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EXECUTIVE SUMMARY 

Traffic congestion and what to do about it is seemingly a source of much discussion in many 
households, and in political and technical circles. As a community concern, it continues to rank 
as a top issue, as shown by its standing in many polls. A survey of residents of the Minneapolis-
St. Paul metropolitan area conducted by the Metropolitan Council (1) found that for the fifth 
consecutive year, more residents perceive congestion as more important than any other concern, 
including crime, education, and housing. Discussion as to what to do about traffic congestion can 
be reactive in nature, and does not take into account the complicated nature of driver behavior 
and the ability of drivers to shift their routes, times and perhaps even the amount they travel. 
How to fund expanded and new roads to relieve congestion seems to be the center of much 
discussion, and so exploring what it would take to provide this better peak period travel for 
drivers seems worth further exploration, as it may become the de facto policy. The 2002 study 
"Building Our Way Out of Congestion" investigated this question of providing free flow travel 
on limited access roadways (expressways and freeways) for a system of single occupancy 
vehicles. This earlier study found that 1,146 lane-miles (1,844 lane-km) would need to be added 
to the existing limited access links to meet demand in 2020 while guaranteeing a level of service 
(LOS) C, which would be an increase in lane-miles of about 70% over the existing highway 
system.  (Level of service varies from “A” (free flow), to “F” (breakdown of flow), with flow at 
LOS “E” at or near capacity.)  

An obvious response to relieve traffic congestion would be adding supply to the road network, 
but highway lanes are not the only form of supply in ground transportation, and adjusting supply 
is not the only way to make supply and demand reach equilibrium. This research report extends 
the 2002 study (3) by investigating the effect transit and other methods of reducing single 
occupancy vehicle auto demand might have on the amount of capacity expansion that would be 
needed to meet travelers’ expectations of uncongested driving conditions. While fewer vehicles 
obviously can mean less required expansion, the relationship is not linear.  Exploring the tradeoff 
of transferring trips onto other modes provides an interesting insight into the potential for 
providing for travel through means other than straight capacity expansion, and provides an 
additional tool in assessing alternatives to building our way out of congestion.    

A number of formulations of the multimodal network design problem (MNDP) were considered 
for this problem.  However, to examine the tradeoff between capacity expansion and alternative 
mode use, mode split was pre-determined (to give us a variety of points for a trend line) rather 
than calculated, as is generally the case in travel demand models.  Details of the alternative 
modes were not specified, as alternative modes or demand reduction measures can come in many 
forms.  A number of solutions were examined to bound the problem, from using assumptions 
that did not load any trips back onto the congested roadways (simulating straight travel demand 
reduction) to those that did (simulating increased bus transit usage with shared right of way). The 
problem could, therefore, be formulated nearly identically to the previous work, Building Our 
Way Out of Congestion.  Minor changes to the formulation result from changes in the Twin 
Cities regional framework.  This treatment of transit avoids the complications and difficulties 
solving an MNDP.   



   

Of importance to the project was the capability of the solution procedure to be implemented on a 
desktop computer, so that planners could conduct additional analyses.  This resulted in an 
algorithm that modified the method of successive averages (MSA), dubbed Sequential Linear 
Expansion (SLIE).  However, a significant increase in travel demand from the 2020 to 2030 
forecast created difficulties in convergence for the solution procedure.  New solution procedures 
were reviewed to find a procedure that would converge more efficiently without requiring 
complicated revisions to the previously developed routine.  The review led to a modified form of 
the MSA that is slightly revised to include re-initialization, called MSA with decreasing re-
initialization, or MSADR. With the 2030 inputs, 30-45 iterations were needed to converge, with 
21 minutes per iteration on a 3.0GHZ Pentium 4 processor with 1GB RAM.   

The Twin Cites NDP was solved for several different scenarios, to account for the different types 
of interactions between the transit vehicles and the road network. Solutions were found for seven 
pre-determined mode split values, ranging from 0 to 20 percent, for each scenario.  For one 
bound, it was assumed that there was no interaction between the shifted trips and the road 
network.  This minimum interaction scenario could represent situations such as a grade-separated 
transit system, ride-sharing, or a decrease in trips demanded, for instance due to telecommuting.  
Next, it was assumed that all of the transit trips between an origin-destination pair were made by 
standard bus traveling non-stop on the road network between origin and destination.  This 
formulation of transit is unrealistic, but provides a bound to the problem representing the 
maximum effect that transit could have on the road network. Finally, it was assumed that 
alternative mode trips between an origin-destination pair were aggregated to a district level, and 
then made by a standard bus traveling non-stop, akin to express buses.  Additionally, while these 
formulations were tailored for transit, they were chosen because they were flexible enough to be 
applied to many other demand-side measures, such as telecommuting or job/home relocation.  
The effects of removing 20% of the demand by having 20% of the workforce work from home 
can be directly represented by the first bound.  Effects of all demand-reduction measures should 
fall within the bounds set in this problem.  Solutions were found to be very sensitive to the 
demand formulation used.  For example, with 20% of total demand attributed to alternative 
modes or demand reduction, the expansion required to achieve LOS D ranged from 3.9% to 
42.6% less than that required to serve 100% SOV demand.     

For each scenario, every mode split point was solved for both LOS C and LOS D constraints to 
provide sensitivity analysis for level of service.  The choice of service level turned out to make a 
significant difference in capacity expansion necessary.  With no demand reduction, to provide 
LOS C required 1,041, or 66%, more lane-miles (1,675 lane-km) compared to LOS D.  With 
20% demand reduction, LOS C required 67% to 86% more lane-miles over LOS D for the three 
different scenarios.  However, each level of service showed similar sensitivity to each of the 
different transit formulations.      

If the Twin Cities were to reduce SOV demand by 20%, LOS D could be achieved on all limited 
access roads with 36% percent less expansion than needed if all trips were made by SOV. If, 
distributed evenly throughout the work week, each worker traveling by SOV made one work trip 
per week by transit, or eliminated it by telecommuting, (a 20% reduction in demand), 1,013 lane-
miles, instead of 1,578 (a reduction of 36%), would be need to provide him or her with LOS D 
conditions the other four days of the week. 
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Chapter 1: INTRODUCTION 

A survey of residents of the Minneapolis-St. Paul metropolitan area found that traffic congestion 
was the “single most important problem” in 2005.  (1)  For the fifth consecutive year, more 
residents perceived congestion as more important than any other concern, including crime, 
education, and housing.  Favored solutions from the survey included both commuter/light rail 
transit and adding more lanes to freeways.  Evidence of both is all around.  The Metropolitan 
Council, the region’s Metropolitan Planning Organization, lists doubling transit ridership as one 
of its goals in the 2030 Transportation Policy Plan (2), and planning continues on several rail 
lines around the region.  Capacity is being added to major regional Interstates 94, 494, and 394.  
However, all projects, whether they primarily benefit automobiles or transit, must compete for 
limited funds.  Costs and benefits of every aspect of the Central Corridor transit line are under 
scrutiny to find somewhere to cut costs.  The untangling of the Interstate 35W and State 
Highway 62 commons is on hold until financing can be secured.  Projects fight for insufficient 
funds and money is allocated without a good sense of their interaction.   

In step with this social environment, this project follows up on a 2002 study, Building Our Way 
Out of Congestion (BOWOC), in which the Twin Cities continuous network design problem 
(NDP) was solved for the road network.  (3)  That study focused on roads to determine what it 
would take to build roads to satisfy uncongested travel demand on freeways, assuming all travel 
was by single occupancy vehicle (SOV).  The study found that 1,146 lane-miles (1,844 lane-km) 
would need to be added to the existing limited access links to meet demand in 2020 at level of 
service (LOS) C, an increase of about 70% over the existing highway system.  

While adding supply to the road network to relieve road congestion may be a natural response to 
the problem, automobiles are not the only form of supply in ground transportation, and adjusting 
supply is not the only way to make supply and demand meet.  This project investigates what 
effect transit, a form of transportation supply which can decrease vehicular demand, could have 
on congestion and the capacity expansion needed to accommodate it.  The results of this project 
can also be applied to alternate methods of decreasing travel demand such as ridesharing or 
telecommuting.  Knowing the effectiveness of alternate modes at reducing required capacity 
expansion would provide an additional tool in assessing the costs and benefits of the alternatives 
to building our way out of congestion.    

Originally, the concept was to incorporate transit usage into the problem, which resulted in 
searches for multimodal network design problem (MNDP) and related formulations. However, 
further discussion and thought determined that these were inapplicable to the problem and 
instead a demand-side manipulation was used.  Instead of applying transit via a transit network, 
transit was integrated through a reduction in travel demand, which is measured in trips that are 
assumed to be made by SOV.  This is discussed in Chapter 2. 

In addition to updating the 2002 study with the inclusion of transit, two other goals were central 
to this project.  The first was the capability of the solution procedure to be implemented on a 
standard personal computer.  A desired product of this project was a program that would utilize 
only tools available to transportation planners so that planners could evaluate scenarios of 
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interest not covered in this report.  The problem formulation incorporates the network and 
demand forecasts produced by the Metropolitan Council and is outlined in Chapter 3, along with 
the sequential linear expansion (SLIE) solution procedure, a modified form of the method of 
success averages (MSA).  Implementation details and results are presented in Chapter 4.  

The third main consideration was another aspect of the original study that deserved further 
consideration, the cost formulation.  A point for further research from the original project was to 
determine if there were any reliable estimates for the dollar cost of expansions.  At the time, no 
reliable formulations were available and so costs were not included in the problem.  The 
objective function simply minimized the number of lane-miles to be added.  An update of cost 
formulations is given in Chapter 5, although the same problems remain and cost is not included 
as an outcome of this project either.  Chapter 6 summarizes the conclusions and offers 
possibilities for further research. 
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Chapter 2: NETWORK DESIGN PROBLEM FORMULATIONS 

Given unlimited land and financial resources, it would be simple to provide enough roadways to 
accommodate travel demand – an additional 15 lanes everywhere should suffice.  As discussed 
in the introduction, though, resources are not unlimited, and instead quite low.  Because of this, it 
is necessary to determine the minimal network expansion that accomplishes the goal of relieving 
congestion.  This is the essence of the network design problem (NDP) – determining the most 
efficient changes to a network that are effective in achieving the stated goals.  The NDP 
encompasses a class of optimization problems modeling this process and a substantial body of 
research explores the various different formulations this problem can take, along with associated 
solution procedures.  A review of other NDP formulations can be found in BOWOC (3). 

One classification of NDPs is the distinction between continuous and discrete.  In a continuous 
problem, changes are made only to the attributes of the existing network.  The topology of the 
network remains the same, but, for instance, links can be widened.  With the discrete NDP, 
changes are made to the network’s physical configuration.  Most commonly in transportation this 
would involve the addition of links.  In a developed area like the Twin Cities, changes to the road 
network configuration are unlikely, establishing this problem as a continuous NDP.  
Additionally, the only changes considered are the addition of lanes to the existing links.  There 
will be no removal of lanes or other adjustments to change the capacity of links.    

As in BOWOC, the demand side of the problem models only the route assignment and not travel 
demand.  Demand is taken to be fixed, in part to make use of the Metropolitan Council’s demand 
forecasts and in part because of the lack of a reasonable solution algorithm for a problem of this 
large scale.  It is possible that decrease in congestion, caused by an increase in supply or transit 
usage, would induce more travel demand over time, but that would only increase the already 
overwhelming expansion necessary.  The model used for the demand side is a stochastic user 
equilibrium (SUE), in which, at the solution, no user can change routes to decrease their own 
travel time, with allowance for variation in users’ perceptions.   

Multimodal Network Design Problem 

Traditionally, NDPs have dealt with the expansion of the road network, although Transit 
Network Design Problems (TNDP) and Multimodal Network Design Problems (MNDP) have 
been addressed more recently. Van Nes (4) provides guidelines on the formulations for 
combinations of modes based on hierarchical network structures. Other recent work that is 
relevant deals with Network Pricing Optimization (NPO).  NPOs are closely related to NDPs, but 
rather than determining optimal supply expansions the design variables are tolls. Ferrari (5) 
presents a bimodal transport system and proposed new methodology for solving the 
programming problem with equilibrium constraints and applies this to a medium sized network.  
For this problem, the desired formulation would attempt to model a more realistic process of 
planning efforts and satisfying travelers’ expectations, and it would also solve a problem for a 
network of an order of magnitude larger than those presented.   
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In this problem, the focus is on only a portion of the MNDP.  Mode split, the decision of which 
mode will be used to make each trip, does not need to be solved for within the solution 
algorithm.  Generally, mode split is chosen based on a number of factors, including travel time 
and other costs.  To calculate these costs greatly complicates the problem, as it would require 
sensitivity adjustments to travel time and pricing in order to produce the mode split percentages 
desired and would be unnecessary in this study.  In this model, the desired result was to see what 
effect different levels of demand would have on the amount of expansion necessary to provide 
given levels of service on the limited access roads.  To examine this tradeoff between reducing 
SOV demand and capacity expansion, pre-determined levels of demand could be applied to 
provide data points for the trade off trendline.   

At the outset, the 2030 model transit network from the Metropolitan Council was to be used for 
carrying the transit demand.  However, this presented too many difficulties, including 
determining transit’s interactions with the road network and coordination of the networks.  
Instead, it was decided that not specifying a transit network broadens the applicability of the 
project results.  Not specifying a transit network allows for examination of various modes of 
transit, from those that share rights-of-way with automobiles to the grade-separated.  This 
flexibility allows not only for analysis of different modes of transit, but also for other SOV 
demand-reducing measures such as telecommuting and job or home relocation.   

Without using a transit network model, the question became how to distribute transit use through 
the network.  An attempt to use proportions from a transit O-D demand forecast resulted in 
negative SOV demand for some O-D pairs.  The idea was to distribute the pre-determined total 
transit demand (found by taking a predetermined percentage of the total travel demand) to the O-
D pairs according to the portion of transit demand each O-D pair was forecasted to have.  For 
example, if there were a total of 400 transit trips to distribute and only 100 transit trips total in 
the transit demand forecast and one O-D pair had been forecasted to have 25 trips, then that O-D 
pair would be assigned 100 transit trips (a quarter of the total transit trips).  If that O-D pair has 
less than 100 trips forecasted in the travel demand forecast, then the reducing the demand on that 
O-D pair by 100 trips results in a negative number of trips for that O-D pair.  

The final solution was to designate a percentage of trips as single occupancy vehicle trips 
uniformly across the trip table, later accounting for different types of congestion interactions on 
the road network.  With large differences in transit convenience and travel time cost within the 
metro area, uniform distribution does not model transit demand as would be expected.  However, 
one might expect that if transit were focused more on the congested areas, it could be both more 
efficient and more effective. 

With this treatment of transit, the problem could be formulated nearly identically to the previous 
work, Building Our Way Out of Congestion.  Minor changes to the formulation result from 
changes in the Twin Cities regional framework.  
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Transit Formulation 

A number of different possible formulations for transit were explored, each with different effects 
on the road system.  For example, to reduce demand the number of trips made can be reduced or 
the number of vehicles on the roads can be reduced. The number of vehicles can be reduced by 
having trip makers use various forms of transit or other alternate modes, each of which has 
different effects on traffic on the road.  Grade-separated forms of transit such as subways and 
personal rapid transit (PRT), greater ridesharing, or even bicycle use are trips that have no 
significant interaction with the road network.  These forms have an effect similar to reducing trip 
demand altogether, which can also be achieved by demand management techniques such as 
telecommuting.  At-grade modes can share the road with personal vehicles, like buses and 
carpools, or they might have their own right-of-way but still intersect roads.  For each alternate 
mode form, the effects would have to be determined individually.   

To account for these various alternate modes, rather than attempt to solve every one individually, 
formulations were chosen that would represent the maximum and minimum effects this could 
have on limited access capacity expansion, thereby effectively bounding the problem.  This 
allows policymakers to see the variation in results that the choice of transit mode, or other SOV 
demand reduction, can make.  It also avoids using specific forecasts of alternate modes which 
would complicate the computations.   

The maximum effect that transit can have is represented by the situation where demand is 
essentially removed from the road network.  Pre-determined percentages of the demand for each 
O-D pair are removed, and the reduced demand is used to solve the problem.  This formulation 
can represent a decrease in trips demanded as well as trips made by grade-separated transit 
options. Alternatively, this solution can be viewed as the solution for other types of transit if the 
demand numbers include the transit vehicles that would be added back onto the network.    

A minimal effect solution is represented by the situation where trips are added back onto the 
network as transit vehicles.  The transit vehicles were thought of as standard buses for purposes 
of determining occupancy and passenger car equivalency (PCE).  Occupancy of 50 and PCE of 
2.5 were used.  However, the transit vehicles are assumed to travel directly from origin to 
destination and not stopping to accommodate trips along the way.  Trips that start in the same 
TAZ and end in different TAZs lying along the same path would not be made with the same 
vehicle, even if the vehicle’s occupancy was low compared to its maximum occupancy.  This 
would provide maximum convenience for users and allow for growth in transit ridership, but 
would be very inefficient.  The inefficiency was mitigated a little by requiring at least 2.5 trips be 
made by transit before a transit vehicle would operate between an O-D pair.  If fewer than 2.5 
transit trips were demanded, these trips would still have to be made by SOV.   

In addition to the two bounds, the problem was solved for a third formulation, one that would 
provide an idea of where within the bounds a more realistic transit system might fall.  This was 
done by aggregating the transit trips into transportation analysis districts (TADs) to emulate 
express buses.  Trips would still be decreased by pre-determined percentages according to TAZs, 
but those transit trips would then be aggregated by TADs, allowing for fewer and fuller transit 
vehicles.  This formulation has the benefits of not requiring much additional infrastructure, being 
similar to what currently exists in the Twin Cities, and focusing on the trips that occur on the 
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links of interest – the limited access highways.  While TADs are not officially used by the 
Metropolitan Council any longer, an unofficial TAD system based on the last official version 
(from the 1980s) was used.    
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Chapter 3: SOLUTION APPROACH 

Problem Formulation 

As is standard, a roadway system can be represented as a network consisting of a set of nodes, 
connected by directed links. A sub-set of these nodes, called centroids, act as points of origin and 
destination for travel to and from zones. The total travel demand between each combination of 
origin and destination (O-D) zones is specified for some planning interval (such as the morning 
peak hour), and quantified in the form of an O-D matrix, which is assumed to be known.  The O-
D pairs in the network are indexed by j = 1,…,m and dj denotes the demand between O-D pair j 
during the planning interval.  The road network consists of n links in the network, indexed k = 
1,…,n. Associated with each of these links are three quantities: xk denoting the demand traffic 
flow on link k, yk denoting the proposed expansion of k's capacity, and zk denoting the current 
capacity of link k. Thus the capacity after expansion of link k would be the sum of yk and zk. Each 
link also has a user cost function, ck(xk,zk+yk), which describes the cost of traversing that link.  

Since it was determined that expansion cost estimates could not be used here because current 
available estimation methods are not reliable, the optimization criterion chosen was the same 
function as used in Building Our Way Out of Congestion 

(∑
k

kk yl )   (1) 

where lk is the length of link k, and yk is the variable associated with capacity expansion for link 
k. Using a default value for lane capacity this measure can be readily converted to total lane-
miles of new capacity, and this was a quantity that could be readily appreciated lay audiences. 
The solution could also be used in an off-line computation of cost when (and if) defensible cost 
functions become available. 

Ensuring that network enhancements are the only valid changes to existing capacity, a non-
negativity constraint is placed on the expansion variable 

0≥ky              for links that are candidates for expansion (2) 

0=ky   for non-candidate links         

To account for the responses of highway users to the capacity changes, stochastic user 
equilibrium (SUE) conditions were used to determine equilibrium traffic flows. As has been 
detailed in Sheffi (6), the SUE conditions can be expressed as a system of nonlinear equality 
constraints of the form 
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n1,...,k            
1

=∑=
=

m

j
jkjk qdx  (3) 

where qjk denotes the probability that a trip between O-D pair j uses link k. If we let r index the 
set of feasible routes on our network and pjr denote the probability a trip between O-D pair j uses 
route r, these link use probabilities depend the route choice probabilities 

∑= jrjrkrjk pq δ  (4) 
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An explicit function for the route choice probabilities can be found using logit route choice  
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where θ is a parameter which is determined by the variance of the route cost perception errors 
and cjr is the cost of traversing route r between O-D pair j. Assuming that the path cost is simply 
the sum of the corresponding links costs, then 

( )∑ +=
=

n

k
kkkkjrkjr zyxcc

1
,δ  (7) 

where ck denotes the travel cost on link k. To allow for congestion, travel cost on a link is taken 
to be an increasing function of the demand on that link. The most recent Twin Cities 
transportation planning model uses Spiess’s conical volume delay function  
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where ck
0 is the free-flow travel cost on link k and bk, ak, dk, and fk are coefficients that are 

calibrated by road class.  (7)  TABLE 3.1 shows the values of the coefficients for each road type, 
while FIGURE 3.1 compares the travel time as a function of the volume to capacity ratio for 
each of the conical volume delay functions and the Bureau of Public Roads (BPR) function. 
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TABLE 3.1  Delay Function Coefficients for Each Road Class 

Road Class bk ak dk fk 

1-Metered Freeway 16 1.361 4 1.167 

2-Unmetered Freeway 16 1.361 4 1.167 

3-Metered Ramp 16 1.361 4 1.167 

4-Unmetered Ramp 16 1.361 4 1.167 

5-Divided Arterial 16 1.361 4 1.167 

6-Undivided Arterial 25 1.266 5 1.125 

7-Collector 36 1.210 6 1.100 

8-HOV Ramp 16 1.361 4 1.167 

9-Centroid Connector 0 0 0 1 

0-HOV facility 16 1.361 4 1.167 
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FIGURE 3.1  Comparison of Delay Functions for t0=1 
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One way to specify level of service targets would be to place upper bounds on the average user 
cost functions.  That is 

kkkkk cyzxc ˆ),( ≤+  (9) 

on some or all of the network's links. When user cost depends is a monotonically increasing 
function of the volume to capacity (V/C) ratio, these constraints have an equivalent expression as 
bounds on the V/C ratio 

k
kk

k c
zy

x ~≤
+

 (10) 

Collecting together the components of this optimization problem, and letting x  denote the n-
dimensional vector containing the link demand flows, gives our variant of the NDP. 

NDP*: 

minimize( ∑
k

kk yl )  (11) 

subject to 

xk = Σj dj qjk(x)            k=1,..,n   (12) 

kkkkk zcycx ~~ ≤−          for candidate links for expansion (13) 

0≥ky  (14) 

With the exception of the volume delay function, the formulation is identical to the problem 
formulation in Building Our Way Out of Congestion.   

Solution Procedure 

The problem of solving network design problems (NDP) is one that many researchers have 
investigated and one of the primary issues surrounding them is the expense of the solution 
procedure, in terms of both time and computer power.  Davis (8) posed a differentiable and 
tractable version of the NDP by employing SUE constraints, enabling standard algorithms for 
solving non-linear programs to be used. The computation of the minimum of a differentiable 
objective function, subject to a set of differentiable constraints, is a problem for which numerous 
solution algorithms are available. In BOWOC, the optimization program MINOS (9) was 
selected for implementation as the NDP solution procedure because of its reported success, 
across a variety of disciplines, in solving large, non-linear programming problems. However, 
while MINOS successfully solved the NDP for smaller test problems, a successful 
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implementation for a network representing a metropolitan region was not accomplished. When 
alternate methods were investigated in an attempt to circumvent the large Jacobian difficulties, it 
became apparent that a modified solution procedure could be constructed to take advantage of 
the specific formulation of this NDP. This procedure uses the method of successive averages 
(MSA), but does not require any derivative information, which considerably simplifies 
computational requirements. The new step incorporated into the MSA that enabled the problem 
to be solved was called Sequential LInear Expansion (SLIE).   

As described in BOWOC, the steps of the procedure are as follows: 

 

Step 0: Initialization. Perform a stochastic network loading based on a set of initial 
travel costs ( 0

kc ), generating a set of link flows ( 0
kx ). Set counter N to 1. 

Step 1: For each link k, set 













−=+

k
k

N
kN

k z
c
x

y ~,0max1  

Step 2: Update travel costs for each link based on current link flows and capacity, 
( )11 , ++ + N

kk
N
k

N
k yzxc , then find shortest paths, and rank the nodes 

according to increasing cost. 

Step 3: Perform a stochastic network loading assignment procedure based on the 
current set of link travel costs ( ( )11 , ++ + N

kk
N
k

N
k yzxc ), yielding the 

auxiliary link flow pattern ( N
kx* ), using Dial's Algorithm. 

Step 4: Find the new flow pattern by setting 
( )

N
xx

xx
N
k

N
kN

k
N
k

−
+=+

*
1  

Step 5: If converged, then stop. If not increment counter N and go back to step 1. 

 

A proof that this algorithm converges to Karush-Kuhn-Tucker points of NDP* is given in 
Appendix A. 

For this study, the optimization solution procedure was modified slightly to expedite 
convergence.  The 39% demand increase, and resulting congestion increase, between the 2020 
forecast and the 2030 forecast was significant enough to create difficulties reaching convergence 
using the SLIE routine.  Cascetta and Postorino’s (10) MSA with decreasing re-initialization 
(MSADR) procedure was used to reduce runtime.  In step 4 of SLIE, as in MSA, flow pattern of 
the next iteration is found by: 
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N
xxxx

N
k

N
kN

k
N
k

)( *
1 −

+=+  (15) 

where xk is the flow on link k, and N is the current iteration number.  With decreasing re-
initialization, the count of N is restarted at one after a pre-fixed number of iterations. The 
problem is then re-initialized at a decreasing frequency.  Convergence is achieved when   

ε≤−+ )max( 1 N
k

N
k xx   (16) 

where ε is the convergence parameter.  ε = 1.0 was used in this study 

MSADR allows the problem to converge with far fewer iterations.  In BOWOC, which used the 
2020 network and demand set, it took 721 iterations to converge with the SLIE algorithm.  With 
the 2030 inputs, 30-45 iterations were needed to converge, with 21 minutes per iteration on a 
3.0GHZ Pentium 4 processor with 1GB RAM.  This is much longer than what Bar-Gera and 
Boyce (11) were able to achieve with their non-convex combined model MSA with constant step 
size implemented on the Chicago Regional Network of nearly 40,000 links using a 2GHz Xeon 
processor, but much shorter than the straight MSA, which was stopped before convergence could 
be reached.   

Although the program does not integrate directly with existing transportation planning software, 
data from the standard mode can be post-processed to input into this program and the program 
can be used on any personal computer to produce results within a reasonable time.   
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Chapter 4: IMPLEMENTATION FOR TWIN CITIES NETWORK 

The purpose of this study was to explore potential efficiencies in the reduction of SOV 
automobile usage during peak times.  Having posed the problem mathematically in the previous 
chapter, a solution can be implemented for the Twin Cities network using code previously 
developed for the BOWOC study and the network and demand data supplied by the Twin Cities 
Metropolitan Council.  The BOWOC Fortran code had been tested on the 184-link Waseca test 
network and produced results identical to those produced by the MINOS software.  (3)  After 
incorporating the changes discussed, the revised code produced results comparable to the 
Metropolitan Council’s assignment for the 2030 forecast.  The revised Fortran code can be found 
in appendix B.   

The most recent Twin Cities network and demand forecasts, for 2030, were obtained from the 
Metropolitan Council and formatted as needed.  Excerpts and descriptions of sample input files 
are given in appendix C.  The original Met Council network file contained 24,308 links, with 
3,150 links that led outside of the metropolitan area for which demand was forecasted.  Since 
these “dead links” were not used for any trips under consideration, they were removed to 
decrease computation time.  The resulting network model, representing the seven-county 
metropolitan area surrounding Minneapolis and St. Paul, contained 12,598 nodes and 21,158 
links, of which 1,561 links represented the limited access roadways.  The morning peak hour 
network contained 9 fewer links, due to slight differences in the network caused by some 
reversible lanes.  Note that while it was the limited access roadway system that was of interest as 
a set for capacity expansion, all roadway links contained in the seven county portion of the 
model were available for traffic assignment, not just the limited access highways.   

One modification to the demand file was necessary to achieve convergence.  The trip demand 
between each O-D pair in the 2030 forecast was given to the hundredths of trips.  The file 
therefore included 1,185,758 O-D pairs with less than one trip demanded, which hindered 
convergence of the solution procedure.  To preserve the total number of trips demanded, the trips 
between O-D pairs with demand less than one (amounting to 19% of the total demand) were 
reallocated proportionally to O-D pairs with demand greater than or equal to one.  This decreased 
the number of O-D pairs from 1,372,972 to 187,214, reducing the runtime of each iteration as 
well as the number of iterations necessary for convergence.   

As stated above, with these files, each iteration needed approximately 21 minutes, with 30 to 45 
iterations needed for convergence.  This runtime was sufficient to allow for solution of several 
series of scenarios as well as solving for two levels of service.  The lower thresholds for both 
LOS C and LOS D were solved to accommodate differing views on an acceptable level of 
service. Therefore, for the LOS C solution, any capacity expansion less than the solution level 
will result in worse than LOS C on at least one link.  Similarly, for the LOS D solution, anything 
less will result in LOS E or F on at least one link.  According to the Highway Capacity Manual 
(HCM) 2000 (12), “LOS C provides for flow with speeds at or near the FFS of the freeway. 
Freedom to maneuver within the traffic stream is noticeably restricted, and lane changes require 
more care and vigilance on the part of the driver.”  One step below that, “LOS D is the level at 
which speeds begin to decline slightly with increasing flows and density begins to increase 
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somewhat more quickly. Freedom to maneuver within the traffic stream is more noticeably 
limited, and the driver experiences reduced physical and psychological comfort levels.”  It is 
assumed that once speeds are affected, a driver will define that as congestion.  However, LOS C 
is difficult to achieve in an urban area with limited funds and rights of way.  LOS D may be 
tolerable to drivers, but less than that and “maneuverability within the traffic stream is extremely 
limited, and the level of physical and psychological comfort afforded the driver is poor.”  While 
“at its highest density value, LOS E describes operation at capacity … any disruption of the 
traffic stream, such as vehicles entering from a ramp or a vehicle changing lanes, can establish a 
disruption wave that propagates throughout the upstream traffic flow. At capacity, the traffic 
stream has no ability to dissipate even the most minor disruption, and any incident can be 
expected to produce a serious breakdown with extensive queuing.”  Even though LOS E 
accommodates the greatest travel demand, it is difficult to sustain and uncomfortable for drivers.  
Thus, results were limited to achieving at least LOS D.  Solving for both LOS C and D allows 
for sensitivity analysis of LOS chosen and examination of the tradeoff between driver comfort 
and additional capacity needed.  For free-flow speeds of 60 mph, the volume to capacity ratio 
cutoffs for LOS C and LOS D are 0.68 and 0.88, respectively.   

Results 

To examine the scope of the congestion issue, traffic assignment was carried out for a no build 
scenario, where all travel is by single-occupant vehicles (SOV).  If no additions were made to the 
network, 86% of the roads would be operating at worse than LOS C during the afternoon peak 
and 73% at worse than LOS D.  Even in the morning, 58% of the limited access roads would 
perform at worse than LOS C during peak hour and 45% would provide less than LOS D.   

Next, a roads-only minimum expansion solution was found, where again all travel is by SOV.  If 
all of that congestion were improved to no worse than LOS C on each of the freeway links, an 
additional 2,619 lane-miles (4,215 lane-km) would be required to accommodate both the 
morning and afternoon peak hours, more than twice the 2,588 existing lane-miles (4,165 lane-
km).  Allowing up to LOS D would require 1,578 lane-miles (2,540 lane-km). FIGURE 4.1 maps 
the lanes to be added.   
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FIGURE 4.1 Capacity expansion needed to achieve LOS C and D on Twin Cities limited 
access highways during both morning and afternoon peak hours (taking maximum for 
each direction in AM and PM solution). 

 

If demand on the roads were decreased by 20%, required lane-miles would decrease to 1,689 
(2,718 lane-km) for LOS C and 906 (1,458 lane-km) for LOS D.  These are 36% and 43% 
decreases in capacity expansion, respectively, compared to the expansion required for the full 
SOV demand scenario.  A 10% decrease in demand yields 18% and 22% decreases in required 
capacity expansion.  For LOS D, a given percentage decrease in demand results in a decrease in 
required capacity expansion of more than twice that percentage.  (TABLE 4.2) 

If, however, 20% of trips demanded are made by transit, and those transit trips are loaded onto 
standard buses directly from origin to destination, for LOS C, only 82 lane-miles, or 3%, of 
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capacity expansion would be saved.  For LOS D, 20% transit share yields only a 62 lane-mile 
savings, only 4% less than the expansion necessary to accommodate all travel by SOVs.  This 
ineffectiveness is due to the low occupancy of the transit vehicles that are included in the system.  
As shown in TABLE 4.1, with vehicles dedicated to each O-D pair individually, even at 20% 
transit share, 98.9% of the O-D pairs had fewer than 10 transit trips each.  91.5% had fewer 2.5 
transit trips and thus did not warrant having transit vehicles at all.  In total, this was 51.3% of the 
20% of demand that was designated for transit.  However, because of their spatial distribution, 
these transit trips could not be accommodated and were re-assigned to SOV.  This reduced total 
transit share to less than 20% of the total travel demand, but this seemed more reasonable than 
actually increasing trips through the use of transit on these routes.  Only 0.3% of the O-D pairs 
had transit vehicle occupancies of more than 25, half of each vehicle’s maximum occupancy.  
Considering the inefficiency of this formulation it is unlikely for any real transit system to 
produce returns like these.  It is interesting to note, though, that even with a highly inefficient 
transit system, some gains can be made in decreasing roadway expansion.   

TABLE 4.1 Distribution of Transit Trips, Assuming Uniform 20% Transit Share Across 
O-D Matrix 

Number of 
Transit Trips 
per O-D Pair 

Number of 
Transit Vehicles 

per O-D Pair 

Number 
of O-D 
Pairs 

Percentage 
of O-D 
Pairs 

Total Number 
of Transit Trips 

in Group 

Percentage of 
Total Transit 

Trips 

< 2.5 0 171349 91.5 115431.5 51.3 

2.5-10 1 13838 7.4 61071.3 27.1 

10-25 1 1570 0.8 22622.6 10.1 

25-50 1 320 0.2 10669.7 4.7 

>50 >1 137 0.1 15251.3 6.8 

 

A more realistic system aggregating transit trips would lie between these two bounds.  Using the 
TAD aggregation, the results more closely follow the results with no transit vehicles added back 
in, as shown in TABLE 4.2 and FIGURE 4.2.  With transit trips made on standard buses between 
TADs, a 20% transit share reduces capacity expansion by 30% (774 lane-miles or 1246 lane-km) 
for LOS C and 36% (565 lane-miles or 909 lane-km) for LOS D. 
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TABLE 4.2  Percentage Reduction in Required Capacity Expansion 

Percent 
Transit 

No Transit 
Vehicle 

Interaction, 
LOS D 

No Transit 
Vehicle 

Interaction, 
LOS C 

2.5 PCE, 
TAD, LOS D 

2.5 PCE, 
TAD, LOS C 

2.5 PCE, 
TAZ, LOS D 

2.5 PCE, 
TAZ, LOS C 

1 2.2 1.8 0.9 0.7 0.0 0.0 

2 4.5 3.6 2.1 1.7 0.0 0.0 

5 11.0 9.0 7.1 5.8 0.1 0.1 

10 21.9 17.9 16.6 13.5 0.8 0.6 

15 32.4 26.8 26.3 21.5 2.1 1.6 

20 42.6 35.5 35.8 29.5 3.9 3.1 
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FIGURE 4.2  Capacity expansion necessary to achieve LOS C and D with the three 
different transit formulations. 

As shown in FIGURE 4.2, the choice of service level turned out to make a significant difference 
in capacity expansion necessary.  With no demand reduction, to provide LOS C required 1,041, 
or 66%, more lane-miles (1,675 lane-km) compared to LOS D.  With 20% demand reduction, 
LOS C required 67% to 86% more lane-miles over LOS D for the three different scenarios.  
However, each level of service showed similar sensitivity to the different transit formulations.     
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Chapter 5: SOLUTION POST PROCESSING - EXPLORING COST 
FORMULATIONS 

With a NDP solution there are various post-processing calculations that could be done, one of 
which is calculating how much it would take to build the number of lane-miles arrived at to 
satisfy future travel demand in uncongested conditions.  This was explored as part of the 
previous work, BOWOC, but the procedures explored at the time had drawbacks that warranted 
not using them. Cost was a frequent question, though, about the results, and so deserved further 
investigation.  For BOWOC, the optimization function was based on minimizing the number of 
lane-miles to be constructed, which assumes that costs are the same throughout the metropolitan 
area.  While not an unreasonable assumption in the absence of a good cost model, minimizing 
costs rather than lane-miles would be a more realistic representation of the decision-making 
process.  Thus, cost estimation formulations were reviewed.  There are basically three methods 
for construction cost estimation: 

1. Unit rates of construction (dollars per mile by highway type) 

Individual site conditions such as topography, in situ soil, land prices, environment, and traffic 
loads vary greatly from location to location to make average prices inaccurate estimates of the 
price of individual projects or apparently, even of all projects in a particular year. 

2. Extrapolation of past trends 

These are used to forecast future overall construction rates, and include examples such as time 
series analysis.  Typically these are collapsed into a single overall expression of construction cost 
such as Engineering News Record’s Construction Cost Index (ENR CCI).  An issue with these 
models is that they rely on the notion that past conditions will be maintained in the future.  They 
are not useful for optimization type problems. 

3. Construction cost models based on factors believed to influence construction costs 

The relationship between construction costs and these factors is based on past records of 
construction costs.  Factors that seem to have a significant impact on contract costs include 
season, location, type of project, contract duration and contract size. 

Literature Review 

Below is a discussion of the different construction cost forms that were reviewed.  

A. Abdulaal and LeBlanc (13) explored a number of construction cost formulations, including a 
quadratic form in order to examine how the solution responds under different cost formulations, 
such as concave versus convex.  Abdulaal and Leblanc discuss that in continuous network design 
problems that convex investment costs usually results in minor increases in practical capacity for 
many arcs proposed for improvements, which is useful if the purpose is to maintain/improve an 
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existing network.  Concave functions are more appropriate if the purpose is to build new roads, 
as large increases of only some of the proposed arcs results.  An interesting point that Abdulaal 
and LeBlanc make is that they allow for investment cost functions to be defined for negative 
values of yk - although negative values of yk have no physical meaning, allowing them to be 
unrestricted allows the computation to be unconstrained.  Intuitively, the optimal capacity 
expansion cannot be negative because a positive solution would be better.  While the impact of 
these different forms is discussed for the example cost formulation, these cost formulations have 
no realistic basis. 

B. Keeler & Small (14) formulated a construction cost per lane-mile, given by: 

6
54321 )exp( awFCaFSUaFRaCUCaCRSaKLM ++++=   (17) 

where 

 CRS = non-freeway rural roads  CUC = urban roads 

 FR = rural freeways     FSU = suburban freeways   

 FC = urban freeways    w = average roadway width    

 ai = estimated parameters  

C. Small et al. (15) linearized the Keeler and Small earlier work to give a construction cost per 
mile: 





>++
=

=
0W ifWDkkk
0W if

DWK
)(

0
),(

210

     (18) 

where 

 W = roadway width  (no. of lanes)  

 D = pavement thickness 

 ki = coefficients 

 

Substituting suggested values, construction cost then is:  





>+
=

=
0W ifWL
0W if

LWK
)000,950(000,95

0
),(     (19) 

where 

 L = roadway length 
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This is a discrete equation, whereas continuous functions are more useful for optimization work, 
so a continuous version of this was formulated. Assuming one lane is equivalent to a volume of 
1200 vehicles per hour then: 





≥+
<+

=
1200y ifly
1200y ifyy

yg
kkk

kkk
kk ))(1200/000,950(000,95

)(792)(07.0
)(

2

   (20) 

D. Levinson & Ramachandra (16) cost model: 

),,,,,,*( XDYTNFCLfE ijijij ∆=       (21) 

where  

                 = lane-miles of construction  

 F = funding program dummy variable 

 N = new construction or expansion dummy variable 

 T = interstate or state highway program dummy variable 

 Y = year of completion minus 1979 

 D = duration of construction 

 X = distance of link from nearest downtown 

A simplified version of this, substituting all the constants gives the following formulation: 

Construction Cost  ($ ‘000s) = (lane-miles)b1(year)b2e b3(type)+b4  (22) 

where  

 b1 = lane-miles of roadway  

 b2 = forecast construction year minus the base year (1979) 

 b3 = 1 if a limited access road, 0 otherwise  

 b4 = constant  

While this formulation is very attractive because it was developed based on Minnesota data and 
therefore is the only equation with a realistic basis for developing cost estimates, it turns out this 
form is very sensitive to how the expansion is broken into separate projects, and how these are 
sequenced in time. That is, if you plug in 1143 lane-miles, and a 40-year time horizon, you get a 
cost of about $ 430 million, but if you treat the expansion as 1143 separate 1 lane-mile projects, 

ijij CL ∆∗
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you get a cost of about $18.4 billion. If you use a 20-year time horizon, the costs are about half 
of these.  

A construction cost formulation for planning level estimates would be an extremely useful tool 
not only for this type of project, but for many planning projects as well. None of the formulations 
investigated here however are suitable for the purposes of this project. Ideally the equation 
would require a limited amount of data, such as lane miles of roadway, construction year and 
roadway type, and would be a continuous function for use in optimization work. 
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Chapter 6: CONCLUSIONS AND FUTURE RESEARCH 

This study explores the relationship between reducing peak automobile demand in order to 
satisfy a particular level of service on the limited access roads.  The level of service chosen 
affected the amount of expansion necessary, but not the relationship between transit share and 
capacity expansion within each transit formulation.  Effectiveness varied widely with different 
formulations of transit, from 4% to 43% reductions in capacity expansion at LOS D with 20% 
transit share.  Reducing auto demand, or increasing alternate transportation mode usage such as 
transit, could help reduce capacity expansion needed for LOS D by 36% if 20% of trips were 
reduced – equivalent to one day per week of alternate travel.  Even though 64% of the capacity 
expansion is still 1,013 lane-miles (1,630 lane-km) needed to achieve LOS D, it is still a little 
less congestion the other four days of the week even without any expansion.   

While 20% transit share may seem an unrealistic increase over current transit usage in the Twin 
Cities area, it is low for many cities around the world.  In the last year alone, gas price increases 
have had gotten more people to consider alternate modes and fuel-efficient vehicles.  There is no 
indication that gas prices should stay stable over the next 20 years and as yet no guarantee of 
alternative power sources for personal vehicles.  More controllably, cities have successfully used 
pricing and land use strategies to encourage transit use in long-range planning.  Cities can also 
adopt more immediate demand-side changes, such as requiring each commuter to use transit or 
telecommute at least one time per week.   

If there are no major disturbances and gas prices increase only with inflation and local planning 
principles remain the same, then transit might continue to account for only around 5% of 
commuting trips.  Without considerable expansion of transit, it is still possible to decrease 
capacity expansion for LOS D by 7.1%, or 113 lane-miles (182 lane-km), with an express bus 
type transit system.  If 5% of trips are completely removed from the system, the decrease goes up 
to 11%, or 175 lane-miles (282 lane-km).     

For more accurate estimates of the effects of an express bus system, aggregation of the transit 
trips might be based more on the distribution of trip origins and destinations rather than the 
TADs which are based on political boundaries.  More work can also be done to represent transit 
in a way that more accurately reflects the real transit system by assigning transit in proportions 
similar to the current transit use, rather than uniformly across all O-D pairs.  Further research 
could also be done to verify that multimodal trips would not significantly change the results.  
Trips to the park-and-ride are likely to be made by personal vehicle, but they are unlikely to use 
limited access highways.   



   

 23

REFERENCES 

(1)  Metropolitan Council (Internet).  Metro Residents Survey 2005.   Publication No. 74-06-015,  
March 2006.  Summary: 
http://www.metrocouncil.org/planning/sor2006/2005SurveySummary.pdf   Full report:  
http://www.metrocouncil.org/metroarea/MetroResidentsSurvey2005.pdf Accessed 26 July 2006   

(2)  Metropolitan Council (Internet).  2030 Transportation Policy Plan.  Publication no. 35-04-
055, 15 December 2004.  
http://www.metrocouncil.org/planning/transportation/TPP/2004/summary.htm  Accessed 26 July 
2006 

(3)  G.A. Davis and K. Sanderson.  Building Our Way Out Of Congestion?  Highway Capacity in 
the Twin Cities.   Report No. 2002-01.  Minnesota Department of Transportation, 2002. 

(4)  R.Van Nes.  Design of Multimodal Transport Networks: A Hierarchical Approach. Delft 
University Press, Netherlands, 2002. 

(5)  P. Ferrari.  “A Model of Urban Transport Management”. Transportation Research Part B, 
Vol. 33, 1999, pp. 43-61. 

(6)  Y. Sheffi.  Urban Transportation Networks.  Prentice Hall, Englewood Cliffs, NJ, 1985. 

(7)  H. Spiess.  “Conical Volume-Delay Functions”.  Transportation Science, Vol. 24, 1990, 
pp.153-158.   

(8)  G.A. Davis.  “Exact Local Solution of the Continuous Equilibrium Network Design Problem 
Via Stochastic User Equilibrium Assignment”.  Transportation Research Part B, Vol. 28, 1994, 
pp. 61-75.   

(9)  M. Murtagh and M. Saunders.  MINOS Users’ Guide.  Systems Optimization Laboratory, 
Department of Operations Research, Stanford University, 1988.   

(10)  E. Cascetta and M.N. Postorino.  “Fixed Point Approaches to the Estimation of O/D 
Matrices Using Traffic Counts on Congested Networks”. Transportation Science, Vol. 35, No. 2, 
2001, pp. 134-147. 

(11)  H. Bar-Gera and D. Boyce.  “Solving a Non-Convex Combined Travel Forecasting Model 
by the Method of Successive Averages with Constant Step Sizes”.  Transportation Research 
Part B, Vol. 40, 2006, pp. 351–367. 

(12)  Highway Capacity Manual 2000.  Transportation Research Board, Washington D.C., 2000. 

(13)  M. Abdulaal and L.J. LeBlanc.  “Continuous Equilibrium Network Design Models”.  
Transportation Research Part B, Vol.13, No. 1, 1979, pp. 19-32.  



   

 24

 

(14)  T.E. Keeler and K.A. Small.  “Optimal Peak-Load Pricing, Investment, and Service Levels 
on Urban Expressways”.  Journal of Political Economy, January 1977, pp.1-25.   

(15)  K.A. Small, C. Winston, and C. Evans. Road Work: A New Highway Pricing and 
Investment Policy. Brookings Institution, Washington, D.C., 1989.  

(16)  D. Levinson and R. Karamalaputi.  “Predicting the Construction of New Highway Links”. 
Journal of Transportation and Statistics, Vol. 6, 2003, pp. 81–89.  

(17)  M. Bazaraa, H. Sherali, and M. Shetty.  Nonlinear Programming:  Theory and Algorithms.  
Wiley and Sons, New York, 1993.   
 
(18)  C. Daganzo.  “Unconstrained Extremal Formulation of Some Transportation Equilibrium 
Problems”.  Transportation Science, Vol. 16, 1982, pp. 332-360.   
 
(19)  G.A. Davis.  A Stochastic, Dynamic Model of Traffic Generation and Its Application to the 
Maximum Likelihood Estimation of Origin-Destination Parameters.  Doctoral Dissertation, Dept 
of Civil Engineering, University of Washington, Seattle, WA, 1989.   
 
(20)  W. Powell and Y. Sheffi.  “The Convergence of Equilibrium Algorithms with 
Predetermined Step Sizes”.  Transportation Science, Vol. 16, 1982, pp. 45-55. 
 
(21)  C. Fisk.  “Some Developments in Equilibrium Traffic Assignment”.  Transportation 
Research Part B, Vol. 14, 1980, pp. 243-256.   
 



  

 

 

Appendix A:  Verification of Algorithm Validity 
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Recall our variant of the continuous network design problem, written in vector notation: 
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where 

}c~{diagC~ i= , the links which are candidates for expansion are  indexed i=1,…,m,   

T
mxxx ],..,[ 1

1 =
r  is the vector whose elements are the flows on the set of candidate links, 

),( yxq jk
rr  denote the logit model's proportion of trips between OD pair j using link k. 

 

We want to show:  

The tuple yx,  is a Karush-Kuhn-Tucker (KKT) point for  NDP*, if and only if  yx,  satisfies the 
equations   

miz
c
xy i
i

i
i ,..,1),~,0max( =−=  

∑ ==−
j

jkjk nkyxqdx ,..,1,0),(  



   

 A-2 

To do this, we will use Theorem 4.2.15 in Bazaraa, Sherali, and Shetty (17), which established 
an equivalence between a KKT point of a nonlinear program and the solution to a linear 
programming approximation.  We should point out that this theorem does not claim to provide an 
algorithm for solving NDP*, it only provides an alternative way of characterizing the problem's 
KKT points. 

First, suppose yx,   is a KKT point for  NDP*. Then, by Theorem 4.2.15  in Bazaraa, Sherali 
and Shetty, this is true if and only if yx,  is also a solution to the approximating linear program 

LP* 

Minimize: 

( )yylyl TT −+
rr

 

subject to: 

[ ] 0][~~~ 111 rrrr
≤−+−−−+− xxyyCzCxyC    

( ) 0yyIyI ≤−−−
r  

0])[,(])[,(),( 21
rrrr

=−+−+ xxyxHyyyxHyxh  

where H1 and H2 denote matrices of partial derivatives of the equality constraints. Since yx, is 
feasible 0),(

rr
=yxh ,  the approximating  equality constraints  imply 
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1

2 yyyxHyxHxx −−=− − rr  

and the existence of  the inverse matrix  H2
-1  follows from the standard conditions guaranteeing 

the existence and uniqueness of the stochastic user equilibrium assignment (Daganzo (18), Sheffi 
(6), Davis (19), p. 102-104).  More particularly, letting J denote the first m rows of -H2

-1H1, we 
have ])[,(][ 11 yyyxJxx −=−

rr , and  LP* can be simplified to 
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Introducing the slack variable wr , we can then write this in a "standard" form 

Minimize: 
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The extreme points of the polyhedral region: 
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can be expressed, by re-arranging the order of the elements ofyr  and wr , as 
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In particular, since yx, solves LP* there is a corresponding extreme point: 
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This simplifies to 
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The first of these two equations implies 
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and since 02
r

=y  we have shown that yx,  satisfies the equations 

miz
c
xy

mkyxqdx

i
i

i
i

j
jkjk

,..,1~,0max

,..,1),(

=







−=

∑ ==

 

On the other hand, suppose yx,  satisfies the above equations, but is not a KKT point for NDP*. 
Then, constructing the linear programming approximation LP* using first-order Taylor 
expansions around yx, , Bazaraa, Sherali and Shetty's theorem implies that yx, also does not 
solve the approximating problem  LP*. But yx,  is feasible for LP*, so there must exist a vector 

vr such that vy r
+ is also feasible and  ylvyl TT rrr

<+ ][ . Since li>0 for i=1,..,m, this implies that 
there exists at least one element of vr ,  such that va < 0.  But then if 0=ay , 0<+ aa vy ,  while 
if aaaa zcxy −= ~/  then aaaaa cvyzx ~)/( >++ ,contradicting the assumption that vy r

+  is 
feasible. So yx, must solve LP*, and hence provide a KKT point for NDP*. 
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Next, we will show that our iterative scheme converges to a KKT point for NDP*, using a 
straightforward adaptation of the proof method used  by Powell and Sheffi (20). To restate, our 
iterative scheme takes the form 
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As did Powell and Sheffi, let's first consider an iterative scheme on the path flows 

( )N
jr

NN
jrj

N
jr

N
jr dyxpd

N
dd −






+= ++ ),(1 11 rr

 

Since the link flows xk are well-defined functions of the path flows, and the link capacity 
expansions yi are well-defined functions of the link flows, this iteration is in turn well-defined, 
and we need to show that this iterative scheme satisfies Powell and Sheffi's conditions (2.2a-
2.2d). It is well known that the updating weights (1/N) satisfy (2.2a), and to show that the other 
conditions are also satisfied consider the modification of Fisk's (21) optimization criterion 
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where the capacity expansion functions yk(x) are defined via 
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This function is undefined whenever a route flow djr=0, but the first order conditions for 
optimality imply a set of route flows that minimizes f satisfy 

0)exp( >−∝ jrjr cd θ  

so it can be shown that at least in a neighborhood of an minimizing solution f is strictly convex 
and so condition (2.2b) is satisfied. Next, since 
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and equals 0 only when djr=djpjr, f is a descent function for our route flow iteration, and (2.2c) is 
satisfied. Finally, the boundedness of f and its derivatives  can be established using an argument 
similar to that in Powell and Sheffi, and so it follows that the sequence of updated route flows 
djr

N converges to a solution to the system of equations 
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Since the link flows and capacity expansions are continuous functions of the route flows, the 
sequence xk

N, yi(xi
N) converges to 
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which characterize the KKT points for NDP*. 



  

 
 

Appendix B:  Computer Code 
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********************************************************************** 
****                    Start of MAIN program                     **** 
********************************************************************** 

 
      PROGRAM            MAIN 
      IMPLICIT           DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER LIMIT 
      PARAMETER (LIMIT=25000) 
           LOGICAL NPOSSLST(LIMIT) 
            
      DOUBLE PRECISION YGUESS(limit) 
 
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                       
 
        COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
      COMMON /KSINPUT2a/ THETA 
        COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
        COMMON /KSINPUT4/ NUMB, NAME             
 
C  SUBROUTINE MOOREPAPE READS IN DATA, SETS VARIABLES AND SETS UP 
C  INITIAL FEASIBLE SOLUTION TO START OPTIMIZER. 
 
      CALL MOOREPAPE 
 
c     Read flows from file named 'input'.  If file named 'input' 
c     can't be opened, just start with empty network. 
       
      OPEN (UNIT=50,FILE='input',STATUS='OLD',ERR=12) 
      READ(50,*) ITNUM, ERRMAX 
      do 11 k=1,NLINK 
         read(50,*) xguess(k), YGUESS(k) 
 11   CONTINUE 
      GOTO 14 
 12   DO 13 k=1,NLINK 
         xguess(k)=0.0d+0 
         yguess(k)=0.0d+0 
 13   CONTINUE 
 
 14   CALL MSA(YGUESS) 
 
*     ------------------------------------------------------------------ 
      stop 
      end 
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********************************************************************** 
****                    Start of subroutine MOOREPAPE             **** 
********************************************************************** 
 
      SUBROUTINE  MOOREPAPE 
       
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER LIMIT,  LIM3  
      PARAMETER (LIMIT=25000,LIM3=15000) 
 
      LOGICAL NPOSSLST(LIMIT) 
      INTEGER IT(LIM3), LISTY(LIMIT), DEMAND, LKS(10), 
     & TYPES, TVREM, NUMTAZ, TAD(1500), REPTAZ(1500), 
     & JTRAN, KTRAN 
 
      CHARACTER NAME*20 
 
      DOUBLEPRECISION XT(LIMIT), ZERO, DIFF, 
     & ERRMAX, ERRCRIT, DA(LIMIT), FIT, LOS, 
     & MDSPLT, TRANDEM, TRANPCE, PCE, SOVDEM, TRANVEH, TVOCC, 
     & TD(1500,1500), SD(1500,1500) 
 
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                      
 
           COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
      COMMON /KSINPUT2a/ THETA 
        COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
        COMMON /KSINPUT4/ NUMB, NAME             
 
      OPEN (UNIT=1,FILE='OD',STATUS='OLD') 
      OPEN (UNIT=2,FILE='NET',STATUS='OLD') 
      OPEN (UNIT=3,FILE='OUT',STATUS='UNKNOWN') 
 
C *** THETA IS THE PERCEPTION OF THE COST DIFFERENCE 
C ***  OF DIFFERENT PATHS. 
           THETA = 2.0D-01 
           ZERO    = 0.0D+0 
 
C *** READ IN TRANSIT PARAMETERS FROM FILE 'TRANPRM'.  FIRST LINE 
C *** IS THE MAXIMUM OCCUPANCY OF THE TRANSIT VEHICLES.  SECOND LINE  
C *** IS PASSENGER CAR EQUIVALENT FACTOR FOR THE TRANSIT VEHICLES. 
C *** THIRD LINE IS THE MODE SPLIT, EXPRESSED AS THE PERCENTAGE OF  
C *** TRIPS MADE IN SINGLE-OCCUPANCY VEHICLES.   
C *** IF FILE OPEN FAILS, USE HARD-CODED DEFAULTS. 
 
      OPEN (UNIT=4,FILE='TRANPRM',STATUS='OLD',ERR=60) 
      READ (4,*) TVOCC 
      READ (4,*) PCE    
      READ (4,*) MDSPLT   
      GOTO 61 
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  60  TVOCC = 50 
      PCE = 2.5D+0 
      MDSPLT = 1.0 
 
c *** READ IN TAD FILE IF AGGREGATING TRANSPORTATION ANALYSIS ZONES (TAZS) 
C     INTO DISTRICTS (TADS).  IF NO TAD FILE, SKIPS TO COMMAND 70 TO DO  
C     SAME PROCEDURE FOR FIGURING TRANSIT VEHICLES WITHOUT COMPLICATION OF  
C     TADS.   
C *** 'NUMTAZ' IS THE NUMBER OF TAZS IN THE NETWORK. 
C *** 'TAD(M)' IS THE DISTRICT TO WHICH ZONE M BELONGS 
C *** 'REPTAZ(M)' IS THE REPRESENTATIVE TAZ, IE, THE ZONE TO WHICH ALL 
C        TRANSIT VEHICLES WITHIN THE DISTRICT WILL BE ASSIGNED.   
 
  61  open (unit=5,file='tad',status='OLD',ERR=70) 
      read (5,*) numtaz 
       do 62 i=1,numtaz 
          read (5,*) m, tad(m), reptaz(m) 
  62   continue 
 
 
C *** READ IN NON-ZERO DEMAND VALUES, 
C *** 'DEMAND' IS THE NO. OF PEOPLE WANTING TO TRAVEL FROM A->B. 
C *** MDSPLT IS THE MODAL SPLIT, AS PERCENTAGE OF CARS. 
C *** CALCULATE TRANSIT DEMAND, ASSIGN TRANSIT DEMAND TO PROPER  
C      REPRESENTATIVE ZONE ('REPTAZ'). 
C     CALCULATE NUMBER OF TRANSIT VEHICLES NEEDED, AND ADD THE PCE  
C      OF THE TRANSIT VEHICLES BACK INTO DEMAND FOR THAT ZONE. 
 
      READ (1,*) DEMAND 
        DO 40 I=1,DEMAND     
           READ(1,*) J,K,D(J,K) 
           IF (MDSPLT.NE.1) THEN 
             SOVDEM=MDSPLT*D(J,K)        
             TRANDEM=(1.0D+0-MDSPLT)*D(J,K) 
 
               DO 63 M=1, NUMTAZ 
                 IF (M.EQ.J) JTRAN=REPTAZ(M) 
                 IF (M.EQ.K) KTRAN=REPTAZ(M) 
  63           CONTINUE 
               TD(JTRAN,KTRAN)=TD(JTRAN,KTRAN)+TRANDEM 
               SD(J,K)=SOVDEM 
    ELSE  
      TD(J,K)=ZERO 
      SD(J,K)=D(J,K) 
           END IF  
  40    CONTINUE 
        DO 64 J=1,NUMTAZ 
          DO 65 K=1,NUMTAZ 
            TRANVEH=TD(J,K)/TVOCC 
            TVREM=MOD(TD(J,K),TVOCC) 
            IF (TVREM.GE.1.0D+0) THEN 
              TRANVEH=NINT((TD(J,K)/TVOCC)+5.0D-1) 
            ELSE 
              TRANVEH=INT(TRANVEH) 
            END IF 
            TRANPCE=PCE*TRANVEH 
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            D(J,K)=SD(J,K)+TRANPCE   
  65      CONTINUE 
  64    CONTINUE 
 
C *** IF NO TRANSPORTATION ANALYSIS DISTRICTS ARE TO BE USED (NO TAD FILE), 
C ***   THE FOLLOWING SECTION (70-71) IS USED 
C *** READ IN NON-ZERO DEMAND VALUES, 
C *** 'DEMAND' IS THE NUMBER OF OD PAIRS. 
C *** CALCULATE TRANSIT DEMAND, NUMBER OF TRANSIT VEHICLES NEEDED, 
C ***   AND ADD THE PCE OF THE TRANSIT VEHICLES BACK INTO DEMAND. 
C *** IF THE NUMBER OF TRANSIT TRIPS DEMANDED IS LESS THAN THE PCE, 
C ***   ASSUME NO TRANSIT AVAILABLE.   
 
  70  READ (1,*) DEMAND 
        DO 71 I=1,DEMAND     
           READ(1,*) J,K,D(J,K) 
           IF (MDSPLT.NE.1) THEN 
             SOVDEM=MDSPLT*D(J,K)        
             TRANDEM=(1.0D+0-MDSPLT)*D(J,K) 
             IF (TRANDEM.LT.PCE) GOTO 71 
             TRANVEH=TRANDEM/TVOCC 
             TVREM=MOD(TRANDEM,TVOCC) 
               IF (TVREM.GE.1.0D+0) THEN 
                  TRANVEH=NINT((TRANDEM/TVOCC)+5.0D-1) 
               ELSE 
                  TRANVEH=INT(TRANVEH) 
               END IF 
             TRANPCE=PCE*TRANVEH 
             D(J,K)=SOVDEM+TRANPCE 
           END IF  
  71    CONTINUE 
       
C *** INPUT TITLE OF PROBLEM TO BE SOLVED, 
C ***   THIS SETS WHICH PARAMETERS ARE TO BE READ. 
                                                               
  80  READ(2,*) NUMB 
      READ(2,*) NAME      
 
C *** INPUT NUMBER OF ORIGINS, NUMBER OF NODES, NUMBER OF LINKS, 
C ***   ROAD TYPES TO BE EXPANDED, AND LEVEL OF SERVICE DESIRED 
                                                                        
    1 READ(2,*) NUMORG,NNODE,NLINK 
      READ(2,*) TYPES,(LKS(L),L=1,TYPES) 
      READ(2,*) LOS 
 
C *** INPUT OF THE NETWORK                                                                                                              
C *** READ START AND END NODES FOR LINKS & 
C *** READ IN DATA ASSOC W LINK CHARACTERISTICS. 
C        CLINK-1=ffs tvl time (HRS) 
C        CLINK-2=0.15 (BPR Coeff) 
C        CLINK-3=capacity 
C        CLINK-4=BPR tvl time  
C        SLINK-1=FFS (mph) 
C        SLINK-2='functional class' 
C        SLINK-3=area type 
C        SLINK-4=#-lanes 
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C        GLINK-1=link length (mi) 
C        GLINK-2=LOS 
 
      NPOSS=0 
      DO 4 I=1,NLINK 
C *** FOR PROBLEMS 1 OR 2 DATA INPUT IS SLIGHTLY DIFFERENT 
        IF (NUMB.LE.2) THEN 
          READ(2,*) NFMNODE(I),NTONODE(I),CLINK(I,3), 
     &     GLINK(I,1), SLINK(I,1) 
          DO 31 L=1,TYPES 
                 IF (SLINK(I,1).EQ.LKS(L)) THEN 
                   NPOSS=NPOSS+1 
                   LISTY(NPOSS)=I 
                   GLINK(I,2) = LOS 
                 ENDIF 
  31      CONTINUE 
        ENDIF 
C *** FOR PROBLEMS 3(TC) DATA INPUT IS DIFFERENT 
        IF (NUMB.EQ.3) THEN 
          READ(2,*) NFMNODE(I),NTONODE(I), 
     &      SLINK(I,2), GLINK(I,1),SLINK(I,1), 
     &      SLINK(I,3),SLINK(I,4), CLINK(I,3) 
          DO 32 L=1,TYPES 
                 IF (SLINK(I,2).EQ.LKS(L)) THEN 
                   NPOSS=NPOSS+1 
                   LISTY(NPOSS)=I 
                   GLINK(I,2) = LOS 
                 ENDIF 
  32      CONTINUE 
        ENDIF 
C *** USE SLINK(K,2) FOR ASS GRP OR AREA TYPE FOR VC LOS. 
        CLINK(I,2)=1.5D-01 
          if (CLINK(I,3).EQ.0.0d+0) CLINK(I,3)=2.4d+03 
          if (SLINK(I,1).EQ.0.0d+0) SLINK(I,1)=1.5d+01 
C *** CONVERT TIME TO MINUTES.             
        CLINK(I,1)=6.0D+01*(GLINK(I,1)/SLINK(I,1))       
    4 CONTINUE 
C IF LINK CAN BE EXPANDED THEN TRUE.     
      DO 35 K=1,NPOSS 
        NPOSSLST(LISTY(K))=.TRUE. 
   35 CONTINUE     
C *** FILL NPOINT WITH THE START OF NEW NODE NOS.    
      K=0 
      J=1 
      DO 44 I=1,NLINK 
  
  45    IF (NFMNODE(I).EQ.J) THEN 
            K=K+1          
            IT(J)=K 
          ELSE 
            K=0 
            J=J+1 
            IT(J)=K             
            GOTO 45 
          ENDIF   
  44  CONTINUE 
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      J=0 
      DO 46 I=1,NNODE 
        J=J+IT(I) 
        NEXT(I)=J       
  46  CONTINUE 
c 
C ** FILL NPOINT WITH THE START OF NEW NODE NOS.    
      NPOINT(1)=1 
      DO 47 I=2,NNODE 
        NPOINT(I)=NPOINT(I-1)+IT(I-1) 
  47  CONTINUE  
 
C       INITIAL DIAL ASSIGNMENT TO DETERMINE EFFICIENT PATHS 
           DO 93 K=1,NLINK 
        XGUESS(K) = ZERO 
             CLINK(K,4)=CLINK(K,1) 
  93  CONTINUE 
 
C *** DONE WITH MOOREPAPE SUBROUTINE 
        return 
      END 
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***********************************************************************       
***                    Start of subroutine SHPTHL                   *** 
C  THIS IS ALMOST ENTIRELY BASED ON PAPE ALGORITHM FROM NETLIB. 
***********************************************************************       
       
 SUBROUTINE SHPTHL(J0) 
 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER LIM3 
      PARAMETER (LIM3=15000) 
      INTEGER NJ(LIM3), J0 
      DOUBLE PRECISION INF,MJI,MJK 
      DATA INF /9999999/ 
 
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                       
 
        COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
 
C     SHPTHL CALCULATES THE SHORTEST PATH LENGTHS (MJ) FROM A SPECIFIC 
C     NODE (J0) TO ALL OTHER (N-1) NODES IN A NETWORK (FLIST,DFLIST,KF). 
C     PREDECESSOR NODES ARE STORED IN WJ. 
C 
C     NTONODE      : FORWARD INDEX LIST 
C     CLINK(K,1) : DISTANCE LIST 
C     NEXT       : POINTER LIST FOR FLIST AND DFLIST 
C     NNODE      : NUMBER OF NODES 
C     CAB        : ARRAY OF SHORTEST PATH LENGTHS 
C     J          : INITIAL NODE, FIRST NODE OF SHORTEST PATH 
C     NPRED       : ARRAY OF PREDECESSORS FOR SHORTEST PATH CONSTRUCTION 
C     NJ    : DOUBLE ENDED QUEUE FOR NODE DISCUSSION 
C     INF   : A LARGE NUMBER 
C 
      DO 1 I=1,NNODE 
        ABI(I)=INF 
        NPRED(I)=0 
          NJ(I)=0 
  1   CONTINUE   
      ABI(J0)=0.0D+0 
C 
C     I     : INDEX FOR NODE DISCUSSION, NODE UNDER DISCUSSION 
C     NT    : POINTER TO THE END OF DEQUE NJ 
C     MJI   : LOCAL VARIABLE OF MJ(I) 
C     KFI   : LOCAL VARIABLE OF KF(I) 
C     KFI1  : LOCAL VARIABLE OF KF(I)+1 
C     IR    : INDEX FOR ARRAY DISCUSSION 
C     K     : SUCCESSOR OF NODE I 
C     MJK   : LOCAL VARIABLE OF MJ(K) 
C     NJI   : LOCAL VARIABLE OF NJ(I), THE NEXT NODE OF NJ TO BE TAKEN 
C             UNDER DISCUSSION 
C 
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      NJ(J0)=INF 
      I=J0 
      NT=J0 
C 
C     OUTER LOOP 
C     DISCUSSION OF NODES I 
  2   KFI=NEXT(I) 
      MJI=ABI(I) 
        IF (I.EQ.1) THEN 
        KFI1=1 
        ELSE 
        KFI1=NEXT(I-1)+1 
      ENDIF 
C 
C *** INNER  LOOP 
C *** DISCUSSION OF SUCCESSORS K 
C 
      IF (KFI1.GT.KFI) GO TO 6 
      DO 5 IR=KFI1,KFI 
        K=NTONODE(IR) 
        MJK=MJI+CLINK(IR,1) 
C *** NO DECREASE OF SHORTEST DISTANCES 
        IF (MJK.GE.ABI(K)) GO TO 5 
C *** DECREASE OF SHORTEST DISTANCES 
          ABI(K)=MJK 
C *** PREDECESSOR I OF NODE K 
          NPRED(K)=I 
C *** NODE K ALREADY IN THE DEQUE NJ ? 
          IF (NJ(K))  4,3,5 
C *** NODE K ADDED AT THE END OF THE DEQUE NJ 
    3     NJ(NT)=K 
          NT=K 
          NJ(K)=INF 
          GO TO 5 
C *** NODE K ADDED AT THE BEGINNING OF THE DEQUE NJ 
    4     NJ(K)=NJ(I) 
          NJ(I)=K 
          IF (NT.EQ.I) NT = K 
    5 CONTINUE 
C *** NODE I TAKEN FROM THE BEGINNING OF THE DEQUE NJ 
    6 NJI=NJ(I) 
      NJ(I)=-NJI 
      I=NJI 
      IF (I.LT.INF) GOTO 2 
      RETURN 
      END 
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********************************************************************** 
****                    Start of subroutine INDEXX             **** 
********************************************************************** 
 
      SUBROUTINE INDEXX 
 
C This subroutine constructs an index table for the travel time between 
C nodes in the network. From pp. 330-332 Numerical Recipes in FORTRAN. 
 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
    INTEGER M,NSTACK,LIM3 
    PARAMETER (M=7,NSTACK=50, LIM3=15000) 
 
C Indexes an array ABI(1:NNODE), i.e., outputs the array NIPE(1:NNODE)  
C such that ABI(NIPE(j)) is in ascending order for j = 1; 2; : : : ; 
C  NNODE. The input quantities NNODE and ABI are not changed. 
 
    INTEGER i,indxt,ir,itemp,j,jstack,k,l, 
     &  istack(NSTACK) 
 
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                       
 
    COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
 
    DO 11 j=1,NNODE 
       NIPE(j)=j 
 11 CONTINUE 
    jstack=0 
    l=1 
    ir=NNODE 
  1   IF(ir-l.lt.M)THEN 
      DO 13 j=l+1,ir 
        indxt=NIPE(j) 
        a=ABI(indxt) 
        DO 12 i=j-1,l,-1 
          IF(ABI(NIPE(i)).le.a) GOTO 2 
              NIPE(i+1)=NIPE(i) 
 12       CONTINUE 
        i=l-1 
  2       NIPE(i+1)=indxt 
 13   CONTINUE 
      IF(jstack.eq.0)RETURN 
        ir=istack(jstack) 
        l=istack(jstack-1) 
        jstack=jstack-2 
    ELSE 
      k=(l+ir)/2 
      itemp=NIPE(k) 
      NIPE(k)=NIPE(l+1) 
      NIPE(l+1)=itemp 
      IF(ABI(NIPE(l)).GT.ABI(NIPE(ir)))THEN 
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          itemp=NIPE(l) 
        NIPE(l)=NIPE(ir) 
        NIPE(ir)=itemp 
        ENDIF 
      IF(ABI(NIPE(l+1)).GT.ABI(NIPE(ir)))THEN 
         itemp=NIPE(l+1) 
        NIPE(l+1)=NIPE(ir) 
        NIPE(ir)=itemp 
      ENDIF 
      IF(ABI(NIPE(l)).gt.ABI(NIPE(l+1)))THEN 
        itemp=NIPE(l) 
        NIPE(l)=NIPE(l+1) 
        NIPE(l+1)=itemp 
      ENDIF 
      i=l+1 
      j=ir 
      indxt=NIPE(l+1) 
      a=ABI(indxt) 
  3     CONTINUE 
      i=i+1 
      IF(ABI(NIPE(i)).lt.a)GOTO 3 
  4     CONTINUE 
        j=j-1 
      IF(ABI(NIPE(j)).gt.a)GOTO 4 
       IF(j.lt.i)GOTO 5 
      itemp=NIPE(i) 
      NIPE(i)=NIPE(j) 
      NIPE(j)=itemp 
      GOTO 3 
  5     NIPE(l+1)=NIPE(j) 
      NIPE(j)=indxt 
      jstack=jstack+2 
      IF(jstack.gt.NSTACK)PAUSE 'NSTACK too small in indexx' 
      IF(ir-i+1.ge.j-l)THEN 
        istack(jstack)=ir  
        istack(jstack-1)=i 
        ir=j-1 
      ELSE 
        istack(jstack)=j-1 
        istack(jstack-1)=l 
        l=i 
      ENDIF 
    ENDIF 
    GOTO 1 
c 
    return 
    END  
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********************************************************************** 
****                    Start of subroutine STOCHO             **** 
********************************************************************** 
 
C *** THIS SUBROUTINE SOLVES A DIAL ASSIGNMENT. 
C For more information, see pp. 122-129 and pp. 284-294 of Sheffi's 
C "Urban Transportation Networks". 
 
      SUBROUTINE STOCHO(JX,X)   
       
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER LIMIT, LIM2, LIM3 
      PARAMETER (LIMIT=25000, LIM2=2000, LIM3=15000) 
      DATA INF /9999999/ 
      INTEGER BEGIN, JX 
      LOGICAL NPOSSLST(LIMIT) 
       
      DOUBLE PRECISION LK(LIMIT),  
     &   W(LIMIT), SUM1(LIMIT), 
     &   X(LIMIT), XSUM(LIMIT), ZERO, TEMP 
 
      DOUBLE PRECISION P(LIM2,LIMIT), W1(LIM2,LIM2),  
     &   SUMJD(LIM2), WJTD(LIM2,LIMIT), WJD(LIMIT), 
     &   WOTI(LIMIT), WITJ(LIMIT) 
      
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                       
 
 COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
      COMMON /KSINPUT2a/ THETA 
     COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
      
     ZERO   = 0.0d+00 
 
C *** PRELIMINARIES FOR SETTING UP SHEFFI VERSION OF 
C *** SINGLE PASS OF DIAL ASSIGNMENT. 
 
      K = 1 
      BEGIN = 1 
      DO 70 I = 1,NNODE 
        DO 69 J = BEGIN,NEXT(I) 
          IF (ABI(I).LE.ABI(NTONODE(J))) THEN 
            LK(K) = EXP(theta*(ABI(NTONODE(J))-ABI(I)-CLINK(J,4))) 
          ELSE 
            LK(K) = ZERO 
          ENDIF 
            K = K + 1 
   69   CONTINUE 
        BEGIN = NEXT(I) + 1 
   70 CONTINUE 
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C *******FIND LINK WEIGHTS - MODIFIED FORWARD PASS************** 
 
      DO 77 I=1,NLINK 
      W(I)=ZERO 
      X(I)=ZERO 
  77 CONTINUE 
      DO 78 I=1,NNODE 
      SUM1(I)=ZERO 
      XSUM(I)=ZERO  
  78 CONTINUE 
    SUM1(JX)=1.0D+0 
    DO 90 K=2,NNODE       
           I=NIPE(K) 
         
C ****** COMPUTE SUM(I) = SUM OF W(M,I)** 
C ****** FIND LINKS GOING INTO I, ADD WTS.** 
 
        DO 80 L=1,NLINK 
          IF (NTONODE(L) .EQ. I) THEN 
            W(L)=LK(L)*SUM1(NFMNODE(L)) 
        SUM1(I) = SUM1(I) + W(L) 
       ENDIF 
   80   CONTINUE 
  90  CONTINUE 
  
C ******* CALCULATE LINK VOLUMES - MODIFIED BACKWARD PASS************ 
C ******* CONSIDER NODES IN DESCENDING ORDER OF DIST. FROM ORIGIN, JX** 
 
    TEMP=ZERO 
      DO 110 K=0,(NNODE-2) 
C ******* J = NODE NO.** 
        J=NIPE(NNODE - K) 
C ******* L = LINK NO. 
        IF (SUM1(J).NE.ZERO) THEN 
      TEMP=D(JX,J) + XSUM(J) 
      IF (TEMP.NE.ZERO) THEN 
            DO 105 L=1,NLINK 
            IF ( NTONODE(L) .EQ. J. AND. 
     &      W(L).NE.ZERO ) THEN 
               X(L)= ( TEMP ) * ( W(L)/SUM1(J) ) 
             XSUM(NFMNODE(L))=XSUM(NFMNODE(L))+X(L) 
            ENDIF 
  105       CONTINUE 
          ENDIF 
        ENDIF  
  110 CONTINUE 
C 
      RETURN 
      END 
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********************************************************************** 
****                    Start of subroutine MSA                   **** 
********************************************************************** 
 
      SUBROUTINE  MSA(YGUESS) 
       
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER LIMIT,  LIM3 
      PARAMETER (LIMIT=25000,LIM3=15000) 
 
      LOGICAL NPOSSLST(LIMIT) 
 
      INTEGER ITNUM, MAXMSA, phase, phaseit, minit 
 
      CHARACTER*12 FNAME 
 
      DOUBLE PRECISION ZERO, DIFF, 
     & ERRMAX, ERRCRIT, FIT, YGUESS(LIMIT),  
     & DA(LIMIT),XT(LIMIT),CONST(LIMIT) 
 
      COMMON /KSINPUT1/ NNODE, NUMORG, 
     & NEXT(15000), NPRED(15000), 
     & NTONODE(25000),NFMNODE(25000),XGUESS(25000), 
     & GLINK(25000,2),SLINK(25000,4), CLINK(25000,6),NIPE(15000)                      
 
      COMMON /KSINPUT2/ ABI(15000),  
     & D(2000,15000),NLINK, NPOINT(15000) 
      COMMON /KSINPUT2a/ THETA 
      COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
      COMMON /KSINPUT4/ NUMB, NAME       
 
      ZERO    = 0.0D+0 
 
c     Instead of hard-coding termination criteria, read from a 
c     file named 'termcrit'.  First line needs to be maximum number 
c     of iterations before giving up, second line is maximum error 
c     for a successful termination.  If file open fails, use hard 
c     coded defaults. 
       
      OPEN (UNIT=51,FILE='termcrit',STATUS='OLD',ERR=20) 
      READ(51,*) MAXMSA 
      READ(51,*) ERRCRIT 
      read(51,*) minit 
      GOTO 21 
20    MAXMSA = 32000 
      ERRCRIT = 1.0D+0 
      minit = 20 
 
 
C NOW DO MSA TO FIND INTIAL FEASIBLE SOL'N 
 
  21  IF (NUMB.LE.2) THEN 
        DO 22 K=1,NLINK 
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          IF (NPOSSLST(K)) THEN 
            CONST(K)= ((( 1 / CLINK (K,2) )* 
     &       ( (SLINK(K,1)/GLINK(K,2)) - 1 ) )**(2.5D-01)) 
          ENDIF 
  22    CONTINUE 
      ENDIF 
      IF (NUMB.EQ.3) THEN 
        DO 23 K=1,NLINK 
          IF (NPOSSLST(K)) THEN 
            CONST(K)= GLINK(K,2) 
          ENDIF 
  23    CONTINUE 
      ENDIF 
      ITNUM=0 
 
      phase=1 
      phaseit=0 
 
  100 ITNUM=ITNUM+1 
      IF (ITNUM.LE.MAXMSA) THEN 
        DO 5 K=1,NLINK 
          IF(NPOSSLST(K))THEN              
              TEMP=(XGUESS(K)/CONST(K))-CLINK(K,3) 
              YGUESS(K)=MAX(ZERO,TEMP) 
          ENDIF 
 5      CONTINUE          
   
c FOR OTHER EXAMPLES (NOT TWIN CITIES)  
c   INPUT FILES WERE FORMATTED DIFFERENTLY 
c Other problems were used to test code originally.   
 
        IF (NUMB.NE.3) THEN 
          DO 110 K=1,NLINK 
            CAP = CLINK(K,3) 
            IF(NPOSSLST(K))THEN 
              CAP = CAP + YGUESS(K) 
            ENDIF 
            VC = (XGUESS(K)/CAP) 
            IF(NPOSSLST(K))THEN 
              IF (YGUESS(K).GT.ZERO) THEN 
                CLINK(K,4)=CLINK(K,1)* 
     &                     (1.0D+0+1.5D-01*CONST(K)**4.0D+0) 
              ELSE 
                CLINK(K,4)=CLINK(K,1)* 
     &                     (1.0D+0+1.5D-01*(VC)**4.0D+0) 
              ENDIF 
            ELSE 
              CLINK(K,4)=CLINK(K,1)* 
     &          (1.0D+0+1.5D-01*(VC)**4.0D+0) 
            ENDIF 
            DA(K)=ZERO 
            XT(K)=ZERO 
  110     CONTINUE 
        ENDIF 
 
c FOR TWIN CITIES PROBLEM 
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        IF (NUMB.EQ.3) THEN 
          DO 140 K=1,NLINK 
            CAP = CLINK(K,3) 
            IF(NPOSSLST(K))THEN 
              CAP = CAP + YGUESS(K) 
            ENDIF 
            VC = (XGUESS(K)/CAP) 
 
C  CALCULATE TRAVEL TIMES FOR DIFFERENT FUNCTIONAL CLASSES 
 
             IF(SLINK(K,2).EQ.9)THEN 
c  FUNCTION TC[9] = T0 
               CLINK(K,4)=CLINK(K,1) 
             ELSE 
               IF(SLINK(K,2).EQ.6)THEN 
c  FUNCTION TC[6] = T0 * (2+SQRT(25*(1-(V/C))^2 + 1.266) - 5*(1-(V/C)) - 
1.125)  
                 CLINK(K,4)=CLINK(K,1)*(2.0D+0 + 
     &                 ((2.5D+01*(1.0D+0-(VC))**2.0D+0 + 1.266D+0) 
     &                 **5.0D-01)- 5.0D+0*(1.0D+0-(VC)) - 1.125D+0) 
               ELSE 
                 IF(SLINK(K,2).EQ.7)THEN 
c  FUNCTION TC[7] = T0 * (2+SQRT(36*(1-(V/C))^2 + 1.210) - 6*(1-(V/C)) - 
1.100)  
                   CLINK(K,4)=CLINK(K,1)*(2.0D+0+ 
     &                   ((3.6D+01*(1.0D+0-(VC))**2.0D+0 + 1.210D+0) 
     &                   **5.0D-01)- 6.0D+0*(1.0D+0-(VC)) - 1.100D+0)  
                 ELSE 
c  FUNCTION TC[1] = T0 * (2+SQRT(16*(1-(V/C))^2 + 1.361) - 4*(1-(V/C)) - 
1.167)  
                   CLINK(K,4)=CLINK(K,1)*(2.0D+0+ 
     &                   ((1.6D+01*(1.0D+0-(VC))**2.0D+0 + 1.361D+0) 
     &                   **5.0D-01)- 4.0D+0*(1.0D+0-(VC)) - 1.167D+0) 
                 ENDIF 
               ENDIF 
             ENDIF 
 
          DA(K)=ZERO 
          XT(K)=ZERO 
  140     CONTINUE 
        ENDIF 
         
 
 
        DO 120 J=1,NUMORG 
          CALL SHPTHL(J)              
          CALL indexx 
          CALL STOCHO(J,XT) 
               DO 115 K=1,NLINK 
  115              DA(K)=DA(K)+XT(K) 
  120   CONTINUE 
        ERRMAX=ZERO 
 
        PHASEIT=PHASEIT+1 
        IF (PHASEIT.GT.PHASE*MINIT) THEN 
           PHASEIT=1 
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           PHASE=PHASE+1 
        ENDIF 
 
        FIT=FLOAT(PHASEIT) 
 
        DO 130 K=1,NLINK 
          DIFF=DA(K)-XGUESS(K) 
          ERRMAX=DMAX1(ERRMAX,DABS(DIFF)) 
          XGUESS(K)=XGUESS(K) + DIFF/FIT 
  130   CONTINUE 
   
C *** ERRMAX IS CURRENT SOL'NS DIFF IN ASSIGNMENT FROM PREVIOUS, 
C *** ERRCRIT IS DESIRED CONVERGENCE TOLERANCE. 
 
             WRITE(3,*) 'ITNUM = ', ITNUM, ', ERRMAX = ', ERRMAX 
c            PRINT *, 'ITNUM = ', ITNUM, ', ERRMAX = ', ERRMAX 
             FNAME= 'rslt'//CHAR(48 +INT(ITNUM/1000))// 
     &             CHAR(48 +INT(MOD(ITNUM,1000)/100))// 
     &             CHAR(48 +INT(MOD(ITNUM,100)/10))// 
     &             CHAR(48 +MOD(ITNUM,10))//'.txt' 
             OPEN (UNIT=4,FILE=FNAME,STATUS='unknown') 
             WRITE(4,*) 'ITNUM = ', ITNUM, ', ERRMAX = ', ERRMAX       
         do 12 k=1,NLINK 
           write(4,'(2e20.11)')xguess(k),YGUESS(k) 
   12    CONTINUE 
         close (4) 
        IF (ERRMAX.GT.ERRCRIT) GOTO 100 
           ENDIF 
             WRITE(3,*) 'FINAL = ' 
         do 11 k=1,NLINK 
           CAP=CLINK(K,3) 
           id=0 
           IF (SLINK(I,1).EQ.1.OR.SLINK(I,1).EQ.2) THEN 
             id=1 
           endif 
           IF(NPOSSLST(K))THEN 
              CAP=CAP+YGUESS(K) 
           ENDIF 
           VC = (XGUESS(K)/CAP)          
c           write(3,'(I8.2,2F12.0,1F12.5,I8.2)') k, xguess(k), 
c     &       YGUESS(k), VC, id 
           write(3,'(2e14.5)')xguess(k),YGUESS(k) 
   11    CONTINUE           
            
C *** DONE WITH MSA SUBROUTINE 
      END 



  

 

 

Appendix C:  Sample Input Excerpts 
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Origin-Destination Demand 

256342 
1,1,1422.52 
1,2,142.54 
1,3,229.24 
1,4,2.94 
1,5,16.61 
1,6,13.20 
1,7,21.33 
1,8,4.80 
1,9,41.70 
1,10,9.60 
1,11,29.63 
1,12,16.52 
1,13,7.88 
1,14,4.39 
1,15,3.63 
1,21,3.37 
1,23,2.26 
1,24,5.40 
1,25,3.48 
1,26,19.55 
1,27,14.03 
1,28,6.61 
1,29,3.77 
1,30,19.32 
1,31,5.88 
1,32,4.07 
1,33,5.82 
1,34,12.72 
1,35,5.25 
1,36,17.21 
1,37,5.67 
1,39,28.54 
1,40,43.69 
1,41,34.90 
1,42,12.45 
1,43,69.02 
1,44,13.45 
1,45,25.80 
1,46,21.88 
1,47,7.85 
1,48,8.57 
1,49,12.96 
1,50,14.34 
1,51,2.72 
1,52,2.31 
1,53,6.45 
1,55,2.52 
1,56,2.36 
1,57,2.66 
1,58,3.62 
1,59,2.33 
1,60,2.37 
1,63,2.77 

[Total O-D Pairs] 
[Origin], [Destination], [Demand] 
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Network Links 

3 
'TWIN CITIES PM 2030 LOS C' 
1236,12598,21158 
2,1,2 
0.68 
1,7738,9,2.3000,23.0000,1,1,0 
1,9023,9,1.4400,22.9800,1,1,0 
2,7736,9,1.9500,22.9900,1,1,0 
2,8044,9,2.1600,23.0200,1,1,0 
2,8045,9,0.8600,23.0400,1,1,0 
3,7741,9,2.4200,23.0100,1,1,0 
3,9016,9,1.6300,23.0100,1,1,0 
3,9017,9,1.7300,23.0200,1,1,0 
3,9023,9,1.7400,23.0000,1,1,0 
4,7764,9,1.1100,22.9700,1,1,0 
4,9016,9,2.0700,23.0000,1,1,0 
4,9018,9,1.5900,22.9900,1,1,0 
5,7711,9,0.4800,23.0400,1,1,0 
5,7741,9,1.3400,22.9700,1,1,0 
6,7743,9,0.9500,22.9800,1,1,0 
6,9017,9,1.5300,23.0100,1,1,0 
6,9018,9,1.4900,22.9800,1,1,0 
7,7712,9,1.3200,23.0200,1,1,0 
7,7735,9,0.4600,23.0000,1,1,0 
8,7660,9,0.1000,23.0800,1,1,0 
8,7731,9,0.8900,23.0200,1,1,0 
9,7734,9,2.3300,22.9900,1,1,0 
9,7735,9,2.0400,23.0100,1,1,0 
9,8045,9,2.1800,22.9900,1,1,0 
10,7728,9,1.3600,22.9900,1,1,0 
10,7733,9,0.6200,22.9600,1,1,0 
11,7725,9,0.9000,22.9800,1,1,0 
11,8046,9,0.7600,23.0300,1,1,0 
12,7725,9,2.0000,22.9900,1,1,0 
12,7729,9,1.2500,23.0100,1,1,0 
12,9244,9,2.6200,23.0200,1,1,0 
13,7724,9,2.5600,22.9900,1,1,0 
13,7728,9,1.9900,23.0100,1,1,0 
13,7730,9,0.9100,23.0400,1,1,0 
14,7544,9,1.4700,23.0300,1,1,0 
14,7724,9,0.6100,23.0200,1,1,0 
15,7541,9,1.3700,23.0300,1,1,0 
15,9244,9,2.6900,22.9900,1,1,0 
16,7540,9,1.1800,22.9900,1,1,0 
17,7535,9,1.1900,23.0300,1,1,0 
17,7540,9,1.3000,23.0100,1,1,0 
18,7535,9,1.9000,22.9800,1,1,0 
19,7534,9,0.8500,22.9700,1,1,0 
20,7667,9,0.3500,23.0800,2,1,0 
20,7670,9,0.5000,23.0800,2,1,0 
21,7536,9,2.5200,23.0100,1,1,0 
21,7669,9,1.9200,22.9900,1,1,0 
21,7673,9,0.4800,23.0400,1,1,0 
21,7678,9,1.2400,23.0300,1,1,0 

Problem ID Number and Name 
 
Number of Origins, Nodes, and Links 
Number of Road Types to expand and their functional classes IDs 
Level of Service Desired 
 

[Origin], [Destination], [Functional Class], [Link Length], 
[FFS in mph], [Area Type], [Number of Lanes], [Capacity] 
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Transportation Analysis District (TAD) Aggregation 

1236 
1,1,1 
2,1,1 
3,2,3 
4,2,3 
5,3,5 
6,2,3 
7,3,5 
8,3,5 
9,3,5 
10,4,10 
11,4,10 
12,4,10 
13,4,10 
14,4,10 
15,5,15 
16,9,16 
17,9,16 
18,9,16 
19,8,19 
20,8,19 
21,8,19 
22,8,19 
23,8,19 
24,8,19 
25,8,19 
26,7,26 
27,7,26 
28,7,26 
29,7,26 
30,7,26 
31,11,31 
32,11,31 
33,11,31 
34,10,34 
35,7,26 
36,7,26 
37,7,26 
38,10,34 
39,6,39 
40,6,39 
41,6,39 
42,6,39 
43,6,39 
44,6,39 
45,6,39 
46,6,39 
47,6,39 
48,6,39 
49,10,34 
50,10,34 
51,10,34 

Number of Transportation Analysis Zones (TAZs) 
[TAZ], [TAD], [TAZ representing the given TAD] 
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