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Executive Summary 
 

This project focused on the enhancement and evaluation of a battery-less, wireless weigh-in-
motion (WIM) sensor for improved enforcement of road weight restrictions.  The WIM sensor is 
based on a previously developed vibration energy harvesting system, in which energy is 
harvested from the vibrations induced by each passing vehicle to power the sensor. 

The sensor was re-designed in this project so as to 
1) Reduce its height to 3.5 inches, which allowed it to be installed in an asphalt pavement 
2) Allow its enclosure in a metal casing, which could be grouted to the pavement 
3) Protect the piezo stacks in the sensor from overloading by heavy trucks while still 

allowing adequate energy to be harvested from light vehicles.  This was achieved by 
using a novel combination of parallel and series spring elements. 

4) Protect the piezo film used for weight measurement from overloads while still allowing it 
to experience a force proportional to vehicle weight. 

5) Protect the electronics in the sensor from large voltage spikes caused by high-speed 
heavy truck loads. 

6) Provide software interfaces for easy access to readings from the WIM sensor. 

Two types of software interfaces were developed in the project: 
a) An interface through an existing International Road Dynamics IRD (IRD) controller box, 

from which the signals could be read on the MnDOT intranet 
b) An interface through a wireless handheld display, from which WIM signals could be read 

in the neighborhood of the sensor. 

Tests were conducted at MnROAD with a number of test vehicles, including a semi tractor-
trailer at a number of speeds from 10 to 50 mph.  The sensor had a monotonically increasing 
response with vehicle weight.  There was significant variability in sensor response from one test 
to another, especially at the higher vehicle speeds.  This variability could be attributed to truck 
suspension vibrations, since accelerometer measurements on the truck showed significant 
vibrations, especially at higher vehicle speeds. 

There was unexplained loss of data for the reading from the first axle of the semi tractor-
trailer on several occasions.  This loss of data could not be explained.  It was not due to 
inadequate energy harvesting, since the energy harvesting system provided adequate energy from 
the first axle for several vehicles that were much lighter. 

MnDOT decided that the final size of the sensor was too big and could pose a hazard to the 
traveling public if it got dislodged from the road.  Hence the task on evaluation of the sensor at a 
real-world traffic location was abandoned and the budget for the project correspondingly 
reduced. 
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I. INTRODUCTION 
 

The overarching goal of this project is to develop an improved approach to road weight 
restriction enforcement based on a battery-less, wireless weigh-in-motion sensor.   

In a previous research project [2], a battery-less, wireless weigh-in-motion (WIM) sensor was 
developed by this research team. The sensor was inexpensive and the cost of materials for the 
sensor was only $200. Energy for its operation was entirely obtained from vibrations induced by 
each passing vehicle [1]. The final size of the sensor was 6 feet long x 10 inches wide x 5 inches 
deep. It transmitted weight information to a roadside receiver. 

In the workplan for this project, the sensor was to be enhanced so as to enable it to calculate 
the total weight of the truck accurately.  Earlier the WIM sensor could measure axle weight. 
However, at low vehicle speeds, the sensor was unable to reliably identify which axles belong to 
which vehicle. At low vehicle speeds, the distance between vehicles can be small. There was no 
method available to identify whether consecutive axles belong to one vehicle or to consecutive 
vehicles. 

The work in the project proposed to add an Anisotropic Magnetoresisitive (AMR) device to 
the WIM sensor. An AMR sensor responds to the magnetic field of each vehicle (just like an 
inductive loop). AMR sensors are currently already being used as traffic sensors. AMR sensors 
cannot measure the number of axles or the weight of any axle. However, they can reliably count 
vehicles, differentiating one consecutive vehicle from another. The addition of AMR sensors to 
the current WIM sensor would enable it to calculate the total weight of each passing vehicle. 

The workplan for the project also included enhancement of the sensor design so as to enable 
it to be embedded in the road.  The previous sensor had only been tested by wedging it into a slot 
in the road.  If the sensor were to be grouted to the road, it would have a stiff connection with the 
road.  A portion of the load on the sensor would be expended in deflecting the sensor with 
respect to the road, i.e. in overcoming the resistance of the grout.  This would cause the weight of 
the vehicle to be under-estimated and would also result in less energy harvested for sensor 
operation.  The sensor design needed to be enhanced to address these issues. 

Another shortcoming of the sensor was that its height of 5 inches only enabled it to be used 
in a concrete road.  In order to enable the sensor to be used in an asphalt road, its height needed 
to be reduced to 3.5 inches. 

Finally, the sensor had reliability issues with its electronics and these issues needed to be 
addressed. 

The performance of the enhanced WIM sensor was planned to be first verified at MnROAD. 
The original workplan also had a task related to evaluation of the sensor at a real-world traffic 
location.  The sensor would have two types of interfaces: 

a) An interface with through an existing IRD WIM controller box so as to provide Internet 
access over MnDOT’s intranet. 

b) An interface with a hand-held receiver and display system of the size of a smart phone. An 
enforcement officer could use this smart phone like device to measure the weight of each 
passing vehicle.  

 
Due to the low cost of the sensor, its battery-less zero energy operation and remote hand held 

display, the enforcement system could be widely deployed if its performance is evaluated to be 
satisfactory.  This was the primary motivation for this research project.  
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II. AMR SENSORS FOR VEHICLE DETECTION 
 

2.1 VEHICLE DETECTION 
The use of anisotropic magnetoresistive (AMR) devices was originally proposed for this 

project due to the fact that the WIM sensor measures axle weights and can count axles, but 
sometimes may not be able to calculate the total weight of each vehicle correctly.  When two 
vehicles of the same type travel close together with a small inter-vehicle distance, it may be 
difficult to identify which axles belong to which vehicle and therefore total vehicle weight 
calculation may not be possible.  The AMR sensors are extremely small sensors that can count 
vehicles (similar to inductive loops) and therefore could supplement the WIM sensor [4], [5]. 

An anisotropic magnetoresistive (AMR) sensor has a silicon chip with a thick coating of 
piezoresistive nickel-iron [4].  The presence of an automobile in close range causes a change in 
magnetic field which changes the resistance of the nickel-iron layer.  Each AMR device provides 
a voltage proportional to the magnetic field experienced by it.  

The 3-axis HMC 2003 set of AMR devices from Honeywell were utilized for the 
experimental tests described below.  Figure 1 shows a printed circuit board (PCB) with two 
AMR sensors, a PIC-brand microprocessor and a wireless transceiver system that was developed. 

 

 
Figure 2.1: PCB with two AMR sensors, microprocessor and wireless transceiver system 

The AMR sensors were clearly able to generate a signal corresponding to the magnetic fiel
of each vehicle and were able to count vehicles.  The Appendix to this chapter shows plots of 
AMR sensor responses to several vehicles. 

The signals from the AMR sensors were also utilized to obtain vehicle speed and perform 
vehicle classification. 
 

2.2 VEHICLE SPEED CALCULATION 
Two AMR sensors separated by a distance of 10 cm longitudinally were used.  A separatio

of only 10 cm means the two AMR sensors can be placed on a single PCB resulting in a very 
compact sensor package.  The velocity of each passing vehicle is determined by measuring the 
time delay between the signals of the two AMR sensors. The delay is calculated by taking the 
cross correlation between the signals of the two AMR sensors and finding the time when the 
cross-correlation is maximized. Knowing the time delay and the distance between the two AM
sensors, the velocity of the approaching vehicle is estimated.  

Table 2.1 and Table 2.2 summarize the results of velocity estimation.  In Table 2.1, a sonar 
sensor was also used to determine the time interval that the vehicle stayed over the sensors. 

d 

n 

R 
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Knowing the length of the test vehicles, an estimate of the actual velocity can be obtained from 
the sonar sensor for comparison.  

 
Table 2.1: Vehicle Velocity Estimation and Reference Sonar Sensor  

Test 
No. Test Cars 

Sonar 
Velocity 

(m/s) 

Estimated 
Velocity 

(m/s) 

Error 
(%) 

Sonar 
Velocity 

Upper Bound 
(m/s) 

Sonar 
Velocity 

Lower Bound 
(m/s) 

Correlation 
Coefficient 

2 Honda Accord 3.165 3.115 1.592 3.273 3.064 0.978 

5 Ford Ranger - 1 4.065 3.585 11.800 4.245 3.899 0.985 

6 Ford Ranger - 1 4.017 3.585 10.752 4.193 3.855 0.991 

7 Kia Sedona 1.458 1.520 4.283 1.480 1.436 0.992 

8 Kia Sedona 1.513 1.597 5.557 1.537 1.489 0.991 

10 Kia Sedona 5.998 6.129 2.193 6.396 5.646 0.956 

11 Mazda Protégé - 2 1.904 1.919 0.823 1.945 1.863 0.983 

12 Mazda Protégé - 2 4.077 3.878 4.903 4.275 3.898 0.981 

13 Mazda Protégé - 2 6.165 6.552 6.280 6.627 5.763 0.979 

14 Mazda Protégé - 2 3.343 3.800 13.656 3.475 3.222 0.922 

15 Mazda Protégé - 2 2.625 2.500 4.751 2.705 2.549 0.971 

16 Ford Ranger - 2 2.342 2.235 4.575 2.401 2.287 0.989 

17 Ford Ranger - 2 2.774 2.714 2.154 2.857 2.696 0.986 

18 Ford Ranger - 2 5.970 5.938 0.546 6.367 5.620 0.982 

19 Ford Ranger - 2 6.367 6.786 6.576 6.821 5.970 0.981 

20 Ford Ranger - 2 9.279 10.000 7.769 10.275 8.459 0.982 

21 Ford Ranger - 2 11.032 11.176 1.307 12.469 9.893 0.973 

 
The sonar sensor had an update rate of 50 milli-seconds (0.05 secs) which caused a 

considerable error when calculating velocities from the sonar signal. The sonar velocity upper 
and lower bounds in Table 2.1 are calculated by replacing dt from sonar with (dt + 0.05) and (dt - 
0.05). 
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Results of Table 2.2 are obtained from tests in which the AMR sensors were sampled at 2 
KHz. These tests were done simultaneously with WIM tests and therefore the time interval 
between the two axels touching the WIM sensors could be measured. Knowing this time interval 
and the distance between axles for the test vehicles, an estimate of velocity can be obtained for 
comparison. 

 
Table 2.2: Vehicle Velocity Estimation with More Accurate Reference Sensor 

Test 
No. Test Vehicle 

Axel 
Length 

(m) 

dt - 
WIM 
(sec) 

Velocity - 
WIM (m/s) 

Velocity 2 - 
WIM (m/s) 

Est. 
Velocity 

(m/s) 

Error 
(%) 

27 Ford Ranger - 3 2.893 0.298 9.708 10.810 11.111 2.788 

31 Ford Ranger - 3 2.893 0.273 10.597 11.800 12.121 2.725 

32 Ford Econoline 3.658 0.412 8.884 9.682 9.756 0.770 

33 Ford Econoline 3.658 0.444 8.245 8.985 9.091 1.175 

34 Ford Econoline 3.658 0.434 8.426 9.182 8.889 3.192 

35 Ford Econoline 3.658 0.446 8.192 8.927 8.696 2.591 

36 Ford Econoline 3.658 0.434 8.430 9.186 9.091 1.038 

37 Ford Econoline 3.658 0.462 7.917 8.627 8.511 1.354 

39 SnowPlow 4.801 1.801 2.665 2.847 2.899 1.799 

40 SnowPlow 4.801 1.501 3.199 3.418 3.419 0.026 

43 SnowPlow 4.801 0.887 5.413 5.784 5.797 0.233 

44 SnowPlow 4.801 0.904 5.312 5.675 5.634 0.734 

 

Summary:  From Table 2.2, it is clear that vehicle speed can be measured with an accuracy 
of 3% or better using the AMR sensors.  As a comparison, consider the speed measurement 
accuracy offered by loop detectors.  From single loop detectors, speed can be estimated with an 
accuracy of 5-10 mph [7].  With dual loop detectors, speed can be estimated with an accuracy of 
1-2 mph [7].  The dual-loop accuracy is comparable to or slightly better than the AMR estimated 
accuracy at highway speeds, but lower than AMR-estimated accuracy at low road speeds. 
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2.3 VEHICLE CLASSIFICATION 
By estimating the velocity of the passing vehicle, and measuring the time duration for which 

the vehicle’s magnetic field stays above a minimum threshold, the vehicle’s magnetic length can 
be calculated.  The magnetic length is likely to be close to the actual physical length of the 
vehicle.  Hence, vehicle length can be obtained from the AMR sensors and can be used for 
vehicle classification. 

Table 2.3 summarizes the results with two different thresholds, 35 and 50 counts on X and Z 
axis measurements of the sensors. 

 
Table 2.3: Vehicle Magnetic Lengths 

Test 
No. 

2 

Test Cars 
Estimated 
Velocity 

(m/s) 

Eff. 
35 

Length 
X (m) 

Eff. 
35 

Length 
Z (m) 

Eff. 
50 

Length 
X (m) 

Eff. 
50 

Length 
Z (m) 

5 

6 

7 

8 

10 

Honda Accord

Ford Ranger -

 

 1 

3.1148 

3.7255 

6.0863 

5.3702 

5.8393 

4.8325 

5.7633 

5.0260 

5.8393 

4.8325 

Ford Ranger - 1 3.5849 5.4256 4.8344 5.0807 4.8344 

Kia Sedona 1.5833 7.3791 5.8526 6.9277 5.8526 

Kia Sedona 1.6379 6.7898 5.4393 6.3595 5.4393 

Kia 

11 Mazda Protege

12 Mazda Protege

13 Mazda Protege

Sedona 

 - 2 

 - 2 

 - 2 

6.7857 

1.9192 

3.8776 

6.7857 

6.9413 

6.7819 

6.5595 

6.7184 

5.4593 

5.6732 

5.5462 

5.5936 

6.4727 

6.3974 

6.2157 

6.3232 

5.4593 

5.6732 

5.5462 

5.5936 

16 

17 

18 

19 

20 

14 Mazda Protege

15 Mazda Protege

Ford Ranger -

 - 2 

 - 2 

 2 

3.7255 

2.4675 

2.3171 

6.2779 

6.2917 

5.8980 

5.2171 

5.2386 

5.6839 

5.8583 

5.8900 

5.4217 

5.2171 

5.2386 

5.6839 

Ford Ranger - 2 2.7941 5.8997 5.6678 5.4166 5.6678 

Ford Ranger - 2 5.7576 6.3577 5.7000 5.4223 5.7000 

Ford Ranger - 2 6.7857 6.4255 6.2355 5.8727 6.2355 

Ford Ranger - 2 10.0000 6.6120 5.6240 5.4973 5.6240 
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21 Ford Ranger - 2 11.1765 7.1250 6.3333 6.0167 6.3333 

22 SafeTruck 11.1765 44.1222 40.6178 42.6867 40.6178 

23 SafeTruck 10.0000 49.8644 45.6422 47.9222 45.6422 

24 SafeTruck 15.8333 40.5650 37.0975 38.6175 37.0975 

26 Ford Ranger - 3 8.6957 6.2000 5.2074 4.2704 5.2074 

27 Ford Ranger - 3 10.8108 6.5421 5.5000 4.4526 5.5000 

29 Ford Ranger - 3 11.4286 6.3231 5.3231 4.3128 5.3231 

30 Ford Ranger - 3 12.1212 5.8976 4.9805 4.0439 4.9805 

31 Ford Ranger - 3 12.9032 6.0579 5.0789 4.1368 5.0789 

32 Ford Econoline 10.2564 8.1696 7.3565 7.4739 7.3565 

33 Ford Econoline 9.5238 7.6250 7.3750 7.1042 7.3750 

34 Ford Econoline 9.5238 7.3061 7.0163 6.8408 7.0163 

35 Ford Econoline 9.0909 7.6000 7.1755 7.0000 7.1755 

36 Ford Econoline 9.0909 7.5833 6.8875 6.9417 6.8875 

37 Ford Econoline 8.6957 7.2923 7.0615 6.8154 7.0615 

39 SnowPlow 2.9630 9.9770 8.4486 9.4095 8.4486 

40 SnowPlow 3.5714 9.6819 8.1890 9.1276 8.1890 

41 SnowPlow 3.6036 9.7694 8.2323 9.2065 8.2323 

42 SnowPlow 3.9604 9.6609 8.1913 9.0922 8.1913 

43 SnowPlow 6.0606 9.8521 8.3315 9.2822 8.3315 

44 SnowPlow 5.8824 10.1041 8.5233 9.5068 8.5233 

 

From Figure 2.2, it can be seen that the AMR sensors can clearly distinguish the Navistar 
tractor trailer from the other much shorter vehicles. 
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Navistar Tractor Trailer

Snowplow

Econoline
Ranger

Ranger

Protege

Sedona
Minivan

Ranger

 
Figure 2.2: Vehicle lengths estimated by AMR Sensors 

From, Figure 2.3, it can be seen that the AMR sensors can also pick out the  snowplow and 
the Ford Econoline vehicles clearly from the Ford Ranger and the passenger sedans. 

Snowplow

Econoline

Ranger

Ranger

Protege

Sedona
Minivan

Ranger

 
Figure 2.3: Vehicle lengths estimated by AMR Sensors 
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2.4 SUMMARY 
Our tests show that the AMR sensors can provide reliable vehicle separation (detection of 

individual vehicles without regard to the number of axles).  Further, they can also provide 
estimates of vehicle speed and vehicle length.  While the AMR sensors would be a good 
supplement to the WIM sensor, they need additional power for operation.  In the case of the 
battery-less, wireless WIM sensor which operates by energy harvesting, additional power would 
need to be harvested by using larger piezoelectric stacks.  This is not worthwhile, since we have 
been told by MnDOT that axle weights are the variables of concern, not the total weight of the 
vehicle.  Currently, the developed AMR sensor system is a compact wireless system that can do 
vehicle counting and classification, but needs to be supplied power. 
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2.5 APPENDIX: SAMPLE MAGNETIC SIGNALS 
In this section some of the AMR sensor magnetic signals from different tests are presented. 

 

Figure 2.4: AMR sensor signals with a Mazda Protégé passenger sedan 
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In test 14 the vehicle passed over the sensor in a way that the sensor was very close to the 
right side of the car. In test 15 the vehicle passed over the sensor in a way that the sensor was 
very close to the left side of the car.  
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Figure 2.5: AMR sensor signals with a Ford Ranger small pick-up truck 
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This test was done at a different geographic location from MnROAD. 
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Figure 2.6: AMR sensor signals with a Ford Ecoline E-Series van 
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Figure 2.7: AMR sensor signals with a snowplow 
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The tested snow plow vehicle was on the lower end of sizes of snow plows. 
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Figure 2.8: AMR sensor signals with a semi tractor-trailer 
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III. WIM SENSOR REDESIGN 
 
3.1 INTRODUCTION 

The weigh-in-motion (WIM) sensor was first re-designed at the beginning of this project 
while retaining the architecture of having one main top body and 4 sensor legs.  The re-design 
was done to achieve the following objectives: 

1) Reduce the height of the sensor to 3.5 inches so as to enable its use in an asphalt 
pavement.   

2) Replace bending motion of PZT cantilevered beams with compressive motion of a piezo 
stack.  This reduces the amount of vertical deflection in the sensor during vehicle loading. 

 
In addition, using funding from the IDEA program [3], the top of the sensor was converted to 

be all-metal, instead of having a baler belt top.  This would enable the sensor to be more robust 
to heavy normal vehicle loads and shear forces. 
 
3.2 FIRST GENERATION REDESIGN 

The first objective was achieved by moving the legs of the sensor into the main body.  The 
main body of the sensor consists of a rectangular steel channel with four rectangular slots in the 
lower part of the channel, as shown in Figure 3.1.  The four legs slide into these rectangular slots 
and have adequate height to be able to accommodate the piezos for both energy harvesting and 
weight measurement, while minimizing the overall height of the sensor. 

The reduction in vertical motion of the piezos during vehicle loading minimizes overall 
sensor motion and helps in installing the sensor into the pavement with grout. 

Sensor body

Sensor
legs

 
Figure 3.1: Sensor re-design to move legs into main body of sensor 
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A schematic of the overall sensor operation is shown in Figure 3.2.  As the truck travels over 
the sensor, the weight of each axle is measured using piezo transducers and a half wave rectifier.  
Also energy is harvested using piezo stacks in each of the 4 legs of the sensor.  The harvested 
energy is used to power a microprocessor and a wireless transceiver so that the measured axle 
weights can be transmitted to a roadside receiver or a handheld display system.  The interface 
system for the roadside receiver and/or handheld display system are described in Chapter 4 of 
this report.  It should be noted that the axle weight is obtained by summing the piezo-obtained 
force signals from the 4 legs of the WIM sensor.  Since total normal (vertical) forces at the 4 legs 
should sum to the total vertical load exerted on the sensor by each axle, the weight of the axle is 
obtained independent of the lateral location of the vehicle in the lane. 

 

 
Figure 3.2: Schematic of sensor operation 

The first generation design of the leg that was pursued is shown in Figure 3.3.  Each leg 
enclosed a piezo stack and a piezo film transducer in series.  The series arrangement allows both 
the stack and the film to experience the vehicle load.  The voltage generated in the stack is used 
to power all of the electronics, while the voltage generated in the film is used to measure the 
vehicle weight, after additional electronic processing. 



16 
 

 

Piezoceramic for weight measurementSensor Leg

Assembly of Sensor Leg Assembly of WIM Sensor   
Figure 3.3: First generation sensor leg design 

3.3 PERFORMANCE OF FIRST GENERATION SENSOR 
The sensor design performed well in being able to measure vehicle weight.  Figures 3.4, 3.5, 

3.6, 3.7, 3.8 and 3.9 show a Mazda Protégé sedan, a Ford Ranger pick-up truck, a larger Ford 
pick-up truck, a Ford E-series van, a snowplow and a semi tractor-trailer respectively, that were 
used for testing with the WIM sensor. 
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Figure 3.4: Mazda Protégé sedan used for testing and its sensor response 
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Figure 3.5: Ford ranger pick-up used for testing and its sensor response 
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 Figure 3.6: Large Ford pick-up truck used for testing and its sensor response 
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Figure 3.7: Ford E-series full size van used for testing and its sensor response 
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Figure 3.8: Snowplow truck used for testing and its sensor response 
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Figure 3.9: Semi tract-trailer used for testing and its sensor response 

The voltage signal provided by the sensor was a monotonically increasing function of vehicle 
weight.  The voltage versus approximate weight per axle is shown in Figure 3.10 
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Figure 3.10: Sensor signal as a function of vehicle weight 
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It is clear from the above results that 
a)  Adequate energy is harvested even from the smaller vehicles using the piezo stacks 

for both weight measurement and wireless transmission. 
b) The sensor generated voltage signal increases monotonically with vehicle axle 

weight.  Hence a one-to-one relationship between voltage and weight can be utilized 
for automatic weight determination. 

 
However, it was also found that the piezo stack often failed (cracked) and had to be replaced.  

This was judged to be due to excessive loads on the piezo when the semi tractor-trailer traveled 
over the sensor.  The stacks mostly failed when testing with the semi tractor-trailer.  Figures 3.11 
and 3.12 show photographs of the failed piezo stack. 

Hence a re-design of the sensor leg was taken up, so as to prevent excessive forces on the 
piezo stack when the heaviest vehicles travel over the sensor.  This re-design is discussed in 
section 3.4. 

 
Problems with Original Leg Design

 
Figure 3.11: Failures in piezo stack due to semi tractor-trailer loads 
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Figure 3.12: Failures in piezo stack due to semi tractor-trailer loads 

3.4 SECOND GENERATION SENSOR REDESIGN 
A schematic of the original design of the sensor leg is shown in Figure 3.13  The piezo stack 

is located below a steel piston and shims are used to adjust its height above the surrounding 
housing.  The piezo film used to measure vehicle weight is in series and is located below the 
housing tube, as seen in Figure 3.13.  The problem with this design is that the piezo stack 
experiences the full load of each axle and it is difficult to control the height of the shim to adjust 
the height of the stack above the housing.  The shim should not be too small for adequate energy 
harvesting from small vehicles, but should not be too high for preventing excessive loads from 
the semi tractor-trailer. 

 

 
Figure 3.13: Original leg design (first generation) 



22 
 

A s a sprin

tion sensor l

tting displa eel tube ss prevented by piezo stack Excess load i ge topsb ced elow the st
g below the piezo stack

 
 Bellville washer is added a

Figure 3.14: Second genera eg design 
Figure 3.14 shows a schematic of the new leg design.  The piezo film for weight 

measurement is located between top and bottom electrodes.  Delrin washers and Bellville springs 
are placed in parallel with the weight measurement piezo.  The piezo film thus experiences a 
controlled fraction of the vehicle axle weight.  At the same time, the voltage generated 
electronically from the piezo remains proportional to the weight. 

The piezo stack is also located in series with Bellville springs.  The springs are less stiff than 
the piezo stack.  They allow the piezo stack to move with applied vehicle load and to avoid 
further loading after adequate displacement is generated to move below the steel tube housing. 

Thus the weight measurement piezo film uses springs in parallel, while the energy harvesting 
piezo stack uses springs in series to achieve their respective functions, while avoiding excessive 
loads. 

Figure 3.15 shows full details of the components used in the new sensor leg design. 

 
Figure 3.15: Details of new sensor leg design 
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Figure 3.16: Overall design of second generation sensor showing legs inside main body 

 
 
 
 

  

Figure 3.16 shows the overall sensor design, including the sensor legs inside the sensor main 
body.  The new sensor was fabricated and tested.  Photographs of the new sensor and its 
performance in weight measurement are presented in Chapter 5 of this report.  The use of a 
sensor casing to protect the sensor and allow grouting to the pavement is also discussed in 
Chapter 5. 
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IV. ELECTRONIC AND SOFTWARE INTERFACES 
 

4.1 ELECTRONICS INSIDE WIM SENSOR 
Figure 4.1 shows the electronic circuit used for harvesting energy from the piezoelectric 

stack.  The circuit uses the Linear Technology LTC3588-1 chip.  The piezo stack AE0505D08F 
from Thor Labs is used as the energy generation element.  The mechanical design for 
accommodating the piezo electric stack in the legs of the WIM sensor was discussed earlier.  The 
input capacitor in the circuit is used to store energy after rectification of the voltage from the 
piezo stack.  The output capacitor receives power from the input capacitor, after the voltage on 
the input capacitor has adequately built up.  A built-in voltage regulator on the LTC chip ensures 
that a constant voltage of 3.6 volts is supplied across the output capacitor.  This output port 
supplies the energy required for the weight measurement and wireless transmission circuits. 

Figure 4.2 shows the circuit used to measure the weight of each axle.  The voltage from the 
sheet piezo is passed through a half-rectifier and used to charge a weight measurement capacitor.  
The voltage across the capacitor is proportional to the charge generated in the piezo and hence 
the weight of the axle.  MOSFETs and the CC430 microprocessor [6] are used to discharge the 
capacitor after the voltage across it has been measured and before the next axle loads the sensor. 
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+

GND
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Texas Instruments
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Figure 4.1: Energy harvesting circuit that interfaces with piezoelectric stack 
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Figure 4.2: Weight measurement circuit that uses piezo film and charge amplifier circuit 
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4.2 SOFTWARE INTERFACES 

Figure 4.3 shows the 3 major interface components developed.  The first box (from the left) 
is a wireless range extender that is placed within 75 feet of the WIM sensor.  It receives wireless 
weight readings from the WIM sensor and then transmits the message to the MnDOT intranet 
through a router in the IRD controller box.  The range extender has a range of 1 mile.  The 
second box shown in Figure 4.3 is the handheld wireless display system.  It directly receives 
wireless weight readings from the WIM sensors and displays axle weights.  Figure 4.5 shows a 
close-up of the handheld display system.  The third box in Figure 4.3 is the box inside the IRD 
controller that receives messages from the wireless range extender.  It contains a wireless Digi 
International XBee Pro transceiver and an Arduino microprocessor.  Wireless data is received 
using the transceiver.  The Arduino processor sets up a web site on which the data is displayed.  
This web site is accessible using any laptop that can connect with the MnDOT intranet.  Figure 
4.4 shows the internals of the components inside the range extender, the handheld wireless 
display and the wireless receiver.  The wireless handheld LCD display contains 5 lines of text 
and has the ability to show up to 5 axles of a vehicle on one screen.  Additional axles/vehicles 
can be accessed by scrolling up and down on the display. 
 

eet
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Figure 4.3: Major interface components for access to WIM sensor 
 

 

 

Figure 4.4: Showing internals of interface components for WIM sensor 
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Figure 4.5: Close-up of wireless handheld display 

 
  
 
 

Figure 4.6 shows readings from a downloaded file of sensor readings downloaded from the 
WIM sensor web site over the MnDOT intranet. 
 
 



28
 

 
 

 

 
Figure 4.6:  Downloaded file of WIM sensor readings 
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V. EXPERIMENTAL RESULTS 
 
5.1 SENSOR GROUTING IN PAVEMENT 

The weigh-in-motion sensor has undergone multiple revisions in design since the start of this 
project, as discussed in Chapter 3.  The final major design objectives achieved are as follows:   

1) The use of double-layered sensor legs that fit into vertical slots in the main sensor body 
allowed the sensor height to be reduced to 3.5 inches.   

2) The use of bellville washers for springs in parallel and in series with the WIM 
measurement piezos has allowed weigh-in-motion measurements without saturation over 
a wide range of axle weights.   

3) Protection of piezo stacks from over-loads at high-speed operation: Steel tubes are used 
to support vehicle weight and protect piezo stacks from further loads once allowable 
piezo stack deformation is exceeded.  

4) Initially a baler belt was used as the sensor top to cover the components of the sensor and 
at the same transmit load to the sensor.  Later, an external all-metal box was developed in 
which the sensor is placed (using funds from an IDEA-Program funded project [3]).  
Bending deformations of the top metal plate transmit vehicle load to the sensor. Grouting 
the external all-metal casing still allows motion of the sensor inside the casing. 
 

A photograph of the grouted metal casing with the sensor inside is shown below in Figure 
5.1. 

 
Figure 5.1: Photograph of sensor in external box that has been grouted in asphalt 

pavement 
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5.2 AXLE WEIGHT READINGS 
The weigh-in-motion measurements of the sensor for various vehicles are shown in Figure 

5.2 below for speed from 0-40 mph.  The vehicles used in the tests are a small pick-up, a mini-
van, a large pick-up, a snowplow, and a 5-axle 80,000 pound semi truck.  The weights shown are 
half-axle weights.  Raw sensor signals were shown earlier in Chapter 3.  Figure 5.3 shows half-
axle weights for the same vehicles for the speed range 0-50 mph. 
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Figure 5.2: Half Axle weight measurements for various vehicles at speeds from 10 – 40 mph 
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Figure 5.3: Half Axle weight measurements for various vehicles at speeds from 10 – 50 mph 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

14000

Actual Weight

E
st

im
at

ed
 W

ei
gh

t

Actual Weight vs Estimated Weight

Semi: Axles 2/3

Semi: Axles 4/5

Semi Axle 1

Snowplow

Cars and pick ups

5.3 TRUCK VIBRATIONS 
It can be seen that there is a significant spread in the weight measurements for the semi-truck 

and that this spread is worse for the 10-50 mph speed range compared to the 10-40 mph speed 
range.  We feel that the spread is due to vibrations in the truck suspension (In other words, the 
large variations in weight are due to actual variations in load on the sensor resulting from 
dynamic suspension vibrations). 

The figures below (Figures 5.4 – 5.8) show axle vibrations on the first and second axles of 
the semi-truck at speeds ranging from 10 mph to 50 mph.  It can be seen that vibrations are low 
at 10 mph (< 100 milli-g’s rms), increase to 500 mg rms at 40 mph and increase significantly to 
900 mg rms at 50 mph. 
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Figure 5.4:  Axle vibrations on semi truck at 10 mph 

 
Figure 5.5:  Axle vibrations on semi truck at 20 mph 
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Figure 5.6:  Axle vibrations on semi truck at 30 mph 

 

 
Figure 5.7:  Axle vibrations on semi truck at 40 mph 
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Figure 5.8:  Axle vibrations on semi truck at 50 mph 
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5.4 SUMMARY 
The sensor has a monotonically increasing voltage response to vehicle weights.  However, 

there is significant variation in the weight measurement from one test run to another test run for 
the same vehicle.  At the same time, there are also significant vibrations in the truck suspensions, 
as seen in the vibration data collected by using accelerometers on the truck axles.  The vibrations 
are as much as 500 mg rms at 40 mph and increase to 900 mg rms at 50 mph.  Due to the high 
vibrations measured on the truck axles, variations in measured axle weight are to be expected. 
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VI. CONCLUSIONS 
 

This project made significant improvements to the design of a battery-less, wireless weigh-
in-motion system.  The height of the sensor was reduced from 5 inches to 3.5 inches to enable it 
to function in an asphalt pavement.  The vertical deflections in the sensor were reduced by 
replacing bending piezo transducer motion with compressive motion of a piezo stack.  The 
sensor was made robust to heavy vehicle loads by an arrangement of parallel and series springs 
that prevented overloading and also allowed vehicle weight measurement.  The electronics in the 
sensor were also made more robust by using a commercial-off-the shelf power electronics chip 
from Linear Technologies together with additional circuits designed by the research team. 

There was unexplained loss of data for the reading from the first axle of the semi-truck on 
several occasions.  This could not be explained as inadequate energy harvesting, since the energy 
harvesting system provided adequate energy from the first axle for several much lighter vehicles. 

Two types of interface systems were developed: 
a) An interface system that connected to the Internet network inside an IRD controller box so 

that sensor readings could be accessed through the MnDOT intranet. 
b) An interface system that utilized a wireless handheld display system, from which a nearby 

user can directly observe the axle-weights of passing vehicles. 
 

At the conclusion of the tasks for interface development, MnDOT felt that the WIM system 
was not suitable for deployment at a real-world highway location due to its significant weight 
and width and that there was a risk of it being dislodged from the road and posing a hazard to the 
vehicles on the road.  Hence task 6 in the project (consisting of testing the sensor at a real-world 
traffic location) was cancelled and the project was ended without this task being taken up.  
Correspondingly, the budget for the project was reduced by $15,000 due to elimination of this 
task. 
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