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EXECUTIVE SUMMARY

Background

There are compelling reasons for the development of an automatic vehicle occupant

counting system. Currently, vehicle occupant counting is collected by human counters

for documenting vehicle occupancy on the Twin Cities metro area freeways. Human

counters are expensive and can disrupt tra�c if they are visible to motorists, which in

turn limits the amount of data collection that can be gathered. Also, human counters

are not very accurate during poor weather or at nighttime and are usually available

only during the longest daylight months.

An automatic vehicle occupant counting system could replace human counters

and facilitate the gathering of statistical data for tra�c operations management,

transportation planning, and construction programming. Also, if laws were changed

to allow for such activity, it could give law enforcement a technical means to perform

the High Occupancy Vehicle (HOV) lane monitoring task more e�ectively, as well as

facilitate enforcement of a system to allow single-occupant vehicles to use the HOV

lane for a fee.

The Honeywell Technology Center (HTC) in cooperation with the University of

Minnesota (U of MN) carried out a feasibility study regarding the automatic count-

ing of vehicle occupants in the HOV lane. Technology does not currently exist to

automatically count vehicle occupants at a high level of accuracy. The purpose of the

study was to determine if there was an appropriate wave band and computer vision

method for reliable automatic counting of vehicle occupants. The study was funded



by the Minnesota Department of Transportation (Mn/DOT) and the performance

period was from April 1998 to April 1999.

Key Tasks

The 3 key tasks for this project were: 1. Data Collection and Fusion 2. Algorithm

Development 3. System Demonstration.

In order to develop a reliable vehicle occupant counting system, the most impor-

tant step is to produce a clear imaging signal through the sensors with as distinct a

signature for the vehicle occupant as possible. The Data Collection and Fusion task

concentrated on the selection of the sensors and accessories, the sensor arrangement,

and a fusion scheme to facilitate the vehicle occupant detection operation with the

least amount of noise in the imaging signal. This task was the most critical task of

the project, because if the imaging signal were noisy, then even the most powerful

pattern recognition algorithms would not function accurately. Much of the project

was spent developing this signal.

The study �rst focused on gathering images using a mid-infrared camera. The

mid-infrared camera was chosen because it does not need infrared illumination, which

makes it a simpler operation than using a bandwidth that would require infrared

illumination.

After it was determined that the mid-infrared camera would not work well at

high speeds, a near-infrared camera was tested using two �lters set to di�erent near-

infrared bandwidths. These two near-infrared images were fused together to form

signatures or silhouettes of passengers faces to distinguish people from inanimate

objects. This test was conducted in both daylight and nighttime conditions. Near-

infrared illumination, which is both invisible and safe to the human eye, was used

to enhance the scene in the nighttime condition. The test only involved looking for

passengers in the front seat who were sitting upright.
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Once a clear silhouette of the front passengers faces was obtained from the near-

infrared approach, the algorithm portion of this study was conducted to determine

an automatic method for counting the number of silhouettes, or people, in the front

seat of the vehicle. Two algorithm approaches were attempted: 1) a primary fuzzy

neural network approach, and 2) an alternative approach.

Key Findings

The mid-infrared camera was not able to produce clear images at highway speeds.

Until the technology improves and the cost is reduced, sensors in the mid-infrared

range will not be able to detect passengers clearly at highway speeds. Also, the mid-

infrared camera could only produce images through the side window. It could not

produce images through the front windshield, which is made of a material that blocks

some radiation.

The near-infrared approach produced good images and these cameras were not

a�ected by tinted windshield or side glass. With specially modi�ed cameras, the near-

infrared cameras can work at highway speeds. With proper fusion, a clear signature

or silhouette of the front passengers' faces was distinguishable from other inanimate

objects in the vehicle including a dummy head. These silhouettes were obtained in

both daylight and nighttime conditions. Due to the scope of this study, persons in

the back seat or persons lying down were not tested.

The primary fuzzy neural network algorithm approach scored perfectly in classi-

fying the 90-sample image set at car speeds of 0 - 40 mph. The alternative approach

wasn't perfect in its classi�cation, but it did well with the limited sample size.

Conclusions and Future Work

This research study shows that there is potential for developing an automatic vehicle

occupant counting system using the near-infrared bandwidth. However, near-infrared

3



cameras can only produce images when looking through glass, not metal or heavy

clothes. So there may be a limit to the level of accuracy that can be obtained with

this technology if an automatic vehicle occupant counting system would be required

to count children in car seats or persons who are lying down in an automobile.

Further research and testing is needed in order to obtain a working device that

can count vehicle occupants reliably. The sensor placement needs to be optimized,

data collection techniques need to be automated, and the algorithm needs further

development. Additional experimentation should analyze device performance with

more types of vehicles, passengers in the back seats, children in car seats, and pas-

sengers lying down. Also, more rigorous testing in a variety of weather and lighting

conditions is needed.
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Chapter 1

DATA COLLECTION AND FUSION

1.1 Relevant Work

Our e�ort during the �rst half of the project's period was primarily concentrated in

the task of Data Collection and Fusion. The objectives in this task were:

1. Select the appropriate sensors and accessories.

2. Design an appropriate sensor arrangement.

3. Devise a fusion scheme that will facilitate the passenger detection operation.

This was the most important task of the project since its successful conclusion was

critical to the success of the entire project. The reason for this was simple: If we

managed to acquire a clear imaging signal through the sensors, then even moderately

powerful pattern recognition algorithms would succeed in the passenger detection

task. If, however, the imaging signal were noisy, then even the most powerful pattern

recognition algorithms would break.

Upon embarking on our e�ort in late April 1998 we were aware of one other

similar study worldwide led by the Georgia Tech Research Institute (GTRI). The

e�ort involved the use of a near-infrared camera (0:55�0:90 �m) and a near-infrared

illumination source in the same range. One reason for using near-infrared sensing was

the ability to use non- distracting illumination source during the night. Illumination

during night time certainly enhances the quality of the image.



In more general terms, Intelligent Transportation Systems (ITS) projects that in-

volve imaging usually adopt the use of visible spectrum cameras. The strong point

of the visible spectrum approach is that the relevant imaging sensors are the most

advanced and at the same time the cheapest across the Electro-Magnetic (EM) spec-

trum. Visible spectrum cameras have a particular advantage in terms of speed which

is an important consideration in the HOV Lane where vehicles are moving at rates

of speed of 65 mph. They can also have very high resolution which accounts for very

clear images under certain conditions. Unfortunately, there are also a lot of serious

problems with the visible spectrum approach. To mention a few: Some vehicles have

heavily tinted window glass to reduce glare from solar illumination; this glass is al-

most opaque to visible spectrum cameras. Also, visible spectrum cameras don't have

operational capability during night time.

1.2 Methodology

One factor that is distinctly absent in the aforementioned research e�orts, and unfor-

tunately, in many other computer vision projects is a vigorous sensor phenomenology

study. Most researchers without a second thought adopt the visible spectrum as the

spectrum of choice, or, in rare cases, some other EM spectrum based primarily on

intuition. The result is that they usually end up with a non-discriminating signal

that makes the problem appear harder than it actually is. Then, they try to address

the di�culty by devising powerful computer vision algorithms but often to no avail.

The loss of information because of poor sensor choice and arrangement are usually

irrevocable.

Our �rst consideration, was to consider what nature had to o�er across the EM

spectrum (see Fig. 1.1). The lower portion of the EM spectrum consists of the

gamma rays, the x-rays, and the ultra-violet range. They are all considered harmful

and they are used in a controlled manner in medical applications only. Then, the
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Figure 1.1: Electro-Magnetic (EM) spectrum.

visible spectrum, is the range we are mostly acquainted with since it is used by the

human eye and the vast majority of cameras. Visible spectrum cameras use mature

technology and they feature the best quality to price ratio. They achieve very high

resolution and speed, and with the recent introduction of digital technology negligible

systemic noise levels. Unfortunately, their systemic noise levels increase during poor

environmental conditions like bad weather, night time, and direct sunlight. Some of

these weaknesses are incurable. Some others, like night time, can be overcome by us-

ing arti�cial lighting. Nevertheless, this is not an option in the case of transportation

applications. The arti�cial light should match the spectrum of the camera (visible

range) and consequently it will distract the drivers with perhaps fatal results. One

other characteristic, that is very important in computer vision applications, is also

absent in this range. The image understanding task becomes feasible or easier when

the object of interest, the human face in our case, appears to have consistent quali-

ties under a variety of conditions. In visible spectrum cameras, the passenger faces

appear darker or lighter depending on the physical characteristics of the passenger,

7



the incident angle of illumination, and the illumination intensity.

At the far end of the EM spectrum there are the microwave and radio regions.

This area was just started to be exploited for imaging purposes. Sensors operate

in active or in passive mode. The major advantage is that the long wavelengths

in these regions can penetrate clouds, fog, and rain producing weather independent

imaging results. The technology is very new, and thus prohibitively expensive. Also

the sensors are bulky, and feature very low resolution. Their application is currently

constrained in the military and the remote sensing domain [13].

Between the low and the far end of the EM spectrum there is a middle region

which is known as the infrared range (0:7�100 �m). Within the infrared range two

bands of particular interest are the re
ected infrared (0:7�3:0 �m) and the thermal

infrared (3:0�5:0 �m; 8:0�14:0 �m) bands. The re
ected infrared band on one

hand is associated with re
ected solar radiation that contains no information about

the thermal properties of materials. This radiation is for the most part invisible to

the human eye. The thermal infrared band on the other hand is associated with the

thermal properties of materials.

1.3 Mid-Infrared Approach

Upon embarking in our study we concentrated on the thermal infrared region for the

following reasons.

1. The human body maintains a relatively constant temperature (about 36:6o Cel-

sius) irrespectively of physical characteristics or illumination conditions. This

would translate into a consistent light color pattern for the faces of the vehi-

cle passengers in infrared imaging. This consistency is lacking in the visible

spectrum and would greatly facilitate the image understanding task. Inciden-

tally, the thermal property can serve as a di�erentiator between humans and

dummies.
8



2. A thermal infrared sensor is operational day and night without any need for an

external illumination source.

Our only concern, was the attenuation introduced by the presence of the vehi-

cle glass. Glass disrupts severely the transmission of infrared illumination beyond

2:8 �m. This is the range where thermal energy is just beginning to appear. If we

were to capture anything at all we needed an extremely sensitive mid-infrared camera

in the range 2:5� 3:5 �m. The Mitsubishi Thermal Imager IR� 700 proved to be

the appropriate sensor for the task. An additional consideration was the composition

of the glass in vehicle windows. Vehicle windows are not made from common glass for

a variety of reasons (safety, energy e�ciency, visibility). Notably, the composition of

the front windshield di�ers substantially from the composition of the side windows.

Spectral measurements for a typical vehicle windshield (see Fig. 1.2) compared with

spectral measurements for typical side window glass (see Figs. 1.3 and 1.4), revealed

that it would be bene�cial to place the infrared camera by the side of the road. Initial

experiments with the Mitsubishi camera con�rmed these theoretical predictions. We

could not see anything inside the vehicles when we were shooting in frontal view. In

contrast we were getting very clear images when we were shooting from the side.

These initial experiments were performed in a parking lot with the test vehicle

either stationary or moving at low speed (up to 20 mph). We performed one such

experiment in winter, even before the o�cial start of the program and one in spring.

The side view images were very clear (see Fig. 1.5) except in one case. That was in

winter time when the vehicle's defogger was on for more than half an hour. Then, the

thermal signature of the air in the interior of the vehicle was becoming stronger than

the thermal signature of the passengers. The result was a cluttered imaging signal.

In a third experiment, in spring, we took our testing to an actual freeway site

(I394). This time we were shooting from the side of the freeway at vehicles moving

at speeds of 65 mph. As always, we were using the infrared camera side by side with

9
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Figure 1.2: Transmittance of a typical windshield from 0:3�3:0 �m. Upper curve

corresponds to a clean windshield. Lower curve corresponds to the same windshield

when it gets dirty.

our digital visible spectrum Sony DSR 200 camera. The results showed that the

mid-infrared camera was not capable of capturing clear images of such fast moving

targets (see Fig. 1.6). The Mitsubishi IR� 700 operateds at a frequency of 30 Hz.

In comparison, the visible spectrum camera, was operating at 1000 Hz to achieve

clear images of such fast moving targets. Unfortunately, mid-infrared technology

could not a�ord such a high frequency rate at the present time. The situation would

be better if the infrared camera were able to penetrate the windshield, because in

frontal view the car remains for more time in the camera's �eld of view. Consequently,

this would impose less severe speed capture demands. But, placing the mid-infrared

camera in frontal view is not an option since it cannot penetrate the front windshield.

That left us in a deadlock and we turned our attention to the re
ected infrared band

and particularly the range 1:0� 2:0 �m.
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Figure 1.3: Transmittance of a lightly tinted side window from 0:3 � 3:0 �m.

It is evident the graceful drop in transmittance even after the critical threshold of

2:8 �m. This spectral behavior allows for penetration of some thermal radiation.

Compare this with the windshield transmittance diagram in Fig. 1.2.

1.4 Near-Infrared Approach

The �rst concern was to �nd a state of the art camera sensitive in the re
ective near-

infrared band that can be consigned to us for experimentation, much the same way

as the Mitsubishi IR � 700 did. Sensors Unlimited Inc. agreed to consign us their

SU � 320 near-infrared camera that ful�lled our speci�cation. We performed two

preliminary rounds of experiments in HTC's parking lot with the SU�320. The �rst

round took place in spring and the second in summer. Based on this experience and

subsequent theoretical investigation we determined that the SU�320 camera can live

up to the challenges of the HOV requirements if certain steps are taken. Speci�cally:

1. We found theoretically and experimentally a unique di�erentiator for the human

face in the range 1:4 � x �m (where x > 1:4 �m) that substitutes the

11
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Figure 1.4: Transmittance of a heavily tinted side window from 0:3 � 3:0 �m.

Spectral transmittance is worse than the case of an untinted side window (see Fig.

1.3) But, it still drops gracefully after 2:8 �m comparatively to the transmittance

of the windshield (see Fig. 1.2).

corresponding thermal di�erentiator of the mid-infrared range. Above 1:4 �m

human skin appears consistently dark irrespectively of the person's physical

characteristics (Figs. 1.7 - 1.10) [8]. The phenomenon is exempli�ed in Figs.

1.11 and 1.12. In Fig. 1.11 a Caucasian male is pictured next to a dummy

head when the near-infrared camera is equipped with a band pass �lter in the

range 1:1 � 1:4 �m. They both appear in a relatively lighter color than the

background close to the way they would appear in the visible spectrum. In Fig.

1.12 the same Caucasian male and dummy head show di�erent when the camera

is equipped with a band pass �lter in the range 1:4� 1:7 �m. In fact, the face

of the Caucasian male appears dark (darker than the background). The face of

any other human, would exhibit irrespectively of its physical characteristics In

contrast, the dummy head appears as a light colored object (lighter than the

12



Figure 1.5: Side snapshot of a low speed car with a mid-infrared camera.

Figure 1.6: Side snapshot of a fast moving car (65 mph) with a mid-infrared

camera. The image appears heavily blurred since the speed of the camera cannot

keep up with the speed of the target.
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Upper curve: light complexity

Lower curve: dark complexity

Figure 1.7: Skin re
ectance of Caucasian males. Upper curve corresponds to light

complexion while lower curve to dark complexion.

Upper Curve:  light complexion

Lower Curve:  dark complexion

Figure 1.8: Skin re
ectance of asian males. Upper curve corresponds to light com-

plexion while lower curve to dark complexion.
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background), easily distinguishable from the human head. This sort of response

is shared by many other inanimate objects that can be found inside a vehicle like

for example upholstery, dashboard, fabrics (see Fig. 1.13). The low re
ectivity

of human 
esh for the 1:4 � 1:7 �m range can be explained if we notice the

spectral response of the water in the same region. Beyond 1:4 �m the water

absorbs substantially infrared radiation and appears in the image as a dark body

(see Fig. 1.14). Since the composition of the human body consists of 70% water,

naturally, its its spectral response is very similar to that of the water. Hence,

the camera should be equipped with a 1:4 � x �m (where x > 1:4 �m)

band pass �lter to capture this unique passenger di�erentiator.

2. The solar illumination in the range 1:4� x �m (where x > 1:4 �m) cre-

ates a lot of glare e�ects that lessen the quality of the imaging signal. A

polarizing �lter is needed during day time to improve the quality of the image.

3. The operating range 1:4� x �m (where x > 1:4 �m) is quite apart from

the visible band and we can quite safely employ during night time a matching

near-infrared illumination source to improve the quality of the image. The light

will not only be invisible to the drivers but also completely harmless to their

eyes since its wavelength is above the safe threshold of 1:4 �m.

4. Since we operate at a lower band than the mid-infrared band, glass penetration

is less of a problem and we can easier see through the windshield. This makes

the speed requirements for the camera less stringent. In the actual freeway

site, where shooting would be performed from a distance, probably a zoom lens

would be required. In general, a complete optical design seemed to be in order

that would verify mathematically the feasibility of the approach.

15



1.4.1 Radiometric Calculation

We undertook a complete optical design of the near-infrared experimental setup that

proved theoretically the feasibility of the approach. Fig. 1.15 shows the layout of the

proposed near infrared system during day time. We assume that a vehicle is moving

down a freeway with velocity v and is observed in frontal view with the near-infrared

SU � 320 camera at a distance d and from a height h. We also assume that the

SU � 320 camera is equipped with the following accessories:

1. A telephoto lens.

2. Alternate band-pass �lters either in the range 1:4 � x �m (where x >

1:4 �m) or in the range y� 1:7 �m (where y < 1:4 �m) for the reasons

explained in Section 1.4.

3. A polarizing �lter to reduce the glare e�ect from the sun illumination during

daytime.

During daytime the system uses the illumination of the sun. The objective is to

determine if there is any appropriate geometric arrangement for the SU�320 camera

so that the signal to noise S=N ratio and the camera speed are kept in acceptable

levels even under adverse conditions. An acceptable S=N ratio is considered anything

above 35. The speed quality is considered acceptable when the image smearing does

not exceed the width of one pixel.

The �rst step in a radiometric computation is to determine the amount of radiation

that falls upon the objects of interest [7] - in our case the vehicle passengers. As we

stated, we consider two spectral bands, one above the 1:4 �m threshold point and

one below it. Because of constraints due to the quantum e�ciency of the SU � 320

camera we limit the upper band in the range 1:4�1:7 �m. For symmetry reasons we

limit the lower band in the range 1:1�1:4 �m. We will demonstrate our computation
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for the upper band only, since very similar things apply also to the lower band. The

spectral radiance of the sun (our illumination source) on a clear day at sea level is

approximately Rsunny = 0:015 watts=cm2 in the 1:4� 1:7 �m wave-band. In our

computation, however, we consider the worst case scenario of an overcast day. For an

overcast day the radiance value is reduced by 10�3 giving a radiance at the vehicle of

approximately

Rovercast = 10�3 �Rsunny = 10�3 � 0:015 watts=cm2 = 15 �watts=cm2: (1.1)

The transmittance of the windshield of a common vehicle in the spectral band of

interest is approximately 0:4. We assume the worst case scenario of a dirty window.

This results in an irradiance on the vehicle occupants of

Ipassenger = 0:4 �Rovercast = 0:4 � 15 �watts=cm2 = 6 �watts=cm2: (1.2)

The second step in a radiometric computation is to determine how much of the

incident radiation on the objects of interest is re
ected back to the sensor (the SU �
320 near-infrared camera in our case). The radiance into a hemisphere assuming a

reradiate of 0.4 would be

Rpassenger = 0:4 � Ipassenger (1.3)

= 0:4 � 6 �watts=cm2 � ster (1.4)

= 2:40 �watts=cm2 � ster: (1.5)

This represents the re
ected portion of the passenger irradiation. The rest is absorbed

by the passenger's body. The re
ected radiation has to pass through the windshield,

the camera lens, the band-pass �lter, and the polarizer to reach the near-infrared

sensor array. As we did earlier, we assume a 0:4 windshield transmittance in the

spectral band of interest. We also assume a f=2 camera lens (14:32o cone angle)

with 0:8 transmittance, a polarizer with 0:4 transmittance, and a band-pass �lter

with 0:6 transmittance. Assuming a f=2 camera lens (14:32o cone angle) with 0:8
17



transmittance Then, the irradiance at the sensor array of the SU � 320 camera will

be

Icamera = 0:4 � 0:8 � �0:4 � 0:6 � � �Rpassenger � sin2(14:32o) (1.6)

= 0:4 � 0:8 � 0:4 � 0:6 � � � 2:4 �watts=cm2 � ster � sin2(14:32o)(1.7)
= 0:035 �watts=cm2 � ster: (1.8)

The SU-320 camera has square pixels with a side of 37:5 � 10�4 cm or an area

A = 37:5 � 10�4 � 37:5 � 10�4 = 1:40 � 10�5 cm2: (1.9)

Consequently, the radiant power on the camera pixel will be

Ppixel = A � Icamera (1.10)

= 1:4 � 10�5 cm2 � 0:035 �watts=cm2 � ster (1.11)

= 0:49 � 10�12 watts: (1.12)

The camera's detectivity D� is D� = 1012
p� cmHz=watts. The Noise Equivalent

Power NEP is related to detectivity D�, pixel area A, and electronic bandwidth �f

by the following equation:

NEP = (A=�f)1=2=D�: (1.13)

The bandwidth �f is determined by the exposure time of the camera. The exposure

time depends on the velocity, range, and �eld of view of the camera such that the

images smear is less than 1 pixel. Assuming a vehicle traveling at a speed of 65 mph,

a distance d of 40 m apart from the camera, and a �eld of view of 1:6m, the 320�240
pixel array of SU � 320 gives a maximum exposure time of 1 msec or a bandwidth

of �f = 1 KHz. Substituting the values for A, �f , and D� in the formula of NEP

(see Eq. (1.13)) we get

NEP = 1:18 � 10�16 watts: (1.14)
18



Therefore, the camera signal to noise ratio S=N will be

S=N = Ppixel=NEP = 4152: (1.15)

In conclusion, assuming a worst case scenario (overcast day, dirty windshield) we

determined that the SU�320 camera, equipped with a f=2 lens, a 1:4�1:7 �m �lter,

and a polarizer, if it is positioned at a distance of d = 40m from the incoming vehicle

and with a �eld of view of 1:6 m (or height h = 7 m at the speci�ed distance),

will give an acceptable signal to noise ratio S=N = 4152 > 35 and an acceptable

smear of up to one pixel. Also, the required exposure time of 1 msec is within the

nominal speed speci�cation of the SU � 320 camera. During night time, the same

computation holds, and the sun illumination is substituted by the illumination of an

arti�cial near-infrared light source (see Fig. 1.16).

1.4.2 Mn/ROAD Experiment

The above theoretical scenario was put into testing in the Mn/ROAD research facility

outside Monticello, MN. The experiment lasted for a week in late September 1998.

One test lane of freeway I94, one mile long, was released from tra�c and given to us

for exclusive use. We set up the SU�320 camera with all its accessories above the test

lane of freeway I94. In the absence of a permanent installation device we installed

the sensor suite in the basket of a cherry-picker. We implemented the experiment

exactly as it was speci�ed in Subsection 1.4.1. We used two testing cars that made

successive passes through the �eld os view of the near-infrared camera. The passes

were done at speed increments of 10mph, ranging from 10 - 50mph. One of the testing

cars was representative of the compact category (Mitsubishi Mirage) and the other of

the luxury category (Oldsmobile Aurora). The experiment had both day and night

sessions. During night time we used an arti�cial near-infrared illumination source in

the range 1:0 � 2:0 �m that covered the illumination needs of both the lower and

upper band.
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The experiments con�rmed our theoretical predictions. The most interesting re-

sult was the experimental veri�cation of skin appearance in the near-infrared region

of choice. Above the 1:4 �m threshold human skin appeared consistently dark in

the imagery while below the 1:4 �m threshold it appeared consistently light (see

Figs. 1.17 and 1.18. Remarkably, everything else in the scene (e.g. upholstery, dash-

board, car frame) appeared more or less una�ected in the imagery of both bands.

Based on this observation, we tried to co-register in the lab matching images from

the two bands, subtract them, and threshold them. Ideally, if everything but the

human signatures remains the same in the two bands, the image subtraction should

produce an image where only the silhouettes of the vehicle occupants remain. Ev-

erything else would be cancelled out. Fig. 1.19(b1) shows the result of fusion from

the images in Fig. 1.17(a) and 1.17(b). We fused the images by �rst co-registering

them through a warping operation and then subtracting them from each other. We

then thresholded the fused image to get the �nal processed result (Fig. 1.19(b2)).

Somebody may notice that along with the face of the driver a small amount of noise

is also present at the �nal image. We determined that this is mostly due to the im-

perfections of the fusion process we applied. In particular, because we had only one

camera, we �rst shot a scene with the camera equipped with the lower band �lter.

After some time, we shot the same scene with the camera equipped with the upper

band �lter. Because, however, the two shootings took place half an hour apart the

illumination of the scene was di�erent (diurnal cycle) and therefore the image sub-

traction operation produced less than the ideal theoretical results. Even under these

adverse circumstances, our approach is clearly superior than the traditional visible

spectrum approach. Fig. 1.19(a2) shows the thesholded image that resulted from

the visible spectrum image of Fig. 1.19(a1). The visible spectrum image represents

the same scene as the near-infrared images 1.17(a) and 1.17(b). It was shot with the

SONYDSR� 200 digital camera that was standing side by side with the SU � 320

the day of the experiment. It is evident that the visible spectrum thresholded image
20



has a couple of order of magnitudes more noise than the thresholded fused image.
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Upper curve: light complexion

Lower curve: dark complexion

Figure 1.9: Skin re
ectance of black males. Upper curve corresponds to light com-

plexion while lower curve to dark complexion.
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Upper curve: dark skin

Lower curve: light skin

Figure 1.10: Re
ectance of dark skin versus light skin. The lower curve corresponds

to dark skin while the upper curve to light skin. Up to 1:4 �m the discrepancy

between the two curves is substantial and it explains why to the human eye white

people appear white and black people black. After the 1:4 �m threshold point,

however, the two curves are almost coincident. They both feature very low re
ectance

values in this range, which explains why everybody appears dark in the near-infrared

camera operating in this band.
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Figure 1.11: A Caucasian male and a dummy head in the range 1:1� 1:4 �m.

Figure 1.12: A Caucasian male and a dummy head in the range 1:4� 1:7 �m.
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Figure 1.13: Re
ectance of di�erent fabric materials. The drop in re
ectance after

the 1:4 �m threshold point is relatively minor.

Figure 1.14: Re
ectance of distilled water. The drop in re
ectance after the

1:4 �m threshold point is substantial.
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v = 65 mph

d = 40 m

h = 7m

Figure 1.15: Sensor arrangement for day time scenario.

v = 65 mph

d = 40 m

h = 7m

Figure 1.16: Sensor arrangement for night time scenario.
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(a) (b) 

Figure 1.17: Near-infrared day time results. (a) Image in the band 1:1� 1:4 �m.

Image in the band 1:4� 1:7 �m.

(a) (b)

Figure 1.18: Near-infrared night time results. (a) Image in the band 1:1�1:4 �m.

Image in the band 1:4� 1:7 �m.
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(a1)

(a2)

(b1)

(b2)

Figure 1.19: Comparative results between the visible spectrum approach and the

near-infrared fusion approach.
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Chapter 2

PRIMARY ALGORITHM FOR AUTOMATIC

DETECTION OF VEHICLE OCCUPANTS

We chose to perform the detection of vehicle occupants with a neural network.

In particular, we opted for a fuzzy neural network that implements the Adaptive

Resonance Theory (ART). This type of neural network features a series of appealing

properties for the application at hand.

1. Self-Organization. This is a property that characterizes the learning process

of the neural network. In contrast to supervised learning neural networks (i.e.,

back-propagation), Fuzzy ART networks do not need any external guidance but

�nd automatically the regularities interwoven in the input data. This translates

to easier and less expensive ground-truthing, an important factor in a cost

critical endeavor such as ours.

2. Stable Categorization. This property is related to the degree that a neural

network forgets categories (patterns), which it had encountered far into the past.

This is the so called stability-plasticity dilemma. The ART network features a

feedback mechanism between the layers that help solving the stability-plasticilty

problem. This feedback mechanism facilitates the learning of new information

without destroying old information. Most important, stable categorization is

maintained even at a fast learning pace. Learning stabilizes after just one

presentation of each input pattern. This was very important in our case because

the size of our image database was rather small and we could not a�ord going

through an expensive learning cycle.



3. Broad and Narrow Classi�cation. ART networks have an explicit parameter

called vigilance that controls its generalization capability. In other words, vig-

ilance controls the formation of broad and narrow classi�cations. This control

is very useful in the presence of highly variable patterns of vehicle occupants.

4. Fuzzy Classi�cation. The incorporation of fuzzy set theory into the operation of

ART networks addresses the problem of disambiguating overlapping categories

with minimum risk.

2.1 The Fuzzy Neural Network Algorithm

Fuzzy ART neural networks are comprised of an input layer F0 and an output layer

F1. The typical structure of an ART neural module is shown in Fig. 2.1. The input

layer consists of N nodes (neurons) which encode the input vector
�!
I = (I1; I2; :::; IN).

In our application each input node represents the gray level intensity of a pixel

Ij 2 [0; 1]; 8j 2 (1; 2; � � � ; N): (2.1)

The input vector is augmented to achieve input normalization through a process that

is called complement coding. The complement coded input vector
�!
P becomes a

2N -dimensional vector

�!
P = (

�!
I ;
�!
Ic) � (I1; � � � ; IN ; Ic1; � � � ; IcN); (2.2)

where Icj � 1�Ij. One may observe that the complement-coded input
�!
P is normalized

since

j�!P j = j(�!I ;�!Ic j =
NX

i=1

Ii +:N �
NX

i=1

Ii; = N: (2.3)

The M nodes in the output layer represent the classi�cation categories (e.g. the

activation of the leftmost output neuron denotes the presence of one passenger, the

activation of the neighboring neuron denotes the presence of two passengers, and so

on). Each output neuron j is associated with a vector �!wj = (wj1; wj2; � � � ; wj2N) of
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Figure 2.1: ART networks are two-layer neural modules. There exists a complete

set of bottom up weights from the input layer (red box) neurons to the output layer

(light blue box) neurons. The size of the adaptive weights, which change through

learning, is graphically denoted by the di�erent size of the blobs that surround the

output neurons. The pink colored output is the category selected for the present

input.

adaptive weights that represent the knowledge that the neural network retains at the

current time. The values of the elements of this vector change during the neural

network operation. Initially, they all have unit values.

For a typical input
�!
P , a choice function Tj is computed for every output neuron

as

Tj(
�!
P ) =

j�!P ^ �!wjj
j�!wjj ; (2.4)

where the fuzzy AND operator ^ is de�ned by (�!x ;�!y )j � min(xj; yj) and j � j
represents the Hamming distance norm.

The choice function measures the degree to which the weight vector wj is a fuzzy

subset of the input
�!
P . There is only one neuron that is activated for a particular
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input (i.e., an image) that is presented in the input layer. For this reason fuzzy ART

networks belong to the class winner-take-all networks. The output node J is the

chosen candidate for classifying the current input for which

Tj(
�!
P ) = maxfTjjj = 1; � � � ;Mg: (2.5)

The chosen candidate neuron J �nally classi�es correctly the present input if it meets

the vigilance criterion. The vigilance criterion is mathematically described by the

following equation:
j�!P ^ �!wjj
j�!P j > �; (2.6)

where � is the vigilance parameter. If Eq. (2.6) is met we say that resonance occurs.

Hence, resonance occurs when the degree to which the input
�!
P is a fuzzy subset of

�!wj exceeds the vigilance parameter �, which takes values in the interval (0; 1]. The

vigilance parameter de�nes the lower bound of the degree of dissimilarity of disparate

inputs that are classi�ed under the same category. If the vigilance criterion is not met,

the choice function associated with the chosen neuron is reset to �1(Tj(�!P ) = �1)
until the presentation of a new input. The same process for choosing a di�erent

neuron j is then repeated until one is found that meets the vigilance criterion. When

such a category j has been found we say that it is a fuzzy subset choice for input
�!
P .

For this selected output neuron j learning occurs as follows:

�!w (new)
j = �(�!w (old)

j ) + (1� �)�!w (old)
j (2.7)

where, the learning parameter � can take values in the interval (0; 1].

2.2 Geometric Representation of the Fuzzy Neural Network Classi�ca-

tion

There is an interesting geometric interpretation of the category formation process

when the Fuzzy-ART networks are employed. In order to make our point clear,
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we will assume that our inputs represent 2 � D vectors instead of the 300 � 110 -

dimensional pixel vectors that were used in our application. The results from the

2�D case can easily be generalized to the N - dimensional case.

The formation of classi�cation categories is shown in the space of input vectors

(see Fig. 2.2). When an output node is chosen for the �rst time we say that the

neuron commits to a new class. Since this input is the only point in the class, this

point represents the respective class. The second time this committed output neuron

is selected to represent another input di�erent from the previous one, the smallest

rectangle that will contain those two points will be formed. This is the rectangle

that will represent the class from now on. The same process will be repeated for

new inputs. The maximum size of the rectangles (represented by its perimeter) is

determined by the vigilance parameter. In a similar fashion other classes are formed.

One may see that classes (color-coded rectangles) overlap due to fact that fuzzy

concepts are incorporated into the neural network.

2.3 Performance of the Algorithm

The neural network described above was tested on 90 di�erent images with the camera

operating at the 1:1�m�1:4�m and 1:4�m�1:7�m wavelength ranges. These images

were taken at di�erent times during the day and at car speeds of 0�40mph. Table 2.1

describes in detail the characteristics of the sample images. The network performed

at the fast learning mode (� = 1) and scored perfectly in classifying the 90-sample

image set. In order to test the stability of the algorithm, images from the same set

were presented in an arbitrary order to the network after the �rst epoch and again it

scored perfectly.
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Figure 2.2: Classes in Fuzzy-ART networks are represented as color coded rectan-

gles. Inputs that fall within a particular rectangle are classi�ed by the output neuron

associated with the respective class.

Table 2.1: Types of samples used for testing the performance of the neural network

algorithm. Images taken at two wavelengths are shown in the blue and red numbers

respectively. The total number of sample images was 90.
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Chapter 3

ALTERNATIVE ALGORITHMS FOR AUTOMATIC

DETECTION OF VEHICLE OCCUPANTS

The �rst stage of our alternative detection algorithms seeks to locate the focus of

attention where the occupants may be seated i.e. the windshield of the automobile.

At the second stage, we threshold the image to a binary version such that the interval

of pixel values for human skin is colored white and all other pixel values are colored

black. Linear regression models are created in order to predict the expected values of

this interval. The binarized image is then segmented into regions of adjacent white

pixels. In the �nal stage, the windshield region is split into two sides (passenger,

driver) each of which is the input for classi�cation. We explore two classi�cation

systems, the �rst is a hand-coded version and the second is an arti�cial neural net.

Both classify each blob into one of two groups: passenger, not passenger.

Figure 3.1 shows representative examples for the near-infrared con�guration that

are used throughout the rest of this paper.

3.1 Focus of Attention: the Windshield

In this �rst processing stage, we assume there is an automobile in view and seek

to locate its windshield. Since windshields are rectangular in shape, we search for

rectangles in the image. These are determined by inspecting the vertical and hori-

zontal edges, combining them into rectangular regions, and �nally selecting the most

reasonable one for further processing. We begin with smoothing the image in order

to reduce speckling noise and then sub-sampling to improve e�ciency.



(a)

(b) (c)

Figure 3.1: Examples of input images: (a) zoom lens on a fairly bright day with passenger

and driver, (b) very bright afternoon with passenger and driver, (c) zoom lens at dusk with

driver and no passenger.

3.1.1 Locating the Windshield: a Rectangle with Special Properties

Using the smoothed and sub-sampled image, we construct a set of potential rectan-

gular regions in the image. We use image projection to determine where lines are.

This method accumulates all pixel values along one dimension (e.g. horizontally or

vertically). One bene�t of this technique is broken edges still contribute to the over-

all count. One disadvantage is that excessive noise such a mechanical malfunctions

or painted lane markings would create short lines that might be misinterpreted as
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broken edges of the car.

First, we �nd the two vertical lines that correspond to the left and right sides of

the car. This is done with the application of a vertical edge kernel followed by the

noise-reducing thresholding. Next, a 0o projection sums the number of lit pixels for

each column (see Figs. 3.2(a)(b)). While there may be many vertical lines, we search

recursively from the left and right outsides of the image toward then center until two

similarly-sized vertical lines are found. The range of allowable vertical line length

extends from one-half to the entire frame height

To form the horizontal line set the image is �rst cropped to the outside vertical

edges. Next we apply a horizontal edge kernel, threshold to remove noise, and then

perform a 90o projection that sums the number of lit pixel along each row (see Figs.

3.2(c)(d)).

Edge thinning combines adjacent lines into a single representative line. Since the

projections are linear this task is accomplished quickly in one pass. We limit the

length of allowable lines to the range of 75 � 100% of the (narrowed) image width.

To form the set of rectangular regions we combine the pairs of vertical lines with

the set of horizontal lines to form a grid. The grid entries do not inscribe any other

rectangles. Figure 3.3(b) shows an example.

Given the set of rectangular regions, we determine which one bounds a region that

is likely to be a windshield. Two properties are used to di�erentiate them from the

other regions. The windshield is a rectangle whose length : breadth ratio is around

1 : 4. Excessively wide entries fall below 1 : 4. Excessively tall entries are above 1 : 2.

The windshield is also a region whose pixel color variance is higher than its other

surfaces, e.g. the hood is \smooth" (low variance) while the window area is \rough"

(higher variance). We select the remaining rectangle with the highest variance as the

candidate for further processing (see Fig. 3.3).
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(a) Vertical edges (b) 0� projection histogram

(c) Horizontal edges (d) 90� projection histogram

Figure 3.2: Edges and their projections of Fig. 3.3(a)

3.2 Thresholding Using Statistical Models

In this stage of processing, the windshield is split into two halves: the passenger

and the driver sides. Each will be thresholded prior to being segmented into blob

regions which are later classi�ed as being a passenger or not. This section concerns

the thresholding the image into two colors: pixels whose values are those of skin

will be colored white, and the rest will be black. Thresholding is a necessary step

for segmentation, although, thresholding the images we encounter is not easy. [1,

2] discuss thresholding approaches for bimodal images. This method assumes that
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(a) (b)

Figure 3.3: Windshield location results: (a) shows the original image, (b) shows the

horizontal and vertical lines that form a grid from which the windshield is identi�ed (marked

in an alternate color).

background pixels fall into the darker of strictly two classes. However, in our case the

occupant's face is colored in a limited grayscale range that such an approach could

not accommodate.

3.2.1 Creation of Models Using Linear Regression

Observation of the sample input images shows that the theoretical expectations are ac-

curate in ideal settings when certain assumptions are true (Fig. 3.1(b)). Near-infrared

re
ectance requires su�cient illumination, passively from the sun and actively from

an illumination device. Figs. 3.1(a,c) demonstrates that insu�cient re
ectance from

the human skin falls close to 0% (seen as black in the images). Purely theoretical

calculations are not su�cient for the real world situation we expect to encounter.

Statistical linear regression [11, 4, 10] has the potential to help us develop an

algebraic expression that transforms image characteristics into an accurate range of

values for the human skin as detected by our camera. We experimented with sample
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images in order to get some idea about the threshold range. The results indicated

that the threshold ranges vary in both the mean and width. Therefore two models

were designed: one to estimate the expected mean, and the other to estimate the

expected interval width. The domain inputs to these models would be chosen from

among statistical characteristics of the two windshield sides.

Results

The creation of a regression model requires a representative sample data set. Thirty-

one random samples were collected from among two hundred images of the three

di�erent signal conditions of Fig. 3.1. Each image was manually processed to de-

termine a thresholding interval that distinguished the facial region from the rest of

the image. Statistical data was gathered and stored for each window side and its

corresponding threshold interval.

Each of the two models has the form y = x0+x1t
(1)+x2t

(2) where y is the expected

mean �̂ in the case of the �rst model and the expected width ŵ for the second model.

xi are constant coe�cients. t
(i) are the input variables: the input image's mean x and

mean squared x2 for the �rst model, and the gradient image's standard deviation s

and its square s2for the second model. To determine the xi, multiple linear regression

solves the equation y = Ax for the coe�cients x. y contains the actual experimental

target values (the threshold interval mean for the �rst model, the threshold interval

width for the second model). A contains the two measured values (either x and x2,
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or s and s2). x and A have the forms:

x =

x0

x1

�
�
�

x30

A =

1 a1;1 a1;2

� a2;1 a1;2

� : : : : : :

1 a31;1 a31;2

The �rst attempt at building a model was unsuccessful. Using raw image input,

we sampled swatches of skin and the overall window side, and calculated the standard

deviation and mean of each type. We were able to model the mean, however the width

could only be over-�t in order to account for the majority of variability in the data.

The second attempt was successful. First we sought to heighten the contrast of

the images. The raw images appear very dark and weak signal strength appears gray

to black, which unfortunately is close to the color of the camera �lter's representation

of skin. Experimentation revealed that the contrast of the image was improved with

a histogram equalization of uniform distribution of pixel values. In other words,

contrast was heightened as shown in Figs. 3.5(a,b).

Using the equalized histogram of the smoothed image we manually experimented

with binary threshold rages for the population sample of images in order to determine

an interval that maximized the distinctiveness of facial regions among the overall

image. We stored the interval as well as the variance and mean of the window side.

Our attempt at a regression yielded a successful model for the mean that captured

more than 90% of the variance.
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Figure 3.4: Threshold model surface of interval upper bound, mean, lower bound as

functions of the image mean pixel value and image gradient standard deviation.

Unfortunately the model for width over-�t the data. We decided to explore �tting

the model utilizing the variance and standard deviation of the magnitude intensity

gradient image. It was anticipated that this transformation would provide a more

regular description of data and thereby produce a suitable model. The Sobel operator

provided an excellent choice for estimating the partial derivatives ( �I
�x
, �I
�y
). The result

was a second degree model that captured over 70% of the variance.

A plot of the combined thresholding models' surfaces is shown in Fig. 3.4 and an

example of its use is shown in Fig. 3.5. The models we use for mean estimate �̂ and

width ŵ of the window side are:

�̂ = 3 + 0:75x� 0:003x2 ŵ = 20 + 1:2s� 0:006s2
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(a) Passenger side original (b) Uniform histogram equalization

(c) Thresholded Image

Figure 3.5: Results of Threshold Model

3.3 Classi�cation of a Person

Another principal algorithmic concern is the classi�cation of the input image's seg-

ments. This process takes a binarized image (each half of the windshield region) that

is segmented into regions of neighboring pixels (blobs). Given some inaccuracies in

sensing, the image can contain noise in the form of extraneous regions that we at-

tempt to �lter out. In this section we present two approaches to classi�cation: the

�rst is a hand-coded version and the second is an arti�cial neural network.

Classi�cation maps a feature vector containing mathematical characteristics of

a region to a boolean value: is a face, is not a face. The hand-coded version

outputs a strict true or false output, while the neural net outputs a probabilistic

range [0; 1] where 0:0, 0:5, 1:0 represent, respectively, false, uncertain, true. Feature

selection creates a vector of values which determines characteristics that describe
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the uniqueness of the person's face. Fig. 3.6 shows these features as they relate

to our work. Additional features include: elongation (Length=Breadth), rough-

ness (Perimeter=Perimeterconvex) to measure how jagged the blob is, compactness

(Perimeter2=(4�Area)) to measure how close pixels are to each other.
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Abstraction of a face region inside one side of a windshield

Figure 3.6: Feature Vector Composition

3.3.1 Hand-coded Version

In the hand-coded version we manually selected parameterizations of a feature vector

until we achieved a reasonably consistent percentage of correct classi�cations from

another sampling of the data. The goal is to exclude blobs that are not consistent

with the following features and their respective constraints.

The elimination of blobs that are not centered in the image uses the blob's center

of gravity COG and the image Width and Height through the exclusion of those
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which do not satisfy either 0:4Width < COGx < 0:9Width or 0:6Width > COGy <

0:1Width. The elimination of blobs that are too large or small excludes violations

of Areaimage=8 < Areablob < Areaimage=4. The elimination of blobs that are too

horizontally thin excludes violations of Elongation > 2:0. The elimination of blobs

that are too spread out excludes violations of Compactness > 10; Results are shown

in Fig. 3.7 and 3.11(b).

Figure 3.7: Results of Hand-coded Classi�cation

3.3.2 Neural Networks

Another way to classify a blob is with an arti�cial neural network [6, 5]. Conceptually,

the network behaves like primitive brain that has no knowledge of how to classify.

Using a technique called supervised learning we incrementally present a training set of

the image segments that were seen with our cameras during the data collection phase.

Some of these may be passengers (positive examples) and others may not (negative

examples). In the forward phase, the network classi�es each sample and outputs

a number that represents its con�dence that this is a person. At the subsequent

backward phase we tell the network whether is was correct or not, and the network

learns by modifying its structure slightly. We measure the success rate using a test set

of similar images. This process of providing positive and negative examples, querying
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the network, improving performance continues as the network converges when the

success rate reaches a satisfactory level.

The inputs to the networks represent features that describe the image. Some

examples of these features include: shape, length, elongation, roughness, mean color

values, etc. It is important that we represent our knowledge of the input image in a

manner that is invariant to transformations such as scale. For example, consider that

we use the length feature: since the focal length of the camera may vary causing the

length of a person's head to vary as well. Therefore a more suitable solution would be

to use the relative length of an object inside the window to the entire window length.

Neural networks may be designed in various ways. They may vary according to

connectivity, input and output representations, the manner of error correction, and

the rate at which they learn. These variable parameters must be manually �ne-tuned

with careful experimentation. This process may be time-consuming but worthwhile.

Neural networks are capable of classifying complex patterns such as the ones we face

in this study. In addition, the run-time performance of a well-tuned neural network

is very e�cient

3.3.3 Experimental Design and Results

We have developed a multi-layer feed-forward network using back-propagation error correc-

tion. The sigmoid function was used for activation and a bias node was attached to each

internal node. Learning was performed in pattern mode where each example was presented

followed by a weight update. We used two learning rates: one for the input to hidden node

links and another for the hidden to output node links. A momentum constant was used to

accelerate convergence. The complete structure along with its feature vector of inputs is

shown in Figure 3.8 and a detailed listing of training parameters is contained in Table 3.1.

We trained and tested the network with a total of 240 examples, half were negative

examples (blobs that were not human faces) and half were positive examples. 70% were

used for training and 30% for testing. The learning curve is shown in Fig. 3.9. Examples
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Figure 3.8: Neural Net Structure

of classi�cation results are shown in Figs. 3.10, 3.11(c).

3.4 Software and Hardware

The software design consists of a user-interface that served as both a development and

experimental tool project processing algorithms. A user-friendly front-end was developed

coded in C++ underWindows NT. The interface issues commands to the Matrox imaging

system [9], a set of parallel vector processors. The regression analysis were performed with

the MacAnova statistical package [12].
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Figure 3.9: Neural network training convergence

Figure 3.10: Neural network classi�cation (passengers marked with boxes)
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N number of training epochs

n training epoch

i input node

j hidden node

k output node

C all neurons in output layer

xi input vector

dk(n) output node k (desired value)

wij(n) link weight from input i to hidden j

wjk(n) link weight from hidden j to output k

�wij(n� 1) momentum of ij weight change

�wjk(n� 1) momentum of jk weight change

�ij input to hidden link learning rate 0:10

�jk hidden to output link learning rate 0:15

� momentum constant 0:15

'(�) node activation function 1
1+exp (�x)

'0(�) activation function derivative '(�)(1� '(�))
yj(n) hidden node activation '(vj(n))

yk(n) output node activation '(vk(n))

�j(n) hidden node local gradient '0(vj(n))ej(n)

�k(n) output node local gradient '0(vk(n))ek(n)

vj(n) hidden node j input
P
wij(n)xi(n)

vk(n) output node k input
P
wjk(n)yj(n)

E(n) instantaneous sum of squares error 1
2

P
j2C e

2
j(n)

Eavg averaged squared error 1
N

PN
n=1 E(n)

ej(n) hidden node j error
P

k �k(n)wk;j(n)

ek(n) output node k error dk(n)� yk(n)

�wij(n) wij correction ��wij(n� 1) + �ij�j(n)yi(n)

�wjk(n) wjk correction ��wjk(n� 1) + �jk�k(n)yk(n)

Table 3.1: Neural Network Parameters
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(a) Input

(b) Hand-coded classi�cation (c) Neural network classi�cation

Figure 3.11: Results from both classi�cation methods
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