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EXECUTIVE SUMMARY 
 

We propose methods to distinguish between moving cast shadows and moving foreground 
objects in video sequences. Shadow detection is an important part of any surveillance system as 
it makes object shape recovery possible, as well as improves accuracy of other statistics 
collection systems. As most such systems assume video frames without shadows, shadows must 
be dealt with beforehand. We propose a multi-level shadow identification scheme that is 
generally applicable without restrictions on the number of light sources, illumination conditions, 
surface orientations, and object sizes. In the first level, we use a background segmentation 
technique to identify foreground regions that include moving shadows. In the second step, pixel-
based decisions are made by comparing the current frame with the background model to 
distinguish between shadows and actual foreground. In the third step, this result is improved 
using blob-level reasoning that works on geometric constraints of identified shadow and 
foreground blobs. Results on various sequences under different illumination conditions show the 
success of the proposed approach. 

 
Second, we propose methods for physical placement of cameras in a site so as to make the most 
of the number of cameras available. The ratio between the amount of information that can be 
collected by a camera and its cost is very high, which enables the use of cameras in almost every 
surveillance or inspection task.  For instance, it is likely that there are hundreds to thousands of 
cameras in airport or highway settings. These cameras provide a vast amount of information. It 
would not be feasible for a group of human operators to simultaneously monitor and evaluate 
effectively or efficiently. Computer vision algorithms and software have to be developed to help 
the operators achieve their tasks. The effectiveness of these algorithms and software is heavily 
dependent upon a “good” view of the situation. A “good” view in turn is dependent upon the 
physical placement of the camera as well as the physical characteristics of the camera.  Thus, it is 
advantageous to dedicate computational effort to determining optimal viewpoints and camera 
configurations. 
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CHAPTER 1 
INTRODUCTION 

 
The problem of moving shadow detection has had great interest in the computer vision 
community because of its relevance to visual tracking, object recognition, and many other 
important applications. One way to define the problem is to cast it as a classification problem in 
which image regions are classified as either foreground objects, background, or shadows cast by 
foreground objects. Despite many attempts, the problem remains largely unsolved due to several 
inherent challenges: (i) Dark regions are not necessarily shadow regions since foreground objects 
can be dark too; (ii) Self-shadows should not be classified as cast shadows since they are part of 
the foreground object; and (iii) A commonly used assumption that these shadows fall only on the 
ground plane is not valid to general scenes. In this paper, we address these challenges by 
proposing a shadow detection method which does not put any restrictions on the scene in terms 
of illumination conditions, geometry of the objects, and size and position of shadows. Results 
obtained using the proposed approach, in varied conditions, are very promising.  

 
The report is organized as follows. In Chapter 2, we discuss various approaches proposed in the 
literature to deal with the problem of moving cast shadows. Chapter 3 describes our approach in 
detail. We present results on various scenes using our proposed method in Chapter 4. In Chapter 
5, we introduce the problem of camera positioning and motivate its relevance. Chapter 6 
discusses related previous work in the field and 7 gives a more formal explanation of the 
problem. Chapter 8 and 9 discuss extensions to the work by our research. Chapter 10 to 12 detail 
our research on new machine learning techniques applied to the problem of shadow detection. 
We introduce the learning framework, outline how our problem can be cast in a similar fashion, 
and show promising results. Chapter 13 concludes the report. 
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CHAPTER 2 
RELATED WORK 

 
There has been significant work done recently that deals with the problem of moving cast 
shadows. Reference [1] presents a comprehensive survey of all methods that deal with moving 
shadow identification. It details the requirements of shadow detection methods, identifies 
important related issues and makes a quantitative and qualitative comparison between different 
approaches in the literature. In [2], shadow detection is done using heuristic evaluation rules 
based on many parameters which are pixel-based as well as geometry-based. The authors assume 
a planar and textured background on which shadows are cast. They also assume that the light 
source is not a point source as they use the presence of penumbra for detection. Our objective 
was not to impose any such restrictions of planar or textured background, nor to assume a 
specific light source. Some methods use multiple cameras for shadow detection [3]. Shadows are 
separated based on the fact that they are on the ground plane, whereas foreground objects are not.  
 
There has been an interest in using different color spaces to detect shadows. Reference [4], for 
example, uses normalized values of the R, G, and B channels, and shows that they produce better 
results than the raw color values. Their system relies on color and illumination changes to detect 
shadow regions. In [5], shadow detection is done in the HSV color space and automatic 
parameter selection is used to reduce prior scene-specific information necessary to detect 
shadows. A technique which uses color and brightness information to do background 
segmentation and shadow removal is outlined in [6]. A background model is maintained based 
on the mean and variance values of all color channels for each pixel. A new pixel is compared 
with the background model and a decision regarding shadow/ foreground is made. The method 
also suggests an automatic threshold selection procedure using histograms. In [7], the authors 
describe a technique which uses color and brightness values to differentiate shadows from 
foreground. They also deal with the problem of ghosts – regions which are detected as 
foreground but not associated with any moving object. However, the techniques based only on 
color and illumination are not effective when foreground color closely matches that of the 
background. In our work, we go a step further in pixel-based decisions by using edge magnitude 
and edge gradient direction cues along with color and brightness to separate foreground from 
background. The method in [8] models the values of shadowed pixels using a transformation 
matrix which indicates the amount of brightness change a pixel undergoes in the presence of a 
cast shadow. In case the background is not on a single plane, it is divided into flat regions so that 
a single matrix can be applied to each region. It does not use any other geometric constraints and 
is generally applicable. At a later stage, spatial processing is done using belief propagation to 
improve detection results. Another method which uses geometry to find shadowed regions is 
outlined in [9]. It produces height estimates of objects using their shadow positions and size by 
applying geometric reasoning. However, shadows need to be on the same plane so that the height 
estimates be valid. A sophisticated approach which works on multiple levels in a hierarchy is 
shown in [10]. Low-level processing is done at the first level and as we go higher up, processing 
controls parameters which change slower. This hierarchical approach takes care of both fast- and 
slow-changing factors in the scene. The authors describe an operating point module which has all 
the parameters stored at all times. However, geometric constraints which are applied make the 
algorithm applicable only to traffic sequences. 
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CHAPTER 3 
APPROACH 

 
In this work, we implement a three-stage shadow detection scheme. In the first step, background 
segmentation is done using the mixture of Gaussians technique from [11], as modified in [12]. 
The next step presents a parametric approach in which four parameters are computed for each 
pixel and a pixel-wise decision process separates shadows and foreground. In order to improve 
the results obtained in this step, further processing is done in the next step which works on the 
blob level to identify and correct misclassified regions. Both pixel-based and geometric cues are 
eventually used to make a shadow/ foreground decision. However, the geometric cues applied 
are general enough to allow their application to all commonly occurring scenes. 

 

A. Step 1  
 
This step implements a background update procedure and maintains a foreground mask, which 
the next two steps process. The learning rate of the background update is tuned depending on the 
type of sequence and the expected speed of motion. This foreground mask contains moving 
objects and their moving shadows. Static objects and static shadows are automatically separated 
and are not considered any further in the processing. This approach differs from a few other 
approaches which use statistical measures to do background segmentation and shadow removal 
simultaneously, i.e., the same measures are used to differentiate between background/foreground 
and foreground/shadow. An example of that is [5], which uses color and intensity measures for 
background segmentation. An advantage of our approach is that it uses a sophisticated 
background maintenance technique which takes care of static objects. Secondly, there are more 
parameters that differentiate shadows and foreground than shadows and background. Once we 
have a foreground mask, these parameters can be used effectively, without worrying about 
similarities between the measure for shadows and background, since background pixels can 
never be mistaken for shadow after this step.  

 

B. Step 2 
 
For effective shadow removal, we need to use features in which shadows differ from foreground. 
Such differences can lead to preliminary estimates for shadow/foreground separation. We 
experimented using different measures such as intensity, color, edge information, texture, and 
feature points, and found the following subset to be the most effective in shadow detection. 
Hence, for each pixel the following four parameters are computed by comparing the current 
frame with a constantly updated background model: a) Edge magnitude error (Emag), b) Edge 
gradient direction error (Edir), c) Intensity ratio (Ir) [5], and d) Color error (Ce) [5].  
 
Edge magnitude error is the absolute difference between the current frame edge magnitude and 
background frame edge magnitude at each pixel. If the edge magnitudes at a pixel in the current 
frame and the background frame are m1 and m2 respectively, we then have 

                                                       21 mmEmag −= .                                            (1) 
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Edge gradient direction images represent edge gradient direction (angle) for each pixel scaled 
between values of 0 and 255. Edge gradient direction error is the difference between gradient 
directions of current frame and background frame for each pixel. If d1 and d2 denote the gradient 
direction values for a pixel in current frame and background frame respectively, we then obtain: 

                                       ( )2121 255,min ddddEdir −−−= .                    (2) 
 
This gives the scaled angle between the edge gradient directions in the current frame and the 
background frame. If there are changes in edge magnitude, or if a new edge occurs at a pixel 
where there was no edge in the background model, or if an edge disappears, it is highly likely 
that the pixel belongs to a foreground object. Edge detection is carried out using simple forward 
difference in the horizontal and the vertical directions. Our experiments show that for our 
purposes, this works better than using any other edge detection operators like Sobel, Prewitt or 
others. Shadows do not significantly modify the edge gradient direction at any pixel. On the 
other hand, the presence of a foreground object will generally substantially modify the edge 
gradient direction at a pixel in the frame. These two edge measures are important cues in shadow 
detection. They work best along the edges of the foreground object while the other two measures 
of intensity and color work well in the central region of the object. These edge measures also 
work extremely well where foreground and background have significant difference in texture. 
For regions in which the foreground color matches that of the background, edge cues are the 
most reliable ones for shadow detection. 
 
The Intensity ratio Ir can be easily explained using the color model in [5]. Given a pixel in the 
current frame, we project the point in RGB color space that represents the pixel’s color on the 
line that connects the RGB space origin and the point representing the pixel background color 
according to the background model. The intensity ratio is calculated as the ratio of two distances: 
(a) the distance from the origin to the point projection, and (b) the distance from the origin to the 
background color point. Color error Ce is calculated as the angle between the line described 
above and the line that connects the origin and the point representing the current pixel color. 
Shadows show a lower intensity than background, while maintaining the background color. On 
the other hand, color change generally indicates the presence of a foreground object.  

 

C. Probability mapping 
 
We need to find the probability of a pixel being a shadow pixel based on the four parameters 
described above. Let these be represented by A, B, C, and D and the events that the pixel is a 
shadow pixel and foreground pixel be represented by S and F, respectively. Our goal is to make a 
decision whether a pixel is shadow or foreground. We use a maximum likelihood approach to 
make this decision by comparing the conditional probabilities P(A,B,C,D|S) and P(A,B,C,D|F). 
Assuming that these four parameters are independent, we get 
 )()()|,,,( SDPSAPSDCBAP L= .                     (3) 
We used a number of video frames along with their ground truth data and inspected the 
histograms of the edge magnitude error and the edge gradient direction error for shadow pixels 
and foreground pixels. Edir histogram of shadow pixels, as in Figure 1, shows exponential 
behavior with significant peaks corresponding to values in degrees of 0, 45, 90, and 180. The 
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exponential curve decays fast initially, but has a long tail. The peaks are aberrations caused by 
dark regions, where edge gradient directions are highly quantized. Since we use the edge 
magnitude error, Emag, as another measure apart from edge gradient direction error, the errors due 
to peaks do not lead to erroneous results. Our inspection also showed that Emag exhibits similar 
statistical properties as Edir, but without the peaks. In the case of foreground pixels, the 
histograms for Edir and Emag resembled a uniform distribution with Edir showing similar peaks as 
mentioned above. The difference in the distributions is the basis for differentiating between 
shadows and foreground using these two features. Both these distributions are intuitively 
expected. 
 
To model P(Emag|S) and P(Edir|S), we use the exponential functions in Equations (4) and (5). The 
variances of these exponentials (λ1, λ2) are parameters that can be tuned. For darker scenes, we 
expect the error caused by shadow to be lower compared to those for bright scenes. It follows 
that dark scenes will be better modeled using a lower variance for the exponential. In the 
equations, ω1 and ω2 are used for appropriate scaling.  
 
The histograms computed for the intensity ratio measure (Ir) in shadow regions have sigmoid 
function-like shape as shown in Figure 2. Color error histograms show similar behavior except 
that shadow pixel frequency is high for small error values. These behaviors are modeled by 
Equations (6) and (7). β1 and β2 provide necessary shift in these equations. They depend on the 
strength of the shadows expected in the video. When stronger (darker) shadows are expected, β1 
is lower to account for a larger change in intensity due to shadow. Histograms of Ir and Ce were 
found to have a close to uniform distribution for foreground pixels.  
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Figure 1:  Histogram of Edir values for shadow pixels.  
Note the significant peaks corresponding to 0˚, 45˚, 90˚, and 180˚- aberrations caused due to 
dark regions of the image.   
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Figure 2:  Normalized histogram of Ir values for shadow pixels.  
This can be reasonably modeled by the sigmoid function in Equation (6). 
 

 )/exp()()|( 111 λλω magmag ESEP −=          (4) 

 )/exp()()|( 222 λλω dirdir ESEP −=          (5) 

 ))/)(exp(1(1)|( 11 σβ−−+= rr ISIP          (6) 
 ))/)(exp(1(11)|( 22 σβ−−+−= ee CSCP .         (7) 

 
Once we have probability maps using the above mapping for each parameter for every pixel, we 
blur the log-probability maps so as to account for the information of nearby pixels. This blurring 
is carried out for a box of 3x3 pixels around the given pixel. In case the conditional probabilities 
are around 0.5, blurring helps as it brings in neighborhood information to aid the decision 
making process. The probability maps are then multiplied together as in Equation (3). A final 
decision is made based on comparing the conditional shadow probability and conditional 
foreground probability thus obtained. Table I reports typical parameter values and issues for the 
above mapping. 
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Table 1:  Typical parameter values for Step 2. 
 

Parameter Notes Typical Values 
λ1 50 – 80 

λ2 

Lower for darker scenes – 
Emag and Edir decay fast for 

dark scenes 30 – 50 

σ1 0.10 – 0.15 

σ2 

Lower for a steeper rise of 
sigmoid – when shadow 
and foreground intensity 
and color show distinct 

separation 

4 – 6 

β1 0.4 – 0.6 

β2 

Control shift of the 
sigmoid functions. 
Significant tuning 

parameters based on 
shadow strength 

0.85 – 0.9 

 

D. Step 3 
 
The second step is restricted to local pixels to make a decision as to whether a pixel is shadow or 
foreground. The farthest it goes is a 3x3 square of pixels around, which happens when log-
probability maps are blurred. For good foreground object recovery, this is not enough. There are 
many regions of misclassification which make the object shape estimate erroneous. Thus, we 
need some technique to recover shape from frames obtained after step 2. Blob-level reasoning is 
a step further towards this objective. The processing is done at a higher level in order to identify 
connected components in an image and provide a better estimate of shadow positions. 
 
At this stage, we have an image with shadow and foreground blobs marked by the previous step. 
Blob labeling is done along with other computations like blob area, perimeter, and the number of 
perimeter pixels that are neighbors to pixels of a blob of another type (shadow pixels 
neighboring foreground pixels and vice versa). In order to improve shadow detection accuracy, 
we propose to reason out misclassified blobs (e.g., flip shadow blob to foreground blob) based on 
the heuristic and metrics described below: 

 
1) Blob area – the smaller the blob area, the easier it is to flip. 
2) The ratio of the length in contact with another type blob to the length touching background– 
if this ratio is large for a blob, it is likely that the blob has been misclassified. 
3) Whether flipping that blob connects two previously unconnected blobs – in case it does, it is 
less likely to have been misclassified. 
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Table 2:  Parameter description and relations for Step 3. 
 

Parameter Description Notes 
BA Blob Area In pixels 

Pfg, Pbg 

Percent of perimeter of 
blob which is 

foreground, background 
respectively 

Ratio Pfg/Pbg has an 
upper threshold Th 

Th 
Upper threshold for 

ratio Pfg/Pbg 

Depends on Ctd and 
whether BA<T or 

BA≥T 

Ctd 
True if flipping connects 
two unconnected blobs, 

false otherwise 

Influences Th – higher 
Th if Ctd is true 

T Threshold for BA Influences Th – higher 
Th if BA≥T 

 
Table 2 indicates the relations between different parameters and how they combine to flip 
misclassified regions in the image. 
 
The ratio of lengths mentioned earlier (Pfg/Pbg) indicates what dominates the surroundings of the 
current blob. When this ratio is high, say for a shadow blob, it means that it is surrounded to a 
large extent by a foreground blob. Depending on the blob size (BA), we have different thresholds 
for the ratio. If the ratio falls above the threshold (Th), the blob is likely to be flipped into other 
type. If flipping the blob connects two previously unconnected regions, we say that it is less 
likely to be misclassification in the first place. For example, consider the shadow region between 
two vehicles on a highway. Since the region touches foreground on both sides, the ratio 
mentioned has a high value. The above reasoning makes such a flip improbable. Thresholds on 
the ratio are such that smaller blobs are easier to flip as compared to larger ones. Theoretically, 
smaller blobs are equally likely to be misclassified as larger ones, but keeping in mind our 
objective of best possible foreground shape detection, this approach improves detection quality. 
An example of reasoning out such a blob is shown in a later section. 
 
Especially when dealing with traffic videos, this approach improves results drastically as we 
rarely deal with objects which have holes. A significant problem for shadow detection in traffic 
scenes are the windshields of cars. All the four parameters mentioned above are incapable of 
consistently classifying them correctly. However, when we use blob-level reasoning as described 
above, that problem is substantially reduced. As windshields are surrounded by foreground for a 
large length, even if they are detected as shadow in the second step, they are generally flipped in 
the last step. 
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CHAPTER 4 
RESULTS 

 
The video clips Highway I, Highway II, Intelligent Room, Laboratory, Campus, and associated 
ground truth data for sequence Intelligent Room are courtesy of the Computer Vision and 
Robotics Research Laboratory of UCSD.  
 
An important result of using edge-based measures in shadow detection is the improvement in 
performance at locations where the scene has highly reflective surfaces. Color change occurs on 
reflective surfaces even if they are under shadow and makes our premise on Ce invalid. Color-
based and intensity-based measures cannot effectively differentiate between such reflective 
surfaces under shadow, and foreground. However, since the surface contains similar edge 
gradients even under shadow, it is possible to classify it as a shadow rather than foreground. In 
Figure 3 below, blue regions indicate foreground, red indicates shadow, and white indicates 
background as detected by our algorithm. The figure shows that a substantial part of the 
reflection on the table is detected as shadow and not foreground even though color changes 
occur.  

 
 

 
Figure 3:  Result on a frame of the Intelligent Room sequence.  
Note the shadow on table (reflective surface) (a) Original frame with a white contour of 
foreground as detected by the algorithm. (b) Detected shadow in red, foreground in blue, and 
background in white.  

 
As mentioned earlier, the removal of holes results in cleaner images and better foreground object 
contour calculation. Figure 4 and Figure 5 show such a case. The figures on the left show the 
results of processing using only the first two steps of the algorithm. The ones on the right are the 
output of the final stage. In Figure 4(a), a number of foreground pixels are marked as shadow 
due to two reasons: the color similarity between the shirt of the person and the color of 
background, and the shadows of the person’s hand on his shirt, which make the intensity 
similarity significant. Problems caused by indirect cast shadows are also reduced by the 
technique, as shown in Figure 4(b). 
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Windshields cause a significant problem in detecting the foreground correctly. Since windshields 
generally occur as dark regions, they are often misclassified as shadows. All the four parameters 
mentioned above cannot consistently classify windshields as foreground. Figure 5 shows such a 
case. Figure 5(b) shows how blob-level reasoning substantially reduces that problem.  

 
Figure 4:  Results on a frame of sequence Laboratory.  
Note how step three of the algorithm reduces problems due to intensity and color matching. (a) 
The output of the second step of our algorithm. (b) The output of the third step that shows the 
improvement.  

 
Figure 5:  Results on a frame of sequence Highway I.  
Note how step three of the algorithm reduces problems due to misclassified windshields of 
cars. (a) The output of the second step of our algorithm. (b) The output of the third step that 
shows the improvement. 

 
In the following, we present results on test sequences for which ground truth data was available. 
For each sequence, we used the shadow discrimination accuracy [1] as the measure to quantify 
performance. Figures 6-11 show the original frames with foreground contours overlaid in the 
figure on the left along with the detected shadow, foreground and background regions in the 
figure on the right.  To show how the performance of our method varies, we have shown two 
frames per sequence. The first shows one of the best results using our method, in terms of 
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discrimination accuracy and the second shows one of the worst.  
 

 
Figure 6:  One of the best results in terms of discrimination accuracy on the sequence 
Highway III.  
Note how contours fit the foreground closely.  
 

In Figure 7(a), road surface has a strip of dark color which is coincidentally aligned perfectly 
with the car windshield which makes distinction difficult and results in low discrimination 
accuracy. In Figure 10, we can see that the shadows are present on multiple planes of the 
background. Our algorithm does not put any restriction on the planes on which the shadow is 
cast. A strip in the background matches very closely in color with the person’s shirt in Figure 10. 
The edges are also oriented along the same direction. A small strip is therefore classified as 
shadow after step two. However, it is further flipped in step 3 as it is completely surrounded by 
foreground regions. 
 

 
Figure 7:  One of the worst results in terms of discrimination accuracy on the sequence 
Highway III.  
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Figure 8:  Best results on sequence Highway I.  
Note that a central blob which is not detected as foreground, is not detected as shadow; 
however, it was classified as background by the background segmentation method. 

 
Figure 11 shows a frame in which our method performs one of its worst. Small parts of the shirt 
are misclassified and a tiny part of the foot is classified as shadow. This worst result also 
produced a very good discrimination accuracy which shows how well our method performs on 
the given sequence. 

  

 
Figure 9:  Worst results on sequence Highway I. (b) It shows distinctly, parts of vehicles 
identified as shadows.  
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Figure 10:  Best results on sequence Intelligent Room.  
Note the shadows cast on different planes in the background.  

 
Figure 11:  One of the worst results on the sequence Intelligent Room.  
 

Challenges 
 
Shadows pose some challenging problems for detection. This occurs especially when shadows 
are dark, which make them similar in intensity to dark colored vehicles. Also, in dark regions, 
edge gradient values are unreliable since they are highly quantized. Figure 12 shows results in 
such a case in which the method does reasonably well. Another problem in this sequence is that 
vehicles are small relative to frame size. This makes our resolution lower and distinction tougher. 
Figure 13 further demonstrates this.  Vehicles in the image are even smaller; also the shadow of 
one falls on another vehicle in the frame shown. This is the problem of indirect cast shadows 
mentioned in [1]. Figure 13(b) shows that both vehicles are still separated correctly. As we go 
farther away from the camera, resolution becomes too coarse to make any distinction possible 
and shadows cannot be separated. Figure 14 presents results on the sequence Highway I on a 
frame with many vehicles present. Shadows again overlap; however in this case, vehicle size in 
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the frame is larger.  
 
In Figure 14, shadow blobs are surrounded by foreground regions to a large extent. This still 
does not permit them to be flipped due to two reasons: 1) Their own large size which makes it 
unlikely to flip them; and 2) Our reasoning in step three which makes it unlikely to flip a blob, if 
flipping it connects regions which were previously unconnected. 

 

 
Figure 12:  Results on sequence Highway II.  
Note the similarity in the appearance of shadows and dark vehicles.  
 

 
Figure 13:  Results on the sequence Highway IV. 
Note the small size of vehicles and indirect cast shadows.  
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Figure 14:  Results on a frame with different sizes and color of vehicles and overlapping 
shadows.  

 
Figure 15:  Results on a frame of sequence Campus.  
Noise level of the sequence is high. Also shadows are cast on different planes.  

 
Figure 14(b) shows that vehicles connected by shadow blobs are rendered separate after shadow 
detection. This promises to improve performance of automated vehicle counting on a highway. 
Another tough situation is depicted in Figure 15 on the sequence Campus. It is relatively noisy 
with objects of different sizes – vehicle and pedestrians. Figure 15(a) shows that object contour 
is detected fairly well.  
 
In order to quantify results, we use shadow discrimination accuracy and detection accuracy [1]. 
Shadow detection accuracy (η) is the ratio of true positive shadow pixels detected to the sum of 
true positives and shadow pixels detected as foreground. Discrimination accuracy (ξ) is the ratio 
of total ground truth foreground pixels minus number of foreground pixels detected as shadow to 
the total ground truth foreground pixels. We manually segmented about 70 frames randomly 
from the sequence Highway I and about 50 frames (1 in every 5) from sequence Highway III. 
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Results are mentioned in Table 3. Table 3 also shows the results for Highway I with step 3 
parameters tuned to Highway III, and vice versa. The respective accuracies show an expected 
decline; however, this decline is very small. This shows that even though step 3 requires fine 
tuning, performance without specific tuning also maintains good accuracy values.  
 
 

Table 3:  Detection and discrimination accuracy on various sequences. 
 

Video Sequence η (%) ξ (%) Number of pixels under 
test 

Intelligent Room 87.99 97.08 246048 
Highway I 84.11 96.69 903567 

Highway I – Step 3 
parameters tuned to 

Highway III 
83.14 96.28 903567 

Highway III 88.57 93.78 394524 
Highway III – Step 3 
parameters tuned to 

Highway I 
88.39 92.58 394524 

 
In Table 4, we provide best results out of those reported in [1] on the Intelligent Room sequence. 
From Table 4, it can be seen that our method performs better in terms of both η and ξ. An 
important point is that best results for η and ξ in Table 4 are produced by different algorithms as 
mentioned. Both η and ξ are conflicting in the sense that increasing one usually decreases the 
other. Our method outperforms both methods in both parameters together.  

 
Table 4:  Best detection and discrimination accuracies as reported in [1].   
Note That Different Algorithms Perform Best On Each Parameter. 

 
 
Sequence η (%) ξ (%) 

Intelligent Room  78.61 (DNM1) 93.89 (DNM2) 
Intelligent Room 87.99(our approach) 97.08 (our approach) 

 
Table 3 indicates that our proposed method does very well on different sequences with varying 
illumination conditions, sizes of shadow, noise levels and whether the sequence is indoor or 
outdoor. 
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CHAPTER 5  
 POSITIONING OF CAMERAS 

 
The ratio between the amount of information that can be collected by a camera and its cost is 
very high, which enables their use in almost every surveillance or inspection task.  For instance, 
it is likely that there are hundreds to thousands of cameras in airport or highway settings. These 
cameras provide a vast amount of information which is not feasible for a group of human 
operators to simultaneously monitor and evaluate effectively or efficiently. Computer vision 
algorithms and software have to be developed to help the operators achieve their tasks. The 
effectiveness of these algorithms and software is heavily dependent upon a “good” view of the 
situation. A “good” view in turn is dependent upon the physical placement of the camera as well 
as the physical characteristics of the camera.  Thus, it is advantageous to dedicate computational 
effort to determining optimal viewpoints and camera configurations. 
 
In order to obtain better views, cameras can be mounted on moving platforms for data collection 
purposes. A system that would tell the moving platform where to place itself in order to collect 
the most information will enhance their usefulness.  The same algorithms can be used in more 
restricted settings to identify positions and camera parameters for placement on pre-existing 
structures. 
 
Our work is focused on the problem of task-specific camera placement, where we attempt to 
determine how to place cameras relative to vehicle/pedestrian trajectories, in particular highway 
data collection, in order to provide the maximal amount of information regarding these activities 
(motion recognition, measurements, etc.) with the minimal number of cameras. This work is an 
extension of Robert Bodor’s work on optimal camera placement for automated surveillance tasks 
[1]. 
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CHAPTER 6 
THE INITIAL WORK 

 
Bodor’s et al. method [1] [2] focuses on optimizing the view of a set of target motion paths taken 
through an area of interest. As such the method considers dynamic and unpredictable 
environments, where the subjects of interest change in time. The considered paths are not known 
a priori. The method focuses on optimizing a set of paths as a whole and does not attempt to 
optimize the view of each individual path. The method does not attempt to measure or 
reconstruct surfaces and objects and does not use an internal model of the subjects for reference. 
In this Bodor’s method differs significantly in its core formulation from camera placement 
solutions described earlier [1]. 
 
The data collection of the paths is achieved by using automated tracking algorithms [4] which 
identify targets and record their trajectories. After the collection of those paths, they are 
described in world coordinates using the method described in [5]. The paths are measured 
without any parametric assumption, and a line is fit via a least squares approximation, thus the 
paths are assumed straight (linear). However if there is high curvature in a path, this path can be 
split into smaller linear segments so Bodor can apply his method to arbitrary paths. This also 
explains why the paths are parameterized as being: 
 

 
 
where φj is the orientation of the path j, (xj, yj) are the coordinates of the path's center and lj is the 
length of the path. 
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CHAPTER 7 
OPTIMIZATION CONSTRAINTS 

 
Bodor et al. introduce two constraints. The first one states that the camera must maintain a 
minimum distance d0 from each path in order to ensure the full view of each path (Figure 1). 
This distance d0 is computed by the similar triangle theorem: 

 

Equation 1: Definition of d0. 
 
where lj is the length of the path, f the focal length and w the width of the camera sensor. 

 

 
Figure 26: When dij(solid) < d0 (dashed), the camera is unable to observe the full motion 
sequence and fails the first constraint [1]. 
  
The aim is to be as close as possible to the path so that a maximum amount of information can be 
retrieved (Figure 2a). 

 

 
Figure 17: Configurations that decrease observability in pinhole projection cameras [1]. 
 
Another factor that reduces the observability of an object is the angle between the camera’s view 
direction and the object itself (Figure 2b). Based on these assumptions Bodor defines an 
objective function for each path-camera pair Gij, where each of these elements describes the 
observability of path j by camera i.  
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Equation 2: Objective function. 
 
where the angles are defined by Figure 3. 
 

 
Figure 18: Definition of the angles used in the optimization function [1]. 
 
Optimizing this function over camera parameters will solve the observability problem for the 
single camera, single path case. The sum over all paths of these objective functions gives the 
placement of one camera. 
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CHAPTER 8 
VIEWPOINTS 

 
Bodor uses also “generalized” viewpoints as describes in [3]. However his viewpoints are 
described in a 7-dimensional space. 

 

where the first 6 parameters are the extrinsic parameters of the camera (position and orientation) 
and f is the focal length. 
 
Robert Bodor considers that the roll (the rotation around the y axis) doesn’t affect the 
observability. Furthermore his system is considered to have an overhead view of the scene (it is 
mounted on rooftops or on ceilings), which removes the height degree of freedom (Z). This 
assumption leads to the introduction of another constraint on the tilt of the camera (γx), which is 
strongly connected to Z. Finally, all the cameras are considered without zoom and thus with a 
fixed focal length f, which is also assumed the same for all the cameras. This enables to make the 
assumption that the computation of the camera positions is independent of the order in which the 
cameras are placed.  
When taking into account all these constraints, the viewpoint vector is reduced to: 

 

With this reduced vector only θij and φij remain relevant for further optimization purposes. 

 

Equation 3: Reduced form of the objective function. 
 
In order to run the optimization on the viewpoints Bodor has to transform the θij and φij into X, Y 
and γz. This is achieved using basic geometry. 
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CHAPTER 9 
EXTENTION OF PREVIOUS WORK 

   Angles and Optimization 
 
The next step to take is to optimize the function with respect to Z and γx, which in Bodor’s 
scheme were constant. We will still keep the assumption that a “roll” rotation around the focal 
axis of our system is still not important for our computations. At this point, we have to find new 
relations between Z and γx on the one hand and the angles α and β on the other defined earlier 
(Figure 3). 
 
We also considered trying a different approach in the computation of the angles than the one 
Robert Bodor used [1]. Instead of making projections from above and from the side (Figure 3), 
we believe that the optimization angles can be described more effectively in three-dimensional 
space. When computing the same objective functions, we would be able to use only two angles 
in 3-D space as opposed to the four angles in Bodor’s projections: two angles from the projection 
from above (Figure 3a) and two additional angles from the side projection (Figure 3b).  
 
Figure 5 illustrates the basic idea of this new approach. Instead of using projections we are trying 
to define two new angles directly in three-dimensional space. One new angle would be between 
the normal vector of the path (thin blue line) and the main vector of the dashed line that links the 
center of the path to the center of the image plane (black square). The other angle would be 
between the normal to the image plane (thin black line) and the opposite vector used for the 
previous description of the angle. 



 

24 

 
Figure 19: Angle calculations in 3-D space. 
 

II. 4 APPLICATIONS 

 
When we use our methods to determine the optimal camera placements at traffic intersections 
(Figures6 and 8), the results are promising (Figures 7 and 9). 
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Figure 20: Paths distribution at a T-intersection. 
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a) Camera position with 2D projection for 
camera 1. The red surface shows the best 
position. The small black circle shows the actual 
best camera position.  
 
 

 
b) Camera position with 2D projection for 
camera 2. Our method enables the camera 
placement to observe paths that were not or not 
as well seen from the first camera. 

 
c) Camera position with 3D calculation for 
camera 1.  The optimal placement coincides 
with the one in the 2D projection 
 

 
d) Camera position with 3D calculation for 
camera 2. Here again, the placement coincides. 

 
Figure 21: Objective surface for paths at a T-intersection. a) and b) are the results for the 
2D projections and c) and d) show the results for the 3D method. 
 
All this positioning is realized without any constraints. Robert Bodor added the possibility of 
constraints for the camera placement. For instance the cameras could have to be fixed on 
rooftops. In the following figure the impact of this new constraint can be observed. In this figure, 
3 cameras had to be placed on the rooftops of nearby buildings. 
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Figure 22: Objective surface at a T-intersection with rooftop constraint. 
 
Figure 8 shows the result of the introduction of additional constraints. On this figure the different 
shaded rectangles represent the buildings, and the different trapezoids represent the projection of 
the view frustums of the cameras. What can also be seen are the camera positions without 
constraints, which are placed at the same locations we described earlier. Even after using these 
additional constraints the method is still giving the “intuitive” optimal position. 
 
The following figures give the results for another intersection. 
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Figure 23: Paths distribution at a four-way intersection. 
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a) Objective surface with 2D projection for 
camera 1. 

 
b) Objective surface with 2D projection for 
camera 2. 

c) Objective surface with 3D computation for 
camera 1. 

d) Objective surface with 3D projection for 
camera 2. 

 
Figure 24: Objective surface for paths at a four-way intersection. 
 
In the objective surfaces above, the red zones are the ones which suit our constraints described in 
section 2.1 best. The small black circles show the maximum of these zones and as such are the 
optimal points on which to position the cameras. 
 
One final result we want to show is the surveillance of the intersection Washington Avenue and 
Union Street in Minneapolis. 
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a) Original traffic scene with trackers. 

 
b) Extracted paths from the original scene. 

 
c) Objective surface for the first camera. 

 
d) Final position for three cameras. 

 
Figure 25: Camera placement for a traffic scene. a) It shows the original scene; b) It shows 
the extracted paths from the data in the original scene; c) It gives the objective surface for 
the placement of the first camera; and d) It supplies the final result of our method. 
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CHAPTER 10    
NEW LEARNING TECHNIQUES FOR SHADOW DETECTION 

  
We use a semi-supervised learning framework to differentiate between moving shadows and 
other foreground objects in video sequences. In this method, Support Vector Machines are used 
as the base classifier. Then applying co-training, the system improves its classification accuracy 
by using new data available at each incoming frame. Experimental results show that such an 
approach can produce favorable results as compared to current systems. Secondly, we observe 
that co-training can reduce the effects of certain types of `population drift' that can appear in 
many learning settings. Thus, when trained on a small labeled set of training examples, the 
system generalizes well to examples that come from a different distribution also. We show how 
this can result in a computer vision system tuning itself automatically, potentially taking the 
human out of the loop. 
 
Our approach involves using effective pixel-based features from the frames of video to perform 
shadow detection. Specifically, we use four image features from [7], which have been shown to 
be effective in real world scenarios. These features, computed for each pixel are summarized in 
the following: (1) The difference between edge gradient direction at the pixel in the current 
frame and that in the background model (f1). Here, the background model is computed using the 
mixtures of Gaussians technique [9, 10]; (2) The difference between edge strength at the pixel in 
the current frame and that in the background model (f2); (3) The color distortion between the 
pixel in the current frame and that in the background model (f3). This distortion is computed 
from the 3D color model in the R, G, B space where each pixel is represented by a point; and (4) 
The ratio of intensity of the pixel in the current frame to that in the background model (f4). We 
wish to solve the following classification problem. For each pixel in a frame of video, given a 
feature vector f 2 <4, we want to find the corresponding label (what region the pixel belongs to) l 
2 {S, FG} where S indicates shadow and FG indicates foreground. We use Support Vector 
Machines as the base classifier and then apply co-training in a semi-supervised setting with each 
incoming video frame. 
 

Support Vector Machines: 

 
Here, w is the vector that defines the separating hyperplane in the feature space, and _0is are the 
slack variables. C is the penalty term that penalizes low margin classifications and 
misclassifications. This is necessary as we expect noisy data that might not be linearly separable. 
In that case, we need to allow for misclassification, however adding a penalty for such errors. 
f(X) = sign(wTX) is the decision function of the SVM. The optimization problem in (1) is 
usually solved by obtaining the Lagrange dual. A more general dual problem can be formulated 
as 
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Co-training (Blum and Mitchell, 98) 
 
The original motivation to develop co-training came from the fact that labeled data is scarce, 
whereas unlabeled data is usually plenty and cheap to obtain. In this algorithm, two classifiers 
are trained using two mutually exclusive feature sets (F1 and F2) on the initial labeled data. Then 
each classifier is deployed on the unlabeled data, and at each round, it chooses the example 
which it can label most confidently from each class, and adds it to the pool of labeled examples. 
This is carried out iteratively until a fixed number of rounds, or until all the originally unlabeled 
data is labeled. See [12, 8] for a detailed description of the co-training algorithm. Blum and 
Mitchell [12] discuss two assumptions under which theoretical guarantees on learning with co-
training are proved. 1. The conditional independence assumption: In order for this assumption to 
hold, the two feature sets F1 and F2 should be conditionally independent given the class label. 
This assumption is not satisfied in most real-world data sets. Even in our case, this assumption is 
violated since none of the features are truly independent of each other given the class label. 
Nigam and Ghani [8] claim that even in such cases, there is an advantage to be gained by using 
co-training. Our results indicate the same as we will discuss later. 
2. The compatibility of the instance distribution with the target function [12, 8]: This means that 
when the assumption holds, it is possible to predict the same labels on examples using each 
feature set independently of the other. In other words, both views of the example (each using a 
different feature set) would be independently enough to learn the target concept, if sufficient 
training examples were provided. This assumption is also violated in most practical settings. The 
idea behind co-training is the following. If the two classifiers are trained using conditionally 
independent feature sets, when one classifier labels an example, it is seen as a random training 
example by the other classifier. In this case, the other classifier benefits from this added example. 
In this way, different “views” of the example may help achieve better combined classification 
accuracy, even though individual classifier accuracy may be much weaker. We use the co-
training approach to try and eliminate some problems caused by the supervised learning setting 
in our domain. Although scarcity of labeled data is one consideration while choosing to use co-
training, we also look for the added advantages of possibly improved speed of operation, and 
tendency to reduce effects of population drift (discussed later). 
 
From the feature vector f described earlier, we use features f1 and f2 for one classifier and f3 and 
f4 for the other. This split makes practical sense since the features in the first set are a result of 
image gradients, while the features in the second set are results of pixel colors. Our experiments 
also show that this feature split gives the maximum benefit with co-training. Henceforth, the 
semi-supervised method refers to the one using co-training, and supervised refers to the method 
using only one SVM and no unlabeled data. 
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CHAPTER 11 
RESULTS 

 
We performed experiments on real video sequences to compare results in both the supervised 
and the semi-supervised case. In the following figures, blue indicates regions classified as 
foreground by the algorithm while red indicates regions classified as shadows. An important 
aspect that should be considered when evaluating these results is that no global information is 
used for labeling the pixels. We use only local pixel-based cues. Postprocessing, as done in [7] 
may improve classification accuracy values further. 
 

 
Figure 26: Shadow detection performance using Support Vector Machines. 
 
In Figure 26, we use labeled data (100 points) from one frame of the video to construct the base 
classifiers. Then each new frame is fed to the classifiers, and using 50 randomly picked 
unlabeled examples (pixels) from the new frame, the combined classifier is built using co-
training. In Table 1, we compare our results to other pixel-based methods (methods in which no 
postprocessing is performed). The two metrics - Shadow Detection Accuracy and Shadow 
Discrimination Accuracy are defined in [1]. Detection accuracy aims to measure the percentage 
of true shadow pixels detected. Discrimination accuracy is an indicator of the false positive rate, 
higher the discrimination accuracy, lower is the false positive rate. We compare our results with 
those from [1] on the ‘Intelligent Room’ and the ‘Highway’ sequence. Ground truth data from 
the ‘Intelligent Room’ sequence was obtained from UCSD (109 manually marked frames), and it 
is the same that was used to obtain the results reported in [1]. For the other sequence, we 
manually marked shadow and foreground regions in 50 randomly selected frames. From Table 1, 
we can see that our approach gives favorable results compared to the best results 
reported in the literature (these results are obtained from the survey paper [1]). The last row in 
the table will be discussed in the next section. 
 

Table 5: Shadow detection and discrimination accuracy with learning. 
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CHAPTER 12 
   CO-TRAINING HELPS IN THE PRESENCE OF POPULATION DRIFT 

 
A very common assumption in the design and evaluation of learning methods is that training data 
and test data come from the same underlying distribution. This assumption is not valid for most 
real-world settings since the underlying distributions may change and also the data gathering 
process is not perfect [17, 18, 19]. Although sample selection bias has been dealt with 
extensively in the literature, the aspect of population drift has not been studied much [19]. 
Population drift refers to the change in feature value distributions over time. In a learning 
scenario, any such change occurring between the learning and the prediction phases can cause 
the learning algorithm to perform poorly on the test data. 
 
Our experiments show that this approach reduces the problems caused by population drift in 
many computer vision tasks. In Figure 5 we show shadow detection output using the proposed 
semi-supervised method. In all cases, initial labeled data are obtained from a video sequence that 
is different from the video on which the result is shown. Then using unlabeled data in each new 
frame, classification is performed. Thus, the system is not specifically tuned to any particular 
scene. For example, see the top row in Figure 5 (a)-(d). For the indoor sequence, training data are 
obtained from the outdoor sequence and vice versa. 

 
Figure 27: Shadow detection performance with co-training. 
 
Observing the intensity of shadow and foreground regions in the two sequences, we see that they 
differ widely. One of the features we use incorporates this intensity information. For the outdoor 
sequence, shadow regions have this value in the range of 0.5 to around 0.75, whereas for the 
indoor video, this ratio ranges from 0.65 to about 0.95. Even with this difference in the feature 
values, training on the labeled set of one, and then using co-training on the other produces good 
results. We can see in all images that even though scene conditions differ widely, the detection 
quality is fairly good. For a comparison, see images from [1], keeping in mind that the results 
shown in that are obtained by tuning the system specifically for each video. We do not need to 
do any tuning in this semi-supervised method. The last row of Table 1 shows Detection and 
Discrimination Accuracy on the two video sequences, when training is performed using 100 
examples from a different sequence. This still shows comparable values to other methods, 
showing adaptive behavior. Note that the other methods have been fine-tuned to work well for 
the particular sequence explicitly. In many vision tasks, we know what features best represent the 
knowledge based on which we wish to distinguish between different classes. Even though these 
features are the same, their values might change from one scene to another (based on 
illumination conditions, scene geometry, sensor variation, background etc.). This is countered by 
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tuning the system manually, usually by trial and error, or exhaustive search. A semi-supervised 
framework like the one presented in this paper holds potential for similar vision problems, in 
which the system needs to adapt online to scene changes. 
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CHAPTER 13 
CONCLUSION 

 
Results about the camera placement experiments coincide with the “intuitive” camera placement 
we would use to observe vehicles at highways or other traffic sites. Thus these results are 
promising in a way that our approach seems to provide us with good camera placements. 
 
We are continuing to enhance our method at the moment. One future step to be taken is the 
inclusion of the optimization over the focal length. This inclusion will enable the use of cameras 
with zoom capability. 
 
In terms of shadow detection, in this report, we presented a semi-supervised approach to detect 
moving shadows in video sequences using Support Vector Machines and the co-training 
algorithm. We show that co-training helps improve performance in the presence of specific types 
of population drift that can occur in many learning settings. The paper demonstrates how a 
computer vision system can tune itself automatically from one video to another since tuning can 
be posed as a population drift problem. Our results are preliminary and more extensive 
experiments are clearly needed to establish behavior across different types of population drift. 
Our future research will focus on these experiments and also on the relevant theory that can help 
understand these observations better. 
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