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Executive Summary 

 

 

This project provides a new way of looking at pedestrian control issues at busy intersections. 

Furthermore, we can use the proposed techniques to monitor large crowds. We used our experience 

in handling scenes with a small number of pedestrians to handle cluttered scenes at busy 

intersections. Instead of focusing on the detection or tracking of single pedestrians, we focused on the 

detection and tracking of crowds.  Our approach employs an effective detection scheme based on 

optical flow that can locate vehicles, individual pedestrians, and crowds. The detection phase is 

followed by the tracking phase that tracks all the detected entities. Traffic objects are not simply 

tracked but a wealth of information is gathered about them (position, velocity, 

acceleration/deceleration, bounding box, and shape features). Potential applications of our methods 

include intersection control, traffic data collection, and even crowd control after athletic events. We 

illustrated our approach to busy (with respect to the number of pedestrians) intersections and the 

development was on a PC-based system with a C80 board. Finally, we illustrate our approach in 

video sequences of large crowds (athletic events, schools, underground scenes, etc.). 
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CHAPTER 1  

INTRODUCTION 

 

 

Monitoring crowded urban scenes is a difficult problem. Despite significant advances in traffic 

sensors, modern monitoring systems cannot handle effectively busy intersections.  The reason is that 

there are too many moving objects (vehicles and pedestrians). Tracking humans in outdoor scenes is 

also very complex.  The number of pedestrians and vehicles in a scene varies and is usually 

unpredictable. Recently, there was progress on techniques to track an arbitrary number of pedestrians 

simultaneously. However, as the number of pedestrians increases, system performance degrades due 

to the limited processing power. When the number of pedestrians exceeds a threshold value, the 

processing rate drops dramatically. This makes it hard to keep accurate track of every pedestrian and 

vehicle because of the large displacement among pedestrian and vehicle locations in the processed 

frames. 

We propose a vision-based system that can detect, track, and monitor busy urban scenes. Our 

system is not only limited to vehicles but can deal with pedestrians and crowds. Our approach is 

robust to a variety of weather conditions and is based on an efficient scheme to compute the optical 

flow. The optical flow helps us classify the different objects in the scene while certain statistics for 

each object are continuously updated as more images become available. 

Addressing busy intersections can have a significant impact on several traffic operations in urban 

areas and on some more general applications. One traffic operation which can be affected is the 

automated walk signal request. Currently, a pedestrian is required to press a button to request a walk 
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signal at a crosswalk. It may be desirable to automate this process especially when there is a large 

number of pedestrians waiting to cross the street. Crowd detection can be used in this case. Another 

application is the study of flow patterns at certain intersections. It may be desirable as a city planning 

consideration to study the use of crosswalks at a certain intersection. Flow data of pedestrians 

crossing the street throughout the day can be collected and used to make decisions such as building a 

pedestrian bridge, etc. Finally, our proposed system may be used to monitor crowds outside schools, 

nursing homes, train tracks, and at athletic events. One interesting application is to compute crowd 

density (with obvious public safety applications). In general, monitoring areas where accidents occur 

often can result into early warning signals and can reduce deadly consequences. 

The paper starts with a review of previous work, continues with the detection and tracking 

schemes and concludes with experimental results. 

 

PREVIOUS WORK  

 

Many methods have been proposed for the detection and tracking of moving objects; many of those 

have focused on the detection and tracking of traffic objects. The applications of this line of research 

are multiple: tracking of targets, vision-based robot manipulators, presence detectors, analyzers of 

visual data, etc.  

The first generation trackers made several assumptions regarding the nature of the objects in the 

scene. These assumptions resulted in acceptable tracking performance but on the other hand, they 

were not robust to changes in the scene (e.g., movement of the camera or small changes in the shape 

of the object). Baumberg and Hogg [1] introduced one of first trackers. It was based on active 
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contours to track the silhouette of a person. Others, such as Rossi and Bozzoli [2], addressed the 

problem by locating the camera above the scene, which avoids the creation of occlusions. But this 

kind of practice is not easy to implement especially in traffic applications. The systems described 

require extensive models of the objects to be tracked. They also require some knowledge of their 

dynamic characteristics. We are going to use only a few assumptions on the models in order not to 

restrict our tracker to a single class of detection. For example, no limits will be assumed for the 

velocities of the traffic objects, their sizes, their acceleration, or their shape.   

Systems based only on a background subtraction give good results but fail to detect and track 

traffic entities when they get close to each other. One example of such a method can be found in [3]. 

Our system extends that approach by utilizing motion cues. 

Cutler and Tuck [4] developed a recognition and classification module for motion. It aimed to 

interpret gestures. Their work is based on the analysis of moving areas in a video sequence. This 

makes it more of a motion classifier than a tracker. Our detection method is close to [4] and to 

Dockstader’s work [5], which addressed robust motion estimation.  
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CHAPTER 2  

IMAGE PROCESSING 

DETECTION 

We have developed a new method to detect blobs (simple regions). Because outdoor environments 

cannot be modeled accurately, it is difficult to separate the traffic objects from the background. 

Moreover, the great differences between day and night (see Figure 1) explain why a robust detector 

needs to be developed. In the case of groups of people, it is difficult to decompose a group into 

individuals. Instead, one should attempt to track the group as one entity. A possible way to do this is 

to calculate the movement of each point and then group together points with similar motion 

characteristics. 

 

  

(a) Night video (b) Day video 

Figure 1. Traffic Scenes from the Xcel Energy Center in St Paul. 
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Nature of the Video Sequences and Preprocessing 

Images from the outdoor video sequences that we used are grayscale. We do not make any 

assumptions on the nature of the scene (e.g., night, day, cloudy, rainy, winter, summer, etc.). 

Elements of the scene are not known a priori and the sizes of the traffic objects (vehicles and 

pedestrians) are also unknown. An assumption that we make is that a crowd is a slow deformable 

object with a principal direction of motion. 

This assumption is not restrictive for our objectives, but it can be restrictive in the case of 

vehicles. A traffic tracker must be able to track objects that vary from a simple pedestrian to a 

complex crowd.  

Outdoor images can have very bad quality, especially at night. In the preprocessing phase, it is 

necessary to remove noise. We achieve this goal by convolving the images with a Gaussian filter. We 

can also apply a mask to the image to remove the undesired regions such as roads, flashing 

billboards, or reflective building walls.  

Background Removal 

Haritaoglu et al. [6] modeled the background by following a statistical approach. The detection of 

people is achieved by subtracting this background from the new images (see Figure 2). The 

parameters of the background are re-evaluated with every new image. The model uses a Gaussian 

distribution for each pixel and a comparison-evaluation for every frame. The classification of 

foreground/background is done at this time by combining all the previous results. This approach 

creates a very good separation between the two possible classes (foreground, background). However, 

no other information can be extracted from this technique. In particular, during the motion of two 

crowds past each other, one cannot estimate the speed or direction. This method is useful in the case 
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of easily distinguishable objects with slow motion. In our case, a pixel-by-pixel scan would be 

relatively slow. 

 

 

(a) First image (b) Background model (c) Detected blobs 

Figure 2. Background creation. 

Motion Extraction 

Another idea for the detection part of our approach is to consider the optical flow for a precise 

extraction of the motion in the scene. It is a very difficult problem to solve in real-time, however. 

This paper tries to address some of the computational issues related to optical flow estimation. Like 

Sun [7], Dockstader et al. [5], and other researchers, we will concentrate on the speed requirements 

of the algorithm, more than on the accuracy of the estimation of the optical flow. Using optical flow 

estimation, our method is able to distinguish objects occluding each other if part of them is still 

visible and has different motion characteristics (see Figure 3).  

B
A

B
A B

A

 

Figure 3. Two detection zones going in opposite directions. 
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OPTICAL FLOW 

Galvin et al. [8] give a comparison of estimation algorithms for optical flow. Of all the algorithms 

presented, only two will be considered because of their simplicity and speed. The others, such as fast 

separation in pyramids, the robust estimation of Black and Anandan [9], or the wavelet 

decomposition for fast and accurate estimation by Bernard [10], are too complex to implement in 

real-time.  

Definition 

The optical flow represents the 2D projection of the 3D velocity map of the scene on the camera 

plane  (see Figure 4). The motion flow (the 3D velocity vectors map) is the true motion of each 

object. Because we cannot measure it, we just compute the projection of it on a plane. As a result, all 

the movements along the Z-axis which are not perceived by the sensor are not computed. 

 

Motion flow

Optical flow

Motion of ObjectO

 

Figure 4. Optical flow and motion flow. 

Mathematical Approach 

In optical flow estimation, it is generally assumed that the intensity I  is constant over a 

displacement velocity ),( vu  of an object between two frames and time interval t∂ : 

 ),,(),,( tttvytuxItyxI ∂+∂⋅+∂⋅+=  ( 1 ) 
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A Taylor expansion of the right hand side of ( 1 ) gives: 
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Setting ( 1 )=( 2 ), we get the following equation: 
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In reality, this equation is not directly applicable due to the lack of constraints on u  and v . 

Differential Method 

This method is explained in Beauchemin and Barron [11]. It was also used by Rwekamp and Peter 

[12] with the goal of using ASIC processors for the real-time detection of movement. The idea is to 

use a minimization procedure where a spatial estimate of the derivative by a Laplacian is employed. 

One may use a spatial iterative filter to obtain a more precise estimation.  

We have experimented with this method using a floating point implementation as well as an 

integer implementation (for efficiency concerns). Based on our experiments, we concluded that 

although this method works well with synthetic images, it is sensitive to noise which is present in our 

video sequences. In addition, the computational cost is prohibitive (less than 1 fps in the floating 

point implementation). For these reasons, we decided to explore other methods.  

Correlation Method  

Principle 

We look for the velocity vector of each pixel by analyzing its motion between two successive 

images: iI  and 1−iI . To know the position of the pixel in the next image iI , we calculate a similarity 

value on all the possible destinations. This value can be obtained using standard sum-of-squared 

differences (SSD) or sum-of-absolute differences (SAD). In all the cases, we have to go through a 
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Disc (see Figure 5) in iI  around the original localization of the pixel in 1−iI  and to compute the 

function for all the positions of the Disc. Then, the minimal value is sought, and thus we obtain the 

best position in the Disc of iI . This position corresponds to the movement of the pixel of iI  and thus 

the optical flow is derived. The Disc can be also called a ‘pattern’ (which is not necessarily circular). 

 

Disc

 

Figure 5. Correlation approach. 

Simple approach 

If we use SAD as the cost function, then for each point ),( yxp =  in the image, we calculate: 
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−∈−
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( 4 ) 

This value must give the minimum over the Disc as the sum on the neighborhood. The 

computation is done in a serial way for each pixel. We just do a simple raster scan (see Figure 6(a)). 

At the end, we have the motion map for the pixels. 
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Next pixel  

(a) Raster scan 

B CA

A B C
Différence

TmpBuf

Disc

 

(b) Optimized correlation 

Figure 6. Two ways to see the correlation. 

Optimized approach 

We utilized our hardware (Matrox Genesis vision board) in implementing a parallel version of this 

approach. The optimized approach has the following phases: 

 

Phase 1: Parallel calculation of the cost function  

 

Here, we calculate all the differences for a position of the Disc. All the simple arithmetic 

operations can be done on sub-windows (child buffers). In our case, we define as many sub-windows 

as the number of positions in the Disc. In other words, if the Disc contains N  points, we have N  

sub-windows gathered in a single TmpBuf buffer array and indexed by their positions. Each one will 

contain the result of a subtraction between image iI  and the image 1−iI , but with a spatial shift 

corresponding to the position of the point in the Disc (see Figure 6(b)).  

To do this, we use a sliding window in image iI  and a fixed window at the center of image 1−iI . 

We compute the difference between these windows, which have the same size, and then we convolve 

the difference image with a kernel of ones. Thus, we have the sum and therefore the value of the cost 
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function for this position in the Disc. The result is saved in TmpBuf. Then, we move the window of 

image iI  to reach another position of the Disc and so on. The kernel can be of size 3x3, 5x5, …, 

11x11. The larger it is, the less the noise will be. But that also means less sensitivity. A good 

compromise is a size of 5x5 or 7x7. 

 

Phase 2: Retrieval of indices of minimal cost 

 

At the end of the algorithm, we seek the minimum value of the cost function for each pixel 

moved. The imaging hardware can calculate the minimum M  between two images kI  and lI  by the 

formula:  

 )),(),,(min(),( jiIjiIjiM lk=  ( 5 ) 

We augment the cost values with indices (locations in Disc) to retrieve the flow. 

A last optimization, or rather approximation, is to define a Disc where only the principal axes are 

used. We keep for example the horizontal and vertical axes and the diagonals. This approximation is 

not restrictive (see Cutler [4]). Also, the radius of Disc itself can be made small. The cameras used 

are usually rather far away from the scene and motion does not exceed 2 to 3 pixels per frame. 

Therefore, a typical Disc is defined as follows: 

1  1  1

 1 1 1  

1 1 1 1 1

 1 1 1  

1  1  1
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Noise removal  

To remove the noise from the images during the correlation, thresholding is used. It is known (see 

Cutler [4]) that a video CCD camera has a Gaussian white noise of amplitude Kσ  with 5.2=σ  and 

10to5=K  according to the model of the camera. In our difference calculation, the conclusion is 

that an absolute difference less than σ6  is considered as noise. 

As the noise is white, the calculation of the cost function at the central position gives the value of 

the noise at each pixel. Moreover, after convolution, this noise is averaged. A thresholding with 

2KernelKS ⋅⋅= σ  gives a mask corresponding to the level of noise. Thus, the points that give a 

lower value than this level are not to be taken into account at our optical flow estimate. For example 

with a kernel 5x5, we obtain 375565.2 2 =⋅⋅=S . 

Results 

The results are very good for the estimation part. The kernel that was used for the summation is 

7x7. On 320x240 images with a Disc of 3±  pixels, the processing rate is approximately 4 fps. On 

160x120 images and by using the same Disc, we reached computational speeds of 10 fps.  

Conclusion for our application 

This method is very adaptable to our problem. The limitation of the size of the Disc does not 

prevent it from having a good separation between moving parts and noise. It is a robust and fast 

method; we reach the 15 fps with a Disc radius of 2±  pixels.  



14 

BACKGROUND  

To detect the static traffic objects or people, we need another way for approaching the problem. 

For these cases, we use a detection scheme that subtracts the image from the background. The idea is 

based on an adaptive background update. The update equations are as follows: 

 ( )

),(OR

)(NOT,
16

15
AND

,AND

bkgnd

mask opt.
bkgndframecurrent 

mask opt.bkgnd

BAM

I
MI

B

IMA
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=

=

 

( 6 ) 

where bkgndM  is the background, framecurrent I  is the current image, and mask opt.I  is the mask obtained 

after binarization of the optical flow. Every 16 iterations, the background is completely readjusted. 

The detection is carried out at every new estimation of the optical flow by a simple subtraction of 

the background and thresholding with Kσ4  (a value much higher than the one for the flow). Then, 

we merge the results obtained by these two methods by assigning the background a special value 

(meaning that the blob comes from the second type of detection and not from the optical flow). The 

estimation of the optical flow is dominating on the background (in the case of double detection). That 

processing leads to a unified color map mixing the two methods and having a lookup table describing 

the motion and the nature of each point. The points belonging to the background are associated to no 

motion and no position in the Disc.  

SEGMENTATION  

The segmentation is the next step. In our case, the choice of an effective method is not obvious. 

The goal is to use some information from this stage during the tracking phase.  
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Clustering the Motion Map from the Optical flow 

For this simple stage, we have various choices: a raster scan, a border following or a floodfill 

algorithm. Figure 7 shows the three methods. 

 

 

(a) Raster Scan (b) Border Following (c) Floodfill 

Figure 7. Classic methods for segmentation. 

Raster scan 

This method is very effective for zone segmentation and detection in the case of large shapes that 

may have holes. The algorithm consists of dividing the image into runs and memorizing the similar 

parts in a run. It is very fast and the computational time is only dependent on the size of the image, 

not its content. On the other hand, it requires two passes to obtain the segmentation and it must 

maintain a chain-list of runs. Therefore, it has a high memory requirement that need to be 

appropriately managed to guarantee sufficient speed. Statistics relating to the zones (e.g., size, area, 

the minimal bounding rectangle, the mean velocity estimated by the flow) can be calculated on the 

fly and do not require additional stages. We just have to go through the chain-list of runs to gather the 

data.   
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Border following 

In this case, we follow only the contours of objects. This approach dramatically reduces the time 

used to go through the entire area, but does not allow the detection of internal holes. If we want to 

gather pixels having a different value inside an region, we must enter the zone and the algorithm 

looses its efficiency. Furthermore, border following does not make it possible to calculate all the 

desirable statistics.  

Floodfill 

In computer graphics, this simple technique allows filling regions with a region color. The basic 

idea is to recursively check the four different directions at every pixel (starting from a seed pixel). 

Each time a pixel is visited, it is marked so that it does not get visited again.  

Conclusion on the choice of the algorithm 

Comparisons are summarized in Table 1. The floodfill method offers the most advantages, is 

unquestionably slower than the border following and a little slower than the raster scan, but allows to 

segment shapes having internal variations.  

Algorithm Speed Statistics Comparison Memory Segmentation 

Raster Scan Medium Yes Lines Chain-list Yes, 2 passes 

Border_following Fast Incomplete Borders Chain-list Holes not 

visited 

Floodfill Slow Yes Local,4 dirs Dbl-Buf Yes, 1 pass 

Table 1. Comparison of classical algorithms for segmenting an image. 
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Two Features Computed by the Segmentation 

Rotation 

When an object is in slow rotational motion, the pixels describing the object move according to a 

local gradient. Each point has a direction slightly different from its neighbor. Therefore, if the 

rotation is not fast, the floodfill algorithm helps us gather all these close pixels. In this method, we 

adjust a validation parameter: the maximum angle between two directions. To calculate the 

difference between two angles, the following formula is used: 

 





−
>−−−

=
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2121

AngleAngle
180AngleAngleAngleAngle360

difference

 

(7 ) 

This approach also helps maintain all the pixels which are static. 

Shape fitting 

After the segmentation, the blobs are shaped into simple geometrical shapes. At this stage, a 

minimum bounding box can be calculated. The floodfill algorithm makes the procedure easier since it 

provides all the points contained in the shape. At the end of the segmentation, the blobs are described 

by the minimum bounding box, the position of their centers, and the number of pixels they contain 

(or mass). A better adaptation to a more complex shape can be carried out at this stage (oriented 

bounding box) and will be explained later. 
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CHAPTER 3 TRACKING 

Tracking is an essential component of the system. A diagram of the system is shown in Figure 8. 

 

Background

Merging

Segmentation

Blob

Monitor

Statistics

Video

Optical flow

Region Crowd

Model/Estim Model/Estim

 

Figure 8. Tracking system. 

As explained above, optical flow is estimated by the correlation method and the background is 

used to find motionless foreground objects. The fusion of both is then segmented into blob entities.   

Blobs are used for the layers model. They serve as measurements for higher level entities. A 

confidence value is associated to each of the possible links between two entities. If blobs are strongly 

connected more than three times in a row, we create a region (higher layer). The confidence value for 

two entities depends on the overlap surface, the distance, and speed similarity.   
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LAYER MODEL 

First Level: Blobs 

We model a blob using its position, size, area, and velocity. The first three parameters are 

computed by the floodfill algorithm during segmentation. If we add a pixel, ),( yxP , to the blob, we 

have: 

 

Size 

Let Size  be an accumulator. So each time we add a pixel, we do: 11 += −nn SizeSize  

 

Position  

Let cX , cY  be accumulators. We define their sum by: 
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Then at the end of the floodfill, we compute the centroid using the first moment:  
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Velocity 

Let xV , yV be accumulators. Since pixel velocity is stored as an index into Disc, we get its 

displacement xD , yD  by looking up the pattern: 
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Then, we have the global velocity of the blob:  
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( 11 ) 

 

Area (minimum bounding box) 

Let MinX, MaxX, MinY, and MinY be values of the sides of the box. We have: 

x)MinX,min(MinX = , x)MaxX,max(MaxX = , and similarly for MinY and MaxY. This, we have  

Area=( MaxX-MinX) *(MaxY-MinY). 

 

These blobs describe all zones in the optical flow. Their modeling is easy and fast. The floodfill 

algorithm is needed here if we want to have that kind of description.  

Second Level: Regions 

The intrinsic parameters are the same as for the blobs. The differences are in the way we compute 

their values. The regions inherit values from their parent blobs at their creation but they are adapted 

during the tracking. Other properties, like the time of existence or inactivity, are also used for 

regions.   

GEOMETRICAL DESCRIPTION OF THE ENTITIES 

The tracking part has been improved by the introduction of new blob descriptions. Relations based 

on simple bounding boxes are clearly not effective for very mobile and close objects (such as distant 

pedestrians). Moreover, the density ( Area
Mass ) of a crowd is badly represented by this approach. 
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Therefore, we compute oriented rectangles instead of horizontally aligned boxes. We want to 

preserve simplicity and efficient computation of these shapes.   

Oriented Boxes 

 Covariance Matrix 

For a 2-D space of n points, we have a covariance matrix M  between the two variables X  and 

Y . It is defined by:  
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The marks <>  mean that we take the variance value. 

Eigenspace representation 

We use a technique often associated with the principal components analysis: the diagonalization 

reduction. This representation results in finding maximum dispersions by analyzing eigenvalues and 

eigenvectors. Given M , its decomposition is written as: ∆∆= DM t , with ∆  being the transition 

matrix, and D  the diagonal matrix with eigenvalues. Let [ ]21 ,vv=∆  and 
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2

1

0
0
e

e
D . We can 

choose to have 21 ee > , so that 1v  gives the direction of elongation and 1e  gives the total 

elongation. The second axis is described by 2v  and 2e . 

For example, Figure 9 describes a two-dimensional distribution. Using this scheme, the two 

vectors and the resulting rectangle are shown. In our algorithm, we include a multiplicative 

coefficient equal to 1.5 for the two sides. The elongation obtained after diagonalization is often a box 
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smaller than the real area. For a better fit, we increase this box to include a bigger part of the 

distribution.  

 

V2
V1

Oriented Box

 

Figure 9. Oriented box on a distribution. 

Overlap 

The overlap is a quantity between 0 and 1 that represents the degree of intersection between two 

rectangles. It is equal to 
Area Maximum

Area Overlap . Overlap Area is the area of region of intersection between 

the two rectangles. It is computed by polygon clipping (see shaded areas in Figure 10). Maximum 

Area is the larger area of the two rectangles. 
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Figure 10. Overlap Area. 

DETAILS OF RELATIONS 

All the relations are based on confidence values ),( βα  which reflect the similarity between two 

entities A  and B . We introduce thresholds to define the presence or absence of a relation between 

two entities. In our tracker, the value α  will be related to the position and the area of the objects 

while the value β  will be related to the similarity in motion direction deduced from optical flow. 

Our merging algorithm is based on a score calculation between entities.  

Relations Based on Scores 

We propose to create a tracking method based on scores of each blob iB  with regard to a region 

A . Then, we keep only a percentage of the best related blobs that we use in a Kalman filter as 

measurement. The introduced score will be used as confidence value for the filtering. 

Score dependent on position  

During this phase, we have the positions and descriptions for blobs and regions. First, we compute 

the distance with a fuzzy model using the distance between the two centroids and the perimeter of 

each rectangle. We introduce a confidence term by normalizing the distance by a multiple of the 
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perimeter (a factor of 2 is used in our implementation). Therefore, we deduce the fuzzy value 

Distance:  

 

( )
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( 13 ) 

A cost function is then defined on the position: 
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( 14 ) 

In the case of blob-to-blob relation, the coefficients are (5,5) instead of (7,3). This is explained by 

the fact that a relationship between a region and a blob is supposed to be based more on the overlap 

than the position.  

Score dependent on angle 

We start by calculating the angle difference. We also use a fuzzy model as before. This time, we 

use a threshold to accept the minimal value of angle difference:  
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(15) 

Heuristic Combination 

Once these two coefficients are calculated, we look for the best heuristic combination between the 

various objects. For that, we combine the results of all the blobs with themselves and with the 

regions.  

First, we test if the α  value found for a relation is higher than a threshold (to guarantee a minimal 

connection between objects). Then once this stage is validated, we add the value β  to α . This last 
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value provides the final cost function for the relations. All the entities (regions or blobs) are tested 

and the relationships are calculated. Then, we keep the group of the best relationships. 

Regions creation based on blob-to-blob relationships 

During each loop, we preserve the previous list of blobs to check which of the new blobs are 

related to the preceding ones. These relationships are one-to-one. A counter on each previous entity 

specifies if a link has already been created before. The counter is propagated from one entity to 

another and thus gives the total number of blobs related in a row. If this value exceeds a threshold (2 

in our case), then we create a new region inheriting the parameters of the last linked blob. The 

minimal threshold is taken such that we have at least %50>α in each relation.   

Merging many blobs  

The relationships between blobs and regions are many-to-many. In other words, several blobs can 

be used as measurements for a region. A threshold, %10>α , ensures a minimal relationship. Then, 

we create a list of the relationships ranging between 70% of the maximum value and the maximum 

value itself. This group of blobs will be used to estimate the location measurement of the region at 

the next loop. For this, we compute the centroid, the minimal bounding box, and the mean velocity of 

the group. Then, we use this information in the regions measurement/estimation part (filtering).   

STATE SPACE REPRESENTATION OF REGIONS 

State Vector and Data Splitting 

The positions x  and y  are related to the region centroid. The other parameters are the covariances 

and the mass (number of pixels).  



27 

We can describe all regions by a state representation: let X  be the state vector that describes a 

region:  
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So our system has the following state equation: 
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The parameters are only estimated and do not have real physical significance. The measurement 

equation is:  

 WXCY +⋅=  ( 18 ) 

with: 
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Position Characteristics 

We use a constant velocity model for the coordinates, 
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and, 
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1V  is a white Gaussian noise that depends on the system. Its covariance has a matrix that has an 

estimate for limit. In our case: 
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The equation yx σσ =  shows the system's standard-deviation in position while yx && σσ =  shows the 

one in velocity. 

Shape Features  

In the same way, we obtain: 
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( 23 ) 

2V  is a white Gaussian noise that depends on the feature. Its covariance has an estimate for limit: 
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KALMAN FILTERING 

The Kalman filter makes it possible to merge measurements assuming that we know their 

reliability. Furthermore, it allows to optimally estimate the next state of the system. The process to be 

estimated must be controlled by a differential equation, linear and stochastic. We will not extend on 

the subject since our study requires only a first order filter. Our formulas are laid out in the following 

sections.  

Position Filtering 

Measurement equations: 

 

Kalman gain:  

 ( ) 1ˆˆ −
+⋅⋅⋅⋅= n

T
n

T
nn RCPCCPK  ( 25 ) 

State correction:  

 ( )nnnnn XCYKXX ˆˆ ⋅−⋅+=  ( 26 ) 

Variance: 

 
nnn P)K(IP ˆ⋅−=  ( 27 ) 

Temporal equations: 

System:  

 
nn XAX ⋅=+1

ˆ  ( 28 ) 

Variance propagation:  



30 

 
n

T
nn QAPAP +⋅⋅=+1

ˆ  ( 29 ) 

Shape Filtering 

In the case of scalar values instead of matrices, the measurement equations do not change, except 

for the fact that we have real values, not vectors. In addition, A = 1. We can use the following 

equations:  

Kalman Gain:  

 

nn

n
n RP
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( 30 ) 

State correction:  

 ( )nnnnn XYKXX ˆˆ −⋅+=  ( 31 ) 

Variance:  

 
nnn PKP ˆ)1( ⋅−=  ( 32 ) 

System:  

 
nn XX =+1

ˆ  ( 33 ) 

Variance propagation:  

 
nnn QPP +=+1

ˆ  ( 34 ) 

Parameter Values 

Now, we have to define the various parameters of the filtering that the matrices nQ and nR , and 

the scalars nQ  and nR  represent. The terms depend on the kind of measurement or on the system 

(measurements variances or internal noise). The internal noise of the system will manage the changes 

of motion and shapes.  
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System noise parameters 

The positions lie between 0 and 160 pixels for X and 0 and 120 for Y. We can consider that the 

two axes are independent and contain the same noise ratio. Because the intervals of values are close, 

we use a block diagonal matrix nQ . The speeds lie between 0 and some pixels, moreover 

acceleration will be included as noise in speed. Based on experiments, we take 01.0, =yxσ , and 

0001.0, =yx &&σ . The following assignment is used: 
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( 35 ) 

The mass is regarded as a constant varying from 0 to a few thousands. It must keep a constant 

value and for this reason, we try to assign it very small internal noise (for example a standard-

deviation of 0.01). Therefore, we take 201.0=Q .  

The covariance values of matrix M   are between 0 and a few units. The internal noise must be 

small to handle slow changes in shapes and to avoid continuous changes (for example a standard-

deviation of 0.01). We choose 201.0=Q .  

Measurement noise parameters 

The nR  matrix depends on the confidence value 
5
βα + , computed previously. We use an 

empirical formula (deduced from experiments) to find:  
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Then, for the positions, we say that X and Y measurements are not correlated and have the same 

noise. Therefore, 
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For the state parameters, we found that Σ=nR  gives good results. 

Initialization 

We initialize the filtering at the current position of the region and a zero speed, because the value 

obtained by the optical flow is not accurate enough at this stage. The matrix 0P  is reset to zero. The 

intrinsic characteristics are initialized with the current region values and 0P  is set to zero. 
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CHAPTER 4  

RESULTS AND CONCLUSIONS 

We tried our algorithms in several outdoor scenes from the Twin Cities area. One area where one 

may find crowds is around the Xcel Energy Center in St Paul. We filmed scenes during day and 

night. We also applied our method on a video during winter at a road intersection to check the quality 

of the tracking when vehicles drive past each other in opposite directions. The optical flow and the 

first layer (blobs) give the required statistics on crowds: direction, size, and mean velocity.   

GENERAL COMMENTS 

The speed of our software depends on the quality of the detection done by the optical flow 

approach. In the general case, a Disc with a radius of 1 pixel is enough to detect objects on images 

with size of 160x120 pixels. All the results are obtained with a 5x5 Kernel, which allows a very good 

detection without significant corruption by noise. Then, our tracker runs at 15 fps with all the 

characteristics displayed on 4 different screen buffers on the same monitor: optical flow map, 

background, tracked regions, and most used zone. If we increase the detection with a Disc of radius 

2, the frame rate drops to 10 fps. Here, we should mention the following observation for the quality 

of the tracking. One thing worth mentioning is that in case some frames have to be dropped, it is 

important to drop the same number of frames consistently. For example, the pattern would be one 

frame processed followed by two dropped and so on. Otherwise we get temporal instability. The 

reason is that optical flow estimation assumes that the time interval between two frames is always the 
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same. For this reason, our tracker runs at speeds of either 15 fps or 10 fps, or 
1

30
+n

 fps (n being the 

number of skipped frames). 

STATISTICS 

The first result we present shows statistics gathered over a period of time 2=T minutes. These 

statistics were computed from optical flow, blobs, and regions. The values are shown in Table 2. The 

statistics were computed by accumulating the flow, region, and blob directions during T . In the case 

of optical flow, the table shows the percentage of  pixels moving in different directions (the values in 

parenthesis show the percentage out of moving pixels only). In the case of blobs (and regions), the 

percentages are also of pixels but the directions are of blobs (and regions) containing these pixels. 

The frame rate was 10 fps. Notice that blobs were not able to sufficiently capture the motion in 

direction 135. This is due to the fact that blobs may be accurately initialized in terms of direction 

when the underlying motion of pixels is not consistent. This also stresses the need for the regions 

level which was able to capture that direction based on blob information even though the information 

is not accurate. Notice also that the most frequent region direction is 0 whereas the most frequent 

pixel direction is –45. This is merely a quantization issue since pixel directions are quantized while 

region directions are not. 

The density represents the ratio of the number of pixels in a blob (or region) to the area of the 

bounding box of the blob (or region). This value exceeds 1 because of inaccuracies of modeling the 

blob (or region) as a rectangle. However, it is a useful indicator to identify a crowd; a region 

representing a crowd would have a high density (above 0.75). Other parameters that can be used to 

identify a crowd are the area (sufficiently large) and the speed (sufficiently small). 
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Direction 

(degrees) 

Optical Flow Blobs Regions 

Mass (pixels) 2,019,710 1,947,316 2,255,602 

Area (pixels) N/A 1,136,066 1,433,754 

Density 

(Mass/Area) 

N/A 1.7 1.57 

No Motion 39 N/A N/A 

-135 6 (10) 6 13 

-90 6 (10) 1 5 

-45 20 (33) 1 8 

0 6 (10) 79 44 

45 6 (10) 3 8 

90 2 (3) 3 5 

135 12 (20) 1 13 

180 0 (0) 2 0 

Table 2. Statistics on 821 frames during 120 seconds. 

MOSTLY USED AREA 

Figure 11 is a representation of most used areas in the scene which is a direct result computed by 

accumulating optical flow values over a period of 2 minutes. 
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Figure 11. Mostly used areas during two minutes of day video. 

TRACKING RESULTS 

Figure 12, Figure 13, Figure 14, and Figure 15 show some of the tracking results. The results are 

presented as snapshots every 2 seconds. Rectangles represent regions. Regions with a cross represent 

detected crowds. The numbers shown are the region identifiers. Images marked ‘Back’ are 

background. Images marked ‘MUA’ show mostly used areas. Images marked ‘Opt’ show optical 

flow and optical flow segmentation. 

CONCLUSIONS 

This paper presents a vision-based system for monitoring crowded urban scenes. Our approach 

employs an effective detection scheme based on optical flow that can locate vehicles, individual 

pedestrians, and crowds. The detection phase is followed by the tracking phase that tracks all the 

detected entities. Traffic objects are not simply tracked but a wealth of information is gathered about 

them (position, velocity, acceleration/deceleration, bounding box, and shape features). Potential 

applications of our methods include intersection control, traffic data collection, and even crowd 

control after athletic events. Extensive experimental results for a variety of weather conditions are 

presented. Future work will be focused on methods to deal with shadows and occlusions. 
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Figure 12. Results from a day video. 
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Figure 13. Results from a night video. 
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Figure 14. Results from a real-time video. 
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Figure 15. Results from a winter video. 
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