.032	0.101	0.00040	255
0.01	229	0.021	0.004	0.006	0.030	0.00011	285
0.01	231	0.020	0.004	0.006	0.030	0.00010	298
0.01	234	0.020	0.004	0.006	0.031	0.00010	301
0.01	217	0.020	0.004	0.006	0.028	0.00010	277
0.01	390	0.021	0.003	0.000	0.051	0.00011	230
0.01	379	0.038	0.008	0.011	0.050	0.00019	265
0.01	380	0.037	0.008	0.011	0.050	0.00018	269
0.01	380	0.038	0.008	0.011	0.050	0.00019	265
0.01	390	0.037	0.008	0.012	0.051	0.00019	272
0.01	541	0.051	0.015	0.019	0.071	0.00028	253
0.01	559	0.051	0.015	0.019	0.073	0.00028	200
0.01	572	0.050	0.016	0.019	0.075	0.00028	268
0.01	541	0.050	0.015	0.019	0.071	0.00028	256
0.01	759	0.070	0.028	0.030	0.099	0.00042	236
0.01	771	0.069	0.027	0.030	0.101	0.00042	243
0.01	758	0.069	0.027	0.030	0.099	0.00042	239
0.01	757	0.069	0.027	0.030	0.102	0.00042	240

Table J.37: Resilient modulus data (D_2_16_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	218	0.013	0.004	0.004	0.029	0.00007	423
0.06	227	0.010	0.004	0.004	0.030	0.00006	490
0.06	227	0.011	0.004	0.004	0.030	0.00006	465
0.06	228	0.013	0.004	0.004	0.030	0.00007	423
0.06	391	0.019	0.004	0.004	0.051	0.00012	439
0.06	402	0.018	0.010	0.008	0.053	0.00012	448
0.06	402	0.019	0.009	0.008	0.053	0.00012	450
0.06	401	0.018	0.010	0.008	0.053	0.00012	447
0.06	402	0.019	0.010	0.008	0.053	0.00012	435
0.06	575	0.025	0.015	0.012	0.075	0.00017	443
0.06	575	0.025	0.015	0.011	0.075	0.00017	453
0.06	553	0.025	0.015	0.012	0.074	0.00017	434
0.06	553	0.025	0.015	0.012	0.072	0.00017	420
0.06	780	0.034	0.023	0.017	0.102	0.00024	426
0.06	780	0.034	0.023	0.017	0.102	0.00024	427
0.06	781	0.034	0.023	0.017	0.102	0.00024	427
0.06	769	0.033	0.023	0.016	0.101	0.00023	433
0.06	770	0.033	0.021	0.017	0.101	0.00023	433
0.04	228	0.013	0.004	0.005	0.030	0.00007	424
0.04	227	0.012	0.003	0.005	0.030	0.00007	420
0.04	228	0.012	0.004	0.005	0.030	0.00007	444
0.04	228	0.012	0.004	0.004	0.030	0.00006	469
0.04	401	0.019	0.009	0,008	0.053	0.00012	447
0.04	401	0.018	0.009	0.008	0.053	0.00011	460
0.04	399	0.018	0.009	0.008	0.052	0.00011	459
0.04	389	0.019	0.009	0.008	0.051	0.00012	436
0.04	565	0.076	0.015	0.003	0.074	0.00012	430
0.04	575	0.026	0.015	0.011	0.075	0.00017	438
0.04	575	0.027	0.016	0.011	0.075	0.00018	422
0.04	575	0.026	0.015	0.011	0.075	0.00017	439
0.04	566	0.027	0.016	0.011	0.074	0.00018	421
0.04	780	0.035	0.022	0.016	0.102	0.00024	427
0.04	780	0.035	0.023	0.016	0.102	0.00024	421
0.04	780	0.035	0.022	0.016	0.102	0.00024	428
0.04	768	0.033	0.022	0.016	0.101	0.00024	428
0.03	226	0.013	0.005	0.005	0.030	0.00007	407
0.03	232	0.012	0.005	0.004	0.030	0.00007	447
0.03	227	0.013	0.004	0.005	0.030	0.00007	427
0.03	230	0.013	0.004	0.005	0.030	0.00007	430
0.03	236	0.011	0.005	0.005	0.031	0.00007	454
0.03	408	0.020	0.009	0.008	0.052	0.00012	415
0.03	393	0.018	0.009	0.009	0.052	0.00012	434
0.03	390	0.020	0.008	0.008	0.051	0.00012	423
0.03	392	0.019	0.009	0.008	0.051	0.00012	423
0.03	566	0.027	0.014	0.011	0.074	0.00017	436
0.03	580	0.027	0.015	0.011	0.076	0.00017	438
0.03	570	0.026	0.015	0.011	0.075	0.00017	439
0.03	565	0.027	0.013	0.012	0.074	0.00018	418
0.03	781	0.036	0.022	0.017	0.102	0.00025	416
0.03	791	0.036	0.022	0.017	0.104	0.00025	423
0.03	781	0.035	0.023	0.017	0.102	0.00025	417
0.03	771	0.037	0.022	0.017	0.101	0.00025	407
0.03	781	0.037	0.022	0.017	0.102	0.00025	413
0.01	217	0.012	0.005	0.004	0.028	0.00007	411
0.01	228	0.011	0.005	0.005	0.030	0.00007	434
0.01	216	0.010	0.005	0.005	0.028	0.00007	430
0.01	228	0.011	0.004	0.005	0.030	0.00007	455
0.01	390	0.019	0.009	0.009	0.051	0.00012	422
0.01	402	0.019	0.009	0.009	0.053	0.00012	434
0.01	390	0.018	0.009	0.009	0.051	0.00012	433
0.01	390	0.018	0.009	0.009	0.051	0.00012	434
0.01	564	0.026	0.014	0.003	0.074	0.00012	429
0.01	565	0.026	0.014	0.013	0.074	0.00017	428
0.01	564	0.027	0.014	0.013	0.074	0.00018	421
0.01	554	0.026	0.013	0.012	0.073	0.00017	438
0.01	565	0.027	0.014	0.013	0.074	0.00018	421
0.01	770	0.036	0.021	0.017	0.101	0.00024	412
0.01	782	0.035	0.021	0.017	0.102	0.00024	424
0.01	781	0.037	0.021	0.017	0.102	0.00025	412
0.01	780	0.036	0.020	0.016	0.102	0.00024	430

Table J.38: Resilient modulus data (D_1_13_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	238	0.003	0.005	0.008	0.031	0.00005	617
0.06	227	0.003	0.005	0.008	0.030	0.00005	586
0.06	226	0.003	0.005	0.007	0.030	0.00005	584
0.06	228	0.004	0.005	0.007	0.030	0.00005	557
0.06	389	0.007	0.008	0.011	0.051	0.00009	575
0.06	388	0.007	0.008	0.012	0.051	0.00009	557
0.06	389	0.006	0.008	0.012	0.051	0.00009	576
0.06	401	0.007	0.008	0.012	0.053	0.00009	574
0.06	389	0.006	0.008	0.012	0.051	0.00009	578
0.06	563	0.009	0.012	0.017	0.074	0.00012	593
0.06	563	0.010	0.012	0.017	0.074	0.00013	579
0.06	553	0.009	0.012	0.017	0.072	0.00012	567
0.06	551	0.009	0.012	0.017	0.072	0.00013	579
0.06	779	0.013	0.017	0.025	0.102	0.00018	562
0.06	779	0.012	0.017	0.025	0.102	0.00018	572
0.06	780	0.013	0.018	0.025	0.102	0.00018	553
0.06	780	0.013	0.018	0.025	0.102	0.00019	552
0.06	779	0.012	0.018	0.025	0.102	0.00018	561
0.04	226	0.004	0.005	0.007	0.030	0.00005	560
0.04	226	0.004	0.005	0.007	0.030	0.00005	559
0.04	228	0.004	0.005	0.007	0.030	0.00005	569
0.04	254	0.004	0.005	0.007	0.033	0.00005	628
0.04	394	0.006	0.008	0.012	0.052	0.00009	587
0.04	414	0.006	0.008	0.013	0.054	0.00009	593
0.04	381	0.006	0.008	0.013	0.050	0.00009	546
0.04	391	0.006	0.008	0.012	0.051	0.00009	583
0.04	401	0.008	0.008	0.012	0.053	0.00009	550
0.04	563	0.009	0.012	0.019	0.074	0.00013	577
0.04	564	0.008	0.012	0.018	0.074	0.00012	592
0.04	552	0.009	0.013	0.019	0.072	0.00014	534
0.04	554	0.008	0.012	0.018	0.073	0.00013	581
0.04	791	0.012	0.018	0.026	0.104	0.00018	571
0.04	780	0.012	0.018	0.026	0.102	0.00018	562
0.04	780	0.012	0.018	0.026	0.102	0.00018	554
0.04	780	0.012	0.017	0.026	0.107	0.00018	562
0.04	227	0.004	0.005	0.007	0.030	0.00005	555
0.03	229	0.003	0.006	0.007	0.030	0.00005	597
0.03	234	0.004	0.005	0.008	0.031	0.00006	538
0.03	247	0.002	0.005	0.007	0.032	0.00005	650
0.03	227	0.003	0.005	0.007	0.030	0.00005	596
0.03	391	0.005	0.010	0.014	0.051	0.00009	542
0.03	391	0.003	0.010	0.013	0.051	0.00009	559
0.03	400	0.006	0.010	0.013	0.052	0.00009	555
0.03	393	0.005	0.010	0.013	0.052	0.00009	564
0.03	554	0.008	0.014	0.019	0.073	0.00013	545
0.03	552	0.007	0.013	0.019	0.072	0.00013	573
0.03	564	0.008	0.013	0.020	0.074	0.00013	555
0.03	553	0.008	0.013	0.019	0.072	0.00013	544
0.03	782	0.008	0.013	0.020	0.072	0.00013	535
0.03	770	0.010	0.018	0.028	0.101	0.00018	546
0.03	771	0.010	0.018	0.028	0.101	0.00019	546
0.03	781	0.011	0.019	0.028	0.102	0.00019	535
0.03	782	0.011	0.019	0.028	0.103	0.00019	536
0.01	229	0.002	0.006	0.009	0.030	0.00005	552
0.01	229	0.002	0.007	0.009	0.030	0.00006	521
0.01	219	-0.001	0.007	0.009	0.029	0.00003	640
0.01	217	0.002	0.006	0.009	0.029	0.00005	530
0.01	394	0.002	0.010	0.015	0.052	0.00009	566
0.01	402	0.003	0.010	0.015	0.053	0.00009	558
0.01	395	0.003	0.010	0.015	0.052	0.00009	546
0.01	391	-0.002	0.010	0.015	0.051	0.00008	650
0.01	391	0.003	0.010	0.015	0.051	0.00010	538
0.01	564	0.005	0.014	0.023	0.074	0.00014	556
0.01	554	0.005	0.014	0.021	0.073	0.00013	549
0.01	564	0.005	0.014	0.022	0.074	0.00014	543
0.01	564	0.004	0.014	0.022	0.074	0.00013	556
0.01	802	0.008	0.021	0.031	0.105	0.00020	538
0.01	790	0.007	0.020	0.031	0.104	0.00019	550
0.01	771	0.007	0.020	0.031	0.101	0.00019	536
0.01	782	0.008	0.021	0.031	0.103	0.00020	526

Table J.39: Resilient modulus data $(D_2_13_103)$

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	228	0.012	0.010	0.003	0.030	0.00008	377
0.06	240	0.012	0.010	0.002	0.031	0.00008	411
0.06	238	0.011	0.010	0.002	0.031	0.00007	430
0.06	302	-0.706	-1.118	-0.457	0.030	-0.00748	-5
0.06	390	0.018	0.015	0.007	0.051	0.00013	380
0.06	391	0.017	0.015	0.007	0.051	0.00013	390
0.06	402	0.018	0.015	0.007	0.053	0.00013	398
0.06	391	0.017	0.015	0.007	0.051	0.00013	389
0.06	402	0.018	0.015	0.007	0.053	0.00013	399
0.06	563	0.024	0.021	0.013	0.074	0.00019	387
0.06	564	0.025	0.021	0.013	0.073	0.00019	381
0.06	563	0.024	0.022	0.013	0.074	0.00020	374
0.06	564	0.025	0.021	0.013	0.074	0.00019	381
0.06	781	0.033	0.030	0.021	0.102	0.00028	372
0.06	781	0.034	0.031	0.020	0.102	0.00028	368
0.06	781	0.035	0.031	0.021	0.102	0.00028	360
0.06	792	0.034	0.030	0.021	0.104	0.00028	374
0.03	238	0.034	0.031	0.021	0.031	0.00028	380
0.04	227	0.011	0.010	0.003	0.030	0.00008	377
0.04	237	0.012	0.010	0.003	0.031	0.00008	382
0.04	239	0.012	0.010	0.003	0.031	0.00008	380
0.04	238	0.012	0.010	0.003	0.031	0.00008	381
0.04	389	0.019	0.016	0.008	0.051	0.00014	369
0.04	390	0.019	0.016	0.008	0.051	0.00014	368
0.04	401	0.019	0.018	0.008	0.053	0.00014	360
0.04	390	0.019	0.016	0.008	0.051	0.00013	369
0.04	575	0.026	0.022	0.015	0.075	0.00021	361
0.04	564	0.026	0.022	0.015	0.074	0.00021	354
0.04	564	0.026	0.022	0.015	0.074	0.00021	354
0.04	564	0.026	0.023	0.015	0.074	0.00021	349
0.04	564	0.026	0.023	0.015	0.074	0.00021	348
0.04	783	0.035	0.032	0.021	0.103	0.00029	356
0.04	796	0.036	0.032	0.022	0.104	0.00030	353
0.04	800	0.035	0.032	0.022	0.105	0.00029	359
0.04	800	0.035	0.032	0.021	0.105	0.00029	363
0.03	239	0.011	0.010	0.004	0.031	0.00008	380
0.03	239	0.012	0.010	0.004	0.031	0.00009	364
0.03	239	0.012	0.010	0.004	0.031	0.00009	363
0.03	228	0.012	0.010	0.004	0.030	0.00009	361
0.03	402	0.019	0.018	0.009	0.053	0.00015	348
0.03	403	0.020	0.017	0.009	0.053	0.00015	350
0.03	403	0.020	0.017	0.008	0.053	0.00015	352
0.03	403	0.020	0.017	0.008	0.053	0.00015	352
0.03	402	0.020	0.017	0.008	0.053	0.00015	353
0.03	564	0.028	0.027	0.017	0.074	0.00023	318
0.03	565	0.029	0.025	0.017	0.074	0.00023	313
0.03	570	0.028	0.027	0.017	0.075	0.00023	320
0.03	572	0.029	0.027	0.017	0.075	0.00024	317
0.03	782	0.038	0.033	0.024	0.102	0.00031	332
0.03	782	0.039	0.034	0.024	0.102	0.00032	324
0.03	782	0.038	0.033	0.024	0.103	0.00031	332
0.03	794	0.039	0.033	0.024	0.104	0.00031	333
0.01	240	0.012	0.011	0.005	0.031	0.00009	341
0.01	229	0.012	0.011	0.005	0.030	0.00009	325
0.01	228	0.012	0.011	0.005	0.030	0.00009	326
0.01	228	0.012	0.011	0.005	0.030	0.00009	325
0.01	230	0.011	0.011	0.005	0.030	0.00009	337
0.01	401	0.020	0.019	0.010	0.051	0.00016	324
0.01	391	0.021	0.019	0.010	0.051	0.00016	317
0.01	402	0.021	0.019	0.010	0.053	0.00016	326
0.01	403	0.021	0.020	0.010	0.053	0.00017	319
0.01	566	0.029	0.026	0.016	0.074	0.00023	321
0.01	566	0.029	0.025	0.015	0.074	0.00023	326
0.01	566	0.030	0.026	0.017	0.074	0.00024	311
0.01	565	0.030	0.026	0.015	0.074	0.00023	310
0.01	783	0.040	0.020	0.025	0,103	0.00024	306
0.01	782	0.040	0.037	0.025	0.102	0.00033	306
0.01	792	0.040	0.037	0.025	0.104	0.00033	310
0.01	784	0.039	0.036	0.025	0.103	0.00033	313
0.01	788	0.040	0.037	0.025	0.103	0.00034	308

Table J.40: Resilient modulus data (D_1_11_03)

Г

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	228	0.013	0.013	0.013	0.030	0.00013	229
0.06	229	0.013	0.013	0.012	0.030	0.00013	235
0.06	228	0.013	0.013	0.012	0.030	0.00013	235
0.06	228	0.013	0.013	0.012	0.030	0.00013	235
0.06	400	0.024	0.023	0.025	0.052	0.00013	223
0.06	399	0.024	0.023	0.025	0.052	0.00024	220
0.06	404	0.022	0.024	0.025	0.053	0.00023	229
0.06	397	0.022	0.023	0.025	0.052	0.00023	226
0.06	415	0.023	0.023	0.025	0.054	0.00023	234
0.06	555	0.033	0.034	0.038	0.073	0.00035	209
0.06	564	0.035	0.034	0.038	0.074	0.00035	210
0.06	553	0.034	0.034	0.038	0.073	0.00035	209
0.06	575	0.035	0.034	0.040	0.075	0.00035	212
0.06	781	0.047	0.048	0.058	0.102	0.00050	205
0.06	781	0.048	0.048	0.057	0.102	0.00050	204
0.06	779	0.046	0.047	0.057	0.102	0.00049	207
0.06	780	0.048	0.047	0.057	0.102	0.00050	205
0.06	780	0.048	0.047	0.057	0.102	0.00050	205
0.04	210	0.014	0.015	0.016	0.028	0.00014	197
0.04	227	0.015	0.015	0.016	0.030	0.00015	201
0.04	228	0.014	0.015	0.016	0.030	0.00014	206
0.04	228	0.015	0.015	0.016	0.030	0.00015	202
0.04	392	0.027	0.026	0.031	0.051	0.00028	184
0.04	401	0.027	0.026	0.031	0.053	0.00028	189
0.04	390	0.027	0.026	0.031	0.051	0.00028	184
0.04	390	0.027	0.026	0.031	0.051	0.00028	186
0.04	553	0.039	0.039	0.045	0.073	0.00040	181
0.04	562	0.039	0.039	0.045	0.074	0.00040	184
0.04	562	0.039	0.038	0.045	0.074	0.00040	185
0.04	563	0.039	0.039	0.045	0.074	0.00040	185
0.04	563	0.039	0.038	0.045	0.074	0.00040	186
0.04	780	0.053	0.053	0.066	0.102	0.00057	181
0.04	780	0.053	0.053	0.066	0.102	0.00056	181
0.04	780	0.052	0.054	0.065	0.102	0.00056	182
0.04	791	0.053	0.054	0.065	0.104	0.00056	183
0.03	224	0.017	0.018	0.020	0.029	0.00018	162
0.03	247	0.018	0.018	0.021	0.032	0.00019	174
0.03	218	0.018	0.018	0.020	0.029	0.00018	156
0.03	229	0.018	0.018	0.020	0.030	0.00018	163
0.03	393	0.032	0.013	0.020	0.052	0.00013	157
0.03	391	0.032	0.032	0.039	0.051	0.00034	152
0.03	391	0.031	0.032	0.039	0.051	0.00033	154
0.03	390	0.031	0.032	0.038	0.051	0.00033	154
0.03	402	0.030	0.032	0.038	0.053	0.00033	160
0.03	574	0.047	0.045	0.057	0.075	0.00049	155
0.03	554	0.045	0.043	0.056	0.074	0.00048	153
0.03	563	0.045	0.044	0.057	0.074	0.00048	155
0.03	564	0.046	0.045	0.057	0.074	0.00048	153
0.03	770	0.063	0.061	0.078	0.101	0.00066	152
0.03	770	0.062	0.061	0.078	0.101	0.00066	153
0.03	782	0.062	0.061	0.078	0.103	0.00066	155
0.03	781	0.062	0.061	0.079	0.102	0.00066	155
0.01	230	0.024	0.020	0.026	0.030	0.00023	131
0.01	218	0.025	0.020	0.025	0.029	0.00023	125
0.01	228	0.024	0.020	0.026	0.030	0.00023	131
0.01	228	0.025	0.020	0.026	0.030	0.00023	130
0.01	219	0.024	0.020	0.026	0.029	0.00023	126
0.01	393	0.040	0.036	0.048	0.051	0.00041	120
0.01	392	0.041	0.037	0.047	0.051	0.00041	123
0.01	390	0.042	0.037	0.048	0.051	0.00042	123
0.01	406	0.041	0.037	0.047	0.053	0.00041	130
0.01	567	0.058	0.052	0.069	0.074	0.00059	126
0.01	565	0.056	0.055	0.070	0.074	0.00059	125
0.01	553	0.057	0.053	0.070	0.072	0.00059	122
0.01	570	0.058	0.053	0.069	0.075	0.00059	122
0.01	782	0.078	0.072	0.097	0.102	0.00081	126
0.01	782	0.078	0.072	0.096	0.102	0.00081	127
0.01	781	0.077	0.072	0.096	0.102	0.00080	128
0.01	792	0.078	0.073	0.096	0.104	0.00081	128
0.01	782	0.077	0.073	0.096	0.103	0.00081	127

Table J.41: Resilient modulus data (D_2_11_103)

σ_3 [MPa]	$q_{[N]}$	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	E [-]	M _R [MPa]
0.06	237	0.015	0.019	0.011	0.029	0.00015	198
0.06	227	0.016	0.020	0.011	0.028	0.00015	181
0.06	226	0.015	0.020	0.012	0.028	0.00015	181
0.06	230	0.017	0.020	0.011	0.029	0.00016	180
0.06	391	0.030	0.035	0.024	0.048	0.00029	166
0.06	391	0.030	0.035	0.024	0.048	0.00029	167
0.06	398	0.028	0.035	0.023	0.049	0.00028	172
0.06	388	0.030	0.035	0.023	0.048	0.00029	164
0.06	461	-0.929	-0.967	-0.219	0.057	-0.00694	-8
0.06	562	0.046	0.052	0.038	0.068	0.00045	152
0.06	555	0.047	0.052	0.039	0.068	0.00045	155
0.06	572	0.046	0.053	0.040	0.070	0.00045	155
0.06	562	0.047	0.053	0.039	0.069	0.00045	152
0.06	781	0.074	0.079	0.065	0.096	0.00071	135
0.06	770	0.075	0.079	0.065	0.095	0.00072	132
0.06	769	0.074	0.079	0.065	0.095	0.00071	133
0.06	780	0.074	0.079	0.065	0.096	0.00072	134
0.04	226	0.016	0.020	0.011	0.028	0.00015	182
0.04	226	0.015	0.021	0.011	0.028	0.00015	181
0.04	227	0.016	0.021	0.010	0.028	0.00015	182
0.04	231	0.016	0.021	0.011	0.028	0.00016	181
0.04	393	0.016	0.021	0.071	0.030	0.00018	165
0.04	392	0.030	0.035	0.023	0.048	0.00029	167
0.04	393	0.030	0.035	0.023	0.048	0.00029	167
0.04	392	0.030	0.036	0.023	0.048	0.00029	166
0.04	392	0.029	0.036	0.023	0.048	0.00029	167
0.04	564	0.047	0.054	0.038	0.069	0.00046	152
0.04	565	0.046	0.053	0.037	0.068	0.00045	153
0.04	566	0.048	0.054	0.038	0.070	0.00046	151
0.04	554	0.046	0.054	0.038	0.068	0.00045	150
0.04	770	0.076	0.081	0.064	0.095	0.00072	131
0.04	759	0.075	0.081	0.063	0.093	0.00072	130
0.04	770	0.076	0.081	0.064	0.095	0.00073	131
0.04	770	0.075	0.081	0.064	0.095	0.00072	131
0.03	230	0.016	0.022	0.010	0.028	0.00012	181
0.03	229	0.016	0.022	0.010	0.028	0.00015	182
0.03	219	0.016	0.022	0.010	0.027	0.00016	173
0.03	230	0.016	0.022	0.010	0.028	0.00016	182
0.03	230	0.017	0.021	0.010	0.028	0.00016	182
0.03	391	0.030	0.039	0.021	0.048	0.00029	166
0.03	391	0.031	0.040	0.022	0.048	0.00030	158
0.03	392	0.030	0.039	0.021	0.048	0.00030	163
0.03	392	0.029	0.039	0.021	0.048	0.00029	165
0.03	565	0.048	0.057	0.038	0.069	0.00047	149
0.03	554	0.047	0.055	0.038	0.068	0.00046	148
0.03	553	0.047	0.057	0.038	0.068	0.00046	147
0.03	554	0.048	0.057	0.037	0.068	0.00046	147
0.03	782	0.077	0.084	0.064	0.096	0.00074	131
0.03	770	0.076	0.084	0.062	0.095	0.00073	130
0.03	7/1	0.077	0.084	0.064	0.095	0.00074	129
0.03	760	0.078	0.085	0.064	0.093	0.00074	126
0.01	218	0.018	0.025	0.007	0.027	0.00016	165
0.01	218	0.017	0.024	0.007	0.027	0.00016	168
0.01	220	0.017	0.025	0.007	0.027	0.00016	169
0.01	228	0.016	0.024	0.007	0.028	0.00016	181
0.01	392	0.018	0.024	0.008	0.028	0.00017	159
0.01	382	0.032	0.044	0.017	0.047	0.00031	153
0.01	391	0.032	0.045	0.017	0.048	0.00031	156
0.01	380	0.032	0.044	0.017	0.047	0.00030	153
0.01	392	0.032	0.045	0.017	0.048	0.00031	156
0.01	554	0.048	0.065	0.032	0.070	0.00048	140
0.01	565	0.049	0.065	0.032	0.070	0.00048	145
0.01	554	0.050	0.064	0.032	0.068	0.00048	142
0.01	555	0.050	0.064	0.032	0.068	0.00048	142
0.01	770	0.079	0.094	0.059	0.095	0.00076	125
0.01	759	0.079	0.094	0.058	0.093	0.00076	123
0.01	770	0.080	0.095	0.058	0.095	0.00076	123
0.01	760	0.081	0.094	0.058	0.094	0.00077	122

Table J.42: Resilient modulus data (D_1_18_98)

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{LVDT#3}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	226	0.019	0.017	0.022	0.030	0.00019	158
0.06	227	0.018	0.017	0.022	0.030	0.00018	161
0.06	236	0.017	0.017	0.021	0.031	0.00018	169
0.06	227	0.019	0.017	0.022	0.030	0.00019	159
0.06	392	0.035	0.032	0.043	0.051	0.00036	143
0.06	391	0.034	0.032	0.042	0.051	0.00036	143
0.06	391	0.034	0.032	0.042	0.051	0.00036	144
0.06	379	0.034	0.032	0.042	0.050	0.00035	140
0.06	391	0.034	0.033	0.042	0.051	0.00036	143
0.06	561	0.055	0.052	0.067	0.074	0.00057	129
0.06	555	0.055	0.051	0.068	0.073	0.00057	128
0.06	558	0.055	0.050	0.067	0.073	0.00057	129
0.06	560	0.055	0.051	0.066	0.073	0.00057	130
0.06	757	0.085	0.084	0.106	0.099	0.00090	110
0.06	758	0.086	0.084	0.106	0.099	0.00090	110
0.06	769	0.086	0.083	0.105	0.101	0.00090	112
0.06	769	0.087	0.084	0.106	0.101	0.00091	111
0.04	218	0.019	0.017	0.023	0.029	0.00019	149
0.04	218	0.019	0.017	0.023	0.029	0.00019	148
0.04	227	0.018	0.017	0.023	0.030	0.00019	158
0.04	227	0.018	0.017	0.021	0.030	0.00018	162
0.04	389	0.018	0.017	0.023	0.030	0.00019	158
0.04	391	0.036	0.033	0.043	0.051	0.00037	139
0.04	389	0.035	0.033	0.043	0.051	0.00036	140
0.04	390	0.035	0.033	0.044	0.051	0.00037	139
0.04	389	0.036	0.033	0.043	0.051	0.00037	139
0.04	553	0.056	0.052	0.069	0.072	0.00058	125
0.04	554	0.057	0.052	0.070	0.074	0.00039	123
0.04	554	0.056	0.052	0.070	0.073	0.00059	124
0.04	542	0.057	0.052	0.070	0.071	0.00059	121
0.04	765	0.090	0.087	0.113	0.100	0.00095	106
0.04	767	0.090	0.087	0.112	0.101	0.00095	106
0.04	758	0.089	0.086	0.112	0.099	0.00094	105
0.04	769	0.090	0.080	0.112	0.101	0.00095	107
0.03	229	0.019	0.017	0.022	0.030	0.00019	156
0.03	218	0.020	0.018	0.024	0.029	0.00020	141
0.03	228	0.020	0.018	0.024	0.030	0.00020	148
0.03	217	0.019	0.017	0.023	0.029	0.00019	148
0.03	301	0.019	0.017	0.024	0.029	0.00020	140
0.03	391	0.037	0.034	0.040	0.051	0.00039	132
0.03	378	0.036	0.034	0.045	0.050	0.00038	131
0.03	380	0.037	0.034	0.045	0.050	0.00038	130
0.03	380	0.037	0.034	0.046	0.050	0.00039	129
0.03	542	0.058	0.054	0.073	0.071	0.00061	116
0.03	552	0.059	0.055	0.074	0.073	0.00061	119
0.03	543	0.058	0.055	0.074	0.071	0.00061	116
0.03	554	0.058	0.055	0.074	0.073	0.00061	118
0.03	761	0.095	0.090	0.121	0.100	0.00100	100
0.03	779	0.094	0.090	0.121	0.102	0.00100	102
0.03	708	0.094	0.091	0.121	0.009	0.00100	99
0.03	759	0.095	0.090	0.121	0.100	0.00100	99
0.01	219	0.020	0.018	0.024	0.029	0.00021	139
0.01	229	0.020	0.018	0.024	0.030	0.00021	146
0.01	218	0.020	0.018	0.024	0.029	0.00021	139
0.01	218	0.020	0.018	0.024	0.029	0.00021	139
0.01	389	0.040	0.035	0.049	0.051	0.00041	126
0.01	380	0.040	0.035	0.050	0.050	0.00041	121
0.01	392	0.040	0.036	0.051	0.051	0.00042	123
0.01	389	0.039	0.036	0.050	0.051	0.00041	124
0.01	380 543	0.040	0.035	0.049	0.050	0.00041	122
0.01	543	0.064	0.059	0.081	0.071	0.00067	106
0.01	554	0.063	0.059	0.081	0.073	0.00067	109
0.01	553	0.063	0.059	0.081	0.073	0.00067	109
0.01	554	0.063	0.059	0.081	0.073	0.00067	109
0.01	760	0.101	0.096	0.132	0.100	0.00108	92
0.01	771	0.099	0.096	0.132	0.101	0.00107	94
0.01	760	0.100	0.096	0.131	0.100	0.00108	93
0.01	760	0,100	0.096	0.131	0,100	0.00108	93

Table J.43: Resilient modulus data (D_2_18_98)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	215	0.018	0.010	0.011	0.028	0.00013	222
0.06	215	0.017	0.010	0.011	0.028	0.00013	224
0.06	219	0.017	0.010	0.011	0.029	0.00013	228
0.06	241	0.017	0.010	0.011	0.032	0.00013	251
0.06	399	0.032	0.020	0.020	0.052	0.00013	223
0.06	388	0.032	0.021	0.020	0.051	0.00024	212
0.06	389	0.032	0.020	0.021	0.051	0.00024	212
0.06	388	0.032	0.021	0.020	0.051	0.00024	212
0.06	389	0.032	0.020	0.021	0.051	0.00024	213
0.06	540	0.048	0.032	0.031	0.071	0.00036	194
0.06	540	0.048	0.032	0.031	0.071	0.00036	194
0.06	540	0.048	0.032	0.031	0.071	0.00036	195
0.06	540	0.047	0.032	0.031	0.071	0.00036	195
0.06	746	0.070	0.051	0.048	0.098	0.00055	177
0.06	757	0.069	0.051	0.048	0.099	0.00055	180
0.06	768	0.069	0.051	0.049	0.101	0.00055	182
0.06	768	0.069	0.052	0.048	0.101	0.00055	182
0.04	216	0.019	0.010	0.011	0.028	0.00013	213
0.04	216	0.018	0.010	0.011	0.028	0.00013	218
0.04	216	0.018	0.010	0.011	0.028	0.00013	218
0.04	215	0.018	0.010	0.011	0.028	0.00013	217
0.04	226	0.019	0.009	0.011	0.030	0.00013	228
0.04	378	0.034	0.020	0.020	0.050	0.00025	202
0.04	378	0.035	0.019	0.020	0.050	0.00024	203
0.04	388	0.035	0.019	0.020	0.051	0.00023	202
0.04	392	0.035	0.019	0.020	0.051	0.00024	211
0.04	541	0.052	0.032	0.031	0.071	0.00038	188
0.04	540	0.052	0.032	0.031	0.071	0.00038	188
0.04	552	0.052	0.032	0.031	0.072	0.00038	192
0.04	552	0.052	0.032	0.031	0.072	0.00038	192
0.04	758	0.076	0.051	0.049	0.099	0.00058	172
0.04	768	0.076	0.048	0.050	0.101	0.00057	175
0.04	769	0.076	0.049	0.049	0.101	0.00057	176
0.04	769	0.076	0.050	0.051	0.101	0.00058	173
0.04	758	0.076	0.049	0.049	0.099	0.00057	173
0.03	221	0.021	0.009	0.012	0.029	0.00014	212
0.03	210	0.021	0.009	0.012	0.028	0.00014	207
0.03	216	0.020	0.009	0.012	0.028	0.00013	205
0.03	216	0.020	0.009	0.012	0.028	0.00014	210
0.03	378	0.039	0.019	0.020	0.050	0.00026	194
0.03	378	0.039	0.019	0.020	0.050	0.00026	194
0.03	378	0.039	0.019	0.020	0.050	0.00026	194
0.03	378	0.039	0.019	0.020	0.050	0.00026	194
0.03	550	0.058	0.031	0.020	0.072	0.00040	183
0.03	553	0.058	0.031	0.032	0.073	0.00040	182
0.03	558	0.060	0.032	0.031	0.073	0.00040	182
0.03	571	0.059	0.031	0.031	0.075	0.00040	189
0.03	553	0.059	0.031	0.031	0.072	0.00040	183
0.03	758	0.085	0.050	0.052	0.099	0.00061	162
0.03	762	0.085	0.051	0.052	0.100	0.00062	162
0.03	760	0.085	0.051	0.051	0.100	0.00061	163
0.03	759	0.085	0.050	0.051	0.100	0.00061	163
0.01	216	0.022	0.007	0.013	0.028	0.00014	202
0.01	219	0.023	0.008	0.013	0.029	0.00014	199
0.01	222	0.023	0.007	0.013	0.029	0.00014	203
0.01	206	0.022	0.008	0.013	0.027	0.00014	188
0.01	391	0.044	0.016	0.024	0.051	0.00027	187
0.01	394	0.045	0.016	0.024	0.052	0.00028	188
0.01	391	0.044	0.017	0.024	0.051	0.00028	186
0.01	384	0.044	0.017	0.024	0.050	0.00027	183
0.01	541	0.044	0.017	0.024	0.050	0.00028	179
0.01	542	0.066	0.027	0.034	0.071	0.00042	170
0.01	552	0.067	0.028	0.034	0.072	0.00042	171
0.01	546	0.066	0.027	0.034	0.072	0.00042	171
0.01	551	0.067	0.027	0.035	0.072	0.00042	170
0.01	748	0.096	0.048	0.055	0.098	0.00066	150
0.01	758	0.097	0.048	0.055	0.099	0.00066	151
0.01	758	0.097	0.048	0.055	0.099	0.00066	152
0.01	769	0.097	0.049	0.055	0.101	0.00066	152

Table J.44: Resilient modulus data (D_1_14_98)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}} \text{ [mm]}$	$\delta_{\text{LVDT#2}} \text{ [mm]}$	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	236	0.012	0.011	0.017	0.031	0.00013	237
0.06	225	0.012	0.011	0.017	0.030	0.00013	226
0.06	226	0.012	0.012	0.017	0.030	0.00013	221
0.06	225	0.012	0.011	0.017	0.030	0.00013	227
0.06	389	0.027	0.020	0.029	0.051	0.00015	206
0.06	389	0.026	0.021	0.028	0.051	0.00024	209
0.06	389	0.026	0.021	0.028	0.051	0.00024	209
0.06	379	0.027	0.020	0.028	0.050	0.00025	202
0.06	388	0.026	0.021	0.028	0.051	0.00025	207
0.06	551	0.041	0.031	0.042	0.072	0.00038	192
0.06	552	0.040	0.031	0.042	0.072	0.00037	194
0.06	551	0.041	0.031	0.042	0.072	0.00037	193
0.06	562	0.041	0.032	0.042	0.074	0.00038	195
0.06	769	0.064	0.047	0.062	0.101	0.00057	178
0.06	768	0.064	0.048	0.062	0.101	0.00057	176
0.06	708	0.064	0.048	0.062	0.101	0.00057	177
0.06	779	0.064	0.048	0.062	0.102	0.00057	179
0.04	227	0.013	0.011	0.018	0.030	0.00014	217
0.04	215	0.014	0.011	0.018	0.028	0.00014	202
0.04	226	0.013	0.011	0.018	0.030	0.00014	217
0.04	227	0.013	0.011	0.018	0.030	0.00014	217
0.04	390	0.013	0.021	0.030	0.029	0.00014	203
0.04	389	0.026	0.022	0.030	0.051	0.00025	201
0.04	388	0.027	0.022	0.030	0.051	0.00026	197
0.04	401	0.026	0.022	0.030	0.053	0.00025	206
0.04	384	0.027	0.022	0.030	0.050	0.00026	195
0.04	558	0.042	0.034	0.044	0.073	0.00039	186
0.04	552	0.043	0.034	0.043	0.073	0.00039	184
0.04	540	0.042	0.033	0.043	0.071	0.00039	184
0.04	552	0.043	0.034	0.044	0.072	0.00040	183
0.04	769	0.068	0.051	0.065	0.101	0.00061	167
0.04	769	0.067	0.051	0.065	0.101	0.00060	167
0.04	708	0.067	0.051	0.064	0.101	0.00060	108
0.04	779	0.067	0.051	0.065	0.102	0.00060	170
0.03	227	0.013	0.013	0.018	0.030	0.00015	205
0.03	228	0.013	0.012	0.019	0.030	0.00014	209
0.03	227	0.014	0.013	0.018	0.030	0.00015	200
0.03	216	0.014	0.012	0.018	0.028	0.00015	195
0.03	390	0.013	0.013	0.018	0.028	0.00015	193
0.03	390	0.027	0.024	0.031	0.051	0.00027	189
0.03	389	0.028	0.024	0.031	0.051	0.00027	186
0.03	389	0.027	0.024	0.032	0.051	0.00027	186
0.03	379	0.027	0.024	0.032	0.050	0.00028	181
0.03	553	0.046	0.038	0.045	0.072	0.00042	1/1
0.03	542	0.045	0.038	0.045	0.072	0.00042	167
0.03	543	0.045	0.038	0.046	0.071	0.00042	168
0.03	553	0.045	0.038	0.047	0.073	0.00043	170
0.03	769	0.071	0.056	0.067	0.101	0.00063	159
0.03	771	0.072	0.056	0.067	0.101	0.00064	158
0.03	790	0.072	0.057	0.067	0.100	0.00064	155
0.03	769	0.071	0.056	0.067	0.101	0.00063	159
0.01	216	0.014	0.016	0.018	0.028	0.00016	179
0.01	226	0.014	0.016	0.018	0.030	0.00016	188
0.01	216	0.015	0.016	0.018	0.028	0.00016	175
0.01	217	0.014	0.015	0.018	0.030	0.00016	188
0.01	392	0.029	0.029	0.033	0.051	0.00030	173
0.01	391	0.029	0.029	0.033	0.051	0.00030	172
0.01	381	0.029	0.029	0.033	0.050	0.00030	167
0.01	392	0.029	0.029	0.033	0.051	0.00030	172
0.01	581	0.029	0.029	0.033	0.050	0.00030	167
0.01	553	0.048	0.045	0.049	0.072	0.00046	158
0.01	552	0.047	0.045	0.049	0.072	0.00046	157
0.01	553	0.047	0.045	0.048	0.073	0.00046	158
0.01	553	0.048	0.044	0.049	0.073	0.00046	157
0.01	780	0.075	0.066	0.072	0.102	0.00070	147
0.01	758	0.073	0.065	0.073	0.099	0.00070	145
0.01	759	0.074	0.065	0.072	0.099	0.00069	144
0.01	770	0.075	0.065	0.072	0.101	0.00069	145

Table J.45: Resilient modulus data (D_2_14_98)

σ_3 [MPa]	q [N]	$\delta_{LVDT#1}$ [mm]	$\delta_{\text{LVDT#2}}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	$\sigma_{\scriptscriptstyle { m DEV}}$ [MPa]	[-] 3	M _R [MPa]
0.06	224	0.006	0.011	0.016	0.029	0.00011	273
0.06	223	0.006	0.011	0.016	0.029	0.00011	272
0.06	226	0.006	0.011	0.016	0.030	0.00011	275
0.06	228	0.006	0.011	0.016	0.030	0.00011	278
0.06	225	0.007	0.011	0.016	0.029	0.00011	266
0.06	403	0.011	0.023	0.030	0.053	0.00021	251
0.06	408	0.011	0.022	0.030	0.053	0.00021	259
0.06	398	0.010	0.023	0.030	0.052	0.00021	253
0.06	387	0.011	0.022	0.030	0.051	0.00021	247
0.06	548	0.017	0.034	0.042	0.072	0.00031	236
0.06	548	0.016	0.034	0.042	0.072	0.00030	238
0.06	560	0.016	0.034	0.042	0.073	0.00030	244
0.06	560	0.017	0.034	0.043	0.073	0.00031	239
0.06	560	0.017	0.034	0.042	0.073	0.00030	242
0.06	781	0.025	0.050	0.056	0.102	0.00043	237
0.06	781	0.026	0.050	0.056	0.102	0.00044	235
0.06	7/1	0.026	0.050	0.055	0.101	0.00043	234
0.06	7/1	0.026	0.050	0.056	0.101	0.00043	233
0.04	223	0.020	0.013	0.030	0.029	0.00043	230
0.04	212	0.006	0.012	0.020	0.028	0.00013	222
0.04	224	0.006	0.013	0.019	0.029	0.00013	233
0.04	224	0.006	0.012	0.019	0.029	0.00012	239
0.04	245	0.006	0.013	0.020	0.032	0.00013	248
0.04	386	0.011	0.026	0.034	0.051	0.00023	217
0.04	386	0.011	0.025	0.034	0.051	0.00023	220
0.04	386	0.011	0.026	0.034	0.051	0.00023	216
0.04	396	0.012	0.025	0.034	0.052	0.00023	222
0.04	380	0.012	0.025	0.034	0.051	0.00023	216
0.04	550	0.017	0.039	0.048	0.073	0.00034	214
0.04	563	0.017	0.039	0.048	0.073	0.00034	210
0.04	557	0.018	0.039	0.048	0.073	0.00034	213
0.04	575	0.018	0.038	0.048	0.075	0.00034	222
0.04	772	0.027	0.055	0.065	0.101	0.00048	210
0.04	783	0.027	0.055	0.065	0.103	0.00048	213
0.04	782	0.027	0.055	0.065	0.103	0.00048	213
0.04	772	0.027	0.055	0.065	0.101	0.00048	211
0.04	772	0.027	0.055	0.065	0.101	0.00048	211
0.03	225	0.007	0.014	0.024	0.030	0.00015	200
0.03	225	0.008	0.015	0.024	0.030	0.00015	191
0.03	237	0.007	0.014	0.023	0.030	0.00014	210
0.03	225	0.008	0.013	0.023	0.030	0.00015	196
0.03	387	0.013	0.029	0.042	0.051	0.00027	186
0.03	398	0.013	0.029	0.042	0.052	0.00027	191
0.03	387	0.013	0.029	0.042	0.051	0.00027	186
0.03	387	0.014	0.029	0.042	0.051	0.00028	184
0.03	387	0.013	0.029	0.042	0.051	0.00027	186
0.03	567	0.018	0.043	0.058	0.074	0.00039	189
0.03	557	0.018	0.043	0.058	0.073	0.00039	186
0.03	556	0.019	0.043	0.058	0.074	0.00040	188
0.03	557	0.019	0.043	0.058	0.073	0.00040	185
0.03	784	0.028	0.063	0.078	0.103	0.00056	185
0.03	773	0.030	0.062	0.078	0.101	0.00056	181
0.03	773	0.029	0.063	0.078	0.101	0.00056	181
0.03	773	0.029	0.062	0.078	0.101	0.00056	182
0.03	783	0.029	0.063	0.078	0.103	0.00056	184
0.01	219	0.008	0.009	0.034	0.029	0.00017	172
0.01	202	0.008	0.008	0.034	0.026	0.00016	161
0.01	225	0.007	0.008	0.034	0.029	0.00016	161
0.01	216	0.008	0.009	0.035	0.028	0.00017	169
0.01	390	0.016	0.025	0.059	0.051	0.00033	155
0.01	380	0.017	0.025	0.059	0.050	0.00033	151
0.01	390	0.016	0.025	0.058	0.051	0.00033	157
0.01	390	0.016	0.025	0.059	0.051	0.00033	155
0.01	390	0.016	0.026	0.058	0.051	0.00033	157
0.01	538	0.024	0.043	0.080	0.071	0.00048	146
0.01	549	0.023	0.042	0.079	0.072	0.00047	152
0.01	549	0.025	0.044	0.080	0.072	0.00049	147
0.01	549	0.024	0.043	0.079	0.072	0.00048	130
0.01	766	0.036	0.068	0,108	0,100	0.00069	145
0.01	765	0.036	0.067	0.106	0.100	0.00069	146
0.01	766	0.035	0.068	0.107	0.100	0.00069	146
0.01	777	0.036	0.068	0.107	0.102	0.00069	147
0.01	776	0.036	0.068	0.107	0.102	0.00069	147

Table J.46: Resilient modulus data (D_1_198)

σ_3 [MPa]	$q_{[N]}$	$\delta_{\text{LVDT#1}}$ [mm]	$\delta_{LVDT#2}$ [mm]	$\delta_{\text{LVDT#3}}$ [mm]	σ_{DEV} [MPa]	[-] 3	M _R [MPa]
0.06	223	-0.011	0.012	0.006	0.029	0.00002	1303
0.06	224	-0.011	0.012	0.006	0.029	0.00003	1170
0.06	223	0.012	0.013	0.006	0.029	0.00010	288
0.06	223	-0.019	0.012	0.006	0.029	-0.00000	-15204
0.06	387	-0.013	0.012	0.007	0.051	0.00003	2003
0.06	387	-0.011	0.014	0.007	0.051	0.00003	1540
0.06	386	-0.011	0.014	0.007	0.051	0.00003	1640
0.06	386	-0.011	0.014	0.007	0.051	0.00003	1539
0.06	387	-0.010	0.014	0.007	0.051	0.00003	1477
0.06	560	-0.004	0.015	0.007	0.072	0.00006	1235
0.06	564	-0.005	0.015	0.007	0.074	0.00006	1330
0.06	566	-0.004	0.015	0.007	0.074	0.00006	1319
0.06	558	0.012	0.015	0.007	0.073	0.00011	662
0.06	776	-0.012	0.016	0.006	0.102	0.00003	3021
0.06	765	0.014	0.016	0.006	0.100	0.00012	9437
0.06	766	-0.010	0.016	0.006	0,100	0.00004	2631
0.06	776	-0.015	0.016	0.006	0.102	0.00002	4718
0.04	224	-0.015	0.022	0.012	0.029	0.00006	465
0.04	223	0.012	0.022	0.013	0.029	0.00015	189
0.04	222	-0.008	0.023	0.012	0.029	0.00009	334
0.04	224	0.013	0.022	0.012	0.029	0.00016	179
0.04	386	-0.016	0.024	0.013	0.051	0.00007	746
0.04	386	-0.014	0.024	0.013	0.051	0.00007	679
0.04	384	0.012	0.023	0.013	0.050	0.00016	315
0.04	374	0.020	0.022	0.013	0.049	0.00018	269
0.04	558	0.023	0.023	0.015	0.050	0.00019	440
0.04	548	0.011	0.023	0.015	0.072	0.00016	450
0.04	563	0.014	0.023	0.015	0.074	0.00017	436
0.04	569	0.012	0.024	0.015	0.075	0.00017	449
0.04	556	0.014	0.023	0.015	0.073	0.00017	435
0.04	779	-0.012	0.026	0.014	0.101	0.00016	628
0.04	766	-0.009	0.026	0.013	0.100	0.00010	1019
0.04	766	-0.014	0.026	0.014	0.100	0.00009	1173
0.04	776	-0.012	0.026	0.014	0.102	0.00009	1128
0.03	225	-0.007	0.031	0.019	0.030	0.00014	205
0.03	225	0.005	0.031	0.019	0.030	0.00018	161
0.03	223	-0.008	0.031	0.019	0.030	0.00014	211
0.03	217	-0.010	0.031	0.019	0.028	0.00013	216
0.03	387	-0.010	0.033	0.020	0.051	0.00014	356
0.03	377	-0.013	0.033	0.019	0.049	0.00013	381
0.03	388	-0.008	0.033	0.019	0.051	0.00015	349
0.03	386	-0.012	0.033	0.019	0.051	0.00022	382
0.03	550	-0.009	0.034	0.022	0.072	0.00015	471
0.03	562	0.018	0.034	0.022	0.074	0.00024	305
0.03	551	0.018	0.034	0.022	0.072	0.00024	298
0.03	549	0.006	0.034	0.022	0.072	0.00020	356
0.03	766	0.010	0.037	0.022	0.100	0.00021	445
0.03	776	-0.007	0.037	0.022	0.102	0.00017	595
0.03	766	-0.014	0.037	0.022	0.100	0.00015	674
0.03	766	0.010	0.038	0.022	0.100	0.00023	439
0.03	777	-0.015	0.038	0.022	0.102	0.00015	695
0.01	224	-0.007	0.045	0.028	0.029	0.00026	139
0.01	216	0.009	0.044	0.028	0.028	0.00027	106
0.01	235	-0.005	0.045	0.028	0.031	0.00022	137
0.01	218	-0.016	0.045	0.028	0.029	0.00019	153
0.01	388	-0.013	0.047	0.029	0.051	0.00021	244
0.01	388	-0.024	0.047	0.029	0.051	0.00017	294
0.01	387	-0.019	0.047	0.029	0.051	0.00019	267
0.01	388	-0.014	0.047	0.029	0.051	0.00021	247
0.01	564	0.005	0.049	0.032	0.074	0.00028	262
0.01	559	0.014	0.049	0.032	0.073	0.00031	237
0.01	554	0.006	0.049	0.032	0.073	0.00028	255
0.01	549	-0.011	0.049	0.032	0.073	0.00023	317
0.01	779	0.008	0.053	0.034	0.102	0.00031	328
0.01	778	-0.013	0.054	0.034	0.102	0.00025	412
0.01	778	0.007	0.053	0.034	0.102	0.00031	330
0.01	767	-0.011	0.053	0.034	0.101	0.00025	403
0.01	101	0.000	0.000	0.034	0.101	0.00031	343

Table J.47: Resilient modulus data (D_2_11_98)

J.2 Resilient Modulus Data [US Customary]

σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	51.34	0.00042	0.00039	0.00021	4.34	0.00009	50715
8	52.44	-0.00046	0.00039	0.00022	4.44	0.00001	359167
8	53.41	-0.00051	0.00039	0.00022	4.52	0.00001	511925
8	51.20	-0.00033	0.00040	0.00022	4.34	0.00002	44237
8	87.49	0.00052	0.00070	0.00029	7.40	0.00013	58813
8	87.65	0.00039	0.00071	0.00041	7.41	0.00013	58846
8	87.56	-0.00041	0.00058	0.00029	7.41	0.00004	191856
8	87.59	-0.00039	0.00071	0.00029	7.41	0.00005	146582
8	87.82	0.00056	0.00070	0.00029	7.43	0.00013	57373
8	124.04	-0.00041	0.00091	0.00050	10.49	0.00008	125688
8	124.34	0.00047	0.00102	0.00050	10.52	0.00017	63324
8	123.78	-0.00053	0.00103	0.00050	10.47	0.00008	126202
8	126.27	-0.00052	0.00103	0.00050	10.68	0.00008	126633
8	173.36	0.00066	0.00138	0.00064	14.66	0.00022	65719
8	175.02	0.00052	0.00137	0.00063	14.80	0.00021	70470
8	172.79	0.00079	0.00137	0.00064	14.61	0.00023	65330
8	175.06	0.00040	0.00137	0.00063	14.81	0.00022	73931
6	52.64	-0.00033	0.00038	0.00027	4.45	0.00003	167653
6	55.22	0.00044	0.00038	0.00026	4.67	0.00009	51531
6	51.15	0.00064	0.00038	0.00015	4.33	0.00010	44605
6	51.22	-0.00037	0.00038	0.00014	4.33	0.00001	342607
6	51.18 87.55	-0.00031	0.00038	0.00015	4.33	0.00002	58208
6	87.90	-0.00037	0.00072	0.00034	7.43	0.00006	127287
6	87.55	0.00045	0.00072	0.00035	7.40	0.00013	58553
6	87.61	0.00057	0.00073	0.00034	7.41	0.00014	54098
6	87.88	-0.00045	0.00073	0.00034	7.43	0.00005	144072
6	123.10	0.00046	0.00102	0.00042	10.41	0.00016	65744
6	127.25	-0.00044	0.00102	0.00041	10.76	0.00008	65767
6	124.32	-0.00045	0.00151	0.00103	10.51	0.00017	60621
6	124.20	-0.00052	0.00102	0.00042	10.50	0.00008	137876
6	178.48	0.00048	0.00146	0.00062	15.09	0.00021	70948
6	175.37	0.00054	0.00145	0.00062	14.83	0.00022	68013
6	175.37	0.00069	0.00158	0.00062	14.83	0.00024	61771
6	175.41	0.00040	0.00157	0.00062	14.04	0.00022	61519
4	50.99	0.00046	0.00038	0.00019	4.31	0.00009	50633
4	50.82	-0.00038	0.00037	0.00019	4.30	0.00002	281098
4	51.13	-0.00041	0.00037	0.00019	4.32	0.00001	326599
4	50.90	0.00045	0.00049	0.00019	4.30	0.00009	45388
4	87.55	-0.00038	0.00050	0.00019	4.29	0.00003	68238
4	87.51	-0.00050	0.00066	0.00039	7.40	0.00005	159772
4	87.46	-0.00044	0.00078	0.00039	7.40	0.00006	120381
4	87.42	0.00044	0.00078	0.00039	7.39	0.00013	55224
4	87.36	-0.00045	0.00078	0.00039	7.39	0.00006	123006
4	124.58	0.00046	0.00106	0.00047	10.54	0.00017	56879
4	124.44	-0.00040	0.00105	0.00047	10.52	0.00009	112230
4	124.36	-0.00043	0.00106	0.00047	10.52	0.00009	115376
4	124.37	-0.00035	0.00106	0.00047	10.52	0.00010	107752
4	176.24	0.00046	0.00164	0.00064	14.91	0.00023	65213
4	177.14	0.00065	0.00151	0.00063	14.99	0.00023	64417
4	175.74	0.00055	0.00151	0.00063	14.86	0.00023	66286
4	175.42	0.00084	0.00163	0.00064	14.84	0.00026	57347
2	51.16	0.00062	0.00049	0.00030	4.33	0.00012	36679
2	52.00	-0.00036	0.00037	0.00031	4.40	0.00003	167521
2	50.77	-0.00035	0.00049	0.00030	4.29	0.00004	115//3
2	49.06	-0.00043	0.00049	0.00030	4.15	0.00003	134373
2	88.03	-0.00049	0.00077	0.00039	7.45	0.00006	134700
2	88.17	-0.00049	0.00077	0.00039	7.46	0.00006	134162
2	87.98	0.00046	0.00077	0.00039	7.44	0.00013	55267
2	87.83	-0.00060	0.00076	0.00039	7.43	0.00005	162101
2	127.82	-0.00038	0.00076	0.00039	10.81	0.00013	118490
2	124.46	0.00051	0.00113	0.00055	10.53	0.00018	57604
2	124.47	0.00045	0.00101	0.00043	10.53	0.00016	66809
2	124.46	0.00046	0.00113	0.00044	10.53	0.00017	62438
2	127.12	0.00048	0.00113	0.00043	10.75	0.00017	62891
2	175.83	0.00050	0.00163	0.00063	14.87	0.00023	65189
2	173.60	0.00058	0.00163	0.00064	14.68	0.00024	61898
2	175.44	0.00056	0.00162	0.00063	14.84	0.00024	63131
2	178.07	0.00053	0.00163	0.00063	15.06	0.00023	64895

Table J.48: Resilient modulus data (A_2_135_105)

σ_3 [psi]	q [lb]	$\delta_{\text{LVDT#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.92	0.00026	0.00033	0.00013	4.05	0.00006	66331
8	50.80	-0.00033	0.00033	0.00014	4.04	0.00001	348825
8	51.23	0.00040	0.00034	0.00014	4.08	0.00007	241990
8	54.51	0.00028	0.00033	0.00013	4.15	0.00002	75050
8	87.42	0.00054	0.00053	0.00025	6.96	0.00011	63346
8	87.75	0.00040	0.00053	0.00025	6.98	0.00010	71118
8	87.33	0.00051	0.00053	0.00025	6.95	0.00011	64893
8	87.44	0.00042	0.00053	0.00025	6.96	0.00010	69598
8	87.49	0.00042	0.00053	0.00024	6.96	0.00010	70113
8	124.01	0.00049	0.00086	0.00044	9.87	0.00015	65911
8	124.02	0.00057	0.00086	0.00032	9.87	0.00015	67395
8	124.03	0.00047	0.00086	0.00032	9.87	0.00014	/1594
0	123.90	0.00067	0.00074	0.00044	9.00	0.00015	64338
8	172 72	0.00080	0.00074	0.00044	13.74	0.00015	62892
8	175.07	0.00102	0.00119	0.00053	13.93	0.00023	60903
8	175.04	0.00095	0.00119	0.00054	13.93	0.00022	62352
8	172.45	0.00086	0.00131	0.00053	13.72	0.00023	60851
8	175.32	0.00094	0.00119	0.00054	13.95	0.00022	62915
6	48.78	0.00034	0.00029	0.00016	3.88	0.00007	59570
6	48.31	0.00030	0.00029	0.00016	3.84	0.00006	62433
6	48.52	0.00025	0.00029	0.00016	3.86	0.00006	66589
6	48.55	-0.00025	0.00029	0.00016	3.86	0.00002	236198
6	48.53	0.00040	0.00029	0.00016	3.86	0.00007	54922
6	87.65	0.00044	0.00050	0.00014	6.98	0.00009	67941
6	85.01	0.00043	0.00050	0.00015	6.77	0.00000	75795
6	87.99	0.00043	0.00050	0.00027	7.00	0.00010	70487
6	87.44	0.00051	0.00050	0.00015	6.96	0.00010	72638
6	124.06	0.00064	0.00080	0.00036	9.87	0.00015	65931
6	124.19	0.00072	0.00080	0.00036	9.88	0.00016	63244
6	124.05	0.00069	0.00080	0.00023	9.87	0.00014	68814
6	123.97	0.00066	0.00080	0.00035	9.87	0.00015	65470
6	123.92	0.00067	0.00080	0.00035	9.86	0.00015	65082
6	1/6.38	0.00093	0.00124	0.00044	14.04	0.00022	64419
6	173.41	0.00094	0.00125	0.00044	13.80	0.00022	63082
6	172.03	0.00098	0.00124	0.00044	13.75	0.00022	58830
6	173.31	0.00090	0.00123	0.00044	13.79	0.00022	64139
4	48.57	0.00023	0.00038	-0.00015	3.87	0.00004	99685
4	48.73	0.00028	0.00038	-0.00015	3.88	0.00004	91288
4	48.74	0.00028	0.00038	-0.00015	3.88	0.00004	92075
4	48.65	0.00031	0.00038	-0.00015	3.87	0.00004	87086
4	48.35	0.00021	0.00037	-0.00015	3.85	0.00004	105090
4	85.36	0.00054	0.00056	0.00014	6.79	0.00010	65948
4	85.22	0.00042	0.00056	0.00025	6.78	0.00010	65836
4	97.70	0.00055	0.00056	0.00013	6.97	0.00010	80276
4	85.20	0.00053	0.00044	0.00025	6.78	0.00010	66356
4	122.18	0.00064	0.00077	0.00032	9.72	0.00014	67146
4	124.78	0.00076	0.00077	0.00032	9.93	0.00015	64451
4	124.40	0.00067	0.00077	0.00033	9.90	0.00015	67569
4	124.35	0.00062	0.00089	0.00033	9.90	0.00015	64527
4	124.34	0.00070	0.00077	0.00032	9.89	0.00015	66457
4	173.15	0.00089	0.00121	0.00053	13.78	0.00022	62927
4	172.00	0.00090	0.00121	0.00041	13.98	0.00021	00000
4	173.56	0.00104	0.00121	0.00041	13.81	0.00023	59648
4	175.04	0.00103	0.00121	0.00041	13.93	0.00022	63181
2	49.06	-0.00024	0.00039	0.00013	3.90	0.00002	167338
2	49.15	0.00019	0.00039	-0.00012	3.91	0.00004	102315
2	49.00	0.00042	0.00027	-0.00013	3.90	0.00005	82658
2	49.06	0.00033	0.00027	0.00012	3.90	0.00006	64958
2	51.65	0.00028	0.00039	-0.00012	4.11	0.00005	91174
2	87.90	0.00038	0.00056	0.00016	6.99	0.00009	76031
2	88.10	0.00056	0.00057	0.00016	7.01	0.00011	65214
2	87.96	0.00034	0.00057	0.00016	7.01	0.00009	71/73
2	87.95	0.00040	0.00056	0.00016	7.00	0.00011	66099
2	124.26	0.00067	0.00078	0.00027	9,89	0.00014	69069
2	124.02	0.00065	0.00078	0.00027	9.87	0.00014	69706
2	124.27	0.00067	0.00078	0.00027	9.89	0.00014	69075
2	126.57	0.00068	0.00078	0.00027	10.07	0.00014	70202
2	124.06	0.00085	0.00078	0.00027	9.87	0.00016	62590
2	173.29	0.00088	0.00125	0.00049	13.79	0.00022	63275
2	174.00	0.00079	0.00124	0.00048	13.85	0.00021	66050
2	1/5./2	0.00097	0.00124	0.00049	13.98	0.00023	60569
2	176.02	0.00095	0.00124	0.00049	14.01	0.00023	62976

Table J.49: Resilient modulus data (A_1_105_105)

σ_3 [psi]	q [1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	48.34	0.00039	-0.00063	0.00076	4.09	0.00004	94216
8	48.48	0.00046	-0.00050	0.00076	4.10	0.00006	68309
8	49.46	0.00040	-0.00051	0.00076	4.18	0.00005	77060
8	77.20	-0.00273	-0.00197	0.00076	6.53	-0.00033	-19916
8	50.69	0.00031	-0.00050	0.00076	4.29	0.00005	90653
8	87.45	0.00054	-0.00083	0.00116	7.40	0.00007	101771
8	85.00	0.00054	-0.00083	0.00116	7.42	0.00007	86820
8	87.63	0.00065	-0.00083	0.00116	7.13	0.00008	90327
8	87.56	0.00054	-0.00083	0.00116	7.41	0.00007	103196
8	123.89	0.00074	-0.00081	0.00142	10.48	0.00011	92676
8	124.77	0.00088	-0.00081	0.00155	10.55	0.00013	78320
8	126.15	0.00089	-0.00093	0.00143	10.67	0.00012	92088
8	124.90	0.00071	-0.00080	0.00155	10.56	0.00012	87203
8	123.98	0.00078	-0.00081	0.00154	10.49	0.00013	83044
8	173.21	0.00117	-0.00091	0.00202	14.65	0.00019	76791
8	173.14	0.00116	-0.00090	0.00202	14.64	0.00019	77160
8	173.06	0.00115	-0.00089	0.00202	14.64	0.00019	77250
8	173.07	0.00126	-0.00090	0.00201	14.64	0.00020	73904
8	172.82	0.00124	-0.00090	0.00201	14.62	0.00020	74720
6	48.37	0.00032	-0.00048	0.00066	4.09	0.00004	98312
6	40.04	0.00042	-0.00060	0.00066	4.11	0.00004	92275
6	48.83	0.00042	-0.00048	0.00067	4.13	0.00005	69165
6	48.53	-0.00027	-0.00061	0.00066	4.10	-0.00002	-236219
6	87.35	0.00044	-0.00068	0.00109	7.39	0.00007	104959
6	87.28	0.00058	-0.00068	0.00109	7.38	0.00008	88809
6	87.54	0.00062	-0.00068	0.00109	7.40	0.00009	86309
6	87.34	0.00059	-0.00068	0.00109	7.39	0.00008	88778
6	85.88	0.00063	-0.00068	0.00109	7.26	0.00009	84212
6	124.30	0.00080	-0.00080	0.00147	10.51	0.00012	85752
6	124.49	0.00088	-0.00080	0.00148	10.53	0.00013	81097
6	124.29	0.00093	-0.00080	0.00147	10.51	0.00013	78640
6	124.73	0.00075	-0.00081	0.00148	10.55	0.00012	89215
6	124.35	0.00075	-0.00080	0.00147	10.52	0.00012	88826
6	175.29	0.00136	-0.00085	0.00190	14.83	0.00020	73738
6	173.29	0.00130	-0.00085	0.00191	14.83	0.00020	75646
6	173.52	0.00120	-0.00085	0.00191	14.00	0.00019	73987
6	176.07	0.00117	-0.00085	0.00191	14.89	0.00019	80195
4	51.29	0.00026	-0.00047	0.00066	4.34	0.00004	114858
4	51.32	0.00033	-0.00047	0.00067	4.34	0.00004	99553
4	48.69	0.00038	-0.00047	0.00054	4.12	0.00004	108137
4	48.75	0.00042	-0.00047	0.00054	4.12	0.00004	102654
4	51.39	0.00033	-0.00035	0.00067	4.35	0.00005	80907
4	87.53	0.00055	-0.00044	0.00096	7.40	0.00009	82498
4	85.17	0.00057	-0.00057	0.00096	7.20	0.00008	89636
4	85.17	0.00058	-0.00057	0.00096	7.20	0.00008	88351
4	85.01	0.00052	-0.00044	0.00096	7.19	0.00009	83081
4	125.06	0.00042	-0.00045	0.00097	10.59	0.00008	91010
4	124.32	0.00075	-0.00072	0.00124	10.50	0.00011	84994
4	124.62	0.00078	-0.00072	0.00137	10.54	0.00012	88354
4	121.79	0.00075	-0.00072	0.00137	10.30	0.00012	88912
4	121.80	0.00090	-0.00072	0.00137	10.30	0.00013	80088
4	175.82	0.00128	-0.00092	0.00189	14.87	0.00019	79123
4	173.37	0.00127	-0.00092	0.00189	14.66	0.00019	78635
4	172.96	0.00119	-0.00093	0.00189	14.63	0.00018	81506
4	175.72	0.00115	-0.00093	0.00189	14.86	0.00018	84276
4	173.41	0.00122	-0.00092	0.00190	14.67	0.00018	80393
2	48.98	0.00024	-0.00032	0.00046	4.14	0.00003	133765
2	48.92	0.00040	-0.00032	0.00046	4.14	0.00005	918/5
2	51.48	0.00055	-0.00031	0.00046	4.35	0.00006	110001
2	49.05	0.00037	-0.00032	0.00045	4.15	0.00004	99225
2	85.70	0.00052	-0.00058	0.00090	7.25	0.00007	103925
2	85.67	0.00056	-0.00058	0.00090	7.25	0.00007	99494
2	85.64	0.00068	-0.00058	0.00090	7.24	0.00008	87360
2	85.65	0.00049	-0.00058	0.00089	7.24	0.00007	108324
2	85.69	0.00069	-0.00058	0.00089	7.25	0.00008	86789
2	124.64	0.00099	-0.00073	0.00141	10.54	0.00014	75521
2	125.08	0.00065	-0.00072	0.00141	10.58	0.00011	95152
2	124.84	0.00086	-0.00073	0.00142	10.56	0.00013	82034
2	124.45	0.00084	-0.00073	0.00141	10.53	0.00013	83181
2	124.86	0.00090	-0.00072	0.00141	10.56	0.00013	79727
2	173.60	0.00127	-0.00106	0.00198	14.68	0.00018	80352
2	175.94	0.00131	-0.00106	0.00198	14.00	0.00019	75394
2	173.34	0.00128	-0.00093	0.00198	14.66	0.00019	75706
2	173.36	0.00140	-0.00093	0.00199	14.66	0.00020	71730

Table J.50: Resilient modulus data (A_2_105_105)

σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	51.04	-0.00034	0.00051	0.00051	4.32	0.00006	75762
8	51.17	0.00026	0.00052	0.00051	4.33	0.00011	40196
8	51.42	-0.00031	0.00052	0.00051	4.35	0.00006	71758
8	51.00	-0.00025	0.00052	0.00051	4.31	0.00006	70146
8	88.14	-0.00030	0.00032	0.00088	7.45	0.00013	56841
8	89.43	-0.00023	0.00090	0.00088	7.56	0.00013	58450
8	87.00	0.00021	0.00090	0.00088	7.36	0.00017	44375
8	87.69	-0.00026	0.00090	0.00088	7.42	0.00013	58505
8	87.51	-0.00030	0.00091	0.00088	7.40	0.00012	59779
8	124.20	-0.00019	0.00125	0.00125	10.50	0.00019	54557
8	123.98	-0.00030	0.00126	0.00125	10.49	0.00018	57115
8	123.97	-0.00025	0.00125	0.00125	10.49	0.00019	55805
8	123.98	0.00020	0.00125	0.00125	10.49	0.00023	46513
8	123.93	-0.00020	0.00126	0.00125	10.48	0.00019	54586
8	175.44	0.00045	0.00168	0.00173	14.84	0.00032	46116
8	172.98	0.00038	0.00168	0.00174	14.63	0.00032	46233
0	175.33	0.00036	0.00167	0.00173	14.62	0.00031	40302
8	172.99	0.00030	0.00167	0.00173	14.63	0.00032	45634
6	48.56	-0.00029	0.00085	0.00047	4.11	0.00009	47657
6	48.55	0.00026	0.00073	0.00047	4.11	0.00012	33866
6	50.76	0.00024	0.00085	0.00059	4.29	0.00014	30541
6	51.01	0.00018	0.00085	0.00060	4.31	0.00014	31772
6	51.09	-0.00025	0.00085	0.00060	4.32	0.00010	43271
6	87.45	-0.00020	0.00131	0.00090	7.40	0.00017	44139
6	87.37	-0.00023	0.00131	0.00090	7.39	0.00016	44860
6	87.43	-0.00028	0.00119	0.00090	7.39	0.00015	49184
6	88.31	-0.00020	0.00131	0.00089	7.47	0.00017	44805
6	87.91	0.00029	0.00131	0.00090	7.44	0.00021	35707
6	124.30	-0.00029	0.00170	0.00135	10.51	0.00023	45/92
6	124.39	0.00029	0.00170	0.00135	10.52	0.00028	37724
6	124.42	-0.00020	0.00170	0.00135	10.52	0.00023	43130
6	124.21	0.00031	0.00170	0.00135	10.51	0.00028	37589
6	176.07	0.00028	0.00215	0.00188	14.89	0.00036	41460
6	175.32	0.00030	0.00214	0.00188	14.83	0.00036	41226
6	172.90	0.00028	0.00213	0.00188	14.62	0.00036	40935
6	173.25	0.00031	0.00214	0.00188	14.65	0.00036	40609
6	173.08	0.00043	0.00213	0.00188	14.64	0.00037	39511
4	48.76	0.00025	0.00088	0.00054	4.12	0.00014	29655
4	48.97	-0.00028	0.00100	0.00054	4.14	0.00011	39319
4	48.81	-0.00020	0.00088	0.00055	4.13	0.00010	40337
4	48.52	-0.00019	0.00088	0.00055	4.10	0.00010	40063
4	40.75	-0.00025	0.00088	0.00035	7.45	0.00010	42072
4	88.12	0.00018	0.00145	0.00087	7.45	0.00021	35670
4	85.64	-0.00031	0.00145	0.00087	7.24	0.00017	43237
4	88.28	-0.00019	0.00145	0.00088	7.47	0.00018	41964
4	88.11	-0.00020	0.00144	0.00088	7.45	0.00018	42191
4	124.25	0.00026	0.00186	0.00131	10.51	0.00029	36705
4	125.58	0.00021	0.00187	0.00132	10.62	0.00028	37445
4	128.97	0.00025	0.00186	0.00144	10.91	0.00030	36804
4	125.91	0.00013	0.00187	0.00133	10.65	0.00028	38424
4	124.41	-0.00026	0.00186	0.00133	10.52	0.00024	43080
4	175.76	-0.00025	0.00240	0.00197	14.07	0.00038	43653
4	175.82	0.00032	0.00240	0.00197	14.87	0.00039	38019
4	175.69	-0.00025	0.00240	0.00197	14.86	0.00034	43309
4	175.46	0.00021	0.00227	0.00197	14.84	0.00037	40030
2	48.99	0.00031	0.00108	0.00050	4.14	0.00016	26279
2	48.78	-0.00034	0.00096	0.00049	4.13	0.00009	44588
2	48.72	0.00019	0.00096	0.00049	4.12	0.00014	30241
2	49.01	-0.00032	0.00096	0.00049	4.14	0.00009	43935
2	49.14	0.00021	0.00096	0.00049	4.16	0.00014	29953
2	85.77	-0.00024	0.00149	0.00092	7.25	0.00018	40123
2	88.07	0.00020	0.00162	0.00092	7.46	0.00023	32/23
2	88.20	-0.00030	0.00161	0.00092	7.45	0.00024	41387
2	88.09	-0.00023	0.00149	0.00092	7.45	0.00018	42505
2	124.87	-0.00028	0.00199	0.00138	10.56	0.00026	41029
2	124.81	-0.00027	0.00199	0.00138	10.56	0.00026	40866
2	124.90	0.00026	0.00199	0.00139	10.56	0.00030	34881
2	124.60	-0.00030	0.00199	0.00138	10.54	0.00026	41134
2	127.18	-0.00029	0.00199	0.00126	10.76	0.00025	43464
2	176.20	0.00022	0.00260	0.00196	14.90	0.00040	37410
2	175.68	0.00035	0.00259	0.00196	14.86	0.00041	36389
2	176.45	-0.00020	0.00248	0.00196	14.92	0.00035	42160
2	175.59	-0.00030	0.00247	0.00196	14.85	0.00034	43161
2	173.00	0.00033	0.00200	0.00190	14.07	0.00041	30525

Table J.51: Resilient modulus data (A_1_75_105)

σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	53.74	-0.00031	0.00034	0.00032	4.55	0.00003	152185
8	51.30	0.00038	0.00034	0.00032	4.34	0.00009	50111
8	51.17	-0.00031	0.00034	0.00033	4.33	0.00003	145276
0	51.16	-0.00038	0.00034	0.00033	4.33	0.00002	54031
8	87.34	0.00048	0.00059	0.00048	7.39	0.00013	57220
8	87.19	-0.00027	0.00059	0.00048	7.37	0.00007	110600
8	87.50	0.00037	0.00059	0.00048	7.40	0.00012	61697
8	87.23	0.00041	0.00059	0.00048	7.38	0.00012	59491
8	87.32	-0.00044	0.00059	0.00048	7.39	0.00005	140076
8	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
8	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
8	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
8	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
8	175.09	0.00081	0.00128	0.00092	14.81	0.00025	58821
8	172.68	0.00085	0.00129	0.00092	14.60	0.00026	57248
8	175.71	0.00084	0.00129	0.00093	14.86	0.00025	58332
8	173.26	0.00071	0.00129	0.00105	14.65	0.00025	57673
8	173.03	0.00092	0.00129	0.00093	14.63	0.00026	55946
6	48.75	-0.00040	0.00024	0.00026	4.12	0.00001	505531
6	40.00	0.00049	0.00025	0.00026	4.13	0.00008	62045
6	48.90	0.00034	0.00024	0.00026	4.33	0.00007	61419
6	51.01	0.00058	0.00025	0.00026	4.31	0.00009	47612
6	87.41	0.00050	0.00050	0.00040	7.39	0.00012	63281
6	87.34	0.00037	0.00050	0.00040	7.39	0.00011	69724
6	87.55	0.00033	0.00050	0.00052	7.40	0.00011	65744
6	87.50	0.00058	0.00050	0.00040	7.40	0.00012	60035
6	87.64	0.00052	0.00050	0.00040	7.41	0.00012	62122
6	123.71	0.00075	0.00083	0.00063	10.46	0.00018	55419
6	124.14	0.00061	0.00083	0.00063	10.50	0.00013	61392
6	128.15	0.00055	0.00083	0.00063	10.84	0.00017	64831
6	123.76	0.00066	0.00083	0.00063	10.47	0.00018	59466
6	173.16	0.00102	0.00128	0.00098	14.65	0.00027	53531
6	173.47	0.00080	0.00117	0.00098	14.67	0.00025	59708
6	175.55	0.00115	0.00128	0.00098	14.85	0.00028	52310
6	175.33	0.00073	0.00116	0.00098	14.83	0.00024	61909
6	1/5.3/	0.00077	0.00129	0.00098	14.83	0.00025	58584
4	50.92	0.00040	0.00020	0.00023	4.33	0.00007	61425
4	48.55	-0.00030	0.00033	0.00024	4.11	0.00002	181834
4	48.61	-0.00027	0.00021	0.00036	4.11	0.00003	163738
4	51.19	0.00032	0.00021	0.00024	4.33	0.00006	67400
4	85.61	0.00054	0.00042	0.00050	7.24	0.00012	59793
4	88.02	0.00048	0.00042	0.00050	7.44	0.00012	63920
4	85.47	-0.00033	0.00042	0.00049	7.23	0.00005	149489
4	88.11	0.00044	0.00035	0.00049	7.24	0.00012	69075
4	124.45	0.00074	0.00077	0.00072	10.53	0.00019	56611
4	123.98	0.00067	0.00077	0.00073	10.49	0.00018	58112
4	124.99	0.00081	0.00077	0.00060	10.57	0.00018	58319
4	127.26	0.00052	0.00076	0.00061	10.76	0.00016	68273
4	124.61	0.00073	0.00077	0.00061	10.54	0.00018	59896
4	175.63	0.00126	0.00122	0.00091	14.85	0.00028	52514
4	175.76	0.00099	0.00123	0.00091	14.87	0.00023	56933
4	173.53	0.00098	0.00123	0.00092	14.68	0.00026	56269
4	175.80	0.00094	0.00123	0.00103	14.87	0.00027	55766
2	49.16	0.00044	0.00025	0.00032	4.16	0.00008	49471
2	51.58	0.00025	0.00025	0.00032	4.36	0.00007	63953
2	51.44	-0.00034	0.00026	0.00032	4.35	0.00002	224658
2	50.99	0.00049	0.00025	0.00032	4.31	0.00009	48832
2	51.15	-0.00052	0.00025	0.00032	4.33	0.00000	1091310
2	88.00	0.00065	0.00050	0.00050	7.41	0.00014	62358
2	87.71	0.00050	0.00049	0.00050	7.42	0.00012	59498
2	87.71	0.00079	0.00049	0.00050	7.42	0.00015	50048
2	87.54	-0.00076	0.00049	0.00050	7.40	0.00002	384317
2	125.22	0.00093	0.00084	0.00072	10.59	0.00021	51253
2	126.82	0.00080	0.00084	0.00071	10.73	0.00020	54605
2	125.45	0.00088	0.00084	0.00072	10.61	0.00020	52133
2	124.72	0.00086	0.00084	0.00072	10.55	0.00020	52271
2	124.43	0.00066	0.00084	0.00072	10.52	0.00018	5/089
2	175.67	0.00108	0.00122	0.00101	14.92	0.00028	53970
2	176.22	0.00102	0.00122	0.00101	14.90	0.00027	55165
2	178.53	0.00101	0.00122	0.00101	15.10	0.00027	56030
2	176.05	0.00135	0.00122	0.00101	14.89	0.00030	49894

Table J.52: Resilient modulus data (A_2_75_105)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	52.92	0.00090	-0.00030	0.00123	4.48	0.00015	29339
8	48.58	0.00084	-0.00030	0.00123	4.11	0.00015	27805
8	47.86	0.00080	-0.00029	0.00109	4.05	0.00013	30428
8	47.69	0.00077	-0.00029	0.00121	4.03	0.00014	28584
8	50.15 85.51	0.00078	-0.00030	0.00121	4.24	0.00014	30562
8	87.65	0.00120	-0.00050	0.00204	7.41	0.00023	28538
8	84 47	0.00139	-0.00050	0.00203	7.14	0.00020	29200
8	84.62	0.00152	-0.00050	0.00205	7.16	0.00026	28064
8	84.53	0.00150	-0.00050	0.00204	7.15	0.00025	28246
8	121.41	0.00203	-0.00070	0.00323	10.27	0.00038	26979
8	121.28	0.00213	-0.00070	0.00322	10.26	0.00039	26461
8	121.72	0.00221	-0.00070	0.00323	10.29	0.00040	26032
8	121.48	0.00201	-0.00070	0.00323	10.27	0.00038	27162
8	123.83	0.00224	-0.00070	0.00323	10.47	0.00040	26353
8	172.90	0.00303	-0.00084	0.00503	14.62	0.00060	24308
8	172.87	0.00327	-0.00083	0.00490	14.62	0.00061	23911
8	172.81	0.00322	-0.00083	0.00489	14.02	0.00063	24090
8	172.64	0.00307	-0.00082	0.00488	14.60	0.00059	24557
6	48.37	0.00131	-0.00067	0.00115	4.09	0.00015	27350
6	48.46	0.00102	-0.00067	0.00116	4.10	0.00013	32634
6	45.94	0.00094	-0.00067	0.00115	3.89	0.00012	32801
6	48.60	0.00100	-0.00067	0.00116	4.11	0.00012	32967
6	45.88	0.00089	-0.00067	0.00116	3.88	0.00012	33718
6	85.06	0.00183	-0.00096	0.00212	7.19	0.00025	28968
6	86.01	0.00180	-0.00096	0.00224	7.27	0.00026	28429
6	88.42	0.00191	-0.00096	0.00211	7.48	0.00025	29330
6	84.76	0.00174	-0.00096	0.00224	7.17	0.00025	28476
6	124.32	0.00189	-0.00096	0.00212	10.51	0.00023	265394
6	124.52	0.00255	-0.00120	0.00348	10.31	0.00040	25544
6	121.83	0.00266	-0.001120	0.00348	10.30	0.00041	25024
6	124.00	0.00283	-0.00119	0.00347	10.49	0.00043	24644
6	124.66	0.00256	-0.00120	0.00336	10.54	0.00039	26784
6	173.35	0.00369	-0.00121	0.00537	14.66	0.00065	22403
6	172.85	0.00366	-0.00132	0.00536	14.62	0.00064	22802
6	173.27	0.00381	-0.00132	0.00536	14.65	0.00065	22418
6	173.10	0.00368	-0.00120	0.00535	14.64	0.00065	22431
6	173.27	0.00378	-0.00132	0.00535	14.65	0.00065	22494
4	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
4	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
4	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
4	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
4	83.85	0.00204	-0.00118	0.00222	7.09	0.00026	27654
4	85.07	0.00205	-0.00118	0.00222	7.19	0.00026	27992
4	86.15	0.00194	-0.00118	0.00234	7.29	0.00026	28216
4	85.29	0.00202	-0.00105	0.00221	7.21	0.00027	27216
4	85.32	0.00191	-0.00117	0.00221	7.22	0.00025	29397
4	122.38	0.00268	-0.00136	0.00355	10.35	0.00041	25481
4	122.27	0.00269	-0.00136	0.00354	10.34	0.00041	23457
4	122.19	0.00289	-0.00136	0.00355	10.55	0.00042	25483
4	121.96	0.00283	-0.00136	0.00355	10.32	0.00042	24649
4	170.89	0.00398	-0.00148	0.00552	14.45	0.00067	21618
4	170.56	0.00404	-0.00147	0.00564	14.43	0.00068	21075
4	170.69	0.00387	-0.00148	0.00551	14.44	0.00066	21897
4	173.24	0.00392	-0.00147	0.00564	14.65	0.00067	21759
4	173.11	0.00395	-0.00147	0.00563	14.64	0.00068	21663
2	45.85	0.00121	-0.00082	0.00114	3.88	0.00013	30371
2	45.80	0.00112	-0.00070	0.00114	3.87	0.00013	29824
2	46.08	0.00115	-0.00070	0.00114	3.90	0.00013	29404
2	46.26	0.00115	-0.00070	0.00114	3.09	0.00012	29508
2	83.19	0.00199	-0.00120	0.00233	7.04	0.00026	27068
2	85.41	0.00168	-0.00120	0.00233	7.22	0.00023	30955
2	85.54	0.00200	-0.00120	0.00233	7.23	0.00026	27809
2	83.40	0.00227	-0.00120	0.00233	7.05	0.00028	24904
2	83.12	0.00225	-0.00120	0.00233	7.03	0.00028	25039
2	123.79	0.00295	-0.00152	0.00370	10.47	0.00043	24539
2	128.18	0.00282	-0.00152	0.00369	10.84	0.00042	26089
2	122.55	0.00314	-0.00152	0.00370	10.37	0.00044	23430
2	122.43	0.00293	-0.00152	0.00369	10.35	0.00042	24398
2	172.29	0.00292	-0.00152	0.00369	10.34	0.00042	24385
2	173.36	0.00401	-0.00167	0.00569	14.66	0.00067	21927
2	173.05	0.00429	-0.00166	0.00568	14.64	0.00069	21160
2	172.65	0.00413	-0.00166	0.00566	14.60	0.00068	21528
2	172.81	0.00402	-0.00166	0.00567	14.62	0.00067	21868

Table J.53: Resilient modulus data (A_3_15_100)

σ_3 [psi]	q[1b]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.59	0.00116	-0.00021	0.00020	4.37	0.00010	43147
8	48.67	0.00109	-0.00022	-0.00017	4.37	0.00006	70051
8	48.69	0.00112	-0.00022	0.00020	4.38	0.00009	44864
8	48.90	0.00109	-0.00022	0.00020	4.40	0.00009	46420
8	87.27	0.00203	-0.00038	0.00021	7.84	0.00017	43629
8	85.15	0.00208	-0.00037	0.00038	7.65	0.00017	41374
8	85.13	0.00203	-0.00037	0.00038	7.65	0.00017	42451
8	87.68	0.00182	-0.00038	0.00038	7.88	0.00015	48653
8	87.53	0.00201	-0.00038	0.00037	7.87	0.00017	44308
8	124.35	0.00292	-0.00064	0.00090	11.18	0.00026	39802
8	124.03	0.00304	-0.00064	0.00090	11.15	0.00027	38195
8	121.04	0.00293	-0.00064	0.00077	11.13	0.00026	39705
8	124.03	0.00314	-0.00064	0.00090	11.15	0.00028	37142
8	173.01	0.00386	-0.00090	0.00224	15.55	0.00043	33720
8	173.00	0.00420	-0.00089	0.00224	15.55	0.00046	31609
8	173.12	0.00416	-0.00089	0.00224	15.56	0.00046	31903
8	175.65	0.00424	-0.00088	0.00224	15.79	0.00047	31845
8	175.32	0.00414	-0.00088	0.00224	15.76	0.00046	32326
6	48.37	0.00135	-0.00050	-0.00021	4.55	0.00007	94686
6	48.44	0.00136	-0.00050	-0.00021	4.35	0.00005	76322
6	48.41	0.00118	-0.00050	-0.00021	4.35	0.00004	105488
6	48.35	0.00131	-0.00050	-0.00021	4.35	0.00005	81962
6	85.13	0.00252	-0.00083	-0.00046	7.65	0.00010	70376
6	84.95	0.00245	-0.00083	-0.00034	7.64	0.00011	67675
6	84.85	0.00259	-0.00083	-0.00034	7.63	0.00012	60324
6	84.99	0.00261	-0.00083	-0.00034	7.64	0.00012	60080
6	85.11	0.00244	-0.00083	-0.00034	11.47	0.00011	67604
6	127.02	0.00371	-0.00115	0.00045	11.47	0.00024	41818
6	124.12	0.00374	-0.00114	0.00046	11.16	0.00026	41149
6	124.46	0.00354	-0.00115	0.00046	11.19	0.00024	44278
6	124.21	0.00339	-0.00114	0.00046	11.16	0.00023	46385
6	173.25	0.00475	-0.00144	0.00197	15.57	0.00044	33283
6	173.19	0.00466	-0.00143	0.00197	15.57	0.00043	33809
6	173.36	0.00473	-0.00144	0.00198	15.58	0.00044	33369
6	173.05	0.00498	-0.00143	0.00197	15.55	0.00046	31951
4	46.69	0.00162	-0.00051	-0.00032	4.20	0.00007	60182
4	46.59	0.00155	-0.00051	-0.00032	4.19	0.00006	65401
4	46.80	0.00156	-0.00051	-0.00032	4.21	0.00006	65318
4	46.48	0.00151	-0.00063	-0.00032	4.18	0.00005	83509
4	46.59	0.00140	-0.00063	-0.00032	4.19	0.00004	105313
4	84.92	0.00281	-0.00094	-0.00046	7.63	0.00012	61198
4	85.40	0.00287	-0.00094	-0.00047	7.68	0.00012	59057
4	84.86	0.00279	-0.00094	-0.00047	7.60	0.00012	71738
4	85.37	0.00253	-0.00094	-0.00047	7.67	0.00009	77117
4	124.60	0.00390	-0.00127	-0.00046	11.20	0.00018	58297
4	124.48	0.00383	-0.00127	0.00039	11.19	0.00025	42760
4	124,63	0.00380	-0.00127	-0.00034	11.20	0.00018	57694
4	124.69	0.00385	-0.00127	0.00039	11.21	0.00025	42627
4	124.58	0.00380	-0.00126	0.00039	11.20	0.00024	43208
4	173.12	0.00510	-0.00164	0.00187	15.50	0.00045	32039
4	173.27	0.00527	-0.00164	0.00187	15.58	0.00046	31990
4	173.15	0.00508	-0.00164	0.00187	15.56	0.00044	33106
4	172.98	0.00527	-0.00164	0.00187	15.55	0.00046	31917
2	46.50	0.00166	-0.00059	-0.00041	4.18	0.00005	71589
2	46.49	0.00133	-0.00059	-0.00041	4.18	0.00003	141112
2	46.63	0.00168	-0.00059	-0.00041	4.19	0.00006	69937
2	40.41	0.00151	-0.00059	-0.00041	4.17	0.00004	92900
2	85.68	0.00287	-0.00109	-0.00053	7,70	0.00010	69704
2	85.46	0.00312	-0.00109	-0.00053	7.68	0.00012	57860
2	85.32	0.00275	-0.00109	-0.00052	7.67	0.00009	76390
2	85.61	0.00291	-0.00109	-0.00053	7.70	0.00011	67505
2	85.17	0.00296	-0.00109	-0.00053	7.66	0.00011	64258
2	124.90	0.00421	-0.00146	-0.00046	11.23	0.00019	55431
2	124.73	0.00396	-0.00146	-0.00046	11.21	0.00017	61853
2	124.38	0.00400	-0.00145	-0.00046	11.18	0.00018	60383
2	124.69	0.00403	-0.00145	-0.00046	11.21	0.00018	59643
2	173.48	0.00541	-0.00181	0.00172	15.59	0.00044	33111
2	174.48	0.00562	-0.00181	0.00172	15.68	0.00046	32052
2	178.21	0.00543	-0.00181	0.00172	16.02	0.00044	33911
2	176.08	0.00547	-0.00181	0.00172	15.83	0.00045	33194
2	173.57	0.00534	-0.00180	0.00172	15.60	0.00044	53469

Table J.54: Resilient modulus data (A_4_15_100)

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#3} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	40.79	0.00032	0.00037	0.00024	3.45	0.00008	44580
8	40.78	-0.00032	0.00038	-0.00012	3.45	-0.00001	-668505
8	40.76	-0.00035	0.00038	0.00024	3.45	0.00002	157313
8	43.20	-0.00032	0.00038	-0.00013	3.66	0.00003	-6279161
8	73.24	0.00038	0.00060	0.00027	6.19	0.00010	59252
8	73.21	0.00029	0.00072	0.00027	6.19	0.00011	57984
8	75.43	0.00037	0.00060	0.00027	6.38	0.00010	62122
8	75.54	0.00032	0.00060	0.00027	6.39	0.00010	64337
8	75.49	0.00030	0.00060	0.00027	6.39	0.00010	65733
8	112.36	0.00050	0.00097	0.00032	9.50	0.00015	63480
8	112.48	0.00049	0.00097	0.00032	9.51	0.00015	63920
8	112.53	0.00052	0.00097	0.00032	9.52	0.00015	62996
8	112.41	0.00052	0.00097	0.00032	9.51	0.00015	59041
8	157.28	0.00067	0.00149	0.00051	13.30	0.00022	59873
8	157.24	0.00091	0.00137	0.00064	13.30	0.00024	54731
8	157.14	0.00072	0.00137	0.00051	13.29	0.00022	61476
8	157.33	0.00074	0.00148	0.00051	13.31	0.00023	58470
8	158.29	0.00059	0.00148	0.00051	13.39	0.00022	62155
6	41.77	-0.00027	0.00037	0.00015	3.53	0.00002	174373
6	45.13	-0.00019	0.00037	0.00015	3.82	0.00003	139542
6	38.19	-0.00033	0.00037	0.00015	3.23	0.00002	205382
6	40.56	-0.00039	0.00037	0.00015	3.43	0.00008	139699
6	73.27	0.00022	0.00074	0.00016	6.20	0.00002	67490
6	74.65	-0.00032	0.00074	0.00016	6.31	0.00005	129935
6	74.09	0.00032	0.00074	0.00016	6.27	0.00010	61516
6	72.79	0.00042	0.00074	0.00016	6.16	0.00011	55653
6	72.78	0.00032	0.00074	0.00016	6.16	0.00010	60753
6	112.62	0.00061	0.00110	0.00021	9.52	0.00016	59578
6	112.69	0.00059	0.00111	0.00021	9.53	0.00016	60047
6	112.48	0.00048	0.00109	0.00021	9.51	0.00015	63714
6	112.48	0.00035	0.00109	0.00021	9.51	0.00014	56857
6	157.66	0.00067	0.00163	0.00040	13.33	0.00017	59437
6	159.01	0.00091	0.00162	0.00040	13.45	0.00024	55036
6	158.33	0.00077	0.00163	0.00040	13.39	0.00023	57382
6	157.16	0.00064	0.00162	0.00040	13.29	0.00022	59816
6	157.26	0.00077	0.00163	0.00040	13.30	0.00023	57101
4	37.36	0.00030	0.00039	-0.00013	3.16	0.00005	68183
4	40.74	0.00026	0.00039	-0.00013	3.45	0.00004	79486
4	36.20	-0.00033	0.00039	-0.00013	3.07	-0.00001	-486423
4	36.26	0.00021	0.00039	-0.00014	3.07	0.00004	79335
4	71.03	0.00040	0.00082	-0.00017	6.01	0.00009	68821
4	71.95	0.00029	0.00082	-0.00017	6.08	0.00008	78102
4	74.80	-0.00686	0.00337	-0.00260	6.33	-0.00051	-12453
4	73.45	0.00033	0.00081	-0.00017	6.21	0.00008	76227
4	73.24	0.00027	0.00081	-0.00017	6.19	0.00008	81912
4	112.89	0.00041	0.00121	-0.00017	9.55	0.00012	78793
4	112.85	0.00059	0.00133	-0.00016	9.54	0.00015	76040
4	112.94	0.00045	0.00133	-0.00029	9.55	0.00012	61983
4	110.46	0.00051	0.00133	-0.00016	9.34	0.00014	66931
4	157.40	0.00071	0.00179	-0.00022	13.31	0.00019	70070
4	157.44	0.00087	0.00179	-0.00022	13.32	0.00020	65474
4	157.46	0.00070	0.00179	-0.00022	13.32	0.00019	70465
4	157.40	0.00082	0.00179	-0.00022	13.31	0.00020	66919
4	155.00	0.00090	0.00179	-0.00022	13.11	0.00021	63608
2	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
2	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
2	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
2	0.00	0.00000	0.00000	0.00000	0.00	0.00000	#DIV/0!
2	71.08	0.00041	0.00079	-0.00027	6.01	0.00008	77470
2	70.99	-0.00027	0.00080	-0.00027	6.00	0.00002	285801
2	70.93	-0.00025	0.00091	-0.00015	6.00	0.00004	139658
2	70.77	0.00039	0.00080	-0.00015	5.99	0.00009	69867
2	70.73	0.00046	0.00079	-0.00027	5.98	0.00008	73020
2	111.45	0.00067	0.00135	-0.00022	9.43	0.00015	62832
2	111.44	0.00051	0.00136	-0.00022	9.43	0.00014	68711
2	111.45	0.00070	0.00135	-0.00022	9.43	0.00015	67/17
2	111 30	0.00052	0.00135	-0.00022	9.45	0.00014	68499
2	155.01	0.00090	0.00182	-0,00020	13.11	0.00021	62418
2	154.94	0.00089	0.00182	-0.00020	13.10	0.00021	62721
2	157.36	0.00094	0.00182	-0.00019	13.31	0.00021	62082
2	157.39	0.00073	0.00182	-0.00019	13.31	0.00020	67924
2	157.34	0.00112	0.00182	-0.00031	13.31	0.00022	60778

Table J.55: Resilient modulus data (A_1_12_100)

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.83	-0.00020	0.00008	0.00059	4.30	0.00004	107946
8	51.86	-0.00020	-0.00016	0.00059	4.39	0.00002	225431
8	55.34	0.00030	0.00008	0.00058	4.68	0.00008	58110
8	51.05	-0.00036	-0.00016	0.00059	4.32	0.00001	710259
8	87.47	-0.00031	-0.00016	0.00039	4.27	0.00001	455081
8	87.62	-0.00025	-0.00015	0.00109	7.40	0.00015	131136
8	87.57	-0.00026	0.00022	0.00108	7.41	0.00009	86097
8	87.52	0.00020	0.00021	0.00108	7.40	0.00012	59441
8	87.65	0.00027	0.00021	0.00107	7.41	0.00013	57231
8	124.06	0.00035	0.00025	0.00150	10.49	0.00017	60069
8	121.67	-0.00033	0.00025	0.00162	10.29	0.00013	80157
8	124.07	-0.00025	0.00024	0.00162	10.49	0.00013	77821
8	124.24	0.00029	0.00025	0.00162	10.51	0.00018	58359
8	124.17	0.00044	0.00025	0.00162	10.50	0.00019	54621
8	173.46	0.00044	0.00038	0.00235	14.64	0.00026	55850
8	172.69	0.00041	0.00038	0.00235	14.61	0.00020	55844
8	172.65	0.00028	0.00038	0.00235	14.60	0.00025	58253
8	175.11	0.00044	0.00038	0.00235	14.81	0.00026	56109
6	51.22	0.00028	-0.00014	0.00059	4.33	0.00006	71290
6	51.05	-0.00032	-0.00014	0.00059	4.32	0.00001	405699
6	51.25	0.00026	-0.00014	0.00059	4.33	0.00006	74227
6	51.24	-0.00027	-0.00014	0.00058	4.33	0.00001	292336
6	51.16	0.00020	-0.00014	0.00059	4.33	0.00005	79543
6	88.69	0.00028	-0.00017	0.00107	7.50	0.00010	75898
6	91.04	-0.00020	-0.00017	0.00107	7.70	0.00006	56737
6	87.22	-0.00029	-0.00017	0.00107	7 38	0.00015	148475
6	87.43	0.00024	-0.00016	0.00106	7.39	0.00009	78312
6	124.22	-0.00033	-0.00017	0.00167	10.51	0.00010	108416
6	124.07	-0.00026	0.00019	0.00167	10.49	0.00013	78685
6	124.04	0.00026	0.00007	0.00167	10.49	0.00017	62948
6	124.03	-0.00020	0.00019	0.00167	10.49	0.00014	76014
6	123.96	0.00037	-0.00017	0.00167	10.48	0.00016	67456
0	172.71	0.00042	0.00020	0.00252	14.01	0.00026	55755
6	172.72	0.00064	0.00033	0.00252	14.01	0.00029	55966
6	172.71	0.00032	0.00021	0.00253	14.61	0.00025	57414
6	172.58	-0.00199	0.00045	0.00251	14.60	0.00008	179377
4	51.58	0.00019	-0.00008	0.00069	4.36	0.00007	65821
4	51.66	-0.00032	-0.00007	0.00069	4.37	0.00002	178049
4	51.50	-0.00027	-0.00008	0.00069	4.36	0.00003	154331
4	51.63	-0.00038	-0.00007	0.00069	4.37	0.00002	221466
4	51.70	-0.00020	-0.00008	0.00068	4.37	0.00003	127707
4	89.20	0.00028	-0.00015	0.00124	7.44	0.00011	61779
4	90.21	-0.00020	-0.00013	0.00124	7.63	0.00007	101972
4	88.32	0.00033	-0.00014	0.00124	7.47	0.00012	62999
4	88.07	0.00038	-0.00015	0.00124	7.45	0.00012	61000
4	124.38	0.00037	-0.00017	0.00183	10.52	0.00017	62402
4	126.95	0.00025	-0.00018	0.00183	10.74	0.00016	67630
4	124.51	0.00039	-0.00017	0.00183	10.53	0.00017	61718
4	126.90	0.00049	-0.00017	0.00183	10.73	0.00018	60097
4	124.50	0.00033	-0.00018	0.00183	10.53	0.00017	58975
4	175.21	0.00049	-0.00018	0.00273	14.85	0.00025	58599
4	174.09	0.00050	-0.00018	0.00272	14.72	0.00025	58117
4	178.87	0.00044	-0.00019	0.00273	15.13	0.00025	60945
4	173.23	0.00055	-0.00018	0.00273	14.65	0.00026	56821
2	51.33	-0.00025	0.00012	0.00071	4.34	0.00005	88675
2	51.39	0.00036	0.00013	0.00071	4.35	0.00010	43694
2	48.72	0.00034	0.00013	0.00071	4.12	0.00010	42145
2	51.37	0.00034	0.00013	0.00072	4.34	0.00010	44188
2	49.11	-0.00026	-0.00013	0.00072	4.15	0.00005	61044
2	85.87	0.00020	-0.00016	0.00133	7.26	0.00012	56968
2	86.00	0.00035	-0.00015	0.00120	7,27	0.00012	62042
2	88.22	0.00039	-0.00016	0.00120	7.46	0.00012	62471
2	85.89	0.00030	-0.00016	0.00132	7.26	0.00012	59487
2	124.12	0.00034	-0.00028	0.00186	10.50	0.00016	65360
2	124.32	0.00035	-0.00015	0.00186	10.51	0.00017	61312
2	124.40	0.00032	-0.00016	0.00186	10.52	0.00017	62453
2	126.85	0.00049	-0.00016	0.00186	10.73	0.00018	58789
2	124.20	0.00039	-0.00016	0.00186	10.50	0.00017	60847
2	173.68	0.00057	-0.00028	0.00276	14 69	0.00025	58019
2	173.25	0.00054	-0.00016	0.00275	14.65	0.00026	56159
2	175.57	0.00057	-0.00015	0.00275	14.85	0.00026	56252
2	173.91	0.00050	-0.00015	0.00288	14.71	0.00027	54688

Table J.56: Resilient modulus data (A_2_12_100)

σ_{i} [psi]	qпы	$\hat{\delta}_{\text{LVDTF1}}$ [in.]	$\hat{\delta}_{\text{LVDT22}}$ [in.]	$\hat{\delta}_{\text{LVDTR3}}$ [in.]	σ_{DEV} [psi]	£ [-]	M _R [psi]
8	48.43	0.00050	0.00064	-0.00035	4.63	0.00007	66043
8	48.34	0.00050	0.00052	-0.00034	4.62	0.00006	77458
8	48.57	0.00064	0.00051	-0.00035	4.55	0.00007	63356
8 8	48.65	0.00069	0.00051	-0.00035	4.62	0.00008	50343 78364
8	85.41	0.00074	0.00105	-0.00038	7.83	0.00012	63037
8	87.80	0.00090	0.00105	-0.00038	7.82	0.00014	56424
8	85.19	0.00072	0.00105	-0.00038	7.83	0.00012	63378
8	85.68	0.00085	0.00106	-0.00038	7.85	0.00014	57866
8	86.90	0.00071	0.00106	-0.00038	8.03	0.00012	65492
。 8	124.14	0.00112	0.00174	-0.00057	11.20	0.00020	54166
8	125.22	0.00107	0.00174	-0.00046	11.17	0.00021	53477
8	125.22	0.00122	0.00187	-0.00046	11.40	0.00023	48940
8	124.46	0.00101	0.00175	-0.00046	11.16	0.00020	54879
8	172.85	0.00156	0.00269	-0.00058	15.54	0.00033	47814
ð s	1/2./4	0.00167	0.00268	-0.00058	15.78	0.00034	46235
8	172.81	0.00182	0.00281	-0.00058	15.53	0.00036	43042
8	173.59	0.00168	0.00269	-0.00058	15.84	0.00034	47180
6	48.87	0.00062	0.00058	-0.00046	4.55	0.00007	69745
6	48.88	0.00068	0.00059	-0.00046	4.58	0.00007	64443
6	48.86	0.00042	0.00071	-0.00046	4.58	0.00006	78173
6	43.03	0.00065	0.00058	-0.00046	4.55 4.55	0.00007	62383
6	85.13	0.00100	0.000115	-0.00070	7.84	0.00013	61036
6	87.47	0.00086	0.00128	-0.00071	7.91	0.00013	62441
6	87.70	0.00093	0.00115	-0.00070	7.99	0.00012	65074
6	87.47	0.00103	0.00115	-0.00070	8.14	0.00013	62012
6	85.16	0.00103	0.00115	-0.00070	7.66	0.00013	58469
6	124.00	0.00154	0.00130	-0.00083	11.17	0.00023	40111
6	124.33	0.00152	0.00189	-0.00082	11.17	0.00023	48712
6	124.81	0.00150	0.00190	-0.00083	11.16	0.00023	49061
6	124.62	0.00135	0.00189	-0.00082	11.15	0.00021	52056
6	175.68	0.00193	0.00295	-0.00082	15.79	0.00036	43936
6	175.70	0.00186	0.00283	-0.00082	15.80	0.00034	46083
6	173.99	0.00182	0.00294	-0.00082	15.53	0.00035	44522
6	177.29	0.00193	0.00294	-0.00082	15.52	0.00036	43251
4	46.40	0.00080	0.00064	-0.00047	4.66	0.00009	54516
4	48.91	0.00061	0.00065	-0.00048	4.57	0.00007	66604
4	40.43	0.00055	0.00064	-0.00047	4.00	0.00007	69573
4	48.68	0.00057	0.00064	-0.00047	4.44	0.00006	68645
4	85.45	0.00114	0.00127	-0.00075	7.70	0.00015	52621
4	85.39	0.00105	0.00127	-0.00075	7.71	0.00014	55639
4	85.13	0.00106	0.00127	-0.00076	7.92	0.00014	56954
4	86.05	0.00103	0.00114	-0.00075	7.34	0.00013	52347 72067
4	129.22	0.00147	0.00120	-0.00030	11.16	0.00022	49668
4	124.52	0.00153	0.00197	-0.00090	11.17	0.00023	48544
4	124.87	0.00140	0.00197	-0.00090	11.16	0.00022	51024
4	124.84	0.00159	0.00197	-0.00090	11.16	0.00024	47410
4	124.85	0.00154	0.00197	-0.00091	11.16	0.00023	48403
4	173.62	0.00203	0.00306	-0.00087	15.81	0.00037	42320
4	176.17	0.00198	0.00306	-0.00087	15.81	0.00037	42763
4	176.39	0.00195	0.00294	-0.00099	15.78	0.00034	45761
4	173.92	0.00208	0.00306	-0.00099	15.55	0.00037	42349
2	43.11	0.00074	0.00062	-0.00047	4.56	0.00008	58188
2	46.63	0.00047	0.00062	-0.00048	4.56	0.00005	86008
2	46.03	0.00050	0.00061	-0.00047	4.54	0.00006	80654
2	49.26	0.00074	0.00062	-0.00048	4.55	0.00008	58816
2	89.17	0.00097	0.00132	-0.00082	7.89	0.00013	60394
2	85.62	0.00089	0.00120	-0.00082	7.64	0.00011	57804
2	88.04	0.00113	0.00132	-0.00082	8,16	0.00014	56705
2	50.59	0.03832	0.05433	0.06913	7.91	0.01433	552
2	124.83	0.00151	0.00208	-0.00092	11.21	0.00024	47351
2	124.86	0.00134	0.00208	-0.00092	11.23	0.00022	50769
2	124.79	0.00146	0.00208	-0.00092	11.20	0.00023	48458
2	124.13	0.00143	0.00135	-0.00032	11.10	0.00022	47862
2	173.47	0.00219	0.00316	-0.00107	15.81	0.00038	41756
2	175.76	0.00214	0.00303	-0.00107	15.81	0.00036	43497
2	175.73	0.00212	0.00315	-0.00095	15.80	0.00038	41251
2	176.10	0.00210	0.00304	-0.00095	15.80	0.00037	42541
-	110.10	0.00210	0.00004	0.00000	0.00	0.00000	+1+00

Table J.57: Resilient modulus data (A_1_9_100)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	51.46	0.00027	0.00045	0.00035	4.35	0.00009	48740
8	51.44	-0.00037	0.00044	0.00035	4.35	0.00004	115937
8	50.66	0.00038	0.00045	0.00034	4.28	0.00010	41288
8	51.40	0.00041	0.00045	0.00035	4.35	0.00010	40596
8	50.87	-0.00033	0.00045	0.00035	4.30	0.00004	103771
8	87.09	0.00046	0.00085	0.00051	7.37	0.00015	45631
8	87.02	0.00044	0.00085	0.00051	7.36	0.00015	46086
8	87.09	0.00070	0.00085	0.00051	7.37	0.00017	40400
8	87.33	0.00036	0.00085	0.00051	7.39	0.00016	43384
8	124.62	-0.00044	0.00085	0.00032	10.54	0.00008	92229
8	124.03	0.00049	0.00124	0.00077	10.54	0.00021	47739
8	124.20	0.00051	0.00123	0.00089	10.51	0.00021	43581
8	124.25	0.00046	0.00124	0.00089	10.72	0.00023	46955
8	124.21	0.00068	0.00123	0.00089	10.51	0.00023	42440
8	172.88	0.00098	0.00183	0.00134	14.62	0.00035	39829
8	175.52	0.00064	0.00183	0.00133	14.84	0.00032	44144
8	175.32	0.00060	0.00183	0.00146	14.83	0.00032	43117
8	172.73	0.00068	0.00182	0.00134	14.61	0.00032	42984
8	176.25	0.00079	0.00183	0.00133	14.91	0.00033	42615
6	50.66	-0.00025	0.00040	0.00031	4.28	0.00004	105804
6	50.93	-0.00036	0.00040	0.00031	4.31	0.00003	138984
6	50.97	-0.00035	0.00040	0.00031	4.31	0.00003	135427
6	50.67	0.00035	0.00052	0.00031	4.29	0.00010	40884
6	50.64	0.00043	0.00039	0.00030	4.28	0.00009	43109
6	87.22	0.00045	0.00078	0.00052	7.38	0.00015	47435
6	88.00	0.00046	0.00078	0.00065	7.44	0.00016	44484
6	88.87	0.00051	0.00078	0.00065	7.52	0.00016	43919
6	90.61	0.00031	0.00078	0.00052	7.66	0.00013	53484
0	85.18	0.00057	0.00078	0.00052	7.20	0.00016	43505
6	124.27	0.00055	0.00127	0.00089	10.51	0.00022	44249
6	123.96	0.00073	0.00127	0.00089	10.49	0.00024	40833
6	124.24	0.00038	0.00127	0.00089	10.51	0.00023	46856
6	124.05	0.00062	0.00126	0.00089	10.49	0.00023	42916
6	175.66	0.00107	0.00199	0.00141	14.86	0.00037	37497
6	175.72	0.00092	0.00199	0.00140	14.86	0.00036	38918
6	172.93	0.00077	0.00199	0.00140	14.63	0.00035	39684
6	172.79	0.00098	0.00199	0.00139	14.61	0.00036	37849
6	172.65	0.00076	0.00198	0.00139	14.60	0.00034	40014
4	51.88	-0.00040	0.00042	0.00039	4.39	0.00003	119610
4	50.81	-0.00046	0.00042	0.00040	4.30	0.00003	135177
4	52.06	0.00037	0.00042	0.00039	4.40	0.00010	42158
4	49.47	0.00054	0.00042	0.00039	4.18	0.00011	34847
4	49.36	-0.00041	0.00041	0.00039	4.17	0.00003	122002
4	85.62	0.00049	0.00087	0.00068	7.24	0.00017	39976
4	85.79	-0.00048	0.00087	0.00068	7.26	0.00009	76549
4	88.16	0.00059	0.00087	0.00068	7.46	0.00018	39419
4	88.32	0.00046	0.00087	0.00067	7.47	0.00017	42111
4	85.70	-0.00043	0.00087	0.00067	1.25	0.00009	13759
4	124.18	0.00051	0.00123	0.00094	10.50	0.00022	44190
4	124.27	-0.00048	0.00124	0.00093	10.51	0.00015	65580
4	124 19	0.00062	0.00123	0.00092	10.50	0.00023	42724
4	124.15	0.00060	0.00135	0.00092	10.50	0.00024	41236
4	175.78	0.00083	0.00194	0.00143	14.87	0.00035	39938
4	175.89	0.00088	0.00195	0.00143	14.88	0.00035	39449
4	175.84	0.00070	0.00194	0.00144	14.87	0.00034	41208
4	175.58	0.00067	0.00194	0.00143	14.85	0.00034	41544
4	172.99	0.00089	0.00194	0.00143	14.63	0.00035	38829
2	50.69	0.00050	0.00041	0.00038	4.29	0.00011	37497
2	50.74	-0.00050	0.00042	0.00037	4.29	0.00002	164441
2	50.71	-0.00054	0.00042	0.00038	4.29	0.00002	188557
2	50.55	-0.00029	0.00042	0.00038	4.28	0.00004	95574
2	50.58	0.00041	0.00042	0.00038	4.28	0.00010	40022
2	87.80	-0.00034	0.00088	0.00066	7.43	0.00010	70258
2	85.03	0.00038	0.00088	0.00066	7.19	0.00016	42457
2	85.97	0.00043	0.00088	0.00065	7.27	0.00016	41970
2	90.83	-0.00039	0.00088	0.00066	7.08	0.00018	40500
2	124.72	-0.00038	0.00088	0.00066	10.55	0.00010	44102
2	124.72	0.00057	0.00120	0.00090	10.55	0.00023	41801
2	124.90	0.00045	0.00130	0.00090	10.50	0.00024	43507
2	124.33	0.00051	0.00126	0.00090	10.52	0.00022	44353
2	124.62	0.00057	0.00126	0.00090	10.54	0.00023	43434
2	175.90	0.00086	0.00194	0.00149	14.88	0.00036	39156
2	175.93	0.00096	0.00194	0.00148	14.88	0.00037	38313
2	175.78	0.00079	0.00194	0.00148	14.87	0.00035	39826
2	175.72	0.00093	0.00206	0.00136	14.86	0.00036	38584
2	173.08	0.00065	0.00206	0.00136	14.64	0.00034	40666

Table J.58: Resilient modulus data $(A_2_9_100)$

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.86	0.00040	0.00010	0.00069	4.30	0.00010	43220
8	51.10	0.00040	0.00010	0.00069	4.32	0.00010	43138
8	50.64	0.00040	0.00010	0.00069	4.28	0.00010	43149
8	51.00	0.00041	0.00010	0.00069	4.31	0.00010	43086
0	85.00	0.00044	0.00010	0.00089	7 19	0.00010	41777
8	87.23	0.00072	0.00015	0.00121	7.38	0.00017	42766
8	84.77	0.00075	0.00015	0.00120	7.17	0.00018	40749
8	87.73	0.00072	0.00020	0.00121	7.42	0.00018	41883
8	86.99	0.00075	0.00015	0.00120	7.36	0.00018	41889
8	126.92	0.00106	0.00022	0.00178	10.73	0.00025	42168
8	123.86	0.00110	0.00022	0.00182	10.48	0.00026	40054
8	121.39	0.00110	0.00022	0.00178	10.27	0.00026	39798
8	121.17	0.00110	0.00022	0.00177	10.25	0.00026	39831
8	123.99	0.00110	0.00022	0.00182	10.49	0.00026	40116
8	172.59	0.00163	0.00028	0.00265	14.60	0.00038	38401
0	172.04	0.00164	0.00028	0.00264	14.60	0.00038	38080
8	172.04	0.00159	0.00028	0.00263	14.52	0.00038	38772
8	172.49	0.00163	0.00028	0.00264	14.59	0.00038	38470
6	48.39	0.00041	0.00013	0.00068	4.09	0.00010	40223
6	48.43	0.00041	0.00013	0.00068	4.10	0.00010	40241
6	48.67	0.00041	0.00013	0.00068	4.12	0.00010	40407
6	48.30	0.00037	0.00013	0.00068	4.08	0.00010	41560
6	48.43	0.00037	0.00013	0.00068	4.10	0.00010	41554
6	84.50	0.00071	0.00017	0.00121	7.15	0.00017	40985
6	87.12	0.00075	0.00017	0.00122	7.37	0.00018	41377
6	87.96	0.00071	0.00017	0.00122	7.44	0.00018	42489
6	89.30	0.00071	0.00017	0.00122	7.55	0.00018	43107
6	123.02	0.00075	0.00017	0.00121	10.48	0.00018	39706
6	123.92	0.00106	0.00023	0.00182	10.48	0.00026	40825
6	123.85	0.00106	0.00025	0.00186	10.40	0.00026	39711
6	123.73	0.00109	0.00021	0.00182	10.46	0.00026	40270
6	123.87	0.00105	0.00021	0.00182	10.48	0.00026	40853
6	172.50	0.00159	0.00027	0.00273	14.59	0.00038	38134
6	172.57	0.00159	0.00027	0.00269	14.60	0.00038	38483
6	172.38	0.00159	0.00027	0.00273	14.58	0.00038	38147
6	172.55	0.00159	0.00027	0.00273	14.59	0.00038	38150
6	172.46	0.00159	0.00027	0.00268	14.59	0.00038	38533
4	48.25	0.00038	0.00015	0.00069	4.08	0.00010	39983
4	51.31	0.00034	0.00011	0.00039	4.17	0.00010	43910
4	49.13	0.00034	0.00011	0.00070	4 16	0.00010	43402
4	48.48	0.00038	0.00011	0.00070	4.10	0.00010	41523
4	87.96	0.00069	0.00020	0.00124	7.44	0.00018	41789
4	87.63	0.00069	0.00016	0.00124	7.41	0.00017	42557
4	87.76	0.00065	0.00020	0.00124	7.42	0.00017	42542
4	87.48	0.00069	0.00020	0.00124	7.40	0.00018	41734
4	85.17	0.00069	0.00016	0.00124	7.20	0.00017	41337
4	124.16	0.00103	0.00024	0.00189	10.50	0.00026	39771
4	123.90	0.00103	0.00024	0.00185	10.40	0.00026	40347
4	124.04	0.00099	0.00024	0.00189	10.52	0.00026	40328
4	124.26	0.00099	0.00024	0.00185	10.51	0.00026	40826
4	170.34	0.00152	0.00025	0.00278	14.41	0.00038	37939
4	172.79	0.00152	0.00029	0.00282	14.61	0.00039	37843
4	170.61	0.00152	0.00029	0.00283	14.43	0.00039	37292
4	172.67	0.00156	0.00029	0.00282	14.60	0.00039	37558
4	172.81	0.00152	0.00029	0.00278	14.62	0.00038	38201
2	48.88	0.00032	0.00017	0.00077	4.13	0.00010	39377
2	40.09	0.00028	0.00017	0.00077	4.14	0.00010	40473
2	48.96	0.00032	0.00017	0.00077	4.12	0.00011	39297
2	48.82	0.00032	0.00017	0.00077	4.13	0.00010	39353
2	87.64	0.00056	0.00027	0.00136	7.41	0.00018	40686
2	85.97	0.00060	0.00027	0.00136	7.27	0.00019	39227
2	87.94	0.00055	0.00022	0.00136	7.44	0.00018	41848
2	87.48	0.00059	0.00022	0.00136	7.40	0.00018	40820
2	87.85	0.00060	0.00023	0.00136	7.43	0.00018	40778
2	124.48	0.00091	0.00030	0.00203	10.53	0.00027	39133
2	125.47	0.00091	0.00029	0.00198	10.61	0.00027	39994
2	126.24	0.00087	0.00030	0.00202	10.85	0.00027	39500
2	124.33	0.02106	0.02629	0.01083	10.52	0.00027	2212
2	173.18	0.00135	0.00033	0.00297	14.65	0.00039	37828
2	173.09	0.00139	0.00033	0.00297	14.64	0.00039	37509
2	172.95	0.00139	0.00033	0.00297	14.63	0.00039	37457
2	170.49	0.00135	0.00033	0.00297	14.42	0.00039	37227
2	173.78	0.00138	0.00033	0.00297	14.70	0.00039	37603

Table J.59: Resilient modulus data (B_1_24_103)

σ, [psi]	qпы	$\delta_{\scriptscriptstyle m LVDTH}$ [in.]	$\delta_{\scriptscriptstyle m LVDT32}$ [in.]	$\delta_{\scriptscriptstyle m LVDT83}$ [in.]	σ_{DEV} [psi]	ε [-]	M _R [ps:
8	54.06	0.00049	0.00043	0.00048	4.57	0.00012	39384
8	53.90	0.00053	0.00042	0.00047	4.56	0.00012	38390
8	54.24	0.00053	0.00043	0.00052	4.59	0.00012	37315
8 8	51.63	0.00049	0.00047	0.00047	4.31	0.00012	36564
8	89.75	0.00030	0.00041	0.00041	7.59	0.00012	37145
8	87.41	0.00092	0.00075	0.00086	7.39	0.00021	34993
8	87.33	0.00088	0.00075	0.00086	7.39	0.00021	35594
8	87.31	0.00092	0.00075	0.00086	7.38	0.00021	35039
8	90.13	0.00085	0.00071	0.00086	7.62	0.00020	37822
8	126.36	0.00136	0.00105	0.00127	10.69	0.00031	34843
8	126.73	0.00132	0.00109	0.00127	10.72	0.00031	34875
。 。	120.01	0.00133	0.00105	0.00121	10.13	0.00030	34974
8	126.70	0.00132	0.00110	0.00127	10.40	0.00031	34755
8	172.34	0.00195	0.00143	0.00185	14.58	0.00044	33041
8	172.55	0.00200	0.00153	0.00186	14.59	0.00045	32527
8	174.96	0.00203	0.00149	0.00186	14.80	0.00045	33069
8	174.85	0.00195	0.00153	0.00185	14.79	0.00044	33326
8	174.30	0.00199	0.00153	0.00185	14.79	0.00045	33068
6	52.59	0.00055	0.00042	0.00048	4.45	0.00012	36909
8	52.02	0.00037	0.00046	0.00043	4.40	0.00012	38976
6	52.50	0.00041	0.00041	0.00040	4.44	0.00012	37582
6	53.37	0.00051	0.00046	0.00048	4.51	0.00012	37226
6	87.15	0.00091	0.00075	0.00085	7.37	0.00021	35296
6	87.55	0.00087	0.00076	0.00085	7.40	0.00021	35786
6	87.36	0.00087	0.00076	0.00085	7.39	0.00021	35722
6	87.93	0.00092	0.00076	0.00085	7.44	0.00021	35322
6	88.54	0.00087	0.00076	0.00085	7.49	0.00021	36164
6	124.26	0.00129	0.00110	0.00127	10.51	0.00030	34514
6	124.44	0.00133	0.00108	0.00121	10.52	0.00030	34839
6	123.90	0.00129	0.00110	0.00126	10.48	0.00030	34478
6	124.07	0.00132	0.00109	0.00126	10.49	0.00031	34200
6	175.19	0.00199	0.00158	0.00184	14.82	0.00045	32892
6	176.35	0.00200	0.00159	0.00189	14.91	0.00046	32665
6	175.14	0.00195	0.00153	0.00184	14.81	0.00044	33402
6	175.29	0.00196	0.00162	0.00184	14.83	0.00045	32867
6	115.50	0.00196	0.00162	0.00188	14.84	0.00046	32585
4	50.94	0.00030	0.00045	0.00048	4.35	0.00012	36274
4	51.12	0.00046	0.00045	0.00048	4.32	0.00012	37412
4	51.17	0.00050	0.00045	0.00048	4.33	0.00012	36444
4	50.95	0.00046	0.00045	0.00048	4.31	0.00012	37235
4	87.84	0.00087	0.00080	0.00086	7.43	0.00021	35236
4	89.91	0.00090	0.00080	0.00085	7.60	0.00021	35790
4	87.41	0.00086	0.00080	0.00085	7.39	0.00021	35306
4	81.31	0.00086	0.00075	0.00085	(.39	0.00021	35323
4	124 10	0.00006	0.00015	0.00005	1.30	0.00020	34080
4	123.99	0.00128	0.00114	0.00120	10.49	0.00031	34043
4	126.47	0.00132	0.00114	0.00123	10.70	0.00031	34791
4	126.47	0.00129	0.00118	0.00127	10.70	0.00031	34341
4	124.03	0.00132	0.00118	0.00122	10.49	0.00031	33771
4	172.67	0.00198	0.00165	0.00186	14.60	0.00046	31925
4	175.36	0.00194	0.00165	0.00182	14.83	0.00045	32837
4	175.44	0.00195	0.00165	0.00182	14.84	0.00045	32807
4	175.13	0.00199	0.00165	0.00187	14.82	0.00046	32261
2	51 75	0.00043	0.00002	0.00053	4.38	0.00045	36095
2	52.79	0.00039	0.00046	0.00053	4.47	0.00011	38826
2	53.48	0.00039	0.00050	0.00053	4.52	0.00012	38214
2	51.39	0.00043	0.00046	0.00053	4.35	0.00012	36695
2	51.00	0.00042	0.00046	0.00052	4.31	0.00012	36945
2	87.97	0.00085	0.00083	0.00087	7.44	0.00021	35048
2	88.12	0.00080	0.00083	0.00088	7.45	0.00021	35691
2	00.11 87.99	0.00085	0.00087	0.00088	1.45 7.44	0.00022	34531
2	87.99	0.00084	0.00083	0.00087	7.44	0.00021	35138
2	124.59	0.00123	0.00117	0.00131	10.54	0.00031	34061
2	124.78	0.00120	0.00121	0.00131	10.55	0.00031	34021
2	124.21	0.00127	0.00117	0.00131	10.51	0.00031	33619
2	124.50	0.00123	0.00121	0.00130	10.53	0.00031	33808
2	125.76	0.00123	0.00121	0.00131	10.64	0.00031	34040
2	175.88	0.00189	0.00173	0.00194	14.87	0.00046	32131
2	1/8.07	0.00189	0.00173	0.00193	15.06	0.00046	32585
ء 2	175.6.4	0.00189	0.00117	0.00193	14.00	0.00046	31887
2	175.38	0.00189	0.00173	0.00193	14.83	0.00046	32113

Table J.60: Resilient modulus data (B_2_24_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-] 3	M _R [psi]
8	50.81	0.00049	0.00030	0.00061	4.30	0.00012	36745
8	50.89	0.00049	0.00030	0.00061	4.30	0.00012	36922
8	50.96	0.00050	0.00029	0.00061	4.31	0.00012	37003
8	50.77	0.00049	0.00029	0.00060	4.29	0.00012	37098
8	84.68	0.00091	0.00059	0.00106	7.16	0.00021	33629
8	87.19	0.00087	0.00059	0.00106	7.37	0.00021	35107
8	84.90	0.00087	0.00055	0.00106	7.18	0.00021	34715
8	87.12	0.00087	0.00055	0.00106	7.37	0.00021	35676
8	124.28	0.00088	0.00056	0.00107	10.51	0.00021	34590
8	124.50	0.00130	0.00089	0.00160	10.53	0.00032	33296
8	124.45	0.00130	0.00089	0.00160	10.53	0.00032	33363
8	124.16	0.00126	0.00089	0.00156	10.50	0.00031	34072
8	126.81	0.00130	0.00089	0.00160	10.73	0.00032	34013
8	175.34	0.00182	0.00137	0.00231	14.83	0.00046	32302
8	179.85	0.00186	0.00137	0.00231	15.21	0.00046	32907
8	172.40	0.00182	0.00141	0.00231	14.58	0.00046	31612
8	172.57	0.00182	0.00137	0.00226	14.60	0.00045	32144
6	50.76	0.00052	0.00026	0.00065	4.29	0.00012	36090
6	48.28	0.00052	0.00030	0.00064	4.08	0.00012	33400
6	50.84	0.00056	0.00031	0.00065	4.30	0.00013	34125
6	40.47	0.00052	0.00031	0.00065	4.10	0.00012	33422
6	87.29	0.00089	0.00055	0.00113	7.38	0.00021	34466
6	85.12	0.00093	0.00055	0.00113	7.20	0.00022	33068
6	87.60	0.00093	0.00060	0.00114	7.41	0.00022	33432
6	87.65	0.00089	0.00056	0.00113	7.41	0.00021	34526
6	85.96	0.00088	0.00055	0.00113	10.59	0.00021	33956
6	125.20	0.00132	0.00090	0.00169	10.65	0.00032	32614
6	121.58	0.00128	0.00086	0.00165	10.28	0.00032	32544
6	124.18	0.00132	0.00086	0.00165	10.50	0.00032	32931
6	123.93	0.00132	0.00086	0.00164	10.48	0.00032	32910
6	175.36	0.00189	0.00136	0.00242	14.83	0.00047	31404
6	179.21	0.00189	0.00136	0.00241	14.90	0.00047	31557
6	172.59	0.00189	0.00136	0.00241	14.60	0.00047	30936
6	172.77	0.00189	0.00136	0.00241	14.61	0.00047	30953
4	48.50	0.00054	0.00031	0.00067	4.10	0.00013	32519
4	48.43	0.00057	0.00030	0.00067	4.10	0.00013	31849
4	48.17	0.00056	0.00030	0.00066	4.07	0.00013	32164
4	52 18	0.00056	0.00029	0.00066	4.10	0.00012	34981
4	86.40	0.00097	0.00054	0.00119	7.31	0.00022	32507
4	86.40	0.00097	0.00054	0.00119	7.31	0.00022	32523
4	86.34	0.00096	0.00054	0.00123	7.30	0.00023	32073
4	89.39	0.00093	0.00054	0.00119	7.56	0.00022	33964
4	124.06	0.00097	0.00054	0.00117	10.49	0.00022	31814
4	123.81	0.00136	0.00090	0.00177	10.47	0.00034	31198
4	126.18	0.00136	0.00090	0.00177	10.67	0.00034	31791
4	126.28	0.00136	0.00086	0.00177	10.68	0.00033	32110
4	124.04	0.00136	0.00090	0.00177	10.49	0.00034	31205
4	175.04	0.00193	0.00134	0.00258	14.82	0.00048	30417
4	175.18	0.00197	0.00134	0.00258	14.82	0.00049	30198
4	172.78	0.00193	0.00134	0.00258	14.61	0.00049	29986
4	172.66	0.00193	0.00138	0.00253	14.60	0.00049	29974
2	48.69	0.00061	0.00028	0.00065	4.12	0.00013	32012
2	48.28	0.00057	0.00028	0.00065	4.11	0.00013	33719
2	50.86	0.00057	0.00028	0.00069	4.30	0.00013	33584
2	50.65	0.00060	0.00028	0.00064	4.28	0.00013	33724
2	91.20	0.00099	0.00054	0.00125	7.71	0.00023	33286
2	87.94	0.00103	0.00054	0.00125	7.44	0.00023	31680
2	87.89	0.00099	0.00054	0.00125	7.43	0.00023	32138
2	87.50	0.00102	0.00053	0.00125	7.40	0.00023	31651
2	126.67	0.00141	0.00087	0.00189	10.71	0.00035	30784
2	124.25	0.00146	0.00087	0.00185	10.51	0.00035	30195
2	126.85	0.00142	0.00087	0.00185	10.73	0.00035	31062
2	124.41	0.00142	0.00087	0.00185	10.52	0.00035	30433
2	172.65	0.00142	0.00134	0.00270	14.60	0.00035	29053
2	173.06	0.00200	0.00134	0.00271	14.64	0.00050	29039
2	172.97	0.00200	0.00134	0.00271	14.63	0.00050	29032
2	173.11	0.00200	0.00134	0.00271	14.64	0.00050	29061
2	1/5.27	0.00200	0.00134	0.00270	14.82	0.00050	29443

Table J.61: Resilient modulus data (B_1_195_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.86	-0.00012	0.00072	0.00037	4.30	0.00008	53365
8	53.37	-0.00013	0.00072	0.00037	4.51	0.00008	56040
8	50.76	-0.00012	0.00072	0.00037	4.29	0.00008	53602
8	51.19	-0.00013	0.00073	0.00037	4.33	0.00008	53161
0	87.96	-0.00012	0.00072	0.00041	7.44	0.00016	45771
8	87.65	0.00019	0.00113	0.00058	7.41	0.00016	46686
8	87.78	0.00019	0.00117	0.00058	7.42	0.00016	45731
8	87.63	0.00015	0.00113	0.00062	7.41	0.00016	46742
8	87.94	0.00015	0.00113	0.00063	7.44	0.00016	46812
8	126.39	0.00043	0.00158	0.00083	10.69	0.00024	45037
8	123.80	0.00043	0.00158	0.00079	10.47	0.00023	44874
8	123.91	0.00039	0.00158	0.00083	10.48	0.00023	44856
8	123.69	0.00043	0.00158	0.00083	10.46	0.00024	44262
8	123.96	0.00043	0.00158	0.00083	10.48	0.00024	44348
8	1/2./6	0.00081	0.00221	0.00112	14.61	0.00034	42389
8	175.01	0.00081	0.00220	0.00116	14.80	0.00035	42588
0	175.08	0.00081	0.00220	0.00116	14.00	0.00035	42603
8	177.48	0.00081	0.00216	0.00112	15.01	0.00034	44119
6	51.13	-0.00014	0.00077	0.00040	4.32	0.00009	50248
6	51.18	-0.00014	0.00077	0.00040	4.33	0.00009	50263
6	51.15	-0.00015	0.00077	0.00040	4.33	0.00009	50410
6	50.80	-0.00018	0.00072	0.00040	4.30	0.00008	54505
6	51.32	-0.00015	0.00078	0.00040	4.34	0.00009	50340
6	90.83	0.00014	0.00118	0.00066	7.68	0.00016	46655
6	87.31	0.00014	0.00118	0.00061	7.38	0.00016	46041
6	87.27	0.00018	0.00122	0.00061	7.38	0.00017	44269
6	87.22	0.00014	0.00117	0.00065	7.38	0.00016	45087
6	87.60	0.00014	0.00118	0.00061	10.50	0.00016	46032
6	124.10	0.00039	0.00163	0.00087	10.50	0.00024	43457
6	126.00	0.00039	0.00163	0.00082	10.67	0.00024	43010
6	123.69	0.00039	0.00168	0.00082	10.67	0.00024	43468
6	124.37	0.00039	0.00168	0.00087	10.52	0.00024	43003
6	174.77	0.00077	0.00230	0.00116	14.78	0.00035	41912
6	173.22	0.00076	0.00226	0.00116	14.65	0.00035	41983
6	174.96	0.00077	0.00226	0.00116	14.80	0.00035	42341
6	173.18	0.00076	0.00231	0.00116	14.65	0.00035	41571
6	174.91	0.00077	0.00226	0.00116	14.79	0.00035	42394
4	48.64	-0.00016	0.00080	0.00042	4.11	0.00009	46571
4	51.66	-0.00016	0.00080	0.00042	4.37	0.00009	49391
4	49.93	-0.00016	0.00076	0.00042	4.22	0.00008	49759
4	48.97	-0.00016	0.00075	0.00042	4.72	0.00008	48545
4	87.48	-0.00015	0.00123	0.00063	7.40	0.00014	52037
4	87.57	-0.00015	0.00119	0.00063	7.41	0.00014	53364
4	87.61	-0.00015	0.00123	0.00067	7.41	0.00015	50714
4	87.27	-0.00015	0.00123	0.00063	7.38	0.00014	52059
4	87.44	-0.00015	0.00119	0.00063	7.40	0.00014	53086
4	124.20	0.00039	0.00171	0.00086	10.50	0.00025	42634
4	124.32	0.00039	0.00171	0.00086	10.51	0.00025	42592
4	123.99	0.00035	0.001/1	0.0006	10.49	0.00024	43101
4	123.92	0.00035	0.00171	0.00086	10.48	0.00024	43197
4	175.20	0.00077	0.00235	0.00117	14.82	0.00036	41495
4	172.69	0.00077	0.00230	0.00117	14.61	0.00035	41298
4	175.31	0.00077	0.00230	0.00117	14.83	0.00035	41948
4	175.07	0.00077	0.00230	0.00117	14.81	0.00035	41932
4	172.73	0.00077	0.00230	0.00117	14.61	0.00035	41368
2	51.14	-0.00012	0.00070	0.00038	4.32	0.00008	53723
2	48.75	-0.00008	0.00074	0.00038	4.12	0.00009	4/21/
2	48.71	-0.00008	0.00070	0.00038	4.12	0.00008	49101
2	49.70	-0.00008	0.00074	0.00038	4.20	0.00009	47903 51695
2	87.64	-0.00012	0.00121	0.00064	7 41	0.00014	52245
2	87.57	-0.00015	0.00125	0.00064	7.41	0.00015	50935
2	87.36	-0.00014	0.00125	0.00064	7.39	0.00015	50819
2	87.37	0.00013	0.00125	0.00063	7.39	0.00017	44033
2	87.09	-0.00014	0.00121	0.00063	7.37	0.00014	51989
2	126.58	0.00035	0.00174	0.00088	10.71	0.00025	43335
2	126.76	0.00035	0.00170	0.00083	10.72	0.00024	44599
2	124.43	0.00035	0.00174	0.00083	10.52	0.00024	43154
2	126.96	0.00035	0.00174	0.00087	10.74	0.00025	43508
2	124.44	0.00035	0.001/4	0.00083	10.52	0.00024	43180
2	172.04	0.00069	0.00245	0.00116	14.63	0.00036	40805
2	173.00	0.00069	0.00245	0.00116	14.63	0.00036	40898
2	175.03	0.00073	0.00244	0.00111	14.80	0.00036	41415
2	176.14	0.00069	0.00245	0.00116	14.90	0.00036	41646

Table J.62: Resilient modulus data (B_2_195_103)

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{LVDT#3}$ [in.]	σ_{DEV} [psi]	E [-] 3	M _R [psi]
8	53.14	0.00030	0.00033	0.00020	4.49	0.00007	64544
8	51.40	0.00030	0.00033	0.00020	4.35	0.00007	62233
8	50.77	0.00030	0.00033	0.00020	4.29	0.00007	61722
8	50.64	0.00030	0.00033	0.00020	4.28	0.00007	61/44
8	87.46	0.00056	0.00057	0.00020	7 40	0.00007	61395
8	87.64	0.00056	0.00057	0.00037	7.41	0.00012	59743
8	87.64	0.00056	0.00061	0.00032	7.41	0.00012	59596
8	87.50	0.00056	0.00057	0.00032	7.40	0.00012	61455
8	87.55	0.00056	0.00057	0.00032	7.40	0.00012	61286
8	127.33	0.00083	0.00083	0.00053	10.77	0.00018	58807
8	127.33	0.00083	0.00083	0.00049	10.77	0.00018	59916
8	126.32	0.00080	0.00083	0.00049	10.68	0.00018	60557
8	124.04	0.00083	0.00084	0.00049	10.49	0.00018	58272
8	174.89	0.00114	0.00118	0.00074	14.79	0.00025	58092
8	172.63	0.00118	0.00118	0.00074	14.60	0.00026	56588
8	175.19	0.00114	0.00118	0.00074	14.82	0.00025	58145
8	176.08	0.00118	0.00118	0.00074	14.89	0.00026	57461
8	177.82	0.00118	0.00118	0.00074	15.04	0.00026	58295
6	53.72	0.00033	0.00032	0.00019	4.54	0.00007	64943
6	51.29	0.00033	0.00036	0.00019	4.34	0.00007	59097
6	51.18	0.00037	0.00032	0.00020	4.33	0.00007	58900
6	51.01	0.00033	0.00032	0.00019	4.32	0.00007	58836
6	87.85	0.00056	0.00058	0.00036	7.43	0.00013	59397
6	85.39	0.00060	0.00058	0.00036	7.22	0.00013	56141
6	87.49	0.00060	0.00062	0.00036	7.40	0.00013	56176
6	88.17	0.00060	0.00062	0.00036	7.46	0.00013	56429
6	87.64	0.00056	0.00058	0.00036	7.41	0.00012	59319
6	124.13	0.00089	0.00085	0.00052	10.50	0.00019	55873
6	124.11	0.00084	0.00084	0.00052	10.50	0.00018	56945
6	124.12	0.00088	0.00085	0.00053	10.50	0.00019	55846
6	126.58	0.00085	0.00085	0.00052	10.47	0.00018	57990
6	176.01	0.00119	0.00122	0.00075	14.89	0.00026	56401
6	178.60	0.00123	0.00123	0.00076	15.11	0.00027	56379
6	175.62	0.00119	0.00122	0.00075	14.85	0.00026	56257
6	175.18	0.00123	0.00122	0.00075	14.82	0.00027	55467
6	174.93	0.00123	0.00122	0.00075	14.79	0.00027	55471
4	51.09	0.00040	0.00031	0.00020	4.32	0.00008	57238
4	51.05	0.00040	0.00035	0.00020	4.32	0.00008	54711
4	40.03	0.00035	0.00031	0.00019	4.11	0.00007	57510
4	50.86	0.00035	0.00035	0.00019	4.30	0.00008	57295
4	87.87	0.00065	0.00057	0.00033	7.43	0.00013	57472
4	87.86	0.00069	0.00062	0.00033	7.43	0.00014	54725
4	87.62	0.00065	0.00061	0.00033	7.41	0.00013	55974
4	89.61	0.00064	0.00061	0.00032	7.58	0.00013	57561
4	88.41	0.00066	0.00062	0.00033	7.48	0.00013	55980
4	123.99	0.00090	0.00087	0.00048	10.49	0.00019	52081
4	126.46	0.00094	0.00087	0.00032	10.40	0.00019	56026
4	124.09	0.00090	0.00087	0.00048	10.49	0.00019	55948
4	124.14	0.00094	0.00091	0.00052	10.50	0.00020	53100
4	175.50	0.00134	0.00126	0.00073	14.84	0.00028	53439
4	175.31	0.00130	0.00126	0.00073	14.83	0.00027	54107
4	175.33	0.00133	0.00126	0.00073	14.83	0.00028	53466
4	175.33	0.00126	0.00126	0.00073	14.83	0.00027	54/4/
4	51.45	0.00133	0.00126	0.00017	15.02	0.00028	533053
2	49.19	0.00045	0.00036	0.00012	4.55	0.00008	53447
2	49.13	0.00046	0.00036	0.00012	4.16	0.00008	53499
2	48.59	0.00049	0.00036	0.00011	4.11	0.00008	51316
2	51.01	0.00045	0.00036	0.00012	4.31	0.00008	55901
2	87.63	0.00076	0.00063	0.00027	7.41	0.00014	53707
2	87.84	0.00080	0.00063	0.00027	7.43	0.00014	52491
2	90.09	0.00079	0.00063	0.00027	7.62	0.00014	54119
2	87.71	0.00076	0.00063	0.00027	7.42	0.00014	53786
2	127.00	0.00080	0.00063	0.00027	10.75	0.00014	52453
2	127.09	0.00105	0.00093	0.00044	10.75	0.00020	53231
2	124.59	0.00104	0.00093	0.00040	10.54	0.00020	52396
2	125.06	0.00105	0.00093	0.00045	10.58	0.00020	52213
2	124.10	0.00108	0.00093	0.00044	10.50	0.00020	51457
2	176.06	0.00143	0.00136	0.00071	14.89	0.00029	50981
2	179.22	0.00143	0.00137	0.00071	15.16	0.00029	51795
2	176.29	0.00143	0.00136	0.00071	14.91	0.00029	51078
2	176.70	0.00140	0.00137	0.00071	14.94	0.00029	51642
2	1/0.83	0.00144	0.00132	0.00071	14.96	0.00029	51/13

Table J.63: Resilient modulus data (B_1_16_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{{\scriptscriptstyle LVDT\#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.72	0.00020	0.00011	0.00041	4.29	0.00006	71767
8	50.74	0.00016	0.00007	0.00041	4.29	0.00005	81104
8	51.04	0.00020	0.00011	0.00041	4.32	0.00006	72218
8	51.00	0.00016	0.00011	0.00041	4.31	0.00006	75906
8	87.51	0.00037	0.00011	0.00070	7.40	0.00010	75060
8	87.40	0.00030	0.00011	0.00070	7.39	0.00009	80149
8	87.76	0.00037	0.00015	0.00070	7.42	0.00010	72601
8	86.88	0.00033	0.00011	0.00070	7.35	0.00010	77253
8	87.35	0.00033	0.00011	0.00074	7.39	0.00010	74641
8	124.75	0.00058	0.00014	0.00102	10.55	0.00014	72813
8	123.96	0.00050	0.00013	0.00101	10.48	0.00014	76911
8	126.51	0.00057	0.00013	0.00100	10.70	0.00014	75503
8	123.37	0.00057	0.00017	0.00100	10.43	0.00014	74304
8	175.40	0.00089	0.00032	0.00130	14.83	0.00021	70711
8	172.34	0.00085	0.00032	0.00129	14.58	0.00021	70867
8	174.60	0.00089	0.00032	0.00129	14.77	0.00021	70694
8	172.93	0.00085	0.00032	0.00130	14.63	0.00021	70928
8	174.83	0.00085	0.00032	0.00130	14.79	0.00021	71790
6	50.70	0.00019	0.00010	0.00044	4.29	0.00006	70403
6	50.95	0.00014	0.00010	0.00045	4.31	0.00006	75154
6	50.64	0.00019	0.00010	0.00045	4.28	0.00006	70651
6	50.70	0.00015	0.00010	0.00045	4.29	0.00000	74000
6	87.31	0.00033	0.00010	0.00075	7.38	0.00010	74860
6	87.44	0.00029	0.00015	0.00075	7.40	0.00010	74511
6	87.29	0.00033	0.00014	0.00075	7.38	0.00010	72371
6	87.58	0.00033	0.00015	0.00075	7.41	0.00010	72522
6	87.56	0.00029	0.00014	0.00075	7.41	0.00010	74690
6	124.70	0.00053	0.00016	0.00108	10.55	0.00015	71941
6	127.32	0.00053	0.00016	0.00108	10.77	0.00015	73191
6	123.32	0.00053	0.00016	0.00107	10.30	0.00014	71293
6	124.65	0.00050	0.00016	0.00109	10.10	0.00015	72568
6	175.72	0.00078	0.00027	0.00136	14.86	0.00020	73976
6	178.88	0.00079	0.00027	0.00140	15.13	0.00020	73897
6	174.63	0.00079	0.00031	0.00136	14.77	0.00020	72130
6	174.78	0.00078	0.00027	0.00136	14.78	0.00020	73547
6	177.26	0.00080	0.00032	0.00139	14.99	0.00021	71861
4	50.36	0.00016	0.00008	0.00047	4.26	0.00006	72691
4	50.60	0.00013	0.00008	0.00040	4.38	0.00006	73842
4	50.51	0.00011	0.00008	0.00046	4.27	0.00005	78746
4	48.70	0.00012	0.00008	0.00047	4.12	0.00006	74505
4	87.59	0.00026	0.00013	0.00083	7.41	0.00010	72777
4	85.04	0.00026	0.00013	0.00083	7.19	0.00010	70381
4	87.43	0.00022	0.00013	0.00083	7.39	0.00010	74885
4	87.29	0.00030	0.00013	0.00083	7.38	0.00011	70250
4	123.51	0.00020	0.00014	0.00083	10.45	0.00010	74230
4	124.33	0.00042	0.00017	0.00115	10.52	0.00015	72457
4	123.89	0.00046	0.00017	0.00115	10.48	0.00015	70572
4	124.06	0.00050	0.00017	0.00115	10.49	0.00015	69280
4	121.54	0.00050	0.00017	0.00114	10.28	0.00015	68032
4	175.62	0.00073	0.00022	0.00155	14.85	0.00021	71069
4	173.01	0.00073	0.00026	0.00155	14.86	0.00021	70063
4	176.09	0.00073	0.00026	0.00155	14.03	0.00021	70271
4	172.96	0.00073	0.00026	0.00154	14.63	0.00021	69323
2	51.03	0.00011	0.00009	0.00049	4.32	0.00006	75483
2	48.44	0.00011	0.00009	0.00049	4.10	0.00006	71768
2	50.78	0.00007	0.00009	0.00049	4.29	0.00005	79574
2	48.75	0.00011	0.00009	0.00049	4.12	0.00006	71909
2	49.08	0.00011	0.00009	0.00049	4.15	0.00006	72094
2	88.24	0.00022	0.00012	0.00088	7.46	0.00010	73529
2	00.40 85.17	0.00023	0.00012	0.00088	7.48	0.00010	69014
2	87.66	0.00022	0.00012	0.00087	7.41	0.00010	73297
2	85.24	0.00022	0.00012	0.00087	7.21	0.00010	71479
2	124.48	0.00035	0.00016	0.00124	10.53	0.00015	72292
2	123.90	0.00038	0.00016	0.00124	10.48	0.00015	70748
2	124.97	0.00039	0.00016	0.00124	10.57	0.00015	71055
2	125.09	0.00039	0.00015	0.00123	10.58	0.00015	71803
2	128.77	0.00039	0.00016	0.00123	10.89	0.00015	73734
2	176.46	0.00070	0.00020	0.00164	14.92	0.00021	70591
2	173.07	0.00062	0.00025	0.00168	14.65	0.00022	70159
2	175.21	0.00065	0.00025	0.00163	14.82	0.00021	70173
2	175.14	0.00065	0.00025	0.00163	14.81	0.00021	70107

Table J.64: Resilient modulus data (B_2_16_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.78	0.00046	0.00050	0.00059	4.29	0.00013	33191
8	50.72	0.00046	0.00050	0.00059	4.29	0.00013	33106
8	50.72	0.00046	0.00051	0.00059	4.29	0.00013	33067
8	51.74	0.00046	0.00054	0.00059	4.29	0.00013	32376
8	87.49	0.00086	0.00095	0.00106	7.40	0.00024	31069
8	87.39	0.00085	0.00094	0.00105	7.39	0.00024	31111
8	85.64	0.00086	0.00095	0.00106	7.24	0.00024	30311
8	87.60	0.00089	0.00090	0.00109	7.41	0.00024	30812
8	87.53	0.00089	0.00094	0.00109	7.40	0.00024	30448
8	123.83	0.00137	0.00137	0.00154	10.47	0.00036	29309
8	124.16	0.00133	0.00138	0.00159	10.50	0.00036	29357
8	123.01	0.00129	0.00137	0.00154	10.47	0.00036	29514
8	125.37	0.00137	0.00137	0.00154	10.60	0.00036	29773
8	175.76	0.00204	0.00207	0.00230	14.87	0.00053	27850
8	175.04	0.00204	0.00207	0.00226	14.80	0.00053	27871
8	176.79	0.00204	0.00203	0.00226	14.95	0.00053	28376
8	175.53	0.00200	0.00203	0.00226	14.85	0.00052	28308
8	175.29	0.00207	0.00203	0.00225	14.83	0.00053	28003
6	50.72	0.00043	0.00049	0.00063	4.29	0.00013	33327
6	51.01	0.00047	0.00049	0.00063	4.31	0.00013	33316
6	50.57	0.00042	0.00049	0.00062	4.28	0.00013	33341
6	50.55	0.00046	0.00053	0.00063	4.28	0.00014	31562
6	87.61	0.00084	0.00094	0.00114	7.41	0.00024	30451
6	87.34	0.00084	0.00093	0.00114	7.39	0.00024	30452
6	84.82	0.00080	0.00093	0.00109	7.17	0.00024	30430
6	87.57	0.00080	0.00094	0.00114	7.41	0.00024	30844
6	87.39	0.00080	0.00094	0.00110	7.39	0.00024	31261
6	125.82	0.00125	0.00137	0.00160	10.64	0.00035	30261
6	123.00	0.00129	0.00137	0.00164	10.40	0.00036	29335
6	123.98	0.00129	0.00141	0.00160	10.49	0.00036	29282
6	126.53	0.00129	0.00137	0.00160	10.70	0.00035	30198
6	173.02	0.00197	0.00202	0.00230	14.63	0.00052	27910
6	176.15	0.00205	0.00205	0.00234	14.90	0.00054	27745
6	178.80	0.00201	0.00201	0.00234	15.12	0.00053	28503
6	175.01	0.00200	0.00205	0.00234	14.80	0.00053	27779
6	50.90	0.00201	0.00205	0.00234	14.82	0.00053	27776
4	51.01	0.00038	0.00052	0.00070	4.30	0.00013	32415
4	51.07	0.00042	0.00052	0.00066	4.32	0.00013	32422
4	48.54	0.00038	0.00047	0.00066	4.11	0.00013	32463
4	48.65	0.00038	0.00048	0.00066	4.11	0.00013	32475
4	87.49	0.00073	0.00092	0.00118	7.40	0.00023	31501
4	86.13	0.00073	0.00092	0.00117	7.28	0.00023	31035
4	90.73	0.00073	0.00096	0.00121	7.67	0.00024	31780
4	87.34	0.00072	0.00091	0.00120	7.41	0.00024	31231
4	125.22	0.00120	0.00135	0.00171	10.59	0.00035	29881
4	125.06	0.00119	0.00135	0.00175	10.58	0.00036	29580
4	125.23	0.00123	0.00135	0.00171	10.59	0.00036	29633
4	127.72	0.00123	0.00135	0.00175	10.80	0.00036	29903
4	125.07	0.00119	0.00135	0.00175	10.58	0.00036	29630
4	175.43	0.00197	0.00205	0.00250	14.84	0.00054	27313
4	172.95	0.00193	0.00205	0.00246	14.63	0.00054	27240
4	173.16	0.00190	0.00202	0.00247	14.65	0.00053	27508
4	175.72	0.00194	0.00202	0.00252	14.86	0.00054	27523
2	48.55	0.00041	0.00046	0.00073	4.11	0.00013	30881
2	48.91	0.00037	0.00046	0.00073	4.14	0.00013	31812
2	49.00	0.00037	0.00047	0.00073	4.14	0.00013	31638
2	48.82	0.00037	0.00046	0.00073	4.13	0.00013	31604
2	51.15	0.00041	0.00042	0.00077	4.33	0.00013	32589
2	87.40	0.00072	0.00082	0.00131	7.40	0.00024	31188
2	87.35	0.00068	0.00086	0.00131	7.39	0.00024	31102
2	87.92	0.00072	0.00082	0.00131	7.44	0.00024	31218
2	88.12	0.00068	0.00083	0.00136	7.45	0.00024	31185
2	125.74	0.00119	0.00131	0.00186	10.63	0.00036	29247
2	129.15	0.00119	0.00131	0.00186	10.92	0.00036	30008
2	124.61	0.00119	0.00131	0.00186	10.54	0.00036	28971
2	126.88	0.00119	0.00131	0.00186	10.73	0.00036	29512
2	124.34	0.00115	0.00127	0.00186	10.52	0.00036	294/6
2	174.07	0.00190	0.00195	0.00250	14.92	0.00053	27941
2	173.92	0.00199	0.00195	0.00254	14.71	0.00054	27236
2	173.94	0.00203	0.00199	0.00254	14.71	0.00055	26907
2	176.05	0.00199	0.00194	0.00249	14.89	0.00053	27834

Table J.65: Resilient modulus data (B_1_27_98)

σ, [psi]	զայ	$\delta_{\rm eventse}$ [in.]	$\delta_{\rm EVDTa2}$ [in.]	$\delta_{\rm EVDTe3}$ [in.]	σ_{DEV} [psi]	ε[-]	$M_{\mathbb{R}}$ [psi]
8	50.53	0.00094	0.00008	0.00084	4.57	0.00015	27605
8	50.52	0.00093	0.00008	0.00080	4.57	0.00015	28339
8	50.71	0.00093	0.00008	0.00084	4.58	0.00015	27805
8	50.69	0.00031	0.00008	0.00080	4.54	0.00016	21230
8	87.22	0.00169	0.00015	0.00160	7.61	0.00029	25712
8	87.07	0.00169	0.00015	0.00160	7.84	0.00029	25721
8	87.35	0.00169	0.00015	0.00161	7.63	0.00029	25732
8	84.92	0.00169	0.00015	0.00156	7.83	0.00028	25330
8	87.52	0.00166	0.00015	0.00161	7,66	0.00029	25972
8	123.74	0.00243	0.00024	0.00248	11.19	0.00043	24104
8	123.68	0.00248	0.00024	0.00248	11.19	0.00043	24145
8	123.71	0.00253	0.00024	0.00248	11.16	0.00044	23970
8	123.84	0.00245	0.00024	0.00248	11.40	0.00043	24341
8	172.69	0.00354	0.00061	0.00365	15.76	0.00065	22471
8	172.56	0.00356	0.00065	0.00365	15.64	0.00065	22201
8	172.46	0.00352	0.00065	0.00360	15.50	0.00065	22539
8	173.32	0.00355	0.00065	0.00364	15.51	0.00065	22447
6	51.01	0.00100	0.00008	0.00079	4.56	0.00016	27691
6	48.45	0.00100	0.00008	0.00075	4.34	0.00015	27017
6	48.50	0.00100	0.00008	0.00074	4.57	0.00015	2/015
6	48.71	0.00100	0.00008	0.00079	4,36	0.00016	26478
6	87.22	0.00173	0.00016	0.00152	7.85	0.00028	25978
6	85.17	0.00174	0.00016	0.00152	7.65	0.00029	25248
6	84.88	0.00170	0.00016	0.00152	7.87	0.00028	25519
6	87.35	0.00170	0.00016	0.00152	7.88	0.00028	26245
6	84.80	0.001/3	0.00016	0.00152	11.05	0.00028	25235
6	125.18	0.00262	0.00022	0.00243	11.32	0.00044	24150
6	122.17	0.00261	0.00022	0.00238	10.93	0.00043	23778
6	121.81	0.00257	0.00022	0.00242	11.16	0.00043	23722
6	124.35	0.00257	0.00022	0.00242	11.14	0.00043	24222
6	1/9.26	0.00372	0.00053	0.00368	15.76	0.00066	22353
6	172.60	0.00377	0.00053	0.00363	16.16	0.00066	22092
6	172.59	0.00373	0.00053	0.00363	15.51	0.00066	22191
6	172.62	0.00373	0.00053	0.00363	15.53	0.00066	22185
4	48.57	0.00104	0.00013	0.00074	4.36	0.00016	25795
4	48.59	0.00104	0.00013	0.00074	4.35	0.00015	25855
4	48.45	0.00104	0.00013	0.00074	4.00	0.00016	25833
4	51.23	0.00108	0.00013	0.00074	4.69	0.00016	26652
4	87.34	0.00187	0.00015	0.00138	7.77	0.00028	26051
4	85.08	0.00183	0.00015	0.00139	7.77	0.00028	25629
4	85.21	0.00188	0.00015	0.00139	r.r6 8.03	0.00029	25285
4	87.42	0.00191	0.00015	0.00139	7.78	0.00020	25697
4	121.70	0.00275	0.00022	0.00226	11.15	0.00044	23609
4	121.81	0.00275	0.00022	0.00230	11.13	0.00044	23454
4	121.56	0.00271	0.00022	0.00226	11.34	0.00043	23790
4	123.78	0.00274	0.00022	0.00229	11.35	0.00044	23909
4	170.38	0.00400	0.00045	0.00358	15.54	0.00067	21522
4	170.34	0.00396	0.00045	0.00358	15.75	0.00067	21636
4	170.43	0.00396	0.00045	0.00354	15.75	0.00066	21755
4	172.82	0.00400	0.00045	0.00358	15.53	0.00067	21851
4	1/2.90	0.00396	0.00045	0.00354	15.52	0.00066	22085
2	48.89	0.00109	0.00014	0.00067	4.37	0.00016	26141
2	48.82	0.00108	0.00014	0.00067	4.34	0.00016	26152
2	48.63	0.00108	0.00014	0.00067	4.57	0.00016	26074
2	48.76	0.00105	0.00014	0.00067	4.55	0.00015	26665
2	85.18	0.00194	0.00019	0.00128	8.20 7.90	0.00028	25359
2	85.30	0.00194	0.00019	0.00128	7.90	0.00028	25392
2	85.22	0.00197	0.00019	0.00132	7.89	0.00029	24792
2	86.33	0.00194	0.00019	0.00128	7.87	0.00028	25666
2	121.47	0.00291	0.00022	0.00212	11.39	0.00044	23459
2	121.52	0.00291	0.00022	0.00216	11.17	0.00044	23308
2	124.03	0.00231	0.00022	0.00216	11.18	0.00044	23851
2	123.96	0.00290	0.00022	0.00216	11.40	0.00044	23858
2	173.34	0.00419	0.00038	0.00344	15.52	0.00067	21964
2	171.06	0.00419	0.00037	0.00344	15.56	0.00067	21673
2	173.34	0.00419	0.00037	0.00344	15.55	0.00067	21371
2	170.89	0.00423	0.00042	0.00344	15.75	0.00067	21461

Table J.66: Resilient modulus data $(B_2_27_98)$

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.92	0.00037	0.00049	0.00083	4.14	0.00014	29406
8	48.66	0.00037	0.00049	0.00083	4.12	0.00014	29134
8	49.05	0.00037	0.00050	0.00083	4.15	0.00014	29197
8	51.35	0.00037	0.00050	0.00084	4.13	0.00014	30495
8	87.47	0.00077	0.00101	0.00135	7.40	0.00026	28420
8	87.22	0.00073	0.00101	0.00134	7.38	0.00026	28721
8	84.67	0.00081	0.00101	0.00134	7.16	0.00026	27257
8	85.33	0.00077	0.00105	0.00135	7.22	0.00026	27346
8	85.10	0.00073	0.00101	0.00135	7.20	0.00026	27977
8	125.01	0.00129	0.00159	0.00185	10.57	0.00039	26862
8	123.88	0.00125	0.00163	0.00184	10.27	0.00039	26661
8	123.68	0.00124	0.00158	0.00184	10.46	0.00039	26908
8	124.00	0.00125	0.00163	0.00184	10.49	0.00039	26697
8	170.16	0.00203	0.00250	0.00256	14.39	0.00059	24357
8	172.83	0.00211	0.00250	0.00260	14.62	0.00060	24320
8	172.90	0.00203	0.00250	0.00260	14.62	0.00059	24599
8	172.54	0.00202	0.00246	0.00260	14.59	0.00059	24/41
6	48.95	0.00208	0.00230	0.00280	4 14	0.00000	28039
6	48.59	0.00032	0.00045	0.00096	4.11	0.00014	28560
6	48.91	0.00032	0.00045	0.00096	4.14	0.00014	28667
6	48.71	0.00032	0.00041	0.00096	4.12	0.00014	29368
6	48.60	0.00032	0.00040	0.00096	4.11	0.00014	29344
6	87.06	0.00064	0.00094	0.00151	7.36	0.00026	28573
6	84.73	0.00068	0.00095	0.00151	7.17	0.00026	27352
6	87.07	0.00069	0.00099	0.00151	7.10	0.00027	20974
6	86.85	0.00065	0.00095	0.00151	7.35	0.00026	28446
6	123.43	0.00116	0.00160	0.00202	10.44	0.00040	26228
6	123.72	0.00112	0.00160	0.00202	10.46	0.00039	26492
6	123.62	0.00112	0.00160	0.00202	10.46	0.00040	26456
6	123.77	0.00116	0.00155	0.00203	10.47	0.00040	26488
6	121.38	0.00116	0.00160	0.00203	10.27	0.00040	25/34
6	172.03	0.00183	0.00250	0.00280	14.00	0.00059	24324
6	172.71	0.00190	0.00250	0.00280	14.61	0.00060	24330
6	172.86	0.00186	0.00246	0.00276	14.62	0.00059	24758
6	175.20	0.00190	0.00250	0.00280	14.82	0.00060	24687
4	48.99	0.00026	0.00044	0.00106	4.14	0.00015	28303
4	49.05	0.00030	0.00040	0.00106	4.15	0.00015	28382
4	48.98	0.00026	0.00044	0.00106	4.14	0.00015	28256
4	49.00	0.00030	0.00040	0.00106	4.15	0.00014	28431
4	84.91	0.00051	0.00093	0.00174	7.18	0.00027	27061
4	84.95	0.00055	0.00089	0.00174	7.18	0.00027	27103
4	84.84	0.00051	0.00089	0.00174	7.18	0.00026	27426
4	84.86	0.00051	0.00093	0.00174	7.18	0.00027	27066
4	87.19	0.00051	0.00093	0.00174	10.46	0.00027	27787
4	123.55	0.00092	0.00159	0.00229	10.40	0.00040	26137
4	121.03	0.00092	0.00155	0.00228	10.24	0.00040	25882
4	123.42	0.00096	0.00159	0.00228	10.44	0.00040	25947
4	123.34	0.00092	0.00154	0.00228	10.43	0.00039	26435
4	173.05	0.00165	0.00249	0.00311	14.64	0.00060	24229
4	1/3.05	0.00165	0.00253	0.00311	14.64	0.00061	24081
4	172.00	0.00161	0.00253	0.00311	14.62	0.00060	24213
4	172.95	0.00161	0.00253	0.00311	14.63	0.00060	24213
2	48.49	0.00022	0.00044	0.00110	4.10	0.00015	28054
2	48.43	0.00022	0.00044	0.00110	4.10	0.00015	28131
2	48.35	0.00022	0.00043	0.00109	4.09	0.00015	28143
2	49.06	0.00022	0.00044	0.00111	4.15	0.00015	28218
2	90.33	0.00025	0.00044	0.00110	7.64	0.00015	27592
2	85.58	0.00041	0.00092	0.00195	7.24	0.00027	26460
2	87.81	0.00045	0.00092	0.00194	7.43	0.00028	26963
2	85.79	0.00045	0.00088	0.00194	7.26	0.00027	26619
2	87.24	0.00041	0.00091	0.00192	7.38	0.00027	27323
2	122.76	0.00070	0.00158	0.00265	10.38	0.00041	25264
2	122.82	0.00070	0.00158	0.00265	10.39	0.00041	25272
2	125.19	0.00070	0.00158	0.00266	10.42	0.00041	25327
2	123.93	0.00070	0.00157	0.00262	10.48	0.00041	25742
2	170.55	0.00134	0.00256	0.00343	14.42	0.00061	23595
2	170.41	0.00134	0.00256	0.00343	14.41	0.00061	23590
2	172.91	0.00134	0.00256	0.00343	14.62	0.00061	23936
2	170.53	0.00134	0.00256	0.00343	14.42	0.00061	23632
2	172.90	0.00134	0.00255	0.00342	14.63	0.00061	23988

Table J.67: Resilient modulus data (B_1_22_98)

σ_3 [psi]	q [lb]	$\delta_{\text{LVDT#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	54.91	0.00027	0.00070	0.00041	4.57	0.00011	39715
8	48.34	0.00020	0.00070	0.00041	4.57	0.00011	42084
8	50.48	0.00023	0.00070	0.00041	4.58	0.00011	40997
8	48.08	0.00027	0.00069	0.00041	4.54	0.00011	39542
8	50.82	0.00027	0.00074	0.00037	4.55	0.00012	39681
8	84.80	0.00052	0.00119	0.00069	7.84	0.00020	39210
8	87.60	0.00052	0.00120	0.00069	7.63	0.00020	37383
8	87.21	0.00052	0.00119	0.00068	7.83	0.00020	39255
8	87.46	0.00056	0.00120	0.00065	7.66	0.00020	38266
8	123.35	0.00093	0.00170	0.00098	11.17	0.00030	37200
8	124.09	0.00093	0.00175	0.00098	11.19	0.00031	36671
8	123.89	0.00090	0.00170	0.00097	11.19	0.00030	37560
8	123.85	0.00090	0.00170	0.00098	11.16	0.00030	37440
8	123.95	0.00094	0.00175	0.00098	11.40	0.00031	37359
8	172.44	0.00150	0.00241	0.00145	15.76	0.00045	35297
8	1/2.84	0.00146	0.00246	0.00146	15.84	0.00045	35376
0	172.49	0.00149	0.00241	0.00149	16.17	0.00045	30920
8	172.45	0.00146	0.00237	0.00145	15.50	0.00044	34957
6	50.20	0.00026	0.000245	0.00043	4.56	0.00012	37772
6	51.47	0.00018	0.00076	0.00043	4.34	0.00011	37883
6	48.34	0.00018	0.00071	0.00039	4.57	0.00011	42723
6	48.24	0.00026	0.00071	0.00039	4.36	0.00011	38408
6	48.25	0.00022	0.00075	0.00039	4.36	0.00011	38351
6	84.89	0.00049	0.00128	0.00068	7.85	0.00020	38318
6	85.11	0.00049	0.00124	0.00068	7.65	0.00020	37976
6	87.15	0.00049	0.00128	0.00068	7.87	0.00020	38587
6	84.86	0.00049	0.00128	0.00068	7.88	0.00020	38486
6	84.91	0.00045	0.00128	0.00068	7.73	0.00020	38384
6	123.93	0.00084	0.00180	0.00103	11.25	0.00031	36829
6	123.00	0.00081	0.00179	0.00098	10.93	0.00030	36566
6	124.01	0.00085	0.00180	0.00099	11.16	0.00030	36912
6	126.31	0.00088	0.00184	0.00099	11.14	0.00031	36089
6	172.67	0.00139	0.00251	0.00150	15.76	0.00045	35041
6	172.56	0.00142	0.00251	0.00145	15.84	0.00045	35277
6	174.97	0.00142	0.00251	0.00145	16.16	0.00045	35987
6	172.60	0.00139	0.00255	0.00149	15.51	0.00045	34244
6	172.66	0.00142	0.00251	0.00150	15.53	0.00045	34309
4	49.63	0.00011	0.00073	0.00049	4.36	0.00011	39300
4	53.76	0.00015	0.00078	0.00045	4.35	0.00012	37652
4	40.04	0.00015	0.00078	0.00045	4.33	0.00011	37670
4	51 18	0.00015	0.00078	0.00045	4.42	0.00011	41016
4	85.32	0.00041	0.00135	0.00075	7.77	0.00021	37241
4	87.30	0.00037	0.00134	0.00074	7.77	0.00020	37951
4	87.37	0.00041	0.00130	0.00074	7.76	0.00020	38055
4	86.90	0.00041	0.00134	0.00074	8.03	0.00021	38821
4	87.71	0.00045	0.00135	0.00075	7.78	0.00021	36764
4	123.93	0.00079	0.00185	0.00103	11.15	0.00031	36415
4	124.04	0.00080	0.00190	0.00103	11.13	0.00031	35866
4	120.21	0.00076	0.00189	0.00102	11.34	0.00031	37021
4	123.04	0.00079	0.00186	0.00103	11.55	0.00031	36402
4	172.90	0.00131	0.00264	0.00149	15.54	0.00045	34271
4	172.61	0.00127	0.00260	0.00149	15.75	0.00045	35297
4	173.32	0.00130	0.00264	0.00149	15.75	0.00045	34768
4	174.48	0.00131	0.00264	0.00150	15.53	0.00045	34233
4	176.35	0.00131	0.00264	0.00149	15.52	0.00045	34235
2	48.49	0.00010	0.00080	0.00050	4.38	0.00012	37453
2	46.27	0.00006	0.00076	0.00050	4.37	0.00011	39682
2	46.42	0.00006	0.00076	0.00050	4.34	0.00011	39233
2	40.72	0.00006	0.00076	0.00050	4.57	0.00011	41300
2	87.73	0.00021	0.00143	0.00083	8,20	0.00021	39857
2	87.58	0.00028	0.00143	0.00083	7.90	0.00021	37339
2	85.29	0.00025	0.00143	0.00083	7.90	0.00021	37817
2	87.30	0.00028	0.00139	0.00083	7.89	0.00021	37951
2	87.38	0.00028	0.00143	0.00083	7.87	0.00021	37143
2	124.45	0.00057	0.00199	0.00114	11.39	0.00031	36900
2	124.68	0.00056	0.00200	0.00110	11.17	0.00031	36591
2	124.91	0.00056	0.00200	0.00111	11.40	0.00031	3/289
2	124.64	0.00057	0.00204	0.00115	11.18	0.00031	37010
2	172.89	0.00060	0.00199	0.00110	15.52	0.00031	33625
2	172.74	0.00112	0.00273	0.00156	15.56	0.00045	34524
2	173.06	0.00116	0.00277	0.00156	15.55	0.00046	33971
2	172.94	0.00108	0.00273	0.00160	15.56	0.00045	34519
2	172.71	0.00112	0.00277	0.00156	15.75	0.00045	34747

Table J.68: Resilient modulus data (B_2_298)

σ_3 [psi]	q[1b]	$\delta_{LVDT#1}$ [in.]	$\delta_{\scriptscriptstyle LVDT\#2}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	50.27	0.00100	0.00105	0.00107	4.25	0.00026	16358
8	47.48	0.00099	0.00104	0.00102	4.02	0.00025	15788
8	47.73	0.00104	0.00100	0.00101	4.04	0.00025	15872
8	50.36	0.00103	0.00105	0.00101	4.26	0.00026	16559
0	94.00	0.00100	0.00104	0.00105	4.04	0.00026	15042
0	94.00	0.00185	0.00182	0.00187	7.10	0.00046	15360
8	84.78	0.00186	0.00183	0.00183	7.13	0.00046	15472
8	84.22	0.00189	0.00186	0.00185	7.12	0.00047	15265
8	84.55	0.00189	0.00186	0.00186	7.15	0.00047	15302
8	120.87	0.00287	0.00272	0.00275	10.22	0.00069	14724
8	120.92	0.00287	0.00276	0.00275	10.23	0.00070	14658
8	123.51	0.00286	0.00280	0.00278	10.45	0.00070	14852
8	120.82	0.00285	0.00274	0.00273	10.22	0.00069	14727
8	123.42	0.00286	0.00275	0.00273	10.44	0.00069	15026
8	169.63	0.00427	0.00401	0.00404	14.35	0.00103	13978
8	172.19	0.00426	0.00406	0.00408	14.56	0.00103	14091
8	1/2.23	0.00427	0.00401	0.00404	14.57	0.00103	14194
8	169.74	0.00426	0.00405	0.00408	14.36	0.00103	13898
6	47.93	0.00428	0.00403	0.00407	4.05	0.00103	14255
6	47.91	0.00110	0.00107	0.00120	4.05	0.00028	14419
6	48.09	0.00110	0.00108	0.00116	4.07	0.00028	14621
6	48.02	0.00110	0.00108	0.00120	4.06	0.00028	14429
6	48.09	0.00110	0.00112	0.00120	4.07	0.00029	14251
6	84.32	0.00204	0.00200	0.00213	7.13	0.00051	13865
6	84.54	0.00204	0.00200	0.00208	7.15	0.00051	14010
6	84.25	0.00203	0.00199	0.00211	7.13	0.00051	13958
6	84.27	0.00206	0.00203	0.00211	7.13	0.00052	13802
6	84.45	0.00206	0.00203	0.00211	7.14	0.00052	13822
6	123.11	0.00314	0.00304	0.00313	10.41	0.00078	13427
6	123.01	0.00318	0.00304	0.00317	10.40	0.00078	13292
6	120.78	0.00314	0.00305	0.00314	10.22	0.00078	13142
6	120.00	0.00314	0.00303	0.00314	10.22	0.00078	13202
6	170.43	0.00460	0.00440	0.00452	14.41	0.000113	12799
6	169.33	0.00460	0.00439	0.00451	14.32	0.00113	12728
6	169.33	0.00463	0.00443	0.00451	14.32	0.00113	12660
6	169.15	0.00463	0.00443	0.00451	14.31	0.00113	12656
6	172.02	0.00463	0.00443	0.00451	14.55	0.00113	12857
4	48.53	0.00126	0.00120	0.00140	4.10	0.00032	12758
4	46.26	0.00122	0.00121	0.00132	3.91	0.00031	12505
4	48.40	0.00125	0.00124	0.00136	4.09	0.00032	12756
4	48.41	0.00122	0.00120	0.00136	4.09	0.00031	13035
4	48.22	0.00125	0.00123	0.00140	4.08	0.00032	12606
4	85.01	0.00232	0.00225	0.00246	7.19	0.00059	12274
4	04.04	0.00231	0.00225	0.00246	7.10	0.00059	12233
4	84.84	0.00232	0.00225	0.00243	7.18	0.00059	12233
4	84.37	0.00231	0.00220	0.00247	7.10	0.00058	12353
4	120.98	0.00353	0.00337	0.00363	10.23	0.00088	11666
4	120.91	0.00349	0.00332	0.00358	10.23	0.00087	11821
4	118.50	0.00350	0.00336	0.00359	10.02	0.00087	11513
4	121.92	0.00350	0.00333	0.00359	10.31	0.00087	11872
4	122.64	0.00350	0.00337	0.00359	10.37	0.00087	11909
4	167.47	0.00517	0.00495	0.00522	14.16	0.00128	11082
4	167.28	0.00521	0.00495	0.00522	14.15	0.00128	11037
4	1/0.51	0.00517	0.00490	0.00522	14.42	0.00127	11323
4	169.59	0.00520	0.00490	0.00522	14.34	0.00128	11229
2	48.36	0.00147	0.00141	0.00156	4.09	0.00037	11072
2	48.53	0.00148	0.00142	0.00156	4,10	0.00037	11050
2	48.52	0.00143	0.00136	0.00152	4.10	0.00036	11419
2	46.00	0.00143	0.00137	0.00152	3.89	0.00036	10802
2	48.47	0.00147	0.00141	0.00156	4.10	0.00037	11061
2	82.56	0.00280	0.00259	0.00296	6.98	0.00070	10045
2	82.42	0.00275	0.00258	0.00296	6.97	0.00069	10087
2	85.15	0.00280	0.00264	0.00297	7.20	0.00070	10281
2	84.87	0.00280	0.00259	0.00296	7.18	0.00070	10318
2	82.56	0.00281	0.00260	0.00302	6.98	0.00070	9950
2	119.00	0.00421	0.00395	0.00443	10.06	0.00105	9593
2	119.15	0.00421	0.00390	0.00438	10.08	0.00104	9630
2	119.08	0.00420	0.00394	0.00438	10.07	0.00104	9646
2	119.03	0.00420	0.00394	0.00438	10.07	0.00104	9647
2	167.61	0.00601	0.00567	0.00621	14.18	0.00149	9509
2	167.63	0.00601	0.00563	0.00621	14.18	0.00149	9537
2	167.50	0.00600	0.00562	0.00620	14.17	0.00149	9537
2	167.43	0.00600	0.00567	0.00620	14.16	0.00149	9513
2	167.61	0.00599	0.00564	0.00624	14.18	0.00149	9517

Table J.69: Resilient modulus data (B_1_16_98)

σ_3 [psi]	q[1b]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.53	0.00102	0.00094	0.00112	4.10	0.00026	15991
8	51.15	0.00106	0.00098	0.00116	4.33	0.00027	16218
8	50.88	0.00105	0.00098	0.00115	4.30	0.00026	16277
8	51.01	0.00106	0.00098	0.00115	4.31	0.00027	16227
0	48.91	0.00103	0.00099	0.00112	4.14	0.00026	15/92
8	84.69	0.00195	0.00178	0.00218	7.60	0.00049	14411
8	85.37	0.00196	0.00179	0.00218	7.22	0.00049	14617
8	88.84	0.00196	0.00179	0.00218	7.51	0.00049	15220
8	90.05	0.00196	0.00179	0.00223	7.62	0.00050	15275
8	123.95	0.00295	0.00269	0.00339	10.48	0.00075	13948
8	124.10	0.00296	0.00269	0.00340	10.50	0.00075	13927
8	124.02	0.00295	0.00269	0.00340	10.49	0.00075	13919
8	123.83	0.00295	0.00269	0.00340	10.47	0.00075	13898
8	123.89	0.00296	0.00265	0.00340	10.48	0.00075	13951
8	170.22	0.00442	0.00401	0.00496	14.40	0.00112	12907
8	175.19	0.00446	0.00406	0.00496	14.82	0.00112	13202
0	170.33	0.00442	0.00397	0.00492	14.41	0.00111	12904
8	172.68	0.00442	0.00402	0.00490	14.59	0.00112	13072
6	53.13	0.00112	0.00102	0.00128	4 49	0.00028	15791
6	48.73	0.00112	0.00106	0.00128	4.12	0.00029	14308
6	48.92	0.00112	0.00106	0.00128	4.14	0.00029	14333
6	48.87	0.00112	0.00102	0.00128	4.13	0.00029	14470
6	48.81	0.00112	0.00106	0.00128	4.13	0.00029	14297
6	85.45	0.00210	0.00195	0.00247	7.23	0.00054	13304
6	85.70	0.00211	0.00191	0.00243	7.25	0.00054	13497
6	85.70	0.00210	0.00191	0.00251	7.25	0.00054	13343
6	87.78	0.00213	0.00194	0.00245	7.42	0.00054	13661
6	85.56	0.00214	0.00199	0.00247	7.24	0.00055	13149
6	121.88	0.00318	0.00288	0.00379	10.31	0.00082	12556
6	121.72	0.00318	0.00200	0.00363	10.29	0.00082	12504
6	121.01	0.00318	0.00292	0.00374	10.20	0.00082	12765
6	124.89	0.00317	0.00291	0.00378	10.56	0.00082	12852
6	170.38	0.00480	0.00434	0.00553	14.41	0.00122	11784
6	170.52	0.00476	0.00435	0.00549	14.42	0.00122	11854
6	170.32	0.00476	0.00438	0.00549	14.41	0.00122	11817
6	170.36	0.00476	0.00434	0.00553	14.41	0.00122	11821
6	170.32	0.00479	0.00434	0.00548	14.41	0.00122	11833
4	48.87	0.00123	0.00110	0.00145	4.13	0.00032	13111
4	49.34	0.00128	0.00111	0.00150	4.17	0.00032	12887
4	48.76	0.00127	0.00110	0.00149	4.12	0.00032	12852
4	48.99	0.00126	0.00110	0.00149	4.14	0.00032	12905
4	40.70	0.00123	0.00216	0.00144	4.12	0.00031	11823
4	85.35	0.00240	0.00215	0.00281	7.22	0.00061	11767
4	85.36	0.00239	0.00215	0.00284	7.22	0.00062	11727
4	85.01	0.00235	0.00214	0.00279	7.19	0.00061	11838
4	93.16	-0.00417	-0.03439	-0.00206	7.88	-0.00338	-2328
4	121.82	0.00355	0.00315	0.00428	10.30	0.00092	11258
4	122.49	0.00355	0.00319	0.00431	10.36	0.00092	11258
4	123.74	0.00354	0.00318	0.00431	10.47	0.00092	11387
4	124.81	0.00354	0.00318	0.00430	10.56	0.00092	11500
4	170.52	0.00354	0.00318	0.00430	14.42	0.00092	10568
4	173.23	0.00533	0.00478	0.00631	14.42	0.00130	10300
4	170.75	0.00529	0.00478	0.00627	14.44	0.00136	10604
4	172.98	0.00533	0.00477	0.00631	14.63	0.00137	10700
4	167.83	0.00528	0.00477	0.00626	14.19	0.00136	10439
2	46.38	0.00147	0.00117	0.00160	3.92	0.00035	11095
2	46.57	0.00147	0.00122	0.00164	3.94	0.00036	10903
2	46.65	0.00143	0.00117	0.00160	3.95	0.00035	11251
2	51.57	0.00148	0.00118	0.00165	4.36	0.00036	12157
2	49.02	0.00143	0.00118	0.00164	4.15	0.00035	11/06
2	82.95	0.00293	0.00242	0.00330	7.23	0.00072	9776
2	83.01	0.00294	0.00242	0.00330	7.02	0.00072	9726
2	85.53	0.00294	0.00238	0.00330	7.23	0.00072	10066
2	83.04	0.00294	0.00238	0.00331	7.02	0.00072	9763
2	119.40	0.00417	0.00351	0.00498	10.10	0.00106	9571
2	119.48	0.00417	0.00355	0.00498	10.10	0.00106	9553
2	119.62	0.00418	0.00355	0.00499	10.12	0.00106	9547
2	119.35	0.00421	0.00355	0.00494	10.09	0.00106	9536
2	119.56	0.00413	0.00351	0.00493	10.11	0.00105	9650
2	171.76	0.00624	0.00540	0.00737	14.53	0.00158	9170
2	170.92	0.00628	0.00536	0.00737	14.58	0.00158	9201
2	168 11	0.00624	0.00530	0.00736	14.90	0.00158	9028
2	168.18	0.00623	0.00536	0.00736	14.22	0.00158	9008

Table J.70: Resilient modulus data (B_2_16_98)
σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.17	-0.00068	0.00091	0.00089	4.07	0.00009	43348
8	50.86	-0.00053	0.00092	0.00090	4.30	0.00011	37631
8	48.68	-0.00062	0.00092	0.00090	4.12	0.00010	38814
8	48.74	-0.00056	0.00092	0.00090	4.12	0.00011	36587
8	48.03	0.00077	0.00092	0.00090	4.11	0.00022	20282
8	84.89	0.00102	0.00164	0.00166	7.40	0.00034	18742
8	87.48	0.00097	0.00165	0.00167	7.10	0.00036	19504
8	87.67	0.00069	0.00165	0.00167	7.42	0.00033	20931
8	96.07	0.06937	0.13483	0.11383	8.12	0.02650	288
8	123.92	0.00132	0.00254	0.00238	10.48	0.00052	18983
8	123.95	0.00129	0.00253	0.00237	10.48	0.00052	19105
8	123.68	0.00093	0.00253	0.00237	10.46	0.00049	20279
8	124.81	0.00115	0.00254	0.00237	10.56	0.00051	19650
8	127.71	0.00131	0.00254	0.00251	10.80	0.00053	19169
8	172.77	0.00162	0.00364	0.00348	14.61	0.00073	18878
8	173.30	0.00164	0.00377	0.00349	14.00	0.00076	18180
8	172.75	0.00165	0.00363	0.00346	14.60	0.00073	18864
8	175.01	0.00166	0.00362	0.00357	14.80	0.00074	18878
6	48.46	-0.00057	0.00096	0.00100	4.10	0.00012	33249
6	48.49	0.00092	0.00096	0.00101	4.10	0.00024	16041
6	48.87	0.00063	0.00097	0.00101	4.13	0.00022	17899
6	48.51	0.00059	0.00096	0.00100	4.10	0.00021	18159
6	48.74	-0.00063	0.00096	0.00101	4.12	0.00011	34804
6	87.66	0.00082	0.00183	0.00179	7.41	0.00037	18838
6	87.65	0.00091	0.00183	0.00180	7.41	0.00038	18442
6	87.67	0.00106	0.00183	0.00179	7.42	0.00039	1/8/1
6	88.00	-0.00164	0.00183	0.00180	7.44	0.00039	42324
6	124.59	0.00113	0.00283	0.00273	10.54	0.00056	17776
6	124.42	0.00124	0.00283	0.00272	10.52	0.00057	17486
6	126.93	0.00124	0.00282	0.00272	10.74	0.00057	17852
6	124.43	0.00145	0.00283	0.00272	10.52	0.00058	16994
6	124.29	0.00125	0.00282	0.00271	10.51	0.00057	17486
6	172.86	0.00210	0.00414	0.00399	14.62	0.00085	16140
6	175.80	0.00168	0.00427	0.00400	14.87	0.00083	16871
6	172.96	0.00210	0.00413	0.00399	14.63	0.00085	16146
6	1/3.04	0.00200	0.00414	0.00399	14.63	0.00084	16305
6	173.14	0.00186	0.00414	0.00399	14.64	0.00083	16546
4	49.00	-0.00061	0.00114	0.00112	4.15	0.00020	28283
4	48.80	-0.00062	0.00113	0.00112	4.13	0.00014	28573
4	48.88	0.00094	0.00113	0.00124	4.13	0.00028	14058
4	49.03	0.00081	0.00114	0.00113	4.15	0.00026	15213
4	87.96	0.00083	0.00208	0.00206	7.44	0.00041	16918
4	87.75	0.00106	0.00221	0.00206	7.42	0.00044	15734
4	88.03	0.00113	0.00221	0.00205	7.45	0.00045	15617
4	88.98	0.00118	0.00208	0.00205	7.53	0.00044	16000
4	124.25	0.00102	0.00208	0.00205	10.51	0.00043	15426
4	124.25	0.00165	0.00329	0.00309	10.51	0.00067	14833
4	125.07	0.00152	0.00330	0.00309	10.58	0.00066	15087
4	124.82	0.00150	0.00330	0.00310	10.56	0.00066	15113
4	124.47	0.00160	0.00329	0.00309	10.53	0.00066	14904
4	173.10	0.00210	0.00482	0.00454	14.64	0.00096	14422
4	173.25	0.00229	0.00494	0.00455	14.65	0.00098	14052
4	1/3.25	0.00232	0.00481	0.00454	14.65	0.00097	14176
4	173.21	0.00226	0.00482	0.00467	14.65	0.00098	14083
2	49.06	0.00098	0.00119	0.00129	4.15	0.00029	13552
2	48.94	0.00077	0.00132	0.00129	4,14	0.00028	13859
2	48.99	0.00088	0.00119	0.00128	4.14	0.00028	13971
2	48.94	-0.00072	0.00119	0.00128	4.14	0.00015	26747
2	48.84	0.00102	0.00119	0.00127	4.13	0.00029	13400
2	85.39	0.00142	0.00240	0.00245	7.22	0.00052	13015
2	85.32	0.00123	0.00240	0.00232	7.22	0.00050	13693
2	85.28	0.00135	0.00239	0.00232	7.21	0.00051	13420
2	85.20	0.00117	0.00240	0.00232	7.22	0.00049	1304/
2	122 12	0.00183	0.00374	0.00362	10.33	0.00077	12687
2	121.99	0.00174	0.00373	0.00362	10.32	0.00076	12820
2	122.05	0.00199	0.00372	0.00360	10.32	0.00078	12509
2	122.12	0.00169	0.00372	0.00359	10.33	0.00075	12951
2	122.04	0.00188	0.00370	0.00358	10.32	0.00076	12726
2	170.66	0.00270	0.00577	0.00537	14.43	0.00115	11782
2	173.32	0.00251	0.00578	0.00537	14.66	0.00114	12119
2	1/3.13	0.002/2	0.005/6	0.00537	14.64	0.00115	11939
2	170.00	0.00249	0.00575	0.00535	14.44	0.00113	11994
-							

Table J.71: Resilient modulus data (C_1_12_103)

σ_3 [psi]	q[1b]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	51.26	-0.00064	0.00090	0.00083	4.34	0.00009	47602
8	51.14	0.00087	0.00090	0.00083	4.32	0.00022	19903
8	48.72	-0.00100	0.00090	0.00083	4.12	0.00006	20035
8	48.56	0.00073	0.00090	0.00083	4.11	0.00021	20063
8	85.38	0.00100	0.00155	0.00154	7.22	0.00034	21188
8	87.58	0.00080	0.00155	0.00154	7.41	0.00032	22896
8	87.74	0.00099	0.00155	0.00154	7.42	0.00034	21796
8	87.30	0.00100	0.00154	0.00153	7.38	0.00034	21762
8	87.39	0.00094	0.00154	0.00153	7.39	0.00033	22097
8	124.15	0.00126	0.00225	0.00242	10.50	0.00049	21216
8	123.90	0.00125	0.00223	0.00229	10.48	0.00048	21693
8	123.97	0.00114	0.00224	0.00229	10.49	0.00047	22173
8	124.21	0.00130	0.00225	0.00229	10.51	0.00049	21578
8	172.72	0.00178	0.00316	0.00346	14.61	0.00070	20868
8	172.80	0.00161	0.00316	0.00346	14.61	0.00069	21300
8	170.34	0.00167	0.00328	0.00345	14.41	0.00070	20580
8	172.01	0.00175	0.00328	0.00345	14.62	0.00071	20700
6	48.84	0.00091	0.00097	0.00086	4.13	0.00023	18132
6	48.83	0.00064	0.00097	0.00085	4.13	0.00021	20096
6	48.94	0.00085	0.00097	0.00086	4.14	0.00022	18539
6	48.88	0.00086	0.00097	0.00085	4.13	0.00022	18508
6	49.03	0.00069	0.00097	0.00086	4.15	0.00021	19746
6	89.03	0.00105	0.00178	0.00172	7.53	0.00038	19889
6	85.42	0.00113	0.00177	0.00172	7.70	0.00038	20108
6	85.35	0.00086	0.00178	0.00172	7.22	0.00036	19877
6	85.16	0.00079	0.00177	0.00159	7.20	0.00035	20839
6	124.23	0.00139	0.00262	0.00263	10.51	0.00055	18991
6	125.14	0.00137	0.00262	0.00262	10.58	0.00055	19232
6	125.35	0.00119	0.00262	0.00262	10.60	0.00054	19771
6	122.05	0.00133	0.00262	0.00250	10.32	0.00054	19198
6	172.14	0.00134	0.00262	0.00262	10.33	0.00055	18837
6	172.86	0.00207	0.00377	0.00379	14.62	0.00080	18213
6	172.94	0.00186	0.00378	0.00380	14.63	0.00079	18612
6	172.86	0.00191	0.00377	0.00380	14.62	0.00079	18520
6	170.45	0.00206	0.00377	0.00379	14.42	0.00080	17982
4	46.95	0.00055	0.00114	0.00089	3.97	0.00022	18440
4	44.24	0.00073	0.00114	0.00089	3.74	0.00023	37459
4	46.82	0.00073	0.00113	0.00090	3.96	0.00023	17207
4	46.32	0.00061	0.00112	0.00089	3.92	0.00022	17991
4	85.25	-0.00074	0.00201	0.00178	7.21	0.00025	28326
4	87.80	0.00095	0.00202	0.00179	7.43	0.00040	18732
4	85.43	0.00075	0.00202	0.00179	7.23	0.00038	19033
4	85.15	0.00096	0.00201	0.00179	7.20	0.00040	18181
4	122.02	0.00132	0.00300	0.00281	10.32	0.00059	17379
4	122.11	0.00140	0.00300	0.00281	10.33	0.00060	17189
4	124.33	0.00150	0.00299	0.00281	10.52	0.00061	17302
4	121.99	0.00159	0.00300	0.00281	10.32	0.00062	16754
4	122.03	0.00150	0.00300	0.00281	10.32	0.00061	16930
4	177.01	0.00216	0.00437	0.00443	14.97	0.00091	16815
4	171.07	0.00215	0.00420	0.00432	14.47	0.00090	16015
4	173.38	0.00197	0.00424	0.00431	14.66	0.00088	16721
4	170.95	0.00184	0.00437	0.00431	14.46	0.00088	16485
2	48.48	0.00078	0.00136	0.00080	4.10	0.00024	16759
2	47.51	0.00088	0.00138	0.00080	4.02	0.00025	15792
2	48.88	0.00084	0.00148	0.00079	4.13	0.00026	15930
2	46.48	0.00082	0.00136	0.00079	3.93	0.00025	15860
2	85.60	0.00123	0.00248	0.00177	7.24	0.00046	15832
2	85.73	0.00113	0.00250	0.00177	7.25	0.00045	16114
2	88.12	0.00138	0.00237	0.00177	7.45	0.00046	16210
2	85.60	0.00126	0.00250	0.00177	7.24	0.00046	15710
2	85.72	0.00116	0.00249	0.00178	7.25	0.00045	16039
2	121.96	0.00158	0.00362	0.00301	10.31	0.00068	15098
2	124.90	0.00173	0.00362	0.00301	10.52	0.00070	15108
2	122.07	0.00174	0.00362	0.00300	10.32	0.00070	14822
2	122.09	0.00159	0.00362	0.00300	10.33	0.00068	15102
2	171.46	0.00247	0.00501	0.00478	14.50	0.00102	14200
2	170.53	0.00245	0.00513	0.00478	14.42	0.00103	13993
2	174.25	0.00247	0.00500	0.00479	14.74	0.00102	14423
2	170.82	0.00221	0.00513	0.00479	14.45	0.00101	14307
-		0.00201	0.00012	0.004/0		0.00102	

Table J.72: Resilient modulus data (C_2_12_103)

σ_3 [psi]	q [lb]	$\delta_{\text{LVDT#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.91	-0.00055	0.00079	0.00043	4.31	0.00006	77482
8	50.74	-0.00066	0.00079	0.00043	4.29	0.00005	85657
8	51.02	-0.00057	0.00079	0.00043	4.32	0.00005	75529
8	50.95	-0.00063	0.00078	0.00043	4.31	0.00005	83904
8	89.91	0.000039	0.00078	0.00043	7.60	0.00013	25728
8	87.64	0.00069	0.00145	0.00101	7.41	0.00026	26632
8	87.55	0.00068	0.00144	0.00101	7.40	0.00026	26700
8	87.71	0.00082	0.00145	0.00101	7.42	0.00027	25574
8	87.34	0.00074	0.00145	0.00101	7.39	0.00027	26031
8	126.54	0.00099	0.00208	0.00169	10.70	0.00040	25398
8	126.55	0.00085	0.00208	0.00169	10.70	0.00038	26162
8	126.52	0.00137	0.00196	0.00169	10.70	0.00042	24080
8	126.53	0.00129	0.00207	0.00167	10.70	0.00042	24010
8	124.00	0.00097	0.00207	0.00167	10.49	0.00039	25102
0	175.17	0.00155	0.00296	0.00265	14.01	0.00060	23350
8	172.98	0.00176	0.00283	0.00264	14.63	0.00060	22831
8	172.74	0.00169	0.00283	0.00263	14.61	0.00060	23071
8	175.06	0.00145	0.00295	0.00263	14.81	0.00059	23811
6	50.90	0.00083	0.00093	0.00044	4.30	0.00018	22015
6	50.95	0.00059	0.00093	0.00045	4.31	0.00016	24690
6	50.97	0.00066	0.00093	0.00045	4.31	0.00017	23764
6	53.51	0.00081	0.00082	0.00045	4.53	0.00017	24672
6	50.94	0.00059	0.00081	0.00045	4.31	0.00015	26167
6	89.98	-0.00093	0.00151	0.00119	7.61	0.00030	230/8
6	87.46	0.00089	0.00152	0.00119	7.40	0.00030	23290
6	89.80	0.00094	0.00151	0.00118	7.60	0.00030	23634
6	90.69	0.00078	0.00150	0.00117	7.67	0.00029	25070
6	126.52	0.00146	0.00224	0.00191	10.70	0.00047	21540
6	124.11	0.00108	0.00224	0.00191	10.50	0.00044	22636
6	124.01	0.00101	0.00237	0.00191	10.49	0.00044	22389
6	126.47	0.00130	0.00237	0.00191	10.70	0.00046	21651
6	126.36	0.00134	0.00237	0.00192	10.69	0.00047	21442
6	170.53	0.00178	0.00338	0.00297	14.42	0.00068	20024
6	175.31	0.00151	0.00337	0.00296	14.83	0.00065	21343
6	175.57	0.00202	0.00337	0.00297	14.85	0.00070	20049
6	175.42	0.00166	0.00337	0.00297	14.84	0.00067	20926
4	50.96	0.00060	0.00096	0.00058	4.31	0.00018	22716
4	51.61	0.00064	0.00096	0.00058	4.36	0.00018	22579
4	52.70	0.00074	0.00085	0.00059	4.46	0.00018	23145
4	56.89	0.00077	0.00096	0.00058	4.81	0.00019	23499
4	97.74	0.00056	0.00096	0.00058	4.32	0.00018	23152
4	87.74	0.00124	0.00159	0.00130	7.42	0.00033	21505
4	87.72	0.00087	0.00171	0.00123	7.42	0.00032	22024
4	87.90	0.00103	0.00172	0.00136	7.43	0.00034	20431
4	87.69	0.00117	0.00171	0.00135	7.42	0.00035	19823
4	125.43	0.00127	0.00248	0.00213	10.61	0.00049	20353
4	131.27	0.00147	0.00248	0.00215	11.10	0.00051	20579
4	124.37	0.00134	0.00260	0.00214	10.52	0.00051	19522
4	124.33	0.00151	0.00248	0.00215	10.52	0.00051	19342
4	120.03	0.00147	0.00247	0.00214	10.70	0.00051	19852
4	172.95	0.00204	0.00368	0.00320	14.63	0.00074	18545
4	173.10	0.00210	0.00368	0.00333	14.64	0.00076	18153
4	175.52	0.00204	0.00368	0.00321	14.84	0.00075	18746
4	175.69	0.00208	0.00381	0.00322	14.86	0.00076	18430
2	51.12	0.00088	0.00090	0.00065	4.32	0.00020	20117
2	51.12	-0.00062	0.00090	0.00064	4.32	0.00008	52674
2	51.22	0.00091	0.00090	0.00064	4.33	0.00020	19969
2	51.10	0.00076	0.00101	0.00064	4.32	0.00020	20165
2	97.69	0.00064	0.00102	0.00064	4.33	0.00019	21273
2	87.64	0.00123	0.00182	0.00146	7.41	0.00037	19073
2	87.88	0.00120	0.00182	0.00146	7.43	0.00037	18727
2	87.66	0.00112	0.00194	0.00146	7.41	0.00038	18536
2	87.78	0.00100	0.00182	0.00146	7.42	0.00036	19573
2	126.71	0.00162	0.00287	0.00233	10.72	0.00057	17737
2	124.14	0.00161	0.00287	0.00233	10.50	0.00057	17415
2	124.26	0.00158	0.00275	0.00232	10.51	0.00055	17834
2	124.19	0.00156	0.00275	0.00232	10.50	0.00055	1/870
2	126.67	0.00152	0.00275	0.00232	10./1	0.00055	16596
2	173.04	0.00219	0.00403	0.00362	14.64	0.00083	16494
2	170.51	0.00231	0.00396	0.00361	14.42	0.00082	16471
2	173.04	0.00209	0.00409	0.00361	14.63	0.00082	16887
2	175.39	0.00208	0.00421	0.00361	14.83	0.00082	16924

Table J.73: Resilient modulus data $(C_{-1}95_{-1}03)$

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{{\scriptscriptstyle LVDT\#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.81	0.00084	0.00092	-0.00027	4.30	0.00012	34869
8	50.65	0.00069	0.00091	-0.00027	4.28	0.00011	38618
8	53.26	0.00073	0.00092	-0.00027	4.50	0.00011	39209
8	53.31	0.00058	0.00104	0.00022	4.51	0.00015	29581
0	90.90	0.00066	0.00092	-0.00027	4.51	0.00011	41440
8	89.79	0.00095	0.00155	0.00039	7.59	0.00024	31548
8	89.80	0.00000	0.00155	0.00039	7.60	0.00024	29266
8	89.91	-0.00083	0.00155	0.00039	7.60	0.00009	82113
8	89.85	0.00127	0.00155	0.00039	7.60	0.00027	28331
8	126.18	0.00149	0.00233	0.00077	10.67	0.00038	27884
8	123.99	0.00157	0.00233	0.00078	10.49	0.00039	26896
8	126.45	0.00119	0.00233	0.00077	10.69	0.00036	29853
8	126.22	0.00128	0.00233	0.00077	10.67	0.00037	29244
8	126.21	0.00160	0.00232	0.00076	10.67	0.00039	27368
8	174.82	0.00177	0.00345	0.00165	14.79	0.00057	25860
8	175.89	0.00201	0.00344	0.00164	14.88	0.00059	25163
0	174.42	0.00200	0.00331	0.00163	14.75	0.00058	20492
8	177.85	0.00183	0.00343	0.00182	15.03	0.00058	25463
6	53.20	0.00076	0.00103	0.00020	4.50	0.00017	27250
6	53.25	0.00076	0.00103	0.00019	4.50	0.00017	27275
6	53.37	0.00070	0.00105	0.00020	4.51	0.00016	27924
6	53.28	0.00067	0.00104	0.00020	4.51	0.00016	28288
6	53.50	-0.00058	0.00104	0.00020	4.53	0.00006	81441
6	90.00	0.00122	0.00172	0.00047	7.61	0.00028	26858
6	90.09	0.00098	0.00172	0.00047	7.62	0.00026	28940
6	89.89	0.00115	0.00171	0.00046	7.60	0.00028	27399
6	90.01	0.00111	0.00171	0.00047	7.61	0.00027	27792
6	89.71	0.00120	0.00171	0.00046	7.59	0.00028	26996
6	127.04	0.00165	0.00254	0.00083	10.74	0.00042	25730
6	126.90	0.00149	0.00254	0.00084	10.91	0.00040	26965
6	126.39	0.00155	0.00253	0.00083	10.70	0.00042	26122
6	126.63	0.00157	0.00253	0.00083	10.00	0.00041	26072
6	175.04	0.00207	0.00375	0.00184	14.80	0.00064	23189
6	172.69	0.00222	0.00375	0.00195	14.61	0.00066	22133
6	175.12	0.00197	0.00374	0.00183	14.81	0.00063	23553
6	172.70	0.00204	0.00374	0.00182	14.61	0.00063	23051
6	172.64	0.00219	0.00373	0.00182	14.60	0.00064	22644
4	51.13	0.00085	0.00113	0.00019	4.32	0.00018	23987
4	53.37	0.00068	0.00113	0.00019	4.51	0.00017	27165
4	53.82	0.00081	0.00125	0.00019	4.55	0.00019	24220
4	52.32	0.00085	0.00113	0.00019	4.43	0.00018	24413
4	00.18	0.00087	0.00123	0.00019	4.70	0.00019	24402
4	89.98	0.00126	0.00205	0.00048	7.61	0.00032	24059
4	87.75	0.00155	0.00205	0.00060	7.42	0.00035	21213
4	89.94	0.00138	0.00205	0.00048	7.61	0.00033	23334
4	90.15	0.00118	0.00205	0.00047	7.62	0.00031	24689
4	126.59	0.00146	0.00297	0.00107	10.71	0.00046	23366
4	126.61	0.00140	0.00286	0.00107	10.71	0.00044	24144
4	126.70	0.00205	0.00285	0.00106	10.72	0.00050	21532
4	124.20	0.00180	0.00284	0.00106	10.50	0.00047	22120
4	126.65	0.00173	0.00297	0.00106	10.71	0.00048	22331
4	175.15	0.00232	0.00422	0.00226	14.02	0.00073	20440
4	173.14	0.00247	0.00410	0.00223	14.64	0.00074	19889
4	175.28	0.00236	0.00422	0.00226	14.82	0.00074	20118
4	175.49	0.00227	0.00423	0.00226	14.84	0.00073	20310
2	51.26	0.00083	0.00127	0.00026	4.34	0.00020	21963
2	51.19	0.00098	0.00140	0.00026	4.33	0.00022	19676
2	50.99	-0.00075	0.00139	-0.00023	4.31	0.00003	124068
2	51.23	0.00106	0.00139	0.00025	4.33	0.00023	19233
2	53.61	0.00086	0.00127	0.00026	4.53	0.00020	22675
2	87.82	0.00134	0.00229	0.00085	7.43	0.00037	19878
2	87.96	0.00138	0.00241	0.00086	7.40	0.00039	20820
2	88.92	0.00113	0.00229	0.00086	7.43	0.00038	17682
2	92.32	0.00151	0.00242	0.00087	7.81	0.00040	19540
2	124.84	0.00186	0.00345	0.00163	10.56	0.00058	18279
2	127.34	0.00200	0.00332	0.00151	10.77	0.00057	18919
2	127.00	0.00171	0.00344	0.00151	10.74	0.00056	19342
2	127.14	0.00180	0.00332	0.00152	10.75	0.00055	19404
2	124.88	0.00204	0.00332	0.00152	10.56	0.00057	18433
2	173.16	0.00272	0.00490	0.00318	14.65	0.00090	16258
2	172.97	0.00267	0.00477	0.00317	14.63	0.00088	16540
2	175.73	0.00263	0.00478	0.00318	14.86	0.00088	16862
2	175.69	0.00250	0.00490	0.00317	14.86	0.00088	17166
4	110.47	0.00244	0.00477	0.00017	14.04	0.00000	11100

Table J.74: Resilient modulus data (C_2_95_103)

σ_3 [psi]	q [1b]	$\delta_{\text{LVDT#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	48.63	-0.00064	0.00121	-0.00027	4.11	0.00002	165598
8	48.41	-0.00049	0.00133	-0.00027	4.09	0.00005	86785
8	51.22	-0.00068	0.00133	-0.00027	4.33	0.00003	141085
8	49.74	-0.00058	0.00133	-0.00027	4.21	0.00004	106613
8	87.39	0.00060	0.00120	0.00073	7 39	0.00026	28330
8	87.30	0.00069	0.00180	0.00073	7.38	0.00027	27541
8	87.44	-0.00084	0.00180	0.00073	7.40	0.00014	52663
8	87.22	0.00055	0.00179	0.00072	7.38	0.00026	28904
8	87.44	-0.00081	0.00179	0.00071	7.40	0.00014	52399
8	124.10	0.00087	0.00229	0.00126	10.50	0.00037	28479
8	124.06	0.00091	0.00229	0.00125	10.49	0.00037	28338
8	124.04	0.00085	0.00229	0.00125	10.49	0.00037	28951
8	124.03	0.00060	0.00228	0.00124	10.49	0.00034	30541
8	172.72	0.00115	0.00299	0.00206	14.61	0.00052	28296
8	172.64	0.00113	0.00309	0.00206	14.60	0.00052	27884
8	173.72	0.00097	0.00297	0.00206	14.69	0.00050	29408
8	176.94	0.00103	0.00297	0.00218	14.96	0.00051	29066
8	172.91	0.00125	0.00297	0.00206	14.62	0.00052	27939
6	48.48	-0.00069	0.00138	-0.00024	4.10	0.00004	20194
6	48.31	0.00057	0.00137	0.00024	4.10	0.00014	22350
6	49.05	-0.00060	0.00137	-0.00025	4.15	0.00004	95950
6	49.91	-0.00069	0.00138	-0.00025	4.22	0.00004	116681
6	89.62	0.00057	0.00194	0.00071	7.58	0.00027	28216
6	86.65	0.00068	0.00194	0.00071	7.33	0.00028	26356
6	88.02	-0.00068	0.00195	0.00071	7.44	0.00016	45249
6	88.12	0.00062	0.00195	0.00071	7.45	0.00027	27251
6	88.02 124.27	0.00051	0.00195	0.00071	10.51	0.00026	28225
6	124.27	-0.00074	0.00256	0.00131	10.51	0.00039	40343
6	124.39	0.00065	0.00257	0.00131	10.52	0.00038	27911
6	124.38	0.00081	0.00257	0.00131	10.52	0.00039	26949
6	126.68	0.00095	0.00256	0.00131	10.71	0.00040	26700
6	172.96	0.00132	0.00319	0.00223	14.63	0.00056	26033
6	175.31	0.00105	0.00331	0.00223	14.83	0.00055	26997
6	175.37	0.00119	0.00331	0.00223	14.83	0.00056	26450
6	172.82	0.00104	0.00331	0.00222	14.62	0.00055	25751
4	48.87	-0.00052	0.00151	0.00031	4.13	0.00011	38196
4	49.84	0.00055	0.00150	0.00019	4.22	0.00019	22568
4	53.46	-0.00054	0.00151	0.00031	4.52	0.00011	42557
4	48.57	0.00055	0.00151	0.00031	4.11	0.00020	20809
4	48.69	-0.00063	0.00150	0.00031	4.12	0.00010	41818
4	87.93	0.00068	0.00212	0.00082	7.44	0.00030	24681
4	87.81	-0.00058	0.00212	0.00082	7.42	0.00030	37755
4	88.89	0.00063	0.00211	0.00082	7.52	0.00030	25332
4	92.11	0.00070	0.00211	0.00070	7.79	0.00029	26704
4	124.39	0.00094	0.00280	0.00142	10.52	0.00043	24432
4	124.10	0.00079	0.00279	0.00142	10.50	0.00042	25161
4	124.28	0.00085	0.00281	0.00142	10.51	0.00042	24860
4	124.34	0.00075	0.00280	0.00142	10.52	0.00041	25403
4	173.19	0.00000	0.00260	0.00142	14.65	0.00042	24015
4	173.07	0.00109	0.00376	0.00239	14.64	0.00060	24252
4	173.07	0.00114	0.00363	0.00239	14.64	0.00060	24519
4	173.09	0.00119	0.00363	0.00239	14.64	0.00060	24333
4	173.13	0.00128	0.00363	0.00239	14.64	0.00061	24057
2	48.74	-0.00065	0.00172	0.00035	4.12	0.00012	34825
2	48.91	-0.00062	0.00160	0.00047	4.14	0.00012	34240
2	51.26	-0.00064	0.00160	0.00035	4.34	0.00011	39758
2	48.86	-0.00064	0.00173	0.00035	4.13	0.00012	34642
2	87.91	-0.00072	0.00245	0.00099	7.44	0.00023	32755
2	87.82	0.00059	0.00245	0.00099	7.43	0.00034	22131
2	85.56	-0.00061	0.00245	0.00099	7.24	0.00024	30636
2	85.32	-0.00054	0.00245	0.00099	7.22	0.00024	29885
2	124.61	0.00066	0.00245	0.00099	10.54	0.00034	21852
2	124.01	0.00072	0.00316	0.00167	10.54	0.00048	22762
2	124.54	0.00086	0.00316	0.00155	10.53	0.00046	22669
2	124.49	0.00074	0.00315	0.00167	10.53	0.00046	22678
2	124.42	0.00057	0.00315	0.00167	10.52	0.00045	23428
2	178.03	0.00118	0.00406	0.00274	15.06	0.00066	22644
2	173.91	0.00137	0.00405	0.00275	14.71	0.00068	21608
2	173.24	0.00135	0.00405	0.00275	14.65	0.00068	215/4
2	173.21	0.00142	0.00404	0.00275	14.65	0.00068	21392

Table J.75: Resilient modulus data (C_1_8_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	51.92	0.00053	-0.00051	0.00106	4.39	0.00009	49308
8	52.71	0.00066	-0.00051	0.00106	4.46	0.00010	44466
8	58.96	0.00065	-0.00051	0.00106	4.99	0.00010	49880
8	54.06	0.00077	-0.00052	0.00105	4.57	0.00011	41657
8	90.06	0.00080	-0.00048	0.00154	7.62	0.00016	48975
8	90.03	0.00085	-0.00048	0.00154	7.61	0.00016	47774
8	90.88	0.00078	-0.00048	0.00155	7.69	0.00015	50084
8	95.67	0.00097	-0.00049	0.00155	8.09	0.00017	47845
8	87.81	0.00096	-0.00048	0.00154	7.43	0.00017	44071
8	124.48	0.00105	0.00079	0.00208	10.53	0.00033	32185
8	126.82	0.00095	0.00079	0.00208	10.73	0.00032	33656
8	126.42	0.00113	0.00079	0.00219	10.69	0.00034	31236
8	127.31	0.00113	0.00079	0.00208	10.77	0.00033	322/1
8	175.40	0.00098	0.00078	0.00208	14.83	0.00032	30617
8	173.08	0.00134	0.00165	0.00279	14.00	0.00040	30329
8	177.62	0.00131	0.00178	0.00292	15.02	0.00050	30018
8	173.00	0.00153	0.00165	0.00280	14.63	0.00050	29371
8	175.30	0.00137	0.00178	0.00279	14.83	0.00050	29912
6	53.99	0.00073	-0.00057	0.00110	4.57	0.00011	43458
6	53.65	0.00072	-0.00045	0.00122	4.54	0.00012	36718
6	53.65	0.00060	-0.00045	0.00110	4.54	0.00010	43616
6	52.25	0.00073	-0.00057	0.00122	4.42	0.00012	38418
6	54.64	0.00053	-0.00057	0.00110	4.62	0.00009	52324
6	90.27	0.00090	-0.00056	0.00174	7.63	0.00017	44081
6	90.08	0.00080	-0.00055	0.00172	7.02	0.00016	40442
6	90.00	0.00095	-0.00055	0.00173	7.40	0.00018	40303
6	90.92	0.00083	-0.00043	0.00173	7.69	0.00018	43239
6	126.96	0.00112	0.00081	0.00231	10.74	0.00035	30456
6	124.32	0.00112	0.00069	0.00230	10.51	0.00034	30635
6	126.59	0.00113	0.00081	0.00242	10.71	0.00036	29452
6	124.42	0.00121	0.00068	0.00230	10.52	0.00035	30054
6	124.07	0.00118	0.00081	0.00229	10.49	0.00036	29400
6	175.50	0.00138	0.00176	0.00313	14.84	0.00052	28408
6	177.93	0.00153	0.00177	0.00311	15.05	0.00053	28198
6	175.37	0.00159	0.00164	0.00311	14.83	0.00054	27506
6	175.51	0.00126	0.00164	0.00311	14.82	0.00050	29003
4	51.24	0.00072	-0.00054	0.00121	4 33	0.00012	37432
4	51.34	0.00052	-0.00054	0.00133	4.34	0.00011	39732
4	51.28	0.00073	-0.00055	0.00121	4.34	0.00012	37230
4	50.88	0.00064	-0.00054	0.00120	4.30	0.00011	39452
4	53.52	0.00077	-0.00054	0.00121	4.53	0.00012	37612
4	85.79	0.00110	-0.00048	0.00190	7.26	0.00021	34512
4	90.14	0.00123	-0.00047	0.00188	7.62	0.00022	34628
4	90.33	0.00097	-0.00060	0.00189	7.64	0.00019	40482
4	90.30	0.00087	-0.00060	0.00201	7.64	0.00019	37801
4	127 19	0.00122	0.00068	0.00263	10.76	0.00038	28521
4	128.68	0.00117	0.00068	0.00263	10.88	0.00037	29173
4	127.38	0.00122	0.00068	0.00263	10.77	0.00038	28549
4	124.84	0.00125	0.00068	0.00262	10.56	0.00038	27829
4	124.83	0.00113	0.00068	0.00263	10.56	0.00037	28538
4	175.62	0.00148	0.00165	0.00340	14.85	0.00054	27292
4	175.50	0.00144	0.00177	0.00339	14.84	0.00055	26974
4	173.10	0.00143	0.00177	0.00340	14.64	0.00055	20020
4	175.00	0.00153	0.00177	0.00339	14.85	0.00057	26616
2	51.65	0.00080	-0.00042	0.00130	4.37	0.00014	31172
2	52.41	0.00078	-0.00031	0.00118	4.43	0.00014	32078
2	55.60	0.00067	-0.00030	0.00118	4.70	0.00013	36396
2	51.16	0.00061	-0.00030	0.00118	4.33	0.00012	34889
2	51.14	0.00073	-0.00030	0.00118	4.32	0.00013	32205
2	89.94	0.00113	-0.00034	0.00204	7.61	0.00024	32254
2	90.32	0.00121	-0.00035	0.00205	7.64	0.00024	31485
2	87 97	0.00104	-0.00035	0.00205	7.40	0.00023	33880
2	87 71	0.00113	-0.00035	0.00205	7.42	0.00022	31453
2	126.83	0.00109	0.00073	0.00288	10.73	0.00039	27401
2	126.76	0.00139	0.00073	0.00287	10.72	0.00042	25788
2	126.83	0.00128	0.00073	0.00288	10.73	0.00041	26310
2	124.47	0.00144	0.00073	0.00287	10.53	0.00042	25058
2	124.41	0.00110	0.00061	0.00287	10.52	0.00038	27609
2	175.58	0.00179	0.00194	0.00380	14.85	0.00063	23683
2	175.59	0.00170	0.00193	0.00378	14.85	0.00062	24022
2	175.50	0.00185	0.00193	0.003/9	14.84	0.00063	23526
2	173.04	0.00172	0.00193	0.00379	14.63	0.00062	23614

Table J.76: Resilient modulus data (C_2_8_103)

σ_3 [psi]	q [1b]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.25	0.00066	0.00107	0.00108	4.08	0.00023	17437
8	48.04	-0.00057	0.00107	0.00119	4.06	0.00014	28875
8	50.89	-0.00065	0.00107	0.00119	4.30	0.00013	32143
8	48.46	0.00092	0.00106	0.00119	4.10	0.00026	15509
8	87.79	0.00113	0.00198	0.00207	7.42	0.00043	17205
8	87.52	0.00132	0.00197	0.00207	7.40	0.00045	16597
8	87.80	0.00124	0.00197	0.00207	7.43	0.00044	16860
8	87.10	0.00136	0.00196	0.00218	7.37	0.00046	16059
8	88.16	0.00089	0.00196	0.00206	7.46	0.00041	18200
8	121.67	0.00178	0.00293	0.00312	10.29	0.00065	15769
8	121.83	0.00162	0.00293	0.00324	10.30	0.00065	15865
8	121.40	0.00145	0.00292	0.00323	10.27	0.00064	15843
8	124.06	0.00191	0.00304	0.00311	10.49	0.00067	15618
8	170.30	0.00249	0.00428	0.00453	14.40	0.00094	15289
8	172.70	0.00233	0.00427	0.00452	14.61	0.00093	15762
8	172.96	0.00232	0.00428	0.00452	14.63	0.00093	15797
8	172.89	0.00220	0.00426	0.00464	14.62	0.00092	15814
8	1/2.91	0.00237	0.00426	0.00450	14.62	0.00093	15//0
6	40.95	-0.00072	0.00120	0.00139	4.14	0.00016	13830
6	48.68	0.00069	0.00119	0.00127	4.12	0.00026	15699
6	49.17	0.00109	0.00121	0.00141	4.16	0.00031	13449
6	49.30	0.00083	0.00121	0.00129	4.17	0.00028	15037
6	85.23	0.00127	0.00228	0.00240	7.21	0.00050	14532
6	87.66	0.00120	0.00216	0.00240	7.41	0.00048	15455
6	85.17	0.00115	0.00228	0.00240	7.20	0.00049	14834
6	85.12	0.00139	0.00215	0.00239	7.19	0.00049	14559
6	123.95	0.00181	0.00342	0.00357	10.48	0.00073	14296
6	124.09	0.00189	0.00330	0.00356	10.49	0.00073	14399
6	124.14	0.00208	0.00342	0.00356	10.50	0.00075	13910
6	123.91	0.00215	0.00329	0.00355	10.48	0.00075	13993
6	128.63	0.08805	0.15566	0.12671	10.88	0.03087	352
6	172.97	0.00268	0.00483	0.00537	14.63	0.00107	13622
6	172.97	0.00257	0.00483	0.00536	14.63	0.00106	13/50
6	170.61	0.00270	0.00482	0.00536	14.43	0.00110	13085
6	173.13	0.00252	0.00495	0.00535	14.64	0.00107	13707
4	48.95	0.00112	0.00137	0.00156	4.14	0.00034	12270
4	48.67	0.00114	0.00137	0.00155	4.12	0.00034	12155
4	46.46	0.00105	0.00138	0.00156	3.93	0.00033	11819
4	46.25	0.00090	0.00137	0.00156	3.91	0.00032	12244
4	40.40	0.00100	0.00138	0.00156	3.92	0.00033	12110
4	85.29	0.00160	0.00260	0.00293	7.21	0.00059	12134
4	86.06	0.00164	0.00260	0.00293	7.28	0.00060	12187
4	87.41	0.00178	0.00260	0.00293	7.39	0.00061	12136
4	86.68	0.00160	0.00260	0.00294	7.33	0.00060	12319
4	121.96	0.00204	0.00394	0.00420	10.31	0.00085	12157
4	121.90	0.00229	0.00395	0.00420	10.31	0.00087	11862
4	121.55	0.00234	0.00396	0.00419	10.31	0.00088	11805
4	121.79	0.00225	0.00395	0.00419	10.30	0.00087	11895
4	170.78	0.00318	0.00572	0.00618	14.44	0.00126	11487
4	173.21	0.00338	0.00572	0.00619	14.65	0.00127	11496
4	170.75	0.00313	0.00572	0.00618	14.44	0.00125	11530
4	170.79	0.00321	0.00572	0.00618	14.45	0.00126	11474
4	46.26	0.00308	0.00372	0.00618	3 91	0.00125	10063
2	46.51	0.00130	0.00153	0.00190	3.93	0.00039	9985
2	46.46	0.00125	0.00140	0.00190	3.93	0.00038	10354
2	46.36	0.00128	0.00140	0.00190	3.92	0.00038	10280
2	46.48	0.00102	0.00153	0.00190	3.93	0.00037	10590
2	82.94	0.00184	0.00299	0.00348	7.01	0.00069	10133
2	82.99	0.00201	0.00299	0.00349	7.02	0.00071	9926
2	83.02	0.00193	0.00299	0.00349	7.02	0.00073	10001
2	85.44	0.00166	0.00299	0.00349	7.23	0.00068	10644
2	119.65	0.00302	0.00468	0.00516	10.12	0.00107	9447
2	119.65	0.00273	0.00469	0.00504	10.12	0.00104	9748
2	119.65	0.00284	0.00468	0.00515	10.12	0.00106	9582
2	119.67	0.00287	0.00455	0.00515	10.12	0.00105	9655
2	168.32	0.00303	0.00455	0.00515	10.13	0.00106	9538
2	168.70	0.00379	0.00692	0.00749	14.24	0.00152	9217
2	169.85	0.00386	0.00691	0.00750	14.37	0.00152	9436
2	171.30	0.00366	0.00690	0.00749	14.49	0.00150	9628
2	168.32	0.00395	0.00690	0.00748	14.24	0.00153	9320

Table J.77: Resilient modulus data (C_1_13_98)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	48.25	0.00066	0.00107	0.00108	4.08	0.00023	17437
8	48.04	-0.00057	0.00107	0.00119	4.06	0.00014	28875
8	50.89	-0.00065	0.00107	0.00119	4.30	0.00013	32143
8	40.40	0.00092	0.00106	0.00119	4.10	0.00028	15877
8	85.03	0.00097	0.00192	0.00207	7.19	0.00041	17386
8	85.01	0.00107	0.00192	0.00207	7.19	0.00042	17071
8	85.05	0.00119	0.00192	0.00207	7.19	0.00043	16660
8	85.17	0.00098	0.00191	0.00207	7.20	0.00041	17420
8	85.23	0.00103	0.00191	0.00207	10.29	0.00042	1/239
8	121.01	0.00147	0.00289	0.00303	10.20	0.00062	16652
8	121.28	0.00167	0.00301	0.00303	10.26	0.00064	15972
8	123.91	0.00176	0.00301	0.00302	10.48	0.00065	16145
8	121.43	0.00154	0.00288	0.00302	10.27	0.00062	16550
8	170.44	0.00241	0.00432	0.00436	14.42	0.00092	15612
0	170.56	0.00213	0.00418	0.00446	14.43	0.00090	15516
8	170.31	0.00221	0.00428	0.00445	14.40	0.00091	15800
8	172.54	0.00234	0.00427	0.00443	14.59	0.00092	15853
6	48.56	0.00071	0.00118	0.00135	4.11	0.00027	15229
6	48.79	-0.00068	0.00119	0.00136	4.13	0.00016	26553
6	48.47	0.00088	0.00130	0.00135	4.10	0.00029	13896
6	48.63	0.00077	0.00118	0.00136	4.11	0.00028	14895
6	85.19	0.00110	0.00218	0.00230	7.21	0.00047	15480
6	85.20	0.00133	0.00219	0.00243	7.21	0.00050	14526
6	85.20	0.00123	0.00231	0.00243	7.21	0.00050	14490
6	87.39	0.00131	0.00218	0.00242	7.39	0.00049	15002
6	85.19	0.00097	0.00218	0.00230	7.21	0.00045	15852
6	121.62	0.00175	0.00336	0.00346	10.29	0.00071	14406
6	124.77	0.00172	0.00338	0.00358	10.55	0.00072	14588
6	123.35	0.00184	0.00338	0.00358	10.43	0.00073	14231
6	124.38	0.00191	0.00337	0.00345	10.52	0.00073	14458
6	170.04	0.00242	0.00482	0.00503	14.38	0.00102	14071
6	170.08	0.00247	0.00482	0.00515	14.39	0.00104	138/6
6	172.05	0.00245	0.00495	0.00516	14.45	0.00103	13556
6	175.31	0.00249	0.00494	0.00515	14.83	0.00105	14148
4	48.99	0.00076	0.00152	0.00159	4.14	0.00032	12870
4	46.29	0.00098	0.00151	0.00159	3.92	0.00034	11539
4	48.71	0.00099	0.00139	0.00146	4.12	0.00032	12866
4	48.87	0.00075	0.00140	0.00147	4.13	0.00030	13730
4	86.90	0.00128	0.00266	0.00288	7.35	0.00057	12911
4	85.55	0.00157	0.00267	0.00288	7.24	0.00059	12186
4	85.64	0.00142	0.00267	0.00289	7.24	0.00058	12462
4	85.68	0.00157	0.00267	0.00289	7.25	0.00059	12180
4	85.37	0.00137	0.00266	0.00289	7.22	0.00058	12525
4	121.00	0.00202	0.00403	0.00419	10.30	0.00085	12069
4	121.88	0.00205	0.00403	0.00407	10.31	0.00084	12200
4	121.93	0.00201	0.00402	0.00419	10.31	0.00085	12107
4	121.94	0.00204	0.00403	0.00407	10.31	0.00085	12200
4	170.98	0.00302	0.00585	0.00604	14.46	0.00124	11638
4	171 13	0.00265	0.00585	0.00604	14.03	0.00121	11935
4	168.51	0.00304	0.00584	0.00603	14.25	0.00124	11474
4	168.23	0.00276	0.00583	0.00602	14.23	0.00122	11686
2	46.87	0.00099	0.00177	0.00180	3.96	0.00038	10434
2	46.32	0.00099	0.00178	0.00180	3.92	0.00038	10301
2	46.30	0.00100	0.00177	0.00179	3.92	0.00038	10300
2	48.82	0.00094	0.00178	0.00180	4.13	0.00038	10961
2	85.10	0.00199	0.00319	0.00336	7.20	0.00071	10111
2	83.03	0.00186	0.00308	0.00338	7.02	0.00069	10137
2	86.41	0.00170	0.00320	0.00338	7.31	0.00069	10595
2	82.03	0.00153	0.00332	0.00337	7.56	0.00068	11033
2	119.59	0.00233	0.00320	0.00493	10.11	0.00100	10069
2	119.41	0.00257	0.00479	0.00492	10.10	0.00102	9862
2	120.09	0.00217	0.00490	0.00491	10.16	0.00100	10174
2	121.71	0.00225	0.00490	0.00503	10.29	0.00101	10145
2	120.44	0.00228	0.00491	0.00503	10.19	0.00102	10011
2	172 70	0.00336	0.00701	0.00733	14.30	0.00148	9695
2	168.60	0.00325	0.00717	0.00738	14.26	0.00148	9619
2	168.03	0.00328	0.00724	0.00731	14.21	0.00149	9562
2	168.01	0.00354	0.00724	0.00731	14.21	0.00151	9428

Table J.78: Resilient modulus data (C_2_13_98)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	48.39	-0.00059	0.00080	0.00091	4.09	0.00009	43956
8	50.82	-0.00068	0.00080	0.00103	4.30	0.00010	45069
8	48.42	-0.00062	0.00080	0.00090	4.10	0.00009	45424
8	48.84	-0.00032	0.00079	0.00030	4.13	0.00009	44784
8	84.94	0.00069	0.00142	0.00153	7.18	0.00030	23659
8	84.66	0.00069	0.00141	0.00152	7.16	0.00030	23687
8	87.05	-0.00069	0.00141	0.00164	7.36	0.00020	37369
8	84.94	-0.00071	0.00130	0.00153	7.18	0.00018	40750
8	85.02	0.00068	0.00142	0.00153	7.19	0.00030	23780
8	121.63	0.00113	0.00202	0.00224	10.29	0.00045	22902
8	121.40	0.00083	0.00202	0.00223	10.27	0.00042	23240
8	121.46	0.00119	0.00201	0.00223	10.27	0.00045	22663
8	121.52	0.00106	0.00214	0.00222	10.28	0.00045	22739
8	170.42	0.00158	0.00296	0.00311	14.41	0.00064	22602
8	172.93	0.00164	0.00308	0.00311	14.63	0.00065	22407
8	170.30	0.00130	0.00296	0.00310	14.40	0.00061	23504
8	172.82	0.00141	0.00296	0.00310	14.62	0.00062	23476
6	50.19	-0.00047	0.00092	0.00111	4.24	0.00013	32582
6	52.65	-0.00059	0.00092	0.00111	4.45	0.00012	37096
6	48.40	0.00056	0.00092	0.00099	4.09	0.00021	19912
6	48.88	-0.00066	0.00081	0.00100	4.13	0.00010	43236
6	48.51	0.00061	0.00080	0.00112	4.10	0.00021	19466
6	85.28	0.00074	0.00150	0.00181	7.21	0.00034	21396
6	87.97	0.00095	0.00150	0.00181	7.20	0.00037	20851
6	85.74	0.00072	0.00150	0.00181	7.25	0.00034	21547
6	86.91	-0.00085	0.00150	0.00180	7.35	0.00020	35888
6	124.23	0.00133	0.00216	0.00250	10.51	0.00050	21036
6	121.81	0.00091	0.00216	0.00251	10.30	0.00047	22147
6	121.84	0.00103	0.00216	0.00251	10.30	0.00047	21713
6	121.49	0.00125	0.00216	0.00250	10.28	0.00049	20865
6	172.92	0.00148	0.00334	0.00364	14.63	0.00070	20756
6	172.97	0.00168	0.00335	0.00352	14.63	0.00071	20543
6	170.43	0.00141	0.00323	0.00351	14.41	0.00068	21230
6	172.90	0.00150	0.00323	0.00352	14.62	0.00069	21283
6	172.97	0.00167	0.00335	0.00352	14.63	0.00071	20559
4	48.85	-0.00052	0.00087	0.00123	4.13	0.00013	31539
4	48.66	0.00072	0.00086	0.00122	4.12	0.00023	17611
4	48.73	0.00064	0.00086	0.00122	4.12	0.00023	18171
4	48.68	0.00071	0.00086	0.00122	4.12	0.00023	17689
4	85.33	0.00100	0.00155	0.00208	7.22	0.00038	18746
4	85.48	0.00080	0.00156	0.00209	7.23	0.00037	19500
4	85.74	0.00078	0.00155	0.00207	7.18	0.00037	19581
4	86.79	0.00080	0.00155	0.00207	7.34	0.00037	19921
4	124.24	0.00114	0.00241	0.00289	10.51	0.00054	19574
4	124.06	0.00136	0.00241	0.00288	10.49	0.00055	18936
4	124.95	0.00121	0.00241	0.00288	10.57	0.00054	19503
4	124.83	0.00124	0.00241	0.00288	10.56	0.00054	19410
4	173.05	0.00102	0.00254	0.00288	14.64	0.00054	19204
4	170.52	0.00173	0.00368	0.00411	14.42	0.00079	18175
4	172.80	0.00166	0.00368	0.00410	14.61	0.00079	18598
4	172.86	0.00170	0.00367	0.00408	14.62	0.00079	18569
4	170.43	0.00165	0.00354	0.00408	14.41	0.00077	18670
2	48.92	0.00066	0.00074	0.00145	4.14	0.00024	1/432
2	46.45	0.00075	0.00075	0.00145	3.93	0.00024	15997
2	46.53	-0.00072	0.00075	0.00145	3.94	0.00012	31973
2	48.97	-0.00078	0.00075	0.00158	4.14	0.00013	32217
2	90.06	0.00109	0.00162	0.00247	7.62	0.00043	17619
2	85.39	0.00071	0.00162	0.00258	7.22	0.00041	17663
2	85.52	0.00124	0.00163	0.00259	7.23	0.00045	15896
2	85.55	0.00116	0.00150	0.00246	7.23	0.00043	17/05
2	124.36	0.00134	0.00252	0.00349	10.52	0.00061	17172
2	124.33	0.00144	0.00252	0.00349	10.52	0.00062	16950
2	122.04	0.00139	0.00252	0.00349	10.32	0.00062	16743
2	124.30	0.00128	0.00252	0.00349	10.51	0.00061	17315
2	121.90	0.00111	0.00264	0.00349	10.31	0.00060	17082
2	173.25	0.00174	0.00391	0.00484	14.65	0.00087	16/61
2	170.72	0.00105	0.00391	0.00495	14.05	0.0008	15994
2	173.21	0.00185	0.00403	0.00495	14.65	0.00090	16239
2	173.24	0.00192	0.00403	0.00483	14.65	0.00090	16304

Table J.79: Resilient modulus data (C_1_10_98)

σ_3 [psi]	q [1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	48.76	-0.00056	0.00085	0.00091	4.12	0.00010	41133
8	48.78	-0.00058	0.00086	0.00091	4.13	0.00010	41673
8	48.50	0.00051	0.00085	0.00078	4.11	0.00018	22965
8	48.32	0.00058	0.00098	0.00090	4.09	0.00020	19951
8	87.27	0.00094	0.00165	0.00162	7.38	0.00035	21023
8	87.60	0.00096	0.00166	0.00150	7.41	0.00034	21609
8	87.46	0.00080	0.00166	0.00162	7.40	0.00034	21744
8	87.40	0.00066	0.00165	0.00150	7.39	0.00032	23255
8	87.56	0.00090	0.00166	0.00161	7.41	0.00035	21321
8	123.92	0.000127	0.00245	0.00229	10.48	0.00030	20530
8	124.14	0.00119	0.00245	0.00230	10.50	0.00049	21217
8	124.17	0.00093	0.00245	0.00242	10.50	0.00048	21739
8	124.11	0.00127	0.00245	0.00229	10.50	0.00050	20958
8	172.46	0.00175	0.00364	0.00349	14.59	0.00074	19701
8	172.50	0.00155	0.00352	0.00350	14.59	0.00071	20438
8	172.72	0.00166	0.00364	0.00349	14.01	0.00073	19932
8	172.65	0.00168	0.00365	0.00349	14.60	0.00073	19881
6	48.82	0.00076	0.00097	0.00086	4.13	0.00022	19123
6	51.18	-0.00057	0.00109	0.00085	4.33	0.00011	37931
6	48.85	0.00059	0.00097	0.00085	4.13	0.00020	20548
6	48.58	0.00063	0.00097	0.00098	4.11	0.00021	19184
6	48.81	0.00052	0.00096	0.00085	4.13	0.00019	18984
6	87.59	0.00085	0.00185	0.00174	7.41	0.00037	19975
6	87.64	0.00064	0.00186	0.00176	7.41	0.00036	20875
6	86.03	0.00098	0.00186	0.00163	7.28	0.00037	19521
6	96.56	-0.05805	-0.12141	-0.09163	8.17	-0.02259	-361
6	128.55	0.00133	0.00275	0.00261	10.87	0.00056	19511
6	124.17	0.00132	0.00275	0.00261	10.50	0.00055	18879
6	124.17	0.00147	0.00275	0.00261	10.50	0.00057	18447
6	126.60	0.00155	0.00287	0.00260	10.71	0.00058	18320
6	172.84	0.00179	0.00401	0.00388	14.62	0.00081	18139
6	172.82	0.00175	0.00412	0.00387	14.62	0.00081	18016
6	172.92	0.00203	0.00411	0.00386	14.63	0.00083	17536
6	172.84	0.00181	0.00410	0.00386	14.62	0.00081	17949
4	51.35	0.00086	0.00410	0.00388	4 34	0.00082	17333
4	48.62	0.00082	0.00110	0.00104	4.11	0.00025	16677
4	49.38	0.00062	0.00122	0.00092	4.18	0.00023	18113
4	47.65	0.00074	0.00109	0.00104	4.03	0.00024	16827
4	51.37	0.00075	0.00109	0.00103	4.34	0.00024	18186
4	87 72	0.00095	0.00212	0.00185	7.42	0.00041	16769
4	87.75	0.00118	0.00213	0.00186	7.42	0.00043	17200
4	87.79	0.00087	0.00214	0.00199	7.42	0.00042	17823
4	85.40	0.00097	0.00214	0.00187	7.22	0.00041	17425
4	121.99	0.00138	0.00316	0.00284	10.32	0.00062	16773
4	124.33	0.00129	0.00316	0.00296	10.52	0.00062	17015
4	124.39	0.00130	0.00328	0.00296	10.52	0.00063	16740
4	124.13	0.00150	0.00316	0.00296	10.50	0.00063	16541
4	173.25	0.00224	0.00470	0.00439	14.65	0.00094	15520
4	170.65	0.00213	0.00468	0.00438	14.43	0.00093	15493
4	170.59	0.00215	0.00479	0.00436	14.85	0.00094	15/66
4	173.17	0.00191	0.00464	0.00436	14.65	0.00093	16116
2	48.94	0.00088	0.00111	0.00131	4.14	0.00027	15057
2	48.87	0.00060	0.00111	0.00131	4.13	0.00025	16420
2	48.88	0.00072	0.00111	0.00131	4.13	0.00026	15837
2	48.86	0.00066	0.00111	0.00132	4.13	0.00026	16050
2	40.03	0.00079	0.00712	0.00130	7.23	0.00027	15668
2	85.29	0.00127	0.00232	0.00233	7.21	0.00049	14630
2	85.45	0.00126	0.00218	0.00235	7.23	0.00048	14993
2	85.39	0.00119	0.00219	0.00233	7.22	0.00048	15186
2	85.31	0.00119	0.00231	0.00232	7.21	0.00049	14855
2	124.45	0.00169	0.00352	0.00353	10.53	0.00073	14442
2	124.51	0.00146	0.00353	0.00342	10.53	0.00070	15030
2	122.10	0.00166	0.00353	0.00353	10.33	0.00073	14209
2	121.98	0.00179	0.00352	0.00354	10.32	0.00074	13986
2	173.36	0.00233	0.00531	0.00507	14.66	0.00106	13843
2	170.77	0.00260	0.00544	0.00506	14.44	0.00109	13238
2	173.30	0.00245	0.00544	0.00506	14.66	0.00108	13584
2	173.35	0.00260	0.00543	0.00507	14.66	0.00109	13419

Table J.80: Resilient modulus data (C_2_10_98)

σ_3 [psi]	q [1b]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	50.09	0.00067	0.00057	0.00060	4.24	0.00015	27694
8	47.84	0.00066	0.00057	0.00060	4.05	0.00015	26468
8	50.14	0.00070	0.00057	0.00060	4.24	0.00016	27231
8	50.29	0.00070	0.00057	0.00060	4.25	0.00016	27254
8	86.87	0.00135	0.00107	0.00109	7.35	0.00029	25071
8	86.77	0.00131	0.00107	0.00114	7.34	0.00029	25064
8	87.06	0.00135	0.00107	0.00114	7.36	0.00030	24820
8	87.00	0.00135	0.00111	0.00114	7.36	0.00030	24560
8	87.19	0.00135	0.00111	0.00114	7.37	0.00030	24569
8	122.95	0.00203	0.00168	0.00164	10.40	0.00045	23326
8	125.87	0.00200	0.00168	0.00169	10.65	0.00045	23800
8	123.41	0.00200	0.00168	0.00168	10.44	0.00045	23387
8	125.78	0.00203	0.00167	0.00168	10.64	0.00045	23717
8	174.55	0.00301	0.00250	0.00250	14.76	0.00067	22116
8	174.59	0.00301	0.00250	0.00246	14.77	0.00066	22231
8	172.35	0.00301	0.00250	0.00246	14.58	0.00066	21946
8	172.03	0.00304	0.00249	0.00246	14.77	0.00067	22165
6	50.26	0.00082	0.00064	0.00062	4.25	0.00017	24622
6	50.30	0.00082	0.00064	0.00062	4.25	0.00017	24624
6	50.24	0.00082	0.00060	0.00062	4.25	0.00017	25061
6	50.13	0.00082	0.00064	0.00066	4.24	0.00018	24012
6	47.42	0.00081	0.00059	0.00066	4.01	0.00017	23288
6	89.34	0.00157	0.00119	0.00120	7.56	0.00033	22907
6	86.58	0.00157	0.00119	0.00119	7.35	0.00033	22275
6	86.61	0.00153	0.00115	0.00119	7.33	0.00032	22233
6	89.36	0.00157	0.00119	0.00120	7.56	0.00033	22904
6	123.62	0.00233	0.00185	0.00179	10.46	0.00050	20992
6	124.80	0.00237	0.00181	0.00179	10.55	0.00050	21216
6	128.01	0.00237	0.00185	0.00179	10.83	0.00050	21591
6	125.75	0.00233	0.00185	0.00179	10.64	0.00050	21348
6	123.15	0.00232	0.00181	0.00179	10.42	0.00049	21102
6	173.25	0.00352	0.00280	0.00273	14.55	0.00075	19445
6	176.71	0.00351	0.00275	0.00271	14.95	0.00075	19971
6	174.29	0.00350	0.00274	0.00271	14.74	0.00075	19750
6	174.52	0.00350	0.00278	0.00270	14.76	0.00075	19721
4	48.17	0.00094	0.00072	0.00064	4.07	0.00019	21249
4	50.46	0.00096	0.00072	0.00064	4.27	0.00019	22044
4	48.05	0.00093	0.00072	0.00064	4.06	0.00019	21285
4	47.77	0.00096	0.00072	0.00064	4.04	0.00019	20943
4	84.73	0.00183	0.00136	0.00125	7.17	0.00037	19359
4	87.43	0.00188	0.00136	0.00125	7.39	0.00037	19745
4	84.96	0.00187	0.00136	0.00125	7.19	0.00037	19203
4	87.50	0.00184	0.00136	0.00125	7.40	0.00037	19925
4	84.51	0.00187	0.00132	0.00121	7.15	0.00037	19527
4	121.04	0.00279	0.00204	0.00196	10.24	0.00057	18396
4	123.55	0.00283	0.00208	0.00196	10.45	0.00057	18262
4	123.66	0.00279	0.00204	0.00196	10.46	0.00057	18505
4	123.58	0.00283	0.00208	0.00195	10.45	0.00057	18275
4	172.44	0.00412	0.00308	0.00299	14.58	0.00085	17171
4	169.97	0.00411	0.00308	0.00299	14.38	0.00085	16937
4	170.06	0.00411	0.00308	0.00299	14.3/	0.00085	16928
4	172.67	0.00412	0.00309	0.00300	14.60	0.00085	17171
2	39.05	0.00114	0.00063	0.00043	3.30	0.00018	17959
2	41.43	0.00119	0.00063	0.00042	3.50	0.00019	18679
2	39.06	0.00117	0.00064	0.00044	3.30	0.00019	17645
2	38.94	0.00110	0.00059	0.00039	3.29	0.00017	18934
2	41.67	0.00121	0.00064	0.00048	3.52	0.00019	18160
2	80.97	0.00237	0.00141	0.00113	6.85	0.00041	16743
2	80.92	0.00237	0.00145	0.00113	6.84	0.00041	16592
2	80.94	0.00236	0.00141	0.00113	6.85	0.00041	16743
2	80.95	0.00237	0.00141	0.00113	6.85	0.00041	16750
2	119.87	0.00354	0.00228	0.00193	10.14	0.00065	15684
2	119.68	0.00353	0.00228	0.00194	10.12	0.00065	15664
2	121.98	0.00353	0.00232	0.00194	10.32	0.00065	15874
2	119.86	0.00353	0.00228	0.00194	10.14	0.00065	15640
2	168.68	0.00511	0.00352	0.00321	14.27	0.00099	14457
2	168.88	0.00515	0.00348	0.00320	14.28	0.00099	14483
2	168.71	0.00511	0.00352	0.00321	14.27	0.00099	14466
2	168.75	0.00514	0.00352	0.00321	14.27	0.00099	14431
2	166.38	0.00510	0.00352	0.00321	14.07	0.00099	14278

Table J.81: Resilient modulus data (C_1_8_98)

σ_3 [psi]	q[1b]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	51.05	0.00070	0.00068	0.00062	4.32	0.00017	25885
8	51.09	0.00066	0.00064	0.00067	4.32	0.00016	26406
8	50.95	0.00066	0.00068	0.00062	4.31	0.00016	26384
8	50.93	0.00065	0.00063	0.00062	4.31	0.00016	20990
8	88.05	0.00126	0.00126	0.00116	7.45	0.00031	24307
8	87.76	0.00125	0.00126	0.00115	7.42	0.00031	24313
8	87.77	0.00129	0.00125	0.00115	7.42	0.00031	24078
8	85.52	0.00125	0.00121	0.00116	7.23	0.00030	23953
8	88.04	0.00125	0.00126	0.00116	7.45	0.00031	24378
8	123.92	0.00189	0.00187	0.00171	10.48	0.00046	22988
8	126.55	0.00189	0.00187	0.00176	10.70	0.00046	23262
8	123.89	0.00189	0.00183	0.00171	10.48	0.00045	23176
8	123.79	0.00189	0.00187	0.00171	10.47	0.00046	22986
8	173.90	0.00271	0.00270	0.00262	14.71	0.00067	21978
8	177.59	0.00271	0.00270	0.00257	15.02	0.00067	22574
8	172.98	0.00267	0.00265	0.00262	14.63	0.00066	22106
8	172.84	0.00271	0.00269	0.00262	14.62	0.00067	21890
6	50.92	0.00271	0.00239	0.00281	4 31	0.00087	23478
6	50.93	0.00074	0.00071	0.00067	4.31	0.00018	24384
6	51.15	0.00074	0.00075	0.00067	4.33	0.00018	23936
6	51.07	0.00074	0.00075	0.00067	4.32	0.00018	23882
6	50.93	0.00074	0.00075	0.00067	4.31	0.00018	23883
6	87.61	0.00136	0.00139	0.00124	7.41	0.00033	22280
6	85.16	0.00139	0.00139	0.00125	7.20	0.00034	21435
6	86.20	0.00140	0.00140	0.00125	7.45	0.00034	21913
6	88.32	0.00139	0.00139	0.00125	7.47	0.00034	22239
6	126.60	0.00209	0.00207	0.00190	10.71	0.00051	21200
6	125.20	0.00213	0.00207	0.00190	10.59	0.00051	20820
6	124.28	0.00210	0.00207	0.00190	10.51	0.00051	20798
6	125.98	0.00210	0.00207	0.00190	10.65	0.00050	21104
6	124.26	0.00209	0.00206	0.00189	10.51	0.00050	20847
6	175.37	0.00302	0.00296	0.00285	14.83	0.00073	20243
6	175.38	0.00302	0.00296	0.00285	14.83	0.00074	20140
6	172.83	0.00298	0.00295	0.00285	14.62	0.00073	19975
6	175.23	0.00302	0.00296	0.00285	14.82	0.00074	20143
4	51.00	0.00088	0.00089	0.00076	4.31	0.00021	20373
4	51.10	0.00085	0.00089	0.00077	4.32	0.00021	20664
4	48.62	0.00081	0.00085	0.00076	4.11	0.00020	20350
4	48.65	0.00085	0.00085	0.00077	4.11	0.00020	20043
4	85.87	0.00163	0.00164	0.00142	7.26	0.00039	18554
4	88.16	0.00167	0.00164	0.00146	7.46	0.00040	18739
4	85.27	0.00155	0.00159	0.00137	7.21	0.00038	19163
4	85.26	0.00155	0.00159	0.00142	7.21	0.00038	19004
4	85.61	0.00159	0.00164	0.00142	10.51	0.00039	18695
4	124.30	0.00240	0.00236	0.00215	10.31	0.00058	17883
4	124.51	0.00240	0.00240	0.00215	10.53	0.00058	18175
4	126.77	0.00244	0.00240	0.00215	10.72	0.00058	18413
4	124.28	0.00236	0.00240	0.00215	10.51	0.00058	18268
4	173.00	0.00346	0.00339	0.00324	14.63	0.00084	17411
4	1/3.14	0.00345	0.00339	0.00324	14.64	0.00084	17425
4	172.94	0.00345	0.00339	0.00324	14.63	0.00084	17420
4	173.11	0.00341	0.00338	0.00324	14.64	0.00084	17508
2	49.41	0.00097	0.00106	0.00081	4.18	0.00024	17682
2	49.37	0.00097	0.00106	0.00085	4.18	0.00024	17407
2	49.45	0.00097	0.00106	0.00090	4.18	0.00024	17122
2	49.28	0.00101	0.00105	0.00085	4.1/	0.00024	1/1/3
2	87.84	0.00101	0.00108	0.00085	7 43	0.00024	16200
2	88.14	0.00192	0.00197	0.00162	7.45	0.00046	16258
2	89.01	0.00192	0.00201	0.00162	7.53	0.00046	16282
2	88.59	0.00193	0.00198	0.00162	7.49	0.00046	16272
2	86.12	0.00192	0.00197	0.00162	7.28	0.00046	15858
2	124.30	0.00281	0.00285	0.00250	10.51	0.00068	15451
2	122.21	0.00282	0.00285	0.00251	10.34	0.00068	15166
2	121.95	0.00285	0.00284	0.00250	10.31	0.00068	15122
2	124.46	0.00285	0.00284	0.00250	10.53	0.00068	15421
2	171.88	0.00409	0.00404	0.00382	14.54	0.00100	14590
2	172.13	0.00406	0.00404	0.00383	14.56	0.00099	14649
2	171.92	0.00402	0.00404	0.00382	14.54	0.00099	14692
2	172.00	0.00405	0.00413	0.00378	14.55	0.00100	14595

Table J.82: Resilient modulus data (C_2_8_98)

σ_3 [psi]	q [1b]	$\delta_{LVDT#1}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.87	0.00040	0.00034	0.00046	4.30	0.00010	43082
8	50.74	0.00039	0.00034	0.00047	4.29	0.00010	43003
8	48.50	0.00040	0.00034	0.00046	4.10	0.00010	41103
8	51.72	0.00040	0.00038	0.00046	4.37	0.00010	42393
8	87.20	0.00068	0.00068	0.00086	7.38	0.00018	39905
8	85.60	0.00068	0.00068	0.00086	7.24	0.00018	39173
8	86.87	0.00064	0.00068	0.00086	7.35	0.00018	40442
8	87.15	0.00064	0.00068	0.00086	7.37	0.00018	40601
8	87.42	0.00064	0.00068	0.00085	7.39	0.00018	40699
8	123.93	0.00095	0.00102	0.00127	10.48	0.00027	38749
8	123.98	0.00095	0.00102	0.00127	10.49	0.00027	38/61
8	121.56	0.00099	0.00102	0.00131	10.28	0.00028	37139
8	124.01	0.00099	0.00102	0.00131	10.49	0.00028	37883
8	173.99	0.00146	0.00149	0.00191	14.72	0.00041	36315
8	172.72	0.00146	0.00149	0.00192	14.61	0.00041	36026
8	170.30	0.00146	0.00149	0.00192	14.40	0.00041	35549
8	170.06	0.00146	0.00149	0.00191	14.38	0.00040	35539
8	170.25	0.00146	0.00149	0.00195	14.40	0.00041	35252
6	48.71	0.00039	0.00034	0.00046	4.10	0.00010	41386
6	48.53	0.00039	0.00038	0.00046	4.10	0.00010	40061
6	48.51	0.00039	0.00034	0.00050	4.10	0.00010	40036
6	48.59	0.00039	0.00038	0.00046	4.11	0.00010	39965
6	85.05	0.00070	0.00068	0.00086	7.19	0.00019	38510
6	84.94	0.00063	0.00068	0.00090	7.18	0.00018	38931
6	87.99	0.00066	0.00068	0.00090	7.44	0.00019	39/15
6	91 77	0.00066	0.00068	0.00090	7.76	0.00019	41358
6	126.39	0.00099	0.00106	0.00136	10.69	0.00028	37544
6	124.09	0.00096	0.00106	0.00136	10.49	0.00028	37235
6	121.49	0.00096	0.00106	0.00136	10.28	0.00028	36482
6	121.61	0.00096	0.00106	0.00136	10.28	0.00028	36509
6	121.64	0.00096	0.00106	0.00136	10.29	0.00028	36518
6	172.75	0.00142	0.00157	0.00205	14.61	0.00042	34/82
6	170.28	0.00146	0.00157	0.00200	14.01	0.00042	34318
6	170.06	0.00146	0.00157	0.00200	14.38	0.00042	34278
6	172.63	0.00146	0.00157	0.00204	14.60	0.00042	34501
4	48.49	0.00042	0.00034	0.00048	4.10	0.00010	39600
4	48.53	0.00042	0.00034	0.00048	4.10	0.00010	39584
4	48.64	0.00042	0.00039	0.00048	4.11	0.00011	38261
4	48.61	0.00042	0.00034	0.00048	4.11	0.00010	39622
4	86.29	0.00067	0.00069	0.00089	7.30	0.00019	38923
4	91.52	0.00070	0.00069	0.00093	7.74	0.00019	39942
4	85.19	0.00070	0.00069	0.00093	7.21	0.00019	37183
4	87.60	0.00070	0.00069	0.00093	7.41	0.00019	38195
4	87.80	0.00071	0.00069	0.00094	7.43	0.00019	38222
4	123.98	0.00102	0.00110	0.00137	10.49	0.00029	36007
4	124.00	0.00102	0.00110	0.00137	10.43	0.00029	34924
4	121.58	0.00102	0.00110	0.00141	10.28	0.00029	34885
4	121.60	0.00103	0.00106	0.00137	10.28	0.00029	35768
4	173.82	0.00151	0.00165	0.00215	14.70	0.00044	33149
4	174.63	0.00148	0.00161	0.00211	14.77	0.00043	34094
4	1/2.82	0.00151	0.00165	0.00211	14.62	0.00044	33257
4	172 73	0.00147	0.00161	0.00215	14.61	0.00043	33477
2	48.73	0.00048	0.00033	0.00051	4.12	0.00011	37460
2	48.67	0.00048	0.00033	0.00051	4.12	0.00011	37490
2	48.79	0.00044	0.00033	0.00051	4.13	0.00011	38517
2	48.80	0.00044	0.00033	0.00047	4.13	0.00010	39852
2	48.58	0.00047	0.00033	0.00047	4.11	0.00011	38538
2	87.75	0.00079	0.00064	0.00094	7.41	0.00020	3/628
2	85.32	0.00079	0.00068	0.00094	7.22	0.00020	35891
2	85.48	0.00082	0.00068	0.00094	7.23	0.00020	35464
2	86.48	0.00079	0.00064	0.00094	7.31	0.00020	37049
2	121.88	0.00111	0.00110	0.00148	10.31	0.00031	33578
2	124.19	0.00110	0.00110	0.00148	10.50	0.00031	34231
2	124.31	0.00114	0.00110	0.00148	10.51	0.00031	33912
2	121.81	0.00110	0.00110	0.00143	10.30	0.00030	33085
2	173.04	0.00158	0.00168	0.00221	14.63	0.00046	32101
2	173.02	0.00158	0.00168	0.00221	14.63	0.00046	32090
2	170.57	0.00158	0.00168	0.00221	14.43	0.00046	31647
2	173.07	0.00162	0.00167	0.00221	14.64	0.00046	31919
2	172.91	0.00162	0.00168	0.00221	14.62	0.00046	31872

Table J.83: Resilient modulus data $(D_{-1}16_{-1}03)$

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	50.60	0.00063	0.00025	0.00024	4.28	0.00009	45496
8	50.41	0.00059	0.00025	0.00024	4.26	0.00009	46909
8	48.18	0.00060	0.00025	0.00024	4.07	0.00009	44702
8	50.64	0.00060	0.00021	0.00024	4.28	0.00009	46718
8	84.78	0.00097	0.00051	0.00051	7.17	0.00017	43447
8	87.29	0.00097	0.00051	0.00051	7.38	0.00017	44740
8	87.26	0.00097	0.00051	0.00051	7.38	0.00017	44716
8	87.31	0.00101	0.00051	0.00051	7.38	0.00017	43886
8	87.37	0.00100	0.00051	0.00051	7.39	0.00017	43942
8	123.81	0.00136	0.00082	0.00081	10.47	0.00025	42094
8	123.66	0.00136	0.00082	0.00085	10.49	0.00025	42065
8	126.55	0.00136	0.00082	0.00085	10.70	0.00025	42546
8	122.57	0.00136	0.00081	0.00080	10.37	0.00025	41818
8	170.02	0.00188	0.00135	0.00132	14.38	0.00038	37984
8	170.35	0.00188	0.00130	0.00132	14.41	0.00038	38397
8	171.23	0.00183	0.00130	0.00132	14.48	0.00037	38979
8	174.32	0.00191	0.00130	0.00132	14.74	0.00038	39010
6	52.89	0.00068	0.00021	0.00029	4 47	0.00010	45531
6	50.85	0.00068	0.00021	0.00025	4.30	0.00009	45383
6	50.81	0.00068	0.00021	0.00025	4.30	0.00009	45511
6	50.82	0.00068	0.00021	0.00029	4.30	0.00010	43853
6	48.52	0.00064	0.00021	0.00024	4.10	0.00009	44916
6	85.02	0.00108	0.00047	0.00051	7.19	0.00017	41870
6	85.06	0.00105	0.00042	0.00051	7.19	0.00016	43605
6	84.97	0.00108	0.00047	0.00051	7.39	0.00017	41836
6	87.49	0.00105	0.00047	0.00051	7.40	0.00017	43870
6	121.55	0.00145	0.00078	0.00081	10.28	0.00025	40608
6	123.98	0.00144	0.00074	0.00081	10.49	0.00025	42060
6	124.11	0.00149	0.00078	0.00081	10.50	0.00026	40941
6	124.08	0.00148	0.00078	0.00081	10.49	0.00026	41007
6	123.88	0.00148	0.00078	0.00081	10.48	0.00026	40988
6	172.51	0.00207	0.00124	0.00131	14.59	0.00038	37917
6	172.83	0.00203	0.00124	0.00131	14.62	0.00038	38293
6	172.63	0.00207	0.00128	0.00130	14.60	0.00039	37648
6	170.22	0.00203	0.00124	0.00130	14.40	0.00038	37795
4	48.66	0.00069	0.00017	0.00026	4.12	0.00009	44288
4	51.03	0.00072	0.00017	0.00026	4.32	0.00010	45060
4	50.92	0.00059	0.00021	0.00026	4.32	0.00010	44000
4	48.66	0.00073	0.00021	0.00026	4.12	0.00010	41420
4	87.54	0.00119	0.00038	0.00053	7.40	0.00018	42157
4	85.06	0.00119	0.00038	0.00053	7.19	0.00018	41010
4	87.58	0.00119	0.00038	0.00053	7.41	0.00018	42165
4	87.39	0.00119	0.00038	0.00049	7.39	0.00017	42987
4	121.51	0.00119	0.00038	0.00053	10.28	0.00018	38866
4	123.77	0.00169	0.00067	0.00077	10.47	0.00026	40184
4	123.79	0.00169	0.00067	0.00077	10.47	0.00026	40232
4	121.52	0.00169	0.00067	0.00077	10.28	0.00026	39419
4	121.46	0.00169	0.00072	0.00081	10.27	0.00027	38348
4	170.12	0.00230	0.00118	0.00126	14.39	0.00040	36422
4	170.25	0.00230	0.00118	0.00126	14.40	0.00040	36627
4	172.96	0.00234	0.00118	0.00126	14.63	0.00040	36717
4	172.63	0.00230	0.00118	0.00127	14.60	0.00040	36934
2	51.39	0.00084	0.00017	0.00025	4.35	0.00011	41372
2	51.95	0.00080	0.00017	0.00025	4.39	0.00010	43214
2	52.67	0.00080	0.00017	0.00025	4.45	0.00010	43651
2	48.70	0.00080	0.00017	0.00025	4.12	0.00010	40245
2	87.70	0.00145	0.00021	0.00025	7 42	0.00011	40218
2	85.26	0.00148	0.00032	0.00044	7.21	0.00019	38444
2	85.39	0.00145	0.00033	0.00044	7.22	0.00018	39079
2	85.34	0.00148	0.00032	0.00044	7.22	0.00019	38446
2	87.65	0.00145	0.00033	0.00049	7.41	0.00019	39397
2	121.62	0.00202	0.00059	0.00075	10.29	0.00028	36739
2	124.56	0.00202	0.00059	0.00075	10.53	0.00028	3/686
2	123.33	0.00202	0.00063	0.00075	10.60	0.00028	38858
2	121.67	0.00199	0.00059	0.00075	10.29	0.00028	37187
2	170.53	0.00276	0.00112	0.00117	14.42	0.00042	34270
2	173.25	0.00273	0.00108	0.00117	14.65	0.00042	35288
2	170.50	0.00273	0.00107	0.00117	14.42	0.00042	34734
2	175.38	0.00274	0.00107	0.00117	14.83	0.00042	35722
2	170.14	0.002/3	0.00107	0.00116	14.39	0.00041	04000

Table J.84: Resilient modulus data (D_2_16_103)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	49.06	0.00050	0.00015	0.00017	4.15	0.00007	61323
8	50.99	0.00041	0.00015	0.00017	4.31	0.00006	71133
8	51.00	0.00045	0.00015	0.00017	4.31	0.00006	67436
0	50.98	0.00053	0.00015	0.00017	4.33	0.00007	67736
8	87.98	0.00074	0.00033	0.00033	7.44	0.00012	63697
8	90.31	0.00070	0.00038	0.00033	7.64	0.00012	65029
8	90.43	0.00074	0.00034	0.00033	7.65	0.00012	65286
8	90.22	0.00070	0.00038	0.00033	7.63	0.00012	64875
8	90.31	0.00074	0.00038	0.00033	7.64	0.00012	63084
8	129.28	0.00098	0.00060	0.00047	10.93	0.00017	64229
8	129.16	0.00098	0.00060	0.00042	10.92	0.00017	65637
8	127.13	0.00098	0.00060	0.00047	10.75	0.00017	62978
8	124.32	0.00098	0.00056	0.00047	10.51	0.00017	61003
8	175.43	0.00133	0.00089	0.00066	14.84	0.00024	61814
8	175.46	0.00133	0.00089	0.00066	14.84	0.00024	61860
8	175.57	0.00133	0.00089	0.00066	14.85	0.00024	61881
8	172.96	0.00129	0.00089	0.00062	14.63	0.00023	62818
8	173.04	0.00129	0.00084	0.00066	14.63	0.00023	62804
6	51.24	0.00050	0.00015	0.00020	4.33	0.00007	61451
6	51.06	0.00046	0.00019	0.00020	4.32	0.00007	60870
6	51.02	0.00050	0.00015	0.00020	4.32	0.00007	61441
6	51.17	0.00046	0.00015	0.00020	4.33	0.00007	64339
6	00.21	0.00046	0.00015	0.00016	4.33	0.00006	64901
6	90.21	0.00078	0.00035	0.00030	7.63	0.00012	66674
6	89.80	0.00072	0.00035	0.00031	7.60	0.00011	66620
6	87.36	0.00075	0.00035	0.00030	7.39	0.00012	63247
6	87.29	0.00071	0.00039	0.00031	7.38	0.00012	63164
6	127.10	0.00104	0.00058	0.00044	10.75	0.00017	62303
6	129.33	0.00104	0.00058	0.00044	10.94	0.00017	63597
6	129.26	0.00108	0.00062	0.00044	10.93	0.00018	61198
6	129.34	0.00104	0.00058	0.00044	10.94	0.00017	63642
6	127.19	0.00104	0.00062	0.00045	10.76	0.00018	61029
6	175.44	0.00136	0.00088	0.00063	14.04	0.00024	62000
6	175.36	0.00136	0.00088	0.00063	14.84	0.00024	62021
6	175.32	0.00136	0.00088	0.00063	14.83	0.00024	62142
6	172.76	0.00132	0.00088	0.00063	14.61	0.00024	62036
4	50.84	0.00050	0.00018	0.00020	4.30	0.00007	58983
4	52.23	0.00047	0.00018	0.00016	4.42	0.00007	64780
4	50.98	0.00050	0.00014	0.00020	4.31	0.00007	61958
4	51.78	0.00050	0.00014	0.00020	4.38	0.00007	62318
4	88.70	0.00079	0.00018	0.00020	7.50	0.00007	60188
4	91.68	0.00076	0.00037	0.00034	7.75	0.00012	63356
4	88.34	0.00071	0.00037	0.00034	7.47	0.00012	62921
4	87.78	0.00079	0.00033	0.00033	7.42	0.00012	61388
4	88.17	0.00075	0.00037	0.00033	7.46	0.00012	61396
4	127.30	0.00106	0.00055	0.00044	10.77	0.00017	63263
4	130.47	0.00106	0.00059	0.00044	11.03	0.00017	63522
4	128.13	0.00101	0.00059	0.00044	10.84	0.00017	63685
4	127.30	0.00108	0.00055	0.00046	10.77	0.00018	64493
4	175.59	0.00102	0.00088	0.00066	14.85	0.00025	60399
4	177.81	0.00141	0.00088	0.00065	15.04	0.00025	61340
4	175.49	0.00137	0.00092	0.00065	14.84	0.00025	60448
4	173.41	0.00145	0.00088	0.00065	14.67	0.00025	59000
4	175.64	0.00145	0.00087	0.00065	14.85	0.00025	59892
2	48.69	0.00046	0.00019	0.00017	4.12	0.00007	59567
2	50.89	0.00042	0.00019	0.00017	4.30	0.00007	65918
2	51.23	0.00043	0.00019	0.00022	4.33	0.00007	62182
2	48.60	0.00038	0.00019	0.00022	4.11	0.00007	65971
2	87.79	0.00076	0.00035	0.00035	7.42	0.00012	61264
2	90.38	0.00076	0.00035	0.00035	7.64	0.00012	62893
2	87.77	0.00072	0.00035	0.00035	7.42	0.00012	62850
2	87.77	0.00072	0.00035	0.00035	7.42	0.00012	62982
2	90.20	0.00072	0.00035	0.00035	7.63	0.00012	64677
2	126.78	0.00101	0.00055	0.00051	10.72	0.00017	62168
2	126.99	0.00101	0.00055	0.00051	10.74	0.00017	62102
2	126.78	0.00105	0.00055	0.00051	10.72	0.00018	61092
2	124.45	0.00101	0.00050	0.00047	10.53	0.0001/	61067
2	173.14	0.00142	0.00084	0.00068	14 64	0.00018	59775
2	175.73	0.00139	0.00084	0.00068	14.86	0.00024	61443
2	175.64	0.00146	0.00084	0.00068	14.85	0.00025	59867
2	175.54	0.00146	0.00084	0.00068	14.85	0.00025	59821
2	175.45	0.00142	0.00080	0.00064	14.84	0.00024	62397

Table J.85: Resilient modulus data (D_1_13_103)

σ_3 [psi]	q [lb]	$\delta_{\text{LVDT#1}} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	53.55	0.00011	0.00020	0.00030	4.53	0.00005	89469
8	50.97	0.00012	0.00020	0.00030	4.31	0.00005	84961
8	50.78	0.00012	0.00020	0.00029	4.29	0.00005	84638
8	51.35	0.00016	0.00020	0.00029	4.34	0.00005	80836
8	87.44	0.00012	0.00020	0.00025	7.40	0.00000	83427
8	87.26	0.00028	0.00033	0.00049	7.38	0.00009	80756
8	87.43	0.00024	0.00033	0.00049	7.39	0.00009	83577
8	90.05	0.00028	0.00033	0.00049	7.62	0.00009	83218
8	87.50	0.00024	0.00033	0.00049	7.40	0.00009	83856
8	126.49	0.00035	0.00046	0.00068	10.70	0.00012	86033
8	126.47	0.00038	0.00046	0.00068	10.70	0.00013	83951
8	124.23	0.00035	0.00046	0.00068	10.51	0.00012	84356
8	124.28	0.00039	0.00046	0.00068	10.51	0.00013	82249
8	123.94	0.00035	0.00046	0.00068	10.48	0.00012	84027
8	175.10	0.00032	0.00067	0.00098	14.02	0.00018	83014
8	175.32	0.00052	0.00072	0.00098	14.83	0.00018	80198
8	175.45	0.00052	0.00072	0.00098	14.84	0.00019	80041
8	175.14	0.00049	0.00072	0.00098	14.81	0.00018	81391
6	50.80	0.00015	0.00019	0.00029	4.30	0.00005	81578
6	50.85	0.00015	0.00019	0.00029	4.30	0.00005	81176
6	50.76	0.00015	0.00019	0.00029	4.29	0.00005	81037
6	51.23	0.00015	0.00019	0.00029	4.33	0.00005	82493
6	56.99	0.00015	0.00019	0.00029	4.82	0.00005	910/3
6	93.15	0.00025	0.00033	0.00048	7.49	0.00009	85074
6	85.58	0.00024	0.00032	0.00053	7.24	0.00009	79251
6	87.90	0.00025	0.00032	0.00049	7.43	0.00009	84600
6	90.07	0.00024	0.00032	0.00048	7.62	0.00009	86970
6	126.84	0.00039	0.00048	0.00075	10.73	0.00013	79711
6	126.67	0.00035	0.00048	0.00070	10.71	0.00013	83648
6	126.90	0.00032	0.00048	0.00070	10.73	0.00012	85908
6	124.02	0.00035	0.00052	0.00075	10.49	0.00014	77511
6	124.63	0.00032	0.00048	0.00070	10.54	0.00013	84274
6	177.91	0.00045	0.00071	0.00102	15.05	0.00018	82/65
6	175.30	0.00045	0.00071	0.00102	14.03	0.00018	80352
6	172.79	0.00049	0.00067	0.00101	14.64	0.00018	80626
6	175.44	0.00046	0.00071	0.00102	14.84	0.00018	81550
4	51.08	0.00014	0.00022	0.00029	4.32	0.00005	80432
4	51.58	0.00010	0.00022	0.00029	4.36	0.00005	86521
4	52.56	0.00014	0.00022	0.00033	4.45	0.00006	77962
4	55.46	0.00010	0.00021	0.00028	4.69	0.00005	94272
4	51.05	0.00010	0.00022	0.00028	4.32	0.00005	86448
4	87.90	0.00019	0.00038	0.00057	7.43	0.00009	78632
4	87.78	0.00015	0.00038	0.00057	7.44	0.00009	81124
4	89.93	0.00023	0.00038	0.00053	7.61	0.00009	80485
4	88.34	0.00019	0.00038	0.00053	7.47	0.00009	81861
4	124.47	0.00030	0.00055	0.00075	10.53	0.00013	79102
4	124.19	0.00026	0.00050	0.00075	10.50	0.00013	83089
4	126.78	0.00030	0.00051	0.00079	10.72	0.00013	80471
4	124.31	0.00030	0.00051	0.00075	10.51	0.00013	81196
4	124.24	0.00030	0.00051	0.00079	10.51	0.00013	78950
4	173.00	0.00042	0.00077	0.00111	14.67	0.00019	79233
4	173.36	0.00038	0.00073	0.00111	14.66	0.00019	79224
4	175.50	0.00042	0.00077	0.00111	14.84	0.00019	77540
4	175.88	0.00042	0.00077	0.00111	14.87	0.00019	77711
2	51.41	0.00007	0.00023	0.00035	4.35	0.00005	80072
2	51.40	0.00007	0.00027	0.00035	4.35	0.00006	75556
2	51.42	-0.00004	0.00027	0.00035	4.35	0.00005	90007
2	49.05	-0.00004	0.00023	0.00035	4.15	0.00004	92878
2	48.74	0.00007	0.00023	0.00035	4.12	0.00005	76913
2	90.35	0.00009	0.00041	0.00060	7.50	0.00009	80930
2	88.71	0.00013	0.00041	0.00060	7,50	0.00009	79248
2	87.96	-0.00007	0.00041	0.00060	7.44	0.00008	94293
2	88.00	0.00013	0.00041	0.00061	7.44	0.00010	78100
2	126.94	0.00019	0.00056	0.00089	10.74	0.00014	78803
2	126.77	0.00015	0.00056	0.00089	10.72	0.00013	80693
2	124.55	0.00019	0.00056	0.00084	10.53	0.00013	79579
2	126.84	0.00019	0.00056	0.00089	10.73	0.00014	78794
2	126.78	0.00015	0.00056	0.00088	10.72	0.00013	80676
2	177 55	0.00031	0.00082	0.00122	15.24	0.00020	79743
2	173.28	0.00027	0.00077	0.00122	14.66	0.00019	77724
2	175.84	0.00030	0.00082	0.00122	14.87	0.00020	76252
2	173.17	0.00031	0.00077	0.00122	14.65	0.00019	76578

Table J.86: Resilient modulus data (D_2_13_103)

σ_3 [psi]	q [1b]	$\delta_{LVDT#1}$ [in.]	$\delta_{LVDT#2}$ [in.]	$\delta_{LVDT#3}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	51.35	0.00046	0.00038	0.00012	4.34	0.00008	54694
8	53.85	0.00046	0.00038	0.00008	4.55	0.00008	59598
8	53.47	0.00042	0.00038	0.00007	4.52	0.00007	62314
8	51.65	0.00046	0.00033	0.00012	4.37	0.00008	57426
8	87.63	-0.02781	-0.04400	-0.01798	5.74	-0.00748	-/6/
8	87.88	0.00069	0.00060	0.00029	7.41	0.00013	56494
8	90.35	0.00069	0.00061	0.00029	7.64	0.00013	57761
8	87.91	0.00069	0.00060	0.00029	7.44	0.00013	56359
8	90.46	0.00069	0.00061	0.00029	7.65	0.00013	57829
8	126.62	0.00093	0.00084	0.00052	10.71	0.00019	56120
8	129.16	0.00097	0.00084	0.00052	10.92	0.00019	56280
8	126.71	0.00097	0.00084	0.00052	10.72	0.00019	55207
8	126.50	0.00096	0.00084	0.00052	10.70	0.00020	54267
8	175.59	0.00129	0.00118	0.00083	14.85	0.00028	53927
8	175.60	0.00133	0.00122	0.00079	14.85	0.00028	53352
8	175.56	0.00136	0.00122	0.00083	14.85	0.00028	52147
8	178.08	0.00132	0.00118	0.00083	15.06	0.00028	54198
8	178.00	0.00132	0.00122	0.00083	15.05	0.00028	53528
6	53.60	0.00046	0.00039	0.00013	4.53	0.00008	55182
6	51.04	0.00042	0.00040	0.00013	4.32	0.00008	54688
6	53.36	0.00046	0.00039	0.00013	4.51	0.00008	55356
6	53.66	0.00046	0.00040	0.00013	4.54	0.00008	55235
6	87.56	0.00075	0.00061	0.00030	7.41	0.00014	53451
6	87.68	0.00075	0.00061	0.00030	7.42	0.00014	53429
6	87.69	0.00075	0.00061	0.00030	7.42	0.00014	53459
6	90.12	0.00075	0.00066	0.00034	7.62	0.00015	52271
6	87.77	0.00075	0.00061	0.00030	7.42	0.00014	53558
6	129.35	0.00103	0.00087	0.00061	10.94	0.00021	52307
6	126.84	0.00103	0.00087	0.00060	10.73	0.00021	51357
6	120.00	0.00103	0.00087	0.00060	10.73	0.00021	50564
6	126.03	0.00103	0.00091	0.00061	10.72	0.00021	50451
6	176.09	0.00139	0.00125	0.00083	14.89	0.00029	51552
6	178.22	0.00138	0.00125	0.00088	15.07	0.00029	51584
6	178.96	0.00142	0.00125	0.00087	15.14	0.00030	51260
6	179.95	0.00138	0.00125	0.00088	15.22	0.00029	52074
6	179.91	0.00138	0.00125	0.00083	15.22	0.00029	52692
4	53.78	0.00043	0.00041	0.00015	4.55	0.00008	55095
4	53.69	0.00047	0.00041	0.00015	4.54	0.00009	52678
4	51.24	0.00047	0.00041	0.00015	4.34	0.00009	50499
4	51.31	0.00043	0.00041	0.00015	4.34	0.00008	52362
4	90.41	0.00076	0.00072	0.00034	7.65	0.00015	50484
4	90.54	0.00080	0.00068	0.00034	7.66	0.00015	50696
4	90.55	0.00080	0.00067	0.00033	7.66	0.00015	51002
4	90.54	0.00080	0.00067	0.00033	7.66	0.00015	51098
4	90.47	0.00080	0.00067	0.00033	10.75	0.00015	51243
4	127.11	0.00109	0.00105	0.00067	10.75	0.00023	46038
4	127.00	0.00112	0.00104	0.00067	10.74	0.00020	45462
4	128.25	0.00109	0.00105	0.00067	10.85	0.00023	46372
4	128.65	0.00112	0.00105	0.00067	10.88	0.00024	45926
4	175.76	0.00148	0.00130	0.00093	14.87	0.00031	48120
4	175.72	0.00152	0.00134	0.00093	14.86	0.00032	47058
4	1/5.88	0.00149	0.00130	0.00093	14.87	0.00031	48118
4	178.30	0.00148	0.00130	0.00093	14.80	0.00031	40113
2	53.89	0.00048	0.00045	0.00018	4,56	0.00009	49434
2	51.45	0.00048	0.00045	0.00018	4.35	0.00009	47191
2	51.35	0.00048	0.00044	0.00018	4.34	0.00009	47291
2	51.28	0.00048	0.00045	0.00018	4.34	0.00009	47124
2	51.69	0.00044	0.00045	0.00018	4.37	0.00009	48905
2	87.88	0.00078	0.00074	0.00038	7.43	0.00016	46954
2	90.23	0.00082	0.00078	0.00038	7.63	0.00017	46242
2	87.95	0.00082	0.00073	0.00038	7.44	0.00016	45967
2	90.44	0.00082	0.00073	0.00038	7.65	0.00016	47309
2	127.18	0.00113	0.00104	0.00061	10.76	0.00023	46485
2	127.17	0.00113	0.00099	0.00061	10.76	0.00023	47336
2	127.28	0.00117	0.00103	0.00065	10.77	0.00024	45172
2	127.15	0.00117	0.00103	0.00061	10.75	0.00023	45893
2	127.05	0.00117	0.00103	0.00065	10.75	0.00024	45185
2	175.93	0.00158	0.00145	0.00098	14.88	0.00034	44406
2	1/5.71	0.00159	0.00145	0.00098	14.86	0.00033	44369
2	176.05	0.00158	0.00145	0.00098	13.06	0.00033	44958
2	177.23	0.00158	0.00145	0.00098	14.99	0.00034	44728

Table J.87: Resilient modulus data (D_1_11_103)

σ_3 [psi]	q[16]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	51.16	0.00052	0.00051	0.00053	4.33	0.00013	33183
8	51.48	0.00053	0.00052	0.00049	4.35	0.00013	34042
8	51.20	0.00052	0.00051	0.00049	4.33	0.00013	34068
8	51.29	0.00052	0.00052	0.00049	4.34	0.00013	33122
8	90.00	0.00094	0.00093	0.00099	7.61	0.00024	31984
8	89.69	0.00093	0.00092	0.00099	7.59	0.00024	31953
8	90.81	0.00086	0.00093	0.00099	7.68	0.00023	33158
8	89.36	0.00086	0.00092	0.00099	7.56	0.00023	32745
8	93.26	0.00089	0.00092	0.00098	7.89	0.00023	33974
8	124.69	0.00132	0.00134	0.00151	10.55	0.00035	30327
8	120.09	0.00138	0.00134	0.00151	10.71	0.00035	30342
8	124.37	0.00136	0.00134	0.00152	10.52	0.00035	29894
8	129.20	0.00136	0.00134	0.00156	10.93	0.00035	30813
8	175.54	0.00184	0.00187	0.00227	14.85	0.00050	29760
8	175.54	0.00189	0.00188	0.00225	14.85	0.00050	29604
8	175.16	0.00180	0.00187	0.00225	14.81	0.00049	30062
8	175.28	0.00188	0.00187	0.00224	14.82	0.00050	29711
6	48.59	0.00054	0.00058	0.000224	4 11	0.00030	28503
6	48.73	0.00054	0.00058	0.00062	4.12	0.00014	28451
6	51.07	0.00058	0.00058	0.00062	4.32	0.00015	29193
6	51.21	0.00054	0.00058	0.00061	4.33	0.00014	29883
6	51.18	0.00058	0.00058	0.00062	4.33	0.00015	29230
6	88.10	0.00108	0.00104	0.00124	7.45	0.00028	26672
6	90.18	0.00108	0.00103	0.00123	7.63	0.00028	2/431
6	87.68	0.00107	0.00103	0.00123	7.41	0.00028	26703
6	87.82	0.00104	0.00103	0.00123	7.43	0.00028	26965
6	124.36	0.00152	0.00152	0.00177	10.52	0.00040	26207
6	126.44	0.00152	0.00152	0.00176	10.69	0.00040	26756
6	126.45	0.00152	0.00151	0.00176	10.69	0.00040	26763
6	126.62	0.00152	0.00152	0.00176	10.71	0.00040	26790
6	126.67	0.00152	0.00148	0.00177	10.71	0.00040	26996
6	175.36	0.00210	0.00207	0.00261	14.83	0.00057	26281
6	175.29	0.00210	0.00207	0.00261	14.83	0.00056	26241
6	175.44	0.00206	0.00211	0.00257	14.84	0.00056	26393
6	177.79	0.00210	0.00211	0.00257	15.04	0.00056	26614
4	50.27	0.00066	0.00071	0.00079	4.25	0.00018	23549
4	55.52	0.00069	0.00071	0.00083	4.70	0.00019	25203
4	49.11	0.00070	0.00071	0.00079	4.15	0.00018	22607
4	51.00	0.00070	0.00072	0.00079	4.30	0.00018	24064
4	88.42	0.00124	0.00122	0.00149	7,48	0.00033	22758
4	87.86	0.00127	0.00125	0.00152	7.43	0.00034	22051
4	87.86	0.00123	0.00125	0.00152	7.43	0.00033	22314
4	87.72	0.00123	0.00125	0.00151	7.42	0.00033	22300
4	90.40	0.00119	0.00125	0.00151	7.65	0.00033	23214
4	129.08	0.00183	0.00177	0.00223	10.92	0.00049	22481
4	124.65	0.00176	0.00173	0.00219	10.54	0.00047	22273
4	126.49	0.00176	0.00173	0.00223	10.70	0.00048	22480
4	126.79	0.00180	0.00177	0.00223	10.72	0.00048	22176
4	173.19	0.00248	0.00240	0.00307	14.65	0.00066	22108
4	173.12	0.00244	0.00240	0.00307	14.64	0.00066	22218
4	175.88	0.00245	0.00240	0.00307	14.87	0.00066	22532
4	175.56	0.00248	0.00240	0.00307	14.85	0.00066	22413
2	51.67	0.00094	0.00080	0.00102	4.37	0.00023	19011
2	48.97	0.00097	0.00080	0.00097	4.14	0.00023	18164
2	51.35	0.00093	0.00080	0.00101	4.34	0.00023	19057
2	51.34	0.00097	0.00079	0.00101	4.34	0.00023	18840
2	49.22	0.00094	0.00080	0.00101	4.16	0.00023	18237
2	88.21	0.00162	0.00143	0.00187	7.46	0.00041	18185
2	88.18	0.00162	0.00147	0.00191	7.46	0.00042	17885
2	87.76	0.00164	0.00147	0.00190	7.42	0.00042	17786
2	91.28	0.00161	0.00146	0.00185	7.72	0.00041	18796
2	127.41	0.00227	0.00207	0.00273	10.78	0.00059	18293
2	127.10	0.00222	0.00215	0.00277	10.75	0.00059	18077
2	124.30	0.00225	0.00210	0.00276	10.51	0.00059	17757
2	124.90	0.00226	0.00210	0.00277	10.56	0.00059	18325
2	175.76	0.00307	0.00285	0.00381	14.87	0.00081	18322
2	175.72	0.00306	0.00284	0.00380	14.86	0.00081	18388
2	175.65	0.00301	0.00283	0.00378	14.86	0.00080	18517
2	177.95	0.00308	0.00287	0.00377	15.05	0.00081	18599
2	1/5.88	0.00305	0.00286	0.00376	14.87	0.00081	18458

Table J.88: Resilient modulus data (D_2_11_103)

σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	[-] 3	M _R [psi]
8	53.19	0.00058	0.00076	0.00043	4.22	0.00015	28677
8	50.99	0.00062	0.00080	0.00043	4.05	0.00015	26289
8	50.87	0.00058	0.00080	0.00047	4.04	0.00015	26199
8	53.09	0.00066	0.00079	0.00042	4.21	0.00016	26956
8	87.87	0.00082	0.00079	0.00043	6.97	0.00015	26262
8	87.81	0.00117	0.00136	0.00093	6.97	0.00029	24159
8	89.52	0.00112	0.00138	0.00092	7.11	0.00028	24935
8	87.31	0.00120	0.00138	0.00092	6.93	0.00029	23748
8	103.68	-0.03656	-0.03805	-0.00863	8.23	-0.00694	-1186
8	124.28	0.00182	0.00205	0.00149	9.86	0.00045	22099
8	126.25	0.00185	0.00204	0.00153	10.02	0.00045	22208
8	124.84	0.00185	0.00204	0.00153	9.91	0.00045	21953
8	128.51	0.00181	0.00208	0.00157	10.20	0.00045	22430
8	126.40	0.00184	0.00207	0.00153	10.03	0.00045	22115
8	175.49	0.00291	0.00310	0.00256	13.93	0.00071	19510
8	173.02	0.00294	0.00310	0.00256	13.73	0.00072	19278
8	172.89	0.00289	0.00309	0.00251	13.72	0.00071	19384
8	175.45	0.00293	0.00312	0.00256	13.93	0.00072	19410
6	50.79	0.00063	0.00077	0.00043	4.03	0.00015	26407
6	50.70	0.00059	0.00081	0.00044	4.02	0.00015	26266
6	51.09	0.00063	0.00082	0.00039	4.06	0.00015	26423
6	51.88	0.00063	0.00082	0.00043	4.12	0.00016	26267
6	53.93	0.00063	0.00082	0.00044	4.28	0.00016	27196
6	88.10	0.00122	0.00139	0.00090	7.01	0.00029	23988
6	88.25	0.00118	0.00139	0.00090	7.00	0.00029	24220
6	88.17	0.00117	0.00143	0.00090	7.00	0.00029	24019
6	88.08	0.00114	0.00143	0.00090	6.99	0.00029	24244
6	126.80	0.00183	0.00213	0.00151	10.06	0.00046	22096
6	124.54	0.00179	0.00209	0.00147	9.89	0.00045	22197
6	126.91	0.00187	0.00213	0.00151	10.07	0.00046	21953
6	127.20	0.00188	0.00213	0.00151	10.10	0.00046	21972
6	124.48	0.00183	0.00212	0.00151	9.88	0.00045	21721
6	1/3.13	0.00298	0.00318	0.00253	13.74	0.00072	18965
6	173.20	0.00294	0.00318	0.00248	13.55	0.00072	18953
6	173.34	0.00295	0.00319	0.00253	13.76	0.00072	19067
6	173.21	0.00294	0.00318	0.00253	13.75	0.00072	19067
4	51.72	0.00062	0.00086	0.00039	4.11	0.00016	26286
4	51.39	0.00062	0.00085	0.00039	4.08	0.00015	26339
4	49.25	0.00062	0.00086	0.00039	3.91	0.00016	25097
4	51.64	0.00062	0.00086	0.00039	4.10	0.00016	26366
4	51.75	0.00066	0.00082	0.00039	4.11	0.00016	26398
4	87.99	0.00115	0.00152	0.00082	6.98	0.00029	24006
4	87.92	0.00123	0.00156	0.00086	6.98	0.00030	22906
4	88.02	0.00119	0.00152	0.00082	6.99	0.00030	23680
4	88.04	0.00115	0.00152	0.00082	6.99	0.00029	23987
4	126.99	0.00189	0.00223	0.00149	10.08	0.00047	21567
4	124.06	0.00184	0.00218	0.00148	9.85	0.00046	21464
4	124.56	0.00181	0.00218	0.00149	9.89	0.00046	21620
4	124.32	0.00185	0.00222	0.00149	9.07	0.00046	21303
4	175.75	0.00303	0.00330	0.00251	13.95	0.00074	18937
4	173.09	0.00299	0.00330	0.00246	13.74	0.00073	18842
4	173.25	0.00303	0.00330	0.00250	13.75	0.00074	18672
4	173.20	0.00303	0.00334	0.00250	13.75	0.00074	18584
4	170.78	0.00307	0.00334	0.00250	13.56	0.00074	18261
2	49.01	0.00071	0.00097	0.00028	3.89	0.00016	23881
2	49.07	0.00067	0.00096	0.00028	3.90	0.00016	24431
2	49.41	0.00067	0.00097	0.00028	3.92	0.00016	24464
2	51.26	0.00063	0.00096	0.00028	4.07	0.00016	26201
2	88.12	0.00123	0.00030	0.00032	6.99	0.00017	24023
2	85.98	0.00128	0.00173	0.00068	6.82	0.00031	22218
2	87.91	0.00126	0.00176	0.00068	6.98	0.00031	22622
2	85.37	0.00126	0.00171	0.00068	6.78	0.00030	22225
2	88.03	0.00127	0.00176	0.00068	6.99	0.00031	22578
2	127.18	0.00191	0.00257	0.00126	10.09	0.00048	21116
2	124.53	0.00190	0.00257	0.00122	9.88	0.00047	20852
2	127.06	0.00194	0.00257	0.00126	10.08	0.00048	20970
2	124.60	0.00198	0.00253	0.00126	9.89	0.00048	20569
2	173.20	0.00311	0.00255	0.00231	13 75	0.00048	18133
2	170.70	0.00311	0.00369	0.00230	13.55	0.00076	17883
2	173.25	0.00311	0.00373	0.00230	13.75	0.00076	18067
2	173.19	0.00314	0.00373	0.00230	13.75	0.00076	17981
2	170.92	0.00319	0.00370	0.00230	13.57	0.00077	17730

Table J.89: Resilient modulus data (D_1_18_98)

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.77	0.00073	0.00067	0.00085	4.29	0.00019	22866
8	50.93	0.00069	0.00067	0.00085	4.31	0.00018	23379
8	53.00	0.00068	0.00067	0.00085	4.40	0.00018	24511
8	50.95	0.00073	0.00067	0.00085	4.31	0.00019	23020
8	88.10	0.00137	0.00127	0.00168	7.45	0.00036	20718
8	87.86	0.00136	0.00126	0.00167	7.43	0.00036	20788
8	87.99	0.00136	0.00126	0.00167	7.44	0.00036	20862
8	85.13	0.00135	0.00125	0.00166	7.20	0.00035	20329
8	87.96	0.00135	0.00129	0.00166	7.44	0.00036	20744
8	126.80	0.00218	0.00204	0.00263	10.72	0.00057	18779
8	124.75	0.00217	0.00199	0.00267	10.55	0.00057	18557
8	125.43	0.00216	0.00198	0.00266	10.61	0.00057	18718
8	125.86	0.00216	0.00202	0.00261	10.65	0.00057	18805
8	170.12	0.00336	0.00330	0.00416	14.39	0.00090	15960
8	170.32	0.00340	0.00329	0.00416	14.41	0.00090	15934
8	172.69	0.00339	0.00329	0.00415	14.61	0.00090	16188
8	172.01	0.00338	0.00332	0.00414	14.62	0.00090	16070
6	49.04	0.00075	0.00067	0.00089	4.15	0.00019	21589
6	48.91	0.00074	0.00066	0.00090	4.14	0.00019	21536
6	51.04	0.00070	0.00066	0.00089	4.32	0.00019	22972
6	51.01	0.00070	0.00066	0.00084	4.31	0.00018	23507
6	51.24	0.00071	0.00067	0.00089	4.33	0.00019	22959
6	87.39	0.00138	0.00130	0.00168	7.39	0.00036	20332
6	87.94	0.00143	0.00130	0.00169	7.44	0.00037	20161
6	87.72	0.00138	0.00130	0.00173	7.40	0.00038	20357
6	87.50	0.00142	0.00130	0.00168	7.40	0.00037	20172
6	124.24	0.00221	0.00206	0.00272	10.51	0.00058	18060
6	126.70	0.00224	0.00210	0.00276	10.72	0.00059	18108
6	124.48	0.00224	0.00206	0.00272	10.53	0.00058	17999
6	124.61	0.00221	0.00206	0.00276	10.54	0.00059	17988
6	121.86	0.00224	0.00205	0.00275	10.31	0.00059	1/551
6	172.09	0.00356	0.00341	0.00443	14.55	0.00095	15361
6	170.44	0.00352	0.00337	0.00442	14.42	0.00094	15296
6	172.96	0.00356	0.00337	0.00442	14.63	0.00095	15478
6	172.88	0.00356	0.00341	0.00441	14.62	0.00095	15425
4	51.53	0.00074	0.00068	0.00089	4.36	0.00019	22661
4	48.96	0.00078	0.00073	0.00093	4.14	0.00020	20408
4	48.88	0.00078	0.00073	0.00093	4.34	0.00020	21430
4	48.88	0.00074	0.00068	0.00093	4.13	0.00020	21148
4	87.93	0.00146	0.00135	0.00183	7.44	0.00039	19217
4	87.66	0.00146	0.00135	0.00183	7.41	0.00039	19201
4	85.01	0.00142	0.00135	0.00178	7.19	0.00038	18998
4	85.34	0.00146	0.00135	0.00178	7.22	0.00038	18872
4	121.93	0.00146	0.00135	0.00183	10.31	0.00039	16890
4	124.71	0.00230	0.00214	0.00290	10.55	0.00061	17244
4	124.10	0.00233	0.00217	0.00289	10.50	0.00062	17039
4	122.05	0.00230	0.00218	0.00290	10.32	0.00061	16807
4	124.44	0.00230	0.00218	0.00290	10.52	0.00061	17126
4	1/1.14	0.00373	0.00354	0.00475	14.47	0.00100	14453
4	172.63	0.00370	0.00354	0.00475	14.61	0.00100	14623
4	170.59	0.00369	0.00358	0.00475	14.43	0.00100	14399
4	170.68	0.00373	0.00354	0.00474	14.44	0.00100	14420
2	49.12	0.00079	0.00072	0.00096	4.15	0.00021	20201
2	51.58	0.00079	0.00072	0.00096	4.36	0.00021	21158
2	49.07	0.00079	0.00072	0.00096	4.15	0.00021	20147
2	48.90	0.00079	0.00072	0.00096	4.14	0.00021	20122
2	87.55	0.00156	0.00138	0.00193	7.40	0.00020	18233
2	85.36	0.00157	0.00139	0.00198	7.22	0.00041	17536
2	88.05	0.00157	0.00144	0.00199	7.45	0.00042	17876
2	87.50	0.00152	0.00143	0.00198	7.40	0.00041	18040
2	85.48	0.00157	0.00139	0.00194	7.23	0.00041	17717
2	122.11	0.00251	0.00234	0.00320	10.33	0.00067	15392
2	122.04	0.00251	0.00233	0.00320	10.32	0.00067	15400
2	124.00	0.00247	0.00233	0.00320	10.53	0.00067	15775
2	124.46	0.00247	0.00233	0.00320	10.53	0.00067	15791
2	170.75	0.00396	0.00378	0.00518	14.44	0.00108	13409
2	173.22	0.00392	0.00378	0.00518	14.65	0.00107	13648
2	173.35	0.00396	0.00379	0.00518	14.66	0.00108	13608
2	170.75	0.00395	0.00378	0.00518	14.44	0.00108	13427

Table J.90: Resilient modulus data (D_2_18_98)

σ_3 [psi]	q [lb]	$\delta_{\text{LVDT#1}}$ [in.]	$\delta_{\text{LVDT#2}}$ [in.]	$\delta_{\text{LVDT#3}}$ [in.]	σ_{DEV} [psi]	E [-]	M _R [psi]
8	48.34	0.00069	0.00041	0.00042	4.09	0.00013	32183
8	48.36	0.00069	0.00041	0.00042	4.09	0.00013	32422
8	49.32	0.00069	0.00041	0.00042	4.17	0.00013	33117
8	54.23	0.00069	0.00041	0.00042	4.59	0.00013	36392
8	40.00	0.00089	0.00041	0.00042	7.58	0.00013	31982
8	87.33	0.00126	0.00084	0.00079	7.39	0.00024	30790
8	87.50	0.00126	0.00079	0.00083	7.40	0.00024	30812
8	87.24	0.00126	0.00084	0.00078	7.38	0.00024	30767
8	87.50	0.00126	0.00079	0.00083	7.40	0.00024	30876
8	121.39	0.00188	0.00127	0.00122	10.27	0.00036	28180
8	121.34	0.00188	0.00127	0.00122	10.26	0.00036	28177
8	121.35	0.00187	0.00123	0.00122	10.26	0.00036	28487
8	121.37	0.00187	0.00127	0.00122	10.26	0.00036	28239
8	121.31	0.00187	0.00127	0.00121	10.26	0.00036	28290
8	167.78	0.00274	0.00200	0.00189	14.19	0.00055	25724
8	172.66	0.00273	0.00199	0.00100	14.40	0.00055	26346
8	172.69	0.00273	0.00203	0.00188	14.61	0.00055	26386
8	172.67	0.00276	0.00199	0.00192	14.60	0.00056	26275
6	48.54	0.00076	0.00041	0.00043	4.11	0.00013	30857
6	48.67	0.00072	0.00041	0.00043	4.12	0.00013	31604
6	48.61	0.00072	0.00041	0.00043	4.11	0.00013	31563
6	48.39	0.00072	0.00041	0.00043	4.09	0.00013	31456
6	50.79	0.00076	0.00037	0.00043	4.30	0.00013	33021
6	85.01	0.00135	0.00081	0.00079	7.19	0.00025	29278
6	85.03	0.00139	0.00076	0.00079	7.20	0.00024	29400
6	87.23	0.00138	0.00076	0.00079	7.38	0.00024	30178
6	88.15	0.00138	0.00076	0.00079	7.46	0.00024	30543
6	121.57	0.00205	0.00126	0.00120	10.28	0.00038	27309
6	121.46	0.00205	0.00126	0.00120	10.27	0.00038	27284
6	124.06	0.00205	0.00126	0.00120	10.49	0.00038	27885
6	124.08	0.00205	0.00127	0.00120	10.49	0.00038	27849
6	124.10	0.00204	0.00126	0.00120	10.50	0.00038	27940
6	170.51	0.00301	0.00199	0.00195	14.42	0.00058	24907
6	172.75	0.00300	0.00195	0.00194	14.62	0.00057	25456
6	172.90	0.00301	0.00199	0.00199	14.62	0.00058	25130
6	170.31	0.00300	0.00195	0.00194	14.40	0.00057	25079
4	49.61	0.00082	0.00037	0.00046	4.20	0.00014	30677
4	48.55	0.00082	0.00037	0.00046	4.11	0.00014	29967
4	48.52	0.00079	0.00037	0.00045	4.10	0.00013	30584
4	48.67	0.00083	0.00037	0.00046	4.12	0.00014	29805
4	84 94	0.00079	0.00037	0.00040	7 18	0.00014	28070
4	85.01	0.00153	0.00074	0.00081	7.19	0.00026	28082
4	84.99	0.00153	0.00074	0.00081	7.19	0.00026	28072
4	84.98	0.00153	0.00074	0.00081	7.19	0.00026	28067
4	84.92	0.00153	0.00074	0.00080	7.18	0.00026	28097
4	123.75	0.00230	0.00121	0.00123	10.47	0.00040	26480
4	124.40	0.00230	0.00121	0.00128	10.52	0.00040	26385
4	125.44	0.00234	0.00125	0.00124	10.61	0.00040	26347
4	120.42	0.00231	0.00121	0.00123	10.66	0.00040	26479
4	170.32	0.00334	0.00196	0.00205	14.41	0.00061	23515
4	170.33	0.00335	0.00196	0.00201	14.41	0.00061	23638
4	171.30	0.00335	0.00200	0.00205	14.49	0.00062	23497
4	170.96	0.00335	0.00200	0.00201	14.46	0.00061	23579
4	170.73	0.00335	0.00196	0.00201	14.44	0.00061	23684
2	48.58	0.00088	0.00028	0.00052	4.11	0.00014	29335
2	49.17	0.00089	0.00033	0.00052	4.16	0.00014	28857
2	49.86	0.00092	0.00028	0.00052	4.22	0.00014	29406
2	46.30	0.00089	0.00028	0.00052	4.51	0.00014	27198
2	87.82	0.00173	0.00062	0.00094	7.43	0.00027	27168
2	88.63	0.00176	0.00061	0.00093	7.50	0.00028	27217
2	87.90	0.00172	0.00065	0.00093	7.43	0.00028	27002
2	86.29	0.00171	0.00065	0.00093	7.30	0.00027	26560
2	85.35	0.00175	0.00065	0.00093	7.22	0.00028	26023
2	121.72	0.00259	0.00108	0.00134	10.29	0.00042	24694
2	121.81	0.00259	0.00108	0.00134	10.30	0.00042	24683
2	124.15	0.00263	0.00112	0.00134	10.50	0.00042	24765
2	122.00	0.00259	0.00108	0.00134	10.37	0.00042	24639
2	168.09	0.00283	0.00190	0.00216	14.22	0.00042	21697
2	170.45	0.00384	0.00191	0.00216	14.42	0.00066	21891
2	170.45	0.00384	0.00190	0.00212	14.42	0.00065	22019
2	170.41	0.00383	0.00190	0.00216	14.41	0.00066	21896
2	172.91	0.00383	0.00195	0.00216	14.62	0.00066	22101

Table J.91: Resilient modulus data (D_1_14_98)

σ_3 [psi]	q [lb]	$\delta_{{\scriptscriptstyle LVDT\#1}} \text{ [in.]}$	$\delta_{\scriptscriptstyle LVDT\#2} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-] 3	M _R [psi]
8	52.98	0.00049	0.00042	0.00065	4.48	0.00013	34373
8	50.69	0.00049	0.00042	0.00065	4.29	0.00013	32849
8	50.76	0.00049	0.00046	0.00065	4.29	0.00013	32054
8	53.06	0.00049	0.00042	0.00065	4.29	0.00013	33843
8	87.35	0.00105	0.00079	0.00113	7.39	0.00025	29819
8	87.45	0.00102	0.00082	0.00109	7.40	0.00024	30302
8	87.34	0.00102	0.00081	0.00109	7.39	0.00024	30339
8	85.13	0.00106	0.00080	0.00109	7.20	0.00025	29236
8	123.74	0.00102	0.00083	0.00109	10.47	0.00025	27889
8	123.90	0.00162	0.00123	0.00164	10.48	0.00038	27933
8	124.01	0.00158	0.00123	0.00164	10.49	0.00037	28206
8	123.85	0.00162	0.00123	0.00164	10.47	0.00037	27984
8	126.25	0.00162	0.00127	0.00164	10.68	0.00038	28253
8	1/2.//	0.00251	0.00186	0.00244	14.61	0.00057	25/55
8	172.55	0.00250	0.00190	0.00243	14.59	0.00057	25641
8	174.99	0.00254	0.00190	0.00247	14.80	0.00058	25706
8	175.15	0.00254	0.00190	0.00243	14.81	0.00057	25904
6	50.92	0.00050	0.00044	0.00070	4.31	0.00014	31497
6	48.43	0.00054	0.00044	0.00070	4.10	0.00014	29337
6	51.00	0.00050	0.00044	0.00070	4.30	0.00014	31523
6	49.45	0.00050	0.00044	0.00070	4.18	0.00014	30734
6	87.58	0.00101	0.00083	0.00117	7.41	0.00025	29467
6	87.53	0.00101	0.00087	0.00117	7.40	0.00025	29088
6	87.16	0.00105	0.00087	0.00117	7.37	0.00026	28629
6	90.14	0.00101	0.00087	0.00117	7.62	0.00025	29933
6	125.49	0.00166	0.00133	0.00173	10.61	0.00039	27007
6	127.79	0.00170	0.00133	0.00173	10.81	0.00040	27261
6	124.09	0.00169	0.00133	0.00169	10.49	0.00039	26745
6	121.49	0.00166	0.00129	0.00169	10.28	0.00039	26626
6	124.19	0.00170	0.00133	0.00173	10.50	0.00040	26518
6	172.01	0.00265	0.00202	0.00256	14.62	0.00060	24138
6	172.66	0.00264	0.00202	0.00251	14.60	0.00060	24425
6	175.02	0.00260	0.00202	0.00255	14.80	0.00060	24765
6	175.19	0.00264	0.00202	0.00255	14.82	0.00060	24638
4	50.95	0.00050	0.00052	0.00072	4.31	0.00015	29692
4	51.06	0.00054	0.00052	0.00073	4.32	0.00014	29029
4	48.63	0.00054	0.00048	0.00073	4.11	0.00015	28243
4	48.52	0.00051	0.00052	0.00073	4.10	0.00015	28052
4	87.72	0.00108	0.00096	0.00126	7.42	0.00027	27035
4	87.48	0.00108	0.00095	0.00122	7.41	0.00027	27029
4	87.42	0.00108	0.00095	0.00126	7.39	0.00027	26939
4	85.19	0.00108	0.00096	0.00126	7.21	0.00028	26196
4	124.28	0.00182	0.00149	0.00179	10.51	0.00042	24743
4	124.27	0.001/8	0.00149	0.00179	10.51	0.00042	24903
4	121.90	0.00179	0.00149	0.00179	10.31	0.00043	24220
4	124.41	0.00179	0.00150	0.00184	10.52	0.00043	24658
4	172.88	0.00278	0.00219	0.00264	14.62	0.00063	23054
4	173.38	0.00282	0.00219	0.00264	14.66	0.00064	22988
4	171.79	0.00282	0.00225	0.00266	14.53	0.00064	22539
4	172.92	0.00283	0.00224	0.00262	14.63	0.00064	23454
2	48.53	0.00056	0.00062	0.00071	4.10	0.00016	25956
2	50.91	0.00056	0.00062	0.00071	4.31	0.00016	27224
2	48.53	0.00060	0.00063	0.00071	4.10	0.00016	25436
2	51.05	0.00056	0.00063	0.00071	4.32	0.00016	27318
2	48.73	0.00060	0.00058	0.00072	7.46	0.00016	25021
2	87.92	0.00116	0.00113	0.00129	7.44	0.00030	24977
2	85.68	0.00116	0.00113	0.00129	7.25	0.00030	24284
2	88.01	0.00116	0.00113	0.00129	7.44	0.00030	24963
2	85.63	0.00116	0.00113	0.00129	7.24	0.00030	24264
2	124.41	0.00189	0.00175	0.00194	10.52	0.00046	22649
2	124.12	0.00185	0.00175	0.00194	10.50	0.00046	22750
2	124.33	0.00185	0.00176	0.00190	10.52	0.00046	22917
2	124.33	0.00189	0.00172	0.00194	10.52	0.00046	22748
2	175.33	0.00295	0.00260	0.00282	14.83	0.00070	21268
2	173.03	0.00296	0.00256	0.00286	14.63	0.00070	209/1
2	170.59	0.00292	0.00256	0.00282	14.43	0.00069	20869
2	173.02	0.00296	0.00256	0.00282	14.63	0.00069	21062

Table J.92: Resilient modulus data (D_2_14_98)

σ_3 [psi]	q[1b]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.33	0.00022	0.00043	0.00064	4.26	0.00011	39645
8	50.20	0.00023	0.00043	0.00064	4.25	0.00011	39463
8	50.81	0.00023	0.00043	0.00064	4.30	0.00011	39844
8	50.58	0.00022	0.00043	0.00064	4.33	0.00011	38616
8	90.62	0.00043	0.00091	0.00119	7.66	0.00021	36354
8	91.63	0.00043	0.00086	0.00119	7.75	0.00021	37561
8	89.45	0.00039	0.00090	0.00119	7.57	0.00021	36701
8	87.08	0.00043	0.00086	0.00118	7.36	0.00021	35856
8	86.93	0.00043	0.00090	0.00118	7.35	0.00021	35260
8	123.21	0.00067	0.00134	0.00165	10.42	0.00031	34160
8	123.26	0.00063	0.00134	0.00165	10.43	0.00030	34590
8	125.80	0.00067	0.00133	0.00169	10.64	0.00030	34629
8	125.98	0.00067	0.00133	0.00165	10.65	0.00030	35037
8	175.58	0.00100	0.00198	0.00221	14.85	0.00043	34320
8	175.60	0.00103	0.00198	0.00221	14.85	0.00044	34134
8	173.34	0.00103	0.00197	0.00217	14.66	0.00043	34000
8	173.25	0.00103	0.00197	0.00221	14.65	0.00043	33778
8	175.62	0.00103	0.00196	0.00220	14.85	0.00043	34301
6	50.20	0.00025	0.00053	0.00078	4.25	0.00013	32729
6	50.30	0.00025	0.00053	0.00074	4.05	0.00013	33723
6	50.36	0.00025	0.00049	0.00074	4.26	0.00012	34632
6	55.14	0.00025	0.00053	0.00078	4.66	0.00013	35922
6	86.67	0.00042	0.00103	0.00135	7.33	0.00023	31481
6	86.67	0.00042	0.00098	0.00135	7.33	0.00023	31931
6	86.83	0.00042	0.00103	0.00136	7.34	0.00023	31400
6	89.01	0.00046	0.00099	0.00136	7.53	0.00023	32239
6	125.82	0.00046	0.00099	0.00136	10.64	0.00023	31376
6	125.02	0.00069	0.00149	0.00190	10.63	0.00034	31333
6	126.49	0.00069	0.00153	0.00190	10.70	0.00034	31194
6	125.23	0.00069	0.00153	0.00190	10.59	0.00034	30872
6	129.29	0.00069	0.00149	0.00190	10.93	0.00034	32182
6	173.51	0.00105	0.00218	0.00255	14.67	0.00048	30491
6	176.06	0.00105	0.00218	0.00255	14.89	0.00048	30918
6	175.84	0.00105	0.00217	0.00255	14.87	0.00048	30954
6	173.60	0.00104	0.00218	0.00255	14.68	0.00048	30541
4	50.68	0.00028	0.00055	0.00094	4.29	0.00015	29052
4	50.63	0.00032	0.00059	0.00093	4.28	0.00015	27762
4	53.26	0.00028	0.00055	0.00089	4.50	0.00014	31262
4	50.63	0.00028	0.00059	0.00089	4.28	0.00015	29044
4	50.64	0.00032	0.00055	0.00093	4.28	0.00015	28451
4	87.01	0.00050	0.00113	0.00165	7.36	0.00027	26932
4	86.97	0.00051	0.00113	0.00164	7.36	0.00027	26914
4	86.99	0.00054	0.00113	0.00165	7.36	0.00028	26635
4	86.98	0.00051	0.00113	0.00164	7.36	0.00027	26925
4	127.40	0.00073	0.00169	0.00229	10.77	0.00039	27433
4	125.19	0.00073	0.00169	0.00230	10.59	0.00039	26937
4	127.34	0.00077	0.00169	0.00229	10.77	0.00040	27209
4	125.00	0.00077	0.00169	0.00229	10.56	0.00040	26762
4	176.26	0.000111	0.00250	0.00307	14.91	0.00056	26789
4	173.88	0.00119	0.00245	0.00307	14.71	0.00056	26296
4	173.87	0.00115	0.00249	0.00307	14.71	0.00056	26274
4	173.82	0.00115	0.00245	0.00307	14.70	0.00056	26433
4	176.00	0.00115	0.00250	0.00307	14.89	0.00056	26619
2	49.15	0.00030	0.00036	0.00135	4.16	0.00017	24886
2	45.31	0.00030	0.00032	0.00135	3.83	0.00016	23412
2	46.24	0.00030	0.00035	0.00132	3.91	0.00016	23856
2	48.63	0.00030	0.00034	0.00137	4.11	0.00017	24515
2	87.67	0.00062	0.00100	0.00234	7.42	0.00033	22512
2	85.33	0.00066	0.00099	0.00231	7.22	0.00033	21882
2	87.64	0.00061	0.00100	0.00230	7.41	0.00033	22748
2	87.77	0.00062	0.00100	0.00234	7.42	0.00033	22532
2	120.92	0.00062	0.00101	0.00228	10.23	0.00033	22//4
2	123.41	0.00091	0.00165	0.00311	10.23	0.00043	22097
2	123.48	0.00099	0.00174	0.00314	10.44	0.00049	21358
2	123.40	0.00095	0.00170	0.00309	10.44	0.00048	21816
2	123.40	0.00099	0.00170	0.00309	10.44	0.00048	21679
2	172.16	0.00141	0.00267	0.00423	14.56	0.00069	21029
2	172.06	0.00141	0.00263	0.00419	14.55	0.00069	21227
2	172.10	0.0013/	0.00268	0.00423	14.56	0.00069	21108
2	174.48	0.00141	0.00267	0.00423	14.76	0.00069	21354

Table J.93: Resilient modulus data (D_1_11_98)

σ_3 [psi]	q [lb]	$\delta_{\scriptscriptstyle LVDT\#1} \text{ [in.]}$	$\delta_{\text{LVDT#2}} \text{ [in.]}$	$\delta_{\text{LVDT#3}} \text{ [in.]}$	σ_{DEV} [psi]	E [-]	M _R [psi]
8	50.22	-0.00045	0.00048	0.00024	4.25	0.00002	188919
8	50.28	-0.00042	0.00048	0.00024	4.25	0.00003	169689
8	50.08	0.00046	0.00052	0.00023	4.24	0.00010	41/90
8	50.00	-0.00075	0.00047	0.00023	4.23	-0.000001	-334195
8	87.02	-0.00052	0.00055	0.00028	7.36	0.00003	290533
8	86.96	-0.00043	0.00054	0.00028	7.35	0.00003	223408
8	86.87	-0.00045	0.00054	0.00028	7.35	0.00003	237885
8	86.80	-0.00043	0.00055	0.00028	7.34	0.00003	223251
8	122.90	-0.00041	0.00054	0.00028	10.39	0.00003	214263
8	125.95	-0.00028	0.00058	0.00027	10.65	0.00005	224947
8	126.90	-0.00019	0.00058	0.00028	10.73	0.00006	192955
8	127.17	-0.00017	0.00057	0.00027	10.76	0.00006	191351
8	125.46	0.00047	0.00058	0.00027	10.61	0.00011	96005
8	174.41	-0.00046	0.00062	0.00024	14.75	0.00003	438181
8	172.02	-0.00073	0.00062	0.00024	14.55	0.000012	1368672
8	172.19	-0.00040	0.00062	0.00024	14.56	0.00004	381621
8	174.36	-0.00060	0.00062	0.00024	14.75	0.00002	684305
6	50.45	-0.00057	0.00086	0.00047	4.27	0.00006	67464
6	50.12	0.00049	0.00086	0.00051	4.24	0.00015	27423
6	49.93	-0.00032	0.00090	0.00047	4.22	0.00009	25954
6	50.22	0.00049	0.00086	0.00047	4.25	0.00015	28002
6	86.70	-0.00063	0.00093	0.00052	7.33	0.00007	108174
6	86.75	-0.00055	0.00093	0.00051	7.34	0.00007	98454
6	86.31	0.00048	0.00092	0.00051	7.30	0.00016	45748
6	84.11	0.00079	0.00089	0.00051	7.11	0.00018	39076
6	125.51	0.00090	0.00092	0.00057	10.62	0.00019	63880
6	123.27	0.00043	0.00092	0.00058	10.43	0.00016	65297
6	126.58	0.00054	0.00092	0.00058	10.71	0.00017	63276
6	127.93	0.00046	0.00096	0.00057	10.82	0.00017	65058
6	125.10	0.00053	0.00091	0.00058	10.58	0.00017	63082
6	175.02	-0.00037	0.00102	0.00054	14.63	0.00016	91044
6	172.17	-0.00037	0.00102	0.00054	14.56	0.00010	146447
6	172.14	-0.00053	0.00102	0.00054	14.56	0.00009	170099
6	174.45	-0.00048	0.00102	0.00054	14.75	0.00009	163532
4	50.64	-0.00026	0.00124	0.00076	4.28	0.00014	29720
4	50.65	0.00021	0.00123	0.00075	4.28	0.00018	23380
4	50.32	-0.00030	0.00123	0.00075	4.29	0.00014	30659
4	48.83	-0.00040	0.00123	0.00075	4.13	0.00013	31348
4	86.97	-0.00041	0.00132	0.00081	7.36	0.00014	51570
4	84.72	-0.00052	0.00132	0.00076	7.17	0.00013	55196
4	87.28	-0.00033	0.00132	0.00076	7.38	0.00015	50608
4	86.83	-0.00049	0.00132	0.00076	7.36	0.00022	55417
4	123.72	-0.00034	0.00133	0.00086	10.46	0.00015	68295
4	126.42	0.00071	0.00133	0.00085	10.69	0.00024	44214
4	123.76	0.00073	0.00132	0.00085	10.47	0.00024	43236
4	123.49	0.00025	0.00132	0.00085	10.44	0.00020	51645
4	172.25	0.00038	0.00132	88000.0	14.57	0.00021	64584
4	174.56	-0.00027	0.00146	0.00086	14.76	0.00017	86257
4	172.28	-0.00053	0.00146	0.00086	14.57	0.00015	97782
4	172.19	0.00038	0.00150	0.00086	14.56	0.00023	63645
4	174.63	-0.00061	0.00151	0.00086	14.77	0.00015	100763
2	50.31	0.00028	0.00179	0.00110	4.26	0.00026	16158
2	48.55	0.00036	0.00174	0.00109	4.11	0.00027	15396
2	52.92	-0.00018	0.00178	0.00110	4.48	0.00022	19925
2	49.00	-0.00063	0.00178	0.00109	4.14	0.00019	22178
2	87.11	-0.00053	0.00186	0.00116	7.37	0.00021	35419
2	87.29	-0.00094	0.00186	0.00116	7.38	0.00017	42633
2	86.93	-0.00074	0.00186	0.00120	7,35	0.00019	38656
2	87.11	-0.00055	0.00186	0.00116	7.37	0.00021	35830
2	126.75	0.00021	0.00192	0.00126	10.72	0.00028	37987
2	125.69	0.00054	0.00192	0.00126	10.63	0.00031	34340
2	124.63	0.00024	0.00192	0.00126	10.54	0.00028	37001
2	125.76	-0.00023	0.00191	0.00126	10.64	0.00025	43398
2	175.02	0.00030	0.00210	0.00132	14.80	0.00031	47615
2	174.95	-0.00050	0.00214	0.00132	14.80	0.00025	59808
2	174.89	0.00028	0.00210	0.00132	14.79	0.00031	47924
2	172.46	-0.00043	0.00210	0.00132	14.59	0.00025	58428
4	1/2.03	0.00032	0.00210	0.00132	14.09	0.00031	40032

Table J.94: Resilient modulus data (D_2_11_98)

J.3 Resilient Modulus Data With QC/QA [SI]

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	I es Voc	No	NO Vec	I es Vec	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	I es Vec	I es	Yes Vor	I es Vez	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No No	Yes	Yes	Yes	Yes	No	No	× 450
0.06	0.10	No	T es Ves	T es Vec	T es Ves	T es Ves	T es Ves	No	455 X
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	433
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	450
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	I es Voc	No	NO Vor	Tes Vec	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Tes V~	I es V~	Yes Voc	I es Vec	No	INO No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Tes	I es	Yes	Y es	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No N-	No No	×
0.03	0.07	No	Yes	T es Ves	Ves	Ves	No	No	^
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	450
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	No	Tes Vec	I es	Yes Voc	Tes Vec	Y es	Yes	444
0.03	0.10	No	Yes	T es Yes	Yes	Yes	Yes	Yes	395
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No No	Yes	Yes	No	Yes	No N-	No	×
0.01	0.05	No	Ves	Yes	Yes	Ves	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No No	Yes V	Yes V	Yes V	Yes V	No N-	No No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.10	No No	Yes V	Yes V	Yes V	Yes V	Yes V	No V	×
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	427
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.10	1 No	Yes	T ♥oc	Vas	Voc	Vec	No	×

Table J.95: Resilient modulus data with QC/QA (A_2_135_105)

σ₂ IMPa1	ODEV IMPal	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} >3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [MPa]
0.06	0.03	No	No	No	Vec	Vec	No	No	×
0.06	0.03	No	No	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	No	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	No	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	NO No	I es	I es	I es	I es	Yes	INO	×
0.06	0.05	INO M.o.	T es Vac	I es Vez	I es Vec	Tes	Tes	No	Č.
0.06	0.07	No	Ves	Ves	Ves	Ves	Ves	No	<u>.</u>
0.06	0.07	No	Ves	Ves	Yes	Yes	Ves	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	440
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	444
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	420
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	430
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	420
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.04	0.03	No	No	No	Yes	Yes	No	No	×
0.04	0.03	No	No	No	Yes	Yes	No	No	×
0.04	0.03	NO N-	No N-	No N-	Tes V	I es	NO N-	INO N-	×
0.04	0.03	NO N-	0M N-	No N-	Tes V	Tes V	NO N-	INO N-	×
0.04	0.05	No No	0M Vor	No	I ES	Tes	140 Voc	No	~
0.04	0.05	No	Yes	No	Yes	Yes	Yes	No	Ŷ
0,04	0.05	No	Yes	No	Yes	Yes	Yes	No	÷ ×
0.04	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	444
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	435
0.04	0.10	Yes V	res V	I es W	res V	res V	res V	Yes	430
0.04	0.10	Voc	Vec	Ver Ver	Tes Voc	Voc	Tes Voc	Vec	400
0.04	0.10	No	Vac	No	Vac	Vac	Vac	No	× ×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	INO Ver	T es	INO Ver	I es Vec	Tes	Tes	No	÷
0.03	0.07	Vec	Vec	Vec	Vec	Vec	Vec	Vec	444
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×44
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	459
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	419
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	411
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	436
0.01	0.03	No	No	No	Yes	Yes	No	No	×
0.01	0.03	No	No	No	Yes	Yes	No	INO	×
0.01	0.03	140 M-	0/1	0 M-	Tes V	Tes V	190 M-	INO N-	×
0.01	0.03	No	No Vor	No	T es Voc	1 es Voc	No	110 No	÷
0.01	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0,01	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	476
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	432
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	436
0.01	0.10	Tes V	Tes V	Tes V	Tes V	I es	Tes V	Tes V	433
0.01	0.10	I ES Voc	I ES Vac	I ES Voc	I ES Voc	I ES Voc	I ES Voc	1es Voc	428
0.01	0.10	Tes Ves	Tes Ves	T es Ves	Tes Ves	T ES Wes	Tes Ves	Tes Ves	410

Table J.96: Resilient modulus data with $QC/QA(A_{-1}_{-1}05_{-1}05)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	No	No	No	×
0.06	0.03	No	Tes Voc	Tes Voc	T es Voc	Tes Vor	No	No	702
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	704
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	599
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	623
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	712
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	639
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	I es Mo	Tes Vac	Yes Voc	Tes Vec	Tes Ver	Tes Ver	Yes	572
0.00	0.07	Ves	Vec	Vec	Ves	No	Ves	No	
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No No	Yes	Yes	Yes	Yes	No No	No	×
0.04	0.03	No	T es Vac	Tes Vac	T es Vac	Tes Ver	No	No.	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	724
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	612
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	595
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	612
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	581
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	591
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	542
0.04	0.07	I es Vac	I es Voc	Tes Voc	I es Voc	I es Vac	I es Voc	Tes	615
0.04	0.07	Yes	Ves	Ves	Ves	Ves	Yes	Ves	612
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Tes Vec	Yes Voc	Tes Vec	Tes Ver	No	INO No	×
0.03	0.03	No	Vec	Vec	Ves	Vec	No	No	
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	618
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	609
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	res No	Yes Voc	Yes Voc	T es Voc	Yes Voc	Tes Voc	Yes	596
0.03	0.07	Vec	Vac	Vac	Vas	Vas	Vas	Ver	609
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	613
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	552
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	res V	Tes V	I es	Tes V	NO N-	Yes V	INO N-	X
0.03	0.10	res Mo	I es Mo	I es Voc	Tes	NO Vec	T es	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05		T es Voc	T es Voc	Tes	Tes Voc	NO	No	×
0.01	0.05	I es	I es Voc	I ES	Tes	T es Voc	140 Voc	Vac	521
0.01	0.07	No	Yes	Yee	Yes	Vec	Yes	Yes	656
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	566
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	574
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	550
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.10	Tes Voc	res Vac	Tes Vac	Tes Was	No	Tes Voc	INO No	×

Table J.97: Resilient modulus data with $QC/QA(A_2_105_105)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No No	Yes	Yes	Yes	Yes	No N-	INO N-	×
0.08	0.05	No	T es Vec	Tes	Tes Ves	Tes Vec	No	No	Ŷ
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No No	Yes Voc	Yes	Yes	Yes V	Yes	INO M-	×
0.06	0.07	NO Mo	Tes Voc	I es V~	Tes Voc	T es Voc	Tes Voc	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	318
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	315
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No No	Yes	Yes W	Yes	Y es	No No	INO M-	×
0.04	0.03	No	I es Voc	T es Vec	Tes Vec	Tes Vec	No	No	<u></u>
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	ио Мо	I es Voc	I es V~	Tes Voc	I es V	T es Voc	No	
0.04	0.07	No	Yes	Yes	Yes	Yes	Ves	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	272
0.03	0.03	No	Tes Ver	I es V	Yes	Yes	No	No	×
0.03	0.03	No	Tes Voc	Vec 165	Voc	Vec	No	No	
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	x x
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	I es Vac	I es Vec	Tes	I es Vec	I es Vec	No	<u>.</u>
0.03	0.07	No	Vec	Ves	Ves	Ves	Ves	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	No	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	No	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	No M-	Tes	I es	res	Tes	Yes M-	INO M-	×
0.01	0.03	No	I es Voc	I es Voc	Voc	Vec	No	No	
0.01	0.03	No	Ves	Ves	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Y es	Yes	Yes	Y es	No	INO	×
0.01	0.05	Ио	T es Var	T es Voc	T es Voc	T es	Ver	INO No	×
0.01	0.07	No	Tes Vec	Tes Vec	Tes Vac	Tes Vec	Tes Vec	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.10	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.10	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	No No	Yes	Yes	Yes	No	Yes	No No	×

Table J.98: Resilient modulus data with $\rm QC/QA(A_1_75_105)$

σ_3 [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	No	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.00	no	165	165	Tes	165	110	No	×
0.06	0.00							No	×
0.06	0.00							No	×
0.06	0.00							No	×
0.06	0.00	N	Var	Var	Ver	Ver	¥	No	× 404
0.00	0.10	No	Ves	Ves	Yes	Yes	Yes	Yes	395
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	402
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	398
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	386
0.04	0.03	No No	Yes M-	Yes	Yes	Yes	No N-	No	×
0.04	0.03	No	Vec Vec	I es Vac	T es Vas	I es Vec	No	No	~^
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	I es Voc	I es Voc	Yes Voc	Tes Voc	Yes Voc	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	392
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	382
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	423
0.04	0.07	No No	Yes	Yes	Yes	Yes	Yes	Yes	447
0.04	0.07	OPI Voc	T es Vac	T es Vec	I es Voc	I es Vec	Tes Voc	Tes	360
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	412
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	361
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	404
0.03	0.03	No	No	Yes Vec	T es Ves	T es Ves	No	No	×
0.03	0.03	No	No	Yes	Yes	Yes	No	No	×
0.03	0.03	No	No	Yes	Yes	Yes	No	No	×
0.03	0.03	No	No	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	T es Ves	Tes Ves	Tes Ves	Ves	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	390
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	401
0.03	0.07	No	Tes Vec	Tes Ves	Tes Ves	Ves	Tes Ves	No	402
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	413
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	362
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	No	X
0.03	0.10	No No	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	393
0.03	0.10	No	Tes Vec	Tes Vec	Tes Ves	Ves	Tes Ves	Ver	384
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No No	No	Yes	Yes	Yes	No	No N-	×
0.01	0.05	No	T es Vec	Tes	Tes Vec	T es Vec	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Tes Vec	Tes Vec	T es Voc	T es Vec	T es Voc	No	× 376
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	359
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	360
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	394
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	390
0.01	0.10	No No	Tes Voc	Tes Voc	ĭes V~	I es Voc	ĭes V~	Yes	390
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	386
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	344

Table J.99: Resilient modulus data with $QC/QA(A_2_75_105)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	No	No	Yes	Yes	No	No	×
0.06	0.03	Yes	No	No	Yes	Yes	No	No	×
0.06	0.03	Yes	No	No	Yes	Yes	No	No	×
0.06	0.03	I es No	No	No	Yes Vec	Tes Vec	No	No	×
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes M-	Yes	No N-	×
0.06	0.05	Tes Vac	T es Vac	Tes Vec	Tes Vac	No	Tes Vac	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.03	Tes Voc	Tes Vec	res No	Tes Ves	Tes Ves	No	No	× ×
0.04	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	Yes	Yes	No	Yes	Yes	No	No	×
0.04	0.03	Yes	Yes	No	Yes	Yes	No	No	×
0.04	0.05	Yes Voc	Yes	Yes	Yes	No	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	÷.
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Tes Vec	I es Vec	Tes Vec	Tes Ves	No	Tes Ves	No	× ×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Tes Vec	I es Vec	Tes Vec	Tes Vec	No	Tes Ves	No	× ×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.05	Yes V	Yes	Yes	Yes	No N-	No N-	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.07	Tes Vec	I es Voc	Tes Vec	Tes Ves	No	No	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes Voc	Yes Vor	Tes Voc	Yes Vec	No No	I es Vac	No	×
0.03	0.03	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	Tes Vec	Tes Vec	Tes Vec	Tes Ves	res No	No	No	× ×
0.01	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.05	Yes V	Yes V	Yes V	Yes V	No No	No V	No N-	×
0.01	0.07	T es Yes	T es Yec	Tes	Tes	No	T ES Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes V	Yes V	Yes V	Yes V	No No	Yes V	No N-	X
0.01	0.10	T es Ves	T es Yes	Tes Ves	T es Ves	No	T es Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.100: Resilient modulus data with $QC/QA(A_4_{15}_{100})$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	202
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	192
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	210
0.06	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	No	I es Ves	Yes	I es No	I es Vez	No	×
0.00	0.05	Tes Ves	Tes Ves	Ves	Ves	No	Ves	No	÷
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.07	Yes	I es	Yes	Yes	No	Yes	INO	×
0.06	0.07	T es Voc	T es Voc	T es Voc	T es Voc	No	T es Voc	No	~
0.06	0.10	Yes	Yes	Ves	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	225
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	226
0.04	0.03	Yes M-	Yes	Yes	Yes	Yes	Yes	Yes	227
0.04	0.05	Vor	I es Vec	I es Voc	I es Voc	I es Mo	I es Vac	ies No	232
0.04	0.05	Yes	Yes	Ves	Ves	No	Ves	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Tes Ver	Tes Waa	Tes Vec	Y es	No	Yes Vec	INO No	×
0.04	0.07	Tes Vac	Tes Vas	Vec	Vac	No	Ves	No	Ŷ
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.00							No	×
0.03	0.00							No	×
0.03	0.00							ING	×
0.03	0.00							No	~~~~~
0.03	0.05	Ves	Ves	Ves	Yes	No	Ves	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Tes	Tes	Tes V	Yes	No No	Yes	INO M-	×
0.03	0.07	I es Vac	I es Vac	I es Vec	I es Vec	No	Tes Vec	No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	206
0.01	0.03	No No	Tes V	Yes Vec	Yes Vec	Tes Ver	Yes Ver	Yes	203
0.01	0.03	NO Voc	Vec	Vec	Vec 105	Vac	Vac	Vec	203
0.01	0.05	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.07	Yes V	Tes V	Yes V	I es V	No No	I es V	INO N-	×
0.01	0.07	T es Vac	T es Voc	T es Voc	T es Voc	No	Tes Voc	No	× ~
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	t 0 1 0	₩oc	T	Vac	T Voc	t No	Vac	No	t

Table J.101: Resilient modulus data with QC/QA (A_3_15_100)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	$SNR_q > 10$	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.02	No	Yes	No	Yes	Yes	No	No	×
0.06	0.02	No	Yes	No	Yes	Yes	No	No	×
0.06	0.02	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No No	Yes	No No	Yes	Yes	No No	No No	×
0.06	0.02	No	Tes Vec		T es Vos	Tes Vec	OPI Ves	No	× ×
0.06	0.04	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.04	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.04	No	Yes	No	Yes	Yes	Yes	No	×
0.06	0.04	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Tes Voc	I es Vac	T es Voc	I es Voc	I es Voc	No	~
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.09	No	Yes	Yes	Yes	Yes	Yes	Yes	413
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	377
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	424
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.09	No	Yes	Yes	Yes	Yes	Yes	Yes	429
0.04	0.02	No No	Yes V	No N-	Y es	Tes V	No N-	INO N-	×
0.04	0.03	No	Tes Voc	No	MO Ves	Ves	No	No	
0.04	0.02	No	Yes	No	Yes	Yes	No	No	×
0.04	0.02	No	Yes	No	Yes	Yes	No	No	×
0.04	0.04	No	Yes	No	Yes	Yes	No	No	×
0.04	0.04	No	Yes	No	Yes	Yes	No	No	×
0.04	0.04	No	Yes	No	Yes	Yes	No	No	×
0.04	0.04	No No	Yes	No	Yes	Yes	No	No	×
0.04	0.04	No	I es Voc	No	I es Voc	I es Voc	OPI Vor	No	÷
0.04	0.07	No	Yes	No	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	No	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.09	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.09	Yes M-	Yes	Yes	Yes	Yes	Yes	Yes	379
0.04	0.09	No	I es Vac	Tes Vec	I es Voc	I es Vec	I es Voc	No	~
0.04	0.09	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.02	No	Yes	No	Yes	Yes	No	No	×
0.03	0.02	No	Yes	No	No	Yes	No	No	×
0.03	0.02	No	Yes	No	Yes	Yes	No	No	×
0.03	0.02	No	Yes	No	Yes	Yes	No	No	×
0.03	0.02	No No	Yes	No M-	Yes	Yes	No N-	INO	×
0.03	0.04	No	Ves	No	Yes	Ves	No	No	<u>~</u>
0.03	0.04	No	No	No	No	No	No	No	×
0.03	0.04	No	Yes	No	Yes	Yes	No	No	×
0.03	0.04	No	Yes	No	Yes	Yes	No	No	×
0.03	0.07	No	Yes	No	Yes	Yes	No	No	×
0.03	0.07	No	Yes	No	Yes	Yes	No	No	×
0.03	0.07	No	Tes Vac	NO	Tes Voc	Tes V	No	INO No	×
0.03	0.07	No	Yes	No	Yes	Ves	No	No	×
0.03	0.09	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.09	Yes	Yes	No	Yes	Yes	Yes	No	×
0.03	0.09	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.09	Yes	Yes	No	Yes	Yes	Yes	No	×
0.03	0.09	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.00							INO	×
0.01	0.00							No	
0.01	0.00							No	×
0.01	0.00							No	×
0.01	0.04	No	Yes	No	Yes	Yes	No	No	×
0.01	0.04	No	Yes	No	Yes	Yes	No	No	×
0.01	0.04	No	Yes	No	Yes	Yes	No	No	×
0.01	0.04	No No	Yes V	No No	Yes V	Yes	No N-	INO N-	X
0.01	0.04	Vor Vor	I es Vac	No	T es Voc	I es Voc	Vec Vec	No	~
0.01	0.06	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.06	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.06	No	Yes	No	Yes	Yes	Yes	No	×
0.01	0.09	Yes	Yes	No	Yes	Yes	Yes	No	×
0.01	0.09	No	Yes	No	Yes	Yes	Yes	No	X
0.01	0.09	No V	Yes V	No No	Yes V	Yes V	I es V	INO N-	×
0.01	0.09	res Yes	T es Yes	No	Tes Yes	T es Yes	I ES Yes	Yes	419

Table J.102: Resilient modulus data with QC/QA(A_1_12_100)

σ_3 [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	No	Yes	Yes	Yes	No	No	×
0.06	0.03	No	No	Yes	Yes	Yes	No	No	×
0.06	0.03	No	No	Yes	No	Yes	No	No	×
0.06	0.03	No No	No No	Yes	Yes	Yes	No N-	No	×
0.06	0.05	No	No	T es Vac	I es Vac	I es Vec	No	No	×
0.06	0.05	No	No	Yes	Yes	Yes	No	No	×
0.06	0.05	No	No	Yes	Yes	Yes	No	No	×
0.06	0.05	No	No	Yes	Yes	Yes	No	No	×
0.06	0.05	No	No	Yes	Yes	Yes	No	No	×
0.06	0.07	No	No	Yes	Yes	Yes	No	No	×
0.06	0.07	No	No	Tes Voc	T es Voc	Tes Voc	No	No	×
0.00	0.07	No	No	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	No N-	Yes V	Yes	Yes	Yes	Yes	No N-	×
0.00	0.10	No	No	Ves	Tes Voc	Ves	No	No	Ŷ
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.05	No	No	Yes	Yes	Yes	No	No	×
0.04	0.05	No	No	I es Voc	I es Voc	I es Voc	No	No	<u>~</u>
0.04	0.05	No	No	Yes	Yes	Yes	No	No	×
0.04	0.05	No	No	Yes	Yes	Yes	No	No	×
0.04	0.07	No	No	Yes	Yes	Yes	No	No	×
0.04	0.07	No	No	Yes	Yes	Yes	No	No	×
0.04	0.07	No	No	Yes	Yes	Yes	No	No	×
0.04	0.07	No	No	Tes Voc	T es Voc	T es Voc	No	No	×
0.04	0.07	No	No	Yes	Yes	No	No	No	×
0.04	0.10	No	No	Yes	Yes	Yes	No	No	×
0.04	0.10	No	No	Yes	Yes	No	No	No	×
0.04	0.10	No	No	Yes	Yes	No	No	No	×
0.04	0.10	No	No	Yes	Yes	No	No	No	×
0.03	0.03	No	No	Y es	T es	Y es	No	No	×
0.03	0.03	No	No	Ves	Tes Ves	Ves	No	No	~x
0.03	0.03	No	No	Yes	Yes	Yes	No	No	×
0.03	0.03	No	No	Yes	Yes	Yes	No	No	×
0.03	0.05	No	No	Yes	Yes	Yes	No	No	×
0.03	0.05	No	No	Yes	Yes	Yes	No	No	×
0.03	0.05	No	No	Tes Voc	I es Voc	Yes Voc	No	INO No	×
0.03	0.05	No	No	Yes	Yes	Yes	No	No	×
0.03	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	No	Tes	T es Voc	I es No	Tes	No	×
0.03	0.10	No	No	Yes	Yes	No	Yes	No	×
0.03	0.10	No	No	Yes	Yes	No	Yes	No	×
0.03	0.10	No	No	Yes	Yes	No	Yes	No	×
0.03	0.10	No	No	Yes	Yes	No	Yes	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Tes Vec	T es Vec	Tes Vec	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.03	No	No	Yes	Yes	Yes	No	No	×
0.01	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No N	No N-	Yes	Yes	Yes	Yes	No	X
0.01	0.05	NO No	No No	Tes V~	res V~	Tes Voc	Tes Voc	No	×
0.01	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.10	No	No	Tes V	Yes Ver	No No	Tes V	No	×
0.01	0.10	No	No	Yes	Yes	No	Yes	No	×
0.01	0.10	No	No	Yes	Yes	No	Yes	No	×
0.01	0.10	No	No	Yes	Yes	No	Yes	No	×

Table J.103: Resilient modulus data with $QC/QA(A_2_12_100)$

σ ₃ [MPa]	$\sigma_{ ext{dev}}$ [MPa]	SNR _{L VDT#1} > 3	SNR _{LVDT#2} ≥3	SNR _{LVDT#3} >3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	I es Voc	Tes Voc	I es Voc	Yes Voc	No	No	×
0.00	0.05	No	Vec	Vac	Vac	Vec	Ves Ves	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	382
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	376
0.06	0.07	I es	I es	Yes Vec	I es	I es	Tes	Yes	3/3
0.06	0.07	I es Voc	I es Vec	I es Voc	I es Voc	Tes Vec	I es Vec	Tes	381
0.06	0.01	Ves	Ves	Yes	Yes	No	Yes	No	×
0.06	0.09	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.09	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.09	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	466
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	I ES Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	INO Vee	× 446
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	417
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	412
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	430
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	445
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	414
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	405
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.07	Tes Was	I es Vez	Yes	I es Ver	No N-	Tes	INO	×
0.04	0.07	Ves	Vec Vec	Vec 105	Ves	No	Vas	No	×
0.04	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	No No	I es	Y es	Tes	Yes	No N-	INO	×
0.03	0.03	No	I es Vec	I es Voc	T es Voc	T es Vec	No	No	~
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	NO	No	×
0.03	0.07	T es Vec	T es Vec	Ves	Ves	No	Ves	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	X
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes 🗸	Yes	Yes	No	Yes	No	×
0.03	0.10	Tes Vac	Tes Voc	Tes V~	T es Voc	No No	Tes Ver	No	×
0.03	0.10	No	T es	Yee	Yes	Yee	No	No	Ŷ
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	Yes V	Yes V	Yes	Yes V	Yes	No M-	No N-	X
0.01	0.05	T es V~~	Tes Voc	T es V~	I es Vac	Tes V~	No	No	×
0.01	0.03	Yes	Ves	Yes	Yes	No	No	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	I es	Yes V	I es	I es	No N-	I es	INO DT-	×
0.01	0.10	T ES	T es Voc	T es Vac	1 es Vac	No	T es Vac	No.	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.104: Resilient modulus data with QC/QA (A_1_9_100)

σ ₃ [MPa]	GDEV [MPa]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR _a > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [MPa]
0.06	0.03	No	Ves	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Tes Ves	Tes Ves	Tes Ves	Tes Ves	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No No	Yes	Yes	Yes	Yes	Yes	No	× 200
0.06	0.07	No	Tes Vec	I es Vac	I es Vec	Tes Vac	I es Ves	ies No	300 ×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	293
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	275
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	304
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	297
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	296
0.00	0.10	No	Vec	Vec	Vas	Vac	No	No	234 X
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Tes Yes	Tes	T es Yes	Yes	T es Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	NO	T es Voc	Tes Voc	T es Ves	Yes Vec	Tes Voc	Yes	282
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	234 ×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	296
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	259
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	268
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.10	No	Ves	Ves	Yes	Tes Ves	Yes	Ves	276
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	No	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Tes Vec	Tes Vec	I es Voc	Tes Vec	No	No	× ×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Tes Vec	T es Vec	Tes Voc	T es Vec	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No No	Yes	Yes	Yes	Yes	Yes	Yes	275
0.03	0.10	NO No	ies Voc	T ES Voc	res Vac	Tes Voc	T es Voc	res Voc	212
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	No	X
0.03	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	268
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Tes Voc	T es Voc	T es Yac	Tes Voc	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Tes Vac	T es Vac	T es Vac	Tes Voc	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	304
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	288
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	T es Voc	T es Voc	T es Var	Tes	Tes	Vac	270
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	264
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.01	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	266
 IIII1 	1 111	No	Yes	Yes	Yes	Yes	Yes	Yes	280

Table J.105: Resilient modulus data with $QC/QA(A_2_9_100)$
σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2 > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	298
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	297
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	288
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	287
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	295
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.06	0.05	Tes 🗸	Tes 🗸	Tes 😽	Tes 😽	Tes 🗸	Tes 🗤	Yes	289
0.06	0.07	I es Wei	Tes Ver	I es V	Tes	T es	Yes	Yes	291
0.00	0.07	I es Vac	I es Vec	I es Vac	I es Ver	I es Vac	I es Vec	Yes	276
0.06	0.07	I es Vac	I es Voc	I es Vac	I es Voc	I es Vac	I es Voc	I es Voc	274
0.00	0.07	Tes Voc	Voc	Tes Voc	Vec	Tes Voc	Vac	Vec	275
0.00	0.07	Vac	Vec	Ves	Vec	Vec	Vec	Vac	265
0.06	0.10	Ves	Yes	Ves	Yes	Yes	Ves	Ves	265
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	263
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	267
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	277
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	277
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	279
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	287
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	286
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.04	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	293
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	297
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	278
0.04	0.07	Tes	I es	I es	I es	I es	Yes 😽	Yes	282
0.04	0.10	I es	Tes	Tes	I es	NO	Tes	INO	×
0.04	0.10	Tes W	res Ver	I es V	T es	NO M-	Yes V	INO NI-	×
0.04	0.10	T es Vac	Vec	Tes Vac	T es	No	Vec	No	÷
0.04	0.10	Vac	Vec	Tes Vec	Vec	No	Vec	No	······
0.04	0.10	Vac	No	Vec	Vac	Ves	Vac	Vec	276
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	Ves	301
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	303
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	299
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	286
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	288
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	293
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	293
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	288
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	278
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	278
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	278
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes 🗸	Yes	No	Yes	No	×
0.03	0.10	Y es	Yes	Yes.	Yes	No	Yes	INO DT	×
0.03	0.10	I es	1 es	T es	I es	NO N-	I es	OFI T-	×
0.03	0.10	T es	Y es	T es	Y Tes	No	I es	OP1	×
0.01	0.03	I es V	ies bi-	I es V	I es	I ES	I es V	Tes V	271
0.01	0.03	I es	0°1 M-	I es	I es V	I es	I es V	1es Vee	2/3
0.01	0.03	I es V~	No	I es Vac	I es Voc	I es Vac	I es Vac	Ies Voc	200
0.01	0.03	Tes Vor	No	V _{oc}	Vac	Ver Ver	Vac	Vec	271
0.01	0.05	Vac	Ves	Vas	Vac	Vas	Vas	Vec	281
0.01	0.05	Ves	Ves	Vec	Ves	Ves	Ves	Ves	270
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.01	0,05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	281
0.01	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	No	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	T Yes	Vac	T Voc	Voc	N-	T	Na	V

Table J.106: Resilient modulus data with QC/QA (B_1_24_103)

σ_3 [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} ≥3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	272
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	252
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.06	0.05	res Voc	Tes Vec	Tes Vec	T es Vec	T es Voc	I es Voc	Yes	242
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	240
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	240
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.00	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Ves	228
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.06	0.10	Tes Ves	Tes Ves	Tes Ves	res Ves	Tes Ves	I es Ves	Yes	254
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	254
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	269
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	259
0.04	0.03	Tes Vas	Tes Ves	Tes Vas	I es Ves	Tes Ves	I es Vec	Yes	227
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	246
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	244
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	249
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	240
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.04	0.10	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes Ver	225
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	227
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	258
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.03	0.05	Tes Ves	I ES Ves	Tes Ves	Tes Ves	Tes Ves	T es Ves	Yes	247
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.03	0.07	Tes Ves	Tes Vec	Tes Ves	Tes Ves	Tes Ves	I es Ves	Yes	235
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	237
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	233
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220
0.03	0.10	res Ves	Tes Ves	T ES Ves	res Ves	res Ves	r es Ves	Yes	226
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	226
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	249
0.01	0.03	I es Ver	Yes Vor	I es V~	Yes V~r	Yes Voc	I es V~	Yes Vec	268
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	253
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	242
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	246
0.01	0.05	T ES Vac	ies Vac	T es Vac	T es Vac	T ES Vac	T es Vac	res Vec	⊿38 250
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	242
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.01	0.07	I es V~	I es Voc	I es V~	Yes V~r	I es Voc	I es V~	Yes	232
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.01	0.10	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes	221
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220

Table J.107: Resilient modulus data with QC/QA (B_2_24_103)

σ_3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	253
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.06	0.05	Tes Vec	T es Vec	Tes Vec	I es Vos	Tes Vec	Tes Vos	Yes	230
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	242
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	239
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	246
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	232
0.06	0.07	I es V~	I es V~	T es Voc	T es Voc	Tes Voc	Tes Voc	res Voc	230
0.00	0.07	Ves	Ves	Yes	Yes	Tes Ves	Yes	Ves	235
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	223
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	227
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.00	0.03	T es Vec	T es Vec	Ves	Tes Vec	Vec	Ves	Tes	242
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.04	0.05	I es V~	I es V~	I es Voc	res Voc	Tes Voc	Tes Voc	res Voc	220
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	226
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.04	0.07	I es V~	I es Vec	T es Voc	Tes	Tes	Yes Voc	res Vec	221
0.04	0.07	Ves	Ves	Ves	Ves	Ves	Ves	Ves	217
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.04	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.04	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.03	0.03	I es Ver	I es Vec	T es Ver	Tes	Yes Vec	Yes	Yes	224
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Ves	220
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.05	I es Ver	I es Vez	T es Ver	Tes	Yes	Yes Ver	Yes	221
0.03	0.05	Tes Ves	Tes Ves	Ves	Yes	Yes	Yes	Ves	225
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	219
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	219
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.03	0.07	I es Wei	Y es	I es	I es	Y es	Y es	Yes	215
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	208
0.03	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.03	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.01	0.03	Yes Voc	Yes Voc	Y es Voc	Yes	Yes	Yes	Yes	226
0.01	0.03	Ves	Ves	Ves	Yes	Ves	Yes	Ves	232
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	233
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.01	0.05	Yes V	Yes V	Yes	Yes V	Yes	Yes	Yes V	222
0.01	0.05	Yes	T es Voc	Yes	Tes	Yes	Tes Vac	Vec	218
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	208
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.01	0.09	Tes V	Tes V	Yes V	Yes V	Tes V	Yes V	Yes Ver	200
0.01	0.09	T es Vac	T es	T es Vac	Tes Vac	Tes Vac	Tes Vac	Tes Vec	200
0.01	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.01	010	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203

Table J.108: Resilient modulus data with $\rm QC/QA(B_1_195_103)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	386
0.06	0.03	I es Vec	Tes Vac	Tes Ves	Tes Ves	res Vac	Tes Vec	Yes Vec	367
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	353
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	316
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	322
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	315
0.06	0.05	Tes Voc	I es Voc	T es Voc	Tes Voc	Tes Voc	Tes Voc	Yes	322
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	311
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	309
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	309
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	305
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	306
0.00	0.03	Tes Ves	Ves	Ves	Ves	Ves	Ves	Ver	294
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	294
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	293
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	304
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	346
0.04	0.03	I es Vac	Tes Voc	I es Voc	Tes Voc	Tes Voc	Tes Voc	Yes Voc	347
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	376
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	347
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	322
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	317
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	305
0.04	0.05	T es Vec	I es Vac	T es Vec	I es Vac	I es Vec	I es Vac	Tes Vec	317
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	300
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	310
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	306
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	300
0.04	0.07	I es Voc	I es Voc	I es Voc	T es Voc	I es Voc	I es Voc	Tes	290
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	292
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	287
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	292
0.03	0.03	Tes Voc	T es Voc	Tes Voc	Tes Voc	Yes Voc	Yes	Yes	341
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	343
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	383
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	335
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	359
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.03	0.05	I es Vec	T es Vec	I es Ves	Tes Vec	Tes Ves	I es Vac	Tes Ver	350
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	366
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	294
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	294
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	298
0.03	0.07	I es Vec	Tes Vec	Tes Vec	Tes Vec	Tes Vec	Tes Vec	1es Vec	298
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.03	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.03	0.09	T es Voc	Tes Voc	I es Voc	Yes Voc	Tes Voc	Tes Voc	Yes	285
0.01	0.03	Yes	Yes	Ves	Yes	Ves	Yes	Ves	326
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	339
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	331
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	356
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	360
0.01	0.05	I es Vec	Tes Vac	Tes Ves	I es Ves	Tes Vec	I es Vec	1es Vec	350
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	304
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	358
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	299
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	307
0.01	0.07	T es Voc	T es Voc	T es Vec	T es Vac	res Vec	Tes Ves	res Vec	298
0.01	0,07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	298
0.01	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	282
0.01	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	282
0.01	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	282
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.01	0.10	1 85	1 85	1 162	1 162	1 85	1 1 65	162	407

Table J.109: Resilient modulus data with QC/QA (B_2_195_103)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR. _a > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	445
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	429
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	426
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	426
0.08	0.05	Tes	Tes	T es Ves	I es Ves	T es Ves	T es Ves	Ves	424
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	412
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	411
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	424
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	423
0.06	0.07	Tes Ves	Tes Vas	Tes Ves	Tes Ves	Tes Ves	T es Ves	Tes Vec	405
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	418
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	402
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	402
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	401
0.00	0.10	Ves	Tes Ves	Tes Ves	Ves	Yes	Yes	Ves	401
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	396
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	402
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	448
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	407
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	400
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	406
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	410
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	387
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes Voc	Yes	387
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	409
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	385
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	393
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	385
0.04	0.07	Tes Voc	Tes Voc	Yes Voc	Tes V~	Tes Voc	ies Voc	Yes	385
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	389
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	389
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	388
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	382
0.04	0.10	Yes Voc	I es Voc	Y es	Yes Ver	Yes	Yes Voc	Yes	382
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	377
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	395
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	397
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	395
0.03	0.05	Yes	Y es	Yes	Yes	Yes	Yes	Yes	396
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	386
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	397
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	386
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	385
0.03	0.07	Yes	Yes	Yes Voc	Yes	Yes	Yes Voc	Yes	372
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	386
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	366
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	373
0.03	0.10	res Voc	Tes Voc	Yes Voc	Yes Voc	Tes Voc	Tes Voc	Yes	377
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	387
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.01	0.03	Tes Voc	Tes Voc	Tes Voc	I es Voc	Tes Ves	Tes Ves	Yes	324
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	370
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	362
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	373
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	371
0.01	0.05	T es Voc	T es Voc	T es Vac	T es Vec	Tes	I es Vac	Yes	202
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	367
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	361
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	360
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	355
0.01	0.10	T ES Voc	T es Vec	T ES Voc	T es Vec	T es Vec	T es Voc	Yes	357
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	352
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	356
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	357

Table J.110: Resilient modulus data with QC/QA (B_1_16_103)

σ ₂ IMPa1		SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [MPa]
0.06	0.03	No	No	Vec	Y Vor	Vec	Ves	Criterion	Mr J
0.06	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.05	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.05	I es Vor	NO	T es Voc	Tes Voc	Tes Voc	Tes Voc	No	501
0.00	0.05	Yes	No	Yes	Yes	Yes	Yes	No	X
0.06	0.05	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	502
0.06	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	530
0.06	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	521
0.06	0.07	I es Voc	NO	Tes Voc	Yes Voc	T es Voc	Tes Voc	Yes	498
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	488
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	489
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	487
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	489
0.06	0.10	I es No	I es No	i es Voc	I es Voc	Yes Voc	Yes	Yes	495
0.04	0.03	No	No	Ves	Tes Ves	Yes	Yes	No	^X
0.04	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Yes	No	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Tes Voc	No	Tes Vac	Tes Vec	Tes Voc	T es Voc	Tes Voc	214 400
0.04	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	500
0.04	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	515
0.04	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	496
0.04	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	505
0.04	0.07	Yes	No No	Yes	Yes	Yes	Yes	Yes	504
0.04	0.07	Ves	No	Tes Voc	Vec	Ves	Tes Voc	Vee	492 500
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	510
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	509
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	497
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	507
0.04	0.10	res No	res	I es Voc	Tes Voc	Tes	Tes	res	495
0.03	0.03	No	No	Yes	No	Yes	Yes	No	×
0.03	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.03	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	202
0.03	0.05	Yes	No	Yes	Yes	Yes	Yes	Ves	516
0.03	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	484
0.03	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	499
0.03	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	512
0.03	0.07	Yes	No No	Yes	Yes	Yes	Yes	Yes	200
0.03	0.07	Ves	No	Ves	Ves	Yes	Yes	Ves	407
0.03	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	469
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	490
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	483
0.03	0.10	Yes Var	I es Voc	I es V~	ĭ es V~	Tes Voc	Y es Voc	Yes	476
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	478
0.01	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No No	No No	Yes V~	Yes Vec	Yes Voc	Yes	No	×
0.01	0.05	Yes	No	Yes	Ves	Yes	Yes	No	×
0.01	0.05	Yes	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	Yes	No	Yes	Yes	Yes	Yes	Yes	476
0.01	0.05	Yes	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	No No	Yes	Yes V	Y es	Yes	No	× 409
0.01	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	490
0.01	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	490
0.01	0.07	Yes	No	Yes	Yes	Yes	Yes	Yes	495
0.01	0.08	Yes	No	Yes	Yes	Yes	Yes	Yes	508
0.01	0.10	Yes V	Yes V	Yes V	Yes V	Tes V	Yes V	Yes V	487
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	475
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	484
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	483

Table J.111: Resilient modulus data with QC/QA (B_2_16_103)

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.00	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	223
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.06	0.05	Yes V~	Yes V~	Yes	Yes	Yes	Yes	Yes	215
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.06	0.07	T es Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes	206
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	205
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.06	0.10	Tes V~	Tes Vez	T es Voc	Yes	Y es Voc	Yes Voc	Yes	196
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	I es Ves	I es Ves	Tes Ves	T es Ves	I es Ves	Tes Ves	Ves	218
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.04	0.05	Y es Voc	Yes Voc	Yes Voc	Yes	Yes	Yes Voc	Yes	213
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.07	I es Vec	T es Vec	I es Vac	I es Vac	Tes Vec	I es Vec	Tes	192
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	191
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	197
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.04	0.10	I es Vec	I es Vec	Tes Vec	Tes Ves	Tes Ves	Tes Vec	Yes Ves	229
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	223
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	219
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.03	0.07	Yes	Tes Ves	Ves	Yes	Ves	Ves	Ves	208
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	204
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	206
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	204
0.03	0.10	T es Ves	Tes Ves	Tes Ves	T es Ves	Tes Ves	Tes Ves	Yes	100
0.03	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.01	0.03	Yes Vec	Yes Vec	T es Vec	Yes	Yes	Yes	Yes	213
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.01	0.05	Yes V	Yes V	Yes V	Yes	Yes	Yes	Yes	215
0.01	0.05	Yes	Yes	Yes	Tes Yes	Yes	T es Yes	Yes	210
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.01	0.07	I es Var	I es Voc	Tes Voc	Yes Voc	Tes Voc	Yes Voc	Yes	207
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.01	0.10	Tes V~	Tes V~	I es V~	Yes Voc	Tes Voc	Yes Voc	Yes	188
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.01	t nin	Vac	Vas	Vec	Vac	Vac	Vac	Vac	192

Table J.112: Resilient modulus data with QC/QA (B_1_27_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterior	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.03	I es Vac	Tes Vac	I es Voc	Tes Voc	Yes Voc	Yes Voc	Yes	228
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.05	I es Voc	Yes Voc	Yes Voc	Yes Voc	Yes Voc	Yes Voc	Yes	212
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	206
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.06	0.07	I es Voc	Tes Voc	Tes Vor	I es Voc	Yes	Tes Voc	Yes	205
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	196
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.04	0.03	I es Voc	Tes Voc	Tes Voc	Tes Voc	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	230
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.04	0.05	I es Voc	I es Voc	I es Vec	I es Vec	Yes Vec	I es Vec	Yes	210
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.07	I es Vec	Tes Vec	Tes Vec	Tes Vas	Yes Ves	Tes Ves	Yes Vec	202
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	208
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	191
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	197
0.04	0.10	I es Ves	Tes Ves	Tes Ves	T es Ves	Tes Ves	Tes Ves	Tes Ves	192
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	223
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.03	Yes V	Yes	Yes	Yes	Yes	Yes	Yes	224
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	219
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.03	0.05	T es Voc	I es Voc	Tes Voc	I es Voc	Tes	Tes Voc	Yes	215
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	204
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	206
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	204
0.03	0.10	I es Vec	T es Vec	Tes Ves	Tes Ves	Yes	Tes Ves	Yes Ves	188
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.01	0.03	T es Voc	I es Voc	Tes Vec	I es Vec	Tes Vec	Tes Voc	Yes	219
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	225
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.01	0.05	T es Voc	Tes Vac	Tes Voc	T es Vac	Tes Voc	T es Voc	Tes Vec	214
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	215
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.01	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.01	0.07	Yes V	Yes Var	I es V~	ĭ es V~r	Yes Voc	Yes Voc	Yes	203
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192

Table J.113: Resilient modulus data with QC/QA (B_2_27_98)

σ ₃ [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	201
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	201
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.06	0.03	Tes Vec	Tes Vec	Tes Vec	Tes Ves	Tes Ves	Tes Ves	Yes	196
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	185
0.06	0.07	Tes Vac	Tes Voc	Tes Voc	Tes Voc	I es Voc	I es Voc	res Voc	180
0.00	0.07	Ves	Ves	Ves	Yes	Ves	Ves	Ves	186
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes V	Yes	1/1
0.08	0.10	Tes Voc	Vec	Tes Vec	Tes Vos	Tes Vac	Ves	Tes	103
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	197
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.05	Yes	Yes	Yes	Yes V	Yes V	Yes	Yes V	197
0.04	0.05	Tes Voc	Tes Voc	Tes Voc	Tes	I es Vac	I es Voc	res Voc	189
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	191
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	196
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	183
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.04	0.07	Tes Voc	Tes Voc	Tes Vec	Tes Voc	Tes Vec	Tes Voc	res Voc	185
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	171
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.03	0.03	Tes Voc	Yes Voc	Yes	Yes	Tes Vec	Yes	Yes	195
0.03	0.03	Yes	Ves	Yes	Yes	Yes	Yes	Yes	195
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	196
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	187
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	187
0.03	0.05	Tes Voc	Tes Voc	Tes Voc	Tes Voc	Tes Voc	T es Voc	res Voc	109
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	180
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	178
0.03	0.07	Yes V	Yes	Yes	Yes	Yes	Yes	Yes	179
0.03	0.07	I es Ves	I ES Vec	I ES Vec	I ES Vos	I es Ves	I ES Ves	Tes	162
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.01	0.03	I es Voc	Tes Vec	I es Vec	I es Voc	I es Vac	I es Voc	Tes Voc	194
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	197
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.01	0.05	Tes Vac	I es Vec	Yes Vec	Tes Ver	Tes Var	Yes Vor	Yes	184
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	174
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	174
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	175
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	179
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	177
0.01	0.10	Tes V	Tes V	Yes V	Y es	Tes V	Yes V	Yes V	163
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	165
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	163
0.01	0.10	Yes	Ves	Yes	Yes	Vac	Yes	Yes	165

Table J.114: Resilient modulus data with $\rm QC/QA(B_1_22_98)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	No	Yes	Yes	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	290
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	258
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	270
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	258
0.06	0.05	Tes Vac	I es Vac	I es Voc	Yes Voc	I es Vez	Yes Voc	Yes	271
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	253
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	259
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	258
0.06	0.07	T es Vac	I es Vac	Tes Vec	Tes Vec	T es Vec	Tes Ves	Tes	238
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	244
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.06	0.10	Yes	Y es Voc	Yes	Yes	Yes	Yes	Yes	239
0.04	0.03	No	Yes	Yes	No	Yes	Yes	No	200 X
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	295
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	264
0.04	0.05	Tes Voc	T es Voc	Tes Vec	T es Ves	Tes Vec	Tes Ves	Yes Vec	264
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	254
0.04	0.07	Tes Vec	T es Vec	Tes Vec	Tes Ves	Tes Ves	Tes Ves	res Vec	252
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	254
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	249
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	242
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.04	0.10	Yes	Yes	Ves	Yes	Ves	Yes	Ves	236
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	237
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	260
0.03	0.03	No	Y es Voc	Yes	Yes	Yes Voc	Yes	Yes	260
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	283
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	262
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	262
0.03	0.05	Yes	Yes	Yes	Yes	Ves	Yes	Ves	253
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.03	0.07	Yes Yes	Yes Yes	I es Voc	Tes Voc	Tes Vec	Tes Voc	Yes Voc	253
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	240
0.03	0.10	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	236
0.03	0.10	No	T es Yes	Tes	Tes	Yes	Tes	Yes	258
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	Yes Ver	I es Voc	Y es	Y es	Y es Voc	No	275
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	261
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	262
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.01	0.07	Yes	Yes	Yes V~	Yes	Yes	Yes	Yes	254
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	232
0.01	0.10	Yes V	Yes Var	Yes V	Y es Voc	Yes V~~	Yes	Yes	238
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	240

Table J.115: Resilient modulus data with QC/QA (B_2_298)

σ ₃ [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	113
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.06	0.05	T es Voc	Tes Voc	Tes Voc	Tes	I es Voc	Tes	Yes	106
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	107
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	102
0.06	0.07	Yes V	Yes V	Yes	I es	I es V	Y es	Yes	101
0.06	0.07	Ves	Ves	Ves	Yes	Ves	Yes	Ves	102
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	104
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	97
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	98
0.06	0.10	Yes	Yes	Yes	Yes	Yes V	Yes	Yes	96
0.08	0.10	Tes Voc	Ves	Tes Voc	Tes Vos	Ves	Tes Voc	Vec	90
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	98
0.04	0.05	Yes	Yes V	Y es	Yes V	Y es	Y es	Yes V	96
0.04	0.05	I es Vec	I es Vec	I es Vec	I es Vec	I es Vec	I es Vec	Vec	97 96
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	95
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	95
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	92
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	91
0.04	0.07	Tes Vec	Tes Voc	res Vec	Tes Voc	Tes Vec	T es Voc	res Voc	91
0.04	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	88
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	88
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	87
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	87
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.03	0.03	Tes Ves	Tes Vec	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes Ves	86
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	88
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	90
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	87
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	85
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.05	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Ves	T es Ves	Yes	84
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	85
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79
0.03	0.07	Tes Ver	Tes Ver	Yes	Tes Ver	Tes Ver	Yes Ver	Yes	82
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	78
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77
0.01	0.03	Tes Vec	Ves	Tes Vec	Ves	T es Vec	Ves	Vec	76
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	74
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	69
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70
0.01	0.05	I ES Vac	I ES Vec	I ES Vac	I ES Vac	I es Voc	I ES Voc	1es Vac	71
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	69
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	67
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	67
0.01	0.07	res Voc	res Voc	res Voc	T es Vac	T es Voc	T es	res Vec	66
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66

Table J.116: Resilient modulus data with QC/QA (B_1_16_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNRLVDT#3>3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.06	0.03	Tes	Tes	Tes	Yes	Tes	Yes	Yes	109
0.00	0.05	Yes	Yes	Yes	Yes	Ves	Yes	Ves	99
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96
0.06	0.07	I es Vac	I es Voc	I es Voc	I es Voc	I es Vac	I es Voc	Tes	96
0.06	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	91
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	90
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	90
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.04	0.03	Tes Vac	I es Was	Tes Vac	Yes	Tes Ver	Yes Vec	Yes	99
0.04	0.03	Vec Vec	Ves	Vec	Vec	Ves	Ves	Vee	100
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	92
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	92
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	94
0.04	0.05	Tes Ver	I es Waa	Tes Var	Yes	I es Vez	Yes	Yes	91
0.04	0.07	Ves	Ves	Ves	Ves	Ves	Ves	Vec	86
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	87
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	88
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82
0.04	0.10	Tes V	I es Wes	Tes Vec	Yes	I es V	Yes Ver	Yes	81
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Ves	82
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	90
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	91
0.03	0.05	T es Voc	T es Vec	T es Vec	T es Vec	Tes Vec	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	78
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	78
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79
0.03	0.07	I es Vac	I es Vac	I es Vac	I es Vec	I es Vac	I es Vec	Vec	79
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	73
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	74
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	73
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	74
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	72
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76
0.01	0.03	I es Vac	I es Vac	I es Vac	I es Vec	I es Vac	I es Vec	Tes	75
0.01	0.03	Yes	Yes	Ves	Ves	Ves	Ves	Ves	84
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	69
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	67
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	67
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	69
0.01	0.05	res V	Tes V	Tes V	Tes V	Tes V	Tes V	Yes V	6/
0.01	0.07	Tes	T es Voc	T es Voc	Tes	T es Vec	T es Vec	1es Voc	00
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	67
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63
0.01	0.10	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	63
0.01	0.10	T es Voc	Tes Yoc	Tes Voc	Tes Voc	Tes Voc	Tes Voc	Yes Yes	62

Table J.117: Resilient modulus data with QC/QA (B_2_16_98)

σ_3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No No	No	×
0.06	0.03	No	T es Ves	T es Ves	T es Ves	Tes Ves	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	I es Voc	Tes Vec	Yes Ves	Tes Voc	No	No	×
0.06	0.06	No	No	No	No	No	No	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No Vac	I es V~	I es Voc	Y es	I es V~	Yes Voc	Yes	144
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.06	0.10	Yes M-	Yes	Yes	Yes	Yes	Yes M-	Yes	138
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes V	Yes Var	Y es	Y es	No No	No	×
0.04	0.05	Yes	Ves	Ves	Yes	Ves	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	Yes	Yes	Yes	Yes	No	No	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.04	0.07	Tes Ves	Yes	Tes Ves	Yes	Ves	Yes	Ves	125
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.04	0.10	T es Ves	Tes Ves	Tes Ves	T es Ves	res No	Tes Ves	res No	119 ×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	Yes ¥t-	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Ves	Tes	Ves	Ves	Ves	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	115
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	114
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	117
0.03	0.05	No	Yes Vec	Y es	Yes	Yes	Yes	Yes	122
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	111
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	111
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.03	0.10	Yes Voc	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Tes Ves	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No No	No	×
0.01	0.03	No	Tes Ves	Ves	Yes	Ves	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	95
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.01	0.05	Yes N-	Yes	Yes	Yes	Yes	Yes	Yes	98
0.01	0.05	No No	Tes Vec	Tes Vec	Tes Vec	Tes Vec	I es Vec	res Vec	07
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	94
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	92
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	95
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93
0.01	0.10	Tes Vac	T es Vac	T es Vac	T es Yec	No	T es Vec	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	T 010	Yes	Yes	Yes	Yes	No	Vac	No	I x

Table J.118: Resilient modulus data with QC/QA (C_1_12_103)

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	NO	Tes Voc	Tes Voc	I es Voc	I es Voc	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	146
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	150
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	152
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.06	0.07	I es Vec	I es Vec	I es Vec	I es Voc	I es Vec	I es Vec	Tes	150
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	144
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	142
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.04	0.03	No	T es Voc	T es Voc	I es Voc	T es Voc	T es Voc	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	137
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	139
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Tes Voc	Yes Vec	Tes Vec	T es Vec	Tes Voc	INO	×
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Ves	131
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	136
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	132
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.04	0.10	Yes V	Yes V	Yes V	I es	Yes V	Yes Ver	Yes	126
0.04	0.10	Ves	Tes Vec	Tes Vec	Tes Vec	Vec	Tes Ves	Vec	120
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	124
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No No	I es V	I es	I es V	I es M-	No N-	INO No	×
0.03	0.05	No	T es Voc	Tes Voc	Tes	NO Vor	No	No	
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	119
0.03	0.07	I es Vez	Tes Ver	Yes Ver	Tes	Tes Vec	Yes Ver	Yes	119
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.03	No	T es Voc	T es Voc	I es No	I es Voc	I es Voc	No	÷
0.01	0.03	No	Ves	Ves	Yes	Ves	Ves	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	111
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	108
0.01	0.05	T es	Tes	T es	T es	T es	Tes	Yes	104
0.01	0.07	Ves	Ves	Yes	Yes	Ves	Yes	Ves	104
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	104
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	102
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	104
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes V	Yes V	Yes V	Yes V	No N-	Yes V	INO N-	X
0.01	0.10	i es Yes	Yes	res Yes	res Yes	No	Tes Yes	No	×

Table J.119: Resilient modulus data with QC/QA (C_2_12_103)

σ 3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No No	Yes M-	Yes	Yes	Yes	No	No	×
0.06	0.05	Ved	Vor	I es Vec	I es Voc	I es Voc	Vor Vor	Voc	177
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	× ×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	175
0.06	0.07	I es Voc	Tes Voc	Tes Voc	Tes Voc	Tes Voc	Tes Vec	Yes Voc	180
0.00	0.07	Yes	Yes	Ves	Yes	Yes	Yes	Ves	166
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	173
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	161
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	157
0.06	0.10	Tes Voc	I es Voc	Tes Voc	Tes Vor	Yes Voc	Yes Voc	Yes	159
0.00	0.10	No	Ves	Ves	Yes	Yes	Yes	No	104 ×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	OPI Vor	I es Voc	I es Voc	T es Voc	res No	No	No	÷
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	156
0.04	0.07	Tes Vec	Tes Vec	Tes Vec	Tes Vec	Tes Vec	Tes Ves	Yes Vec	134
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	145
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.04	0.10	I es V~	I es Vez	Yes Voc	i es Voc	Yes Voc	Yes Voc	Yes	138
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	Yes	Yes	Yes	No	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No Ies	Tes Ves	Tes Ves	Tes Ves	Tes Ves	T es Ves	Tes Ves	138
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	141
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	137
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.03	0.00	Tes Ves	T es Ves	Tes Vec	Ves	Tes Vec	Ves	Ves	135
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	137
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.03	0.10	Yes V	Yes V	Yes	Yes	Yes	Yes	Yes V	128
0.03	0.10	Tes Yes	Yes	Tes Yes	Yes	Yes	Tes	Yes	125
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No No	Yes	Yes	Yes	Yes	No No	No	×
0.01	0.05	Vec Vec	Tes Ves	Tes Vac	ies Vec	I es Vec	091 Ves	Ver	128
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	132
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	135
0.01	0.07	Yes Voc	Tes V~	Tes Voc	Y es	Yes Voc	Y es	Yes	122
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	123
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.01	0.10	Yes Voc	Yes V~	I es Var	I es Voc	Yes Voc	I es Voc	Yes	114
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	117

Table J.120: Resilient modulus data with QC/QA (C_1_95_103)

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No No	Yes	No No	Yes	Yes	No No	No	×
0.00	0.05	NO Ves	Ves	No	Ves	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	No	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	Yes	Yes	No	Yes	Yes	No	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	I es Vac	Tes Vac	Tes Vac	Tes Ves	I es Vac	Tes Vac	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	178
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	173
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	176
0.06	0.10	Tes Vac	I es Vac	I ES Vac	T es Vac	Tes Vas	Tes Vac	Ies Vec	176
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	I es Ver	No	T es	Tes Ver	NO	No	×
0.04	0.05	No	Yes	Yes	T es Yes	Yes	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	177
0.04	0.08	Yes Voc	Yes Voc	Yes	Yes Voc	Yes Voc	Yes Voc	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	180
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	160
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.04	0.10	Tes Voc	Tes Voc	Yes Voc	I es Voc	Yes Voc	Yes Voc	Yes	159
0.04	0.10	No	Vec	No	Ves	Tes Ves	Yes	No	136 ×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	No	Yes	Yes	Yes	No	×
0.03	0.03	Yes	Yes	No	Yes	Yes	Yes	No	×
0.03	0.05	Tes Vec	Tes Vec	Tes Vec	I es Vec	T es Vec	T es Ves	No	× ×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	161
0.03	0.07	I es Vac	Tes Vec	Tes Vac	Tes Ves	I es Vac	I es Vac	Tes Vec	166
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	154
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	137
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	141
0.03	0.10	I es V~	I es Voc	I es Voc	Yes Vec	Tes V~r	Yes Voc	Yes	137
0.03	0,10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.01	0.03	No	Yes	No	Yes	Yes	No	No	×
0.01	0.03	Yes	Yes	No	Yes	Yes	No	No	×
0.01	0.03	No	Yes	No	Yes	Yes	No	No	×
0.01	0.03	Yes	Yes	No	Yes	Yes	No	No	×
0.01	0.05	No Vor	Tes	No Voc	I es Voc	Tes	Vor.	No	~
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	122
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes V	Yes	Yes	Yes V	126
0.01	0.07	T es Voc	T es Voc	T ES Voc	res Vac	Tes Vac	T es Vor	res Ver	133
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	134
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.01	0.10	I es V	Yes V	I es V	Tes V	I es M-	Yes V	Yes N-	116
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118

Table J.121: Resilient modulus data with QC/QA (C_2_95_103)

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.03	No	Yes	No	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	NO N-	I es W	Yes V	I es	res M-	NO M-	INO NI-	×
0.06	0.05	No	Tes Voc	Tes Voc	T es Voc	NO Vor	No	No	~
0.00	0.05	No	Vec	Vec	Vas	No	No	No	~×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.06	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	192
0.06	0.10	Yes	Tes V	Y es	Tes Voi	Yes	Tes	Yes	203
0.00	0.10	I es Voc	I es Vez	I es Voc	I es Voc	I es Vec	I es Vec	1es Vec	200
0.00	0.10	No	Vec	No	Vos	Ves	No	No	135
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.03	No	Yes	No	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	X
0.04	0.05	NO M-	I es	Y es	Tes	No	NO	INO N-	×
0.04	0.05	No	I es Voc	I es Voc	T es Voc	T es Voc	ло Мо	No	~
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	No	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	179
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	186
0.04	0.10	I es	Tes V	Yes	I es Ver	I es V	Tes	Yes	184
0.04	0.10	Vec	Ves	Vec	Vec	Ves	Ves	Vec	179
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.03	No	Yes	No	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	NO N-	I es	Yes	Tes	I es	NO N-	INO N-	×
0.03	0.05	No	I es Vez	I es Voc	I es Vec	NO Ver	Mo	No	~ ~
0.03	0.05	No	Ves	Ves	Ves	Ves	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	X
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.10	No	Yes V	Yes	Yes V	No No	Yes	No N-	X
0.03	0.10	I ES No	I ES	I ES Voc	I ES Voc	No.	I ES Voc	No	×
0.03	0.10	No	Yes	Vac	Tes Voc	No	Tes Voc	No	×
0.03	0,10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	No	No	No	×
0.01	0.05	NO N-	I es Weit	Yes Ver	Tes	I es M-	NO M-	INO N-	×
0.01	0.05	No	T es Voc	Voc	Yee	No	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	No	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	res No	I es Var	res Voc	T es	140 M-	res Ver	No	X
0.01	0.10	NO Vac	T es Voc	Tes Vac	T es Vac	No	T es Vac	Na	×
0.01	0.10	No	Yes	Yes	Yes	No	Yes	No	x

Table J.122: Resilient modulus data with QC/QA (C_1_8_103)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.06	0.06	res No	No	Tes Vac	Tes Ves	Tes Ves	Tes Vac	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	I es Voc	Tes Vec	T es Voc	Tes Vos	Yes Voc	Yes Ves	No	×
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	211
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	× 200
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.03	No	No	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.04	0.05	No No	Yes M-	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Yes	Yes	Tes Yes	res Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Ves	196
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	190
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.04	0.10	res No	res No	Tes Ves	res Ves	Tes Ves	Tes Ves	res	204 X
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	OPI Vec	res No	Tes Ves	T es Ves	Tes No	T es Vec	No	×
0.03	0.05	No	No	Yes	Yes	No	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	No	Yes	No	×
0.03	0.05	No No	Yes M-	Yes	Yes	No	Yes	No	X
0.03	0.05	No	Ves	Tes Ves	T es Ves	NO Ves	T es Ves	No	×
0.03	0.08	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	T es Ves	Tes	Tes	T es Yes	T es Yes	Yes	Ves	188
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.03	0.10	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes	177
0.03	0.03	No	No	Yes	Yes	Yes	Yes	No	104 ×
0.01	0.03	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	No	Yes	No	Yes	Yes	No	×
0.01	0.03	No No	No No	Yes	Yes V	Yes V	Yes V	No N-	X
0.01	0.05	ио Уес	No	ies Yes	T es Yes	T ES Yes	T ES Yes	No	×
0.01	0.05	No	No	Yes	Yes	No	Yes	No	×
0.01	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	No	Yes	Yes	Yes	Yes	No	×
0.01	0.05	T es Yes	001 24V	Tes Vec	Tes Yes	ио Уес	T es Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	T es Voc	T es Voc	T es Voc	I es Voc	Tes Voc	I es Voc	No	× 163
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.01	0.10	res	res	res	Ies	Ies	ïes	res	163

Table J.123: Resilient modulus data with QC/QA (C_2_8_103)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT¥1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No No	Yes	Yes	Yes	Yes	No No	No	×
0.06	0.03	No	T es Ves	Tes Ves	Tes Ves	Tes Ves	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	119
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	114
0.06	0.05	No Voc	I es Vec	Tes Voc	Tes Vec	I es Vec	i es Vec	Yes Vec	116
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.06	0.07	No Vor	T es Voc	Yes Voc	Yes Voc	Y es Voc	Y es Voc	Yes	109
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	I es Voc	Yes	Yes	Yes	Yes	Yes	103
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	107
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	102
0.04	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.04	0.07	Yes Voc	Yes Voc	Yes	Yes	Yes	No	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	No	No	×
0.04	0.08	No	No	No	No	No	No	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	I es Voc	I es Voc	Tes Voc	Yes Voc	No	T es Voc	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	85
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	81
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	× 82
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.05	Tes Vec	Tes Vec	Tes Vec	Tes Vos	Tes Ves	Tes Ves	res Vec	84
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82
0.03	0.10	Tes Ves	Tes Ves	Tes Ves	Tes Ves	No	Tes Ves	No	× ×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	69
0.01	0.03	Tes Voc	I es Vec	Tes Vec	T es Voc	I es Vec	I es Vec	1es Vec	69 71
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	71
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	73
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	68
0.01	0.05	res No	Tes Vac	res Voc	Yes Vec	Tes Voc	T es Vac	Tes Vec	0/ 60
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	73
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	65
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.07	Tes Voc	Yes Voc	Yes Voc	Y es Vac	Yes Vot	Y es Vac	Yes	67
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	X
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	I No	Yes	No	I X

Table J.124: Resilient modulus data with QC/QA (C_1_13_98)

Ga IMPal	GDEV IMPal	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [MPa]
0.06	0.03	No	Ves	Ves	Yes	Ves	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	120
0.06	0.05	Wes	Vec	Vec	Ves	Tes Ves	Ves	Vec	115
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	120
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	119
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	115
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	115
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.06	0.07	Tes Voc	Tes Voc	Tes Voc	I es Voc	T es Voc	Tes Voc	Tes	111
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	108
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	107
0.06	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.04	0.03	No	Vec	I es Vec	Tes Voc	I es Vec	No	No	<u>.</u>
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	107
0.04	0.05	Yes W	Yes	Yes	Yes	Yes	Yes	Yes	100
0.04	0.05	Tes Vec	Tes Vec	Tes Voc	I es Voc	Tes Vec	Tes Voc	Yes	100
0.04	0.05	No	Yes	Yes	Yes	Yes	Yes	No	X
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	98
0.04	0.07	I es Voc	Tes Voc	Y es	I es Voc	I es No	Yes	Yes No	100
0.04	0.10	Ves	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	NO	Tes Voc	res Voc	Tes Voc	Yes Voc	Yes Voc	Yes	80
0.03	0.03	No	Ves	Yes	Yes	Ves	Yes	No	X
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	89
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	86
0.03	0.05	T es Vec	Tes Vec	Tes Voc	I es Vec	Tes Ves	Tes Vec	res Vec	04 86
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84
0.03	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.07	Tes Voc	I es Vor	I es Ver	Y es	I es	I es Voc	Yes	84
0.03	0.10	Yes	Tes	Tes	1 es Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	x
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	72
0.01	0.03	No No	Yes	Yes	Yes	Yes	Yes	Yes V	71
0.01	0.03	ом ад	ies Vac	T ES Vac	res Vac	Tes Vac	T ES Yec	res	/1 ×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	73
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76
0.01	0.05	T es Voc	I es Voc	T es Voc	I ES Voc	r es No	Tes	res	- 6 9
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	I es V	Yes V	Yes V	Tes V	No N-	Yes V	INO N-	X
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.125: Resilient modulus data with QC/QA (C_2_13_98)

σ_3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No	Tes Ves	Yes Vas	Yes Vas	Tes Ves	Yes Ves	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	X
0.06	0.05	No No	Yes	Yes	Yes	Yes N-	No N-	No N-	×
0.06	0.05	No	Yes	Yes	Yes	No	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	158
0.06	0.07	No	Yes Voc	Yes Voc	Yes Voc	Yes	Yes	No	× 160
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	156
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	157
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	156
0.06	0.10	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes	Yes	Yes Ves	154
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	156
0.04	0.03	No	Yes	Yes	Yes No.	Yes	No No	No	×
0.04	0.03	No	Tes Ves	Tes Ves	Yes	T es Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	x
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	No	No	No	×
0.04	0.07	Yes	Yes	Yes	Yes Vec	Yes	Yes	Yes	145
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	150
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	144
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.04	0.10	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes	145
0.04	0.10	No	Yes	Yes	Yes	Yes	Yes	Yes	146
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.04	0.10	Yes M-	Yes	Yes	Yes	Yes	Yes M-	Yes	142
0.03	0.03	No	Yes	Yes	res Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Tes Ves	Tes Ves	Yes Ves	Tes Vec	No Ves	INO	129
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	Ves	Tes Ves	Tes Ves	T es Ves	T es Yes	Tes	Ves	135
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.03	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	134
0.03	0.07	No Vec	Yes Vec	Yes Vec	Yes Vec	Yes Vec	Yes Voc	Yes	134
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	X
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No N-	X
0.03	0.10	Tes Ves	Tes Ves	Tes Ves	Tes Ves	No	T es Ves	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	121
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	res No	Tes Yes	Yes Yes	Tes Yes	T es Yes	Tes Yec	Yes Yes	110
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.01	0.07	Yes V	Yes	Yes V.	Yes V	Yes V	Yes V	Yes V	117
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	115
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	I es Voc	I es Voc	Tes Voc	Yes Yes	No	Tes Voc	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.126: Resilient modulus data with QC/QA (C_1_10_98)

σ_3 [MPa]	$\sigma_{\text{DEV}[\text{MPa}]}$	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No No	Yes	Yes	Yes	Yes	No No	No	×
0.06	0.03	No	I es Vec	Yes	Tes	Tes	No	No	145
0.06	0.05	Ves	Ves	Yes	Yes	Ves	Yes	Ves	149
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	150
0.06	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	144
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	146
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	150
0.06	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	144
0.06	0.10	T es Vec	T es Vec	res Voc	I es Vec	Tes	Tes	res	130
0.00	0.10	Vec	Ves	Vec	Ves	Vec	Ves	Vee	137
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	137
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	137
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	NO Vec	T es Vec	T ES Vec	I ES Vac	T es Vec	No	No	×
0.04	0.05	No	Ves	Vac	Tes Vas	Ves	No	No	<u></u>
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.06	No	No	No	No	No	No	No	×
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	135
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.04	0.07	I es	Yes V	Yes	I es	I es	Tes	res N-	126
0.04	0.10	Ves	Ves	Ves	Ves	No	Ves	No	~
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	121
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.04	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	120
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	190 No	I es Vec	Tes Vec	I es	T es	I es Vec	No	×
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Ves	122
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	116
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	119
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	116
0.03	0.07	Yes	Yes	Yes	I es	Yes	Y es	Yes	117
0.03	0.07	Tes Voc	Tes Voc	Yes Voc	I es Voc	Tes Voc	T es Voc	res Voc	114
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	115
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.03	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	Yes	104
0.01	0.03	No	Yes Ver	Yes Ver	Tes	I es V	I es	INO	×
0.01	0.03	No	Vec	Vec	Tes Voc	Tes Vec	Vec	No	
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	108
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	103
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	105
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	102
0.01	0.07	Yes	Yes	Yes	Y es	Yes	Yes	Yes	100
0.01	0.07	res Voc	res Voc	res Voc	r es Var	T es Voc	res Var	Ver	104
0.01	0.07	Yes	Yes	Yee	Yes	Yes	Yes	Vec	98
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	X

Table J.127: Resilient modulus data with QC/QA (C_2_10_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	191
0.06	0.03	Tes Ves	Tes Ves	Tes Vec	Yes Ves	Tes Ves	Tes Ves	Yes Ves	182
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	187
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	173
0.06	0.05	I es Yes	I es Yes	Tes Yes	res Yes	Tes Yes	res Yes	Yes	175
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	169
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	169
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	161
0.06	0.07	T es Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	res Ves	160
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	161
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	164
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.06	0.10	I es V~	I es V~	Tes Voc	Yes Voc	I es Vac	I es Voc	Yes	153
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	150
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.04	0.03	Yes	Yes V.	Yes	Yes	Yes	Yes	Yes	170
0.04	0.03	I es Vec	T es Vec	T es Vec	T es Ves	T es Vec	I es Vec	Vec	175
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	161
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	154
0.04	0.05	Yes Voc	Yes Voc	Yes	Yes	Yes Voc	Yes	Yes	153
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	145
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	145
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	134
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.04	0.10	T es Ves	Tes Ves	Tes Ves	Tes Ves	Yes	Tes Ves	Yes	136
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.03	0.03	I es Vac	I es Vec	Tes Vec	Tes Voc	Tes Vac	Tes Vec	res Vec	142
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	136
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	132
0.03	0.05	Yes Voc	Yes Voc	Yes	Yes	Yes	Yes	Yes	137
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	125
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.03	0.07	Yes V	Yes	Yes	Yes	Yes	Yes	Yes	128
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	117
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	117
0.03	0.10	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	117
0.03	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	124
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	122
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.01	0.02	T es Yes	res Yes	res Yes	res Yes	res Yes	res Yes	Yes	125
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	114
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	115
0.01	0.05	Y es Voc	Yes Vec	Tes Voc	Yes Voc	Yes Vec	Yes Vec	Yes	115
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	108
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	108
0.01	0.07	Yes Ver	Yes Voc	Yes Voc	Y es	Yes Vec	I es Vec	Yes	108
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
 DTUDE 	1 11.111	Tes	T PS	1 1 65	res.	I TAS	Tes	195	47

Table J.128: Resilient modulus data with QC/QA (C_1_8_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	178
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.06	0.03	Yes	Yes Voc	Yes Voc	Yes Voc	Yes	Yes	Yes	186
0.06	0.05	Ves	Yes	Ves	Yes	Yes	Yes	Ves	168
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	165
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	160
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	160
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	160
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.06	0.03	Ves	Tes Ves	Ves	Yes	Yes	Tes Ves	Ves	150
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.04	0.05	Ves	Ves	Ves	Yes	Yes	Yes	Ves	165
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	165
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	154
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.04	0.07	Tes Ves	Tes Ves	Tes Ves	T es Ves	T es Ves	T es Ves	res Ves	151
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	144
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.04	0.10	Tes Vec	Tes Vec	Tes Vec	I es Ves	Tes Ves	Tes Ves	Yes	144
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.03	0.05	Tes Ves	Tes Vec	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Yes Ves	140
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	138
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.03	0.07	Yes Voc	Yes Voc	Tes Voc	Tes Voc	Tes Vec	Y es	Yes Voc	129
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	123
0.03	0.10	Tes Vec	Tes Vec	Tes Vec	I es Vec	T es Vec	T es Voc	res Vec	125
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.03	0.03	Yes Voc	I es Voc	I es Voc	Tes Voc	I es Voc	Yes Voc	Yes	120
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	122
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	120
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.01	0.07	Tes Ves	Ves	Ves	Yes	Yes	Yes	Ves	112
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	107
0.01	0.10	Yes	Yes Voc	Yes Voc	Yes Voc	Yes Voc	Yes Voc	Yes	105
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	104
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	101
0.01	0.03	Tes Vec	Tes Vec	Tes Vec	Tes Vec	I es Vec	Tes Ves	Tes Ves	101

Table J.129: Resilient modulus data with QC/QA (C_2_8_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	297
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	296
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.00	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	292
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	270
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	279
0.06	0.05	Yes	Yes Var	Yes	Yes	Yes	Yes	Yes	280
0.00	0.03	Yes	Yes	Ves	Yes	Yes	Yes	Ves	267
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	267
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.06	0.07	Yes	Yes	Yes V	Yes	Yes	Yes	Yes	261
0.06	0.10	Tes Ves	T es Ves	T es Ves	Ves	T es Ves	Ves	Tes Ves	248
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.04	0.03	Tes Voc	Tes Voc	I es Voc	Yes Vor	T es Voc	Yes Voc	Yes Voc	285
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	276
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	276
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	274
0.04	0.05	T es Voc	T es Voc	I es Voc	T es Vec	Tes Vec	Tes Vec	Yes Vec	214
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	259
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	257
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	252
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	252
0.04	0.07	Tes Voc	T es Voc	I es Vor	Y es Vor	T es Voc	Yes	Yes	252
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Ves	240
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	237
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.03	I es Ves	I es Vec	Tes	I es Vec	I es Vec	I es Vec	Tes Vec	275
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.03	0.05	T es Ves	T es Ves	T es Ves	Ves	Tes Vec	T es Ves	Tes Ves	263
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	264
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	248
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	241
0.03	0.07	Yes	Tes Ves	Tes Ves	Ves	Ves	Yes	Ves	241
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.03	0.10	I es Vas	I es Vac	Tes Ves	Tes Ves	Tes Ves	Tes Ves	res Vec	251
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	258
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.01	0.05	T es Vac	T es Vac	T es Voc	T es Voc	T es Vec	Tes Vec	Tes Vec	251
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	245
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.01	0.07	Yes V	Yes V	Yes V	Yes V	Yes	Yes V	Yes V	232
0.01	0.07	T es Voc	T es Yac	I ES Voc	I ES Voc	I ES Vec	I ES Yec	res Vec	230
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.01	0.10	I ES Vac	I es Vac	I es Voc	I ES Voc	I ES Voc	I ES Voc	1es Vec	218
0.01	0.10	Yes	Yes	Yes	Vac	Vac	Vas	Vac	220

Table J.130: Resilient modulus data with QC/QA (D_1_16_103)

σ_3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	314
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	323
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	308
0.06	0.03	I es V~	Tes Voc	I es Voc	Yes Voc	I es Voc	Yes Voc	Yes	336
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	300
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	308
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	308
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	303
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	303
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	290
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	290
0.06	0.07	I es Vac	I es Vac	I es Vec	T es Voc	I es Vec	I es Vec	Tes Vec	203
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	288
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	262
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	269
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	269
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	267
0.04	0.03	I es Voc	I es Voc	I es Voc	NO Vor	T es Voc	Yes	No	313
0.04	0.03	Yes	Yes	Ves	Yes	Yes	Yes	Ves	314
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	302
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	310
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	289
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	301
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	297
0.04	0.05	Yes	Yes Wes	Yes	Yes	Yes	Yes	Yes	288
0.04	0.05	I es Vac	I es Voc	T es Voc	T es Voc	Tes Vec	T es Voc	Tes	280
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	290
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	282
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	283
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	262
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	261
0.04	0.10	Tes V	Tes Vec	I es V-s	Yes	Yes Vec	Yes Ver	Yes	264
0.04	0.10	Yes	Yes	Ves	Yes	Yes	Yes	Ves	261
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	305
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	311
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	309
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	310
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	286
0.03	0.05	Tes Vec	Tes	I es Vec	Yes	Tes	Yes	Yes	291
0.03	0.05	Ves	Ves	Ves	Vec	Ves	Vec	Ves	201
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	296
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	291
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	277
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	277
0.03	0.07	I es V~	T es Vac	I es V~	Tes Voc	Tes Vac	T es Voc	Yes	212
0.03	0.07	Yes	Ves	Ves	Ves	Ves	Ves	Ves	251
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	253
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	253
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	255
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	285
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	298
0.01	0.02	Vac	Tes Voc	Vec	Vec	Vec	Vec	Vec	277
0.01	0.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	280
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	277
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	269
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	265
0.01	0.05	Yes	Yes	Yes 🗸	Yes	Yes	Yes	Yes	272
0.01	0.07	Tes V	Tes V	I es V	Tes V	Tes V	Tes V	Yes V	262
0.01	0.07	I es Voc	T es Vac		I ES Voc	I ES Voc	I ES Voc	1es Vac	258
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	268
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	256
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	239
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes V	246
 0.01 	0.10	I I ES	I I ES	I I ES	1 1 65	1 1 65	1 1 65	ies	1 437

Table J.131: Resilient modulus data with $QC/QA(D_2_16_103)$

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.06	0.03	Yes	No No	Yes	Yes V	Yes	Yes	INO N-	×
0.06	0.05	Ves	Ves	Vec	Ves	Ves	Yes	Ves	439
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	448
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	450
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	447
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	435
0.06	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	443
0.06	80.0	Yes	Yes	Yes	Yes	Yes	Yes	Yes	453
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.00	0.07	I es Voc	I es Voc	Voc	T es Voc	I es Voc	T es Voc	Tes	420
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	426
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	427
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	427
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	433
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	433
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.04	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.04	0.03	Tes Voc	NO	Tes Voc	T es Voc	Tes Vec	T es Voc	No	×
0.04	0.03	Tes Vec	No	Vec	Tes Ves	Ves	Ves	No	Ŷ
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	447
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	460
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	459
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	436
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	435
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	430
0.04	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	438
0.04	0.08	Voc	Voc	Voc	T es Voc	I es Voc	T es Voc	Voc	422
0.04	0.00	Yes	Ves	Yes	Yes	Yes	Yes	Ves	421
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	427
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	421
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	428
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	428
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	428
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	No	×
0.03	0.03	Tes Voc	NO	Tes Voc	Tes Voc	Tes Voc	T es Voc	INO No	×
0.03	0.03	Tes Ves	No	Vec	Tes Vac	Tes Ves	Tes Ves	Ver	430
0.03	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	454
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	415
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	437
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	423
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	423
0.03	0.07	Y es	Y es	Yes	I es	Y es	Yes	Yes	436
0.03	0.00	Vec	Vec	Voc	T es Voc	Vac	Voc	Tes Voc	430
0.03	0.07	Ves	Ves	Yes	Yes	Yes	Yes	Ves	418
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	445
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	416
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	423
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	417
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	407
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	413
0.01	0.03	Y es	No	I es Vec	Yes	Yes Ver	Yes Ver	INO	×
0.01	0.03	Vec	No	Vec	Vec	Vac	Vec	Vec	
0.01	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	430
0.01	0.03	Yes	No	Yes	Yes	Yes	Yes	Yes	455
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	422
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	433
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	434
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	446
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	429
0.01	0.07	T es Voc	res Voc	T es Voc	T es Vac	Tes V~	Tes V~	res Voc	428
0.01	0.07	Vec Vec	Vec Vec	Vac	Yes	Vac	Yes	Var	439
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	421
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	412
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	424
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	413
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	412
• • • • • • • •	1 1111	Yes	Yes	Y es	I Yes	Tes	T Y es	Yes	4 11

Table J.132: Resilient modulus data with QC/QA (D_1_13_103)

σ_3 [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} ≥3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.03	No No	Yes	Yes	Yes	Yes	Yes	No	X
0.06	0.03	No	Tes Vec	Tes Vac	Tes Voc	Tes Vec	Tes Ver	No	× ×
0.06	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	575
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	557
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	576
0.06	0.05	I es Voc	Yes Voc	Yes Voc	I es Voc	I es Voc	I es Vec	Yes	274
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	593
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	579
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	582
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	567
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	5/9
0.06	0.10	Ves	Ves	Yes	Yes	Ves	Yes	Yes	572
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	553
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	552
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	561
0.04	0.03	No No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Vec	Vac	Tes Vas	Ves	Ves	No	~
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	587
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	593
0.04	0.05	T es Ves	Tes Vec	Tes Vac	T es Ves	T es Ves	T es Ves	Vee	583
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	600
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	550
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	577
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	592
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	581
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	571
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	562
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	554
0.04	0.10	Tes Voc	Tes Vec	Tes Voc	Tes Vec	Tes Vec	Tes Vec	Yes Vec	362
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.03	0.03	No No	Yes	Yes	No	Yes	Yes	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	542
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	559
0.03	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	559
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	555
0.03	0.05	NO Vec	Tes Voc	T es Voc	I es Voc	T es Voc	T es Vec	Yes	545
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	573
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	555
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	S60
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	544
0.03	0.10	T es Vec	Ves	Vec	T es Vec	T es Vec	T es	Vec	546
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	546
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	535
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	536
0.01	0.03	No No	Yes	Yes	Yes	Yes	Yes	Ne	×
0.01	0.03	No	Tes Ves	Tes Ves	Tes Ves	Ves	Ves	No	~
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No N-	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	258
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	X
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	Yes	538
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	543
0.01	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	556
0.01	0.07	No No	Yes V	Yes	Yes V	Yes	Yes	Yes V	549
0.01	0.07	мо Мо	ies Vac	Tes Vac	res Vac	Tes Vac	res Vec	Tes Voc	545 556
0.01	0.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	538
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	550
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	536
0.01	0.10	Yes	Yes	Yes	Yes Voc	Yes	Yes Voc	Yes	526

Table J.133: Resilient modulus data with QC/QA (D_2_13_103)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	res No	res No	res No	res No	res No	No	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	380
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	390
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	398
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	389
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	399
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	387
0.06	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	388
0.06	0.07	Tes Vac	Tes Ver	Yes Voc	Tes	Yes Vec	Tes Voc	1es Vec	381
0.00	0.07	Ves	Ves	Ves	Tes Ves	Ves	Yes	Ves	381
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	372
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	360
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	374
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	380
0.04	0.03	Yes V.	I es	Yes	Tes	Y es	I es	Yes	377
0.04	0.03	I es Vac	I es Vec	I es Vec	I es Voc	I es Vec	I es Voc	Tes	380
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	381
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	368
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	360
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	369
0.04	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	361
0.04	0.07	Tes Vac	Tes Vac	I es Voc	Tes Voc	I es Vec	T es Voc	1es Voc	354
0.04	0.07	Ves	Ves	Ves	Yes	Ves	Yes	Ves	349
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	348
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	355
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	356
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	353
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	359
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	363
0.03	0.03	Y es	Yes	Yes	Tes	Yes	Tes	Yes	380
0.03	0.03	I es Vec	I es Vec	I es Vec	T es Vos	I es Vec	I es Voc	Tes	363
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	348
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	361
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	348
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	350
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	352
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	352
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	353
0.03	0.07	I es Vec	I es Vec	T es Voc	Tes	I es Vez	Tes	Tes	317
0.03	0.07	Ves	Ves	Yes	Yes	Ves	Yes	Ves	313
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	320
0.03	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	317
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	332
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	324
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	332
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	332
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	333
0.01	0.03	I es Voc	I es Voc	Voc	T es Voc	I es Voc	T es Voc	Vec	325
0.01	0.03	Ves	Ves	Yes	Yes	Yes	Yes	Ves	326
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	325
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	337
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	324
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	319
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	317
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	326
0.01	0.05	T es Voc	Tes Voc	Yes Voc	T es Vec	T es Voc	Tes Ver	Yes	300
0.01	0.07	Tes Vec	Tes Vec	Tes Vac	T es Yec	Tes Vec	T es Voc	Vee	326
0,01	0,07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	311
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	316
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	312
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	306
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	306
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	310
0.01	0.10	Yes	Yes	Yes	Yes V	Yes	Yes V	Yes	313

Table J.134: Resilient modulus data with QC/QA (D_1_11_103)

G2 IMPa1	ODEV MPal	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [MPa]
0.06	0.03	Var	Vac	Ver	Y	Ved	Ver	Vac	220
0.06	0.03	Vec	Vec	Vec	Vec	Vec	Vec	Vec	235
0.06	0.03	Vec Vec	Vec Vec	Vec	Ves	Ves	Ves	Vee	235
0.06	0.03	Ves	Ves	Ves	Yes	Ves	Yes	Ves	235
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	229
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	226
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	206
0.06	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	212
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	205
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	204
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	205
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	205
0.04	0.03	I es	I es	Yes	Y es	Yes	Yes	Yes	197
0.04	0.03	I es	Tes	Tes 😯	Tes	I es	I es	Yes	196
0.04	0.03	I es Wei	I es	Tes Waa	res V	res V	res Ver	Yes	201
0.04	0.03	I es V~	I es V~	I es Voc	I ES Voc	I es Vac	I ES	Vec	200
0.04	0.05	Tes Vor	Ver	Var	Vor	Ver	Ver	Vec	194
0.04	0.05	Vec	Yes	Vec	Vec	Vec	Vec	Vec	194
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	185
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	185
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	183
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	174
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	156
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	163
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.03	0.05	Tes	I es	I es	Tes	Tes	I es	Yes	157
0.03	0.05	I es Vac	I es Vac	Tes Vec	Tes Vec	Tes Ver	T es	res	154
0.03	0.05	I es Vac	I es Vac	I es Voc	Tes	I es Vac	I es Voc	Tes	154
0.03	0.05	Vac	Vac	Vec	Ves	Ves	Vas	Vec	160
0.03	0.03	Vas	Vac	Vac	Vac	Vas	Vas	Ver	155
0.03	0,07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	154
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	125
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	125
0.01	0.05	Yes 😽	I es	Yes	Y es	Yes 😽	Y es	Yes	123
0.01	0.05	T es	T es	Yes	Y es	I es	Tes	Yes	123
0.01	0.05	res V	T es	Tes V	Tes V	I es	Tes V	res V	130
0.01	0.07	I es V	I ES	I es V	Tes V	I es V	Tes V	1es V	120
0.01	0.07	T es	1 es V	I es Vac	1 es Voc	Tes Var	res Var	Vec	140
0.01	0.07	T es Voc	T es Voc	Tes Voc	Yes	Tes Voc	T es Voc	Vec	122
0.01	0.07	Yac	Yac	Yee	Yee	Yes	Yee	Veo	126
0.01	0.07	Yee	Yee	Vec	Yes	Yes	Yes	Vec	126
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	128
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	127

Table J.135: Resilient modulus data with QC/QA (D_2_11_103)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.06	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	No	No	X
0.06	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	Yes	Yes	Yes	Yes	Yes	No	No	×
0.06	0.00	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.06	0.07	Tes Vec	Tes	Tes Vec	Tes Vec	T es Ves	Tes Vec	Tes	135
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	132
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	133
0.06	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	134
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	134
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.04	0.05	T es Vec	Tes Vec	Tes Vec	Tes Ves	T es Ves	T es Ves	Yes	167
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.04	0.07	T es Ves	Tes Ves	Tes Ves	T es Ves	Tes Ves	Tes Ves	Tes Ves	155
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	150
0.04	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.04	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.03	0.03	Tes Voc	Tes Voc	Tes Voc	T es Voc	T es Voc	Tes Voc	1es Voc	175
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	164
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	166
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	165
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.03	0.07	I es Ves	Tes Vec	Tes Vac	Tes Ves	I es Ves	T es Vec	Ies Vec	147
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.03	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.03	0.10	I es Voc	Yes Voc	Yes Voc	Yes Voc	I es Voc	Yes Voc	Yes	128
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	165
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	169
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.01	0.03	T es Vor	Tes	Tes	Yes Voc	T es Voc	Tes Voc	Yes	1/0
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	156
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	153
0.01	0.05	Yes	Yes V	Yes	Yes V	Yes V	Yes V	Yes V	156
0.01	0.07	T es Vec	T ES Voc	T ES Voc	Tes Voc	T es Vec	Tes Voc	Yes	146
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	145
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	142
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	142
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	125
0.01	0.09	Tes Ves	Tes Vec	Tes Vac	Tes Vac	Tes Ves	Tes Vec	res Vec	125
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	124
0.01	0.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	122

Table J.136: Resilient modulus data with $QC/QA(D_{-1}-18-98)$

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	161
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	169
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	159
0.06	0.05	Tes Vac	Tes Vec	Tes Vec	I es Vec	Tes Vec	I es Vec	res Vec	143
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	144
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	143
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.06	0.07	Tes Vec	T es Vec	Tes Vec	I es Vec	I es Vec	I es Ves	Tes Vec	128
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	129
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	110
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	112
0.00	0.10	Ves	Ves	Ves	Ves	Yes	Yes	Ves	111
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.04	0.03	Tes Voc	I es Voc	Tes Vor	Tes	T es Voc	Tes Voc	Yes	138
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	140
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	125
0.04	0.07	Tes Ves	Tes Ves	Tes Vec	I es Vec	I es Ves	I es Ves	Tes Ver	125
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	124
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	121
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.04	0.10	Tes Voc	I es Voc	Tes Voc	Yes Voc	Y es Voc	Yes Voc	Yes	105
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.03	0.03	Yes	Yes	Yes	No	Yes	Yes	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	141
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	148
0.03	0.05	Ves	Ves	Ves	Ves	Ves	Ves	Ves	132
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	132
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	131
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	130
0.03	0.05	Tes Vec	I es Vec	I es Voc	I es	I es	Yes Voc	Yes	129
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	119
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	117
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	116
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	118
0.03	0.10	Tes Voc	Tes Voc	T es Voc	Y es Voc	I es Voc	Yes	Yes	100
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	102
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	99
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.01	0.03	Yes	Tes Yes	Tes	Tes Yes	Yes	res Yes	Yes	139
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	139
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	126
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	121
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	123
0.01	0.05	res Voc	T es Voc	Tes Voc	T es Voc	T es Voc	Tes Voc	res Vec	124
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	106
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	109
0.01	0.07	Yes Voc	Yes Voc	I es Voc	I es Voc	I es Voc	I es Voc	Yes	109
0.01	0,10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	94
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	94
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	93

Table J.137: Resilient modulus data with QC/QA (D_2_18_98)

σ 3 [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	224
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	251
0.06	0.03	I es Voc	I es Voc	Tes Voc	Yes Voc	Tes Voc	Yes Voc	Yes	225
0.06	0.05	Ves	Yes	Ves	Yes	Ves	Yes	Ves	212
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	212
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	212
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.06	0.07	I es Voc	I es Voc	Tes Voc	Tes Vor	Tes Vor	Tes Vor	res Voc	196
0.00	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Ves	195
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	177
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	180
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.06	0.10	Yes Wes	Y es	Yes	Yes	Yes	Yes Ver	Yes	181
0.04	0.03	Tes Ves	T es Ves	Tes Ves	Ves	Ves	Tes Ves	Ves	213
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	218
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	228
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.04	0.05	I es V-s	I es Waa	Yes Vec	Yes Ver	Tes Ver	Yes Ver	Yes	202
0.04	0.05	Ves	Tes Ves	Ves	Yes	Ves	Yes	Ves	208
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.04	0.07	Yes Wes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.04	0.10	T es Vec	I es Vec	Vec	T es Vec	T es Vec	T es Voc	Tes	172
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	176
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	173
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	173
0.03	0.03	Yes	Yes	Yes	No	Yes	Yes	No	×
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.03	0.03	I es Vac	I es Vac	Yes Voc	Tes Voc	Tes Voc	Tes Voc	res Voc	211
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	194
0.03	0.05	T es Vac	T es Voc	Tes Voc	Tes	T es Voc	T es Voc	res Voc	194
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	182
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	189
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	183
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	162
0.03	0.10	I es Voc	I es Voc	Tes Voc	Tes Voc	Tes Voc	T es Voc	res Voc	165
0.03	0.10	Tes Ves	Yes	Ves	Yes	Ves	Yes	Ves	163
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	163
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	199
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	203
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
0.01	0.05	I es Voc	T es Vac	I es Vec	T es Voc	Tes Vec	T es Vos	Tes	100
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	183
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	179
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.01	0.07	I es V~	T es Voc	Tes Voc	I es Voc	Tes Var	Tes Voc	Yes	170
0,01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	171
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	150
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.01	0.10	Tes Yes	Tes Yes	Tes Yes	Yes	Tes Yes	Tes Yes	res Yes	151

Table J.138: Resilient modulus data with $\rm QC/QA(D_1_14_98)$

σ_3 [MPa]	σ_{dev} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	237
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	226
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	221
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	227
0.06	0.05	T es Vec	I es Vec	Tes Vec	T es Vac	I es Vac	Tes Vac	Tes	205
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	207
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	192
0.06	0.07	I es Voc	I es Vac	I es Voc	Tes Voc	T es Voc	Tes Voc	Yes	193
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	178
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	176
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	177
0.06	0.10	I es Vor	T es Voc	Tes Voc	T es Voc	T es Voc	Tes Voc	Yes	170
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	202
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	212
0.04	0.05	I es Voc	Tes Yoc	I ES Vec	T ES Vec	T es Vec	T ES Yes	Yes	205
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	197
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	206
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.04	0.07	Y es	Yes Vec	Yes	Yes	Yes	Yes	Yes	188
0.04	0.07	I es Vec	I es Vec	Tes Vec	T es Vac	I es Vec	Tes Vac	Tes Vec	184
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	183
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.04	0.10	I es V~	I es Voc	I es V~	Yes Voc	I es Voc	Yes Voc	Yes	171
0.04	0.10	T es Ves	Ves	Ves	Yes	Ves	Yes	Ves	205
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	209
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	195
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	193
0.03	0.05	T es Vec	T es Ves	T es Ves	Tes Ves	I es Ves	Tes Ves	Tes Vec	189
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	171
0.03	0.07	I es Vac	I es Voc	I es Vec	T es Voc	I es Vec	I es Vec	1es Vec	1/2
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	168
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	170
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	159
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.03	0.10	I es Voc	T es Voc	I es Vec	Tes Vec	I es Vec	Tes Vec	Yes Vec	162
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	159
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	179
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	188
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	175
0.01	0.03	Y es	Yes Vec	Yes	Yes	Yes	Yes	Yes	188
0.01	0.05	T es Ves	Yes	Ves	Yes	Ves	Yes	Ves	173
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	172
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	172
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	167
0.01	0.07	T es V~	Tes V~	Tes V~	T es Voc	T es	Yes Voc	Yes	100
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	157
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	158
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	157
0.01	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.01	0.10	I es V	Yes V	Tes V	ĭes V	I es V	Yes V	Yes	145
0.01	0.10	T es Yac	Tes Vac	T es Vac	T es Vac	T es Vac	T es Yac	Tes Vac	144
0.01	n 10	Vac	Vac	Vac	Vac	Vac	Vac	Vac	145

Table J.139: Resilient modulus data with QC/QA (D_2_14_98)

σ ₃ [MPa]	σ _{dev} [MPa]	SNR _{LVDT#1} >3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	273
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	272
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	275
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	278
0.06	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	266
0.06	0.05	Tes Vec	Tes Ves	Tes Vec	Tes Ves	Tes Ves	Tes Ves	Yes Ves	259
0.00	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Ves	253
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	247
0.06	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	243
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	238
0.06	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	244
0.06	0.07	Yes V	Yes V	Yes	I es Wei	Yes V	Y es	Yes	239
0.06	0.07	Vec	Vec	Vec	T es Voc	Vec	Tes Voc	Vac	242
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	235
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	234
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	233
0.06	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	236
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	226
0.04	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.04	0.03	T es Voc	T es Voc	Yes Voc	I es	Tes Vec	Tes Voc	Yes	233
0.04	0.03	Vec	Vec	Ves	Ves	Ves	Ves	Vec	219
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	217
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	220
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.04	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	214
0.04	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	216
0.04	0.07	I es Vec	I es Vec	I es Voc	I es Voc	I es Vec	I es Voc	1es Vac	213
0.04	0.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	222
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	210
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	213
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	211
0.04	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	211
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.03	0.03	I es Vec	I es Vec	I es Vec	I es Voc	I es Vec	I es Voc	1es Vac	216
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	200
0.03	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	196
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	191
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.03	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	186
0.03	0.07	T es Vec	Vec	T es Voc	I es Voc	I es Vec	T es Voc	Vec	185
0.03	0.07	Ves	Ves	Ves	Ves	Ves	Ves	Ves	188
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	184
0.03	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	185
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	185
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.03	0.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	181
0.03	0.10	Tes Voc	T es Voc	T es Voc	T es Voc	T es Voc	Tes Voc	res Voc	182
0.03	0.10	Tes Vec	No	Ves	Tes Vas	Vec	#WAI IIFI	#WALLE!	
0.01	0.03	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
0.01	0.03	Yes	No	Yes	No	Yes	#VALUE!	#VALUE!	#VALUE!
0.01	0.03	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
0.01	0.03	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	155
0.01	0.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	151
0.01	0.05	I es V	Yes V	I es V	Ies V	Yes V	I es V	Yes V	157
0.01	0.05	Tes Vac	Tes Vac	ies Vac	I es Vac	T es Vac	ies Voc	1es Vec	157
0.01	0.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	146
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	152
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	147
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	150
0.01	0.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	149
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×
0.01	0.10	Yes V	I es	Y es	I es	No	I es	No	×
0.01	0.10	res V~	res Voc	T es Voc	res V~	190 No	Tes Voc	No	×
0.01	0.10	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.140: Resilient modulus data with QC/QA (D_1_11_98)

σ_3 [MPa]	σ_{DEV} [MPa]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} ≥3	SNR _{LVDT#3} ≻3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [MPa]
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.03	No No	Tes Vec	res Vac	Tes Ves	Tes Ves	No	No	×
0.06	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.05	No	Tes Vec	Yes Vec	Y es Vec	I es Vec	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.07	No	I es Voc	Yes Voc	Y es	T es Voc	No	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.06	0.10	No	Yes	Yes	Yes	No	No	No	×
0.04	0.03	No No	Yes	Yes	Yes	Yes	No No	No	×
0.04	0.03	No	Tes Vec	I es Vas	T es Vas	I es Vec	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.04	0.05	No No	Yes	Yes	Yes	Yes	No No	No	×
0.04	0.05	No	Ves	Yes	Yes	Yes	No	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	Yes	450
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Yes	Yes	Yes	Yes	Yes	No	×
0.04	0.07	No	Y es	Yes	Y es	I es	I es No	No	×
0.04	0.10	No	Yes	Yes	Yes	No	No	No	×
0.04	0.10	No	Yes	Yes	Yes	No	No	No	×
0.04	0.10	No	Yes	Yes	Yes	No	No	No	×
0.04	0.10	No	Yes	Yes	Yes	No	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Tes Vec	T es Vac	Tes Ves	Tes Ves	No	No	× ×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.05	No	I es Vec	I es Voc	T es Voc	I es Vac	No	No	~ ~
0.03	0.05	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.07	No	Yes Voc	Yes Voc	Tes Voc	Tes Voc	No	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.03	0.10	No	Yes	Yes	Yes	No	No	No	×
0.01	0.03	No	Ves	Ves	Ves	Ves	No	No	~
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.03	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	Tes Vec	res Vec	T es Ves	Tes Vec	Tes Vec	res	294
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.05	No	Yes	Yes	Yes	Yes	Yes	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.07	No No	I es Voc	Yes V~c	ĭ es Voc	I es Voc	No No	No	×
0.01	0.07	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.01	0.10	No	Yes	Yes	Yes	No	No	No	×
0.01	0.10	No	Yes	Yes	Yes	Yes	No	No	×
0.01	U.10	No No	Yes Voc	Yes Vac	Yes Yes	No Vec	No No	No	× ×
. 0.01	0.10	1 10	162	162	1 162	162	1 10	110	A

Table J.141: Resilient modulus data with $QC/QA(D_2_11_98)$
J.4 Resilient Modulus Data With QC/QA [US Customary]

G	G	SNRT TOTAL > 3	SNRT TOTAL > 3	SNRT TOTAL > 3	SNR > 10	A ~ 0.010	COV < 10%	Pass	Mr. Incil
O3 [ps1]	O DEA [b21]	DIALCE AD IMI < D	DIALCE AD 147 ~ 2	DITICLADIAS	Divid ~ 10	0 < 0.04	007 - 1070	Criterion	INK [bai]
8	4.34	No	Yes	No	Yes	Yes	No	No	×
8	4.44	No	Yes	No	Yes	Yes	No	No	×
8	4.52	No	Yes	No	No	Yes	No	No	×
8	4.34	No	Yes	No	Yes	Yes	No	No	×
8	4.32	No	Yes	No	Yes	Yes	No	No	×
8	7.40	No	Yes	Yes	Yes	Yes	No	No	×
8	7.41	No	Yes	Yes	Yes	Yes	No	No	×
8	7.41	No	Yes	Yes	Yes	Yes	No	No	×
8	7.41	No	Yes	Yes	Yes	Yes	No	No	×
8	7.43	No	Ves	Ves	Yes	Yes	No	No	×
8	10.49	No	Vac	Vac	Vac	Vac	No	No	~
	10.45	Mo	Voc	Voc	Vac	Vor	Mo	No	
	10.57	Mo	Vec 165	vec Vec	Tes Vec	Vec	Mo	No	
	10.32	NO N-	Tes	Tes V	T es	Tes W	NO M-	ITU NI-	
<u> </u>	10.47	190	I es	1 es	I es	I es	OPI V	INO	×
8	10.68	No	I es	Yes	I es	Y es	No	INO	X
8	14.66	No	Yes	Yes	Yes	Yes	Yes	Yes	62/18
8	14.80	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.61	No	Yes	Yes	Yes	Yes	Yes	Yes	62737
8	14.58	No	Yes	Yes	Yes	Yes	Yes	Yes	65329
8	14.81	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.45	No	Yes	No	Yes	Yes	No	No	×
6	4.67	No	Yes	No	No	Yes	No	No	×
6	4.33	No	Yes	No	Yes	Yes	No	No	×
6	4,33	No	Yes	No	Yes	Yes	No	No	×
6	4,33	No	Yes	No	Yes	Yes	No	No	×
6	7 40	No	Yes	Yes	Yes	Yes	No	No	×
6 A	7.43	No	V~	Voc	V _{er}	Var	No	No	
B B	7.40	No	V _e	Vac	Vac	Vac	No	No	t
0	7.40	0h1 V-	1 es W	1 es	I ES	I ES	190 M-	110	×
0	7.41	011	I ES	I ES	Tes	I ES	NO M	0F1	×
0	7.43	0/1	Tes	T es	Tes	Tes	OPI	INO	×
ь	10.41	No	Yes	Yes	Yes	Yes	No	INO	×
Б	10.76	No	Yes	Yes	Yes	Yes	No	No	×
6	10.48	No	Yes	Yes	Yes	Yes	No	No	×
6	10.51	No	Yes	Yes	Yes	Yes	No	No	×
6	10.50	No	Yes	Yes	Yes	Yes	No	No	×
6	15.09	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.83	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.83	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.84	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.83	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.31	No	Yes	No	Yes	Yes	No	No	×
4	4.30	No	Ves	Yes	Yes	Yes	No	No	×
4	4 32	No	Vec	Vec	Vec	Vec	No	No	×
	4.30	No	Voc.	Voc	Voc	Vor	Mo	No	
т И	4.00	Mo	Vec 165	No	Vec	Vec	Mo	No	
4	7.40	No	Tes Var	No.	Ver	Tes Wes	Ma	Ne	<u> </u>
4	7.40	NO No	Tes V	Tes	Tes	Tes	NU	IIU N-	<u>.</u>
4	7.40	190	I es	1 65	1 65	I es	OPI 17	OFI N	<u>^</u>
4	7.40	NO	I es	res.	Tes	1 es	NO	INO	×
4	7.39	No	I es	Y es	I es	Y es	NO	INO	×
4	7.39	No	Yes	Yes	Yes	Yes	No	No	×
4	10.54	No	Yes	Yes	Yes	Yes	No	No	×
4	10.54	No	Yes	Yes	Yes	Yes	No	No	×
4	10.52	No	Yes	Yes	Yes	Yes	No	No	×
4	10.52	No	Yes	Yes	Yes	Yes	No	No	×
4	10.52	No	Yes	Yes	Yes	Yes	No	No	×
4	14.91	No	Yes	Yes	Yes	Yes	Yes	Yes	65213
4	14.99	No	Yes	Yes	Yes	Yes	Yes	No	×
4	14.98	No	Yes	Yes	Yes	Yes	Yes	Yes	64416
4	14.86	No	Yes	Yes	Yes	Yes	Yes	No	×
4	14.84	No	Yes	Yes	Yes	Yes	Yes	Yes	57346
2	4.33	No	Yes	Yes	Yes	Yes	No	No	×
2	4,40	No	Yes	Yes	Yes	Yes	No	No	×
2	4 29	No	Yes	Yes	Yes	Yes	No	No	×
2	4 31	No	Yee	Yee	No	Yee	No	No	×
2	415	No	Yac	Vac	Yac	Vac	No	No	÷
2	7 /5	No.	V	Ver	V	Vec	N-	Ne	÷
	7.40	NO NO	T es	1 es	T es	1 es	MO M-	140	<u>.</u>
<u></u>	7.40	10	I ES	I ES	res	res V	NO V	INO N	×
<u>2</u>	7.44	OPI V	Tes	I es	Tes	T es	041 VI	INO	×
2	7.43	No	Yes	Yes	Yes	Yes	No	No	×
2	1.44	No	Yes	Yes	Yes	Yes	No	No	×
2	10.81	No	Yes	Yes	Yes	Yes	No	No	×
2	10.53	No	Yes	Yes	Yes	Yes	No	No	×
2	10.53	No	Yes	Yes	Yes	Yes	No	No	×
2	10.53	No	Yes	Yes	Yes	Yes	No	No	×
2	10.75	No	Yes	Yes	Yes	Yes	No	No	×
2	14.87	No	Yes	Yes	Yes	Yes	Yes	No	×
2	14.86	No	Yes	Yes	Yes	Yes	Yes	Yes	65188
2	14.68	No	Yes	Yes	Yes	Yes	Yes	Yes	61898
2	14 84	No	Yes	Yes	Yes	Yes	Yes	No	×
2	15.06	No	Yes	Yes	Yes	Yes	Yes	No	×

Table J.142: Resilient modulus data with QC/QA (A_2_135_105)

	G	SNRT TRANK > 3	SNR TTOTAL > 3	SNRT TRANS > 3	SMR > 10	A ~ 0.040	COV = 10%	Pass	Mr. Incil
O3 [ps1]	O DEA [b21]	DIVICE OD IMI ~ D	DIALCE VD 1#2 ~ D	DIVICEVDIAS	Dive Princ	0 < 0.04	007 4 10 /0	Criterion	TOLK [Dar]
8	4.31	No	No	No	Yes	Yes	No	No	×
8	4.30	No	No	No	Yes	Yes	No	No	×
8	4.33	No	Yes	No	Yes	Yes	No	No	×
8	4.41	No	No	No	Yes	Yes	No	No	×
8	4.61	No	Yes	No	No	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7.42	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7 39	No	Vec	Vec	Vec	Vec	Vac	No	×
	7 20	M-	Ver	Vec.	Vee	Vec Vec	Vec Vec	Ne	3
	7.35	NO M-	165	Tes V	Tes	Tes W	165	TIU NI-	<u>.</u>
<u> </u>	7.40	0/1	Tes	I es	Ies	I es	I es	INO	×
8	10.49	No	Yes	Yes	Yes	Y es	Yes	INO	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63780
8	10.49	No	Yes	Yes	Yes	Yes	Yes	Yes	64338
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62892
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60903
8	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62352
8	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60851
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62915
6	413	No	No	No	Vec	Vec	No	No	×
6	4.00	No	No	No	Voc	V _{ec}	Mo	No	÷
	4.03	No	Mo	Mo	Vec.	Tes Vec	Mo	No	
	4.10	N-	N-		v	v	M-	110 N-	÷ ÷
	4.11	011	NO V	UND IN IN	1 85	1 65	110 M	110	<u>^</u>
0	4.10	011	OPI	140	T es	Tes V	0/1	INO N ⁷	×
ь	7.42	No	Tes	No	Yes	Yes	Yes	INO	×
6	/.41	No	Yes	No	Yes	Yes	Yes	No	×
6	7.19	No	Yes	No	Yes	Yes	Yes	No	×
6	7.44	No	Yes	No	Yes	Yes	Yes	No	×
6	7.39	No	Yes	No	Yes	Yes	Yes	No	×
6	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.48	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.48	No	Yes	Yes	Yes	Yes	Yes	No	×
Ē	14.92	Ves	Vec	Vec	Vec	Ves	Ves	Ver	64419
6	14.67	Vec	Vec	Ves	Vac	Vec	Ves	Vee	63082
	14.60	Ver	Ver	Ver	V.	v	Tes Vec	Vee	60401
	14.02	Tes W	Tes W	Tes V	Tes W	Tes W	Tes Wes	Tes W	50020
0	14.03	Tes	Tes	Tes	Tes 😯	Tes	Tes	res	20020
0	14.66	Tes	Tes	Tes	I es	I es	Tes	res	64139
4	4.11	No	Yes	No	Yes	Yes	Yes	No	×
4	4.12	No	Yes	No	Yes	Yes	Yes	No	×
4	4.12	No	Yes	No	Yes	Yes	Yes	No	×
4	4.11	No	Yes	No	Yes	Yes	Yes	No	×
4	4.09	No	Yes	No	Yes	Yes	Yes	No	×
4	7.22	No	Yes	No	Yes	Yes	Yes	No	×
4	7.21	No	Yes	No	Yes	Yes	Yes	No	×
4	7.41	No	Yes	No	Yes	Yes	Yes	No	×
4	7.42	No	Yes	No	Yes	Yes	Yes	No	×
4	7.21	No	Yes	No	Yes	Yes	Yes	No	×
4	10.33	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	10.55	Yes	Yes	Yes	Yes	Yes	Yes	Ves	64451
4	10.52	No	Yes	Yes	Yee	Yes	Yee	No	×
4	10.52	No	Ves	Ves	Ves	Ves	Ves	No	×
4	10.52	No	Vac.	Vec	Vac	Yee	Yee	No	×
4	14.64	Vec	Yes	Yee	Vac	Yes	Vac	Ver	62927
4	14.99	V _{cc}	Ver	Voc	Ver	Vac	Vac	Ver	66566
4	14.60	V	V	V	V	V	V	Ver	20000
4	14.03	1 es W	1 es	1 85	1 65	1 es	1 85	Tes	50240
4	14.00	1 es	I ES	1 65	165	I ES	I ES	165	27048
4	14.80	Tes 19	Tes	Tes	I es	Tes	Tes	res	18160
2	4.15	No	No	No	Y es	Yes	No	INO	×
2	4.16	No	No	No	Yes	Yes	No	INO	×
2	4.14	No	No	No	Yes	Yes	No	No	×
2	4.15	No	No	No	Yes	Yes	No	No	×
2	4.37	No	Yes	No	Yes	Yes	No	No	×
2	7.43	No	Yes	No	Yes	Yes	Yes	No	×
2	7.45	No	Yes	No	Yes	Yes	Yes	No	×
2	7.45	No	Yes	No	Yes	Yes	Yes	No	×
2	7.44	No	Yes	No	Yes	Yes	Yes	No	×
2	7.44	No	Yes	No	Yes	Yes	Yes	No	×
2	10.51	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	10.49	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	10.51	Ves	Vec	Ves	Ves	Ves	Yes	Vec	69075
	10.71	No	V _{ec}	Vac	Var	Var	Vac	Na	
4	10.01		V	V	v		v	¥	<u><u> </u></u>
	14.00	162	162	T es	T es	162	T es	Tes V	07020
4	14.00	1 es	1 es	1 es	Tes	1 es	1 es	Tes	66050
<u>_</u>	14.72	1 es	I ES	1 65	165	1 85	1 65	165	60000
2	14.86	res	Tes	Tes	I es	Tes	Tes	res	62107
2	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60568
1 2	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62976

Table J.143: Resilient modulus data with $\rm QC/QA(A_1_105_105)$

G. froit	Gamelaril	SNRT VIDTWI > 3	SNRI VIDINO > 3	SNRI VIDTHE > 3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [psi]	O DEA [b21]	CINCL OD IMI	CTUCE OD 142 -	CTUCE OD IMS	Dialog 10	0 < 0.04		Criterion	TOTE [Dot]
8	4.09	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	4.18	No	Yes	Yes	Yes	Yes	NO	INO	×
O	0.00	NO N-	I es	I es	Tes	011	NO M-	INO N-	×
0	4.29	No.	I es Vec	Tes	Tes	Tes	OPI	No	101220
0 8	7.40	NO Vec	Vec	Vec	Vec	Vec	Vec	Vec	102116
8	7.42	Mo	Vor	Voc	Voc	Voc	Voc	Voc	96910
8	7 41	¥~	Vec	Vec	Vec	Vos	Vec	Vac	00015
8	7 41	Vac	Vec	Vec	Ves	Voc	Vas	Vac	103194
8	10.48	Ves	Ves	Yes	Ves	Yes	Ves	Ves	92675
8	10.55	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.67	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	87202
8	10.49	No	Yes	Yes	Yes	Yes	Yes	Yes	83043
8	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
6	4.09	No	Yes	Yes	Yes	Yes	No	No	×
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	7.39	No	Yes	Yes	Yes	Yes	Yes	Yes	104958
6	7.38	No	Yes	Yes	Yes	Yes	Yes	Yes	88808
6	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	86308
6	7.39	No	Yes 😯	Yes 😽	I es	I es	Y es	Yes	88777
b e	10.51	No	I es	I es	Tes	Yes	Tes	Yes	84211
0	10.51	I es Weig	I es V	Yes	Tes	I es	Tes	Yes	81006
	10.55	I es W	I es V	I es Ver	Tes	I es Ver	Tes	Tes	20620
e o	10.51	T es Vac	Tes Vec	Vec 105	Tes Vec	Tes Vec	Vec	Vec	90014
6	10.55	Ves	Vec	Vec	Vec	Ves	Ves	Vec	88825
6	14.83	Tes Vas	Vec	Vec	Vac	No	Tes Vac	No	0002J
6	14.83	Ves	Ves	Ves	Ves	No	Ves	No	×
6	14.68	Ves	Ves	Ves	Yes	No	Yes	No	×
6	14.75	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.89	Yes	Yes	Yes	Yes	No	Yes	No	×
4	4.34	No	Yes	Yes	Yes	Yes	No	No	×
4	4.34	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.35	No	Yes	Yes	Yes	Yes	No	No	×
4	7.40	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.20	No	Yes	Yes	Yes	Yes	Yes	Yes	89635
4	7.20	No	Yes	Yes	Yes	Yes	Yes	Yes	88350
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	7.20	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	96933
4	10.51	No	Yes	Yes	Yes	Yes	Yes	Yes	84993
4	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	88353
4	10.30	РО	res V	I es	Tes	I es	I es	Yes	00007
4	1/ 0.30	I ES V	I ES	I ES	I ES	I ES	I ES	ies N-	80087
4	14.07	T es	I es V	I ES Ver	I es Vec	140 M-	I es	INO No	÷
4	14.63	Vac Vac	Vac	Vac	Vac	No	Vac	No	<u>~</u>
4	14.86	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.67	Yac Yac	Yee	Yee	Yac	No	Yac	No	×
2	4 14	No	No	Yes	Yes	Yes	No	No	×
2	4,14	No	No	Yes	Yes	Yes	No	No	×
2	4,35	No	No	Yes	Yes	Yes	No	No	×
2	4.15	No	No	Yes	Yes	Yes	No	No	×
2	4.15	No	No	Yes	Yes	Yes	No	No	×
2	7.25	Yes	Yes	Yes	Yes	Yes	No	No	×
2	7.25	No	Yes	Yes	Yes	Yes	No	No	×
2	7.24	Yes	Yes	Yes	Yes	Yes	No	No	×
2	7.24	No	Yes	Yes	Yes	Yes	No	No	×
2	7.25	Yes	Yes	Yes	Yes	Yes	No	No	×
2	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	75521
2	10.58	No	Yes	Yes	Yes	Yes	Yes	Yes	95151
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82033
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83180
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79727
2	14.68	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.88	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.86	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.66	Yes V	Yes V	Yes	Yes	No W-	Yes V	INO N-	×
4	19.00	162	162	1.62	162	110	162	110	A

Table J.144: Resilient modulus data with $QC/QA(A_2_105_105)$

G2 [nsi]	Oper [psi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [psi]
8	A 32	No	Vec	Vec	Vec	Vec	Mo	Criterion	- A A
8	4.33	No	Yes	Yes	Yes	Yes	No	No	×
8	4.35	No	Yes	Yes	Yes	Yes	No	No	×
8	4.31	No	Yes	Yes	Yes	Yes	No	No	×
8	4.31	No	Yes	Yes	Yes	Yes	No	No	×
8	7.45	No	Tes Voc	Y es	Yes	Yes	No	No	×
8	7.36	No	Yes	Yes	Yes	Yes	No	No	×
8	7.42	No	Yes	Yes	Yes	Yes	No	No	×
8	7.40	No	Yes	Yes	Yes	Yes	No	No	×
8	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.48	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.84	No	Yes	Yes	Yes	Yes	Yes	Yes	46116
8	14.63	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.62	No	Tes Voc	Yes Voc	Yes Voc	Yes Voc	Yes Voc	INO	×
8	14.63	No	Yes	Yes	Yes	Yes	Yes	Yes	45634
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.29	No	Yes	Yes	Yes	Yes	No	No	×
6	4.31	No N-	Yes	Yes	Yes	Yes	No No	No	×
6	7 40	No	Ves	Ves	Yes	Ves	No	No	×
6	7.39	No	Yes	Yes	Yes	Yes	No	No	×
6	7.39	No	Yes	Yes	Yes	Yes	No	No	×
6	7.47	No	Yes	Yes	Yes	Yes	No	No	×
6	7.43	No	Yes	Yes	Yes	Yes	No	No	×
8	10.51	No	Tes Voc	Yes Voc	Yes	Yes	T es Voc	No	×
6	10.52	No	Yes	Yes	Yes	Yes	Yes	No	x
6	10.51	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.89	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.83	No M-	Yes	Yes	Yes	Yes	Yes	No	×
6	14.65	No	Ves	Yes	Yes	Yes	Yes	No	~
6	14.64	No	Yes	Yes	Yes	Yes	Yes	Yes	39511
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.14	No	Yes	Yes	Yes	Yes	No	No	×
4	4.13	No N-	Yes	Yes	Yes	Yes	No No	No N-	×
4	4.10	No	Tes Ves	Tes Vac	Tes Ves	I es Vac	No	No	×
4	7.45	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.45	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.24	No	Yes	Yes	Yes	Yes	Yes	No	×
4	1.41	No No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.51	No	Tes	Tes Vac	T es Vec	T es Vec	T es Vac	No	×
4	10.62	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.91	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.65	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.52	No No	Yes V	Yes	Yes V	Yes	Yes V	No N-	X
4	14.07	No	Yes	Yes	Yes	No	Yes	No	×
4	14.87	No	Yes	Yes	Yes	Yes	Yes	No	×
4	14.86	No	Yes	Yes	Yes	No	Yes	No	×
4	14.84	No	Yes	Yes	Yes	Yes	Yes	No	×
2	4.14	No No	Yes	Yes	Yes	Yes	No No	No	×
2	4.13	No	Ves	Yes	Yes	Yes	No	No	×
2	4.14	No	Yes	Yes	Yes	Yes	No	No	×
2	4.16	No	Yes	Yes	Yes	Yes	No	No	×
2	7.25	No	Yes	Yes	Yes	Yes	No	No	×
2	7.46	No	Yes	Yes	Yes	Yes	No	No	×
2	7.45	No	Tes Voc	Tes Vac	Tes Voc	Tes Vac	No	No	×
2	7.45	No	Yes	Yes	Yes	Yes	No	No	×
2	10.56	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.56	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.56	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.54	No No	I es V	Yes V	ĭes V	I es V	Yes V	INO N-	×
2	14.90	No	Tes	Yes	Tes Yes	No	Tes	No	×
2	14.86	No	Yes	Yes	Yes	Yes	Yes	No	×
2	14.92	No	Yes	Yes	Yes	No	Yes	No	×
2	14.85	No	Yes	Yes	Yes	No	Yes	No	X
2	14.87	No	Yes	Yes	Yes	Yes	Yes	No	X

Table J.145: Resilient modulus data with $QC/QA(A_{-1}75_{-1}05)$

G. Insil	Gamelanil	SNRT VIDTHI > 3	SNRI VIDTHO > 3	SNRI VIDTHS > 3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [nsi]
O3 [psi]	O DEA [bai]	CTUCE OD IMI	CTURE OD INS	CTT CL OD INS	Dillig 10	0 < 0.04		Criterion	TOLK [bor]
8	4.55	No	Yes	Yes	Yes	Yes	No	No	×
0 0	4.34	NO N-	Tes	Yes V	Yes	I es V	NO No	INO N-	×
<u> </u>	4.33	NO M-	I es V	Yes Ver	Tes	res V	NO M-	INO N-	×
8	4.33	No	No	Voc	Vor	Tes Vac	No	No	
8	7 39	No	Ves	Vec	Vec	Ves	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No	No	×
8	7.40	No	Yes	Yes	Yes	Yes	No	No	×
8	7.38	No	Yes	Yes	Yes	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	Yes	No	No	×
8	0.00							No	×
8	0.00							No	×
8	0.00							No	×
8	0.00							No	×
8	0.00		++		**		**	No	×
ð	14.81	No	Yes	Yes	Yes	Yes	Yes	Yes	58820
	14.00	NO M-	I es V	Yes V	I es Var	Tes V	Tes V	res	50221
8	14.65	No	Vec Vec	Voc	Vor	Tes Voc	Voc	Voc	57672
8	14.63	No	Ves	Vec	Ves	Vec	Vas	Vec	55945
6	4.12	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	No	Yes	Yes	Yes	No	No	×
6	4.33	No	Yes	Yes	Yes	Yes	No	No	×
6	4.14	No	Yes	Yes	Yes	Yes	No	No	×
6	4.31	No	Yes	Yes	Yes	Yes	No	No	×
6	7.39	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.39	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.40	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.40	No	Yes	Yes	Yes	Yes	Yes	No	×
ь 0	10.49	No No	Tes	Yes	Yes	Yes	Tes Voi	INO	×
6	10.40	No	T es Voc	T es Voc	T es Voc	Yes Voc	T es Voc	Yes	55417
6	10.50	No	Vec 1	Vor	Vor	Tes Vac	Voc	Vec	£1301
6	10.30	No	Ves	Vec	Ves	Vac	Vac	Vec	64831
6	10.47	No	Yes	Yes	Yes	Yes	Yes	Yes	59465
6	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53530
6	14.67	No	Yes	Yes	Yes	Yes	Yes	Yes	59708
6	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52309
6	14.83	No	Yes	Yes	Yes	Yes	Yes	No	×
6	14.83	No	Yes	Yes	Yes	Yes	Yes	Yes	58584
4	4.33	No	No	Yes	Yes	Yes	No	No	×
4	4.31	No	No	Yes	Yes	Yes	No	No	×
4	4.11	No	No	Yes	Yes	Yes	No	No	×
4	4.11	NO No	NO N-	Yes Voc	Yes	I es	NO No	INO	×
4	7.04	No	Vac	Vec	Ves	Vec	No	No	Ŷ
4	7 44	No	Yes	Yes	Yes	Ves	No	No	×
4	7.23	No	Yes	Yes	Yes	Yes	No	No	×
4	7.24	No	Yes	Yes	Yes	Yes	No	No	×
4	7.45	No	Yes	Yes	Yes	Yes	No	No	×
4	10.52	No	Yes	Yes	Yes	Yes	Yes	Yes	56610
4	10.49	No	Yes	Yes	Yes	Yes	Yes	Yes	58111
4	10.57	No	Yes	Yes	Yes	Yes	Yes	Yes	58318
4	10.76	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.54	No N-	Tes V	Tes V	res V	res V	Tes V	res V	52512
4	14.86	No	Yes	Vec	Yes	Vec	Yee	No	×
4	14.87	No	Yes	Yes	Yes	Yes	Yes	Yes	56932
4	14.68	No	Yes	Yes	Yes	Yes	Yes	Yes	56268
4	14.87	No	Yes	Yes	Yes	Yes	Yes	Yes	55766
2	4.16	No	Yes	Yes	Yes	Yes	No	No	×
2	4.36	No	No	Yes	Yes	Yes	No	No	×
2	4.35	No	No	Yes	Yes	Yes	No	No	×
2	4.31	No	No	Yes	Yes	Yes	No	No	×
2	4.33	No	Yes	Yes	Yes	Yes	No	No	×
2	7.41	No	Yes	Yes	Yes	Yes	No	No	×
2	7.44	No N-	Tes V	Tes V	res V	Tes V	NO N-	INO N-	×
	7.42	No No	T es Vor	I es Voc	Vac	T es Var	No No	No	× ~
2	7 40	No	Yes	Yee	Yes	Yes	No	No	÷ ŵ
2	10.59	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.73	No	Yes	Yes	Yes	Yes	Yes	Yes	54605
2	10.61	No	Yes	Yes	Yes	Yes	Yes	Yes	52133
2	10.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52270
2	10.52	No	Yes	Yes	Yes	Yes	Yes	Yes	57089
2	14.92	No	Yes	Yes	Yes	Yes	Yes	Yes	56523
2	14.86	No	Yes	Yes	Yes	Yes	Yes	Yes	53969
2	14.90	No	Yes	Yes	Yes	Yes	Yes	Yes	55164
2	15.10	No	Yes	Yes	Yes	Yes	Yes	Yes	26029

Table J.146: Resilient modulus data with $QC/QA(A_2_75_105)$

σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.48	Yes	No	Yes	Yes	Yes	Yes	Yes	29338
8	4.11	Yes	No	Yes	Yes	Yes	Yes	Yes	27804
8	4.05	Yes	No	Yes	Yes	Yes	Yes	Yes	30427
8	4.03	No	No	Yes	Yes	Yes	Yes	No	×
8	4.24	No	No	Yes	Yes	Yes	Yes	No	×
8	7.23	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.41	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.14	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.16	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.15	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.27	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.26	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.29	Yes	Yes	Y es	I es	No	I es	INO	×
ð Ö	10.27	I es	I es	Tes	Tes	NO	Tes	INO	×
0	10.47	I es	Yes Ver	I es	Tes	No N-	Tes	INO	×
0	14.62	I es	I es	I es Ver	Tes	No	I es Vec	No	
8	14.62	Vec	Vec	Ver	Vec	No	Vec	No	
8	14.02	Vec	Ves	Vec	Vas	No	Vas	No	×
8	14.60	Yes	Ves	Yes	Yes	No	Ves	No	×
6	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27349
6	4.10	No	Yes	Yes	Yes	Yes	Yes	Yes	32633
6	3.89	No	Yes	Yes	Yes	Yes	Yes	Yes	32801
6	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32967
6	3.88	No	Yes	Yes	Yes	Yes	Yes	Yes	33718
6	7.19	Yes	Yes	Yes	Yes	No	Yes	No	×
6	7.27	Yes	Yes	Yes	Yes	No	Yes	No	×
6	7.48	Yes	Yes	Yes	Yes	No	Yes	No	×
6	7.17	Yes	Yes	Yes	Yes	No	Yes	No	×
6	7.20	Yes	Yes	Yes	Yes	No	Yes	No	×
6	10.51	Yes	Yes	Yes	Yes	No	Yes	No	×
6	10.31	Yes	Yes	Yes	Yes	No	Yes	No	×
6	10.30	Yes	Yes	Yes	Yes	No	Yes	No	×
6	10.49	Yes	Yes	Yes	Yes	No	Yes	No	×
6	10.54	Yes	Yes	Yes	Yes	No	Yes	No	×
<u>ь</u>	14.66	I es	Yes	Tes	I es	No	I es	INO	×
Б	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
D	14.05	Tes V	I es	I es	Tes	NO	Tes	INO	×
6	14.04	I es Vec	I es Vec	I es Ver	I es Vec	NO Ma	Tes	No	<u>.</u>
4	0.00	Tes	165	165	Tes	140	Tes	No	
4	0.00							No	~ ~
4	0.00							No	×
4	0.00							No	×
4	0.00							No	×
4	7.09	Yes	Yes	Yes	Yes	No	Yes	No	×
4	7.19	Yes	Yes	Yes	Yes	No	Yes	No	×
4	7.29	Yes	Yes	Yes	Yes	No	Yes	No	×
4	7.21	Yes	Yes	Yes	Yes	No	Yes	No	×
4	7.22	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.35	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.34	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.33	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.52	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.31	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.45	Yes V	Y es	Yes V	Tes	NO N-	I es	INO N-	×
4	14.42	Tes V	Tes V	Tes V	Tes V	NO N-	Tes V	INO N-	×
4	14.44	I ES V	I es V	I ES V	T es	110 N-	I ES	110 No	×
4	14.00	T es	T es Voc	T es Voc	Tes	No No	T es	110 No	<u></u>
2	3.88	Ves	Ves	Tes Ves	Ves	Ves	Ves	Vec	30370
2	3.87	No	Yee	Yee	Yes	Yes	Yee	Vec	29824
2	3.90	No	Yes	Yes	Yes	Yes	Yes	Yes	29463
2	3,89	No	Yes	Yes	Yes	Yes	Yes	Yes	33580
2	3,91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29,508
2	7.04	Yes	Yes	Yes	Yes	No	Yes	No	×
2	7.22	Yes	Yes	Yes	Yes	No	Yes	No	×
2	7.23	Yes	Yes	Yes	Yes	No	Yes	No	×
2	7.05	Yes	Yes	Yes	Yes	No	Yes	No	×
2	7.03	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.47	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.84	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.36	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.35	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.34	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.60	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.62	res	res	Ies	res	OM I	res	INO	×

Table J.147: Resilient modulus data with QC/QA (A_3_15_100)

G. Inil	General	SNRI VIDITAL > 3	SNRI UDIWO > 3	SNRI UDIWZ > 3	SNR > 10	$A < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [har]	O DEA [hei]		THE OF THE T		prind 10	0 30.04		Criterion	Tork (bor)
8	4.11	No	No	No	Yes	Yes	No	No	×
8	4.12	Yes	No	No	Yes	Yes	No	No	×
8	4.12	Yes	No	No	Yes	Yes	No	No	×
8	4.14	Yes	No	No	Yes	Yes	No	No	×
8	4.12	No	No	No	Yes	Yes	No	No	×
8	7.38	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.20	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.20	Yes	Yes	Yes	Yes	No	Yes	No	×
8	7.42	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	7.40	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.52	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.49	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.29	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.48	Yes	Yes	Yes	Yes	No	Yes	No	×
8	10.49	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.63	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.63	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.86	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.83	Yes	Yes	Yes	Yes	No	Yes	No	×
6	4 09	Yes	Yes	Yes	Yes	Yes	No	No	×
6	4.08	Ves	Ves	No	Yes	Yes	No	No	×
Ē	4 10	Vas	Vec	Ves	Vas	Ves	No	No	×
6	4.09	Vas	Ves	No	Vos	Ves	No	No	×
8	4.00	Vac	Vac	No	Vec	Vec	No	No	
8	7 20	Vac	Vac	Vec	Vac	No	Vac	No	Ŷ
8	7.20	Vec	Vec	Vac	Vec	No	Vec	No	
	7 1 9	V _e	V~	Vec	V _{ec}	No	Ver	No	÷
	7.10	Ver	Ver	Ver	Tes V	N-	Tes V	No	
	7.13	Tes V	v	Tes V	Tes Wes	NO M-	Tes Wes	N-	÷
0	10.70	I es	I es	I es	I es	140 M-	I es	INO NI-	×
0	10.79	Ies	Ies	Ies	I es	140	Ies	INO N-	~
<u> </u>	10.52	Tes	Tes	Tes	Tes	190	res	INO	×
	10.50	I es	Tes	I es	Tes	NO	I es	INO	x
Ь	10.53	Yes	I es	I es	Tes	NO	I es	INO	×
ь	10.50	Yes	Yes	Yes	Yes	No	Yes	No	×
Б	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	3.95	Yes	Yes	Yes	Yes	Yes	No	No	×
4	3.94	Yes	Yes	Yes	Yes	Yes	No	No	×
4	3.96	Yes	Yes	Yes	Yes	Yes	No	No	×
4	3.93	Yes	Yes	Yes	Yes	Yes	No	No	×
4	3.94	Yes	Yes	Yes	Yes	Yes	No	No	×
4	7.18	Yes	Yes	Yes	Yes	No	No	No	×
4	7.22	Yes	Yes	Yes	Yes	No	No	No	×
4	7.39	Yes	Yes	Yes	Yes	No	No	No	×
4	7.18	Yes	Yes	Yes	Yes	No	No	No	×
4	7.22	Yes	Yes	Yes	Yes	No	No	No	×
4	10.54	Yes	Yes	Yes	Yes	No	No	No	×
4	10.53	Yes	Yes	Yes	Yes	No	No	No	×
4	10.54	Yes	Yes	Yes	Yes	No	No	No	×
4	10.55	Yes	Yes	Yes	Yes	No	No	No	×
4	10.54	Yes	Yes	Yes	Yes	No	No	No	×
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.63	Yes	Yes	Yes	Yes	No	Yes	No	×
2	3.93	Yes	Yes	Yes	Yes	No	No	No	×
2	3.93	Yes	Yes	Yes	Yes	Yes	No	No	×
2	3.94	Yes	Yes	Yes	Yes	No	No	No	×
2	3.92	Yes	Yes	Yes	Yes	Yes	No	No	×
2	3,92	Yes	Yes	Yes	Yes	Yes	No	No	×
2	7,25	Yes	Yes	Yes	Yes	No	No	No	×
2	7,23	Yes	Yes	Yes	Yes	No	No	No	×
2	7.22	Yes	Yes	Yes	Yes	No	No	No	×
2	7.24	Yes	Yes	Yes	Yes	No	No	No	×
2	7.20	Yes	Yes	Yes	Yes	No	No	No	×
2	10.56	Vac	Vac	Yes	Vac	No	Yee	No	×
2	10.55	Ver	Ver	Var	Vac	No	Vec	No	÷
5	10.55	V _e	V~	V~	Ver	No	Ver	No	
	10.52	Vec	Vec	Vor	Vor	No	Vec	No	
5	10.55	Vec	Ver	Vec	Ver	No	Vec	No	
	14.55	Ver	V	Ver	Tes Ver	N-	Ver	No.	Ĵ
	14.07	1 85	1 es	1 es	1 es	NO N-	I es	110	^
ź	14.70	1 65	1 es	1 es	1 es	110	1 85	110	~
ź	15.07	res	T es	I es	Tes	NO	Tes	INO	×
2	14.89	Yes	Yes	Yes	Yes	No	Yes	No	×
1 2	14.68	I Yes	I Yes	I Ies	i ïes	I NO	Yes	No	×

Table J.148: Resilient modulus data with $QC/QA(A_4_{15}_{100})$

G2 [nsi]	O DET [Isi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [psi]
0,000	O DEC [Dat]	NT NT		NT NT	ų	U 10.01	17	Criterion	- R H - S
0 8	3,45	No	T es Voc	No	Tes Voc	T es Voc	No	No	×
8	3.45	No	Voc	Mo	Voc	V _{or}	No	No	
8	3.66	No	Vec	No	Vac	Vac	No	No	×
8	3 44	No	Yes	No	Yes	Yes	No	No	×
8	6.19	No	Yes	Yes	Yes	Yes	Yes	No	×
8	6.19	No	Yes	Yes	Yes	Yes	Yes	No	×
8	6.38	No	Yes	Yes	Yes	Yes	Yes	No	×
8	6.39	No	Yes	No	Yes	Yes	Yes	No	×
8	6.38	No	Yes	Yes	Yes	Yes	Yes	No	×
8	9.50	No	Yes	Yes	Yes	Yes	Yes	No	×
8	9.51	No	Yes	Yes	Yes	Yes	Yes	No	×
8	9.52	No	Yes	Yes	Yes	Yes	Yes	No	×
8	9.51	No	Yes	Yes	Yes	Yes	Yes	No	×
8	9.51	No	Yes	Yes	Yes	Yes	Yes	No	×
0	13.30	No	Yes	Tes	res	Yes	res Ver	Yes	54720
0 	13.30	I es Voc	I es Voc	Tes	\$1475				
8	13.25	Ves	Vec	Tes Vas	Ves	Ves	Ves	No	01470 ×
8	13.39	No	Yes	Yes	Yes	Yes	Yes	Ves	62154
6	3.53	No	Yes	No	Yes	Yes	No	No	×
6	3.82	No	Yes	No	No	Yes	No	No	×
6	3.23	No	Yes	No	Yes	Yes	No	No	×
6	3.22	No	Yes	No	Yes	Yes	No	No	×
6	3.43	No	Yes	No	Yes	Yes	No	No	×
6	6.20	No	Yes	No	Yes	Yes	No	No	×
6	6.31	No	Yes	No	Yes	Yes	No	No	×
6	6.27	No	Yes	No	Yes	Yes	No	No	×
6	6.16	No	Yes	No	Yes	Yes	No	No	×
Ь	6.16	No	Y es	No	I es	I es	No	INO	×
0	9.52	NO	Yes	INO No	Tes	T es	T es	No	×
0 6	9.55	No	I es Voc	NO No	Tes	I es Vec	Tes	No	
6	9.51	No	Vec	Vec	Ves	Vec	Ves	No	<u>^</u>
6	9.51	No	Yes	Yes	Yes	Yes	Yes	No	×
6	13.33	No	Yes	Yes	Yes	Yes	Yes	No	×
6	13.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55035
6	13.39	No	Yes	Yes	Yes	Yes	Yes	No	×
6	13.29	No	Yes	Yes	Yes	Yes	Yes	No	×
6	13.30	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	3.16	No	Yes	No	Yes	Yes	No	No	×
4	3.45	No	Yes	No	No	Yes	No	No	×
4	3.07	No	Yes	No	Yes	Yes	No	No	×
4	3.07	No N-	Y es	NO N-	Tes	I es	NO No	INO N-	×
4	5.07	No	Tes	INO Mo	Tes	I es Ver	NO Mo	No	×
4	80.8	No	Vec	No	Vec	Vec	No	No	÷
4	6.33	No	No	No	No	No	No	No	×
4	6.21	No	Yes	No	Yes	Yes	No	No	×
4	6.19	No	Yes	No	Yes	Yes	No	No	×
4	9.55	No	Yes	No	Yes	Yes	No	No	×
4	9.54	No	Yes	No	Yes	Yes	No	No	×
4	9.55	No	Yes	No	Yes	Yes	No	No	×
4	9.54	No	Yes	No	Yes	Yes	No	No	×
4	9.34	No	Yes	No	Yes	Yes	No	No	×
4	13.31	No	Yes	No	Yes	Yes	Yes	No	×
4	13.32	res M-	Tes V	NO M-	Tes V	Tes V	Tes V	INO N-	×
4	13.32	мо 140	I ES Voc	No No	T es Voc	I es	I ES Voc	No	~
4	1311	No	Yes	No	Yes	Yes	Yes	No	Ŷ
2	0.00	10	10		,	10	163	No	×
2	0.00				1	1		No	×
2	0.00							No	×
2	0.00		1		1	1		No	×
2	0.00							No	×
2	6.01	No	Yes	No	Yes	Yes	No	No	×
2	6.00	No	Yes	No	Yes	Yes	No	No	×
2	6.00	No	Yes	No	Yes	Yes	No	No	×
2	5.99	No	Yes	No	Yes	Yes	No	No	×
2	5.98	No	Yes	No	Yes	Yes	No	No	×
2	9.43	I es	Y es	No N-	Yes	I es	Yes	INO N-	×
	9.43	140 N-	res Voc	140 No	res Voc	I es	Tes Voc	INO No	×
2	9.43	No	Tes Vac	No	Tes Voc	T es Voc	Vec	No	×
5	9.42	No	Yes	No	Yes	Yes	Yes	No	×
2	13.11	Yes	Yes	No	Yes	Yes	Yes	No	×
2	13.10	No	Yes	No	Yes	Yes	Yes	No	×
2	13.31	No	Yes	No	Yes	Yes	Yes	No	×
2	13.31	Yes	Yes	No	Yes	Yes	Yes	No	×
2	13.31	Yes	Yes	No	Yes	Yes	Yes	Yes	60778

Table J.149: Resilient modulus data with QC/QA(A_1_12_100)

5	G	SNR TTO THE S 3	SNR TTOTAL > 3	SNRT TRANS > 3	SMR > 10	A ~ 0.040	COV = 10%	Pass	Mr. Incil
O3 [ps1]	ODEA [b21]	DIALCE AD 1#1 ~ D	DIVICE VD1#2 ~ D	DIALCE AD 1#3 < D	DIAL PUBL	0 < 0.04	001 - 10.0	Criterion	INIK [bal]
8	4.30	No	No	Yes	Yes	Yes	No	No	×
8	4.39	No	No	Yes	Yes	Yes	No	No	×
8	4.68	No	No	Yes	No	Yes	No	No	×
8	4.32	No	No	Yes	Yes	Yes	No	No	×
8	4.27	No	No	Yes	Yes	Yes	No	No	×
8	7.40	No	No	Yes	Yes	Yes	No	No	×
8	7.41	No	No	Yes	Yes	Yes	No	No	×
8	7.41	No	No	Yes	Yes	Yes	No	No	×
8	7.40	No	No	Yes	Yes	Yes	No	No	×
8	7.41	No	No	Yes	Yes	Yes	No	No	×
8	10.49	No	No	Yes	Yes	Yes	No	No	×
8	10.29	No	No	Yes	Yes	Yes	No	No	×
8	10.49	No	No	Yes	Yes	Yes	No	No	×
8	10.51	No	No	Yes	Yes	Yes	No	No	×
8	10.50	No	Yes	Yes	Yes	Yes	No	No	×
8	14.84	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.61	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.60	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.60	No	Yes	Yes	Yes	Yes	Yes	No	×
8	14.81	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.33	No	No	Yes	Yes	Yes	No	No	×
6	4.32	No	No	Yes	Yes	Yes	No	No	×
6	4.33	No	No	Yes	Yes	Yes	No	No	×
6	4.33	No	No	Yes	Yes	Yes	No	No	×
6	4.33	No	No	Yes	Yes	Yes	No	No	×
6	7.50	No	No	Yes	Yes	Yes	No	No	×
6	7.70	No	No	Yes	Yes	Yes	No	No	×
6	7.39	No	No	Yes	Yes	Yes	No	No	×
6	7.38	No	No	Yes	Yes	Yes	No	No	×
6	7.39	No	No	Yes	Yes	Yes	No	No	×
6	10.51	No	No	Yes	Yes	Yes	No	No	×
6	10.49	No	No	Yes	Yes	Yes	No	No	×
6	10.49	No	No	Yes	Yes	Yes	No	No	×
6	10.49	No	No	Yes	Yes	Yes	No	No	×
6	10.48	No	No	Yes	Yes	Yes	No	No	×
6	14.61	No	No	Yes	Yes	No	No	No	×
6	14.61	No	No	Yes	Yes	Yes	No	No	×
6	14.83	No	No	Yes	Yes	No	No	No	×
6	14.61	No	No	Yes	Yes	No	No	No	×
6	14.60	No	No	Yes	Yes	No	No	No	×
4	4.36	No	No	Yes	Yes	Yes	No	No	×
4	4.37	No	No	Yes	Yes	Yes	No	No	×
4	4.36	No	No	Yes	Yes	Yes	No	No	×
4	4.37	No	No	Yes	Yes	Yes	No	No	×
4	4.37	No	No	Yes	Yes	Yes	No	No	×
4	7.44	No	No	Yes	Yes	Yes	No	No	×
4	7.54	No	No	Yes	Yes	Yes	No	No	×
4	7.63	No	No	Yes	Yes	Yes	No	No	×
4	7.47	No	No	Yes	Yes	Yes	No	No	×
4	7.45	No	No	Yes	Yes	Yes	No	No	×
4	10.52	No	No	Yes	Yes	Yes	Yes	No	×
4	10.74	No	No	Yes	Yes	Yes	Yes	No	×
4	10.53	No	No	Yes	Yes	Yes	Yes	No	×
4	10.73	No	No	Yes	Yes	Yes	Yes	No	×
4	10.53	No	No	Yes	Yes	Yes	Yes	No	×
4	14.65	No	No	Yes	Yes	No	Yes	No	×
4	14.87	No	No	Yes	Yes	No	Yes	No	×
4	14.72	No	No	Yes	Yes	No	Yes	No	×
4	15.13	No	No	Yes	Yes	No	Yes	No	×
4	14.65	No	No	Yes	Yes	No	Yes	No	×
2	4.34	No	No	Yes	Yes	Yes	No	No	×
2	4.35	No	No	Yes	Yes	Yes	No	No	×
2	4.12	No	No	Yes	Yes	Yes	No	No	×
2	4.34	No	No	Yes	Yes	Yes	No	No	×
2	4.15	No	No	Yes	Yes	Yes	No	No	×
2	7.28	No	No	Yes	Yes	Yes	Yes	No	×
2	7.26	No	No	Yes	Yes	Yes	Yes	No	×
2	7.27	No	No	Yes	Yes	Yes	Yes	No	×
2	7.46	No	No	Yes	Yes	Yes	Yes	No	×
2	7.26	No	No	Yes	Yes	Yes	Yes	No	×
2	10.50	No	No	Yes	Yes	Yes	Yes	No	×
2	10.51	No	No	Yes	Yes	Yes	Yes	No	×
2	10.52	No	No	Yes	Yes	Yes	Yes	No	×
2	10.73	No	No	Yes	Yes	Yes	Yes	No	×
2	10.50	No	No	Yes	Yes	Yes	Yes	No	×
2	14.67	No	No	Yes	Yes	No	Yes	No	×
2	14.69	No	No	Yes	Yes	No	Yes	No	×
2	14.65	No	No	Yes	Yes	No	Yes	No	×
2	14.85	No	No	Yes	Yes	No	Yes	No	×
2	1471	I No	No.	Yes	Yes	I No	Yes	No	X

Table J.150: Resilient modulus data with QC/QA (A_2_12_100)

σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} >3	SNR _q > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [psi]
8	4,35	No	Yes	Yes	Yes	Yes	No	No	×
8	4.35	No	Yes	Yes	Yes	Yes	No	No	×
8	4.28	No	Yes	Yes	Yes	Yes	No	No	×
8	4.35	No	Yes	Yes	Yes	Yes	No	No	×
8	4.30	No	Yes	Yes	Yes	Yes	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No	No	×
8	7.36	No	Yes	Yes	Yes	Yes	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No No	No	×
0	7.59	No	Tes Voc	I es Vec	Tes	Tes Voc	No	No	×
8	10.54	No	T es Vec	T es Voc	T es Voc	Tes Voc	Vos	No	~
8	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.51	No	Yes	Yes	Yes	Yes	Yes	Yes	43581
8	10.72	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.50	No	Yes	Yes	Yes	Yes	Yes	Yes	42440
8	14.62	No	Yes	Yes	Yes	Yes	Yes	Yes	39829
8	14.84	No	Yes	Yes	Yes	Yes	Yes	Yes	44144
8	14.83	No	Yes	Yes	Yes	Yes	Yes	Yes	43117
ŏ	14.61	No No	I es	I es	Tes	I es	I es	Yes	42984
0	4.91	No	T es Voc	I es Voc	I es Voc	I es Voc	I es	res	42615
6	4.31	No	Yes	Yes	Yes	Yes	No	No	×
6	4.31	No	Yes	Yes	Yes	Yes	No	No	×
6	4.29	No	Yes	Yes	Yes	Yes	No	No	×
6	4.28	No	Yes	Yes	Yes	Yes	No	No	×
6	7.38	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.44	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.52	No	Yes	Yes	Yes	Yes	Yes	No	×
b c	7.00	NO N-	Tes V	Tes Weight	Tes	Y es	Tes	INO	×
8	10.51	No	Tes Voc	I es Voc	I es Vor	Tes	I es Voc	No	~
6	10.51	No	Yes	Yes	Yes	Yes	Yes	Ves	40835
6	10.51	No	Yes	Yes	Yes	Yes	Yes	Yes	42601
6	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.49	No	Yes	Yes	Yes	Yes	Yes	Yes	42916
6	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37497
6	14.86	No	Yes	Yes	Yes	Yes	Yes	Yes	38918
6	14.63	No	Yes	Yes	Yes	Yes	Yes	Yes	39684
0 8	14.61	I es No	I es Voc	I es Voc	I es Voc	I es Voc	I es Voc	Tes	40014
4	4 39	No	Vec	Vas	Vec	Vec	No	No	40014 X
4	4.30	No	Yes	Yes	Yes	Yes	No	No	×
4	4.40	No	Yes	Yes	No	Yes	No	No	×
4	4.18	No	Yes	Yes	Yes	Yes	No	No	×
4	4.17	No	Yes	Yes	Yes	Yes	No	No	×
4	7.24	No	Yes	Yes	Yes	Yes	No	No	×
4	7.26	No	Yes	Yes	Yes	Yes	No	No	×
4	7.40	No	Tes Vec	Tes	I es Vec	Tes Vec	No	No	×
4	7.25	No	Ves	Vas	Ves	Vec	No	No	~
4	10.50	No	Yes	Yes	Yes	Yes	No	No	×
4	10.51	No	Yes	Yes	Yes	Yes	No	No	×
4	10.50	No	Yes	Yes	Yes	Yes	No	No	×
4	10.50	No	Yes	Yes	Yes	Yes	No	No	×
4	10.50	No	Yes	Yes	Yes	Yes	No	No	×
4	14.87	No	Yes	Yes	Yes	Yes	Yes	Yes	39938
4	14.88	No No	I es V	Tes V	Yes V	Tes V	Tes V	Yes V	39449
4 A	14.07	No	Tes Var	1 es Vac	T es Vac	Tes Vac	Vac	No	41206
4	14.63	No	Yes	Yes	Yes	Yes	Yes	Yes	38829
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.28	No	Yes	Yes	Yes	Yes	No	No	×
2	4.28	No	Yes	Yes	Yes	Yes	No	No	×
2	7.43	No	Yes	Yes	Yes	Yes	No	No	×
2	7.19	No No	T es Voc	Tes V~-	T es Vec	T es	No No	No	×
2	7.68	No	Yes	T es Yac	Yes	Yee	No	No	×
2	7.44	No	Yes	Yes	Yes	Yes	No	No	×
2	10.55	No	Yes	Yes	Yes	Yes	Yes	Yes	44102
2	10.56	No	Yes	Yes	Yes	Yes	Yes	Yes	41801
2	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.52	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
2	14.88	No No	Tes V	T es	T es V	I es	I es	Yes V	393136
2	14.00		I ES Vac	i es Vac	I ES Voc	I ES Vac	I ES Vac	1es Vec	39826
2	14.86	No	Yes	Yes	Yes	Yes	Yes	Yes	38584
ž	14.64	No	Yes	Yes	Yes	Yes	Yes	Yes	40666

Table J.151: Resilient modulus data with $\rm QC/QA(A_1_9_100)$

σ 3 [psi]	ODEV [psi]	SNRLVDT#1 > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR _a > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
8	4 35	No	Vec	Vac	Vor	Vec	No	No	
8	4.35	No	Ves	Ves	Ves	Ves	No	No	
8	4 28	No	Ves	Yes	Yes	Yes	No	No	×
8	4 35	No	Ves	Ves	Ves	Ves	No	No	×
8	4 30	No	Yes	Yes	Yes	Yes	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No	No	×
8	7.36	No	Yes	Yes	Yes	Yes	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	Yes	No	No	×
8	7.55	No	Yes	Yes	Yes	Yes	No	No	×
8	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.51	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.51	No	Yes	Yes	Yes	Yes	Yes	Yes	43581
8	10.72	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.50	No	Yes	Yes	Yes	Yes	Yes	Yes	42440
8	14.62	No	Yes	Yes	Yes	Yes	Yes	Yes	39829
8	14.84	No	Yes	Yes	Yes	Yes	Yes	Yes	44144
8	14.83	No	Yes	Yes	Yes	Yes	Yes	Yes	43117
8	14.61	No	Yes	Yes	Yes	Yes	Yes	Yes	42984
8	14.91	No	Yes	Yes	Yes	Yes	Yes	Yes	42615
6	4.28	No	Yes	Yes	Yes	Yes	No	No	×
6	4.31	No	Yes	Yes	Yes	Yes	No	No	×
6	4.31	No	Yes 😽	Y es	Yes	Yes	No	INO	×
6	4.29	No	Yes 🗸	I es	Yes	I es	NO	INO	×
6	4.28	NO V	Tes	I es	Tes V	I es	NO	INO	×
0 F	7.30	011	I es V	I ES	I ES	I es	I ES	140 M-	×
0	7.99	0M - M	I es	I ES V	Tes V	I es	I ES	110 N-	×
o Ř	7.52	No	T es Voc	T es Vac	T es Vac	Tes Var	Tes Vac	110 No	~
6	7 20	No	Voc	Vas	Vos	Vos	Vos	No	~
	10.51	No	Vas	Vac	Vac	Ves	Vas	No	×
6	10.49	No	Ves	Yes	Ves	Ves	Yes	Ves	40835
6	10.51	No	Yes	Yes	Yes	Yes	Yes	Yes	42601
6	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.49	No	Yes	Yes	Yes	Yes	Yes	Yes	42916
6	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37497
6	14.86	No	Yes	Yes	Yes	Yes	Yes	Yes	38918
6	14.63	No	Yes	Yes	Yes	Yes	Yes	Yes	39684
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37849
6	14.60	No	Yes	Yes	Yes	Yes	Yes	Yes	40014
4	4.39	No	Yes	Yes	Yes	Yes	No	No	×
4	4.30	No	Yes	Yes	Yes	Yes	No	No	×
4	4.40	No	Yes	Yes	No	Yes	No	No	×
4	4.18	No	Yes	Yes	Yes	Yes	No	No	×
4	4.17	No	Yes	Yes	Yes	Yes	No	No	×
4	1.24	No	Yes	Yes	Yes	Yes	No	No	×
4	7.26	No	Yes	Yes	Yes	Yes	No	No	×
4	7.46	No	Yes	Yes	Yes	Yes	No	INO	×
4	7.47	NO No	I es	I es	Tes	Tes	NO M	INO	×
4	1.25	INO M-	I es	Tes	Tes	Tes	190 M-	INO N-	×
4	10.50	No	I es Vec	Tes	Tes	I es Vec	No	No	<u>.</u>
4	10.51	No	Vac	Voc	Voc	Vec	No	No	÷
4	10.50	No	V _{ec}	Vor	Vor	Vor	No	No	
4	10.50	No	Yes	Yes	Yes	Yes	No	No	×
4	14.87	No	Yes	Yes	Yes	Yes	Yes	Yes	39938
4	14.88	No	Yes	Yes	Yes	Yes	Yes	Yes	39449
4	14.87	No	Yes	Yes	Yes	Yes	Yes	Yes	41208
4	14.85	No	Yes	Yes	Yes	Yes	Yes	No	×
4	14.63	No	Yes	Yes	Yes	Yes	Yes	Yes	38829
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.29	No	Yes	Yes	Yes	Yes	No	No	×
2	4.28	No	Yes	Yes	Yes	Yes	No	No	×
2	4.28	No	Yes	Yes	Yes	Yes	No	No	×
2	7.43	No	Yes	Yes	Yes	Yes	No	No	×
2	7.19	No	Yes	Yes	Yes	Yes	No	No	×
2	7.27	No	Yes	Yes	Yes	Yes	No	No	×
2	7.68	No	Yes	Yes	Yes	Yes	No	No	×
2	7.44	No	Yes	Yes	Yes	Yes	No	No	×
2	10.55	No	Yes	Yes	Yes	Yes	Yes	Yes	44102
2	10.56	No	Yes	Yes	Yes	Yes	Yes	Yes	41801
2	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.52	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
2	14.88	Ио	Yes	Yes	Yes	Yes	Yes	Yes	39126
2	14.88	No	Yes 😽	I es	I es	I es	Y Y	Yes	38313
2	14.87	Y es	Tes V	I es	Y es	Y Y	I es	Yes	39826
<u>5</u>	14.00	Ио	T es Voc	I ES Voc	T es Voc	I ES Voc	Tes Voc	1es Vec	20204
4	1 14.04	1 110	1.62	1.62	162	162	162	162	40000

Table J.152: Resilient modulus data with QC/QA (A_2_9_100)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.30	Yes	No	Yes	Yes	Yes	Yes	Yes	43220
8	4.32	Yes	No	Yes	Yes	Yes	Yes	No	×
8	4.28	Yes	No	Yes	Yes	Yes	Yes	Yes	43148
8	4.31	Yes	No No	Yes	Yes	Yes	Yes	No	× 41776
8	7 19	Ves	Ves	Ves	Ves	Yes	Yes	Ves	41567
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42766
8	7.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40748
8	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41883
8	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41888
8	10.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42167
8	10.40	T es Voc	I es Vec	I es Vec	T es Voc	Ves	T es Voc	Vee	30707
8	10.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39831
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40116
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38401
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38406
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38088
8	14.50	Tes Ves	Tes Vec	Tes Vac	Tes Ves	I es Vec	T es Ves	1es Vec	38470
6	4.09	Yes	No	Yes	Yes	Yes	Yes	Yes	40222
6	4.10	Yes	No	Yes	Yes	Yes	Yes	Yes	40241
6	4.12	Yes	No	Yes	Yes	Yes	Yes	Yes	40407
6	4.08	Yes	No	Yes	Yes	Yes	Yes	Yes	41559
6	4.10	Yes Voc	No	T es Voc	T es Voc	Yes Voc	Tes	Yes	41553
6	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40385
6	7.44	Yes	No	Yes	Yes	Yes	Yes	Yes	42489
6	7.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43107
6	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41466
6	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39705
8	10.40	Tes Vec	Tes Vec	Tes Vec	I es Voc	Tes Vec	Tes Vec	Yes	40823
6	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40270
6	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40853
6	14.59	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.60	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.58	Yes	Yes	Yes	Yes	No N-	Yes	No N-	×
6	14.55	Tes Ves	Tes Ves	Ves	Ves	No	Tes Vac	No	~
4	4.08	Yes	No	Yes	Yes	Yes	Yes	Yes	39983
4	4.17	Yes	No	Yes	Yes	Yes	Yes	Yes	43714
4	4.34	Yes	No	Yes	Yes	Yes	Yes	Yes	43909
4	4.16	Yes	No	Yes	Yes	Yes	Yes	Yes	43402
4	7 44	Ves	Ves	Ves	Ves	Yes	Yes	Ves	41789
4	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42556
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42541
4	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41733
4	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41336
4	10.50	Ves	Ves	Ves	Yes	Yes	Yes	Ves	40346
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40347
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40327
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40826
4	14.41	Yes V	Yes V	Yes V	Yes V	No N-	Yes V	No N-	×
4	14.01	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.60	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
2	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39376
2	4.14	Yes	No No	Yes	Yes	Yes	Yes	Yes	40473
	4.12	res Vec	No	Tes Voc	res Vac	Tes Voc	Tes Vac	res Vec	40064 39296
2	4.13	Yes	No	Yes	Yes	Yes	Yes	Yes	39352
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40686
2	7.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39227
2	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41847
2	7.40	Yes Var	Yes Voc	Yes Ver	Yes V~-	Yes Var	Y es	Yes	40820
2	10.53	Yes	Yes	Yes	Yes	Yes	No	No	-0770 X
2	10.61	Yes	Yes	Yes	Yes	Yes	No	No	×
2	10.85	Yes	Yes	Yes	Yes	Yes	No	No	×
2	10.52	Yes	Yes	Yes	Yes	Yes	No	No	×
2	10.72	Yes	Yes	Yes	Yes	No	No	No	×
2	14.65	Yes Voc	I es V~	Yes V~	Yes V~r	No	Yes V~c	No	×
2	14.63	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.42	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.70	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.153: Resilient modulus data with QC/QA (B_1_24_103)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.57	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39384
8	4.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38390
8	4.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37315
8	4.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36487
ð e	4.37	Yes Voc	Yes Wes	Y es	Yes Voc	Y es	Yes	Yes	36364
8	7.39	Ves	Ves	Ves	Ves	Ves	Ves	Ver	34993
8	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35594
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35039
8	7.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37822
8	10.69	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34843
8	10.72	Yes	Yes V	Yes	Yes	Yes	Yes	Yes	34875
8	10.75	T es Vec	I es Vac	I es Vec	I es Vec	Ves	Tes Voc	Vee	34974
8	10.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34755
8	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33041
8	14.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32527
8	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33069
8	14.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33326
6	4 45	T es Vec	I es Vec	T es Vec	T es Voc	Tes Vec	I es Voc	Tes	35000
6	4.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36793
6	4.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38976
6	4.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37582
6	4.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37226
6	7.37	Yes	Yes V	Yes	Yes V	Yes	Yes	Yes V	35296
6	7.40	I ES Voc	I ES Yoc	I ES Voc	I ES Yes	I ES Vec	I ES Yac	Yee	35722
6	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35322
6	7.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36164
6	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34514
6	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34527
ь с	10.68	Yes Voc	I es Vec	Yes Voc	Yes Voc	Y es	Yes	Yes	34839
6	10.40	Ves	Vec	Ves	Ves	Ves	Ves	Vec	34200
6	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32892
6	14.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32665
6	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33402
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32867
4	14.04	Tes Voc	I es Voc	Tes	Tes Voc	I es Voc	T es Voc	Yes	36431
4	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36274
4	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37412
4	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36444
4	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37235
4	7.43	Tes Ver	I es Vec	I es Ver	Yes Ver	T es Ver	Yes	Yes	35230
4	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35306
4	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35923
4	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35953
4	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34080
4	10.49	I es Voc	I es V~	T es Voc	i es Vac	Yes Voc	Yes	Yes Voc	34043
4	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34341
4	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33771
4	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31925
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32837
4	14.84	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes	32807
4	14.82	Yes	Yes	Yes	T es Yes	Yes	Tes	Yes	32774
2	4.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36095
2	4.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38826
2	4.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38214
2	4.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36695
2	4.31 7.4.4	I es Voc	I es Voc	T es Voc	I es Voc	I es Voc	Y es Voc	Yes	35048
2	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35691
2	7.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34531
2	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36209
2	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35138
2	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34061
2	10.55	res V~	I es V~	T es Voc	Tes Voc	res Voc	r es Voc	res Voc	33610
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33808
2	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34040
2	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32131
2	15.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32585
2	14.83	Ies V	I es V	I es V	ïes V	I es V	Yes V	Yes V	32111
	14 83	Yes	Yes	Yes	Yes	Yes	Yes	Ves	32113

Table J.154: Resilient modulus data with QC/QA (B_2_24_103)

O2 [nsi]	Oper [nsi]	SNRLVDT#1 > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [psi]
8	4 04	Ves	Ves	Ves	Voc	Ves	Vec	Criterion Vac	36744
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36922
8	4.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37003
8	4.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35958
8	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37098
8	6.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33628
b g	6.94	Yes	Yes Vac	Yes	Yes Vec	Yes Vec	Yes	Yes	35107
8	6,93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35676
8	6.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34589
8	9.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33636
8	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33296
8	9.90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33363
ð g	9.00	I es Voc	I es Voc	Tes Voc	Tes Voc	I es Vec	Tes Voc	Tes Vac	34072
8	13,95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32302
8	14.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32496
8	14.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32907
8	13.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31612
8	13.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32144
6	3.84	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Ves	Ves	33400
6	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34125
6	3.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33338
6	3.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33421
6	6.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34465
6	6.77	Yes	Yes Voc	Yes	Yes Voc	Yes	Yes	Yes	33068
6	6.98	Tes Ves	Ves	Yes	Tes Ves	Tes Ves	Tes Ves	Yes	34525
6	6.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33955
6	9.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32839
6	10.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32613
6	9.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32544
b g	9.00	I es Vac	I es Vac	Tes Vec	Yes Voc	I es Voc	Yes Voc	Tes Vac	32931
6	13,95	Ves	Yes	Yes	Yes	Yes	Yes	Ves	31404
6	14.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31557
6	14.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32214
6	13.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30936
6	13.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30952
4	3.00	Tes Ves	Tes Ves	Tes Ves	Yes Ves	Tes Ves	Yes Ves	Yes Ves	31849
4	3.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32163
4	3.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33919
4	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34981
4	6.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32507
4	6.87	Yes	Yes Voc	Yes	Yes Voc	Yes Vec	Yes Vec	Yes Voc	32522
4	7.11	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	33964
4	6.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32562
4	9.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31814
4	9.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31198
4	10.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31791
4	9.87	Tes Ves	T es Ves	Tes Ves	Yes Ves	Tes Ves	Tes Ves	Yes Ves	31204
4	13.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30197
4	13.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30416
4	13.94	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30198
4	13.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29986
4	13.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29974
2	3.87	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	T es Ves	Yes Ves	32753
2	3.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33718
2	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33584
2	4.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33724
2	7.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33286
<u>2</u>	7.00	Yes Voc	Yes Voc	Tes Voc	Yes Voc	Yes Voc	I es Voc	Yes	31680
2	6,99	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32160
2	6.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31650
2	10.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30783
2	9.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30195
2	10.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31062
2	9.90	Yes	Y es Voc	Yes	Yes	Yes	Yes	Yes	21054
2	13,74	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	29052
2	13.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29039
2	13.76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29031
2	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29060
2	1 13.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29443

Table J.155: Resilient modulus data with QC/QA (B_1_195_103)

σ3 [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53365
8	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56040
8	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53601
8	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53161
8	4.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51188
0	00.7	Yes	T es Vec	Yes	T es	T es	Tes	Yes	45770
8	6.99	Vec	Ves	Ves	Ves	Ves	Yes	Vec	45731
8	6.97	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46741
8	7.00	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46811
8	10.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45037
8	9.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44873
8	9.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44856
0	9.84	Yes Vec	I es Ver	Yes	I es	Tes Vec	Tes Ver	Yes	44262
8	13.75	Yes	Yes	Yes	Yes	Yes	Yes	Ves	42388
8	13.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42588
8	13.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42602
8	13.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42565
8	14.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44119
6	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50248
6	4.07	I es Vec	Vec	I es Vec	Vec	Ves	I es Vec	Vac	50205
6	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54504
6	4.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50340
6	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46655
6	6.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46040
6	6.94	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44269
6	6.94	T es Voc	T es Voc	T es Voc	res Voc	Tes Voc	T es Voc	Yes Voc	45086
6	9.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43456
6	10.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45016
6	10.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44354
6	9.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43468
6	9.90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43003
р 6	13.91	Tes Vec	T es Ver	Yes	I es	Tes	Tes	Yes	41912
6	13.92	Vec	Vec	Ves	Ves	Vec	Ves	Vec	41362
6	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41571
6	13.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42393
4	3.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46571
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	49390
4	3.97	I es Voc	Tes Voc	Y es	Tes Voc	Y es	T es Voc	Yes	49738
4	3.90	Ves	Ves	Ves	Yes	Ves	Yes	Ves	48545
4	6.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52036
4	6.97	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53363
4	6.97	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50713
4	6.94	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52058
4	0.90	Tes	T es Voc	Tes Voc	I es Voc	Tes	T es Voc	Yes	42633
4	9.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42591
4	9.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43160
4	9.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43879
4	9.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43197
4	13.94	Yes V	Yes V	Yes V	Yes V	Yes	Yes V	Yes V	41495
4	13.95	T es Ves	T es Ves	I ES Ves	i es Ves	T ES Ves	T es Ves	Tes	41278
4	13.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41931
4	13.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41368
2	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53722
2	3.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	47217
2	3.88	Yes	Yes	Yes	Yes V	Yes	Yes	Yes V	49101
<u></u>	3.95	ies Vac	ies Vac	ies Vac	res Vac	Tes Voc	res Voc	Yes Vec	47985
2	6.97	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52244
2	6.97	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50934
2	6.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50818
2	6.95	No	Yes	Yes	Yes	Yes	Yes	Yes	44033
2	6.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51988
2	10.07	T es Vac	T es Voc	T es Vec	res Vec	Tes Vac	T es Vac	Yes	42502
2	9,90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43154
2	10.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43507
2	9.90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43180
2	13.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40884
2	13.76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40840
2	13.77	Yes V	Ies V	Yes V	Tes V	Tes V	Yes V	Yes V	40898
2	14.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41646

Table J.156: Resilient modulus data with QC/QA (B_2_195_103)

G. (General	SNRT UD THE > 3	SNRT UD THE > 3	SNRT VIDTW2 > 3	SNR > 10	A < 0.010	COV < 10%	Pass	Mr. Insil
O3 [ps1]	O DEA [b21]	DINCLODIAL. D	DINCLODIAZ. D	DINCL (DIMS. D	Strid . 10	0 < 0.04	001 10%	Criterion	Tork [bar]
8	4.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	64544
8	4.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62232
8	4.29	Y es	I es	Y es	I es	Y es	Tes	Yes	61721
0 0	4.20	Tes V	Yes V	Yes Ver	I es Waa	I es V	I es Was	Yes	61745
0	4.29	Tes	Tes	I es Ver	Tes	Tes	I es	Tes	61322
8	7.40	Vec	Vec	Vec	Vec	Vec	Vec	Vec	59742
8	7.41	Voc	Vac	Voc	Voc	Voc	Voc	Vec	50506
8	7 40	Ves	Vac	Vec	Vas	Ves	Vas	Ver	61454
8	7.40	Ves	Ves	Ves	Vos	Ves	Ves	Vec	61286
8	10.77	Ves	Ves	Ves	Ves	Yes	Ves	Ves	58806
8	10.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59915
8	10.68	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60557
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58319
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58272
8	14.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58091
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56587
8	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58145
8	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57460
8	15.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58294
6	4.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	64942
6	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59096
6	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58899
6	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61790
6	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	58835
6	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59396
6	1.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56140
6	7.40	Yes	Y es	Yes	I es	Tes	I es	Yes	26176
	7.40	Yes Ver	Yes Wes	T es	I es	Yes V	Tes	Yes	20428
0 6	10.50	Yes Ver	Yes Wes	Yes Ver	I es	I es	I es Wes	Yes	55075
8	10.50	Voc	Voc	Voc	Voc	Voc	Voc	Vec	56944
8	10.50	Vec	Tes Voc	Vec	Vec	Vec	Vec	Vec	55845
6	10.30	Ves	Ves	Ves	Ves	Vec	Ves	Vec	55904
6	10.41	Ves	Ves	Ves	Yes	Yes	Yes	Ves	57989
6	14.89	Ves	Ves	Yes	Ves	Yes	Yes	Ves	56401
6	15.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56379
6	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56257
6	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55467
6	14.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55470
4	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57237
4	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54711
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57238
4	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57509
4	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57294
4	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57471
4	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54725
4	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55973
4	7.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	57561
4	7.40	Yes	Yes	Tes 🗸	Tes	Yes	I es	Yes	22980
4	10.49	Tes V	Tes V	T es V	Tes V	Tes V	I es V	Tes V	23000
4	10.40	I es Voc	I es Voc	I ES Voc	I ES Voc	I ES Voc	I ES Vor	Vee	56025
	10.40	Vac	Vec 1 es	Var	Var	Var	Var	Vec	55047
4	10.43	Yes	Yac	Yes	Yes	Yes	Yes	Vec	53100
4	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53438
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54106
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53465
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54746
4	15.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53565
2	4.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56177
2	4.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53446
2	4.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53498
2	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51315
2	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55900
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53706
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52491
2	7.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54118
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53786
2	1.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52672
2	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52453
<u></u>	10.76	res	Tes	res	I es	Tes	Tes	res	22200
2	10.54	Tes V	res V	Tes V	res V	Tes V	Tes V	res V	52212
4	10.50	I ES Voc	I es Vac	I ES Voc	T es	I ES	T ES	Vec	51456
	14.90	Vec	Vec	Vec	Vec	Vec	Vec	Ver	50991
	15.16	Vec	Vec	Ves	Ves	Ves	Ves	Vec	51795
	14 01	Vac	Vec 165	Var	Vac	Var	Var	Vac	51078
2	14 94	Vac	Vac	Vac	Vac	Vac	Yac	Vac	51641
2	14.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51713

Table J.157: Resilient modulus data with QC/QA (B_1_16_103)

Go Incil	Grant Incil	SNRI VID THE > 3	SNRI WDT#2>3	SNRI VIDTHS > 3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [[st]	O DEA [bai]	LODIHI -	The second secon			0 - 0.04		Criterion	well [bool
ð Ö	4.29	No No	No	Yes	I es	Y es	I es	INO N-	×
°	4.29	190 V	190	res Ver	I es Vec	Tes	I es Vec	No	~~~~~
8	4.32	No	No	Vec	Vec	Voc	Vec	No	
8	4 30	Ves	No	Vas	Vos	Vos	Vos	No	~
8	7 40	Yes	No	Yes	Yes	Yes	Yes	No	×
8	7.39	Yes	No	Yes	Yes	Yes	Yes	No	×
8	7.42	Yes	No	Yes	Yes	Yes	Yes	Yes	72600
8	7.35	Yes	No	Yes	Yes	Yes	Yes	No	×
8	7.39	Yes	No	Yes	Yes	Yes	Yes	No	×
8	10.55	Yes	No	Yes	Yes	Yes	Yes	Yes	72812
8	10.48	Yes	No	Yes	Yes	Yes	Yes	Yes	76910
8	10.70	Yes	No	Yes	Yes	Yes	Yes	Yes	75502
8	10.43	Yes	No	Yes	Yes	Yes	Yes	Yes	72236
8	10.47	Yes	No	Yes	Yes	Yes	Yes	Yes	74303
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70710
8	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70866
8	14.//	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70693
8	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70927
8	14.79	I es	I es	Tes 🗤	I es	I es	Tes	Yes	/1/90
0 6	4.29	NO N-	NO N-	T es	I es Vec	res Ver	res	INO N-	×
8	4.31	No	Mo	Voc	Voc	Voc	T es Voc	No	
6	4 29	No	No	Yee	Yes	Yee	Yes	No	~ ×
6	4 29	No	No	Yes	Yes	Yes	Yes	No	×
6	7,38	Yes	No	Yes	Yes	Yes	Yes	No	×
6	7,39	Yes	No	Yes	Yes	Yes	Yes	Yes	74511
6	7.38	Yes	No	Yes	Yes	Yes	Yes	Yes	72370
6	7.41	Yes	No	Yes	Yes	Yes	Yes	Yes	72521
6	7.41	Yes	No	Yes	Yes	Yes	Yes	Yes	74689
6	10.55	Yes	No	Yes	Yes	Yes	Yes	Yes	71940
6	10.77	Yes	No	Yes	Yes	Yes	Yes	Yes	73190
6	10.50	Yes	No	Yes	Yes	Yes	Yes	Yes	73065
6	10.43	Yes	No	Yes	Yes	Yes	Yes	Yes	71292
6	10.54	Yes	No	Yes	Yes	Yes	Yes	Yes	72567
6	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	73975
6	15.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	73896
6	14.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	72129
ь	14.78	Yes	Y es	I es	I es	Yes	I es	Yes	73046
Ь	14.99	Y es	I es M-	Yes Ves	Tes	Yes	Tes	Yes N-	/1860
4	4.20	No	No	I es Vec	I es Mo	Tes	Tes	No	<u>.</u>
4	4.30	No	No	Tes Voc	NO Voc	Voc	T es Voc	No	
	4.20	No	No	Voc	Ver	Vor	Vor	No	
4	4.12	No	No	Yes	Ves	Ves	Yes	No	×
4	7 41	Yes	No	Yes	Yes	Yes	Yes	Yes	72776
4	7.19	Yes	No	Yes	Yes	Yes	Yes	Yes	70380
4	7.39	Yes	No	Yes	Yes	Yes	Yes	Yes	74884
4	7.38	Yes	No	Yes	Yes	Yes	Yes	Yes	70249
4	7.42	Yes	No	Yes	Yes	Yes	Yes	Yes	72420
4	10.45	Yes	No	Yes	Yes	Yes	Yes	Yes	74229
4	10.52	Yes	No	Yes	Yes	Yes	Yes	Yes	72456
4	10.48	Yes	No	Yes	Yes	Yes	Yes	Yes	70571
4	10.49	Yes	No	Yes	Yes	Yes	Yes	Yes	69280
4	10.28	Yes	No V	Yes	Yes	Yes	Yes	Yes	68031
4	14.85	Y es	I es	Y es	Tes	Tes V	T es	Yes V	71068
4	14.00	I ES Voc	I ES Vac	I ES Ver	I ES Var	I ES Voc	I ES Voc	1es Vec	69101
4	14.89	Tes Voc	T es Voc	Tes Voc	Yes	T es Voc	Yee	Veo	70270
4	14.63	Yee	Yac	Yes	Yes	Yee	Yes	Vec	69322
2	4,32	No	No	Yes	Yes	Yes	Yes	No	×
2	4,10	No	No	Yes	Yes	Yes	Yes	No	×
2	4.29	No	No	Yes	Yes	Yes	Yes	No	×
2	4.12	No	No	Yes	Yes	Yes	Yes	No	×
2	4.15	No	No	Yes	Yes	Yes	Yes	No	×
2	7.46	Yes	No	Yes	Yes	Yes	Yes	No	×
2	7.48	Yes	No	Yes	Yes	Yes	Yes	No	×
2	7.20	Yes	No	Yes	Yes	Yes	Yes	Yes	69013
2	7.41	Yes	No	Yes	Yes	Yes	Yes	No	×
2	7.21	No	No	Yes	Yes	Yes	Yes	No	×
2	10.53	Yes	No	Yes	Yes	Yes	Yes	Yes	72291
2	10.48	Yes	No	Yes	Yes	Yes	Yes	Yes	70747
2	10.57	Yes	No	Yes	Yes	Yes	Yes	Yes	/1054
2	10.58	Yes	No	Yes V	Yes	Yes	Yes	Yes	71802
2	10.89	I es	No	I es	I es	I es	I es	Yes	70501
2	14.92	T es	Tes	T ES	res	T es	I es	res V	10202
<u>-</u>	14.05	I ES	I es	I ES	I ES	I ES	I ES	ies V	20150
2	14.04	Voc	Tes V~	Tes V~r	Tes V~r	Vor	Vec	Ver	70133
2	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	70107

Table J.158: Resilient modulus data with QC/QA (B_2_16_103)

σ3 [psi]	ODEV [psi]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR _a > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass Critorion	M _R [psi]
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33191
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33105
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33067
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32376
8	4.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33055
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31069
0 8	7.39	Tes Voc	I es V~	Tes Voc	Tes Voc	res Voc	T es Voc	Yes	30311
8	7 41	Ves	Ves	Ves	Yes	Yes	Yes	Ves	30812
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30448
8	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29308
8	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29357
8	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29929
8	10.51	Tes Voc	I es Voc	Tes Voc	Yes Voc	Tes Voc	T es Voc	Yes	29514
8	14.87	Ves	Ves	Ves	Yes	Yes	Ves	Ves	27849
8	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27870
8	14.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28376
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28308
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28003
6	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33327
6	4.31	Tes Vac	I es Vec	Tes Vec	T es Vac	T es Vas	Tes Ves	Vec	33316
6	4.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33340
6	4.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31562
6	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30451
6	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30452
6	7.17	Yes V	I es	Yes V	ĭes V	I es	Yes V	Yes V	30430
6	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31261
6	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30261
6	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29260
6	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29335
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29282
6	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30197
6	14.05	Ves	Ves	Ves	Ves	Ves	Ves	Ves	27310
6	15.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28503
6	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27779
6	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27775
4	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33244
4	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32414
4	4.52	Vec	Vec 105	Vec	Vac	Vas	Ves	Vec	32463
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32474
4	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31500
4	7.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31035
4	7.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31780
4	7.41	Tes Voc	Tes Voc	Tes Voc	Tes Voc	Tes Voc	I es Voc	Yes	31330
4	10.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29880
4	10.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29580
4	10.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29632
4	10.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29903
4	10.58	I es Ver	I es V	I es Ver	Yes V	Tes V	Tes V	Yes Ver	29629
4	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27239
4	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27376
4	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27508
4	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27523
2	4.11	Yes	Yes V	Yes	Yes	Yes	Yes	Yes	30881
	4.14	T ES Voc	I es Var	T es Var	I ES Vac	T es Var	r es Vac	res Ver	31639
2	4,13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31604
2	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32589
2	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31187
2	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31635
2	7.39	Yes V	Yes	Yes V	Yes V	Yes	Yes V	Yes	31102
<u>-</u>	7.44	I ES Vac	I es Vac	I ES Voc	I ES Vac	I ES Vac	I ES Vac	res Ver	31185
2	10.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29247
2	10.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30008
2	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28970
2	10.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29512
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29476
2	14.92	Tes	Tes	Tes Vec	Yes	Tes	I ES Yec	Yes	27252
2	14.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27235
2	14.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26907
2	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27834

Table J.159: Resilient modulus data with QC/QA (B_1_27_98)

σ_3	[psi]	$\sigma_{\text{DEV}[psi]}$	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
1	8	4.02	Yes	No	Yes	Yes	Yes	Yes	No	×
	8	4.02	Yes	No	Yes	Yes	Yes	Yes	No	×
	8	4.04	Yes	No	Yes	Yes	Yes	Yes	No	×
	8	4.04	Yes	No	Yes	Yes	Yes	Yes	No	×
	0 8	4.03 6.94	T es Voc	No	I es Voc	I es Voc	I es Voc	I es Voc	No	× 24192
	8	6.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24202
1	8	6.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24211
	8	6.76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23834
	8	6.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24437
	8	9.85	Yes	Yes	Yes	Yes	No	Yes	No	×
	0 8	9.05	Tes Voc	I es Voc	Tes Voc	I es Voc	No	I es Voc	No	
	8	9.84	Yes	Yes	Yes	Yes	No	Yes	No	×
	8	9.85	Yes	Yes	Yes	Yes	No	Yes	No	×
	8	13.74	Yes	Yes	Yes	Yes	No	Yes	No	×
	8	13.73	Yes	Yes	Yes	Yes	No	Yes	No	×
	8	13.53	Yes V	Yes Waa	Yes Waa	Yes	No N-	I es	INO N-	×
	8	13.72	Ves	Ves	Yes	Yes	No	Yes	No	~X
	6	4.06	Yes	No	Yes	Yes	Yes	Yes	No	×
1	6	3.86	Yes	No	Yes	Yes	Yes	Yes	No	×
	6	3.86	Yes	No	Yes	Yes	Yes	Yes	No	×
ļ	Б	3.87	Yes	No N-	Yes	Yes	Yes	Yes	No	X
	6	5.68	Tes Vec	No	T ES	res Vac	T es Vac	r es Vac	INO Vec	24443
	6	6.78	Yes	No	Yes	Yes	Yes	Yes	Yes	23756
	6	6.75	Yes	No	Yes	Yes	Yes	Yes	Yes	24011
1	6	6.95	Yes	No	Yes	Yes	Yes	Yes	Yes	24694
	6	6.75	Yes	No	Yes	Yes	Yes	Yes	Yes	23744
	5	9.78	Yes	Yes	Yes	Yes	No N-	Yes	No	×
	6	9.70	Tes Vec	Tes Vec	Tes Vas	Yes	No	Tes Ves	No	~ ×
	 6	9.69	Yes	Yes	Yes	Yes	No	Yes	No	×
1	6	9.90	Yes	Yes	Yes	Yes	No	Yes	No	×
	6	14.27	Yes	Yes	Yes	Yes	No	Yes	No	×
	6	13.55	Yes	Yes	Yes	Yes	No	Yes	No	×
	D 6	13.74	Yes Voc	Tes Voc	Tes Voc	T es Voc	No	T es Voc	No	×
	6	13.74	Yes	Yes	Yes	Yes	No	Yes	No	×
	4	3.87	Yes	No	Yes	Yes	Yes	Yes	Yes	24271
	4	3.87	Yes	No	Yes	Yes	Yes	Yes	Yes	24327
	4	3.86	Yes	No	Yes	Yes	Yes	Yes	No	×
	4	3.86	Yes	No No	Yes V	Yes	Yes	Yes	Yes	24307
	4	6.95	Tes Voc	No	Tes Ves	Tes Ves	Tes Ves	Tes	Ves	24512
	4	6.77	Yes	No	Yes	Yes	Yes	Yes	Yes	24114
	4	6.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23791
	4	6.76	Yes	No	Yes	Yes	Yes	Yes	Yes	23784
	4	6.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24179
	4	9.60	Ves	Ves	Ves	Tes Ves	No	Ves	No	
	4	9.67	Yes	Yes	Yes	Yes	No	Yes	No	×
	4	9.85	Yes	Yes	Yes	Yes	No	Yes	No	×
	4	9.88	Yes	Yes	Yes	Yes	No	Yes	No	×
	4	13.56	Y es	Yes	Y es V	Yes V	No N-	Y es	No N-	×
	4	13.56	Tes	Tes Yes	Yes	ies Yes	No	T es Yes	No	×X
	4	13.75	Yes	Yes	Yes	Yes	No	Yes	No	X
	4	13.76	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	3.89	Yes	No	Yes	Yes	Yes	Yes	Yes	24521
ļ	2	3.89	Yes	No N-	Yes	Yes V	Yes	Yes	Yes V	24596
	2	3.00	Tes Vec	No	T es Voc	Tes Voc	Tes Voc	I es Voc	Yes Vac	24607
	2	3.88	Yes	No	Yes	Yes	Yes	Yes	Yes	25090
	2	6.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23861
	2	6.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23676
	2	6.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23892
	<u>4</u>	0./0 6.87	Tes Voc	Tes Voc	Tes Voc	Tes V~	Tes V~	Tes	res Voc	22327
	2	9,67	Yes	Yes	Yes	Yes	No	Yes	No	× × ×
	2	9.67	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	9.87	Yes	Yes	Yes	Yes	No	Yes	No	×
ļ	2	9.87	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	9.86	Yes	Yes	Yes	Yes V	No N-	Y es	No	×
	2	13.61	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	13.79	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	13.78	Yes	Yes	Yes	Yes	No	Yes	No	×
	2	13.60	Yes	Ves.	Yes	Yes	No	Yes	No	Х

Table J.160: Resilient modulus data with QC/QA (B_2_27_98)

σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29406
8	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29134
8	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29197
8	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29040
0	4.34	T es Voc	T es Voc	T es Voc	T es Voc	I es Voc	I es Voc	Yes	28420
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28720
8	7.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27256
8	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27346
8	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27976
8	10.57	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26861
8	10.27	Yes	Yes V	Yes	Yes	Yes	Yes	Yes	26112
8	10.40	Tes Vec	Tes Vac	Ves	Tes Ves	Tes Vec	Tes Vec	Ver	26001
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26696
8	14.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24356
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24319
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24598
8	14.59	Yes Wes	Yes	Yes	Yes Ver	Yes V	Yes	Yes	24740
6	4 14	Ves	Ves	Ves	Yes	Ves	Tes Ves	Ves	28039
6	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28560
6	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28666
6	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29367
6	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29344
8	7.36	Tes Voc	Yes Voc	Tes Voc	Yes Voc	Yes Vec	Yes Vec	Yes	26572
6	7,16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26974
6	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27709
6	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28445
6	10.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26228
6	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26491
6	10.40	Tes Voc	T es Voc	Tes Vec	T es Ves	Tes Vec	T es Vos	res Vec	26436
6	10.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25734
6	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24324
6	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24244
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24330
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24758
4	4.02	Tes Vec	I es Vec	Tes Vac	T es Ves	T es Vec	Tes Vas	Tes	28303
4	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28382
4	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28256
4	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28994
4	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28431
4	7.10	Tes Vec	T es Voc	Tes Vec	T es Ves	T es Ves	T es Ves	Yes	27061
4	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27426
4	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27065
4	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27786
4	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26352
4	10.45	I es Voc	I es Voc	Tes Voc	Yes Voc	Yes Voc	Tes Vor	Yes Voc	20130
4	10.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25947
4	10.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26435
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24228
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24081
4	14.62	Tes Voc	Yes Vor	Tes Voc	Yes Voc	T es Voc	Yes Vec	Yes	24213
4	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24204
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28053
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28130
2	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28142
2	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28218
2	7.64	I es Voc	I ES Voc	I es Vac	I ES Voc	ies Voc	I ES Voc	Tes	28578
2	7.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26460
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26963
2	7.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26619
2	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27322
2	10.38	Yes V	Yes V	Yes V	Yes V	Yes	Yes V	Yes	25263
	10.59	I es Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	I ES Vac	1es Vec	25327
2	10.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26015
2	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25742
2	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23595
2	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23589
2	14.62	Yes V	Yes V	Yes V	Yes V	Tes V	Tes V	Yes Ve-	23935
	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23988

Table J.161: Resilient modulus data with QC/QA (B_1_22_98)

	O DEV [DSI]	SNRLVDT#1 > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
- 5 [[]	4.64	Vac	Ver	Vec	No	Vec	Vac	Criterion	
8	4.04	i es No	Vec	Voc	Vec	Voc	Vec	Voc	42084
8	4.03	Vac	Ver	Vec	Vec	Vor	Vec	Vac	40007
8	4.27	Vec	Ves	Vec	Ves	Vec	Ves	Vec	39542
8	4.30	Ves	Yes	Yes	Yes	Yes	Yes	Ves	39681
8	7 17	Yes	Yes	Yes	Yes	Yes	Yes	Ves	37459
8	7.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39210
8	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37383
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39255
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38266
8	10.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37200
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36671
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37560
8	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37440
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37359
8	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35297
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35376
8	14.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35926
8	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34957
8	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34717
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37772
6	4.35	No	Yes	Yes	No	Yes	Yes	No	×
6	4.09	No	Yes	Yes	Yes	Yes	Yes	Yes	42723
6	4.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38408
6	4.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38351
6	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38318
6	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37976
6	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38587
6	/.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38486
ь	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38384
ь	10.48	Yes	Yes	Yes	I es	Yes	Yes	Yes	36829
D C	10.46	I es	I es	Yes	Tes	Yes	Tes V.	Yes	3/159
0 6	10.40	I es Vac	I es Vec	I es Vec	I es Vec	I es Voc	Tes	1es Vec	26000
6	10.49	I es Vac	I es Vec	I es Voc	T es War	I es Voc	T es Voc	Vec	360912
0 8	14.60	Vec	Tes Vec	Ver	Tes Was	Vec	Tes Vec	Ves	25041
6	14.50	Vec	Vec	Ves	Vec	Ves	Vec	Vec	35277
6	14.80	Vec	Ves	Vac	Vas	Vec	Vas	Vac	35987
6	14.60	Ves	Yes	Yes	Yes	Yes	Yes	Ves	34244
6	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34309
4	4.20	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.55	No	Yes	Yes	Yes	Yes	Yes	Yes	37652
4	4.13	No	Yes	Yes	Yes	Yes	Yes	Yes	37670
4	4.09	No	Yes	Yes	Yes	Yes	Yes	Yes	41143
4	4.33	No	Yes	Yes	Yes	Yes	Yes	Yes	41016
4	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37241
4	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37951
4	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38055
4	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38821
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36764
4	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36415
4	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35866
4	10.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37021
4	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37007
4	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36402
4	14.62	Yes 😯	Yes	Yes	Tes	Yes	Y es	Yes	34271
4	14.60	Y es	Y es	I es	Tes	Yes	T es	Yes	33297
4	14.00	I ES	I ES	I ES	I ES	I ES	I ES	res V	34/68
4	14.76	res V	res V	T es	Tes V	Tes V	Tes V	res V	24255
4	14.91	res M-	I ES	I ES	I ES	I ES	I ES	res V	37455
2	3.01	No	V~	Ver	V~	Voc	Vec	No	
	3.02	No	Var	Vac	Var	Ver	Var	No	
2	412	No	Vec 163	Vac	Yes	Vac	Vac	No	Ŷ
5	412	No	Yac	Yee	Yac	Yes	Yee	No	×
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39857
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37339
2	7,21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37817
2	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37951
2	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37143
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36900
2	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36591
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37289
2	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35800
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37010
2	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33625
2	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34524
2	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33971
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34519
1 2	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34747

Table J.162: Resilient modulus data with QC/QA (B_2_22_98)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16357
8	4.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15788
8	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15872
8	4.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16559
8	7.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15379
8	7.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15422
8	7.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15471
8	7.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15264
8	7.15	Y es Voc	Yes Voc	Yes	I es Voc	Yes	Yes Voc	Yes	15301
8	10.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14658
8	10.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14852
8	10.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14726
8	10.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15026
8	14.35	Tes Ves	Tes Ves	Yes Ves	Tes Ves	Yes Ves	Tes Ves	Yes	13978
8	14.57	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14193
8	14.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13898
8	14.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13906
6	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14255
6	4.05	Ves	Ves	Ves	Yes	Yes	Yes	Ves	14620
6	4.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14429
6	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14251
6	7.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13865
6	7.15	Tes Voc	I es Vec	Tes Vec	T es Voc	Yes Vec	T es Voc	Yes Vec	14010
6	7.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13802
6	7.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13822
6	10.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13427
6	10.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13292
6	10.22	Tes Ves	Tes Ves	Tes Ves	T es Ves	Tes Ves	T es Ves	res Ves	13142
6	10.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13202
6	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12799
6	14.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12728
<u>Б</u>	14.32	Yes Voc	Yes Voc	Y es Voc	Tes Voc	Yes Voc	Tes Voc	Yes	12660
6	14.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12857
4	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12758
4	3.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12505
4	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12756
4	4.09	Tes Ves	Tes Ves	Tes Vec	T es Ves	Tes Ves	T es Ves	Yes	12605
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12274
4	7.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12233
4	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12260
4	7.10	Tes Vec	Tes Vec	Tes Vec	T es Ves	Yes Ves	Tes Ves	Yes Vec	12255
4	10.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11665
4	10.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11821
4	10.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11513
4	10.31	Yes	Yes	Yes	Yes Vor	Yes	Yes Vor	Yes	11872
4	14.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11082
4	14.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11037
4	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11322
4	14.34	Yes Vor	Yes	Yes Var	Yes	Yes	Yes	Yes	11229
2	4 09	Yes	Yes	Yes	Yes	Yes	Yes	Ves	11071
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11050
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11419
2	3.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10802
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11061
2	6.97	Ves	Yes	Yes	Yes	Yes	Yes	Ves	10045
2	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10281
2	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10318
2	6.98	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9950
2	10.06	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	9593
2	10.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9639
2	10.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9645
2	10.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9646
2	14.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9509
2	14.18	Yes V	Yes V	Yes V	Yes V	Yes Var	Yes V	Yes	9537
2	14.17	Yes	Yes	Yes	T es Yes	Yes	Tes	Yes	9512
2	14.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9517

Table J.163: Resilient modulus data with QC/QA (B_1_16_98)

σ_{3} [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15991
8	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16218
8	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16277
8	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16227
8	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15792
8	7.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15389
0	7.16	Tes V	Tes V	Tes V	Tes	Yes Voc	Tes	Yes	14411
	7 51	Tes V	Tes W	Tes V	Tes	res	I es Wes	Yes	14617
8	7.51	Vor	Vec 105	Voc	Tes Voc	Voc	Voc	Voc	15220
8	10.48	Vec	Vec	Vec	Vac	Vac	Vac	Ves	13948
8	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13927
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13919
8	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13898
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13951
8	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12907
8	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13201
8	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12984
8	14.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12889
0	14.60	Tes	Tes Vec	T es	T es	Tes	I es Voc	Yes	15072
6	4.43	Ves	Ves	Ves	Yes	Ves	Yes	Ves	14307
6	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14333
6	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14470
6	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14297
6	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13304
6	7.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13497
6	7.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13343
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13661
ь с	10.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13149
8	10.31	I es Voc	I es Voc	Vec	I es Voc	I es Voc	I es Voc	Vec	12504
6	10.23	Ves	Ves	Yes	Yes	Yes	Yes	Ves	12553
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12765
6	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12852
6	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11784
6	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11854
6	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11817
6	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11820
6	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11832
4	4.13	Y es	Yes Ver	I es	Tes	Yes	Tes	Yes	13111
4	4.17	Tes Voc	Tes Voc	T es Voc	I es Voc	Tes Voc	I es Voc	res Voc	12850
	4.12	Vec	Vac	Vec	Vac	Vac	Vac	Vac	12002
4	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13143
4	7.22	Yes	Yes	Yes	Yes	Yes	No	No	×
4	7.22	Yes	Yes	Yes	Yes	Yes	No	No	×
4	7.22	Yes	Yes	Yes	Yes	Yes	No	No	×
	7.19	Yes	Yes	Yes	Yes	Yes	No	No	×
4	7.88	Yes	Yes	Yes	Yes	No	No	No	×
4	10.30	Tes Voc	Yes Vec	Yes Vor	Tes	Tes	I es Vec	Yes	11258
4	10.30	Yes	Yes	Yes	Yes	Yes	Yes	Yee	11256
4	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11500
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11249
4	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10568
4	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10704
4	14.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10604
4	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10700
4	14.19	Tes V	res V	Tes V	Tes V	Tes V	Tes V	res V	10439
	3.94	Tes Vec	Tes	Tes Vec	T es Yac	Tes Voc	T es Voc	Tes Vec	10903
2	3,95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11251
2	4.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12156
2	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11706
2	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10023
2	7.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9776
2	7.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9726
2	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10066
2	7.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9763
2	10.10	Tes V	Tes V	T es V	Tes V	Tes V	T es	res Ver	95/1
	10.10	Tes Vac	T es Vac	T es Vac	T es Vac	T es Vac	T es Vac	Tes Ver	9547
2	10.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9536
2	10.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9650
2	14.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9170
2	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9201
2	14.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9137
2	14.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9028
2	14.22	res	res	res	res	i res	res	res	2008

Table J.164: Resilient modulus data with QC/QA (B_2_16_98)

	Opey [psi]	SNRLVDT#1 > 3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
8	4 07	No	Ves	Ves	Yes	Yes	No	No	×
8	4.30	No	Yes	Yes	Yes	Yes	No	No	×
8	4.12	No	Yes	Yes	Yes	Yes	No	No	×
8	4.12	No	Yes	Yes	Yes	Yes	No	No	×
8	4.11	No	Yes	Yes	Yes	Yes	No	No	×
8	7.40	No	Yes	Yes	Yes	Yes	No	No	×
8	7.18	Yes	Yes	Yes	Yes	Yes	NO	No	×
0 	7.40	NO	Tes Voc	Yes Voc	T es Voc	Tes Voc	No	No	×
8	812	No	No	No	No	No	No	No	~ ×
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20175
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20304
8	10.46	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.56	No	Yes	Yes	Yes	Yes	Yes	Yes	20884
8	10.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20372
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20063
8	14.00	Tes Voc	I es Vec	I es Voc	I es Voc	I es Vec	I es Voc	Tes	20049
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20049
8	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20063
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	4.12	No	Yes	Yes	Yes	Yes	No	No	×
6	7.41	No	Yes Vec	Yes	Tes	Yes Vec	No	No	×
6	7 41	Ves	Ves	Vec	Ves	Vec Vec	No	No	~
6	7.22	No	Yes	Yes	Yes	Yes	No	No	×
6	7.44	Yes	Yes	Yes	Yes	No	No	No	×
6	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18893
6	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18584
6	10.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18974
6	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18062
6	14.62	Tes Voc	I es Voc	T es Voc	Tes	Tes	I es Voc	Yes	10304
6	14.87	Ves	Ves	Ves	Ves	No	Ves	No	× *
6	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17160
6	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17329
6	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	4.15	No	Yes	Yes	Yes	Yes	No	No	×
4	4.15	No	Yes	Yes	Yes	Yes	No	No	×
4	4.13	No	Yes	Yes	Yes	Yes	No	No	×
4	4.13	res No	Tes Voc	Tes Voc	I es Voc	Tes Voc	NO	No	×
4	7 44	No	Ves	Yes	Yes	Yes	Yes	No	×
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16722
4	7.45	No	Yes	Yes	Yes	Yes	Yes	Yes	16598
4	7.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17005
4	7.59	No	Yes	Yes	Yes	Yes	Yes	Yes	17647
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16395
4	10.55	Tes Ver	I es Vec	Yes	Tes Ver	Yes Vec	Tes	Yes	16025
4	10.56	Vec	Tes Vac	Vac	Ves	Vec	Tes Vac	Ver	16055
4	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15840
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
2	4.15	NO	T es Voc	Yes	T es Voc	T es Voc	мо	No	
2	4.14	No	Ves	Vac	Tes Vas	Vec	No	No	×
2	4.14	No	Yes	Yes	Yes	Yes	No	No	×
2	4.13	No	Yes	Yes	Yes	Yes	No	No	×
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13833
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14553
2	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14263
2	7.22	No	Yes	Yes	Yes	Yes	Yes	Yes	14716
2	7.21	No	Yes	Y es	Tes	I es Ver	I es	Yes	14109
2	10.33	res V	T es Vac	T ES	T es	T es	T es	res Ves	13484
2	10.32	T es Voc	Yes	Tes Vac	Yes	Yes	T es Yoc	Yee	13295
2	10.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13764
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13526
2	14.43	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.44	Yes	Yes	Yes	Yes	No W-	Yes	No	X

Table J.165: Resilient modulus data with QC/QA (C_1_12_103)

Go Incil	Gamelaril	SNRT VTO THE > 3	SNRT VIDTED > 3	SNRt vormes > 3	$SNR_{*} > 10$	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [nsi]
03 [[94]	ODEA Davi	M.	V.	Water Contraction		U - 0.01		Criterion	The second secon
8	4.34	No	Yes	Yes	Yes	Yes	No	No	×
8	4.52	No	I es Voc	Tes Vec	Tes Vac	Tes Vec	No	No	× ×
8	4 30	No	Ves	Ves	Ves	Ves	No	No	×
8	4.11	No	Yes	Yes	Yes	Yes	No	No	×
8	7.22	No	Yes	Yes	Yes	Yes	Yes	Yes	21188
8	7.41	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7.42	No	Yes	Yes	Yes	Yes	Yes	Yes	21795
8	7.38	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7.39	No	Yes	Yes	Yes	Yes	Yes	Yes	22096
8	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21216
8	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21361
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21692
Ö	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22172
8	14.61	Tes Vec	T es Vos	Tes Vec	Tes Vec	Tes Ves	Tes Vec	Tes	21576
8	14.61	Ves	Ves	Ves	Ves	Ves	Ves	Ves	21300
8	14.41	Yes	Ves	Yes	Yes	Yes	Yes	Yes	20579
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20699
8	14.59	Ýes	Yes	Ýes	Yes	Yes	Yes	Yes	20787
6	4.13	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.13	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.14	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.13	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.15	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.53	No	Yes	Yes	Yes	Yes	Yes	Yes	19888
6	7.70	No	I es Wor	I es Voc	Yes Voc	I es Voc	Yes	Yes	20167
6	7.22	No	Tes Voc	Tes Vec	Tes Vec	Tes Vec	Tes Vec	No	×
6	7 20	No	Ves	Ves	Ves	Ves	Ves	No	×
6	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18991
6	10.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19232
6	10.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19771
6	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19198
6	10.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18838
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18837
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18212
6	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18611
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18520
0	14.42	I es	I es	Yes	I es	I es Voc	Y es	Yes	1/982
4	3.74	No	Tes Ves	Ves	Ves	Tes Ves	No	No	×
4	3.94	No	Ves	Ves	Yes	Ves	No	No	×
4	3.96	No	Yes	Yes	Yes	Yes	No	No	×
4	3.92	No	Yes	Yes	Yes	Yes	No	No	×
4	7.21	No	Yes	Yes	Yes	No	No	No	×
4	7.43	No	Yes	Yes	Yes	Yes	No	No	×
4	7.23	No	Yes	Yes	Yes	Yes	No	No	×
4	7.20	No	Yes	Yes	Yes	Yes	No	No	×
4	7.22	No	Yes	Yes	Yes	Yes	No	No	X
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17378
4	10.55	I es Voc	Tes Voc	I es Voc	Yes Voc	Tes Voc	Tes Voc	res Voc	17302
4	10.32	Ves	Ves	Ves	Yes	Ves	Ves	Ves	16754
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16930
4	14.97	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.67	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.47	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.46	Yes	Yes	Yes	Yes	No	Yes	No	×
2	4.10	No	Yes	Yes	Yes	Yes	Yes	No	×
2	4.02	No	Yes	Yes	No	Yes	Yes	No	×
4	4.13	No N-	I es	Yes Ver	Yes Ver	I es	Yes	I'to No	×
	3.52	No	I es Voc	Tes Vec	Tes Vec	Tes Vec	Tes Vac	No	<u>^</u>
2	7.24	Ves	Ves	Ves	Ves	Ves	Ves	Ves	15832
2	7.25	No	Yes	Yes	Yes	Yes	Yes	Yes	16113
2	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16209
2	7.24	No	Yes	Yes	Yes	Yes	Yes	Yes	15710
2	7.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16039
2	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15098
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14741
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15108
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14822
2	10.33	Y es	Yes	Yes	Yes	Yes	Yes	Yes	15102
2	14.50	I es V	I es W	Yes	Yes	No No	Tes	INO No	×
2	14.42	Tes Voc	T es	Voc	Voc	No	Voc	No	
2	14 45	Yes	Yes	Yes	Yes	No	Yes	No	÷.
2	14.45	Yes	Yes	Yes	Yes	No	Yes	No	x

Table J.166: Resilient modulus data with QC/QA (C_2_12_103)

G2 [nsi]	Oper [asi]	SNRL VDT#1 > 3	SNRL VDT#2>3	SNRL VDT#3 > 3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [[si]	O DEA [bai]	M-	West West	Ver	V.	V - 0.04	N-	Criterion	Total Report
8	4.51	No	Tes Vec	Yes Vec	T es Voc	T es Voc	No	No	×
8	4.32	No	Ves	Ves	Ves	Yes	No	No	×
8	4.31	No	Yes	Yes	Yes	Yes	No	No	×
8	4.51	No	No	Yes	Yes	Yes	No	No	×
8	7.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25728
8	7.41	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7.40	No	Yes	Yes	Yes	Yes	Yes	No	×
0	7.42	NO No	I es Ver	Yes	Tes	Tes Ver	Tes Ver	INO	×
8	10.70	No	Ves	Yes	Yes	Yes	Yes	Ves	25398
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26162
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24080
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24010
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25102
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23350
8	14.63	Ves	Vec	Vac	Ves	Vas	Ves	Ver	22831
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23071
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23811
6	4.30	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.31	No	Yes	Yes	Yes	Yes	Yes	No	×
ь	4.31	No No	Yes	Yes	Yes	Yes	Yes	No	×
8	4.55	No	I es Voc	I es Voc	I es Voc	I es Voc	T es Voc	No	
6	7.61	No	Yes	Yes	Yes	Yes	No	No	×
6	7.61	Yes	Yes	Yes	Yes	No	No	No	×
6	7.40	No	Yes	Yes	Yes	Yes	No	No	×
6	7.60	Yes	Yes	Yes	Yes	Yes	No	No	×
6	7.67	No	Yes	Yes	Yes	Yes	No	No	×
о 2	10.70	T es Voc	T es Voc	Yes	T es Voc	Tes	Tes	Yes	21040
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22389
6	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21651
6	10.69	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21442
6	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20024
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21027
Б	14.83	Y es	Yes V	Yes	Yes	Yes Vo	Yes	Yes	21343
6	14.05	Tes Vec	Tes Vec	Tes Ves	Ves	Ves	Tes Vas	Vec	20049
4	4.31	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.36	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.46	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.81	Yes	Yes	Yes	No	Yes	Yes	No	×
4	4.32	No	T es Voc	Tes Voc	I es	Tes	I es Voc	No	× 20013
4	7 42	No	Yes	Yes	Yes	Yes	Yes	Yes	21505
4	7.42	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.43	No	Yes	Yes	Yes	Yes	Yes	Yes	20431
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19823
4	10.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20353
4	10.52	T es Voc	Tes Voc	Tes Voc	I es Voc	Tes Voc	Tes Voc	Yes	20579
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19342
4	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19852
4	14.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18627
4	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18545
4	14.64	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes	18153
4	14.64	Tes Vec	Tes Vec	T es Yes	Yes	Yes	T es Yes	Yes	18/46
2	4.32	No	Yes	Yes	Yes	Yes	No	No	X
2	4.32	No	Yes	Yes	Yes	Yes	No	No	×
2	4.33	No	Yes	Yes	Yes	Yes	No	No	×
2	4.32	No	Yes	Yes	Yes	Yes	No	No	×
2	4.33	No	Yes	Yes	Y es	Yes	No	No V	X 10571
2	7.42	Tes Vec	ies Vec	T es Vac	Tes Vac	Tes Vec	T ES Vac	Tes Vec	18571
2	7,43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18727
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18536
2	7.42	No	Yes	Yes	Yes	Yes	Yes	Yes	19573
2	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17737
2	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17415
2	10.51	T es Var	T es Voc	Tes Var	T es Vac	Tes Vac	T es Vac	Yes	17834
2	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18359
2	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16586
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16494
2	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16471
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16887
4	14.03	I I ES	I I ES	Ies	Ies	Ies	Ies	ies	10724

Table J.167: Resilient modulus data with QC/QA (C_1_95_103)

6	σ	SNRT TRANK > 3	SNRT TRANS 3	SNRT TRANS > 3	SNR > 10	A ~ 0.040	COV < 10%	Pass	Mr. Incil
O3 [ps1]	ODEA [b21]	DIALCE AD IMI ~ 2	DIALCE AD 147 - 2	DIVICENDIAS	DIAL PLANC	0 < 0.04	000 \$ 10.0	Criterion	TOLK [D21]
8	4.30	No	Yes	No	Yes	Yes	No	No	×
8	4.28	No	Yes	No	Yes	Yes	No	No	×
8	4.50	No	Yes	No	Yes	Yes	No	No	×
8	4.51	No	Yes	No	Yes	Yes	No	No	×
8	4.51	No	Yes	No	Yes	Yes	No	No	×
8	7.60	Yes	Yes	No	Yes	Yes	No	No	×
8	7.59	No	Yes	Yes	Yes	Yes	No	No	×
8	7.60	No	Yes	No	Yes	Yes	No	No	×
8	7.60	No	Yes	Yes	Yes	Yes	No	No	×
8	7.60	Yes	Yes	No	Yes	Yes	No	No	×
8	10.67	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.69	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.67	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27368
8	14.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25859
8	14.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25162
8	14.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25492
8	15.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26177
8	15.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25463
6	4.50	No	Yes	No	Yes	Yes	No	No	×
6	4.50	No	Yes	No	Yes	Yes	No	No	×
6	4.51	No	Yes	No	Yes	Yes	No	No	×
6	4.51	No	Yes	No	Yes	Yes	No	No	×
6	4.52	No	Yes	No	Yes	Yes	No	No	×
6	7.61	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	7.62	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.60	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	7.61	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	7.59	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25729
6	10.91	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.70	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.69	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26072
6	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23188
6	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22133
6	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23553
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23051
6	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22644
4	4.32	No	Yes	No	Yes	Yes	Yes	No	×
4	4.51	No	Yes	No	Yes	Yes	Yes	No	×
4	4.55	No	Yes	No	Yes	Yes	Yes	No	×
4	4.42	No	Yes	No	Yes	Yes	Yes	No	×
4	4.70	Yes	Yes	No	Yes	Yes	Yes	No	×
4	7.63	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	7.61	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21213
4	7.61	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	7.62	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	10.71	No	Yes	Yes	Yes	Yes	Yes	Yes	23366
4	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24144
4	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21531
4	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22119
4	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22331
4	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19939
4	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20439
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19888
4	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20118
4	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20310
2	4.34	No	Yes	No	Yes	Yes	No	No	×
2	4.33	Yes	Yes	No	Yes	Yes	No	No	×
2	4.31	No	Yes	No	Yes	Yes	No	No	×
2	4.33	Yes	Yes	No	Yes	Yes	No	No	×
2	4.53	No	Yes	No	Yes	Yes	No	No	×
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	7.40	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	7.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17682
2	7.81	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18279
2	10.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18919
2	10.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19342
2	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19404
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18433
2	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16258
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16540
2	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16862
2	14.86	Yes	Yes	Yes	Yes	No	Yes	No	×
1 2	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17166

Table J.168: Resilient modulus data with QC/QA (C_2_95_103)

σ ₂ [nsi]	O DEV [Isi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [psi]
03 [[94]	ODEV [psi]	17-	W	N.	ų	V	¥	Criterion	THE REAL
• •	4.11	INO No	T es Voc	INO No	Tes	T es Ver	мо	No	<u>~</u>
8	4.03	No	Vec	No	Vec	Vec	No	No	
8	4.00	No	Vec	No	Ves	Ves	No	No	~
8	4.69	No	Yes	No	Yes	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	Yes	No	No	×
8	7.38	No	Yes	Yes	Yes	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	No	No	No	×
8	7.38	No	Yes	Yes	Yes	Yes	No	No	×
8	7.39	No	Yes	Yes	Yes	No	No	No	×
8	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.49	No	Y es	Yes	Yes	Yes	I es	INO	×
0 0	10.49	NO Ver	T es	Yes	I es Wes	T es	I es Was	INO	20206
8	14.60	No	Vec 1	Voc	Voc	Vec	Vec	Vec	27884
8	14.69	Yes	Yes	Yes	Yes	Yes	Yes	Ves	29408
8	14.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29065
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27939
6	4.10	No	Yes	No	Yes	Yes	No	No	×
6	4.10	No	Yes	No	Yes	Yes	No	No	×
6	4.09	No	Yes	No	Yes	Yes	No	No	×
6	4.15	No	Yes	No	Yes	Yes	No	No	×
6	4.22	No	Yes	No	Yes	Yes	No	No	×
6	7.58	No	Yes	Yes	Yes	Yes	No	No	×
6	7.33	NO N-	Tes V	Tes V	Tes V	Tes N-	190 M-	INO N-	×
9	7.44	190 No	I ES Voc	I ES Voc	I es Voc	N0 V~	No No	No	~
6	7 44	No	Vac	Vac	Vec	Vac	No	No	~×
6	10.51	No	Yes	Yes	Yes	Yes	No	No	×
6	10.51	No	Yes	Yes	Yes	No	No	No	×
6	10.52	No	Yes	Yes	Yes	Yes	No	No	×
6	10.52	No	Yes	Yes	Yes	Yes	No	No	×
6	10.71	No	Yes	Yes	Yes	Yes	No	No	×
6	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26032
6	14.83	No	Yes	Yes	Yes	Yes	Yes	Yes	26997
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26449
6	14.62	No	Yes	Yes	Yes	Yes	Yes	Yes	26708
Ь	14.62	I es	I es	Y es	Tes	Yes	I es	Yes	25751
4	4.13	No	I es Voc	No	Tes	I es Vec	мо	No	^
4	4 52	No	Ves	No	Ves	Ves	No	No	×
4	4.11	No	Yes	No	Yes	Yes	No	No	×
4	4.12	No	Yes	No	Yes	Yes	No	No	×
4	7.44	No	Yes	Yes	Yes	Yes	No	No	×
4	7.42	No	Yes	Yes	Yes	Yes	No	No	×
4	7.43	No	Yes	Yes	Yes	No	No	No	×
4	7.52	No	Yes	Yes	Yes	Yes	No	No	×
4	7.79	No	Yes	Yes	Yes	Yes	No	No	×
4	10.52	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.50	140 No	I ES Voc	I ES Voc	I ES Voc	I ES Vac	Tes	INO No	× ~
4	10.57	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.50	No	Yes	Yes	Yes	Yes	Yes	No	×
4	14.65	No	Yes	Yes	Yes	No	Yes	No	×
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.64	No	Yes	Yes	Yes	No	Yes	No	×
4	14.64	No	Yes	Yes	Yes	No	Yes	No	×
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24056
2	4.12	No N-	Y es	Y es	Tes	I es	NO N-	INO N-	×
2	4.14	140 No	I ES Voc	T ES Voc	I ES Voc	I ES Vac	140 No	No	×
2	4 34	No	T es Voc	Tes Voc	Yee	T es Voc	No	No	~ ×
2	4.13	No	Yes	Yes	Yes	Yes	No	No	×
2	7.43	No	Yes	Yes	Yes	No	No	No	×
2	7.43	No	Yes	Yes	Yes	Yes	No	No	×
2	7.24	No	Yes	Yes	Yes	No	No	No	×
2	7.22	No	Yes	Yes	Yes	No	No	No	×
2	7.47	No	Yes	Yes	Yes	Yes	No	No	×
2	10.54	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.53	No	Yes	Yes	Yes	No	Yes	No	×
2	10.53	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.53	NO N-	I es	I es	Tes V	NO N-	Tes V	INO N-	×
	10.52	No.	I ES Voc	I ES	I ES	No	I ES Voc	No	×
2	14 71	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.65	No	Yes	Yes	Yes	No	Yes	No	×
2	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
5	14.65	No	Vac	Vac	Vac	No	Var	No	~

Table J.169: Resilient modulus data with QC/QA (C_1_8_103)

Go Insil	Gran [nei]	SNRL MDT#1 > 3	SNRL VDT#2 > 3	SNRLVDT#3>3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [[si]	O DEV [psi]	100 IMI -	1 0D 1H2			0 40.04		Criterion	Total Manual
× ×	4.39	No	Yes	Yes	Yes	Yes	Yes	No	×
	4.40	NO	OM V-	I es	Tes	I es	Tes	INO N-	x
<u> </u>	4.98	190	I es M-	I es	Tes	I es	res	INO DI-	×
	4.57	No	No	Vec	Vec	Tes Voc	Tes Vec	No	
8	7.62	Mo	Mo	Voc	Voc	Voc	Voc	No	÷
8	7.61	No	No	Ves	Ves	Ves	Ves	No	2 ×
8	7.69	No	No	Ves	Yes	Ves	Yes	No	×
8	8.09	Ves	No	Yes	Yes	Yes	Yes	No	×
8	7 43	No	No	Yes	Yes	Yes	Yes	No	×
8	10.53	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.73	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.69	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.77	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	10.85	Yes	Yes	Yes	Yes	Yes	Yes	No	×
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30617
8	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30329
8	15.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30018
8	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29371
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29912
6	4.57	No	Yes	Yes	Yes	Yes	No	No	×
6	4.54	No	No	Yes	Yes	Yes	No	No	×
6	4.54	No	No	Yes	Yes	Yes	No	No	×
6	4.42	Мо	Мо	Yes	Yes	Yes	No	No	×
6	4.62	Ио	No	Yes	Yes	Yes	No	No	×
6	7.63	No No	T es	I es	I es	Y es	Tes	INO N-	×
D	7.62	NO	Tes	Y es	Tes	T es	res V	INO	×
0	7.40	No.	V	I es V	I es Waa	I es V	I es	INO N-	~
8	7.01	No	No	Voc	Voc	Voc	Tes Voc	No	
6	10.74	Ver	Ver	Voc	Voc	Vec	Vac	No	Ŷ
6	10.14	Ves	Yes	Yes	Yes	Yes	Yes	No	×
6	10.71	No	Ves	Yes	Yes	Yes	Yes	No	×
6	10.52	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	No	×
6	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28408
6	15.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28198
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27506
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29063
6	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29646
4	4.33	No	No	Yes	Yes	Yes	Yes	No	×
4	4.34	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.34	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.30	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.53	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.26	Yes	No	Yes	Yes	No	Yes	No	×
4	7.62	No	No	Yes	Yes	No	Yes	No	×
4	7.64	No	Yes	Yes	Yes	NO	Yes	No	×
4	7.04	NO	I es	Y es	Tes	NO	Tes	INO	×
4	10.76	190	011	Tes	Tes	140	Tes	INO DI-	×
4	10.76	041	I es Wei	Tes	Tes	Tes	Tes	INO DI-	<u>.</u>
4	10.00	T es Voc	I es Voc	Voc	Voc	Voc	T es Voc	No	<u></u>
4	10.56	Ves	Vec Vec	Vas	Vas	Vac	Ves	No	×
4	10.56	Yes	Yes	Yes	Yes	Yes	Yes	No	×
4	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27292
4	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26974
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26620
4	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25646
4	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26615
2	4.37	No	No	Yes	Yes	Yes	Yes	No	×
2	4.43	No	No	Yes	Yes	Yes	Yes	No	×
2	4.70	No	No	Yes	No	Yes	Yes	No	×
2	4.33	No	No	Yes	Yes	Yes	Yes	No	×
2	4.32	No	No	Yes	Yes	Yes	Yes	No	×
2	7.61	Yes	No	Yes	Yes	Yes	Yes	No	×
2	7.64	No	No	Yes	Yes	No	Yes	No	×
2	7.45	No	No	Yes	Yes	Yes	Yes	No	×
2	7.44	Мо	No	Yes	Yes	Yes	Yes	No	×
2	1.42	Yes	No	Yes	Yes	No	Yes	No	×
2	10.73	Y es	I es	I es	I es	Yes	Tes	No N-	×
	10.72	res V	res V	T ES	res V	res V	res V	INO N-	×
	10.73	I ES	I es V	I ES	I ES	I ES	I ES	140 N-	×
2	10.55	I es Vac	I es	I ES V-r	I ES	I ES V	I ES	110 N-	×
	14.85	T es Voc	T es Voc	T es Vac	T es Voc	T es Vec	Tes ∀ac	Vec	23692
2	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24022
2	14.84	Yes	Yac	Yes	Yes	Yee	Yee	Yes	23526
2	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24108
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23614

Table J.170: Resilient modulus data with QC/QA (C_2_8_103)

σ ₃ [psi]	ODEV [psi]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.08	No	Yes	Yes	Yes	Yes	No	No	×
8	4.06	No	Yes	Yes	Yes	Yes	No	No	×
8	4.30	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	7.42	No	Yes	Yes	Yes	Yes	Yes	Yes	17205
8	7.40	No	Yes	Yes	Yes	Yes	Yes	Yes	16596
8	7.43	No	Yes	Yes	Yes	Yes	Yes	Yes	16860
8	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16058
8	7.46	No	Yes	Yes	Yes	Yes	Yes	No	X
Ö Ö	10.29	I es	Yes	Y es	I es	Yes	I es	Yes	15/69
8	10.30	Vor	Voc	Voc	Voc	Vor	Voc	Voc	15004
8	10.27	No	Vec	Vec	Vec	Vec	Vec	Vec	15943
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15618
8	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15289
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15761
8	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15797
8	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
8	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15770
6	4.14	No	Yes	Yes	Yes	Yes	No	No	×
6	4.17	No	Yes	Yes	Yes	Yes	No	No	×
6	4.12	No	Yes	Yes	Yes	Yes	No	No	×
6	4.16	NO N-	Tes V	Tes V	res V	Tes V	NO M-	INO N-	×
8	9.17	No.	I ES Voc	I ES	I ES	I ES	011 20V	Ver	14532
8	7 41	No	Vec	Yes	Yes	Yes	Yee	Ves	15454
6	7,20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14834
6	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14539
6	7.20	No	Yes	Yes	Yes	Yes	Yes	Yes	14862
6	10.48	Yes	Yes	Yes	Yes	Yes	No	No	×
6	10.49	Yes	Yes	Yes	Yes	Yes	No	No	×
6	10.50	Yes	Yes	Yes	Yes	Yes	No	No	×
6	10.48	Yes	Yes	Yes	Yes	Yes	No	No	×
6	10.88	No	No	No	No	No	No	No	×
b c	14.63	I es	Yes	Y es	Tes	No N-	I es	INO N-	×
6	14.03	I es Ver	I es Voc	I es Vec	I es Vec	No No	I es Vec	No	·····
6	14.43	Vec	Vec	Vec	Ves	No	Ves	No	
6	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	4.14	No	Yes	Yes	Yes	Yes	Yes	Yes	12270
4	4.12	No	Yes	Yes	Yes	Yes	Yes	Yes	12155
4	3.93	No	Yes	Yes	Yes	Yes	Yes	Yes	11819
4	3.91	No	Yes	Yes	Yes	Yes	Yes	No	×
4	3.92	No	Yes	Yes	Yes	Yes	Yes	Yes	11959
4	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12110
4	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12134
4	7.20	T es Ver	Yes Vec	Tes	Tes	Tes Voc	I es	Yes	12187
4	7.39	I es Vec	I es Vec	I es Voc	I es Voc	I es Vec	I es Voc	Tes	12136
4	10.31	Ves	Ves	Ves	Ves	Yes	Ves	Ves	12157
4	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11862
4	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12233
4	10.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11804
4	10.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11894
4	14.44	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.44	I es	Yes V	I es	I es	No N-	I es	INO N-	×
4	14.44	res V	res V	res V	res V	NO N-	res V	No N-	×
9	3 01	T es Vac	Tes Vac	T es Vac	Tes	MO Vac	Tes	Vec	10063
2	3.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9985
2	3,93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10354
2	3.92	No	Yes	Yes	Yes	Yes	Yes	Yes	10280
2	3.93	No	Yes	Yes	Yes	Yes	Yes	Yes	10590
2	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10132
2	7.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9926
2	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9664
2	7.02	No	Yes	Yes	Yes	Yes	Yes	Yes	10001
2	1.23	No	Yes	Yes	Yes	Yes	Yes	Yes	10644
2	10.12	I es V	I es V	Tes V	T es	I es	Tes V	Yes N-	9447
2	10.12	I es V~	I ES Voc	I ES	T es Voc	NO No	I ES Voc	No	×
2	1012	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9655
2	10.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	9538
2	14.24	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.27	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.36	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.49	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.24	Yes	Yes	Yes	Yes	No	Yes	No	X

Table J.171: Resilient modulus data with QC/QA (C_1_13_98)

σ_{3} [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.08	No	Yes	Yes	Yes	Yes	No	No	×
8	4.06	No	Yes	Yes	Yes	Yes	No	No	×
8	4.30	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	7.19	No	Yes	Yes	Yes	Yes	Yes	Yes	17386
0 8	7.19	No Vec	Tes Voc	Tes Vec	i es Vec	ies Voc	Tes Voc	Yes Voc	1/0/1
8	7.13	No	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	17420
8	7 21	Ves	Yes	Yes	Yes	Yes	Yes	Ves	17239
8	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16731
8	10.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16652
8	10.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15972
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16144
8	10.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16550
8	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13612
8	14.45	Tes Vec	Tes Vec	T es Vac	T es Vac	NO Vac	Tes Vec	No Vor	15516
8	14.40	Ves	Ves	Ves	Ves	No	Ves	No	× 13510
8	14.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15853
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.09	No	Yes	Yes	Yes	Yes	No	No	×
6	7.21	No	Yes Ver	Yes	Tes	Y es	Yes	Yes	15480
8	7.21	Ves	Tes Ves	Tes Vec	Tes Ves	Vec	Ves	Vee	14326
6	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15002
6	7.21	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14406
6	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14580
6	10.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14588
6	10.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14231
b	10.52	Yes	Yes	Yes	Yes	Yes N-	Yes	Yes	14458
6	14.30	Tes Vec	Tes Vec	T es Ves	Yes Ves	No	Tes Ves	No	×
6	14.45	Yes	Ves	Yes	Yes	No	Yes	No	×
6	14.55	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.83	Yes	Yes	Yes	Yes	No	Yes	No	×
4	4.14	No	Yes	Yes	Yes	Yes	Yes	No	×
4	3.92	No	Yes	Yes	Yes	Yes	Yes	Yes	11539
4	4.12	No	Yes	Yes	Yes	Yes	Yes	Yes	12866
4	4.13	No	Yes	Yes	Y es Voc	Yes	Yes	No	× 11521
4	7.35	Tes Ves	Tes	Tes Ves	Tes Ves	Tes Ves	Tes Ves	Tes Ves	12911
4	7 24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12186
4	7.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12462
4	7.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12179
4	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12525
4	10.31	Yes	Yes	Yes	Yes	No	Yes	No	×
4	10.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12068
4	10.31	I es Vez	Tes Vac	Tes Vec	Tes	Yes	T es	Yes	12199
4	10.31	Ves	Vas	Vas	Tes Vac	Ves	Vec	Ver	12199
4	14.46	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.63	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.47	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.25	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.23	Yes	Yes	Yes	Yes	No	Yes	No	×
2	3.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10434
<u>2</u>	3.92	No	Tes Vac	T es Voc	Tes	Yes Voc	T es Voc	Yes	10300
2	3.92	Ves	Ves	Ves	Yes	Ves	Yes	No	10500 ×
2	4.13	No	Yes	Yes	Yes	Yes	Yes	No	×
2	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10111
2	7.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10137
2	7.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10595
2	7.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11033
2	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10017
2	10.11	Yes	Yes	Yes	Yes	No	Yes	No	×
2	10.10	I es V	Tes Vac	Yes Ver	Tes	No No	Y es	INO	×
2	10.10	Ves	Vec Vec	Vas	Vas	No	Vac	No	
2	10.19	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.30	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.61	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.26	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.21	Yes	Yes	Yes	Yes	No No	Yes	No	×
4	1 14.21	1 165	1 1 1 8	1 1 65	1 1 65	011	1 1 1 6 5	1 110	A .

Table J.172: Resilient modulus data with QC/QA (C_2_13_98)

G2 [nsi]	Oper Insil	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	MR [psi]
03 [bu]	4 00	M-	No.	No.	ų V	V VO.01	V	Criterion	THE REAL
0 2	4.09	No	I es Vec	I es Voc	Tes	I es Voc	Tes	No	
0 8	4.50	No	Tes Voc	Voc	T es Voc	Tes Voc	Voc	No	
8	4.10	No	Vec	Vec	Ver	Vec	Vec	No	
8	413	No	Ves	Yes	Yes	Yes	Yes	No	×
8	7.18	No	Yes	Yes	Yes	Yes	No	No	×
8	7.16	No	Yes	Yes	Yes	Yes	No	No	×
8	7.36	No	Yes	Yes	Yes	No	No	No	×
8	7.18	No	Yes	Yes	Yes	No	No	No	×
8	7.19	No	Yes	Yes	Yes	Yes	No	No	×
8	10.29	No	Yes	Yes	Yes	Yes	Yes	Yes	22902
8	10.27	No	Yes	Yes	Yes	Yes	Yes	No	×
8	10.26	No	Yes	Yes	Yes	Yes	Yes	Yes	23239
8	10.27	No	Yes	Yes	Yes	Yes	Yes	Yes	22662
8	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22738
8	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22602
0 0	14.63	Tes V	I es	Y es	I es	Tes	Yes Voi	Yes	22407
	14.40	I es W	Yes Wes	I es V	res V	res Ver	res	Yes	23304
0	14.02	I es Var	I es Vac	T es Ver	Tes	I es Vec	T es	Tes	23475
8	4.00	No	Ver	Vor	Voc	Vor	No	No	22015
Б Б	4 45	No	Ves	Yes	No	Yes	No	No	×
6	4.09	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	4.10	No	Yes	Yes	Yes	Yes	No	No	×
6	7.21	No	Yes	Yes	Yes	Yes	No	No	×
6	7.20	No	Yes	Yes	Yes	Yes	No	No	×
6	7.44	No	Yes	Yes	Yes	Yes	No	No	×
6	7.25	No	Yes	Yes	Yes	Yes	No	No	×
6	7.35	No	Yes	Yes	Yes	No	No	No	×
6	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21036
6	10.30	No	Yes	Yes	Yes	Yes	Yes	No	×
0	10.30	NO M-	I es	res V	I es	res	res Ver	Yes	21/12
0 6	10.20	NO Var	Tes V	T es Ver	T es	ies Ver	Tes	Yes	20664
6	14.62	Ver	Vec	Vor	Voc	Voc	Voc	Vec	20708
6	14.63	Ves	Ves	Ves	Yes	Yes	Yes	Ves	20543
6	14 41	No	Ves	Yes	Yes	Yes	Yes	Ves	21230
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21283
6	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20559
4	4.13	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	4.12	No	Yes	Yes	Yes	Yes	No	No	×
4	7.22	No	Y es	Tes	Tes	I es	Yes	Yes	18746
4	7.23	NO N-	I es	Tes V	I es	res	res V	INO NI-	×
4	7.10	Mo	Tes Vec	Ver	Tes Vec	Vec Vec	Tes Vec	No	
4	7 34	No	Vac	Voc	Ves	Vas	Vos	No	×
4	10.51	Ves	Ves	Yes	Yes	Yes	Ves	Ves	19574
4	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18936
4	10.57	No	Yes	Yes	Yes	Yes	Yes	Yes	19503
4	10.56	No	Yes	Yes	Yes	Yes	Yes	Yes	19410
4	10.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19204
4	14.64	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.42	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.61	Yes	Yes	Yes	Yes	No	Yes	No	×
4	14.62	Y es	Y es	Y es	Tes	NO	Yes 😽	INO	×
4	14.41	I es M-	I es	Tes	Tes	011	res M-	INO NI-	×
	3.02	No	Vec	Vec 105	Vec	Vec	No	No	
	3.93	No	Vos	Voc	Vas	Vos	No	No	×
2	3,94	No	Yes	Yes	Yes	Yes	No	No	×
2	4.14	No	Yes	Yes	Yes	Yes	No	No	×
2	7.62	No	Yes	Yes	Yes	Yes	Yes	Yes	17619
2	7.22	No	Yes	Yes	Yes	Yes	Yes	No	×
2	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15896
2	7.23	No	Yes	Yes	Yes	Yes	Yes	Yes	16931
2	7.24	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17172
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16950
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16743
2	10.51	No	Yes V	I es	I es	Y es	Yes	Yes	17314
2	10.31	res	res	Tes	Tes	res M-	Tes	res	17082
2	14.00	Vec	Vec	Ver	Vec	No No	Vec	No	<u>^</u>
2	14 44	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.65	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.173: Resilient modulus data with QC/QA (C_1_10_98)

	ODEV [DSI]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
8	412	No	Ves	Ves	Ves	Ves	No	No	×
8	4.12	No	Yes	Yes	Yes	Yes	No	No	×
8	4.11	No	Yes	Yes	Yes	Yes	No	No	×
8	4.10	No	Yes	Yes	Yes	Yes	No	No	×
8	4.09	No	Yes	Yes	Yes	Yes	No	No	×
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21023
8	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21609
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21744
8	7.39	No	Yes	Yes	Yes	Yes	Yes	No	×
8	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21321
8	10.48	No	Yes	Yes	Yes	Yes	Yes	Yes	20935
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21521
8	10.50	No	Yes	Yes	Yes	Yes	Yes	Yes	21217
8	10.50	No	Yes	Yes	Yes	Yes	Yes	Yes	21739
8	10.50	No	Yes	Yes	Yes	Yes	Yes	Yes	20958
8	14.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19701
8	14.59	I es	I es	Y es	Tes	I es	I es	Yes	20438
	14.01	I es W	I es	I es	I es	I es	I es	Yes	19676
8	14.55	Tes Voc	Voc	Vor	T es Voc	Voc	Voc	Voc	19952
3	4.13	No	Vor	Voc	Voc	Voc	No	No	19001
a l	4.13	No	Ves	Ves	Ves	Ves	No	No	~
6	413	No	Yes	Yes	Yes	Yes	No	No	×
6	4.11	No	Yes	Yes	Yes	Yes	No	No	×
6	4.13	No	Yes	Yes	Yes	Yes	No	No	×
6	7.41	No	Yes	Yes	Yes	Yes	No	No	×
6	7.41	Yes	Yes	Yes	Yes	Yes	No	No	×
6	7.41	No	Yes	Yes	Yes	Yes	No	No	×
6	7.28	No	Yes	Yes	Yes	Yes	No	No	×
6	8.17	No	No	No	No	No	No	No	×
6	10.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19510
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18879
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18931
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18447
6	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18319
6	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
6	14.62	Yes	Yes	Yes	Yes	No	Yes	No	×
	14.62	I es	Tes	Y es	Tes	I es	Tes	Yes	17556
0	14.02	I es W	Yes V	res V	Tes	NO M-	I es	INO NI-	X
0	14.03	I es Ma	Tes	Tes	I es	190	Tes	No	17222
4	4.04	No	Vec	Vec	Vec	Vec	Vec	No	~
4	4.18	No	Vec	Vac	Vas	Vos	Vas	No	×
4	4.03	No	Vec	Vas	Vas	Vas	Vas	No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	4 34	No	Yes	Yes	No	Yes	Yes	No	×
4	7.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17693
4	7.42	No	Yes	Yes	Yes	Yes	Yes	Yes	16769
4	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17200
4	7.42	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.22	No	Yes	Yes	Yes	Yes	Yes	No	×
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16773
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17015
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16546
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16739
4	10.50	Yes 😯	Yes	Yes	Yes	Yes	Yes	Yes	16540
4	14.65	Tes	I es V	I es	Tes	NO N-	Y es	No.	×
4	14.43	1 es V	1 es Vac	1 es Ver	T es	No No	I ES Var	INO No	×
4	14.00	T es Vac	Tes Voc	T es Voc	T es	No No	Vec	No	<u></u>
4	14.65	Ves	Ves	Yes	Yes	No	Yes	No	~X
2	4,14	No	Yes	Yes	Yes	Yes	Yes	Yes	15057
2	4,13	No	Yes	Yes	Yes	Yes	Yes	No	×
2	4,13	Yes	Yes	Yes	Yes	Yes	Yes	No	×
2	4.13	No	Yes	Yes	Yes	Yes	Yes	No	×
2	4.11	No	Yes	Yes	Yes	Yes	Yes	No	×
2	7.23	No	Yes	Yes	Yes	Yes	Yes	Yes	15668
2	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14630
2	7.23	No	Yes	Yes	Yes	Yes	Yes	Yes	14993
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15186
2	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14855
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14442
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15030
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15040
2	10.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14209
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13986
2	14.66	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.44	Yes	Yes	Yes	Yes	No	Yes	No	×
2	14.66	Y es	Yes	Y es	Y es	No	Yes	No	×
2	14.66	Yes V	Yes V	I es	I es	No W-	Tes W	INO N-	×
4	14.00	IES	Ies	IES	Ies	011	Ies	140	× 1

Table J.174: Resilient modulus data with QC/QA (C_2_10_98)

σ ₃ [psi	σ _{DEV} [psi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	$SNR_q > 10$	$\theta < 0.04^{\circ}$	COV < 10%	Pass Criterion	M _R [psi]
8	4.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27694
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26468
8	4.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27230
8	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27191
8	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27253
8	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25070
	7.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25064
0	7.30	Tes Voc	I es Voc	I es Voc	T es Voc	Tes Voc	Tes Voc	Yes	24620
8	7 37	Tes Vec	Tes Vac	Ves	Ves Ves	Tes Ves	Ves	Vec	24558
8	10.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23326
8	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23204
8	10.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23800
8	10.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23387
	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23717
8	14.75	I es Vec	I es Ves	Yes	Tes	Yes	Y es	Yes	22115
8	14.58	Tes Vec	Tes Vac	Ves	Vas	Vec Vec	Vec	Vec	21946
8	14.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22164
8	14.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21782
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24621
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24624
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25060
6	4.24	Yes V	I es V	I es V	T es V	Tes V	Yes V	Yes	24011
6	7.56	T es Vac	T es Yac	Tes	T es Vac	T es Vec	Yes	Vec	22907
6	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22274
6	7.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22233
6	7.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22714
6	7.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22904
6	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20991
6	10.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21216
8	10.65	I es Voc	I es Vac	I es Vec	T es Voc	Tes Vec	I es Vec	Tes Vac	21391
6	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21101
6	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19293
6	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19445
6	14.95	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19971
6	14.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19750
6	14.76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19721
4	4.07	Ves	I es Vec	Ves	Ves	Ves	Ves	Ves	21243
4	4.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21284
4	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20566
4	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20943
4	7.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19359
4	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19745
4	7.19	Yes W	Yes Wes	Yes V	Y es	Yes V	Yes	Yes	19202
4	7.40	Ves	Ves	Ves	Yes	Ves	Ves	Ves	19527
4	10.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18097
4	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18396
4	10.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18261
4	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18505
4	10.45	Yes	Yes V	Yes	Y es	Yes	Yes	Yes V	18275
4	14.30	T es Voc	T es Yoc	Tes Voc	Tes Vac	Yes	Yes	Vec	16937
4	14.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16927
4	14.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16936
4	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17171
2	3.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17959
2	3.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18679
2	3.30	Yes	Yes V	Yes	Yes	Yes	Yes	Yes	17645
	3.29	I es Voc	I es Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	1es Vec	18160
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16742
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16596
2	6.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16591
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16743
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16750
2	10.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15684
2	10.12	res Voc	Tes V~	Tes V~r	T es V~	Tes Voc	Tes Voc	Yes	15874
	10.32	Yee	T es Yac	Vec 105	Yee	Yes	Tes Vac	Ver	15683
2	10.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15649
2	14.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14457
2	14.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14483
2	14.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14466
2	14.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14431

Table J.175: Resilient modulus data with QC/QA (C_1_8_98)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25884
8	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26406
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26384
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26996
8	4.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27048
0 8	7.01	T es Vec	Tes Vec	Tes	Tes	Tes	Yes	Yes	24307
8	6.98	Ves	Ves	Ves	Yes	Ves	Yes	Ves	24078
8	6.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23953
8	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24378
8	9.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22987
8	10.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23262
8	10.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23241
8	9.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23176
8	9.85	I es V	Yes V	Tes Ver	Tes	I es	Yes	Yes	22986
8	4.32	Ves	Tes Ves	Ves	Ves	Ves	Ves	Ves	22573
8	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22106
8	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21890
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22223
6	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23477
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24384
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23936
8	7.25	T es Voc		T ES Vac	T ES	ies Voc	ies Voc	1es Vec	23883
6	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22280
6	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21435
6	10.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22108
6	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21913
6	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22239
6	14./1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21200
6	14.63	I es Vac	Tes Voc	T es Voc	Tes Voc	Tes Voc	Tes Voc	Yes	20820
6	14.62	Ves	Tes Vec	Vec	Vas	Vas	Tes Vac	Vec	20797
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20846
6	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20242
6	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20063
6	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20140
6	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19974
6	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20143
4	7.91	Ves	Ves	Ves	Ves	Ves	Ves	Ver	20572
4	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20350
4	7.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19966
4	7.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20043
4	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18554
4	10.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18738
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19163
4	10.65	I es Vor	I es Vac	Tes Vor	I es Voc	I es Voc	Tes Voc	Yes	19004
4	14.83	Yes	Ves	Yes	Yes	Yes	Yes	Ves	18268
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17883
4	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18175
4	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18413
4	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18268
4	4.31	Yes V	Yes V	Yes V	Yes V	Yes V	I es V	Yes Ver	17410
4 4	4.52	I es Voc	Tes Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	1es Vec	17425
4	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17419
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17508
2	7.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17682
2	7.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17407
2	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17121
	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17172
2	10.51	Tes Voc	T es Voc	Tes Voc	T es	Tes	Tes Voc	Yes	17159
2	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16258
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16282
2	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16272
2	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15858
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15451
2	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15165
2	14.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes V	15113
	14.63	I es Voc	res Vac	T es Voc	res Var	res Voc	T es Voc	Yes	15122
2	4 18	Yes	Yes	Yes	Yes	Yes	Yes	Ver	14590
2	4.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14649
2	4.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14692
2	4.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14595
2	4.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14595

Table J.176: Resilient modulus data with $QC/QA(C_2_8_98)$
σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43081
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43003
8	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41102
8	4.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42393
8	7.37	Ves	Tes Ves	Vec	Ves	Ves	Vec	Ves	39904
8	7.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39173
8	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40441
8	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40601
8	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40699
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38748
8	10.49	I es Vac	I es Vac	I es Vec	I es Voc	I es Vec	Tes Voc	Vac	37102
8	10.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37138
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37883
8	14.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36315
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36026
8	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35548
	14.30	I es Voc	I es Vac	Tes Voc	Tes Voc	I es Voc	Tes Voc	Yes	35252
6	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41458
6	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41385
6	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40060
6	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40036
6	4.11	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	39964
8	7.19	T es Voc	T es Yoc	Tes Vec	T es Yac	T es Voc	T es Voc	Tes Vec	38930
6	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39714
6	7.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39723
6	7.76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41358
6	10.69	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37543
b E	10.49	Tes V~	Tes Vac	Tes Voc	Tes Voc	Tes Voc	Yes Voc	Yes	37230
6	10.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36509
6	10.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36518
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34781
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34789
6	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34318
D	14.30	T es Vac	Tes Vec	I es Vec	Tes Voc	Tes Voc	Tes Voc	res Vec	34278
4	4 10	Ves	Tes Ves	Yes	Yes	Yes	Yes	Ves	39600
4	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39583
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38261
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39622
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39538
4	7.30	Tes Ves	Tes Ves	Ves	Yes	Yes	Yes	Ves	39942
4	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37183
4	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38195
4	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38221
4	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36007
4	10.49	Tes Vec	I es Vec	T es Vec	I es Vac	T es Vec	Tes Vac	Vec	34924
4	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34885
4	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35768
4	14.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33148
4	14.77	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	34094
4	14.02	I ES Yec	I ES Yoc	I ES Yec	I ES Yec	T ES Yes	I ES Yec	Vec	33272
4	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33477
2	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37460
2	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37490
2	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38516
<u>-</u>	4,13	Tes Voc	I es Voc	Tes Vor	Tes Vor	T es Voc	Tes Voc	Yes	39832
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37628
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36370
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35891
2	7.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35464
2	7.31	Yes V	Yes V	Yes V	Yes V	Yes	Yes V	Yes V	37048
2	10.51	Yes	Tes Yes	Tes	Yes	Yes	Yes	Yes	34231
2	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33912
2	10.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34016
2	10.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33984
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32100
2	14.63	Yes Voc	Yes V	I es Var	Y es	Yes Voc	Yes Vec	Yes	32090
2	14.45	Yes	Yes	Yes	Yes	Yes	Yes	Vec	31919
2	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31872

Table J.177: Resilient modulus data with QC/QA (D_1_16_103)

Ga Insil	Grantfacil	SNRI VIDT#1 > 3	SNRIVDT#2>3	SNRL VDT#3 > 3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
O3 [psi]	O DEA [b21]	CTUCE OF IMI	CT III C OD IMA	CTTT L OD THS	Dining 10	0 < 0.04		Criterion	INIR [[DI]]
8	4.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45496
0	4.05	Tes V	T es	Yes Vec	Tes	Tes Vec	res V	Yes	46908
8	4.24	Vor	Voc	Voc	T es Voc	Tes Voc	Voc	Tes Voc	44702
8	4.25	Ves	Vac	Vac	Vac	Vas	Ves	Ves	46718
8	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43447
8	7.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44739
8	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44715
8	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43886
8	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43942
8	10.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42094
8	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42064
8	10.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40975
8	10.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42546
0	10.64	I es	I es	T es	Tes	Tes Ver	Yes	Yes	41817
8	14.70	Ves	Ves	Ves	Ves	Ves	Ves	Vec	38396
8	14.58	Ves	Yes	Yes	Yes	Yes	Yes	Ves	38979
8	14.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39010
8	14.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38770
6	4.25	Yes	Yes	Yes	No	Yes	Yes	No	×
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45383
6	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45511
6	4.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43852
6	4.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44915
6	7.56	Tes V	I es	I es	I es V	T es	Yes V	Yes V	41870
0 8	7.35	I ES Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	I ES	1es Vec	43004
6	7.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41836
6	7.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43870
6	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40608
6	10.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42059
6	10.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40941
6	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41006
6	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40988
6	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38021
6	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37916
6	14.85	I es Vec	I es Voc	I es Voc	I es Voc	I es Voc	I es Voc	Ies Vec	37647
6	14.74	Ves	Vec	Vac	Ves	Vec	Ves	Vec	37794
4	4.07	Ves	Yes	Yes	Yes	Ves	Yes	Ves	44287
4	4.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45059
4	4.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44808
4	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44915
4	4.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41420
4	7.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42156
4	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41009
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	42165
4	7.40	I es Vec	I es Vec	I es Voc	Tes	I es Voc	I es Vec	Ies Vec	42907
4	10.24	Vec	Vec	Vec	Ves	Ves	Vec	Vec	38865
4	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40184
4	10.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40231
4	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39418
4	10.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38348
4	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36422
4	14.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36439
4	14.36	I es	I es	I es	Tes	Yes V	Yes V	Tes V	20030
4	14.30	I ES Vac	I ES Voc	I ES Voc	I ES Voc	I ES Voc	I ES	1es Voc	36034
2	3,30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	41372
2	3.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43213
2	3.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	43650
2	3.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40244
2	3.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40676
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40217
2	6.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38443
2	6.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39079
2	6.85 6.92	I es V	I es V	T es V	Yes V	Tes Var	Tes Voc	Yes Ver	30204
2	0.05	I ES Vec	I ES	I ES Voc	I ES Vac	Tes	I ES Voc	1es Vec	36730
2	10.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37685
2	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37416
2	10.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38857
2	10.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37187
2	14.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34270
2	14.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35288
2	14.27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34733
2	14.27	Yes V	Yes V	I es	Y es	Yes V	Yes	Yes	35/22
4	14.07	1.62	1.62	1 es	162	res	162	res	J4060

Table J.178: Resilient modulus data with QC/QA (D_2_16_103)

σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.15	Yes	No	Yes	Yes	Yes	Yes	No	×
8	4.31	Yes	No	Yes	Yes	Yes	Yes	No	×
8	4.31	Yes	No	Yes	Yes	Yes	Yes	No	×
8	4.33	Yes	No	Yes	Yes	Yes	Yes	No	×
8	4.31	Yes	No	Yes	Yes	Yes	Yes	No	×
8	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63696
8	7.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62028
	7.00	I es W	Yes V	I es Ver	res V	res V	Tes	Yes	60200
	7.03	T es	Vec	Tes Vec	T es Vec	T es	Tes Vec	Vee	64674
8	10.93	Vac	Vac	Vac	Vac	Vac	Vac	Vac	64228
8	10.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	65636
8	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62977
8	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61802
8	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61913
8	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61813
8	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61860
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61880
8	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62817
8	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62804
6	4.33	Y es	No	Yes	Y es	Yes	I es	INO	×
0	4.32	I es Ver	190 M	I es Ver	res Ver	Tes Ver	Tes	No	×
8	4 33	Yes	No	Vac	Yee	Yes	Yee	No	~ ×
6	4 33	Yes	No	Yes	Yes	Yes	Yes	No	×
6	7.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	64890
6	7.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66673
6	7.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	66620
6	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63247
6	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63164
6	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62303
6	10.94	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63596
6	10.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61197
ь	10.94	Y es	Yes	Yes	Yes	Yes	Yes	Yes	63642
0	10.76	Tes Wei	I es W	I es V	Tes V	T es	res Ver	Yes	61028
8	14.04	Vec	Vec	Voc	Vec	Vec	Vor	Vec	61056
6	14.83	Vec	Vac	Vac	Ves	Vec	Vac	Vec	62020
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62141
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62035
4	4.30	Yes	No	Yes	Yes	Yes	Yes	No	×
4	4.42	Yes	No	Yes	Yes	Yes	Yes	No	×
4	4.31	Yes	No	Yes	Yes	Yes	Yes	No	×
4	4.38	Yes	No	Yes	Yes	Yes	Yes	Yes	62317
4	4.49	Yes	No	Yes	Yes	Yes	Yes	Yes	65859
4	7.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60188
4	7.75	I es Weig	Yes Wes	Yes	Tes V	Y es	Tes Ver	Yes	63333
4	7.47	I es Vec	I es Vac	I es Voc	Tes	I es Voc	Tes	Tes	62920
4	7.46	Vec Vec	Ves	Vec	Ves	Vec	Ves	Vec	61395
4	10.77	Ves	Ves	Yes	Yes	Yes	Ves	Ves	63262
4	11.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63521
4	10.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	63685
4	10.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60680
4	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	64492
4	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60398
4	15.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61339
4	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	60448
4	14.07	I es Vac	I es Voc	I ES Voc	I ES	I ES Voc	I ES Voc	1es Vec	59000
2	4 1 2	T es	No	Vec	Yes	Vec	Yee	No	37671
2	4.30	Yes	No	Yes	Yes	Yes	Yes	No	×
2	4,33	Yes	No	Yes	Yes	Yes	Yes	Yes	62181
2	4.11	Yes	No	Yes	Yes	Yes	Yes	Yes	62435
2	4.34	Yes	No	Yes	Yes	Yes	Yes	Yes	65970
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61264
2	7.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62892
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62849
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62982
2	7.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	64676
2	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62167
2	10.74	Tes V	res V	I es	Tes V	Tes V	Tes V	Yes V	6∠101 ≰1001
	10.72	I es Vac	I es Voc	I ES Voc	I ES Voc	I ES Voc	I ES Voc	1es Voc	61031
2	10.55	Yes	Yes	Tes Vac	Yes	Vec 19	Yee	Veo	61066
2	14 64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59774
2	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	61442
2	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59867
2	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	59820
2	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	62396

Table J.179: Resilient modulus data with QC/QA (D_1_13_103)

σ3 [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.53	No	Yes	Yes	Yes	Yes	Yes	No	×
8	4.31	No	Yes	Yes	Yes	Yes	Yes	No	×
8	4.29	No	Yes	Yes	Yes	Yes	Yes	No	×
8	4.34	No	Yes	Yes	Yes	Yes	Yes	No	×
0	4.44	OPI Voc	T es Voc	Tes	I es Voc	I es Voc	Tes	No	83426
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80755
8	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83576
8	7.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83217
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83855
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	86032
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83951
0	10.51	Tes Vac	Tes Vec	Yes Voc	Tes	Tes Ver	Yes Vor	Yes	84333
8	10.51	I es Voc	I es Voc	I es Vec	T es Voc	Tes Vec	T es Vec	Tes	84026
8	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81508
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83013
8	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80197
8	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80040
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81390
6	4.30	No	Yes	Yes	Yes	Yes	Yes	No	×
8	4.50	No No	Tes Voc	Tes Voc	T es Voc	Tes Voc	T es Voc	No	÷
6	4.33	No	Yes	Yes	Yes	Yes	Yes	No	×
6	4.82	No	Yes	Yes	Yes	Yes	Yes	No	×
6	7.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	85183
6	7.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	85973
6	7.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79251
6	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84599
6	10.73	I es Vac	Tes Var	Tes Vor	Tes	Tes	I es	Yes	70710
6	10.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83648
6	10.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	85907
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77511
6	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	84273
6	15.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	82764
6	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	81554
6	14.84	Yes Wes	I es	Yes V	I es	Yes V	Y es	Yes	80351
6	14.01	Tes Vec	Tes Vec	Vec	Ves	Tes Vec	Ves	Ver	81549
4	4.32	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.36	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.44	No	Yes	Yes	Yes	Yes	Yes	No	×
4	4.69	No	Yes	Yes	No	Yes	Yes	No	×
4	4.32	No	Yes	Yes	Yes	Yes	Yes	No	×
4	7.43	No	T es Voc	Yes	T es Voc	Yes Voc	Yes	Yes	78631
4	7 42	No	Yes	Yes	Yes	Yes	Yes	Ves	81123
4	7.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80484
4	7.47	No	Yes	Yes	Yes	Yes	Yes	Yes	81860
4	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79101
4	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	83088
4	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	80470
4	10.51	I es Voc	Tes Voc	Tes Voc	T es Voc	I es Voc	T es Voc	res Voc	79040
4	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77633
4	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79232
4	14.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79223
4	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77539
4	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77710
2	4.35	No No	Yes	Yes	Yes	Yes	Yes	No N-	×
2	4.35	ИО	T es Vac	T es Vac	res Vac	I es Ver	T es	No	× ~
2	4,15	No	Yes	Yes	Yes	Yes	Yes	No	×
2	4.12	No	Yes	Yes	Yes	Yes	Yes	No	×
2	7.49	No	Yes	Yes	Yes	Yes	Yes	No	×
2	7.64	No	Yes	Yes	Yes	Yes	Yes	Yes	80929
2	7.50	No	Yes	Yes	Yes	Yes	Yes	Yes	79247
2	7.44	No	Yes	Yes	Yes	Yes	Yes	No	X
2	1.44	No	Yes	Yes	Yes	Yes	Yes	Yes	78099
2	10.74	res No	T es	T es Voc	res Ver	T es	Tes Vec	Ver	20602
2	10.72	No	Yes	Yes	Yes	Yes	Yes	Yes	79578
2	10.73	No	Yes	Yes	Yes	Yes	Yes	Yes	78793
2	10.72	No	Yes	Yes	Yes	Yes	Yes	Yes	80675
2	15.24	Yes	Yes	Yes	Yes	Yes	Yes	Yes	78049
2	15.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	79742
2	14.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	77723
2	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	76251
2	14.00	res	IES	res	res	res	res	res	11/201

Table J.180: Resilient modulus data with QC/QA (D_2_13_103)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} >3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.34	Yes	Yes	Yes	Yes	Yes	No	No	×
8	4.55	Yes	Yes	Yes	Yes	Yes	No	No	×
8	4.52	Yes	Yes	Yes	Yes	Yes	No	No	×
8	4.37	Yes	Yes	Yes	Yes	Yes	No	No	×
8	5.74	No	No	No	No	No	No	No	×
8	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55071
8	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26494
0	7.04	Yes	Tes V	T es	Tes	res Voi	I es	Yes	57761
0 8	7.45	I es Voc	I es Voc	I es Voc	I es Voc	I es Voc	I es Voc	Tes	57939
8	10.71	Ves	Ves	Yes	Ves	Yes	Ves	Ves	56120
8	10.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	56279
8	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55206
8	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	54267
8	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55222
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53926
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53352
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52147
	15.06	Yes V	I es W	res V	I es	res	I es	Yes	59570
8	15.05	Voc	Voc	Voc	Voc	Voc	Voc	Voc	55191
6	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Ves	54688
6	4.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55355
6	4.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55178
6	4.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	55235
6	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53450
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53428
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	53458
6	7.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52271
0	10.94	T es	res V	Tes V	Tes V	Tes V	T es	res V	1 52555
8	10.54	Voc	Vec	Vor	Vec	Voc	Vec	Vac	51357
6	10.73	Ves	Vec	Ves	Ves	Yes	Ves	Vec	51360
6	10.73	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50563
6	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50450
6	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51551
6	15.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51583
6	15.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51259
6	15.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52074
6	15.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52691
4	4.55	Yes	I es V	Yes	Tes	res	Tes	Yes	50256
4	4.54	Vec	Ves	Vec	Vec	Vec	Vec	Vac	52677
4	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50498
4	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	52362
4	7.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50484
4	7.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	50695
4	7.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51001
4	7.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	51098
4	7.65	Yes	Yes	Yes	I es	Y es	Y es	Yes	51243
4	10.75	Voc	Voc	Voc	Voc	Voc	Voc	Voc	46071
4	10.74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45462
4	10.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46371
4	10.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45926
4	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	48119
4	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	47058
4	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	48117
4	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes V	48113
- 4	4.56	T es	T es Voc	Tes	T es Voc	res Voc	I es	res Voc	40202
2	4.35	Yes	Yes	Yes	Yes	Yes	Yes	Ves	47190
2	4,34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	47290
2	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	47124
2	4.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	48905
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46953
2	7.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	46242
2	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45966
2	7.65	Yes V	Yes V	I es	I es	I es	I es	Yes	47308
2	10.76	T es	res V	T ES	Tes V	res V	res V	res Ves	40330
2	10.76	Tes Vac	Tes Vac	T es Vac	T es Vac	Vec	Vec	Ves	40484
2	10.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45171
2	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45893
2	10.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45184
2	14.88	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44405
2	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44369
2	15.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	44958
2	14.90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	45408
	14.99	i res	res	res	res	i res	res	res	44727

Table J.181: Resilient modulus data with QC/QA (D_1_11_103)

σ ₃ [psi]	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNRLVDT#3>3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33183
8	4.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34041
8	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34068
8	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34134
8	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33122
8	7.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31984
ð ö	7.59	I es	I es	Y es	I es	Yes	I es	Yes	31933
0 0	7.55	I es	Tes W	Yes	Tes	Yes	Tes	Yes	33138
0 Q	7.30	I es Vec	I es Vac	I es Voc	I es Vec	I es Voc	I es Voc	Tes	32144
8	10.55	Ves	Vac	Vec	Ves	Vec	Ves	Vec	30327
8	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30494
8	10.57	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30341
8	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29894
8	10.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30812
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29759
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29603
8	14.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30062
8	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29711
8	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29738
6	4.11	I es	I es	Yes	I es	Yes	Tes	Yes	28003
0 8	4.12	I es Vec	I es Vec	I es Vec	I es Vec	I es Voc	I es Vec	ies Voc	20451
6	4.32	Ves	Tes Voc	Vec	Vec	Ves	Ves	Vac	29192
6	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29230
6	7,45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26672
6	7.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27430
6	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26698
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26702
6	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26964
6	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26206
6	10.69	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26756
6	10.69	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26763
6	10.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26789
р С	10.71	I es	Tes W	Yes	Tes	I es	I es	Yes	20990
6	14.00	I es Vec	I es Vac	Vec	T es Vec	I es Voc	I es Voc	ies Voc	26266
6	14.83	Ves	Tes Vac	Vec	Ves	Vec	Vas	Vac	26281
6	14.84	Yes	Yes	Yes	Yes	Yes	Yes	Ves	26392
6	15.04	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26614
4	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23549
4	4.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25202
4	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22607
4	4.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23707
4	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24064
4	7.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22757
4	7.43	Tes V~	I es Vec	Tes Voc	Tes Voc	Tes Voc	T es Voc	Yes	22051
4	7.43	T es Vec	Tes Voc	Vec	Tes Ves	Vec	Ves	Vee	22300
4	7.65	Yes	Yes	Yes	Yes	Yes	Yes	Ves	23214
4	10.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22481
4	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22221
4	10.54	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22273
4	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22479
4	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22175
4	14.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22108
4	14.64	Yes	Yes 🗸	Yes	Yes	Yes	Yes	Yes	22218
4	14.87	res V	Tes V	I es	Tes V	Tes V	Tes V	res V	24032
4 A	14.85	T es Voc	Yee	Tes Voc	Yes	T es Voc	Yes	Vac	22413
2	4,37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19011
2	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18163
2	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19057
2	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18840
2	4.16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18237
2	7.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18306
2	7.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18185
2	7.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17884
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17786
2	10.72	Y es	I es	I es	Yes V-	Yes V	I es	Yes	18795
2	10.76	I es	T es	T ES	T es	T es	Tes	res Vec	16295
	10.75	1 es Voc	T es	Tes Vac	T es Voc	Tes Vac	T es Voc	Vac	17713
2	10.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17756
2	10.84	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18325
2	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18321
2	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18387
2	14.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18517
2	15.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18599
2	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18458

Table J.182: Resilient modulus data with QC/QA (D_2_11_103)

G2 [nsi]	Oper [psi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR. > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	Mp [psi]
8	4.23	Voc	Voc	Voc	Y Voc	Vor	Vac	Ver	28677
8	4.25	Tes Ves	Ves	Ves	Ves	Tes Ves	Ves	Ver	26289
8	4.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26199
8	4.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26956
8	4.02	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26262
8	6.99	Yes	Yes	Yes	Yes	Yes	No	No	×
8	6.99	Yes	Yes	Yes	Yes	Yes	No	No	×
8	7.12	Yes	Yes	Yes	Yes	Yes	No	No	×
8	6.95	Yes	Yes	Yes	Yes	Yes	No	No	×
0	0.25	NO Vor	INO Vor	No Voc	No Vor	NO Voc	OPI	Voc	22000
8	10.05	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22208
8	9.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21953
8	10.23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22430
8	10.06	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22115
8	13.96	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19510
8	13.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19160
8	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	19278
o	13.70	I es Vez	I es Vec	I es Ver	Tes	I es Vec	I es	Yes	19364
6	4 ∩4	Vec	Vec	Vac	Vas	Vac	Ves	Vec	26407
6	4.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26266
6	4.07	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26423
6	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26267
6	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27196
6	7.03	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23988
6	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24225
6	7.02	Yes W	Yes	Yes	Yes	Yes	Yes	Yes	24249
ß	7.02	I es Voc	Tes Vac	I es Vac	Tes Vac	Tes Vac	I es Vac	Tes Ver	24019
6	10.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22096
6	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22197
6	10.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21953
6	10.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21972
6	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21721
6	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18965
6	13.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18882
6	13.70	Tes V~	I es Voc	T es Voc	Tes Voc	Tes Voc	I es Voc	Yes	16955
6	13.78	Ves	Ves	Ves	Yes	Yes	Yes	Ves	19067
4	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26286
4	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26339
4	3.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25097
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26366
4	4.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26398
4	6.99	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23770
4	7.00	I es V	Yes V	I es	Yes	I es V	Tes	Yes V	24006
4	7.00	Tes Vec	Tes Vec	Ves	Vec	Ves	Tes Ves	Ver	23680
4	7.01	Yes	Yes	Yes	Yes	Yes	Ves	Ves	23987
4	10.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21567
4	9.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21464
4	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21620
4	9.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21303
4	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21321
4	13.99	Tes V~	Tes	T es Voc	Yes Voc	Tes V~	T es Voc	Yes	18937
4	13.77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18672
4	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18584
4	13.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18261
2	3.90	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23881
2	3.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24431
2	3.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24464
2	4.08	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26201
2	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24625
2	7.01	T es Voc	T es Voc	T es Voc	res Voc	T es Voc	T es Voc	Yes	22218
2	7,00	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22622
2	6.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22225
2	7.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22578
2	10.12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21116
2	9.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20852
2	10.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20970
2	9.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20569
2	9.93	I es Ver	I es Voc	I es Ver	Tes Ver	Tes Ver	I es	Yes Vec	20613
2	13.58	Yes	Tes Vec	Tes Voc	Yes	Yes	Yes	Yee	17883
2	13.79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18067
2	13.78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17981
2	13.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17730

Table J.183: Resilient modulus data with QC/QA (D_1_18_98)

σ_3 [psi]	σ _{DEV} [psi]	SNRLVDT#1>3	SNR _{LVDT#2} >3	SNRLVDT#3>3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22866
8	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23378
8	4.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24511
8	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23018
8	7 45	Tes Vec	Tes Vec	T es Vac	⊥es Ves	I es Vec	Tes Ves	1es Vec	25020
8	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20788
8	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20862
8	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20329
8	7.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20744
8	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18779
8	10.67	Tes Voc	I es Voc	Yes Voc	I es Voc	Tes Voc	Tes Voc	Yes	18269
8	10.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18555
8	10.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18805
8	14.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15960
8	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15934
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16188
8	14.62	Tes Voc	Tes Vec	T es Voc	I es Voc	Tes Voc	T es Voc	Yes Vec	16167
6	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21589
6	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21536
6	4.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22971
6	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23507
6	4.33	Yes V	Yes V	Yes V	Yes V	Yes V	Yes V	Yes	22959
6	7.59	Tes	Yes	Tes	Tes	Yes	T es Yes	Yes	20352
6	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20357
6	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20174
6	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20172
6	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18060
6	10.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18107
6	10.55	Tes Vec	Tes Vec	Tes Vas	Ves	Tes Ves	Ves	Vec	17988
6	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17551
6	14.55	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15340
6	14.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15361
6	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15296
6	14.63	Tes Voc	I es Voc	Yes Voc	I es Voc	Tes Voc	Tes Voc	Yes Voc	15477
4	4.36	Ves	Ves	Yes	No	Yes	Yes	No	15425 ×
4	4.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20408
4	4.34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21435
4	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21502
4	4.13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21148
4	7 41	Yes	Yes	Yes	Yes	Yes	Yes	Ves	19201
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18998
4	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18872
4	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18692
4	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16890
4	10.55	Ves	Tes Vec	Tes Ves	Ves	Yes	Yes	Ves	17039
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16806
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17126
4	14.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14453
4	14.81	Yes	Yes	Yes	Yes V	Yes	Yes	Yes V	14823
4	14.60	Tes Yes	Tes Yes	T es Yes	Tes	Yes	Tes	Yes	14399
4	14.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14420
2	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20201
2	4.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21158
2	4.15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20147
2	4.14	res Vac	Tes Voc	Tes Voc	T es V~r	T es Voc	Tes Var	Yes	20122
2	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18233
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17536
2	7.45	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17876
2	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18040
2	7.23	Yes	Yes	Yes	Y es	Yes	Yes	Yes	17716
2	10.33	ies Vec	T es Vec	T es Voc	T es Vac	Tes Vec	T ES Yec	Yes	15391
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15783
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15775
2	10.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15790
2	14.44	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13409
2	14.65	Yes V	Yes V	Yes V	Yes V	Yes	Yes V	Yes V	13648
2	14.00	I ES Vac	I ES Voc	I ES Vac	I ES Voc	I ES Vac	I ES Voc	Vee	13427
	14 45	Yes	Yes	Yes	Yes	Yes	Yes	Ves	13430

Table J.184: Resilient modulus data with $\rm QC/QA(D_2_18_98)$

σ _{3 [psi]}	σ _{DEV} [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} >3	SNR _{LVDT#3} > 3	$SNR_q > 10$	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32183
8	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32422
8	4.17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33117
8	4.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36391
8	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32645
8	7.58	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31981
8	7.39	Yes	I es	Yes	I es	Yes	Yes	Yes	30789
	7.40	Tes V	Tes V	Yes Ver	I es Vec	T es	Tes	Yes	20262
8	7.00	Tes Voc	Tes Voc	Ver	Vec	Ver	Vec	Vec	30875
8	10.27	Yes	Yes	Yes	Yes	Yes	Yes	Ves	28179
8	10.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28177
8	10.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28487
8	10.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28238
8	10.26	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28289
8	14.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25724
8	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26126
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26346
8	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26385
0	14.00	I es Vac	I es Var	Tes	Tes	Tes	Tes	Tes	20275
6	4.11	Ves	Ves	Ves	Yes	Ves	Ves	Ves	31604
6	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31562
6	4.09	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31456
6	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33021
6	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29278
6	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29408
6	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29323
6	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30178
D Ø	10.00	Yes Wes	I es	Yes	Tes	Y es	I es	Yes	30343
0 8	10.20	I es Vac	I es Vec	I es Voc	Tes	I es Vec	Tes	Tes	27309
6	10.21	Ves	Ves Ves	Ves	Ves	Yes	Yes	Ves	27885
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27849
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27940
6	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24907
6	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25431
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25455
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25130
6	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25078
4	4.20	Yes	Yes	Yes	No	Yes	Yes	No	× 20042
4	4.11	Tes Vac	Tes V~	Tes Voc	res Voc	Tes Voc	T es Voc	res Voc	29967
4	4.10	Vec Vec	Vec Vec	Vec	Ves	Vec	Ves	Ves	29804
4	4.11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30431
4	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28070
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28081
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28072
4	7.19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28067
4	7.18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28097
4	10.47	I es Vec	I es Wes	Yes	Tes	Yes	Yes	Yes	26480
4 4	10.52	Tes Vac	T es Yac	Tes Vac	1 es Vac	Tes Vec	Tes Vac	Tes Vec	26346
4	10.86	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27422
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26479
4	14.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23514
4	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23637
4	14.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23497
4	14.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23579
4	14.44	Y es	Tes V	Y es	I es	I es	I es	Yes	25684
	4.11	T es Voc	I es Voc	Tes Voc	T es Vac	T es Vac	T es Vac	Vec	28856
2	4.72	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29406
2	4,51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32134
2	3.92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27197
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27168
2	7.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27217
2	7.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27002
2	7.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26560
2	10.22	Yes	Yes V	Yes	Yes	Yes	Yes	Yes	26023
2	10.29	Yes Var	T es	Yes Ver	Y es	Tes V	Tes V	Yes	24693
<u>-</u>	10.50	T es Vac	T es Vac	Tes Vac	T es Vac	T es Vac	Tes Voc	Vec	24082
2	10.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24839
2	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24703
2	14.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21697
2	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21891
2	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22019
2	14.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21896
1 2	14.62	I I'es	I I es	I I es	I I es	I I es	ïes	res	22100

Table J.185: Resilient modulus data with $\rm QC/QA(D_{-}1_{-}14_{-}98)$

	ODEV [psi]	SNRLVDT#1>3	SNRLVDT#2>3	SNRLVDT#3>3	SNR, > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
8	4.48	Voc	Vec	Vec	Vec	Vec	Vec	Vec	34373
8	4 29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32848
8	4 29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32054
8	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32943
8	4.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	33843
8	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29818
8	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30302
8	7.39	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30339
8	7.20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29235
8	7.38	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30057
8	10.46	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27888
8	10.48	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27932
8	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28206
8	10.47	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27984
8	10.68	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28253
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25755
8	14.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25597
ŏ	14.59	Y es	Yes	Yes	Yes	Yes	Yes	Yes	20641
0	14.00	I es	I es	I es V	res	Yes V	res	res	25705
0	14.01	I es Var	I es Vec	I es Ver	Tes	Tes	Tes	res	23903
6	4.51	Voc	Vor	Voc	Voc	Voc	Voc	Voc	20337
8	4 30	Vac	Vec	Vec	Vec	Vec	Vec	Vec	31522
6	4 31	Vac	Vec	Vec	Ves	Ves	Ves	Vec	31488
6	4.18	Vac	Vec	Vec	Vac	Vac	Vac	Ves	30734
6	7,41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29466
6	7.40	Yes	Yes	Yes	Yes	Yes	Yes	Ves	29088
6	7.37	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28628
6	7.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29933
6	7.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	28270
6	10.61	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27007
6	10.81	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27261
6	10.49	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26745
6	10.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26625
6	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26518
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24157
6	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24271
6	14.60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24425
6	14.80	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24765
6	14.82	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24637
4	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29692
4	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30325
4	4.32	I es	I es	I es	Yes	Yes V.	I es	Yes	29029
4	4.11	Tes Weight	I es	Tes V	Yes	Yes V	res Ver	Yes	28243
4	4.10	I es Voc	I es Voc	I es Vor	I es Voc	Tes	Tes	Tes	20032
4	7.41	Tes Vas	Ves	Ves	Ves	Ves	Ves	Ves	27357
	7 40	Yes	Ves	Ves	Yes	Ves	Yes	Ves	27029
4	7.39	Yes	Ves	Yes	Yes	Yes	Yes	Ves	26939
4	7.21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26196
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24742
4	10.51	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24902
4	10.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24220
4	10.32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24390
4	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	24658
4	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23054
4	14.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22988
4	14.53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22539
4	15.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23434
4	14.62	Yes	Yes	Yes	Yes	Yes	Yes	Yes	23053
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	25956
2	4.31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27224
2	4.10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20436
	4.52	I es	Tes	T es	Tes	Tes	1 es	res V	2/318
	9.12	I es	I es	I ES	res V	I ES	res V	res V	26021
2	7.40	I es	I ES	T ES V	T es	T es	I es V	1es V	23030
	7.94	1 es	T es Voc	L es Voc	T es Vac	T es	Vec	Vec	24377
2	7 44	Yes	T es Voc	T es Voc	Yee	Vec 19	Tes Voc	Vac	24264
2	7.24	Yac	Yes	Yes	Yes	Yes	Yee	Vac	24264
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22648
2	10.52	Yes	Yes	Yes	Yee	Yes	Yes	Yee	22946
2	10.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22750
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22917
2	10.52	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22747
2	14.83	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21268
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20971
2	14.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20645
2	14.43	Yes	Yes	Yes	Yes	Yes	Yes	Yes	20869
2	14.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21061

Table J.186: Resilient modulus data with QC/QA (D_2_14_98)

σ ₃ [psi]	ODEV [psi]	SNR _{LVDT#1} > 3	SNRLVDT#2>3	SNR _{LVDT#3} > 3	SNR.a > 10	$\theta < 0.04^{\circ}$	COV < 10%	Pass	M _R [psi]
8	4.26	Vec	Ves	Vec	Ves	Ves	Ves	Ves	39644
8	4.25	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39462
8	4.30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	39844
8	4.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	40304
8	4.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	38616
8	7.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36353
8	7.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes	37561
8	7.57	Yes	Yes	Yes	Yes	Yes	Yes	Yes	36700
8	7.36	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35855
8	7.35	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35260
8	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34160
8	10.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34589
8	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35335
8	10.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34628
8	10.65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	35036
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34319
8	14.85	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34133
8	14.66	Yes	Yes	Yes	Yes	Yes	Yes	Yes	34000
ð ö	14.65	Y es	I es	Y es	I es	I es	I es	Yes	33778
	14.00	Yes	I es	Tes	res	res	I es	Yes	24201
0	4.20	I es	I es	I es	Tes	I es	I es	Ies	20026
	4.05	I es Vac	I es Ver	I es Vec	I es Vec	Tes	T es	Tes	22220
8	4.25	Vec	Var	Vas	Vac	Vac	Var	Vac	34631
8	4.66	Vac	Vac Vac	Vac	Vac	Yac	Yac	Vac	35021
6	7.33	Ves	Ves	Yes	Ves	Yes	Yes	Ves	31481
6	7.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31930
6	7,34	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31399
6	7,53	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32239
6	7.33	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31376
6	10.64	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31064
6	10.63	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31333
6	10.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31194
6	10.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30871
6	10.93	Yes	Yes	Yes	Yes	Yes	Yes	Yes	32181
6	14.67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30490
6	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30918
6	14.87	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30953
6	14.68	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30540
6	14.68	Yes	Yes	Yes	Yes	Yes	Yes	Yes	30546
4	4.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29052
4	4.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	27762
4	4.50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	31262
4	4.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes	29044
4	4.28	Yes	Yes	Y es	I es	I es	I es	Yes	28451
4	7.35	I es	I es	Yes	Tes	Tes	Tes	Yes	26931
4	7.57	Tes V	I es W	Yes V	Tes	res	I es Waa	Yes	27710
4	7.30	Vec	I es Ver	I es Vec	I es Vec	Tes	T es	Tes	20714
4	7.30	Vec 1	Tes Vec	Vec	Vec	Vec	Tes Vec	Vec	20004
4	10.77	Voc	Vec	Voc	Voc	Voc	Vor	Voc	20925
4	10.59	Ves	Ves	Ves	Ves	Ves	Ves	Ves	26937
4	10.33	Vec	Vec	Vac	Ves	Vas	Ves	Vac	27209
4	10.58	Ves	Yes	Yes	Yes	Yes	Yes	Ves	26746
4	10.59	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26761
4	14.91	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26789
4	14.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26296
4	14.71	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26273
4	14.70	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26433
4	14.89	Yes	Yes	Yes	Yes	Yes	Yes	Yes	26619
2	4.16	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
2	3.83	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
2	4.27	Yes	No	Yes	No	Yes	#VALUE!	#VALUE!	#VALUE!
2	3.91	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
2	4.11	Yes	No	Yes	Yes	Yes	#VALUE!	#VALUE!	#VALUE!
2	7.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22512
2	7.22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	21882
2	/.41	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22747
2	7.42	Yes	Yes	Yes	Yes	Yes	Yes	Yes	22532
2	7.41	I es	Tes	I es	I es	I es	Tes	Yes	22/74
2	10.23	Yes	Yes	Yes	Yes	Yes	Tes	Yes	21197
2	10.44	Yes V	Tes V	I es	Tes V	Tes V	Tes	Yes	22097
2	10.44	res V	I es	T es	Tes	I es	I es	res	21338
	10.44	res V	res V	T ES	res V	res V	T es	res V	21810
2	14.56	I es Vec	I ES Ver	I ES Voc	Tes	I ES	Tes	1 es	210/8
2	14.50	Vac	Ver	Vec	Vec	No	V~	No	÷
	14.55	Var	Ves Ves	Vac	Vac	No	Vac	No	Ŷ
2	14 77	Vac	Vec	Yes	Yee	No	Yac	No	Ŷ
2	14.76	Yes	Yes	Yes	Yes	No	Yes	No	×

Table J.187: Resilient modulus data with QC/QA (D_1_11_98)

σ ₃ [psi]	$\sigma_{ ext{DEV}}$ [psi]	SNR _{LVDT#1} > 3	SNR _{LVDT#2} > 3	SNR _{LVDT#3} ≻3	SNR _q > 10	θ < 0.04°	COV < 10%	Pass Criterion	M _R [psi]
8	4.25	No	Yes	Yes	Yes	Yes	No	No	×
8	4.25	No	Yes	Yes	Yes	Yes	No	No	×
8	4.24	No	Yes	Yes	Yes	Yes	No	No	×
8	4.23	No No	Yes	Yes	Yes	Yes	No N-	No	×
8	4.25 7.36	No	Tes Vac	Tes Vac	T es Vec	I es Vac	No	No	×
8	7.35	No	Yes	Yes	Yes	Yes	No	No	×
8	7.35	No	Yes	Yes	Yes	Yes	No	No	×
8	7.34	No	Yes	Yes	Yes	Yes	No	No	×
8	7.37	No	Yes	Yes	Yes	Yes	No	No	×
8	10.39	No	Yes	Yes	Yes	Yes	No	No	×
0	10.65	No	Tes Vec	Yes	Tes Vor	Tes Voc	No	INO No	×
8	10.75	No	Yes	Yes	Yes	Yes	No	No	×
8	10.61	No	Yes	Yes	Yes	Yes	No	No	×
8	14.75	No	Yes	Yes	Yes	Yes	No	No	×
8	14.54	No	Yes	Yes	Yes	Yes	No	No	×
8	14.55	No	Yes	Yes	Yes	Yes	No	No	×
8	14.55	No No	I es Ver	Yes Ver	Tes Ver	i es Ma	No No	INO	×
6	4 27	No	Ves	Yes	Yes	Yes	No	No	×
6	4.24	No	Yes	Yes	Yes	Yes	No	No	×
6	4.22	No	Yes	Yes	Yes	Yes	No	No	×
6	4.26	No	Yes	Yes	Yes	Yes	No	No	×
6	4.25	No	Yes	Yes	Yes	Yes	No	No	×
6	7.33	No	Yes V	Y es	Yes V	Yes V	No N-	No N-	×
6	7,30	No	Yes	Yes	Yes	Yes	No	No	×
6	7.11	No	Yes	Yes	Yes	Yes	No	No	×
6	7.31	No	Yes	Yes	Yes	Yes	No	No	×
6	10.62	No	Yes	Yes	Yes	Yes	Yes	No	×
6	10.43	No	Yes	Yes	Yes	Yes	Yes	Yes	65296
6	10.71	No	Yes	Yes Voc	Yes Voc	Y es	Yes Voc	No	×
6	10.62	No	Tes Ves	Tes Ves	Yes	Tes Ves	Yes	No	×
6	14.63	No	Yes	Yes	Yes	No	No	No	×
6	14.81	No	Yes	Yes	Yes	No	No	No	×
6	14.56	No	Yes	Yes	Yes	No	No	No	×
6	14.56	No	Yes	Yes	Yes	No	No	No	×
6	14.75	No No	Yes	Yes	Yes	No	No N-	No	×
4	4.20	No	Yes	Yes	Yes	Yes	No	No	×
4	4.29	No	Yes	Yes	Yes	Yes	No	No	×
4	4.26	No	Yes	Yes	Yes	Yes	No	No	×
4	4.13	No	Yes	Yes	Yes	Yes	No	No	×
4	7.36	No	Yes	Yes	Yes	Yes	No	No	×
4	7.17	NO No	Tes Voc	Tes Voc	T es Voc	T es Voc	Mo	No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	7.38	No	Yes	Yes	Yes	Yes	No	No	×
4	7.34	No	Yes	Yes	Yes	Yes	No	No	×
4	10.46	No	Yes	Yes	Yes	Yes	No	No	×
4	10.69	No	Yes	Yes	Yes	Yes	No	No	×
4	10.47	No No	Yes	Yes	Yes	Yes	No No	No	×
4	10.44	No	I es Vec	I ES Vac	Tes Vas	I es Vec	No	No	×
4	14.57	No	Yes	Yes	Yes	Yes	No	No	×
4	14.76	No	Yes	Yes	Yes	Yes	No	No	×
4	14.57	No	Yes	Yes	Yes	Yes	No	No	×
4	14.56	No	Yes	Yes	Yes	Yes	No	No	×
2	4.26	Ио	res Vec	T es Voc	T es Voc	NO Vec	No	No	×
2	4.25	No	Yes	Yes	Yes	Yes	No	No	×
2	4.11	No	Yes	Yes	Yes	Yes	No	No	×
2	4.48	No	Yes	Yes	Yes	Yes	No	No	×
2	4.14	No	Yes	Yes	Yes	Yes	No	No	×
2	7.37	No No	Yes V	Yes	Yes V	Yes	Yes V	No	X 40600
2	7.30	No No	ies Vac	I ES Vac	T ES Yec	T ES Voc	I ES Voc	res No	42032 X
2	7.35	No	Yes	Yes	Yes	Yes	Yes	Ne	×
2	7.37	No	Yes	Yes	Yes	Yes	Yes	No	×
2	10.72	No	Yes	Yes	Yes	Yes	No	No	×
2	10.63	No	Yes	Yes	Yes	Yes	No	No	×
2	10.54	No	Yes	Yes	Yes	Yes	No	No	×
2	10.64	ио Мо	Tes Voc	T es Vor	res Vac	T es Vac	No	No	×
2	14.80	No	Yes	Yes	Yes	Yes	No	No	×
2	14.80	No	Yes	Yes	Yes	No	No	No	×
2	14.79	No	Yes	Yes	Yes	Yes	No	No	×
2	14.59	No	Yes	Yes	Yes	No	No	No	×
2	14.59	No	Yes	Yes	Yes	Yes	No	No	×

Table J.188: Resilient modulus data with QC/QA (D_2_11_98)

Appendix K GeoGauge Results [SI]

K.1 Soil A

				1.1137	0.40																								1.1137	0.40																			
				Mass (kg):	Poisson's Ratio:																								Mass (hg):	Poisson's Ratio:																			
	Calculated Young's	Modulus (MPa)		181.9	177.8	173.9	172.1	172.6	171.8	168.7	169.0	167.9	166.0	170.2	108.9	165.0	165.5	165.2	164.2	162.9	161.6	160.3	159.3	8.7CI	157.0	155.0	1663		204.2	202.8	204.8	C212 C212	243.6	247.4	243.6	238.7	239.2	232.4	225.5	231.0	223.4	222.7	225.0	219.7	214.7	217.2	225.9	234.0	C.862
	Stiffness	(MINim)		21.9	21.4	20.9	20.7	20.8	20.7	20.3	20.3	20.2	20.0	CU2	202	10.0	19.9	19.9	19.8	19.6	19.5	19.3	19.2	12.0	18.9	18.7	20.0		24.6	24.4	24.7	980	293	29.8	293	20.2	28.8	28.0	717	8.12	26.9	26.8	27.1	202	25.8	26.2	27.2	7.97	1.04
t, dB		Force		i0/ΔIQ#	#DIV/01	56.7	54.2	54.7	55.2	55.6	59.0	56.4	1.00	6.00	210	212	540	58.1	583	58.5	58.6	58.8	28.9	1.60	59.2	59.3	Arerages		i0/ΔIC#	56.0	53.6	24.2	55.1	55.6	56.0	202	569	57.2	6U.4	0.10	58.0	61.2	58.4	0.80	58.8	619	61.9	0.20	1.20
SNR		Displ		41.2	#DIV/01	42.9	43.5	41.0	41.6	45.2	42.6	43.0	-0 1	45.0	40.4	446	48	45.1	45.4	45.6	45.9	46.1	107	40.0	46.8	47.1		-	37.0	40.7	38.1	41.1 33.8	#DIV/0	38.7	35.2	42.8 #DTVINI	40.4	37.9	38.4	512	39.1	38.3	36.4	38.85 AD 0	46.0	45.8	45.4	44.1	1.00
	Imag.	Force (Dxsin)		-1.436	-1.516	-1.565	-1.582	-1.563	-1.516	-1.433	-1.321	-1.184	-1.018	-0.833	-0.040	0.015	0.012	0.244	0.476	0.706	0.933	1.155	1.384	1 277	1.965	2.168			-1.428	-1.509	-1.555	158	-1504	-1.423	-1.316	-1.1.17	-0.835	-0.640	-0.435	-0.217	0.239	0.474	0.708	0.940	1.14)	1.582	1.748	1.934	7.124
ata (volts	Imag.	Displ (Dxsin)		0.269	0.283	0.293	0.291	0.276	0.264	0.242	0.210	0.176	0.129	0.085	0.000	0000	0110	-0.159	-0.215	-0.269	-0.325	-0.381	-0.437	-0.490	-0.586	-0.640			0.237	0.239	0.225	0.161	0.178	0.164	0.149	721.0	0.076	0.044	0.007	-0.039	-0.127	-0.173	-0.210	-0.259	-0.359	-0.391	-0.393	-0.598	-U.4US
Signal D	Real	Force (Dfcos)		-0.120	-0.337	-0.566	-0.803	-1.045	-1.284	-1.521	-1.738	-1.943	-2.134	-2.283	12427	240.2-	0000	-2.771	-2.803	-2.810	-2.793	-2.759	-2.708	-2.052	-2.441	-2.329			-0.122	-0.339	-0.569	-0.803	-1.279	-1.509	-1.726	-1.958	-2.275	-2.405	-2.527	270.2-	-2.744	-2.766	-2.773	-2.769	-2.681	-2.595	-2.495	1.65.7-	C27.7-
	Real	Displ. (Dxcos)		0.078	0.125	0.173	0.225	0.273	0.320	0.374	0.415	0.457	0.498	0.510	0.940	0.000	0.503	0.601	0.603	0.603	0.596	0.583	0.266	2420	0.474	0.444			0.066	0.115	0.164	C12.0	0.222	0.247	0.278	0 277	0.354	0.381	0.408	0.400	0.422	0.415	0.403	0.398	0.332	0.269	0.227	1195	QCT'N
0	Imag.	Force (Afsin)		0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	700.0	200.0	0.000	0.002	0.002	0.002	0.002	0.002	0.002	700.0	0.002	0.002			0.000	0.002	0.002	700.0	0.002	0.002	0.002	7000	0.002	0.002	0.002	700.0	0.002	0.000	0.002	0.002	0.002	0.000	0.000	00000	0.000
ata (volts	Imag.	Displ. (Nisin)		0.002	00000	0.002	0.002	0.002	0.002	0.002	0.002	0.002		0.002	700.0	200.0	0.000	0.002	0.002	0.002	0.002	0.002	0.002	700.0	0.002	0.002			0.002	0.002	0.002	200.0	00000	-0.002	-0.005	70000	0.002	0.000	00000	70000	0000	0.002	0.005	0.005	0.002	0.002	0.002	70000	200.0
Noise D	Real	Force (Neos)	105	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.000	0.002	0.002	0.002	70000	2000	0000	0.002	0.002	0.002	0.002	0.002	0.002	70000	0.002	0.002		105	0.000	0.000	0.002	70000	0.002	0.002	0.002	70000	0.002	0.002	0.000	7000 0	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	700.0
	Real	· Displ (Nkeos)	A_13.5	0,000	0.000	0.000	0.000	0.002	0.002	0.000	0.002	0.002	0.002	0.002	nnnn	200.0	0000	0.002	0.002	0.002	0.002	0.002	0.002	700.0	0.002	0.002		A 10.5	0.002	0.000	0.002		00000	-0.002	-0.002		0.002	0.005	0.005	CUUU.U	0.005	0.005	0.005	0.002		0.000	0.000	700.0	CUU.U
P	२० १९७३ १९४८	а ал Л		0	0	0	0	0	0	0	0	0			-				0	0	0	0		-	0				0	0	0	-		0	0	-		0		50		0	0	-	-	0	0	⇒ 0	5
P	eala Silo a	avo N		0	0	0	0	0	0	0	0	0							0	0	0	0		50		0			0	0	0			0	0							0	0			, O		⇒ ¢	л —
(Z) 3	nit odn H), (H	nN B		1 100	2 104	3 108	4 112	5 116	6 120	7 124	8 128	9 132	10 150	11 140	12 144	14 157	15 156	16 160	17 164	18 168	19 172	20 176	121 18U	72 104	24 192	25 196			1 100	2 104	3 108	4 112	6 120	7 124	8 128	10 136	11 140	12 144	13 148	14 122	16 160	17 164	18 168	19 1/2	21 180	22 184	23 188	24 192	120 120

Table K.1: GeoGauge results for A_13.5_105 and A_10.5_105 at loc. 2

				.1137	0.40	Î																						.1137	0.40																				
				Mass (kg): 1	Poisson's Ratio:																							Mass (hg): 1	Poisson's Ratio:																				
	Calculated Young's Modulus (MPa)			172.5	171.1	170.4	172.9	107.7	1871	184.5	183.1	180.5	179.7	1750	177.0	175.9	174.1	172.8	173.8	120.2	1/0.4	166.1	167.6	166.0	164.7	175.4		75.7	82.8	122.8	0.00	207.8	207.4	199.7	177.0	164.2	155.5	160.2	196.0	210.2	213.4	207.5	201.4	198.3	196.0	000 0	204.0	207.3	100.0
Manand	Stiffness	(WIN/W)		20.8	20.6	20.5	20.2	1.22	225	22.2	22.1	21.7	21.6	21.4	213	21.2	21.0	20.8	2012	0.02 20.5	20.1	20.0	20.2	20.0	19.8	21.1		9.1	10.0	14.8	21.2	25.0	25.0	24.1	1.22 1.22	19.8	18.7	19.3	25.0	76.3	25.7	25.0	24.3	23.9	25.0	0.02	24.6	0.02	1 44
E E	Farra			#DIV/01	#DIV/0i	56.7	212	1.40	55.6	56.0	56.4	59.7	60.0	2002	57.8	58.0	58.1	613	C.%C	0.00	589	62.1	59.1	59.2	59.3	Averages		55.4	53.1	20.7	24.2	55.2	55.6	56.0	1.02	57.0	573	575	0U.X	0.10	58.3	585	58.6	58.8	60.0	105	59.1	593	Not sold a
SNE	Diml	-		38.7	39.4	43.1	#DIV/0	43.5	413	37.8	39.3	45.8	43.1	400	HDIV/0	i0/ΔIΩ#	i0/ΛIΩ#	47.9	48.0	IN/NT/#	18.84	46.0	48.9	49.1	43.2			35.8	34.4	50.5	21.7	33.1	33.4	33.8	28.6	43.5	46.9	HDIV/01	44.9	451	423	43.1	43.6	43.9	44.1	1.1	14	47.0	
	Imag. Force	(Dxsin)		-1.438	-1.519	-1.567	-1.582	1514	-1 433	-1.326	-1.189	-1.030	-0.850	2C0.U-	-0.222	0.007	0.239	0.474	0.708	1165	1 302	1.614	1.780	1.970	2.166			-1.438	-1.516	-1.562	7951	-1.519	-1.436	-1.328	1 022	-0.845	-0.647	-0.435	C17.0-	210.0	0.476	0.710	0.940	1.157	1.387	1 775	1.960	2.156	
ta (volts)	Imag. Disnl.	(Dxsin)		0.291	0.303	0.305	0.281	10200	0.244	0.225	0.198	0.166	0.122	12000	-0.020	-0.068	-0.125	-0.188	-0.239	-0.244	-0.417	-0.481	-0.518	-0.562	-0.613			0.227	0.139	12000	0.117	0.129	0.137	0.129	1200	0.007	-0.100	-0.203	-0.1%	-U.108	-0.208	-0.247	-0.293	-0.339	-0.388	229.U-	-0.459	-0.476	
Signal Da	Real	(Dfcos)		-0.122	-0.339	-0.569	-0.806	1 784	-1 516	-1.731	-1.941	-2.129	-2.295	-2.459	-2.656	-2.729	-2.776	-2.803	-2.808	261.2-	-2,717	-2.637	-2.539	-2.441	-2.324			-0.125	-0.342	-0000	-0.805	-1.287	-1.519	-1.736	-1.745	-2,300	-2.441	-2.561	-2.604	966 C	-2.803	-2.810	-2.798	-2.764	-2.715	7077-	-2.437	-2.327	
	Real Disnl.	(Dxcos)		0.061	0.112	0.166	0.227	0.278	0.270	0.361	0.403	0.444	0.479	0100	0.549	0.564	0.574	0.574	0.264	9000	0.530	0.488	0.439	0.410	0.344			0.359	0.359	0.278	0.051	0.283	0.313	0.354	0.400	0.515	0.530	0.454	0.383	0.588 0.403	0.420	0.430	0.432	0.417	0.393	0.2.0	0.293	0.271	
000	Imag. Force	(NBin)		0.000	0.000	0.002	0.002	200.0	0.002	0.002	0.002	0.000	0000	0.00	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.000	0.002	0.002	0.002			0.002	0.002	0.002	700.0	0.002	0.002	0.002	70000	0.002	0.002	0.002	20000	200.0	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.002	
ta (volts)	Imag. Disnl.	(Nisin)		-0.002	-0.002	-0.002	00000		200.0-	-0.002	0.000	0.000	0.002	700.0	00000	0.000	0.000	0.000	0000	0000	0.000	0.002	0.000	0.000	0.000			-0.005	-0.007	CUU.U-	100.0-	-0.005	0.000	0.002	700.0	0.002	0.002	0.000	-0.002	1 000 U	00000	0.002	0.002	0.002	0.002	200.0	0.002	00000	
Noise Da	Real	(Neos)	105	0.000	0.000	0.000	0000	70000	0.002	0.002	0.002	0.002	0.002	700.0	0.002	0.002	0.002	0.000	2000	700.0	200.0	0.002	0.002	0.002	0.002		100	0.000	0.002	0,000	700.0	0.002	0.002	0.002	700.0	0.002	0.002	0.002	0000	0.000	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.002	
	Real Disnl.	(Nkcos)	4_7.5_	-0.002	-0.002	0.000	0.000	70000	0.000	0.005	0.005	0.002	0.002	70000	0000	0.000	0.000	0.002	0.002	0000	0.002	0.002	0.002	0.002	0.005		A_15_	-0.005	0.000	0.002	700.0	0.005	0.007	0.007	0000	0.002	0.000	0.000	0000	0.000	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.002	
pe	ज्लाका विद्यु इस्री	ю s		0	0	0	0			0	0	0	0		0	0	0	0	-		-	0	0	0	0			0	0	-	-	0	0	0		0	0	0	-		0	0	0	0		50		,0	
pe	saioľ otre zaľł	0		0	0	0	0	-		0	0	0	0			0	0	0	-			0	0	0	0			0	0	-	-		0	0			0	0	=	-	0	0	0	0		50	0	0	
(4	Ю. <i>р</i> е	Fr		100	104	108	112	120	124	128	132	136	140	144	152	156	160	164	100	176	180	184	188	192	196			100	104	108	116	120	124	128	761	140	144	148	701	160	164	168	172	176	180	188	192	196	
T	nihe Bin	N		1	7	m	40			00	6	10	11	14	14	15	16	17	×	20	31	22	23	24	25			1	(1)	ν¢	44	10	6	∞ c	10	11	12	13	14	16	17	18	19	20	17	27	24	57	

Table K.2: GeoGauge results for A_7.5_105 and A_15_100 at loc. 2

				1.1137	0.40																							1.1137	0.40																				
				Mass (hg):	Poisson's Ratio:																							Mass (kg):	Poisson's Ratio:																				
	Calculated Young's Modulus (MPa)			172.5	171.1	170.4	122.0	192.2	187.1	184.5	183.1	180.5	179.7	177.0	1370	1759	174.1	172.8	173.8	172.9	170.2	10/.3	1.001	166.0	164.7	175.4		75.7	82.8	122.8	176.5	208.0	0'107 V 20C	199.7	188.8	177.8	164.2	160.7	106.0	216.2	218.0	213.4	207.5	201.4	196.0	197.5	200.2	204.0	183.3
	Stiffness	(WIN/W)		20.8	20.6	20.5	20.0	23.2	22.5	22.2	22.1	21.7	21.6	21.7	213	21.2	21.0	20.8	20.9	20.8	202	1.02	202	20.0	19.8	21.1		9.1	0.01	14.8	21.3	0.02	1050	24.1	22.7	21.4	19.8	10.3	23.6	26.0	26.3	25.7	25.0	24.5	23.6	23.8	24.1	24.6	22.1
, ab	Forre	ANOT		#DIV/0!	#DIV/01	56.7	277	582	55.6	56.0	56.4	59.7	6U.U	222	57.8	58.0	58.1	613	58.5	58.6	28.8	501	105	59.2	59.3	Averages		55.4	53.1	56.7	54.2	242	22.5	56.0	56.4	56.7	R/C	545	60.8	61.0	58.1	58.3	C.82	0.02	58.9	29.0	59.0	1.65	Averages
SNR	Diml	नर्गलन		38.7	39.4	43.1 #1510/01	13.7	43.5	413	37.8	39.3	45.8	43.1	43.0	#DIV/01	i0/AIC#	i0/AIC#	47.9	48.0	#DIV/0	40.0	46.0	0.04 70	49.1	43.2			35.8	34.4	34.5	30.7	31.1	1.00	33.8	37.7	38.6	45.0	#ULAUL#	440	44.8	45.1	45.7	43.1	45.0	41.1	44.1	44.0	44.0	47.0
	Imag. Force	(Dxsin)		-1.438	-1.519	-1.567	1 565	-1 514	-1.433	-1.326	-1.189	-1.030	-0.850	200.0-	CCC U-	0.007	0.239	0.474	0.708	0.940	1.165	1 614	1 720	1.970	2.166			-1.438	-1.516	-1.565	-1.582	-1.567	1 126	-1.328	-1.194	-1.033	-0.845	-0.047	10.015	0.012	0.242	0.476	0.710	0.940	1.127	1.604	1.772	1.960	QCT.2
ata (volts	Imag. Disnl.	(Dxsin)		0.291	0.303	0.305	192.0	0.239	0.244	0.225	0.198	0.166	0.122	10.020	-0.020	-0.068	-0.125	-0.188	-0.239	-0.288	-0.344	-0.417	-0.401	-0.562	-0.613			0.227	0.139	0.081	0.093	0.117	0.127	0.129	0.110	0.071	0.007	001-0-	-0.200	-0.168	-0.181	-0.208	-0.247	-0.295	-0 388	-0.422	-0.442	-0.459	-0.470
Signal D	Real	(Dfeos)		-0.122	-0.339	-0.569	-0.600	-1.284	-1516	-1.731	-1.941	-2.129	-2.295	2 550	-2.656	-2.729	-2.776	-2.803	-2.808	-2.793	-2.764	111.2-	025.0	-2.441	-2.324			-0.125	-0.342	-0.569	-0.803	-1.045	1 510	-1.736	-1.943	-2.136	-2.300	144.2-	100.2-	-2.727	-2.776	-2.803	-2.810	261.2-	-2.715	-2.632	-2.537	-2.437	175.2-
	Real Disnl.	(Dxcos)		0.061	0.112	0.166	177.0	0.278	0.317	0.361	0.403	0.444	0.479	0100	0.549	0.564	0.574	0.574	0.564	0.559	0.554	0000 0	0.430	0.410	0.344			0.359	0.359	0.278	0.249	0.251	0.212	0.354	0.405	0.459	0.515	0.454	1 383	0.388	0.403	0.420	0.430	0.412	0.417	0.356	0.322	0.293	172.U
	Imag. Force	(Noin)		0.000	0.000	0.002	200.0	0.002	0.002	0.002	0.002	0000	00000		0.002	0.002	0.002	0.002	0.002	0.002	0.002	70000		0.002	0.002			0.002	0.002	0.002	0.002	0.002	700.0	0.002	0.002	0.002	0.002	200.0	0000	0.002	0.002	0.002	0.002	700.0	0.002	0.002	0.002	0.002	700.U
ata (volts	Imag. Disnl.	(Nisin)		-0.002	-0.002	-0.002	0000	-0.002	-0.002	-0.002	0.000	0.000	0.002	200.0	0.000	0.000	0.000	0.000	0.000	0000	0.002		1000	00000	0.000			-0.005	-0.007	-0.005	-0.007	-0.007	0000	0.002	0.002	0.002	0.002	200.0	CUU UT	-0.002	0.000	0.000	0.002	700.0	0.002	0.002	0.002	0.002	0.000
Noise D	Force	(Neos)	105	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.002	0.002	0.000	0.002	0.002	0.002	700.0	200.0	0.002	0.002		100	0,000	0.002	0.000	0.002	0.002	200.0	0.002	0.002	0.002	0.002	200.0	0000	00000	0.002	0.002	0.002	700.0	200.0	0.002	0.002	0.002	200.0
	Real Disnl.	(Nkcos)	A_7.5	-0.002	-0.002	0.000	0000	0000	0.002	0.005	0.005	0.002	0.002	200.0	0.000	0.000	0.000	0.002	0.002	0,000	0.002	700.0	0000	0.002	0.005	1000	A 15	-0.005	0.000	0.002	0.002	0.002	0000	0.007	0.005	0.005	0.002	0000	0000	00000	0.002	0.002	0.002	700.0	1 0.002	0.002	0.002	0.002	200.0
P	द्रस्य भ्राप्ति भूसम्ब	10 5		0	0	00			0	0	0	0	0			0	0	0	0	0	0			0	0			0	0	0	0	0		0	0	0					0	0)o	0		5
P	saio?. olisi	^0 1		0	0	00			0	0	0	0				0	0	0	0	0	00			0	0			0	0	0	0				0	0	00				0	0				0	0		5
(2)	f) .ps	Fre		100	104	108	211	120	124	128	132	136	140	14	152	156	160	164	168	172	100	100		192	196			100	104	108	112	110	174	128	132	136	140	100	125	156	160	164	168	7/1	180	184	188	192	170
3	nihe Bin	^L N			(1	(n s	1.1	10		00	ο,	21	=	10	14	13	16	11	18	19	17	17	16	24	25				CN	ſ	41			00	6	21		12	14	ĥ	16		21	100	12	22	22	47	4

Table K.3: GeoGauge results for A_12_1005 and A_9_100 at loc. 2

K.2 Soil B

				1.1137	2																							1.1137	0.40																				
			1 V V	Poisson's Ratio.	INTERVI O HIMOOTA T																							Mass (hg):	Poisson's Ratio:																				
	Calculated Young's Modulus (MPa)		0.00	90.7	87.7	85.3	82.7	89.5	80.U	211	138	69.1	71.0	73.2	80.3	89.8	109.1	124.1	128.2	1417	143.1	141.6	139.8	138.3	135.1	102.2		147.1	147.0	146.0	146.1	144.7	147.0	143.7	144.5	143.0	141.2	141.0	141.2	141.0	139.6	1.59.5	141.0	138.0	136.3	136.0	132.7	130.7	129.0
Magannad	Stiffness (MN/m)		1001	10.9	10.6	10.3	10.0	10.8	0.2		000	83	8.5	00.0	1.6	10.8	13.1	15.8	166	17.1	17.2	17.1	16.8	16.7	163	123		17.7	1.1.1	17.6	17.6	17.0	175	17.3	17.4	17.2	171	17.0	17.0	17.0	16.8	2001	14.0	16.6	16.4	16.4	16.0	10.0	CCI
R B	Force			#DIV/01	57.2	54.7	#DIV/01	25.7	10/ 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	#DWM		#DIV/0	57.8	#DIV/0i	#DIV/01	#DIV/01			62.1	#DIVIO	#DIV/0	62.5	#DIV/01	#DIV/0	#DIV/01	Averages		i0/ΔIC#	i0/ΔIΩ#	#DIV/01	HDIV/01		#DIV/01	#DIV/0i	59.6	#DIV/0!	#D1V/UI 60.4	i0/AIC#	#DIV/01	61.1	61.3		10/ ATT#	62.0	62.1	62.2	62.3	62.4	#DIV/III
SNE	Displ		0.64	480	49.5	44.3	51.1	33.6	20.7	33.3	200	44.4	50.8	53.1	46.1	45.4	45.1	40 A	40 F	107	40.9	41.2	51.0	51.4	i0/ΛIΩ#			i0/ΛIC#	i0/ΔIΩ#	i0/ΛIΩ#	i0/ΔIC#	20.0	35.4	38.0	38.3	4U.X	454	42.8	43.0	49.3	#DIV/0	44.0	#110/01/1#	#DIV/0	50.7	47.8	51.1	41.4	0.10
	Force	(ussur)	2121	1 604	-1.658	-1.675	-1.658	-1.616	27CT-	114.1-	1 084	-0.872	-0.654	-0.425	-0.193	0.042	0.770	0.757	0000	1 230	1.472	1.709	1.892	2.097	2.310			-1.460	-1.543	-1.594	-1.611	1 542	-1462	-1353	-1.213	-1.023	-0.664 468.0-	-0.449	-0.225	0.010	0.247	0.488	0.050	1177	1.416	1.643	1.821	2.021	000 C
ata (volts	Imag. Displ.	(USSUT)	0 501	0.618	0.649	0.659	0.642	0.500	200.0	0.312	0.063	-0.215	-0.437	-0.586	-0.627	-0.625	-0.550	020.0-	0.530	-01544	-0.574	-0.618	-0.659	-0.703	-0.769			0.342	0.359	0.371	0.371	0.300	202.0	0.293	0.251	0.212	P003	0.037	-0.029	-0.093	-0.159	-0.242	-0.296	-0.430	-0.508	-0.576	-0.652	-0.720	-0.801
Signal D	Forre	(5002)	0.100	071.0-	-0.591	-0.842	-1.101	-1.350	-1.009	2000-1-	200 C	-2.466	-2.603	-2.722	-2.813	-2.883	1262-	1067-	102.2-	-2.910	-2.864	-2.783	-2.690	-2.593	-2.480			-0.122	-0.342	-0.576	-0.815	-1.064	-1 545	-1.768	-1.982	-2.168	825.2-	-2.603	-2.705	-2.781	-2.832	-2.804	1/97-	-2,822	-2.769	-2.686	-2.595	-2.498	23328
	Real Displ.	(soos)	0110	0.211.0	0.322	0.449	0.593	0.676	1 002	CUU.1	1101	1.260	1.108	0.940	0.762	0.657	0.549	10 557	0.550	0.562	0.569	0.574	0.569	0.569	0.562	l. L		0.059	0.110	0.166	0.225	0.224	0.403	0.464	0.513	0.559	0.640	0.671	0.691	0.706	0.720	CI//D	0.098	0.688	0.667	0.627	0.591	0.554	0 461
	Force	(uushr)	0.000		0000	0.002	0.000	0.002	000.0	70000	0000	0000	0.002	0.000	0.000	0.000	00000	0000	0000	0000	0.000	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	00000	0000	00000	0.002	00000	0.000	00000	0.000	0.000	0.000	00000	0000	0000	0.000	0.000	0.000	0.000	
ta (volts)	Imag. Displ.	(WEXYLE)	0000	20000	0.000	0.000	-0.002	0.010	C10.0	710.0	0.000	0.002	-0.002	-0.002	-0.005	-0.005	-0.00	70000	0000	0.000	0.000	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	200.0	0.005	0.005	0.005	0.005	200.0	0000	0.000	0.000	0.000	0000	0000	0000	0.002	0.002	0.000	-0.002	
Noise Da	Real Force	102	0000		0.002	0.002	0.000	0000	0000		0000	0000	0.002	0.000	0.000	0.000	0000		0000	0000	0.000	0.002	0.000	0.000	0.000		103	0.000	0.000	0.000	0.000	00000		0.000	0.000	0.000		0000	0.000	0.002	0.002		0000	0.002	0.002	0.002	0.002	0.002	
	Real DispL	N 3.4	10000		0.002	0.005	0.000	0.015	0.000	670'0	0.015	0.007	0.002	0.000	0.000	0.000	-0.002	100.0-	10000	-0001	-0.007	-0.007	-0.002	-0.002	0.000	2	3 19.5	0.000	0.000	0.000	00000		0.007	0.005	0.005	0.002	200.0	0.005	0.005	0.002	0.000	700.0	70000		0.000	-0.002	-0.002	100.0-	- 0 002
pe 1	angi2 dravO gal T	12	0		0	0	0	00				0	0	0	0	0	-				0	0	0	0	0		I	0	0	0	0			0	0	00		0	0	0	0	•			0	0	00	D	-
pe	saioN otrevO sel T		0			0	0	00	-			0	0	0	0	0	-	-			0	0	0	0	0	2		0	0	0	0	-		0	0	0	-	0	0	0	0	-	-			0		⇒ 0	-
(म	() љы,	I	100	104	108	112	116	120	124	132	136	140	144	148	152	156	100	162	177	176	180	184	188	192	196			100	104	108	112	110	124	128	132	136	141	148	152	156	160	104	177	176	180	184	188	192	190
P	nia danvi		Ŧ	- 77	i m	4	5	or	~ 0	00	10	II	12	13	14	15	10	1	0	20	21	22	23	24	25	191 - 192 192		1	7	9	40			00	9	10	11	13	14	15	16	101	01	20	21	22	23	74	107

Table K.4: GeoGauge results for B_24_103 and B_19.5_103 at loc. 2

141.0

Averages 17.0

T	(मृ	pe	pe I		Noise De	ata (volts			Signal D	ata (volts)		SNR	g g	Measured			
nia Bin	Ŋ •₽	sziol ofra szl?	arb arb gaf	Real	Real	Imag	lmag.	Real	Real	Imag.	lmag.		F	Stiffness	Calculated Young's		
Ν	Fre	L MO N	1 'AO IS	(Nkcos)	(Ncos)	(Nisin)	rorce (Nisin)	(Dxcos)	(Dfcos)	(Dxsin)	(Dxsin)	Jush	Force	(WIN)	(BJIH) SIMINAL		
1		6		B 16	103									0			
1	100	0	0	0.000	0.000	0.002	0.000	0.142	-0.142	0.388	-1.450	44.6	i0/ΔIŒ#	14.5	120.0	Mass (hg):	1.1137
2	104	0	0	0.000	0.000	0.002	0.000	0.159	-0.349	0.415	-1.533	45.2	#DIV/0!	14.9	123.4	Poisson's Ratio:	0.40
3	108	0	0	0.000	0.000	0.000	0.000	0.212	-0.579	0.444	-1.589	i0/ΔIΩ#	#DIV/0	14.5	120.8		
4	112	0	0	-0.002	0.000	0.000	0.000	0.283	-0.818	0.457	-1.606	46.9	i0/AIC#	14.3	118.5		
S	116	0	0	-0.002	0000	0.000	0.000	0.359	-1.064	0.457	-1.592	47.5	#DIV/0	14.1	117.0		
0	120			100.0	0.000	00000	0000	0.413	-1.309	0.417	-1.541	1.82	HUIVIU#	14./	122.3		
~	124			0.015	00000	-0.002	0.002	0.015	-1.748	0.415	-1.462	55.0	8.8C	13.8	0.011		
×	128			0.012	0000	00000	2000	0%(.0	-1.768	0.376	-1.333	1.02	7.60	13.8	114.6		
7	152	-	0	010.0	200.0	200.0	2000	U.654	-1.980	0.344	-1.216	513	0.00	15.0	113.2		
2	136	0	0	0.005	0.000	0.002	0.000	0.723	-2.175	0.283	-1.050	43.1	#DIV/0i	13.5	112.5		
11	140	0	0	0.005	0.000	0.002	0.000	0.779	-2.349	0.225	-0.864	43.4	#DIV/0i	13.5	112.1		
12	144	0	0	0.005	0.000	0.000	0.000	0.820	-2.495	0.149	-0.662	44.6	#DIV/01	13.6	112.8		
13	148	0	0	0.002	0.000	0.000	0.000	0.872	-2.627	0.071	-0.444	51.1	i0/ΔIC#	13.4	111.5		
14	152	0	0	0.000	0.000	0.000	0.000	0.901	-2.732	0.000	-0.225	i@AIC#	i0/AIC#	13.5	111.8		
15	156	0	0	0.000	0.000	0.000	0.000	0.925	-2.808	-0.078	0.005	#DIV/01	#DIV/0#	13.4	111.6		
16	160	0	0	0.000	0.000	0.000	0.002	0.940	-2.859	-0.166	0.244	#DIV/01	61.4	13.4	111.4		
11	164		-	0.000	0.002	0.000	0.000	0.947	-2.886	-0.249	0.483	#DIV/01	61.6	13.4	1112		
18	168			0.002	0.002	0.000	0.002	0.942	-10% C-	-0 334	0.723	52.2	58.7	13.4	1114		
0	172			0.000	0000	0000	0000	0070	272	0.415	0.057	505	619	13.4	111.0		
LUC.	176			0.000	0000	0.000	0,000	0200	VV8 C	UUS U	1180	#UNNIT	009	133	110.2		
10	180			0.000	0.000	0.000	0.000	0.008	102 C	002 U	1 431	#DIV/01	6.03	13.2	1007		
5	184			0.000	0000	0000	0.000	0.874	0110	0.682	1 662	#LINVILL#	HUMUL#	131	100 2		
22	122			0.000	0000	0.000	0.000	0.837	2677	D00.0-	1 843	#DIV/UII	#DIVINI	13.0	107.0		
24	192			0000	0000	-0.002	0000	0.793	-2,527	-0.862	2.046	53.6	#DIV/0#	12.9	107.1		
25	196			0.000	0.000	0000	0.000	0.725	-2.410	-0.957	2.258	i0/AIC#	i0/ΔIC#	12.8	106.4		
														106	1100		
													ATErages	13.0	1133	_	
				B_27	98												
1	100	0	0	0.000	0.000	0.002	-0.002	0.161	-0.129	0.713	-1.482	49.5	55.7	8.7	72.4	Mass (kg):]	1.1137
2	104	0	0	0.012	0.000	0.000	0.000	0.327	-0.354	0.757	-1.567	36.6	#DIV/0i	83	69.2	Poisson's Ratio:	0.40
3	108	0	0	0.032	-0.002	0.010	0.000	0.432	-0.596	0.742	-1.621	28.3	57.0	8.6	71.7		
4	112	0	0	0.046	0.000	0.024	-0.002	0.522	-0.845	0.649	-1.621	24.0	57.5	9.4	77.9		
5	116	0	0	0.042	0.000	0.029	-0.002	0.583	-1.086	0.654	-1.609	24.7	58.0	9.6	79.7		
0	120	0	0	0.032	0.000	0.012	0.000	0.710	-1.338	0.657	-1.563	29.1	#DIV/01	93	77.2		
-	124	-	0	0.020	0000	0.002	0.000	0.950	-1.604	0.598	-1.477	1.03	#DIV/UI		70.7		
×	128			CIU.0	0000	200.0	0.002	0.930	-1.802	0.374	-1.331	20.0	5.60	0.6	1.61		
70	152	-	-	N2U.U	00000	710.0	00000	1.974	-2.004	0.90.4	-1.211	5.55		1.6	8U.8		
3	130	-	-	100.00	00000	210.0	0000	1.089	-2.202	0.334	-1.UCU	58.1		26	18.9		
1	144	-	-	-0.007	0000	CUUU.U	0000	112.1	C95.2-	0.054	6020-	6.06	10/1/17#	7.7	10.4		
40	140			0.010	0000	10000	0.000	102.1	766.22	1000	10.04	202	51.0	10.0	1.00		
	9 C	-		710.0-	700.0	100.0	700.0	1 122	936.6	-0.022	-0.442	12.0	102	10.0	7.00		
	156			0000	700.0	0100	70000	1 757	0071.7-	0102	0.010	10.04	1.02	101	020		
12	160			200.0-	700.0	01010	0.000	1 206	2000 0	920.0	710:0	PCP	282	10.0	5 20		
17	164			1000	10005	0.010	-0.001	1 300	LC0 C	-0.403	0.500	410	547	10.0	83.1		
X	168			0.007	0000	0.005	0000	1 301	2037	0.500	CFL 0	441	58.0	10.0	870		
10	177			2000	40000	0000	0000	1355	1000	0620	0000	18.7	67.0	10	0.00		
20	176			-0000-	0.000	0.002	0.000	1 348	90% C	-0.750	1 226	46.0	#DIV/01	5.6	80.4		
21	180			-0.007	0.000	0.007	-0.002	1 338	-2.849	-0.891	1.475	43.8	62.4	9.6	79.4		
22	184	0	0	-0.005	0.000	0.017	-0.002	1321	-2.773	-1.030	1.716	39.5	62.5	9.4	78.3		
23	188	0	0	-0.024	0.002	0.012	-0.002	1.233	-2.678	-1.218	1.909	36.1	59.6	9.2	76.7		
24	192	0	0	-0.032	0.002	0.010	-0.002	1.211	-2.585	-1.389	2.126	34.9	20.7	0.6	74.5		
57	196	c	0	-0.017	0 002	0.022	-0.002	121	-2,466	-1 560	2354	36.8	59.9	8.8	73.5		

Table K.5: GeoGauge results for B_16_103 and B_27_98 at loc. 2

783

Averages 9.4

				1.1137	. 0.40																							1 1137	0.40																					
			_	Mass (hg):	Poisson's Ratio																							Mass (he):	Paiceon's Ratio																					
	Calculated Young's	(B'IM) SULLAD		83.0	823	81.2	79.3	76.4	20.1	11.00	73.7	91.2	92.1	89.6	86.9 545	84.8	83.5 01 0	0.10	707	78.3	759	74.7	79.0	84.2	87.4 06.0	20.4	822	254	245	23.1	22.3	20.9	19.5	20.4	18.7	14.0	9.9	20	-1.0	-4.8	-10.0	-13.5	-11.8	24.1	51.6	58.7	59.1	514	19.3	
Mananad	Stiffness	(WIN)		10.0	66	9.8	9.5	7.6	20	9.4	8.9	11.0	11.1	10.8	10.5	10.2	10.0	20	90	9.4	1.6	0.6	9.5	10.1	116		99	31	2.9	2.8	2.7	2.5	23	22	23	1.7	1.4	02	1.0-	-0.6	-12	-1.0	-1.4	29	6.2	1.1	1.1	7.0	23	
Ç dB		Force		i0/ΛIΩ#	56.1	56.7	573	5/2	285	#DIV/01	i0/ΛIΩ#	59.8	i0/ΛIΩ#	#DIV/01	#DIV/0	in/ATC#		10/17/2	612	61.8	i0/ΔIΩ#	i@AIQ#	62.2	770		101111	Averages	#DIV/01	56.5	i0/AIC#	#DIV/0i	i0/AIC#	58.8	56.0	60.3	60.2	1.60	565	59.9	60.2	i0/AIC#	#DIV/01	#D1V/U	615	58.8	59.0	1.65	62.7	Averages	
SNE		Displ.		42.1	38.8	373	38.1	247	35.7	39.5	43.1	45.4	#DIV/0	45.6	46.3	45.8	0.44	10	45.6	43.2	45.8	48.8	48.1	42.0	#DIV/01	1011111		59.5	603	i0/ΔIC#	60.2	55.0	45.1	411	48.0	56.7	41.0	45.8	46.8	47.3	48.6	7.80	HUNDA H	39.5	41.0	41.6	47.1	40.7 20.4		
_	Imag.	Force (Dxsin)		-1.445	-1.523	-1.575	-1.592	-1.577	950-1-	-1340	-1.179	-1.021	-0.845	-0.647	-0.432	-0.210	120.0	0.510	0120	0.994	1.235	1.482	1.699	1.865	100.2	11.7.7		-1 402	1 577	-1.631	-1.648	-1.626	-1.553	1 252	-0.935	-0.527	-0.140	-0.147	0.034	0.190	0.359	0.557	1///0	1.211	1.450	1.697	1.897	2.129		
ata (volts	Imag.	Distri)		0.610	0.637	0.659	0.669	0.645	1600	0.444	0.212	0.112	0.144	0.085	-0.010	-0.132	-0.204	0.570	202.0-	-0.872	-1.072	-1.240	-1.235	-1.196	161.1-	191.1-		2000	2415	2.568	2.610	2.603	2.156	0.227	-1.719	-4.402		-5,000	-3.701	-2.703	-1.907	-1.458	1 000	-1.108	-1.230	-1.455	-1.711	-2.UD5		
Signal D	Real	Force (Dfcos)		-0.125	-0.342	-0.576	-0.811	-1.050	1001-	-1777-	-1.987	-2.153	-2.324	-2.473	-2.605	-2.708	-2./85	1007- 1700 C	400.2-	-2.849	-2.810	-2.742	-2.642	-2.546	-2.459	100-0-		-0.154	10 388	-0.640	-0.901	-1.182	-1.467	-1./Uo	-2344	-2.429	-2.341	2 310	-2.405	-2.478	-2.546	-2.605	-2:034	-2.637	-2.617	-2.556	-2.485	-2.4U/	-	
	Real	Dispi (Dxcos)		0.112	0.222	0.332	0.454	0.613	202.0	0.933	1.082	0.906	0.962	1.042	1.123	1.184	177-1	1 729	1 100	1160	1.055	0.837	0.623	0.535	0.371	11000		209.0	1 001	1.726	2.356	3.223	4.294	4.990	4.998	4.114	1.494	-1717-	-2.190	-2.134	-1.819	-1.350	-0.984	-0.320	-0.007	0.178	0.364	0.488 0.530		
	Imag.	Force (Nisin)		0.000	0.002	0.002	0.002	0.002	700.0	00000	0000	0.002	0.000	0.000	0.000	00000	0000		200.0	0.002	0.000	0.000	-0.002	-0.002		0000		0.000	0000	0000	0.000	0.000	0.002	200.0	0.002	0.000		0000	0.002	0.002	0.000	00000		0.002	0.002	0.002	0.002	0.002		
ata (volts	Imag.	UispL (Nssin)		-0.005	-0.007	-0.010	-0.010	-0.005	0100	-0.010	-0.007	-0.005	0.000	0.002	0.002	0.002		0000	200.0-	-0.010	-0.007	-0.002	0.005	0.010		0000		CUU U-	0000	0.000	-0.002	0.000	-0.027	0.040	-0.017	0.005	-0.012	10.02	-0.020	-0.015	-0.010	-0.002		-0.010	-0.010	-0.007	200.0-	-0.002	-	
Noise D	Real	Force (Neos)	98	0.000	0.000	0.000	0.000	0000		00000	0.000	0.000	0.000	0.000	0.000	00000	0000	0000		0000	0.000	0.000	0.000	0.000		0000	98	10000	0.000	00000	0.000	0.000	0.000	0000	0.000	0.002	70000	0000	00000	0.000	0.000	0.000		00000	-0.002	-0.002	70000			
13	Real	Uiseos)	B_22	0.000	-0.002	-0.002	-0.002	-0.002	0.00	0.005	0.002	0.000	0.000	-0.005	-0.005	-00.00	100.0-	0000	70000	-0.002	-0.002	-0.005	-0.002	0.000		0000	B 16	0000	0.000	0.000	-0.002	0.007	0.000	010.0-	0.012	-0.007	-0.042	-0.04	-0.002	0.002	0.000	0.000	0.00	0.007	0.005	0.010	0.007	01010		
pe I	enta olte sel'a	I 940 15		0	0	0	0	00			0	0	0	0	0	•	-				0	0	0	0		•		0		0	0	0	0			0	-			0	0	•	•	,0	0	0		-	>	
p	saio) sala sal ⁵	1 940 N		0	0	0	0				0	0	0	0	0		-				0	0	0	0	•	2		0			0	0	00			0				0	0	0	-	,0	0	0	•	-	2	
(म्	f) 4	Free		100	104	108	112	110	D21	128	132	136	140	144	48	721	120	164	168	172	176	180	184	188	196	2.14		100	104	108	112	116	120	122	132	136	140	148	152	156	160	104	173	176	180	184	188	196		
T	nið Bin	n _N [1	2	8	4			- 00	6	10	11	12	Щ.	14	12	11	1×1	19	20	21	22	57	25	1			2	3	4	5	00	× ×	9	10		13	14	15	16	1/	101	38	21	22	57	57		

Table K.6: GeoGauge results for B_12_98 and B_16_98 at loc. 2

K.3 Soil C

			1.1137	D: 0.40																						1.1137	o: 0.40																		
0			Mass (hg):	Poisson's Rati																						Mass (kg):	Poisson's Rati																	ſ	
	Calculated Young's Modulus (MPa)		72.7	74.4	74.5	72.1	74.4	70.3	08.8	21.0	731	749	74.5	74.0	713	70.8	69.7	68.0	67.0	66.1	669	75.4	76.9	72.1		93.8	97.8	93.0	943	86.1	87.2	102.0	95.5	95.4	94.0	013	91.6	83.8	919	T.00	87.6	83.1	86.0		81.1
	Stiffness (MIN/m)		80. 80.	9.0	0.6	6.00	0.6	S 8 9	γ	1.6	~ 00	0.6	0.6	0.6	9.8	85	8.4	82		7.0 8 U 8	2.4	9.1	93	8.7		11.3	11.8 6 11	113	11.4	10.4	10.5	11.8	115	11.5	۲۱۲ ۱۱۲	110	11.0	10.1	11.1	10.0	10.5	10.0	10.4	c c	9.8
₿₽,	Force		55.8	#DIV/01	#DIV/01	#DIV/01	#DIV/0	iQ/MQ#	HUIVIUR #	602	60.5 60.5	57.7	61.0	2 10	61.7	i0///Œ#	i0/ΛIΩ#	#DIV/0	62.4	202	48.7	49.7	52.8	Averages		i0/ΔIΩ#	i0/AIC#	600	54.9	55.4	55.8	202	56.9	53.2	24.0	610	58.2	i0/AIC#	61.6	61 g	62.1	55.2	47.0	- CF	47.1
SNR	Displ.		37.5	40.5	38.7	36.6	32.6	33.5	54.9	51.5	32.9	33.5	36.9	28.1	49.4	#DIV/0	42.4	39.1	43.7	202	26.4	25.5	28.0	5		33.1	30.4	52.4	32.6	33.6	31.6	20.2	28.1	28.0	55.0 43.2	532	44.4	44.4	34.7	200	35.5	36.0	20.8		21.1
	Imag. Force (Dxsin)		-1.494	-1.580	-1.633	-1.636	-1.584	-1.499	-1.589	-1.200	-0.876	-0.674	-0.452	117.0-	0.269	0.525	0.781	1.038	1.289	1 200	1.970	2.156	2.363	8 - 10 00 00 00 00 00 00 00 00 00 00 00 00		-1.462	-1.548	-1.09	-1.599	-1.548	-1.453	-1.54)	-1.045	-0.859	9C0.U-	0.012	0.024	0.278	0.505	080 0	1 223	1.479	1.702	000.	1.899
ta (volts)	Imag. Displ. (Dxsin)		0.723	0.730	0.762	1 776	0.740	0.686	5600	0.266	01200	0.100	0.002	671.0-	-0.396	-0.610	-0.789	-1.006	-1.221	10021	-1.577	-1.506	-1.553			0.547	0.542	0.402 0	0.562	0.554	0.386	0.302	0.305	0.227	0.112	1001 0	-0.195	-0.432	-0.461	0407.0	-0.828	-1.084	-1.040	102	-1.277
ignal Da	Real Force (Dfcos)		-0.125	-0.352	-0.588	-1001-	-1.338	-1.584	-1.809	500.2-	CC7-7-	-2.571	-2.703	-2.810	-2.952	-2.981	-2.991	-2.976	-2.935	1702 C	-2.664	-2.542	-2.427	10 - 11 200 H 200		-0.127	-0.347	28C.U-	-1.077	-1.328	-1.567	-1.785	-2.175	-2.341	-2.498	002 0	-2.808	-2.881	-2.891	006.2-	-2.844	-2.778	-2.715	000 0	-2.590
S.	Real Displ. (Dxcos)		0.139	0.264	0.352	104.0	0.703	0.913	1.069	1.079	1 280	1.318	1.384	1.420	1.560	1.541	1.543	1.516	1.423	1145	0.842	0.615	0.566	1947 AN 47 AND 764		0.085	0.186	002.0	0.469	0.645	0.767	0.701	0.869	0.930	1.001	1 106	1.125	1.211	1.094	0711	1.002	0.845	0.991	C	0.647
	Imag. Force (Min)		-0.002	0.000	00000		0.000	0.000	0000	0000		0.002	0.002	70000	0.002	0.000	0.000	0.000	0.002	0100	0.012	0.010	0.007			0.000	0.000	70000	0.002	0.002	0.002	700.01	-0.002	-0.002		0000	0.002	0.000	0.000	70000		0.002	0.007	0101	0.012
a (volts)	Imag Displ. (Main)		0.010	0.007	0.010	0.015	0.022	0.017	1000 0	2000	-0.00	-0.017	-0.017	-0.024	-0.005	0.000	0.005	0.005	-0.007	0.056	-0.083	-0.071	-0.046			0.007	0.012		0000	-0.005	-0.005	010/0	0.034	0.029	0.007	0000	0.005	0.002	0000	200.0-	-0.002	-0.020	-0.090	0111	-0.110
Voise Dat	Real Force (Ncos)	03	0.000	0.000	0.000		0.000	0.000		70000	70000	0.002	0.000		0.000	0.000	0.000	0.000	0.000		00000	-0.005	-0.002	10000000	.03	0.000	0.000	nnnn	0.002	0.002	0.002	70000	-0.002	-0.005	CUUU-	200.0-	-0.002	0.000	0.002	0.000	0.002	0.005	0.012	0000	0.007
4	Real Displ. (Nicos)	7 12 1	0.000	0.000	0.000	1000	0.010	0.017	17000	1.052	0.027	0.022	0.010	0.000	-0.002	0.000	0.012	0.020	0.010	0.017	0.022	0.049	0.046		7 9.5 1	0.010	0.012	71000	-0.017	-0.017	-0.022	-0.022	0.012	0.024	0.000	0000	0.005	0.007	0.022	0000	0.022	-0.010	-0.095	1000	-0.061
P	argi2 ofravO gal T	Ĩ	0	0	00		0	0		50			0		0	0	0	0	00		0	0	0	8	J	0	00		0	0	0		0	0			0	0	00	50		0	0	(0
P	saioN SultavO Sal I		0	0	00		0	0	-		- -	0	0			0	0	0	00		0	0	0			0	0	50	-	0	00		0	0	-		0	0	0	50		0	0	c .	0
(4)	Гуеа, (Т		100	104	108	116	120	124	128	126	140	144	8 1 1 8	721	160	164	168	172	1%0	124	188	192	196	i X		100	104	113	116	120	124	132	136	140	144	123	156	160	164	172	176	180	184	00.	188
J	nia Numbe		1	2	ω <u>r</u>	r m	9	~	×	7	31	12	13	14	16	17	18	19	25	17	32	24	25	100 D			C7 C	ηV	d t	9	C 0	00	10	11	71	14	15	16	17	<u>0</u>	20	21	77		240

Table K.7: GeoGauge results for C_12_103 and C_9.5_103 at loc. 2

				1.1137	0.40																						1.1137	0.40																				
				Mass (hg):	Poisson's Ratio:																						Mass (hg):	Poisson's Ratio:																				
	Calculated Young's Modulus (MPa)			96.9	97.6	97.1 17.2	071	97.7	94.9	95.2	92.9	92.0	92.4	92.3	7.16	417 417	92.8	92.2	91.3	89.8	89.4	85.2	8/J	88.7	016	74.0	617	60.0	58.4	55.3	64.0	60 X	68.2	66.8	65.7	1.40	63.7	63.2	62.2	60.4 50.3	1.40	0.40	C.00	57.5	56.7	56.8	56.3	610
Manand	Stiffness	(WIN/m)		11.7	11.8	11.7	11.7	11.8	11.4	11.7	11.2	1.11	11.1	11.1	11.0	10.0	11.2	1.11	11.0	10.8	10.8	10.3	103	10.7	111	111	7.4	12	0.7	6.7	1.1	0.0	8.2	8.0	61	17	1.1	7.6	75	73	77	20	200	69	6.8	6.8	6.8	13
t, dB	Farra	10110		52.7	56.4	57.0 #110/01		i0/AIC#	59.0 2011/01	10//17#	53.0	573	57.6	54.8	1.10	585	#DIV/01	619	62.0	i0/AIC#	#DIV/0	202	272	62.7	Amorton	ofensio	#DIV/01	#DIV/0	i0/AIC#	i0/AIC#		105	HDIV/01	59.8	1.00	:0/ A TO 2	i0///U#	#DIV/0	#DIV/0i	61.8 20-70 mi		10/ATC2	04.2	62.6	i0///JU#	#DIV/0	#DIV/0	LINVICH#
ans	Diml	-day	200	33.0	33.6	35.7	39.4	35.8	34.0	20.00	30.5	33.7	38.5	43.9	40.7	002	38.2	37.1	42.3	41.6	40.9	32.0	2.82	32.2			i0/ΛIΩ#	i0/AIC#	53.0	51.0	0.20	44.0	43.1	47.9	49.4	#DIV/01	56.8	i0/ΛIΩ#	#DIV/0i	#DIV/0!	0.00	0.00	0.1 1	45.2	50.4	57.0	59.8	in(\/IC#
()	Imag.	(Dxsin)		-1.484	-1.570	-1.621	10001-	-1.567	-1.487	-1.573	-1 045	-0.864	-0.669	-0.454	C777-D-	0300	0.505	0.750	0.994	1.230	1.484	1.724	1.907	2317			-1 501	-1.580	-1.621	-1.643	-1.638	-1 506	-1360	-1.235	-1.072	100.0-	-0.449	-0.215	0.032	0.286	0000	0.808	1 306	1 577	1.838	2.034	2.246	D424
)ata (volt	Imag. Disnl.	(Dxsin)	e e	0.537	0.559	0.581	0.562	0.518	0.498	0.260	0.320	0.227	0.132	0.051	-0.000	0.200	-0.447	-0.544	-0.657	-0.803	-0.933	-1.084	-1.160	-1 289			0.884	0.945	0.972	0.938	0.004	0.03/	0.623	0.574	0.481	0000	0.059	-0.110	-0.286	-0.508	10:01	0011-	1 200	-1 714	-2.000	-2.131	-2.253	100U CT
Signal I	Real	(Dfcos)	<u>.</u>	-0.120	-0.344	-0.583	-1 070	-1328	-1.575	-1.804	-2,200	-2.380	-2.532	-2.659	00/.7-	208 C	200.2	-2.932	-2.917	-2.886	-2.830	-2.749	-2.042	2.402			-0.132	-0.369	-0.596	-0.835	-1.089	1691-	-1.826	-2.039	-2.239	185 C	-2.717	-2.825	-2.910	-2.974	CUU.2-	2000	0267-	-2.905	-2.808	-2.698	-2.556	712 C
	Real Diml.	(Dxcos)	1	0.081	0.166	0.247	1 447	0.547	0.654	0.00	0.000	0.984	1.035	1.082	1145	1165	1 104	1.106	1.094	1.047	0.977	0.981	0.674	0.513	24220		0.146	0.320	0.505	0.789	0.869	0.067	1.094	1.230	1.367	1 604	1.697	1.772	1.848	1.936	1741	1.832	1748	1675	1379	1.187	0.747	0 471
(8	Imag. Forre	(Nfsin)	2	-0.002	-0.002	-0.002		0.000	0.000	NUUUU	0.005	0.002	0.002	0.005	700.0	200.0	0.000	0.002	0.002	0.000	0.000	00000	70000	0000	2000		0.000	0.000	0.000	00000	00000	200.0	00000	0.002	0.002		00000	0.000	0000	0.000	00000	0.000	700'0	0.002	00000	0.000	0.000	
ata (volt	Diml.	(Nisin)	4	0.010	0.007	0.007	200.0	0.007	0.007	CUUU:U-	-0.024	-0.020	-0.012	-0.005	0100	-0.010	-0.014	-0.017	-0.010	0.005	0.007	00000	CUUU:U-	0.017	1000		0.000	0.000	0.000	-0.002	00000	-0.010	-0001	-0.005	-0.005	70000	0.002	0.000	0.000	0.000	UUUU.U	200.0-	100.0-	-0.005	0.000	0.002	0.000	0000
Noise D	Real	(Neos)	103	-0.002	0:000	0000		0.000	0.002	0000	-0.002	0.002	0.002	0000		200.0-	0000	0.000	0.000	0.000	0.000	-0.005	700.0-	-0.002	1000	98	0.000	0.000	0.000	0.000	0,000	70000	0000	0.000	0000		0.000	0.000	0.000	0.002	0000	0000		0000	00000	0.000	0.000	0000
	Real Disnl.	(Nkcos)	C. 8	-0.007	-0.010	-0.007	10000-	-0.010	-0.015	100.0-	0.015	0.007	0.002	0.005	100.0	0000		0.002	0.000	-0.010	-0.010	0.037	1CU.U	0.020	1000	C 13	0.000	0.000	0.002	0.002	0.002	200.0-	-0.005	-0.002	00000		0000	0.000	0.000	0.000	70000	0100	0100	0.012	0.007	0.002	0.002	00001
pe I	ad T Serlo: Sel T	NO S	10	0	0	00		0	00			0	0					0	0	0	0	0	-				0	0	0	0				0			0	0	0	00	> 0	-			0	0	0	Q
p	saioV olisi olisi	ю I	4	0	0	00			0			0	0	••				0	0	0	0	0					0	0	0	0			0	0			0	0	0		⇒ ¢	-	- -	, e) O	0	0	C
(म्	Į) .ре	Fre	100	100	104	108	116	120	124	120	136	140	144	148	701 +	160	164	168	172	176	180	184	102	196			100	104	108	112	110	124	128	132	130	14	148	152	156	160	104	1770	174	180	184	188	192	196
J	nita Bin	'N	4 38		14		1				10,	F	12		4	14	í.	18	15	21	21	76	20	23				. 4	^m	~			00	L.		1	1	14	2	¥¢	101		4 K	E	27	27	24	2

Table K.8: GeoGauge results for C_8_103 and C_13_98 at loc. 2

619

Arerages 7.4

			lass (hg): 1.1137	oisson's Ratio: 0.40																							lass (hg): 1.1137	oisson's Ratio: 0.40																				
	Calculated Young's Modulus (MPa)		55.7 IN	55.6 P	54.0	215	50.9	51.1	50.4	50.9	49.0	41.9	459	44.4	43.6	42.4	42.8	42.4	48	46.7	46.3	43.9	41.9	38.0	473		9996 W	97.5 P	96.5	95.0	0.06	95.6	93.5	93.2	90.4	017	92.2	953	95.5	94.4	93.3	93.9	90.1	87.7	86.7	85.4	83.0	92.1
Mananad	Stiffness (MN/m)		6.7	6.7	65	6.7	6.1	6.2	6.1	6.1	59	5.6	55	5.4	5.2	1.0	212	5.1	5.4	5.6	5.6	53	0.0	4.0	5.7		11.6	11.7	11.0		11.3	115	11.3	11.2	10.9	110	1.11	11.5	11.5	11.4	211.2	11.0	10.8	10.6	10.4	10.3	10.1	11.1
E B	Force		10/AIC#	i0/ΛIΩ#	54.1 #mirimi		58.7	#DIV/01	59.5	59.8	54.2	022	542	HDIV/01	61.7			62.4	62.5	55.7	50.3	48.9	49.1	4/9	Arerages		i0/AIC#	i0/AIC#	7.90		#DIWDI	58.7	59.1	i0/AIC#	#DIV/01	#DIV/	60.6	HDIV/01	61.1	HDIV/01	HDIV/01	0.10	58.9	52.1	56.2	56.3	62.5	Averages
INS	Displ.		52.1	49.8	4 €.×	26.35 26.35	46.6	43.4	42.0	50.4	42.2	201	44.0	46.7	45.4	59.65 0.44		42.6	38.5	36.9	30.8	30.3	7.70	55.1			43.7	44.3	#DIV/0	1.84	43.9	43.2	43.9	48.3	48.9	38.5	39.6	38.6	41.7	46.2	46.6	42.0	415	449	52.1	52.3	#UIV/UI	
	Imag. Force		-1.497	-1.584	-1.638	1 643	-1.587	-1.472	-1.375	-1.235	-1.067	7/2/0-	-0.405	-0.173	0.095	0.366	1000	1.172	1.406	1.655	1.919	2.156	2.424	2.764			-1.443	-1.521	-1.572	-1.58 1	7/01-	-1.438	-1.331	-1.182	-1.025	-0.620	-0.437	-0.215	0.017	0.251	0.493	0.064	1 106	1.438	1.672	1.855	19072	1000
ata (volts	Imag. Displ.		0.962	1.013	1.072	1 118	1.052	0.886	0.837	0.706	0.583	0.5%0	-0.120	-0.459	-0.886	-1.309	020 C	-2.329	-2.358	-2.415	-2.659	-3.091	02051	-4.500			0.522	0.542	0.562	690.0	0.530	0.479	0.435	0.381	0.320	012.0	-0.029	-0.107	-0.195	-0.283	-0.396	-0.488	-0.730	-0.884	-1.023	-1.135	-1.272	10011-
Signal D	Real Force	A	-0.129	-0.354	-0.601	1111	-1.377	-1.611	-1.836	-2.053	-2.263	01210	-2.756	-2.871	-2.954	-3.013	-3.032	-2.986	-2.939	-2.893	-2.815	-2.737	1107-	-2.456			-0.122	-0.339	-0.569	-11811-	-1.206	-1.531	-1.753	-1.965	-2.139	210.2-	-2.590	-2.688	-2.764	-2.817	-2.847	-2.804	208.0-	-2.756	-2.668	-2.576	-2.4/1	200.47
	Real Displ.		0.183	0.332	0.515	0020	1.150	1.348	1.528	1.672	1.912	2.109	2.446	2.607	2.634	2.646	2775	1.921	1.741	1.672	1.653	1.729	1.499	1.077			0.085	0.164	0.254	0.349	0.540	0.630	0.732	0.811	0.906	1 012	1.042	1.035	1.052	1.082	1.091	1.077	1 060	1.035	0.947	0.864	0.542	41/10
	Imag. Force	× • • •	0.000	0.000	0.002		00000	0.000	0.002	0.002	0.005	700.0	0.002	0.000	-0.002	0000		00000	00000	0.002	0.007	0.012	710.0	0.015			00000	0.000	00000		70000	0.002	0.002	0.000	00000	70000	0.002	0.000	0.002	0.000	0000	00000		0.002	0.000	0.000	0000	2000
ata (volts	Displ.) >	0.002	0.002	0.005	710.0	0.007	-0.005	-0.010	-0.002	-0.005	700.0	-0.00	-0.007	0.015	0.029	/10:0	0.017	0.007	-0.007	-0.066	-0.105	C6070	-0.103			-0.002	-0.002	0.000	70000	70000	-0.002	-0.002	-0.002	-0.002	70000	0.005	0.007	0.007	0.005	0.005	10100	0.000	0.002	0.002	0.002	0000	200.0-
Noise D	Force	86	0.000	0.000	0.002		-0.002	0.000	0.000	0.000	0.000	700.0	0.005	0.000	0.000	0000		0.002	0.002	0.005	0.007	0.002	70000	0.002		98	0.000	0.000	-0.002			00000	0.000	0.000	00000		00000	0.000	0.000	00000	00000	700.0	0.002	0.007	0.005	0.005	7000	0.005
	Real Displ.	C 10	0.000	-0.002	0.005		00000	-0.010	-0.010	0.005	0.015	C10.0-	-0.015	-0.010	-0.002	0.007	0100	-0.015	-0.034	-0.042	-0.061	-0.024	CUUU-	0.002		C_8_	-0.002	-0.002	00000		0.002	0.005	0.005	0.002	-0.002	01010	-0.010	-0.010	-0.005	-0.002	-0.002	CUUU-	-0100-	-0.007	-0.002	-0.002		2000
rq I	arsi altervo sali		0	0	00		0	0	0	0	0			0	0	-		0	0	0	0	0	•	0			0	0	00	-		0	0	0			0	0	0	0	00			0	0	0	-	>
p	saioN saioNO sala		0	0	00		0	0	0	0	0	-		0	0	-				0	0	0	•	0			0	0	0	=			0	0	00			0	0	0	•			0	0	0	-	2
(म्	П. ееч. (I		100	104	108	116	120	124	128	132	136	140	148	152	156	160	162	172	176	180	184	188	761	190			100	104	108	717	120	124	128	132	130	144	148	152	156	160	164	173	176	180	184	188	196	
T	nit Bin		Ľ	7	m r	1 1	10	L	00	6	2	10	12	14	15	9	1 XI	261	20	21	22	23	24	3			-	C1 K	n e	44	10	r	~	0,0	21	11	13	14	15	16	17	21	202	12	22	27	22	ľ

Table K.9: GeoGauge results for C_10_98 and C_8_98 at loc. 2

K-12

K.4 Soil D

				1.1137	0.40	0																					1.1137	0.40																		
				Mass (hg):	Poisson's Ratio:	3																				63	Mass (hg):	Poisson's Ratio:																		
	Calculated Young's Modulus (MPa)			180.8	177.3	175.6	171.5	1/1.3	165.6	1749	174.0	171.1	169.0	171.6	170.3	173.0	172.0	170.6	1/13	167.6	167.5	171.4	171.5	169.2	171 0	A 1 A 44	258.9	261.7	255.8	255.5	252.9	245.6	245.7	227.4	274.0	253.7	1102	264.6	255.1	251.6	244.7	0.762	271.4	269.3	272.1	272.8
	Stiffness (MN/m)	54 54		21.8	21.4	21.1	0.U2	19.3	19.9	21.1	21.0	20.6	2.02	20.7	20.5	20.8	20.7	2012	1.02	20.2	20.2	20.6	0'NZ	20.4	20.6	204	31.2	31.5	30.8	30.8	30.5	29.6	29.6	26.3	33.0	30.6	2015	31.9	30.7	30.3	29.5	202	32.7	32.4	32.8	475
, dB	Force			#DIV/0	#DIV/0i	#DIV/01	#DIV/01	58.2	55.6	#DIV/01	#DIV/0#	59.7	00.00	#D1 V/UI	#DIV/01	609	HDIV/01	#DIV/III	10010	#DIV/0	619	62.0	0.20	#DIV/01	Averages		#DIV/01	56.0	i0/AIC#	#DIV/01	#DIV/0	#DIV/0i	#DIV/01	#D1V/UI	#DIV/01	#DIV/01	400.4	#DIV/0	#DIV/0!	#DIV/0!	#DIV/01	#D1V/0:	#DIV/0	619	619	1 H7U
SINE	Displ.			40.9	#DIV/0!	#DIV/0	27.0	33.8	30.4	35.0	38.5	42.9	40.4	46.7	47.1	41.1	41.4	41.1	47.0	#DIVIO	48.4	48.2	48.3 ≇⊓177011	48.6	2.2		34.8	38.4	39.2	36.8 70.2	40 60 60 60	35.5	35.9	10(VICH	#DIV/01	35.7	0.25	34.0	40.6	43.9	38.1	40.0	36.7	40.8	40.7	XIII X
	Imag. Force	(Dxsin)		-1.431	-1.511	-1.560	0/01-	-1151-	-1.433	-1.335	-1.191	-1.030	-0.845	-0.049	-0.217	0.010	0.239	0.476	0.700	1.155	1.382	1.602	1.768	2156	0/114		-1.426	-1.506	-1.555	-1.572	-1 506	-1.426	-1.321	-1.184 -0.960	-0.828	-0.618	0.000	0.002	0.229	0.461	0.696	1145	1.353	1.563	1.729	1111 0
ta (volts)	Imag. Displ.	(Dxsin)		0.259	0.278	0.288	262.0	0.205	0.232	0.195	0.183	0.146	U01.0	0.010	-0.049	-0.105	-0.151	-0.205	107.0-	-0.374	-0.432	-0.469	-0.498	-0.570	2220-		0.186	0.193	0.200	0.198	0.198	0.171	0.151	251.0	0.051	0.015	210.0-	-0.083	-0.115	-0.154	-0.210	130.0	-0.266	-0.291	-0.305	A STATE OF
iignal Da	Real Force	(Dfcos)		-0.122	-0.334	-0.564	10701	-1.277	-1.501	-1.726	-1.938	-2.122	067.7-	-2.432	-2.649	-2.717	-2.766	-2.795	102 C	-2.756	-2.703	-2.620	-2.524	-2,314	1 10.4-		-0.120	-0.334	-0.562	-0.796	-1 274	-1.506	-1.726	-1.938	-2.278	-2.375	10070	-2.681	-2.729	-2.754	-2.756	241.2-	-2.676	-2.588	-2.493	
•	Real Displ.	(Dxcos)		0.078	0.112	0.154	130.0	0.315	0.366	0.386	0.420	0.461	0.498	0.530	0.549	0.544	0.552	0.540	050	0.513	0.474	0.422	0.393	0.315	240.0		0.039	0.063	0.098	0.132	0.186	0.237	0.266	0.334	0.300	0.332	0 247	0.337	0.352	0.349	0.332	202.0 590.0	0.261	0.244	0.220	
	Imag. Force	(Nfsin)		0.000	0.000	0.000	0000 0	0000	0.002	0.000	0.000	0.002	0000	0,000	0.000	0.002	0.000	00000	70000	0.000	0.002	0.002	0.002	0.000	0000		0000	0.000	0.000	0000	0000	0.000	0.000	0000	0.000	0.000	0000	0000	0.000	0.000	0.000		0000	0.000	00000	
ta (volts)	Imag. Displ	(Nisin)		0.000	0.000	0.000	0000	0.000	0.005	0.002	0.005	0.002	0000	C000	0.000	0.000	0.000	00000		0000	0.002	0.002	0.002	0000	0000		-0.002	-0.002	-0.002	-0.002	-0.002	-0.005	-0.005	2000.0-	00000	0.002	CUUU.U	0.005	0.002	0.002	0.005	200.0	0.005	0.002	0.002	111111
Noise Da	Real Force	(Neos)	03	0.000	0.000	0.000	n	0000	0.002	0.000	0.000	0.000	70000		00000	0.000	0.000	00000		0.000	0.000	0.000	0.000	0000	0000	503	0000	0.002	0.000	0000	0000	0.000	0.000	0,000	0.000	0.000	70000	0.000	0.000	0.000	0.000		0000	0.002	0.002	111111
	Real Displ.	(Nkcos)	0 16 1	-0.002	0.000	0.000	700.0	CUUU.U	0.012	0.007	0.002	-0.002	-0.000	0000	-0.002	-0.005	-0.005	-0.002	700.0	0.000	0.000	0.000	0000	2000-	400.0-	1 81 0	0.002	0.000	0.000	-0.002	0000	0.000	0.000		0.000	-0.005	100.0-	-0.005	-0.002	0:000	0.000	1000 U	0.002	0.002	0.002	A DEST DEST OF
p	lengi? :otrav(gel?	>	7	0	0	0			0	0	0	0	-		0	0	0			0	0	0					0	0	0	00	-	0	0		0	0			0	0	00			0	0	
P	ssioN soltsv(Bali)		0	0	0	-			0	0	0	-		0	0	0	-			0	0	-		>		0	0	0	_		0	0	-	0	0	-		0	0	_	50		0	0	
(2)	Н) .рет	ł		100	104	108	211	120	124	128	132	136	140	1	152	156	160	104	177	176	180	184	10%	196			100	104	108	112	120	124	128	136	140	144	94 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	156	160	164	168	2/1	180	184	188	1
13	nia Vunhe	I			2	m	4 V	0	C.	00	9	10	11	13	14	15	16	10	10	20	21	22	57	25	1		1	0	en r	44	0	6	∞c	10	II	12	14	12	16	17	18	15	312	22	23	74

Table K.10: GeoGauge results for D_16_103 and D_13_103 at loc. 2

			1.1137	atio: 0.40																						1.1137	atio: 0.40																		
			Mass (hg):	Poisson's Ra																						Mass (hg):	Poisson's Ra																		
	Calculated Young's Modulus (MPa)		130.1	116.0	137.7	208.2	103.2	191.8	186.8	182.9	100.7	176.9	175.6	174.8	1753	172.4	169.2	167.7	170.2	C.001	164.2	164.7	164.2	171.9		125.6	125.2	124.5	122.7	121.7	116.5	110.3	122.6	120.4	118.9	C.121	127.4	125.1	120.3	120.0	121.2	11/11	114.7	1181	
	Stiffness (MIN/m)		15.7	14.0	16.6	1.02	233	23.1	22.5	22.0	217	213	21.1	21.0	2117	20.8	20.4	20.2	20.5	10.02	19.8	19.8	19.8	20.7		15.1	I.CI	15.0	14.8	14.7	14.0	14.0	14.8	14.5	14.3	14.0	153	151	14.5	14.4	14.6	13.8	13.8	14.7	
E	Force]	55.5	56.2	56.6	24.1	227	585	#DIV/0	#DIV/01		60.2	#DIV/01	#DIV/0!	#DIV/VIU#	#DIV/01	#DIV/01	61.6	58.7	550	59.0	62.1	i0/ΔIQ#	Averages		i0/ΔIQ#	i0/AIC#	#DIV/01	#DIV/UI	#DIV/01	HDIV/01		59.7	60.0	#DIV/01	#DIV/UI	#DIV/01	#DIV/01	#DIV/01	#DIV/01	#DIV/01	619	#DIV/01	#UUAUU#	100 1100
SNF	Disp.L		i0/ΔIC#	45.1	#DIV/01	#DIV/0!	#DIVIO	36.7	37.4	42.0	20.2	34.0	33.6	35.7	40.3	47.7	48.0	48.3	48.2	40.0	#DIV/0	i@AIC#	49.2			38.2	38.9	45.7	40.4 47.0	36.2	32.9	22.2	41.8	46.3	49.6	42.0	40.1 38.7	44.2	50.7	47.7	20.9		512	TU ALLE	10/ 10/201
	Imag. Force (Dusin)		-1.445	-1.526	-1.533	-1.550	-1 407	-1.418	-1.316	-1.179	1.025	-0.652	-0.439	-0.220	0.230	0.474	0.703	0.923	1.143	1 507	1.760	1.953	2.148			-1.436	-1.516	-1.567	-1.584	-1.514	-1.433	-1.510	-0.989	-0.837	-0.647	-0.450	0.015	0.249	0.488	0.728	0.955	1411	1.631	1 207	1201
ata (volts	Imag. Displ. (Dusin)		0.369	0.354	0.166	0.178	0 222	0.217	0.210	0.193	00110	0.081	0.024	-0.024	-0.112	-0.159	-0.227	-0.273	-0.327	165.0-	-0.491	-0.532	-0.576			0.388	0.405	0.415	0.415 0.400	0.337	0.332	0.102	0.144	0.076	-0.015	C21.0-	-0.215	-0.281	-0.386	-0.491	-0.542	-0.732	-0.784	200.0	-0.100
Signal D	Real Force (Dfcos)		-0.132	-0.369	-0.591	-0.803	1 272	-1.501	-1.716	-1.921	-2.104	-2.422	-2.542	-2.637	192 C	-2.793	-2.805	-2.791	-2.747	00910	-2.527	-2.429	-2.317			-0.122	-0.339	-0.569	-0.808	-1.292	-1.528	-1./40	-2.131	-2.280	-2.429	-2.554	-2.729	-2.778	-2.808	-2.810	-2.798	201.2-	-2.610	1 51 J	210.2-
	Real Displ. (Dxcos)		0.107	0.261	0.283	0.205	0 271	0.305	0.347	0.388	0.461	0.496	0.520	0.537	0.554	0.569	0.571	0.571	0.540	0.502	0.471	0.435	0.398	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		0.090	0.151	0.217	0.293	0.457	0.537	CU0.0	0.659	0.706	0.740	0.725	0.723	0.740	0.745	0.684	0.662	0.530	0.410	0 227	700 D 1
123	Imag. Force (Min)		0.000	0.000	0000	0.002	2000	00000	0.000	0.000		0.002	0.000	0000		0000	0.000	0.000	0.002	700.0	0.002	0.000	0.000	1.11.11.14.14.14.14.14.14.14.14.14.14.14		0.000	0.000	0.000		0.000	0.000		00000	0.000	0.000	00000	0000	00000	0.000	0.000	0000	0000	0.000	0.000	00000
ta (volts)	Imag Displ (Nam)		0.000	0.000	0.000	0.000	20000	0.002	0.002	0.002	70000	0.002	0.005	0.005	200.0	0.002	0.002	0.000	0.000	70000	0.000	0.000	-0.002			0.000	0.000	0.000	-0.002	0.005	0.012	0.010	0.005	0.002	0.002	-0.002	-0.007	-0.005	0.000	0.002	0.002	0000	0.000	0.000	000.0
Noise Da	Real Force (Neos)	103	-0.002	0.002	0.002	0.002	0.002	0.002	0.000	0.000	0000	0.000	0.000	0000	0000	00000	0.000	0.002	0.002	0000	0.002	0.002	0.000		86	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.002	0.002	0.000	0.000	2000.0	0.000	0.000	0.000	0.000	0000	0.000	0.000	000.0
102	Real Displ. (Nicos)	11 0	0.000	0.002	0.000	0.000	1000 U	0.005	0.005	0.002	CUUU.U	0.010	0.010	0.007		0.000	0.000	0.002	0.002	200.0	0.000	0.000	0.000	 All and a state of a	D_18	0.005	0.005	0.002	0.000	0.007	0.007	200.0	0.002	0.002	0.000	CUU.U-	-0.005	00000	0.002	0.002	0.000	0000	0.002	0.000	000.0
P	Lengič edravO Sel T		0	0	0	00		0	0	0			0	0		0	0	0	0	-	0	0	0			0	0	0		0	0		0	0	0	50	-	0	0	0	00	50	,0	0	
P	saioN Overlos Flag		0	0	-	-		0	0	-	-		0	-		0	0	0	-	-	, o	0	0			0	0	0		0	0	-		0	-	⇒⊂		0	0	0	00		0	0	0
(4)	H) .per I		100	104	108	112	120	124	128	132	140	144	148	152	160	164	168	172	176	124	188	192	196			100	104	108	116	120	124	123	136	140	144	148	156	160	164	168	172	180	184	122	2014
3	Numbe Numbe		_	2	m	44	19	C	∞.	0,0	32	12	13	14	19	17	18	19	88	17	33	24	25			1	2	۳r	40	9	-	×o	10	11	17	32	12	16	17	18	10	32	22	26	

Averages

Table K.11: GeoGauge results for D_11_103 and D_18_98 at loc. 2

K-15

H	2 10 IN		-	Contraction of the local data	-	- AND				A DOUGHT			TTTE TO TT TTT			
() 'bərg	aioN drevO ≱al¶	srigič Overlo Flag	Real Displ.	Forre (NFort)	Imag Displ.	Imag. Force	Real Displ. (Dread	Real Force (Dfoot)	Displ.	Imag. Force (Durin)	Displ.	Force	Stiffness (MN/m)	Calculated Young's Modulus (MPa)		
			D 14	98												
8	0	0	-0.002	0.000	0.002	0,000	0.088	-0.122	0.400	-1.440	41.5	#DIV/01	14.8	122.8	Mass (kg):	1.1137
8	0	0	0.000	0.000	0.002	0.000	0.144	-0.339	0.415	-1.521	45.1	#DIV/0!	14.9	124.1	Poisson's Ratio:	0.40
8	. 0	0	0.000	0.000	0.000	0.000	0.217	-0.569	0.427	-1.572	#DIV/0	#DIV/0	14.7	122.3		
17	0	0	0.000	0.000	0.000	0.000	0.286	-0.806	0.425	-1.587	#DIV/0	#DIV/0	14.7	122.2	1	
10	0	0	0.000	0.000	0.000	0.000	0.366	-1.050	0.413	-1.570	#DIV/0	#DIV/01	14.5	120.5		
8	0	0	-0.007	0.000	0.000	0.000	0.439	-1.289	0.393	-1.521	38.1	#DIV/0i	14.4	119.4		
24	0	0	-0.002	0.000	0.000	0.000	0.520	-1.523	0.342	-1.438	48.1	#DIV/0i	14.3	118.6		
38	0	0	0.002	0.000	0.002	0.000	0.581	-1.738	0.291	-1.328	45.5	i0/AIC#	14.3	118.7	-	
33	0	0	0.002	0.000	0.007	0.000	0.664	-1.951	0.164	-1.201	38.9	#DIV/0i	13.9	115.1		
30	0	0	0.002	0.000	0.005	0.000	0.593	-2.141	0.161	-1.033	41.0	i0/ΔIC#	16.4	136.3	1000	
8	0	0	0.000	0.000	0.002	0.000	0.667	-2.310	0.122	-0.850	48.9	i0/ΔIC#	15.6	129.1		
4	0	0	0.002	0.000	-0.002	0.000	0.701	-2.451	0.051	-0.652	46.2	HDIV/01	15.5	128.5		
\$	0	0	0.002	0.000	-0.005	0.002	0.730	-2.573	-0.029	-0.439	42.5	9.09	15.3	127.1		
23	0	0	0.002	0.000	-0.002	0.002	0.742	-2.673	-0.085	-0.217	46.7	8.09	15.5	128.5		
20	0	0	0.002	0.000	0.000	0.002	0.747	-2.747	-0.149	0.015	49.9	61.0	15.6	129.5		
8	0	0	0.000	0.000	00000	0.000	0.757	-2.795	-0.215	0.244	#DIV/0	i0/AIC#	15.5	128.7		
164	0	0	0.002	0.000	0.000	0.000	0.757	-2.825	-0.298	0.486	505	#DIV/01	15.3	127.4		
168	0	0	0.000	0.000	0.000	0.000	0.742	-2.832	-0.366	0.720	#DIV/0	#DIV/01	15.4	128.0		
172	0	0	0.000	0.000	-0.002	0.000	0.730	-2.820	-0.435	0.950	50.8	#DIV/01	15.4	127.5		
176	0	0	-0.002	0.000	0.000	0,000	0.725	-2.786	-0.518	1174	51.2	#DIV/01	15.0	1242		
081	0	0	-0.002	0.000	0.000	0.000	0.686	-2.732	-0.615	1.409	51.5	#DIV/0	14.7	121.8		
184	0	0	0.000	0.000	0.000	0.000	0.620	-2.646	-0.698	1.636	#DIV/0#	#DIV/01	14.6	121.1		
88	0	0	0.000	0.000	0.002	0.000	0.569	-2.551	-0.759	1.809	51.8	#DIV/01	14.4	119.9		
62	0	0	0.000	0.000	0.002	0.000	0.505	-2.451	-0.830	2.007	52.0	HDIVNI	14.2	118.3		
96	0	0	-0.002	0.000	0.005	0.000	0.398	-2.332	-0.901	2.212	45.1	#DIV/01	14.0	116.7		
1	a Xu											Arerages	14.0	123.0		
			0 11 0	80							2					
β	0	C	L CUU U	0000	0.000	0.000	0.100	0.123	37A 0	1 450	43.1	#DIV/01	10.4	102.2	Mass (lev).	1 1127
			700.0	0000	700.0	0000	771.0	7010-	0.470	0/1-1-	LTT		111	010	Light of the second	0 40
50	-	-	700.0	0000	70000	0000	262.0	60C70	770 0	1 560	VOV	#DIV/01	10	0.1%	POISSON S NALLO:	0.40
sþ	20		70000	0000	0000	0000	0.202	0.2020	0/010	1 526	10 WIL		11.0	1 10	_	
			0000	0000		0000	030.0	070.0-	0 127	1031	20.0	#10/01/1#	2.12	1.12		
36		-	70000	0000	200.0	0000	607.0	1 222	0.100	100/1-	20.00	10/10#	1.77	107.7		
22			0000	0000	2000	0000	0.330	-1 SN4	0.777	-1.418	222	#DIVINI	213	176.6		
XC			0002	0000	1000	0000	0 202	1 710	2227.0	1 212	26.4	#DIVINI	100	165.5	-	
6	, c		10005	0000	500.0-	0.000	0 464	1 001	2100	1182	37.4	#DIV/UH	18.8	1557		
36			0.000	0000	-0.002	0.002	0.530	-2.097	0.168	-1 040	47.1	59.6	179	148.6		
台	0	0	0.000	0.000	0.000	0.002	0.574	-2.295	0.132	-0.850	#DIV/0	60.09	17.8	147.7		
4	0	0	0.000	0.002	0.002	0.002	0.608	-2.434	0.081	-0.652	48.0	573	17.6	146.5	_	
48	0	0	0.002	0.000	0.002	0.002	0.647	-2.556	0.022	-0.439	45.5	60.5	173	143.3		
23	0	0	0.002	0.002	0.000	0.002	0.657	-2.651	-0.051	-0.217	48.6	57.7	17.4	144.3		
20	0	0	0.000	0.002	-0.002	0.002	0.669	-2.727	-0.098	0.012	48.8	58.0	17.5	145.0		
00	0	0	0.000	0.000	-0.002	0.002	0.693	-2.778	-0.159	0.244	49.3	61.2	17.1	141.7		
64	0	0	0.000	0.000	-0.002	0.002	0.718	-2.810	-0.227	0.479	49.8	613	16.6	137.7		
89	0	0	0.000	0.000	-0.002	0.002	0.715	-2.820	-0.322	0.713	50.1	61.5	16.2	134.7		
32	0	0	0.000	00000	0.000	0.002	0.693	-2.803	-0.391	0.940	i0/ΔIC#	61.7	16.3	135.1		
16	0	0	0.000	0.000	0.002	0.002	0.676	-2.766	-0.447	1.160	50.4	61.8	16.3	135.2		
80	0	0	0.000	0.002	0.002	0.000	0.654	-2.717	-0.532	1.392	50.8	619	16.0	132.5		
84	0	0	0.000	0.002	0.000	0.000	0.593	-2.634	-0.608	1.616	HDIV/01	62.0	16.0	132.6		
88	0	0	-0.002	0.002	0.000	0.000	0.557	-2.539	-0.657	1.790	50.9	62.1	15.9	132.0		
67	0	0	-0.002	0.002	0.002	0.000	0.500	-2.441	-0.710	1.982	48.0	62.2	159	132.2		
8	0	0	0.000	0.000	0.005	0.000	0.449	-2.327	-0.752	2.183	45.1	HDIV/ICH	10.1	133,4		
														and the second se	_	

Table K.12: GeoGauge results for D_14_98 and D_11_98 at loc. 2

K.5 Soil D With a Thin Layer of Sand

				1.1137	0.40																									1.1137	0.40																					
				Mass (hg):	Poisson's Ratio:																									Mass (kg):	Poisson's Ratio:																					
	Calculated Young's Modulus (MPa)			241.4	247.9	239.3	231.3	225.4	204.6	222.6	C.777	1.622	21072	216.2	217.8	2164	222.7	220.9	218.4	217.9	215.7	215.4	211.9	216.6	219.4	214.2	212.4	2213	с.	288.7	290.1	284.5	283.6	284.8	291.3	283.1	1.112	2012	272.1	270.6	267.9	269.3	277.3	1.012	7.407	236.6	285.4	280.1	274.3	284.2	201.4	279.0
	Stiffness	(MUNIM)	200	29.1	29.8	28.8	617	27.1	24.0	2.02	0.02	600	256	2002	292	26.1	26.8	26.6	263	26.2	26.0	259	25.5	26.1	26.4	25.8	25.6	26.7		34.8	34.9	34.3	34.2	34.3	35.1	1.40	33.3	202	32.8	32.6	32.3	32.4	33.4	23.2	21.5	333	34.4	33.7	33.0	34.2	1.02	33.6
₽₽, [†]	Force			i0/ΛIΩ#	#DIV/0!	#DIV/01	#DIV/UI	#DIV/01	#DIV/UI	#DIV/UI	10.00	10/01/17#	10/ 102	#DIVINI	#DIV/UI	#DIV/0#	#DIV/0	61.1	i0/AIC#	#DIV/01	i0/AIC#	61.7	619	58.9	59.0	#DIV/0i	₩DIV/0!	Averages		i0/ΛIΩ#	i0/AIC#	53.6	54.2	54.7	#DIV/01	10/ 1/17#		#DIV/01	60.0	60.1	60.4	#DIV/01	#DIV/0	01.10	7.10	#DIV/DI	#DIV/01	#DIV/01	#DIV/01	#DIV/01		Averages
SNR	Diml.	1000		i0/∆IC#	38.8	36.8	40.7	41.4	51.0	1.12	0.42	24.4	CPP	348	35.0	44.8	48	42.0	i0/AIC#	38.5	32.8	32.9	30.8	29.9	29.9	32.3	37.3			36.9	26.4	28.3	28.9	32.4	33.6	0.02	252	42.0	#DIV/0	42.2	39.6	36.7	36.7	54.0	26.6	40.4	#DIV/0i	i0/ΔIΩ#	43.1	43.5 2017/01/1		
	Imag. Force	(Dxsin)	8	-1.431	-1.514	-1.560	-1.577	-1.560	-1.511	-1.431	1 100	1 020	0001-	01010-	10.437	-0.220	0.005	0.232	0.466	0.701	0.930	1.147	1.372	1.584	1.750	1.938	2.134			-1.431	-1.511	-1.560	-1.575	-1.560	-1.509	-1.451	1 197	-1 030	-0.842	-0.635	-0.439	-0.225	0.002	6770	0.404	0.070	1.143	1.350	1.577	1.738	0110	4111
ata (volts	Imag. Displ.	(Dxsin)	6	0.188	0.198	0.210	0.220	0.215	0.217	0.188	001.0	0.144	21170	0.0.0	0100	-0.046	-0.088	-0.120	-0.164	-0.208	-0.244	-0.288	-0.339	-0.364	-0.383	-0.417	-0.452			0.168	0.176	0.183	0.183	0.176	0.156	00110	0.134	0.002	0.063	0.029	-0.007	-0.046	-0.076	C60.0-	-0.134	-0.190	-0.229	-0.269	-0.300	-0.291	-0.200 0.720	040.01
Signal D	Real Force	(Dfcos)	0	-0.120	-0.334	-0.564	-0.801	-1.040	-1.279	1101-	1 024	-1.934	121.2-	2115 C	1285 CT	-2.632	-2.705	-2.751	-2.778	-2.783	-2.773	-2.742	-2.693	-2.612	-2.515	-2.419	-2.305			-0.120	-0.334	-0.562	-0.796	-1.040	-1.277	anc't-	-1.724	1021-	-2.300	-2.393	-2.524	-2.622	-2.695	-2.742	1001-7-	192 2-	-2.747	-2.681	-2.603	-2.507	-2.41U	1/17.17-
	Real	(Dxcos)	5	0.066	0.081	0.112	0.146	0.190	0.254	0.264	667.0	275.0	1020	0.400	0.410	0.422	0.413	0.420	0.420	0.410	0.408	0.386	0.359	0.325	0.291	0.278	0.227			0.029	0.054	0.083	0.112	0.144	0.173	NU2.U	0.756	10/201	0305	0.315	0.330	0.332	0.325	0.334	0.234	0.202	0.266	0.225	0.181	0.220	0.178	2110
	Imag. Force	(Nisin)	20	0.000	0.000	0.000	00000	0.000	0.000		70000	00000	0000		0000	0000		0000	0000	0.000	0.000	0.002	0.002	0.002	0.002	0.000	0.000			0.000	0000	0.002	0.002	0.002	0.000	00000			00000	00000	0.000	0.000	0000			70000	0.000	0.000	0.000	0.000		0.000
ata (volts	Imag. Displ	(Nksin)	Dom	0.000	0.002	0.002	0.002	0.002	-0.007	-0.012	010/0-	C00.0-	70000			0000	000	0.002	0000	0.002	0.005	0.005	0.007	0.012	0.015	0.012	0.005		200	0.000	0.007	0.007	0.007	0.005	0.005	010.0	100.0		0000	0.002	0.002	0.000	0000	CUU.U-	CUU.U-	-0002	0.000	0.000	0000	-0.002		2000
Noise D	Real Force	(Neos)	3_sand	0.000	0.000	0.000	0000	0.000	00000		70000			10000	0000	0000		0.002	0000	0.000	0.000	0.000	0.000	-0.002	-0.002	0.000	0.000		3 sand	0.000	00000	0.002	0.002	0.002	0.000			0000	0.002	0.002	0.002	0.000	0.000	70000	70000		0.000	0.000	0.000	0.000	0000	0.000
	Real Displ.	(Nkeos)	16 10	0.000	0.000	0.002	0000	0000	-0.005	-0.00	CUUU.U-		700.0-	700.0-	100.02	-0.002		0.002	00000	0.005	0.010	0.010	0.012	0.010	0.005	0.000	-0.005		13 10	0.002	0.005	0.002	0.002	0.002	0.000	700.0-	70000		00000	0.000	0.002	0.005	0.000	0000	0000	-0.002	0.000	0.000	0.002	0.000	0000	0.000
P	Ser 1 Lergi edrov verlos	ю ;	ā	0	0	0	-	-	0	-		•							0	0	0	0	0	0	0	0	0		Q	0	0	0	0	0	00	-				0	0	0	-	=	-		0	0	0	00	-	2
P	saioN saioN saia	0	200	0	0	0	-	-												0	0	0	0	0	0	0	0			0	0	0	0	0		⇒				0	0	0	•	=			0	0			> c	>
(Z)	H) .ps	ał	2	100	104	108	7117	116	120	124	120	701	140	14	148	152	156	160	164	168	172	176	180	184	188	192	196			100	104	108	112	116	120	124	120	126	140	144	148	152	120	100	100	172	176	180	184	18%	196	
Ľ	nit Bin	N			14		2.1		or		00		÷F	i C	i f	14	P	16	1	18	P)	8	21	22	23	24	5				.4	n	4	r)	or	-0	00	Ē	F	12	11	14	2	St.	101	i fi	20	21	77	26	49	1

Table K.13: GeoGauge results for D_16_103 and D_13_103 at loc. 2 with a thin layer of compacted sand

				1.1137	0.40	1																							1.1137	0.40																					
				Mass (hg):	Poisson's Ratio:																								Mass (hg):	Poisson's Ratio:																					
	Calculated Young's Modulus (MPa)			257.6	258.8	259.5	2.002	257.1	0.402	152	0.520	236.8	266.9	272.5	260.3	262.6	267.1	269.3	262.3	1.002	0.002	272.8	247.4	251.5	249.4	251.5	257.5		165.1	164.7	161.7	159.2	156.4	100.1	15/1	152.6	148.1	149.6	140.0	6101	1525	153.2	144.4	142.4	145.9	141.1	137.0	142.0	147.2	1519	151.4
	Stiffness (MN/m)			31.0	31.2	31.2	6.02	51.0	N 00	20.4	30.6	28.5	32.1	32.8	31.4	31.6	32.2	52.4	31.0	512	20.10	20.4	29.8	30.3	30.0	30.3	31.0		19.9	19.8	19.5	19.2	18.8	19.5	12.6	18.4	17.8	18.0	102	10.0	10.0	18.4	17.4	17.2	17.6	1/10	165	171	17.7	٤.81	18.2
₽,	Force	-		#DIV/0i	53.1	50.7	7.10	8.10	1001017		59.4	59.8	59.9	60.2	#DIV/01	60.7	609	61.1	61.3	4.10 #DTO/01	10/1/7#	550	52.0	55.0	56.1	62.2	Arerages		#DIV/01	#DIV/01	i0/ΔIC#	#DIV/0i	#DIV/01			#DIV/01	59.8	#DIV/0	5.05			#DIV/01	#DIV/01	#DIV/01	61.6	#LUV/UI	610	62.0	62.1	2729	Averages
SNR	Displ			i0/ΛIΩ#	38.6	i0/ΔIC#	#DIV/IU	40.3	10/ 1/7#	101/11/1#		43.2	419	42.3	43.0	36.1	40.2	40.4	40.8	1.144	74.4	348	35.4	38.8	38.0	38.0			i0/ΔIΩ#	42.6	43.3	41.0	41.7	54.8 20.1	31.5	36.6	41.2	#DIV/0		10/17/10/	47.8	48.3	49.0	46.0	46.0	49 J	49.1	48.8	48.3	4/9	
~	Imag. Force	(Dxsin)		-1.438	-1.526	-1.567	1.201-	N/C1-	1701-	-1.222	1100	-1 038	-0.779	-0.647	-0.444	-0.227	0000	0.227	0.464	0.000	0.920	1 360	1577	1.748	1.938	2.131			-1.438	-1 521	-1.567	-1.584	-1.567	-1.70 1 /20	1 200	-1.189	-1.021	-0.835	7007-0	-0.459	0.010	0.242	0.483	0.723	0.952	1.172	1 619	1.782	1.968	2.158	
ata (volts	Imag. Displ.	(Dxsin)		0.190	0.200	0.203	CU2.U	0.200	101.0	0/170	0130	0.120	0.017	0.042	0.015	-0.024	-0.054	-0.076	-0.110	-0.124	2/T/0-	PSC 01	-0.298	-0.320	-0.349	-0.371	s Q		0.295	0.310	0.320	0.322	0.315	0.360	CCC U	0.188	0.132	0.068	10000	-0.105	-0.166	-0.220	-0.320	-0.415	-0.449	0.500	-0.635	-0.630	-0.615	-0.601	
Signal D	Real Force	(Dfcos)		-0.120	-0.339	-0.564	-0.50	-1.042	797.1-	1 726	1 046	-2158	-2.271	-2.405	-2.534	-2.632	-2.708	-2.756	-2.783	221.128	0/17-	10/.2-	-2.622	-2.524	-2.427	-2.314	144°		-0.120	-0.337	-0.566	-0.803	-1.047	-1.284	17771-	-1948	-2.144	-2.280	-2.429	0007-	PC0.2-	-2.776	-2.803	-2.805	-2.791	601.2-	-2./100	-2.512	-2.407	-2.292	
	Real Displ.	(Dxcos)		0.032	0.059	0.090	0.120	0.126	191.0	177.0	1.281	0.332	0.303	0.315	0.344	0.349	0.349	0.352	0.361	0.261	405.0	0.220	0.315	0.281	0.256	0.225	5 T (0)		0.063	0.107	0.161	0.217	0.278	0.201	0.720	0.488	0.544	0.562	100.0	6/00	0.570	0.598	0.605	0.552	0.525	0.405	0.293	0.234	0.151	0.083	
0	Imag. Force	(Nisin)		0.000	-0.002	-0.005	-0.000	-0.002	0000			0.002	0.002	0.002	0.000	0.002	00000	00000	0.000	00000	0000	200.0	0.002	0.002	0.000	0.000	~		0.000	0.000	0.000	0.000	0.000	0000	0000	00000	0.000	0.000	00000	0000	0000	00000	0.000	0.000	0.002	0000		00000	0.002	0.000	
ata (volts	Imag. Displ	(Nisin)		0.000	0.000	0.000	1000	0.002	0.000	70000		200.0-	00000	0.002	0.002	0.002	0.002	0.002	0.002	0000	0000	0000	00000	0.000	0.002	0.002	2		0.000	0.000	0.000	0.002	0.002	-0.002	700 U	-0.002	0.000	0.000	0000	0000	70000	00000	0.000	0.002	0.002	700.0	2000	00000	0.000	0.000	
Noise D	Real Force	(Neos)	Sand	0.000	-0.002	0.000	0000	00000	70000			0000	00000	0.000	0.000	0.000	0.002	0.002	0.002	70000	0000	0000	0.007	0.005	0.005	0.002	C 210	sand	0.000	0.000	0.000	0.000	0.000	0000		00000	0.002	0.000	70000	70000		00000	0.000	0.000	0000		200.0	0.002	0.000	0.002	
	Real Displ.	(Nicos)	11_10:	0.000	-0.002	0:000	00000	00000	00000		0000	0000	0.002	0.000	0.000	-0.005	-0.002	0.002	0.002	700.0	700.0	10000	0.007	0.005	0.005	0.005	1	18 98	0.000	0.002	0.002	0.002	0.002	-0.007	0.010	-0.007	-0.005	0.000	00000	00000		-0.002	-0.002	-0.002	-0.002		70000	-0.002	-0.002	-0.002	
P	lengič edrav(zeli	D	D	0	0	0	-						0	0	0	0	0		00				0	0	0	0	0.20	Q	0	0	0	0	0	-		0	0	0	-	-		0	0	0	0	-			0	0	
P	saioN saioN saiA	D		0	0	0	-			-				0	0	0	0	-		-	-		0	0	0	0	20		0	0	0	0	0	-			0	0	⇒ ¢				0	0	-	-			0	0	
(2)	Н) .рэт	F		100	104	108	711	110	174	128	132	136	9	144	148	152	156	160	164	201	7/1	180	184	188	192	196	×		100	104	108	112	116	N21	1751	132	136	140	141	91	156	160	164	168	172	100	184	188	192	196	
3	nia Bin	I		I	7	m	46	1	or I	-04		10	F	12	13	14	51	10	10	×1	AT L	36	22	23	24	25			-	2	m	4	S	or	×	0	10		21	15	12	291	L	18	19	RF	17	33	24	7	

Table K.14: GeoGauge results for D_11_103 and D_18_98 at loc. 2 with a thin layer of compacted sand

				Mass (kg): 1.1137	Poisson's Ratio: 0.40																								Hass (hg): 1.1137	Doisson's Ratio: 0.40																					
	Calculated Young's Modulus (MPa)			180.3	178.7	180.2	176.0	1761	176.2	175.4	172.9	174.2	173.3	172.7	173.7	172.2	1/0.8	170.5	170.8	169.9	167.1	162.2	160.2	159.5	1573	152.5	1712		209.1	212.1	212.1	210.3	211.6	202.2	2012	215.2	1051	213.3	211.1	206.4	206.8	217.0	208.2	202.02	2048	199.6	197.4	194.8	194.4	194.0	205.0
	Stiffness	(MIN/m)		21.7	21.5	21.7	212	212	212	21.1	20.8	21.0	20.9	20.8	20.9	1.02	21.5	202	2016	20.5	20.1	19.5	19.3	19.2	18.9	18.4	20.6	No. 10	25.2	225	25.5	253	25.5	24.7	6.36	242	23.5	25.7	25.4	24.9	24.9	1.02	1.02	24.2	247	24.0	23.8	23.5	23.4	23.4	24.7
S, dB	Farra	FOICE		i0/ΛIΩ#	i0/∆IC#	#DIV/01	IN/ATO#	585	#DIV/0	#DIV/0i	#DIV/01	29.7	59.9	60.2	CU0	in////#			#DIV/IC#	#DIV/0	#DIV/01	HDIV/01	59.0	62.1	#DIV/0i	#DIV/0i	Averages	×	#DIV/01	#DIV/0i	#DIV/0i	i0/AIC#	#DIV/0i	in//In#	11/201014		#DIWNIC#	#DIV/0i	IQ/VIC#	i0/AIC#	#DIV/0i	#DIV/01	1.10	512	61.6	61.7	55.9	55.9	0.2.0	7779	Averages
INS		гларт		34.1	38.8	39.4	10.0	351	33.4	35.1	38.6	42.8	43.1	35.3	202	50.9	0.04	4.1	418	48.1	48.4	45.8	45.9	46.0	49.2	43.4			36.8	373	40.9	38.6	HDIV/0	8.02	0.72	2.75	38.9	35.0	31.6	28.1	32.9	39.0	42.0	43.4	43.2	36.6	35.6	40.9	40.2	36.9	
	Imag. Forre	(Dxsin)		-1.436	-1.516	-1.565	7901-	1 516	-1 436	-1.328	-1.191	-1.011	-0.833	-0.652	-0.442	-0.222	10000	V.424	0.708	0.938	1.155	1.384	1.604	1.775	1.968	2.168			-1.436	-1.516	-1.565	-1.582	-1.565	4IC1-	-1.450	07C-1-	1 005	-0.796	-0.645	-0.439	-0.222	0.002	0.460	0.40X	0.940	1.147	1.367	1.589	1.038	2144	
ata (volts	lmag. Diml.	(Dxsin)	e S	0.271	0.288	0.291	C67.0	190.0	0.244	0.222	0.183	0.137	0.107	0.044	-0000	-0.059	261.0-	091.0-	190.0-	-0.308	-0.361	-0.435	-0.498	-0.542	-0.591	-0.657			0.234	0.242	0.249	0.249	0.242	0.247	0.102	0.160	0110	0.056	0.046	-0.002	-0.051	-0.076	-0.161	TOT'D-	10271	-0.317	-0.369	-0.415	-0.444	10200	
Signal D	Real	(Dfcos)		-0.120	-0.337	-0.566	1 045	1 284	-1 519	-1.736	-1.948	-2.141	-2.275	-2.422	-2.546	-2.646	072.0	502 C	508 CT	-2.793	-2.761	-2.712	-2.625	-2.532	-2.434	-2.317			-0.120	-0.334	-0.564	-0.801	-1.045	-1.284	01011-	1 0/0	-2168	-2.251	-2.407	-2.532	-2.632	-2.705	-2.104	7286	-2.778	-2.756	-2.703	-2.612	-2.517	-2.302	
	Real Diml.	(Dxcos)	6	0.054	0.090	0.137	0.120	207 D	0.334	0.376	0.425	0.457	0.481	0.508	0.522	0.540	0.540	0 55.4	10542	0.537	0.530	0.513	0.469	0.422	0.386	0.310			0.042	0.076	0.110	0.154	0.193	0.232	127.0	012.0	0.410	0.383	0.410	0.435	0.442	0.430	0.454	104/0	0.420	0.415	0.383	0.347	0.308	0.205	
	Imag. Forre	(Nitin)		0.000	0.000	0.000	0000	0000	0000	0.000	0.000	0.000	0.000	0000	0000	00000	000 0	0000	0000	0000	0.000	0.000	0.002	0.002	0000	0.000			0.000	00000	0.000	0.000	0.000	00000	70000	0000	0000	0.000	0.000	0.000	0.000	0.000	00000	0000	0.002	0.002	0.005	0.005	0.002	0.002	
ata (volts	Diml.	(Nsin)		-0.005	-0.002	0.002	700.0	200.0	0.005	0.002	0.002	0.002	-0.002	-0.005	-0.005	-0.002	700.0		0002	0.002	0.002	0.002	0.002	0.002	0.002	0.005			-0.002	-0.002	-0.002	-0.002	00000	-0.002	700.0	70000	0.005	0.005	0.005	00000	-0.002	00000	0000	7000 U	-0.001	-0.002	-0.005	-0.005	CUU.0-	-0003	
Noise D	Real	(Neos)	sand	0.000	0.000	00000		200.0	0.000	0.000	0.000	0.002	0.002	0.002	0.002	00000		0000		0000	0.000	0.000	-0.002	0.000	0.000	0.000		sand	0.000	0.000	0.000	0.000	0.000	0000	70000		0000	0000	0.000	00000	0.000	00000	200.0	200.0	0000	0.000	0.000	0000	0.000	0000	
	Real Diml	(Nkcos)	14_98	-0.002	-0.002	-0.002	700.0-	200.0	0.007	0.007	0.005	0.002	0.002	0.007	0.007	0.007		70000		0000	0000	0.002	0.002	0.002	0000	0.000		36 11	0.002	0.002	0.000	-0.002	0.000	C100.0-	710.0-	710.0-	0000	0.005	0.010	0.017	0.010	0.005	200.0	700'0	0.002	0.007	0.007	0.000	00000	-0.002	
P	કુસ્ત 1 કિત્તાઓ કહ્યોં 1	40 15	ď	0	0	00			0	0	0	0	0	0	0	0	-			0	0	0	0	0	0	0		Q	0	0	0	0	0	-	-			0	0	0	0	00	50	- -		0	0	0	> c	-	
P	saiol erlo: Pla	40 J	é	0	0	0	-			0	0	0	0	0	•	0	-				0	0	0	0	0	0			0	0	0	0	0	-	- -				0	0	0	0	>	- -		0	0	0	⇒ c	>0	
(2)	Ð) .pe	Fre		100	104	108	211	120	124	128	132	136	140	14	4	721	120	164	168	172	176	180	184	188	192	196			100	104	108	112	116	120	170	120	136	140	141	148	152	120	161	168	122	176	180	184	20	196	
3	nihe Bin	٩N	ç ș	1	7	ε	44	n le		00	6	10	11	12	2	14	212		18	19	20	21	22	53	24	25			1	2	2 M	4	ŝ	or	~0	00	10	H	12	13	14	1	11	12	19	20	21	12	22	19	

Table K.15: GeoGauge results for D_14_98 and D_11_98 at loc. 2 with a thin layer of compacted sand

Appendix L Modified LWD Results

This appendix contains information regarding Modified LWD analysis.

Figure L.1: Modified LWD (mobility, real part) (B_24_103) for loc. 2

Figure L.2: Modified LWD (mobility, imag. part) (B_24_103) for loc. 2

Median Stiffness = 10.76 MN/m; Median Young's Modulus = 115 MPa

Figure L.3: Modified LWD (mobility, real part) (B_19.5_103) for loc. 2

Figure L.4: Modified LWD (mobility, imag. part) (B_19.5_103) for loc. 2

Median Stiffness = 14.26 MN/m; Median Young's Modulus = 152 MPa

Figure L.5: Modified LWD (mobility, real part) (B_27_98) for loc. 2

Figure L.6: Modified LWD (mobility, imag. part) (B_27_98) for loc. 2

Median Stiffness = 14.7 MN/m; Median Young's Modulus = 157 MPa

Figure L.7: Modified LWD (mobility, real part) (C_12_103) for loc. 2

Figure L.8: Modified LWD (mobility, imag. part) (C_12_103) for loc. 2

Median Stiffness = 11.16 MN/m; Median Young's Modulus = 119 MPa

Figure L.9: Modified LWD (mobility, real part) (C_9.5_103) for loc. 2

Figure L.10: Modified LWD (mobility, imag. part) (C_9.5_103) for loc. 2

Median Stiffness = 13.25 MN/m; Median Young's Modulus = 141 MPa

Figure L.11: Modified LWD (mobility, real part) (C_8_103) for loc. 2

Figure L.12: Modified LWD (mobility, imag. part) (C_8_103) for loc. 2

Median Stiffness = 18.47 MN/m; Median Young's Modulus = 197.5 MPa

Figure L.13: Modified LWD (mobility, real part) (C_13_98) for loc. 2

Figure L.14: Modified LWD (mobility, imag. part) (C_13_98) for loc. 2

Median Stiffness = 7.74 MN/m; Median Young's Modulus = 83 MPa

Figure L.15: Modified LWD (mobility, real part) (C_10_98) for loc. 2

Figure L.16: Modified LWD (mobility, imag. part) (C_10_98) for loc. 2

Median Stiffness = 9.3 MN/m; Median Young's Modulus = 99 MPa

Appendix M Compaction Stress

Sample	Lift	Force [KN]	Compaction Stress [kPa]
	1	92	867
A 13.5 105	2	113	1066
0.0+0.00+0.00	3	N/A	N/A
	1	144	1357
A 10.5 105	2	200	1889
	3	341	3227
	1	118	1119
A_7.5_105	2	248	2340
	3	486	4592
	1	51	478
A 15 100	2	60	569
	3	126	1188
	1	94	886
A 12 100	2	170	1608
	3	216	2046
	1	00	851
A 9 100	2	150	1419
	3	275	2595
B 24 103	1	59	561
	2	118	1111
07-70-9770	3	82	776
	1	89	843
B 19.5 103	2	149	1413
2_17.2_105	3	166	1571
	1	99	938
B 16 103	2	187	1766
0.0000000000000000000000000000000000000	3	204	1928
B_27_98	1	34	321
	2	94	891
	3	77	731
B_22_98	1	60	563
	2	60	565
	3	71	670
B_16_98	1	68	645
	2	61	579
	3	61	573

Sample	Lift	Force [KN]	Compaction Stress [kPa]
C_12_103	1	49	461
	2	228	2153
	3	376	3550
	1	62	589
C_9.5_103	2	148	1401
2	3	306	2893
	1	82	775
C_8_103	2	259	2448
10.000	3	366	3462
	1	33	314
C_13_98	2	61	579
	3	191	1801
	1	53	504
C_10_98	2	131	1237
101000000000000000000000000000000000000	3	122	1150
	1	74	704
C_8_98	2	109	1026
	3	161	1521
	1	120	1136
D_16_103	2	185	1752
1999 - 1997 -	3	175	1654
	1	183	1733
D_13_103	2	243	2293
	3	359	3390
	1	207	1961
D_11_103	2	275	2600
	3	493	4656
D_18_98	1	77	727
	2	63	595
	3	70	665
D_14_98	1	69	653
	2	104	987
	3	128	1214
D_11_98	1	135	1274
	2	270	2555
	3	329	3113

Table M.1: Maximum compaction stress for each lift

Sample	Lift	Force [lb]	Compaction Stress [psi]
	1	20631	141
A_13.5_105	2	25363	174
	3	N/A	N/A
	1	32270	221
A_10.5_105	2	44925	308
- 15 N	3	76747	526
	1	26606	182
A 7.5 105	2	55660	381
	3	109212	748
	1	11361	78
A 15 100	2	13525	93
	3	28259	194
	1	21082	144
A 12 100	2	38243	262
	3	48665	333
	1	20234	139
A 9 100	2	33745	231
(10) (10) (10) (10) (10) (10) (10) (10)	3	61731	423
	1	13343	91
B 24 103	2	26424	181
	3	18446	126
	1	20056	137
B 19.5 103	2	33598	230
	3	37357	256
B_16_103	1	22305	153
	2	41991	288
	3	45851	314
B_27_98	1	7637	52
	2	21183	145
	3	17377	119
B_22_98	1	13394	92
	2	13440	92
	3	15933	109
B_16_98	1	15349	105
	2	13761	94
	3	13630	93

Sample	Lift	Force [1b]	Compaction Stress [psi]
C_12_103	1	10970	75
	2	51208	351
	3	84432	578
2	1	14013	96
C_9.5_103	2	33327	228
	3	68800	471
	1	18438	126
C_8_103	2	58215	399
	3	82337	564
2	1	7471	51
C_13_98	2	13773	94
	3	42839	293
	1	11996	82
C_10_98	2	29425	202
	3	27342	187
8	1	16739	115
C_8_98	2	24404	167
0.0000000000000000000000000000000000000	3	36184	248
	1	27013	185
D_16_103	2	41677	285
	3	39347	269
8	1	41221	282
D_13_103	2	54538	374
	3	80638	552
D_11_103	1	46636	319
	2	61839	424
	3	110737	758
D_18_98	1	17280	118
	2	14145	97
	3	15809	108
D_14_98	1	15542	106
	2	23482	161
	3	28863	198
D_11_98	1	30296	208
	2	60759	416
	3	74049	507

Table M.2: Maximum compaction stress for each lift

г

Appendix N Surface Plot Information

A Loess smoother within SigmaPlot was chosen to generate surfaces for the 3D plots. The Loess model is a local smoothing technique with tri-cube weighting and polynomial regression. The sampling proportion was 1.0 with and a one degree polynomial. The resilient modulus data for the plots were subjected to the UM SNR and rotation criteria.

Appendix O PVD Results

Figure O.1: PVD result at loc. 2 (B_24_103)

Figure O.2: PVD result at loc. 2 (B₋19.5₋103)

Figure O.3: PVD result at loc. 2 (B₁₆103)

Figure O.4: PVD result at loc. 2 (B₂7₉₈)

Figure O.5: PVD result at loc. 2 (B_22_98)

Figure O.6: PVD result at loc. 2 (B₋16₋98)

Figure O.7: PVD result at loc. 2 (C_9.5_103)

Figure O.8: PVD result at loc. 2 (C_8_103)

Figure O.9: PVD result at loc. 2 (C_13_98)

Figure O.10: PVD result at loc. 2 (C₋₁₀₋₉₈)

Figure O.11: PVD result at loc. 2 (C_8_98)

Figure O.12: PVD result at loc. $2 (D_{-16}103)$

Figure O.13: PVD result at loc. 2 (D_13_103)

Figure O.14: PVD result at loc. 2 (D_11_103)

Figure O.15: PVD result at loc. 2 (D_18_98)

Figure O.16: PVD result at loc. 2 (D_14_98)

Figure O.17: PVD result at loc. 2 (D_11_98)

Appendix P DCP Results

Figure P.1: DPI vs. Depth for soil A at 105% target Proctor

Figure P.2: DPI vs. Depth for soil A at 100% target Proctor

Figure P.3: DPI vs. depth for soil B at 103% target Proctor

Figure P.4: DPI vs. depth for soil B at 98% target Proctor

Figure P.5: DPI vs. depth for soil C at 103% target Proctor

Figure P.6: DPI vs. depth for soil C at 98% target Proctor

Figure P.7: DPI vs. depth for soil D at 103% target Proctor

Figure P.8: DPI vs. depth for soil D at 98% target Proctor

Appendix Q Post Test Specimen Pictures

Figure Q.1: Specimen $picA_1_9_100$

Figure Q.2: Specimens A_2_12_100, A_1_10.5_105, and A_1_9_100 $\,$

Figure Q.3: Specimen $B_{-1}_{-16}_{-103}$

Figure Q.4: Specimen $B_{1_{-}16_{-}98}$

Figure Q.5: Specimen $B_{1_19.5_103}$

Figure Q.6: Specimen $B_{1_22_98}$

Figure Q.7: Specimen $B_{-1}_{-24}_{-103}$

Figure Q.8: Specimen $B_{1_27_98}$

Figure Q.9: Specimen $B_2_16_98$

Figure Q.10: Specimen $B_2_{19.5}_{103}$

Figure Q.11: Specimen B_2_298

Figure Q.12: Specimen $B_2_2_4_103$

Figure Q.13: Specimen $B_2_27_98$

Figure Q.14: Specimen C_1_12_103

Figure Q.15: Specimen C_1_13_98

Figure Q.16: Specimen C_2_12_103

Figure Q.17: Specimen $C_{1_{-}8_{-}103}$

Figure Q.18: Specimen C_2_10_98

Figure Q.19: Specimen $C_{1_{-}8_{-}98}$

Figure Q.20: Specimen C_1_9.5_103

Figure Q.21: Specimen C_2_13_98

Figure Q.22: Specimen C_2_8_103

Figure Q.23: Specimen C_2_8_98

Figure Q.24: Specimen $D_{-1}13_{-1}03$

Figure Q.25: Specimen $D_1_4_98$

Figure Q.26: Specimen $D_1_{16}_{103}$

Figure Q.27: Specimen D_2_18_98