Local Government Snowplow Salt and Sander Controller Calibration Guide
Local Government Snowplow Salt and Sander Controller Calibration Guide

December 2009

Gary Peterson, Paul Keranen, Rod Pletan

EVS, Inc.
10250 Valley View Road, Suite 123
Eden Prairie, Minnesota 55344-3534

Minnesota Department of Transportation Research Services Section
395 John Ireland Boulevard Mail Stop 330
St. Paul, Minnesota 55155

Abstract (Limit: 200 words)
The purpose of this guide book is to provide easy-to-use steps for calibrating snowplow sander controllers. It is an experience-based guide that captures tips and techniques learned by experienced calibrators.

It helps agencies calibrate their sander controllers so the correct amount of salt, sand or other solid material is applied to the road when treating roads during winter maintenance. It focuses on controllers commonly used by agencies.

It provides easy-to-use detailed calibration steps with step-by-step instructions. Each instruction step includes a picture to help with clarity. Also, "Quick Calibration Sheets" (one-pagers) are included with less detailed (quicker) instructions to assist calibrators who are already experienced. The guide also includes calibration forms, and a general discussion about calibration.

It covers both automatic and manual controllers. It suggests approaches for both open-loop and closed-loop automatic controllers. The primary automatic controller covered is the ForceAmerica unit. A general approach is given for calibrating any manual controller type.

The guide covers both calibration and verification. It also suggests "when to calibrate".

The guide includes quick calibration sheets, calculation worksheets, and blank calibration forms.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>salt, sand, sander, snow plow,</td>
<td>ForceAmerica, DICKEY-john,</td>
</tr>
<tr>
<td>controller, calibration, calibrate,</td>
<td>manual, experience, agencies,</td>
</tr>
<tr>
<td>winter maintenance, guide, quick</td>
<td>instructions, steps, instruction,</td>
</tr>
<tr>
<td>sheets, automatic, open-loop,</td>
<td>forms</td>
</tr>
<tr>
<td>closed-loop, worksheet,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability Statement</th>
<th>18. Availability Statement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Security Class (this report)</th>
<th>19. Security Class (this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Class (this page)</th>
<th>20. Security Class (this page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>21. No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>22. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Credits

The development of this guide involved many local agency employees. We would like to recognize these individuals for contributing their time and knowledge to this project.

In addition to the list below, all of the local agency persons who attended the Fall 2009 Training Sessions held throughout Minnesota contributed to this guide through their suggestions and input.

- Champion Industrial Equipment, Mr. Ray Durand
- City of Cottage Grove, Ms. Jennifer Levitt
- City of Eden Prairie, Mr. Gary Peters
- City of Eden Prairie, Mr. Mike Schmidt
- City of Edina, Mr. Shawn Anderson
- City of Elk River, Mr. Mark Thompson
- CTAP, Ms. Kathleen Schaefer
- EVS, Mr. Paul Keranen
- EVS, Mr. Gary Peterson
- EVS, Mr. Rod Pletan
- Force America, Mr. Steve Chlebeck
- Hennepin County, Mr. Tom Hagen
- Hennepin County, Mr. Dave Poppler
- Hennepin County, Mr. Michael Scherber
- Mn/DOT, Ms. Farideh Amiri
- Mn/DOT, Mr. Joel Dixon
- Mn/DOT, Mr. Mark Fischbach
- Mn/DOT, Ms. Sandra McCully
- Mn/DOT RSS, Mr. Clark Moe
- Otter Tail County, Mr. Dallas Grewe
- Polk County, Mr. Rich Sanders
- SRF Consulting Group, Ms. Renae Kuehl
- SRF Consulting Group, Mr. Mike Marti
- Stearns County, Mr. Dave Otte
- Stearns County, Mr. Dave Gill

Credits, Continued Next Page
Credits, Continued

We would also like to thank the facilities and shops who hosted Fall 2009 Calibration Training sessions. They went out of their way by providing meeting rooms, trucks, extra persons to load trucks with material, coffee accommodations, etc. We thank the teams at these Mn/DOT facilities for hosting the sessions:

- Mn/DOT Fergus Falls (Thomas Deutschman, Kurt Holland, Gregory Schultz)
- Hennepin County (Tom Hagen, Dave Poppler, Michael Scherber)
- Mn/DOT Maryland Truck Station (Joel Dixon, Mark Fischbach, Steve Pavek, Bill Utecht)
- Mn/DOT Richfield (Joel Dixon, Mark Fischbach, Steve Pavek, Bill Utecht)
- Mn/DOT Rochester (Ron Heim, Shannon Wait)
- Mn/DOT Saint James (Charles Larson)
- Mn/DOT St. Cloud (Mike Kiley, Mark Loxtercamp, Randy Reznicek)
- Stearns County (Dave Otte, Dave Gill)
- Mn/DOT Willmar (Dennis Marty)

A special thanks to these agencies who shared their trucks for the training sessions:

- City of Albert Lea (Scott Overland)
- City of Crystal (Mark Gaulke)
- City of Eden Prairie (Mike Schmidt, Gary Peters)
- City of Elk River (Mark Thompson)
- City of Hastings (Natalie Judge, Mark Shupe)
- City of Lakeville (Brenda Zink)
- City of Oakdale (Jim Romanik)
- City of Shoreview (Pat Dunn)
- City of St Cloud (Joe Imholte)
- City of Waseca (Clark Fell)
- Cottonwood County (Jerry Hayes, Scott Nesmoe)
- Hennepin County (Michael Scherber, Tom Hagen, Dave Poppler)
- Lac Qui Parle County (Daryl Tobias)
- McLeod County (Brian Schrupp)
- Otter Tail County (Dallas Grewe)
- Stearns County (Dave Otte, Dave Gill)

Writing: Gary Peterson, Paul Keranen and Rod Pletan of EVS, Inc.
Graphic Design: Sally Kim and Gary Peterson of EVS, Inc.
This report was prepared for the Local Road Research Board (LRRB) by EVS, Inc.
Table of Contents

<table>
<thead>
<tr>
<th>How to Use This Guide</th>
<th>Page 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Discussion</td>
<td>Page 3</td>
</tr>
<tr>
<td>ForceAmerica 5100</td>
<td>Page 7</td>
</tr>
<tr>
<td>Manual Controllers</td>
<td>Page 37</td>
</tr>
<tr>
<td>Verification For Other Automatic Controllers</td>
<td>Page 44</td>
</tr>
<tr>
<td>Weighing Materials</td>
<td>Page 47</td>
</tr>
<tr>
<td>Forms</td>
<td>Page 53</td>
</tr>
<tr>
<td>Troubleshooting During Calibration</td>
<td>Page 61</td>
</tr>
<tr>
<td>Calibration Quick Sheets</td>
<td>Page 63</td>
</tr>
</tbody>
</table>
How to Use This Guide

Please first read the short introduction and discussion on the following pages. These will help you learn from agency experience about general calibration approaches, when to calibrate, and a “verification-first” approach option.

Calibration Guide Roadmap

<table>
<thead>
<tr>
<th>If you have this Controller</th>
<th>Then see this section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force America 5100</td>
<td>See ‘ForceAmerica 5100’ section (page 7)</td>
</tr>
<tr>
<td>Force America 5000 (GRS32 Head)</td>
<td>See ‘Note 1’ below</td>
</tr>
<tr>
<td>Any manual controllers</td>
<td>See “Manual Controllers” section (page 35)</td>
</tr>
<tr>
<td>DICKEY-john Controllers</td>
<td>See ‘Note 1’ below</td>
</tr>
<tr>
<td>Gresen GRS-32 Controller</td>
<td>See ‘Note 1’ below</td>
</tr>
<tr>
<td>Controllers not listed – If manual</td>
<td>See “Manual Controllers” section (page 35)</td>
</tr>
<tr>
<td>Controllers not listed – If automatic</td>
<td>See “Verification For Other Automatic Controllers” section (page 41)</td>
</tr>
<tr>
<td>Weighing Materials</td>
<td>Weighing Materials (page 44)</td>
</tr>
<tr>
<td>Forms</td>
<td>Forms (page 49)</td>
</tr>
<tr>
<td>Quick Calibration Sheets</td>
<td>Quick Sheets (page 57)</td>
</tr>
</tbody>
</table>

Notes:
1. Also see the “Office of Maintenance - Maintenance Research” area of the Mn/DOT website for calibration guidance on additional sander controllers not included in this guide
Introduction

The purpose of this guide book is to provide easy-to-use steps for calibrating snowplow sander controllers. It is an experience-based guide that captures tips and techniques learned by experienced calibrators.

The guide focuses on controller calibration. It does not include controller programming.

The layout of the guide is a short informational discussion followed by guidance for specific controllers. The end of the guide includes blank calibration forms, quick calibration sheets, and calculation worksheets.

The guide was prepared by EVS, Inc for the Local Road Research Board (LRRB).

For the latest downloadable and printable version of this guide, see the LRRB web site.

General Approach to Calibration

No matter what kind of controller you will be calibrating there are several general concepts that are helpful. These concepts are based on lessons learned of experienced calibrators

- Safety
 - Know and use your governing safety regulations
 - Spinner dials to zero/off before starting
 - Always notify all persons outside truck before running auger/spinner
 - Heads-up when outside truck
- Take it slow
 - Especially when going through screens on the controller
 - Usually goes smoothly when we go through steps carefully and not too quickly
- Record constants as you calibrate.
 - Helps mechanics when troubleshooting is required
 - Very easy to do (not very many constants to record)
- Simulate operating conditions during calibration
 - fully warm up truck hydraulics
 - Keep auger loaded/primed during tests
 - Get truck RPM's up at key test points (i.e. running auger/spinner/...)
- Automatic controllers self-calibrate
 - We do not have to be concerned with calibrating different rates (100, 200, 300, etc). The controller will automatically calibrate for any/all rates.
Controller Classifications

Automatic controllers automatically adjust the application rate so that it always applies the same amount of material to the road no matter the truck speed. When the snowplow increases vehicle speed, the controller automatically increases the auger rotation speed so that application rate is maintained. When the vehicle slows down, the controller automatically reduces the auger rotation speed to the correct level to maintain the road application rate.

Manual sander controllers spin the auger at one set fixed speed. The material flow rate from the auger is fixed. At higher speeds less material is applied to the road, at slower speeds less material is applied. Typically manual sanders have about ten different fixed auger speeds that can be selected. Calibration for manual controllers means that we develop a table showing how much material is being applied to the road for a variety of vehicle speeds, for the different fixed auger settings.

Open-Loop and Closed-Loop Controllers

All automatic controllers have a speed sensor that allows them to adjust the material application rate (auger speed) for changes in truck speed.

Open-loop systems adjust the auger control valve to a predetermined setting that is a function of truck speed.

Closed-loop controllers also have a rear auger sensor that allows them to monitor the actual rate of the auger. These controllers adjust the control valve until the correct auger speed is achieved. The closed-loop controller is able to dynamically adjust the auger speed if/when the predetermined setting is not providing the correct auger rotation speed. Equipment wear, variable operating temperatures, and aging of equipment can impact the application rate. Therefore, the closed-loop system provides the advantage of being able to adjust the controller to accommodate for those conditions.

Note that open-loop systems are typically more difficult to calibrate. For this reason, shops generally prefer to first verify these controllers to determine if calibration is required.

When to Calibrate

The goal is to keep the sander controllers **always well-calibrated**. Shops use a number of different strategies to accomplish this.

No matter what strategy you use in your shop it is important to **always verify or calibrate after truck repairs or modifications** that can directly or indirectly impact the sander operation. This includes major truck maintenance/repair, truck hydraulic fluids/filter replacement, controller system (controller box, auger, sensors, etc) maintenance.

No matter what strategy is used, calibration or verification should be done **at least annually** in addition to as-needed (after repairs as discussed above, etc).
Experience has shown that **new trucks should be calibrated** after being delivered to your shop.

When there is any change in salt or other materials used, then controllers should be re-calibrated.

Tips on when to perform specific calibrations

<table>
<thead>
<tr>
<th>Calibration</th>
<th>When</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Rate (Catch Test)</td>
<td>At least annually (i.e. during winter prep) and as noted above.</td>
<td>Some shops first do an application rate verification to determine if a sander controller needs calibrating</td>
</tr>
<tr>
<td>Min/Max, System Response Calibration / Hydraulic Adjust</td>
<td>Any time the controller is responding poorly for no apparent reason. For example, if the controller is sluggish when responding to changes in truck speed / application rate, or if the displayed application rate fluctuates by a large amount (i.e. greater than 5%) when driving at a steady speed.</td>
<td>Some shops also choose to do this test as part of scheduled (i.e. annual) calibration. Some shops do this calibration if the catch test is off. Note however, that manual tweaking of controller constants is often required after doing this calibration.</td>
</tr>
<tr>
<td>Ground Speed Calibration</td>
<td>Any time the controller speed MPH reading does not match truck speedometer closely</td>
<td></td>
</tr>
<tr>
<td>Spinner Width Calibration</td>
<td>Any time the spinner is not spreading material to the desired width after running all of the other calibrations</td>
<td></td>
</tr>
</tbody>
</table>

Verification

Some shops use a verification-first strategy. This strategy is discussed here.

For this strategy a verification test is done before calibrating (for each sander controller). If the verification passes, this means that the controller is well-calibrated and does not need calibration. If the verification fails, a calibration should be performed.

The verification test does not change any settings on the controller.

One approach is to take two "passes" (sometimes two separate teams). In the first pass, they "verify" (check) the entire truck fleet to identify trucks that need calibrating. In the second pass, they calibrate the smaller set of trucks identified as needing calibration.

Verification can be a good introduction to sander controllers for new persons on the calibration team.

Verification can be useful for cases where operators are not comfortable when changes are made to their truck. The verification test does not change the controller.
One important use for verification is for cases where specific sander controllers are difficult to calibrate. For example, sander controllers which are running in open loop mode (no rear auger sensor) are typically relatively difficult to calibrate. For these cases, shops prefer to use verification to minimize the number of the more difficult calibrations performed.

Another benefit of verification is for cases where an operator feels that her/his sander controller is not applying the correct amount of material (i.e. thinks it is applying “too little”). The operator is invited to observe a verification to prove the controller is working properly.
Force America 5100
Calibration
Force America 5100 Calibration

Contents

- Controller Components
- Tricks/Traps - General
- Tips - Buttons
- Getting Started
- Application Rate Verification
- Entering Calibrate Mode
- Selecting Material and Controller Types
- Application Rate Calibration (Catch Test)
- Determining the Auger Minimum Current
- Determining the Auger Maximum Current
- Setup Spinner
- Spinner Min
- Spinner Max

Controller Components
Tricks/Traps - General

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menus not scrolling?</td>
<td>Is auger/spreader on?</td>
</tr>
<tr>
<td>Calibration data not saved?</td>
<td>Be sure to exit calibration with left select button before turning power switch off</td>
</tr>
</tbody>
</table>

Tips - Buttons

Advancing menus

Entering numbers

Selecting Yes or No

Scrolling a list
Entering calibration mode. Advance to 'calib' menu. Push left select button

Exiting calibration mode (and saving data)
Getting Started

1 Start truck and turn PTO on. Note that PTO controls will vary by truck (see examples in figure).

2 Fully warm up the truck hydraulics (also see next step). Drive the truck for at least 10 minutes.

3 Verify that the ground speed sensor is calibrated. While warming up the truck compare the speed on the controller console to the truck speedometer reading (while driving at least 25 mph). These will usually match. In the case they do not match, see 'Ground Speed Calibration' in vendor manual.

4 Park the truck and let idle

5 Turn on the parking brake

6 Load the truck with material

7 Tie the spinner up (you may find with experience that some weighing methods do not require spinner up)
8 Put the salt shield in place (if truck has one)

9 Prime the auger by tilting the truck box up and/or running the auger long enough so that it is filled

10 Turn spinner knob down to zero for safety

11 Turn spreader knob down to zero for safety

12 Start new calibration record sheet (record will help mechanics if troubleshooting is required)
Application Rate Verification

If you do not want to do a verification, skip to the next section - "Entering Calibration Mode.

Also see ‘Quick Sheets’ in back of guide

When - Any time you want to check if the controller is well-calibrated or needs calibration

Find Test-Time to run test using 'Calibration Verification' page at back of this guide (i.e. 60 seconds). For example, for 500 lbs/mile at 60 seconds, our expected weight would be **250 pounds** (1/2 mile in 60 seconds at 30 MPH).

Perform the steps outlined above in the **Getting Started** section before proceeding including safety (spinner dial to zero), warming up truck hydraulics and priming/filling auger.

Enter Calibrate Mode (See "Entering Calibrate Mode' section)

Advance to the SET SPREADER CONFIG screen

![SET SPREADER CONFIG?](image)

Choose yes

![SET SPREADER CONFIG?](image)

Yes Button No Button
Advance to the ENABLE SIMSPD screen

ENABLE SIMSPD:

- Rotate clockwise to advance menus

Choose yes

ENABLE SIMSPD: YES

- Yes Button
- No Button

Exit calibration mode

- Push

In operation mode, select desired application rate – i.e. 500 pounds/mile using Spreader Dial

Advance to simspd menu

simspd

- Rotate clockwise to advance menus
| **Activate** simspd by pressing the left select button | ![SIMSPD](image)
| Push left select button |
| **Advance** to simset menu | ![simset](image)
| Rotate clockwise to advance menus |
| **Activate** simset by pressing the left select button | ![SIMSET](image)
| Push left select button |
| Enter speed to simulate (i.e. 30 MPH) by **rotating left button** | ![30](image)
| Rotate clockwise |
Finish simset by pushing left select button

<table>
<thead>
<tr>
<th>Ensure all persons are clear of truck and sander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position container to catch material. Also see 'Weighing Material' Section.</td>
</tr>
<tr>
<td>Increase truck engine speed to about 1500 RPM</td>
</tr>
<tr>
<td>Notify spotter that we are ready to dump</td>
</tr>
<tr>
<td>Start watch and press SPREADER knob</td>
</tr>
<tr>
<td>Wait for spotter to signal us to stop while material is dumped into container</td>
</tr>
</tbody>
</table>
After time has elapsed on watch (i.e. 60 seconds), **press** SPREADER knob to stop **auger**

<table>
<thead>
<tr>
<th>Decrease truck engine speed to idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare actual dumped weight versus expected weight and record % difference</td>
</tr>
</tbody>
</table>

How 'close' the actual measured weight is to the expected weight depends on the experience of your office. Many shops use 10% as 'closeness criteria'.

If the verification comparison was close enough, then the controller’s application rate is well-calibrated and does not need to be re-calibrated. If it is not close enough, then the controller needs to be calibrated.

Note: Go back into calibrate mode and disable simspd (see steps above)
Entering Calibrate Mode

1. Turn on the controller power switch. Wait while the unit does a short self test

2. Rotate the left select knob clockwise until 'calib' is shown on the display

3. calib should show on the display

4. Push the left select knob to go into calibrate mode

5. The display will now show the 'Access Code' prompt. Enter the access code (password) and rotate left select knob when done.

6. Capitalized CALIB should show on the display
Selecting Material and Controller Types

This calibration procedure assumes that this is a re-calibration (initial controller setup is complete)

1. Advance to the granular screen

 ![Granular Setup Screen]

 Rotate clockwise to advance menus

2. Choose yes

 ![Yes Button]
 ![No Button]

3. Advance to the granular mode screen

 ![Granular Mode Screen]

 Rotate clockwise to advance menus

4. Choose closed loop (assumption: controller is in closed loop mode)

 ![Closed Mode Screen]

 Scroll through the list to change selection
Application Rate Calibration (Catch Test)

Also see ‘Quick Sheets’in back of guide

When - This test should be done or checked at least annually and after truck hydraulic repairs

Note: The 'catch test' is the primary calibration test. The test makes sure the controller dispenses material at the rate that is requested during operation (we do not worry about actual rates (100 200 etc) during this test. However when done the controller will properly dispense material for any and all rates that can be requested by the operator.

1. Advance to the **GATE MODE** (for tail gate type)

2. Choose 'NONE' (these steps assume a tail gate)

3. Advance to the **CALIBRATE** screen (this may be MAT-A, Salt, etc)
4 Choose yes for material 'A' (i.e. salt)

The next step assumes a portable scale. Steps for a truck scale are similar.

5 Advance to the SCALE TYPE screen

6 Choose portable

7 Position container to catch material.

8 Ensure all persons are clear of truck and sander

Note: It is suggested that about 200 pounds or more of total material be dumped.
9 Advance to the **AUGER** screen

10 Increase discharge rate so auger will fill container in reasonable amount of time. Try 30% to start. Any number here that turns the auger is okay here.

11 Increase truck engine speed to about **1500 RPM**

12 **Activate** auger by pressing SPREADER knob

13 **Dump material**
13 When container is sufficiently full, deactivate auger by pressing SPREADER knob.

14 Decrease truck engine speed to idle.

15 Advance to the WGT screen.

16 Enter total weight dispensed (i.e. 275 pounds).

17 Advance to CALC screen. The controller will automatically calculate the pounds/revolution for us. This should match our calculation in the previous steps.
18 Choose yes

Display shows done prompt. Press Right Select Knob to continue.

Record LB/REV value (may have to turn left select knob)

If doing multiple material types, again advance to the material calibration selection screen and choose the desired material to calibrate

If done calibrating, to keep calibration changes push the left select knob to exit calibrate mode
Determining the Auger Minimum Current

This procedure determines the minimum current required to begin movement of the auger motor

When - This test should be done any time the controller is responding poorly for no apparent reason or the catch test is failing. Some shops also choose to do this test as part of scheduled (i.e. annual) calibration.

1. Advance to auger min screen

 ![Auger Min Screen](image)

 Note: Far right number shows auger speed (auger rpm)

2. Verify that the constant (i.e. '250mA') is recorded on previous calibration data record

3. Ensure all persons are clear of truck and sander

4. Increase truck engine speed to about 1500 RPM
5 Activate auger by pressing SPREADER knob.

6 Auger min displays

7 If auger is not running, slowly increase auger min until auger just starts rotating (auger rpm speed goes above zero -- the '5' in picture)

8 Slowly adjust auger min down until auger just stops rotating (auger rpm speed equals zero)

9 Deactivate auger by pressing SPREADER knob.

10 Record the constant in the calibration data records as the new
Determining the Auger Maximum Current

This procedure determines the current required to shift the valve to drive the auger motor at the maximum possible speed.

When - This test should be done any time the controller is responding poorly for no apparent reason or the catch test is failing. Some shops also choose to do this test as part of scheduled (i.e. annual) calibration.

1. Advance to auger max screen

 ![Auger Max Screen](image)

 Note: Far right number shows auger RPM (speed)

2. Verify these constants (i.e. '750mA' and 100) are recorded on previous calibration data record
3 Ensure all persons are clear of truck and sander

4 Increase truck engine speed to about 1500 RPM

5 Activate auger by pressing SPREADER knob

6 Slowly adjust the auger max up and down until you find the point where the 'Auger-RPM' value does not further increase auger speed (RPM is '80' in picture)

7 Record these constants (i.e. '740mA' and 80) in the calibration data records as the new auger max values

8 Deactivate auger by pressing SPREADER knob
9. Decrease truck engine speed to idle

10. Advance to 'Enter Max RPM' screen

11. Enter Auger Max RPM value recorded in previous step (i.e. '80')

Note: Example RPM values are about 80 RPM for a 6" auger and about 180 RPM for a 9" auger (these may vary)
Setup Spinner

1. Advance to setup spinner screen

2. Choose yes

Spinner Min

1. **Note:** The spinner minimum current is the minimum current that will just begin movement of the spinner

2. **When** - This test should be done any time the controller is responding poorly for no apparent reason or the catch test is failing. Some shops also choose to do this test as part of scheduled (i.e. annual) calibration.

3. Advance to spinner min current screen

4. Ensure all persons are clear of truck and sander
5 Increase truck engine speed to about 1500 RPM

6 Activate spinner by pressing SPREADER knob

7 If the spinner is not yet rotating, increase the current (270 mA in picture) until spinner is rotating

8 Spinner should be rotating and spinner RPM (5 in picture) should now be above zero

9 Decrease the current (260 mA in picture) until spinner stops rotating
10 Deactivate spinner by pressing SPREADER knob

11 Decrease truck engine speed to idle

12 Record the spinner minimum current (260 in picture) on record sheet

Spinner Max

1 **Note:** The spinner maximum current is the current required to rotate the spinner at the maximum spinner dial setting. It helps the spinner run at optimum performance.

2 **When** - This test should be done any time the controller is responding poorly for no apparent reason or the catch test is failing. Some shops also choose to do this test as part of scheduled (i.e. annual) calibration.

3 Advance to spinner maximum current screen
4. Ensure all persons are clear of truck and sander.

5. Increase truck engine speed to about 1500 RPM.

6. Adjust the current (760mA in picture) up or down until desired maximum spinner speed is reached (spotter will direct us).

7. Spinner RPM (450mA in picture) will be displayed on screen.

8. Deactivate spinner by pressing SPREADER knob.

9. Decrease truck engine speed to idle.
10 Record the spinner maximum RPM (450 in picture) on record sheet.

11 Advance to enter max screen.

12 Enter Auger Max spinner RPM value recorded in previous step (i.e. 450). It is suggested to enter a number here of 750 or below (if reading is above 750, enter 750).
Manual Sander Controller Calibration
Manual Sander Controller Calibration

Getting Started

1. Start truck and turn PTO on. Note that PTO controls will vary by truck (see examples in figure).

2. Fully warm up the truck hydraulics (also see next step). Drive the truck for at least 10 minutes.

3. If a truck has a ground speed sensor, then while warming up the truck compare the speed on the controller console to the truck speedometer reading (while driving at least 25 mph). These will usually match. In the case they do not match, see 'Ground Speed Calibration'.

4. Park the truck and let idle

5. Turn on the parking brake

6. Clean and put index mark on auger to help in counting auger turns

7. Load the truck with material
8 Tie the spinner up (you may find with experience that some weighing methods do not require spinner up)

9 Put the auger/salt shield in place (if truck has one)

10 Turn spinner control to zero for safety

11 Set auger control to normal

12 Ensure all persons are clear of truck and sander

13 Prime the auger by tilting the truck box up

14 Run the auger for a few seconds to fill it

Determine Auger Pounds Per Revolution

1 Use 'Auger Pounds Per Revolution Form' located in back of this guide

2 **When** - This test should be done or checked at least annually and after truck hydraulic repairs
3 Position container to catch material (also see 'Weighing Material' section of guide)

4 Ensure all persons are clear of truck and sander

5 Assure that auger is still full. If not, fill it by tilting box and running auger for a few seconds

6 Increase truck engine speed to about 1500 RPM

7 Spotter should be ready to count auger revolutions

8 **Start auger** and spotter should **start counting auger revolutions**. Note that is yes acceptable to start the auger in blast mode for this test.

9 Fill container(s) until sufficiently full (try for 200 pounds minimum)

10 **Stop auger** and spotter should **stop counting auger revolutions**
11 Weigh material

12 Add weight and revolutions count to form

13 Repeat two more times

14 Complete form to determine pounds per auger revolution

15 If using multiple material types (i.e. sand, salt, mixes) then repeat for each type

Determine Application Rates

1 Note: Prior to doing these steps do the 'Determine Auger Pounds Per Revolution' steps

2 Use 'Application Rate Form' located in back of this guide

3 Assure that auger is still full. If not, fill it by tilting box and running auger for a few seconds.

4 Get ready to time this test for 15 seconds
5 Spotter should be ready to count auger revolutions
6 Set auger control setting to lowest (slowest) position
7 **Start auger** and spotter should **start counting auger revolutions**.
 Tip: Note that most ForceAmerica 1100 units will allow you to run the auger while stationary if you first *set the spreader switch to off* and then *hold the blast button down and continue to hold down* while *setting spreader switch to on*.
 Tip: On some manual controllers you will not be able run the auger while the truck is not moving. Try moving the truck very slowly so that the auger will engage. You can then count auger turns while the truck moves very slowly for a short distance across the truck yard.
8 After 15 seconds, **stop auger** and spotter should **stop counting auger revolutions**
9 Add revolutions count to form
10 Repeat for each control setting
11 Complete form to determine application rates
12 If using multiple material types (i.e. sand, salt, mixes) then repeat for each type
Verification
For Other Automatic Controllers
(Only use these steps if your automatic controller is not specifically included in this guidance)
General Steps for Verification

When - Any time you want to check if the controller is well-calibrated or needs calibration. This is useful for both checking how well-calibrated controller are. It is especially useful for open-loop systems (no rear auger sensor) so that only calibration is done ‘when needed’ because those systems usually require programming to calibrate.

The steps are below are the general steps for verification. First see the specific section of the guide for your specific controller. The automatic controllers all have Verification' sections.

If your controller type is not specifically included in this guidance, then use these steps.

Note: This verification process assumes that 'Manual' (or speed simulation) mode is already enabled for your controller. If not, refer to your specific product manual. Set the application rate and ground speed as desired. For this example we will use 250 pounds per mile and 30 MPH.

1. Find Test-Time to run test using one of the 'Calibration Verification Forms' (see Forms section). For this example will run for 2 minutes so we expect 250 pounds.

2. Perform the steps outlined in any of the 'Getting Started' sections for one of the specific controllers in this guidance to prepare the truck.

3. Ensure all persons are clear of truck and sander
4 Get Ready to start the auger in stationary mode

5 Spotter says **start** -- start stopwatch and auger.

6 When Test-Time elapses, spotter says **stop** -- stop auger.

7 **Weigh** material

8 **Compare** dumped weight versus expected weight

How 'close' the actual measured weight is to the expected weight depends on the experience of your office. Many shops use 10% as 'closeness criteria'.

9 If the verification comparison was close enough, then the controller’s application rate is well-calibrated and does not need to be re-calibrated. If it is not close enough, then the controller needs to be calibrated. Refer to your specific product manual.
Weighing Material for Sander Calibration
Weighing Material for Sander Calibration

Many different options are used to weight material ranging from pails to truck scales. All of these weighing methods have been found to produce good calibration results.

Tip - Dump a minimum of 200 pounds for calibration. For verification tests, dump a minimum of 100 pounds.

Tip - Do not stop and re-start the auger when catching material - run auger continuously during catch (even when using pails).

Truck Scale - Weigh truck, dump material during calibration. Weigh truck again. Difference of two weights is weight of material dumped.

Never lift more weight than the maximum weight allowed by your governing safety regulations.

Tub – See Safety note above. Tub can be large enough to collect over 200 pounds. Tip the bucket over with a team of persons. Team up with enough persons so that the bucket can be easily tipped over.
Weight Box - Large box that automatically weighs material. Can collect approximately 500 pounds. **Requires a skid steer or fork lift** for positioning and emptying. Simple to use.

Weight Box Meter - Zero meter before dumping. Read weight after dumping.
Bottomless Box - Take one 2" x 12" piece of lumber and cut into four pieces to make a square. If inside length of sides is 20-1/4", then weight of full box will be equal to four 5 gallon pails. (i.e. if full pail is 60 pounds, then we know full box is 240 pounds)

Bottomless Box - No Lifting - Box is bottomless, so no lifting is required. Easy to pull box off. Optionally add marks at i.e. 80% full, 90% full, etc.

Wheelbarrow Box on Scale - Can hold over 200 pounds
Never lift more weight than the maximum weight allowed by your governing safety regulations.

Pails – See warning above. Also wear heavy work gloves. **First** determine **material weight of full pail**. In your salt/material stock pile, fill a 5 gallon pail with material and weigh with dairy or other scale. Subtract off empty weight of pail. Do three times to get an average (i.e. 60 pounds). You will only need to do this once for each material pile. **Then** to weigh dumped material from i.e. auger – fill three pails full and fourth partially full. Shovel spillage into partially full pail. Total weight is three pails + weight of partially full pail. (i.e. 180 + 25 = 205 lbs).

Never lift more weight than the maximum weight allowed by your governing safety regulations.

Dump onto ground - See warning above. Dump material onto ground and then shovel into pails.

Other Method - Loader with scale
Forms
Calibration Verification (Check) Test
(Method 1: by Weighing Material)

This form is used to verify (check) if a snowplow sander controller is well-calibrated. It can be done to as a “proof” after a calibration, or to determine if a calibration is needed. *This calculation only needs to be done once (if using same rate, speed and time for other trucks)*

Use this form to determine expected weight if you plan to weigh material. Also see “Verification by Filling a Container” form.

<table>
<thead>
<tr>
<th>Example: 400 lbs/mi, 30 MPH</th>
<th>MPH/60 = 30 / 60 = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 lb/mile</td>
<td>Expected Weight = Rate * (MPH/60) * Time</td>
</tr>
<tr>
<td>30 MPH</td>
<td>Expected Weight = 400 * 0.5 * 1 = 200 lbs</td>
</tr>
<tr>
<td>1 minute</td>
<td></td>
</tr>
</tbody>
</table>

Steps (as spotter during calibration)

1. Obtain weight from above, and enter on calibration records as “Expected Value”
2. Make note of *Test-Time* used from worksheet above
3. Make sure empty container is in position to catch material behind truck
4. When ready, signal to calibrator, to start dumping material
5. Start stopwatch
6. When *Test-Time* has elapsed, signal to calibrator to stop dumping material
7. Weigh material dumped and enter weight on calibration records as “Measured Value”

Note: For the verification/check test, try to dump 100 pounds or more of material.
Calibration Verification (Check) Test
(Method 2: by Filling a Container)

This form is used to verify (check) if a snowplow sander controller is well-calibrated. This calculation only needs to be done once (if using same rate and, speed for other trucks). Use this form to determine expected time to fill a container. Also see “Determining Weight of Container” form. Also see “Verification by Weighing Material” form.

Example:

<table>
<thead>
<tr>
<th>400 pounds/mile</th>
<th>30 MPH</th>
<th>120 lb container</th>
</tr>
</thead>
<tbody>
<tr>
<td>60/MPH = 60 / 30 = 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight/Rate = 120 / 400 = 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Time = 60 * 2 * 0.3 = 36 seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_____ pounds/mile</th>
<th>_____ MPH</th>
<th>_____ lb container</th>
</tr>
</thead>
<tbody>
<tr>
<td>60/MPH = 60 / _____ = _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight/Rate = _____ / _____ = _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Time = 60 * _____ * _____ = _____ seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_____ pounds/mile</th>
<th>_____ MPH</th>
<th>_____ lb container</th>
</tr>
</thead>
<tbody>
<tr>
<td>60/MPH = 60 / _____ = _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight/Rate = _____ / _____ = _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Time = 60 * _____ * _____ = _____ seconds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steps (as spotter during calibration)

8. Record container weight from above as “Expected Value” (i.e. 120 lb)
9. Make note of **Test-Time** used from worksheet above (i.e. 36 seconds)
10. Make sure empty container is in position to catch material behind truck
11. When ready, **signal to calibrator**, to **start** dumping material
12. Start stopwatch
13. When **Test-Time** has elapsed, **signal to calibrator** to **stop** dumping material
14. Container should be about full. The % difference is the excess or shortage divided by the “expected” weight. For example if you are 7 pounds over, the % difference would be 7/120 = 6% difference (in our example).

Note: For the verification/check test, try to dump 100 pounds or more of material.
Manual Controller

Auger Pounds Per Revolution Form

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight (Pounds)</td>
<td>Auger Revolutions</td>
</tr>
<tr>
<td>Sample #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Pounds Revolution (Total/3)

Reference: Minnesota Snow an Ice Control, 2005, LTAP, LRB, Mn/DOT

Manual Controller

Auger Pounds Per Revolution Form (Example)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight (Pounds)</td>
<td>Auger Revolutions</td>
</tr>
<tr>
<td>Sample #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Pounds Revolution (Total/3)

Reference: Minnesota Snow an Ice Control, 2005, LTAP, LRB, Mn/DOT
<table>
<thead>
<tr>
<th>Control Setting</th>
<th>Auger Revs / 15 Secs</th>
<th>Auger RPM (Col D x 4)</th>
<th>Auger Pounds Per Revolution (Col C from Above)</th>
<th>Discharge Rate (lbs/min) (E * F)</th>
<th>15 MPH (G * 4)</th>
<th>20 MPH (G * 3)</th>
<th>25 MPH (G * 2.4)</th>
<th>30 MPH (G * 2)</th>
<th>35 MPH (G * 1.71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manual Controller Application Rate Chart (Example)

<table>
<thead>
<tr>
<th>Control Setting</th>
<th>Auger Revs / 15 Secs</th>
<th>Auger RPM (Col D x 4)</th>
<th>Auger Pounds Per Revolution (Col C from Above)</th>
<th>Discharge Rate (lbs/min) (E * F)</th>
<th>15 MPH (G * 4)</th>
<th>20 MPH (G * 3)</th>
<th>25 MPH (G * 2.4)</th>
<th>30 MPH (G * 2)</th>
<th>35 MPH (G * 1.71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>9.8</td>
<td>39</td>
<td>157</td>
<td>118</td>
<td>94</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>9.8</td>
<td>78</td>
<td>313</td>
<td>235</td>
<td>188</td>
<td>157</td>
<td>134</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>9.8</td>
<td>118</td>
<td>470</td>
<td>353</td>
<td>282</td>
<td>235</td>
<td>201</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>16</td>
<td>9.8</td>
<td>157</td>
<td>627</td>
<td>470</td>
<td>376</td>
<td>313</td>
<td>268</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>9.8</td>
<td>196</td>
<td>783</td>
<td>588</td>
<td>470</td>
<td>392</td>
<td>335</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>28</td>
<td>9.8</td>
<td>274</td>
<td>1097</td>
<td>823</td>
<td>658</td>
<td>548</td>
<td>469</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>32</td>
<td>9.8</td>
<td>313</td>
<td>1253</td>
<td>940</td>
<td>752</td>
<td>627</td>
<td>536</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>36</td>
<td>9.8</td>
<td>353</td>
<td>1410</td>
<td>1058</td>
<td>846</td>
<td>705</td>
<td>603</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>40</td>
<td>9.8</td>
<td>392</td>
<td>1567</td>
<td>1175</td>
<td>940</td>
<td>783</td>
<td>670</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>44</td>
<td>9.8</td>
<td>431</td>
<td>1723</td>
<td>1293</td>
<td>1034</td>
<td>862</td>
<td>737</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>48</td>
<td>9.8</td>
<td>470</td>
<td>1880</td>
<td>1410</td>
<td>1128</td>
<td>940</td>
<td>804</td>
</tr>
</tbody>
</table>
Snowplow Sander Calibration Records

Force America 5100

<table>
<thead>
<tr>
<th>Calibration Constants</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB/REV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUGER MIN Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUGER MAX Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUGER MAX RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPNR MIN Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPNR MAX RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verification (% Difference)

\[
\text{% Difference} = 100 \times \frac{(\text{Measured} - \text{Expected})}{\text{Expected}}
\]

1 ft³ = 7.4805 gal, 1 gal = 0.13368 ft³

Notes
Troubleshooting During Calibration

<table>
<thead>
<tr>
<th>Material Flow</th>
<th>Wiring</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Make sure the PTO is on.</td>
<td>● Hydraulic hose coupler connections – pull on them to make sure they are locked.</td>
<td>● Does screen flash “Manual”? If not, then a possible bad speed or auger sensor, notify mechanic.</td>
</tr>
<tr>
<td>● If auger is not turning or turning too slowly</td>
<td>● Check the electrical connection and wiring at the auger sensor and sander to make sure it is plugged in.</td>
<td>● Does screen show auger turn count (Control Point) during Catch Test? If not, then a possible bad speed or auger sensor, notify mechanic.</td>
</tr>
<tr>
<td>o Is auger jammed? If jammed, try reversing the auger (if you have this capability).</td>
<td>● Check for hydraulic leaks. Is the auger motor in good condition? Are the bearings greased and in working condition?</td>
<td></td>
</tr>
<tr>
<td>o Is sander lever engaged (older trucks)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Is material tunneling/frozen/bridging? Try lifting and vibrating box.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Is the tailgate open? Is tailgate release air valve (usually left of seat) on?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Is the correct material selected on controller?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Quick Sheets
Building Box

Cut lumber so that size is equal to four 5 gallon pails. For example:
- For 2” x 12” board, inside length should be 20-1/4”
- For 2” x 10” board, inside length should be 22-11/32”

Determining Full Box Weight

In your salt/material stock pile, fill a 5 gallon pail with material and weigh with dairy or other scale. Subtract off empty weight of pail. Do this three times to get an average (i.e. 60 pounds).

Multiply material weight for one pail (i.e. 60 pounds) by 4 to obtain approximate weight of material when box is full (i.e. 60 * 4 = 240 pounds)

Weighing Material during Test

Position box under spinner. You may or may not have to remove or tie up spinner. Some shops leave spinner on and let material drop from spinner into box.

Slightly “overfill” with material.

Scrape material “overage” excess onto ground using straight board.

Shovel small overage excess from ground into pail and weigh pail with scale (i.e. say 11 pounds weighed). Say pail is 3 lbs empty. So, overage material = 11 – 3 = 8 pounds

Determine weight of material as full box weight plus overage excess (i.e. 240 pounds + 8 pounds = 248 pounds).
Turn **spinner and spreader dials off (zero)** for safety

Fully **warm up the truck hydraulics**. Drive 10 minutes. Check MPH.

Turn parking brake on, let truck idle, ensure all persons are clear

Fill/Prime the auger by tilting box. If needed, also run auger.

Advance to 'calib' menu, then push left knob

Enter password and rotate left knob when done

Advance to **Setup Granular**, **Push YES**

Advance to **Granular Mode**, **Choose CLOSED**

Advance to the **Gate Mode**, **Choose NONE**

Advance to **Calibrate**, **Push YES**

Advance to **Scale Type**, **Choose PORTABLE**

Position container, ensure all persons clear of truck

Advance to the auger screen, **Enter about 30%**

Increase truck engine speed to about **1500 RPM**

Start auger by **pressing SPREADER knob**

Stop auger by **pressing SPREADER knob**

Advance to **WGT**, and enter weight

Advance to **CALC** material screen, **Press Yes**

Press Right Knob to continue, record LB/REV (may need to turn left select knob). **If done**, push left knob.
Turn spinner and spreader dials off (zero) for safety
Fully warm up the truck hydraulics. Drive 10 minutes. Check MPH.

Turn parking brake on, let truck idle, ensure all persons are clear
Fill/Prime the auger by tilting box. If needed, also run auger.

Find Test-Time, i.e. 500 lbs/mile, 60 seconds, expected weight of 250 lbs.
Advance to 'calib' menu, then push left knob
Enter password and rotate left knob when done

Advance to SET SPREADER CONFIG, Push YES
Advance to ENABLE SIMSPD, Choose YES
Press left knob to exit calibration mode

In operation mode, select desired application rate – i.e. 500 lbs/mile using Spreader Dial

Advance to simspd; activate by pressing left knob
Advance to simset; activate by pressing left knob
Enter sim speed rotating left button, i.e. 30 MPH
Press left knob to exit calibration mode

Position container, ensure all persons clear of truck
Increase truck engine speed to about 1500 RPM
Notify spotter, Start watch, press SPREADER knob
Spotter signals stop at time, press SPREADER knob
Compare actual dumped weight versus expected weight and record % difference
Many shops use 10% as 'closeness criteria'
When done, go back into CALIB mode and disable SIMSPD (set to NO in above steps)
Manual Controller Calibration Quick Sheet
(see detailed instructions in guide for more information)

Turn **spinner and spreader dials off (zero)** for safety

Fully **warm up** the **truck hydraulics**. Drive 10 minutes.

Turn parking brake on, let truck idle, ensure **all persons are clear**

Fill/Prime the auger by tilting box. If needed, also run auger.

Determine Auger Pounds Per Revolution

See “**Manual Controller - Auger Pounds Per Revolution Form**”

Position container to catch material

Ensure **all persons are clear** of truck and sander

Increase truck engine speed to about **1500 RPM**

Start auger and spotter should **start counting auger revolutions**. Note that is yes acceptable to start the auger in blast mode for this test. Dump at least 200 lbs.

Stop auger and spotter should **stop counting auger revolutions**

Add weight and revolutions count to form sheet (i.e. 240 lbs and 25 revolutions) and repeat two more times to complete form (i.e. 9.8 lbs/revolution).

Determine Application Rates

See “**Manual Controller Application Rate Chart (Example)**”

See “**Running Auger In Stationary Mode**” below

Set auger control setting to any position that you would use in operation

Increase truck engine speed to about **1500 RPM**

Start auger and spotter should **start counting auger revolutions**.

After 15 seconds, stop auger and stop counting auger revolutions

Enter revolutions in column “D” of form

Repeat for other control setting positions you would use in operation

Complete Form (See “**Example**” form in guide)

Running Auger In Stationary Mode

- Note that most ForceAmerica 1100 units will allow you to run the auger while stationary if you first set the spreader switch to off and then hold the blast button down and continue to hold down while setting spreader switch to on.
- On some manual controllers you will not be able run the auger while the truck is not moving. Try moving the truck very slowly so that the auger will engage. You can then count auger turns while the truck moves very slowly for a short distance across the truck yard.