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Executive Summary 
 

In 2003, 69 percent of vehicle related fatalities in Minnesota occurred in rural areas.  Nationally, 
crashes on rural highways account for 61 percent of traffic fatalities.  Rural roads carry 
approximately 61 percent of the vehicle miles traveled (VMT) each year in Minnesota.  Of the 
traffic fatalities in Minnesota, 52 percent were due to the vehicle failing to remain in its proper 
lane.  Nationally, lane departures are the single most frequent causal factor in fatal crashes.  
Reducing lane departures has the potential to significantly reduce the number of crashes and 
fatalities on rural roads.   
 
In order to effectively reduce lane departure crashes, it is necessary to be able to predict when a 
vehicle may depart its lane.  If it is possible to determine the time to a lane departure, then the 
driver can be alerted.  The location, speed, and heading of the vehicle and its relative location to 
the lane are required to predict when a vehicle will most likely depart the lane.  Information 
about the vehicle’s position can be obtained using an onboard high accuracy Differential Global 
Positioning System (DGPS).  Lane boundary information of sufficient accuracy can be stored in 
a digital map with sufficient detail and accuracy.  A DGPS and a digital map together can be 
used to determine the vehicle’s relative position to the lane boundaries within centimeters and 
can facilitate predictions as to when a lane departure may occur.   
 

Having the accurate location of a lane in an onboard digital map can also aid snowplow drivers 
in clearing roads in low visibility or whiteout conditions.  By combining high accuracy digital 
maps with high accuracy, dual frequency, carrier phase DGPS, radar, and a conformal, 
augmented graphical display, a virtual view of the road and obstacles ahead can be provided to a 
driver when atmospheric conditions would otherwise preclude driving.  The graphical display is 
augmented with an active, tactile seat which complements the visual system by providing 
vibrational cues to the driver through the seat of where each lane exists, even if the driver cannot 
physically see the road due to low visibility or whiteout conditions.  (The system vibrates the 
right side of the seat if the vehicle is departing to the right, and the left side of the seat if 
departing to the left.)   

 
The focus of this document is the creation of a detailed and accurate digital map.  In order to 
create an accurate digital map, the location of the road and its lanes must be determined.  This 
can be accomplished by collecting data for the center of each lane or the physical boundary of 
the lane.  A lane-striping vehicle can collect the lane boundary information during re-striping, or 
alternatively a computer vision system can be used to locate the lane boundary in an image.  
These data collection methods can be combined with DGPS to develop an accurate map.  Since 
these methods require a vehicle to travel each road, data collection can be a time consuming 
process.  To create a national database, a quick and efficient method to collect and process map 
data needs to be developed.  Once the road boundary data has been collected, it must be 
compressed to a manageable size and the digital map must be generated from the data in such a 
way that other systems can access it without difficulty. 
 
For this document, data collection was facilitated through the use of a computer vision-based 
system with a camera aligned coaxially with a DGPS antenna.  The computer vision-based 



  

system locates the lane boundary in the image and uses DGPS, whose dynamic accuracy was 
previously determined to be 5-8 cm (2.0-3.1 inches) at ± 1σ, to accurately locate the lane 
boundary with respect to a global coordinate system.  By processing the collected computer 
vision data and DGPS data in real-time as the vehicle drives along the road, accurate location 
data of the road can be post-processed into a high accuracy digital map. 
 
The accuracy of the computer vision based system was tested and validated using two separate 
routes with different geometries: Minnesota State Highway 252 and McLeod County 2.  The 
computer vision-based data for each route was compared against a set of lane boundary fiduciary 
points.  By positioning a DGPS antenna at strategic locations over the lane markings and 
collecting static data, an accurate set of fiduciary points defining the lane boundaries became 
available.  The accuracy of this method is equivalent to the static accuracy of the DGPS unit, 
approximately 2-5 cm (0.8-2.0 inches) at ± 1σ.   
 
All of the raw vision-based data was filtered and compressed using a least squares linear 
regression fit.  In order to maintain accuracy and reduce the data density to an acceptable value, 
the data points were fit to a series of line segments to within a specified tolerance level.  Three 
tolerance levels, 5, 10, and 20 cm (2.0, 3.9, and 7.9 inches) were chosen to determine the 
accuracy versus data density trade-off.  By using a tolerance level of 10 cm (3.9 inches) or less, it 
is possible to reduce the data to 1/40th of its original size and achieve a geospatial database that is 
accurate to within 20 cm (7.9 inches). 
 
With the exception of the DGPS unit, all hardware used to collect and process data was 
inexpensive and readily available.  The total one time cost of the equipment, including DGPS, 
camera, laptop computer, and the required hardware for mounting the equipment was calculated 
to be approximately $20,537.00.  Since the described system can be retrofitted to an existing 
vehicle, the cost of purchasing a data collection vehicle is not factored into the cost of the system 
because interested parties should have a vehicle that can be used for data collection.  However, 
the portion of the salary of a data collection vehicle operator, who collects data 30 weeks out of 
the year, was determined to be $31,000.00 per annum (benefits included) and vehicle gas and 
maintenance was determined to be $19,152 per year.   
 
Verification of the data is performed using a Vision Enhancement System (VES), which includes 
a Head-Up Display (HUD).  This additional equipment, which can be installed in the same data 
collection vehicle, represents a one time cost of approximately $7,000.  The quality assurance 
operator, who also works 30 weeks a year, is assumed to receive a $37,000 salary and benefits 
package over that 30 week period.  Since data verification is required for each route, the vehicle 
cost (gas and maintenance) is the same as for data collection: $19,152 per annum.  This results in 
a total cost of annual expenses for mapping to be $133,841.00 (assuming equipment costs are 
spent in the first year; subsequent annual costs will be less).   
 
Based on a reasonable daily data acquisition of 231.7 km (144 miles) of road for three days per 
week and thirty weeks per year, it is possible to digitize 20,857.1 km (12,960 miles) per year.  
This results in a digital map costing $10.33 per mile of road with an accuracy of 20 cm (7.9 
inches).  By equipping four vehicles, the entire rural road system for the state of Minnesota could 
be completed in two years.  If 200 vehicles were dedicated to mapping, the entire rural road 



  

system in the United States could be accurately mapped within three years at a cost of 
approximately $61 million. 
 



  

Definitions and Acronyms 
 
Rural – Area with a population containing less than 5,000 people 
IV Lab – Intelligent Vehicles Laboratory – University of Minnesota Twin Cities campus 
DOT – Department of Transportation 
Mn/DOT – Minnesota Department of Transportation 
NHTSA – National Highway Traffic Safety Administration 
FHWA – Federal Highway Administration 
DAS – Driver Assistive System 
GPS –Global Positioning System 
DGPS – Differential GPS, centimeter-level accuracy 
RTK – Real-Time Kinematic 
VRS – Virtual Reference Station, provides differential correction to DGPS  
RTF – Radar Target Filter 
VES – Vision Enhancement System – uses a Head-Up Display (HUD) 
GIS – Geographic Information Systems 
GSD – Geospatial Database 
GUI – Graphical User Interface 
Fog Line – Outermost lane marking separates driving lanes from shoulder or barrier 
HA-NDGPS – High Accuracy-Nationwide DGPS – FHWA 
IMU – Inertial Measurement Unit, consists of rate gyros and accelerometers 
LiDAR – Light Detection and Range 
RND – Road Network Databases 
NSSDA - National Standard for Spatial Data Accuracy 
FCC – Federal Communications Commission  
CDPD - Cellular Digital Packet Data 
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Chapter 1: 
Introduction 
Due to the large number of road fatalities that occur every year, the Minnesota Department of 
Transportation (Mn/DOT) joined the Minnesota Department of Public Safety, the University of 
Minnesota’s Center for Transportation Studies, and the Minnesota State Patrol to create a 
program called “Toward Zero Deaths” (http://www.tzd.state.mn.us/index.html) that attempts to 
reduce the 600+ annual traffic fatalities and life-changing crashes in Minnesota.  Every year 69 
percent (Table 1.1) of the total vehicle related fatalities in Minnesota and 61 percent nationally 
occur in rural areas [1] (rural areas are defined as containing a population of less than 5,000 
persons).  Clearly, reducing fatalities in rural areas should be a national priority. 
 
Table 1.1 – 2003 Crashes by population of area (from 2003 Minnesota Crash Facts, Table 
1.24) 

Population of 
City or Township

 
Fatal Crashe

 
Persons K

100,000 & Over 34 37 
50,000 - 99,999 31 31 
25,000 - 49,999 37 44 
10,000 - 24,999 53 63 
5,000 - 9,999 27 28 
2,500 - 4,999 12 13 
1,000 - 2,499 17 17 
Under 1,000 372 422 
Total 583 655 

 
 
Of the traffic fatalities in Minnesota, 52 percent can be attributed to lane departures crashes 
(Table 1.2).  Vehicular lane departure is associated with a vehicle departing the lane and 
colliding with another vehicle or fixed objects on the side of the road.  Alerting the driver can 
prevent many of these rural crashes and consequently reduce the amount of fatalities on rural 
roads. 
 
For a number of years, the University of Minnesota’s Intelligent Vehicles Laboratory (IV Lab) 
has developed systems that assist the driver in difficult conditions.  These Driver Assistive 
Systems (DAS), explained in Section 1.3, help drivers stay in their lane and avoid collisions.  
These systems use a number of modalities, including visual and haptic feedback, to keep the 
driver from leaving the lane.  To be effective, the system must determine where the lane 
boundaries are with respect to the vehicle.  This requires both a method to sense the location of 
the vehicle within the lane and a representation of the roadway with which to compare the 
position of the vehicle.  One approach that presently can be used to accurately determine the 
location of the vehicle is the Differential Global Positioning System (DGPS).  GPS calculates an 
accurate position to within 10 meters (32.8 feet) as a single point on the earth.  By using a dual- 
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frequency, carrier phase, differential GPS, the accuracy improves to within centimeters.  This 
will be explained further in Chapter 2. 
 

Table 1.2 – Crashes by diagram (from 2003 Minnesota Crash Facts, Table 1.23) 
 

Diagram 
 

Fatal 
Crashes 

 
Persons 
Killed 

Rear End  28 30 
Sideswipe Passing  12 13 
Left Turn -- Oncoming Traffic  15 15 
Ran Off Road - Left  99 106 
Right Angle  113 135 
Right Turn -- Cross Street Traffic 1 1 
Ran Off Road - Right  101 106 
Head On  99 128 
Sideswipe Opposing  4 4 
Not Applicable 31 33 
Other / Unknown / Incomplete 80 84 

Total 583 655 

 
 
The location of the road and its lanes, with respect to a global coordinate frame, must be 
collected and processed into a usable map.  Therefore, the focus of this document is the efficient 
creation of a detailed and accurate digital map.   
 
1.1 Background 

Accuracy is the most important measure when creating digital maps used for vehicle guidance 
and lane departure systems.  Traditionally, photogrammetry has been the method of choice for 
mapping roads when accuracy is a priority.  Photogrammetry uses an aircraft equipped with 
DGPS, high accuracy inertial measurements, and high resolution cameras to capture images of 
roads or regions of interest.  Currently, photogrammetry can produce a map with an accuracy of 
30.5 cm (12 inches) or better.  A downside to photogrammetry is that it is a very time consuming 
process, which is skilled labor intensive, and therefore expensive.  There are multiple steps 
involving aerial data collection, creating image mosaics and orthoimages, which may also 
include manual intervention [2].  Photogrammetry is not performed solely for road location.  It is 
used to create multiple maps concentrating on different characteristics of a single area including 
the positions of building, waterways, and land topography.  Unless the data is readily available, 
photogrammetry is not a reasonable approach for acquiring digital maps used for lane departure 
warnings since its accuracy is generally insufficient and the cost can be expensive, $18,000 –  
$35,000 per mile, depending on the features required.   
 
Photogrammetry is not the only airborne method used for collecting road data.  Some companies 
are using Light Detection And Range (LiDAR) to collect data.  Aerial mapping, using LiDAR 
combined with GPS and an Inertial Navigation System (INS), can give results similar to 
photogrammetry with accuracy of approximately 30.5-45.7 cm (12-18 inches), depending on 
aircraft altitude.  One company using airborne LiDAR is Optech (http://www.optech.ca/).  
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LiDAR can collect the same features (buildings, roads, waterways, topography, etc.) as 
photogrammetry, but yields a faster turnaround time.  McNabb [3] has created a 90,000-km2 map 
of buildings, roads, waterways, and topography with an accuracy of 50.8 cm (20 inches) in 15.5 
hours. 
 
Satellite imagery is another method of acquiring data.  The resolution of satellite imagery is 
typically on the order of one image pixel equivalent to 10 by 10 meters (32.8 by 32.8 feet) [4].  
This method is useful for topographic map creation where features can be located.  SPOT-5, a 
satellite component of the SPOT program developed by France, Belgium, and Sweden, increases 
the resolution to 2.5 meters (8.2 feet).  However, a major issue is the accurate differentiation of 
the features in the image.  By using software for detecting roads in satellite imagery, many roads 
can be extracted automatically.  However, the satellite imagery resolution is not sufficient for 
detecting individual lanes on a road, just the location of the road. 
 
For many applications, ground-based road data collection is a cheaper and easier method than 
aerial road data collection.  By using GPS and INS, one can achieve high accuracy maps on the 
order of 1-3 meters (3.3-9.8 feet).  This method has been employed by a number of groups 
wishing to generate inexpensive, high accuracy maps.  In this situation, the data acquisition 
system is mounted onto a vehicle, which drives the road network and creates the map.  Wilson 
and Rogers [5][6] use multiple vehicles equipped with GPS units to create and refine maps.  It is 
possible to construct these maps using the data collected from drivers going about their everyday 
activities.  By initializing their system with a commercial map accurate to 7 meters (23.0 feet) as 
a baseline, Wilson and Rogers improved their accuracy to 1-2 meters (3.3-6.6 feet). 
  
The National Highway Traffic Safety Administration (NHTSA) and the Federal Highway 
Administration (FHWA) funded a consortium of automakers called the Crash Avoidance Metrics 
Partnership (CAMP) to create highly accurate digital map databases and related active safety 
systems as part of the Enhanced Digital Map (EDMap) Project [7].  The EDMap project team 
consisted of DaimlerChrysler, Ford, General Motors, and Toyota along with a commercial map 
company, Navigation Technologies (NavTeq) (http://www.navteq.com).  They worked to 
develop a number of enhancements to digital maps that would improve the performance of driver 
assistance systems.  The EDMap Project’s map includes the road geometry, the width of each 
lane, as well as the GPS locations of signs and traffic signals.  In November of 2004, EDMap 
released their final report detailing their progress.  Focusing on their geometry accuracy, they 
stated that their “near-term map databases” have 72% of their data within 1 meter (3.3 feet) and 
85% within 2 meters (6.6 feet).  Their “mid-term map databases” have 51% of the geometrical 
data within 30 cm (11.8 inches) and 96% within 2 meters (6.6 feet).   
 
A second project creating large-scale accurate digital maps is being carried out in Finland.  They 
are working on creating a high accuracy road network for the entire country.  This project, titled 
DIGIROAD [8], integrates the data from the Finnish Road Administration (Finnra), the National 
Land Survey of Finland, Finnish city road databases, and the forestry industry to create maps 
with an accuracy of 1-3 meters (3.3-9.8 feet).  Not only is the centerline geometry being 
collected, but other attributes that define the road network are also being stored.  The database 
will also include other features that may be important such as freight terminals and public 
transport facilities.  Since the entire country is scheduled for mapping, they will not integrate any 
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real time data; map updates may take up to three months before they are included.  Initially, 
Finnra will allow access to DIGIROAD free for public use, but will charge private companies an 
annual fee. 
 
NextMAP, which concluded in 2001, was a project funded by the European Commission’s 5th 
Framework Information Society Technologies Program and managed by the European Road 
Transport Telematics Implementation Coordination Organization (ERTICO). It was a consortium 
of five car manufacturers (BMW, Centro Ricerche Fiat, DaimlerChrysler, Jaguar, and Renault) 
and two map providers (NavTeq and TeleAtlas).  Their goal was to assess and evaluate the 
feasibility of digital map databases for Advanced Driver Assistance Systems (ADAS).  The map 
providers created their maps primarily using aerial imagery to an accuracy of 4 meters (13.1 feet) 
[9][10]. 
 
Ohio State University’s Center for Mapping (CFM) used GPS/INS and cameras to locate the 
road boundaries.  They were interested in locating the edges and centerlines on a road while 
traveling at highway speeds.  In order to do this, they instrumented a vehicle, the GPSVanTM, 
dedicated to collecting data [11].  By mounting a digital camera on top of the GPSVanTM at a 
five-degree downward angle one meter from the GPS antenna, they could collect the road 
boundaries while driving.  Data was collected at 15 Hz, which resulted in a 60-percent overlap in 
each image.  It was then stored for later use and processed using a line-following algorithm.  
This resulted in a map that was accurate to approximately 10 cm (3.9 inches).  The GPSVanTM 
project is no longer an ongoing project at the CFM. 
 
Applanix Corporation (http://www.applanix.com), a subsidiary of Trimble Navigation Ltd. 
(http://www.trimble.com), has a mobile mapping system combining GPS, an inertial 
measurement unit (IMU), a distance measurement indicator (DMI), and a computer system.  This 
system, Position and Orientation System for Land Management (POS LV), uses Inertially-Aided 
Real-Time Kinematic (IARTK) technology which provides continuous position and attitude data, 
even under situations that are difficult for a stand alone GPS system to achieve accurate position 
and orientation information such as within urban canyons and along tree lined roads.  The POS 
LV system automatically integrates raw GPS satellite data into the system thereby allowing the 
system to use position data from a single GPS satellite observable.  Since the POS LV system 
does not use the position and velocity information from the GPS receiver, it works very well in a 
urban situation and can maintain a decimeter-level positional accuracy horizontally and a meter-
level accuracy vertically [12]. 
 
 
1.2 University of Minnesota’s Geospatial Database 
 
The University of Minnesota’s IV Lab previously developed a Geospatial Database (GSD).  
Newstrom [13] created the GSD, which facilitates many driver assistive systems including lane 
departure warnings.  The GSD contains digital representations of spatial objects that represent 
the geometry of the real world landscape.   
 
The geometry of the roadway, as well as road furniture, is represented in order to give a detailed 
description of the roadway.  Road furniture includes man-made physical features in or around the 
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road such as signs, lampposts, and Jersey barriers.  Newstrom [13] created a custom geospatial 
database rather than manipulating commercially available digital maps.   
 
Current commercially available digital maps are based on digital road network databases (RND) 
that are primarily used for route determination, point-by-point driving, and Geographic 
Information Systems (GIS).  Road network databases are composed of links and nodes that 
model the roadway and use or are based on linear-reference systems.  Linear reference systems 
reference data to the nearest node and the distance along the connecting link.  Since many 
intelligent transportation systems rely on GPS for the position of the vehicle, converting between 
the linear reference system and a Cartesian coordinate system would add unneeded complexity to 
the DAS.   
 
Navigation Technologies, Inc. (NavTeq) and TeleAtlas (http://www.teleatlas.com) are two 
commercial companies that have created digital maps based on RNDs.  Their map databases 
provide their customers with turn-by-turn or door-to-door navigation, also known as route 
guidance.  NavTeq provides their maps to Mapquest (http://www.mapquest.com) and automotive 
manufacturers including General Motors for use in their in-car navigation systems.  These 
systems are designed to augment onboard navigation systems and provide directions.  However, 
their architecture, accuracy, and resolution are not sufficient for applications in which lane 
departure warning is necessary. 
  
Instead of using RND-based digital maps, Newstrom [13] created a geospatial database that uses 
spatial objects defined relative to a global coordinate system.  These geospatial databases (GSD) 
use points, line-strings, arc segments, and polygons to define the scene rather than the links and 
nodes used by RNDs.  Points are defined as single three-dimensional objects and a line-string is 
a continuous series of points.  An arc segment is a series of points that are a part of a circle and 
contain the center point of that circle.  Polygons are a special type of line-string; they are closed, 
sharing start and end points.   
 
Whereas the points, line-strings, arc segments, and polygons can describe the spatial object, 
something must define other non-spatial objects that aid in the definition of the data set.  These 
non-spatial identifiers or attributes are static and assigned during the creation of the geospatial 
database.  Different attributes are assigned based on what the road data represents. 
 
There are four types of road data models described in [13] with an additional four created later 
[14].  These define the road and the surroundings.  The original four are listed as lane boundary 
(line-string), road shoulder (line-string), centerline (line-string, arc-segment), and road-island 
(polygon); the added four are Jersey barrier (line-string), guardrail (line-string), sign (point), and 
mailbox (point).  The first three, lane boundary, road shoulder, and centerline, describe the actual 
road.  Lane boundaries are the leftmost and rightmost limits in each lane, typically shown as 
painted lane markings.  The road shoulder edge defines the boundary of the drivable surface 
[13].  This can be a painted lane marking, the edge of the physical pavement, or a physical object 
barring departure from the road.  The centerline is midpoint between the lane boundaries and one 
exists for each unique lane.  The remaining data types, road island, Jersey barrier, guardrail, sign, 
and mailbox, are all types of road furniture that are near the road. 
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1.3 Geospatial Database Applications 
 
The IV Lab has developed four onboard driver assistive systems (DAS) that require the use of 
the geospatial database.  These systems can be used separately or in conjunction with each other.  
The four DAS systems are the Vision Enhancement System (VES), the virtual mirror, the radar 
target filter (RTF), and the haptic feedback systems.  Each of these systems relies on the 
accuracy of the geospatial database in order to effectively function. 
  
By knowing the location of the vehicle through high accuracy DGPS and by using an accurate 
GSD, it is possible to project a high fidelity view of what lies ahead of the vehicle.  Through the 
use of a Head-Up Display (HUD), the VES projects an image of the lane boundaries and other 
items that overlay the real lane boundaries.  The HUD uses the geometry found in the geospatial 
database to construct an image of the lane boundaries and road furniture along the roadway as it 
appears from the perspective of the driver.  The driver views this image through the use of a 
combiner, a spherical semi-reflective, semi-transmissive section of optically treated glass or 
optical grade plastic that is located between the driver and the windshield.  The driver looks 
through the combiner and can see the virtual road projected directly over the actual road, as 
shown in Figure 1.1.  This is useful if the actual view of the road becomes obstructed or the 
visibility is reduced [15][16][17].   
 

 
 

Figure 1.1 – View through the HUD 
 

The virtual mirror utilizes an LCD computer screen and creates a digital representation of 
vehicles around the vehicle.  It displays the lane boundaries and any road furniture adjacent to 
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vehicle.  It serves as an adjunct to the physical, optical mirror in a vehicle and draws the 
obstacles and the geometry next to, as well as behind, the vehicle.  By using a mirror-like 
representation, the system takes advantage of the driver’s intuitive ability to respond to objects 
viewed in the mirror.  An advantage of this system is that it is not constrained by physical 
properties and can eliminate or at least decrease the blind zone around a vehicle.  This is 
particularly an issue for buses and trucks.   
 
The radar target filter (RTF) uses a number of radar units that detect objects around the vehicle.  
Since radar is indiscriminate, any object in the radar’s field of view, such as a vehicle, sign, or 
tree, is a valid target.  In order to determine if the object is a threat, the radar target filter uses the 
geospatial database’s road geometry to determine if the object is on or off the road.  Road 
furniture, which are adjacent to the road, are static objects that define the road or inform a driver 
about the road, but are not considered a threat.  If an object is not on the road, the radar target 
filter filters it out.  Any valid objects are then displayed in the VES or virtual mirror as obstacles.   
 
The haptic feedback system provides continuous feedback to the driver about the offset of the 
vehicle from the centerline.  This is accomplished using two different subsystems, feedback 
through the steering wheel and feedback through the driver’s seat.  As the vehicle approaches the 
lane boundary, a servomotor excites the steering wheel.  This excitation can either simulate the 
vehicle traveling over a rumble strip or produce a torque proportional to the lateral offset of the 
vehicle from the lane center.  In the latter case, the haptic feedback system can indicate to the 
driver which direction they should steer so they remain in their lane.  The driver’s seat uses a 
number of embedded motors that produce localized seat vibrations.  As the vehicle moves away 
from the center of the lane (left or right) and close to the lane boundary, the corresponding side 
of the seat vibrates alerting the driver to a potential lane departure on that side.   
 
Accuracy is of the utmost importance with all four systems and any mismatch in geometry can 
lead to serious consequences.  While using the VES, an inaccurate geospatial database may lead 
to fatigue and/or distraction even in clear driving conditions.  If the geospatial database is not 
aligned with the physical road, the virtual mirror and radar target filter may not be able to 
distinguish what is on and off the road.  If the road geometry does not accurately match the real 
world geometry, the haptic feedback system may unintentionally force a lane departure.  
 
 
1.4 Report Layout 
 
Thus far, the need for and the concept of a geospatial database has been discussed.  The 
remainder of this document details the implementation of a data collection system to create 
geospatial databases efficiently and the experiments that have been conducted to analyze the 
accuracy of the data collection system. 
 
Chapter 2 defines a road model based on road design standards and assumptions that enable 
efficient data collection.  In order to collect the road information as accurately as possible, DGPS 
will be used.  The method used to receive a differential correction is also explained.   
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In order to accurately locate the road, a computer vision system is described in Chapter 3.  The 
computer and camera requirements are also explained in order to use the software to collect 
accurate data in real-time. 
 
Chapter 4 explains the required post-processing work.  Although data is collected in real-time, 
the final geospatial database files can be created offline in the vehicle and with very little 
intervention.   
 
Data collection using the computer vision system was performed on a state highway and county 
highway.  Chapter 5 describes the accuracy results of the system as compared to ground truth. 
 
Costs for equipment and personnel are described in Chapter 6 in order to determine the 
feasibility and price per mile the map data acquisition system requires. 
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Chapter 2: 
Data Acquisition 
This chapter describes a method to acquire the accurate location of a road.  In order to do this 
effectively, the road must be defined in a way that will facilitate data collection in an efficient 
manner.  Once the road is defined, its position must be accurately located.   
 
 
2.1 Road Definition 
 
Through the use of road design standards it is possible to make a number of assumptions that 
hold true under most circumstances when modeling the actual road.  The assumptions made here 
affect the method of collecting the raw data and processing it into a useable map. 
 
It is possible to assume that the roads contain markings that identify and separate each individual 
lane.  This is more a fact than an assumption.  However, this may not be the case with residential 
roads.  Since very few fatal crashes occur on these roads, they will not be the focus of this effort.  
Moreover, for snow removal operations, low visibility is rarely an issue in residential 
neighborhoods. 
 
Adjacent road lanes are effectively parallel to each other.  In cases where the road is divided by 
some physical object (median, Jersey barrier, guard rail, etc.) all lanes traveling in the same 
direction are parallel to one another.  For roads that are undivided, all of the lanes, regardless of 
direction are parallel.  Even in the case where a lane addition or reduction (adding or removing a 
lane along the road) takes place, these lanes are parallel but their respective lane boundaries may 
not be.  Since most lane additions or reductions occur to the outside lanes, the right or leftmost 
lane boundary, herein defined as the fog line, may cease to be parallel for short distances with 
respect to the other lane boundaries.  This fact does not alter the assumption that the lanes 
themselves are parallel.   
 
Fog lines define the outermost visible lane marking in the right- or left-most lane.  They are not 
to be confused with the data type road shoulder.  The road shoulder, mentioned earlier, defines 
the extent of the drivable surface.  In the case where a median, Jersey barrier, or ditch separates 
the opposing directions of traffic, shown in Figure 2.1, there exists a fog line to the right of the 
rightmost lane and one to the left of the leftmost lane.  This is true regardless of the road 
direction.  In the case where the two directions of traffic are not separated by a physical 
boundary, Figure 2.2, all that remains is a single fog line in each direction, the rightmost (based 
on a road system in which vehicles drive on the right).  It is then possible to define a road if the 
fog lines are known.   
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Figure 2.1 – Multi-lane, divided highway 

 

 
 

Figure 2.2 – Four-lane, non-divided highway 
 

Knowing that fog lines define the road, a new constraint is introduced.  Each road, regardless of 
the number of lanes or their direction, requires two fog lines.   
 
By focusing on a map needed for prevention of lane departure crashes, it is possible to 
concentrate on rural roads.  Intersection details (i.e. dedicated left-turn and right-turn lanes) can 
be ignored because they are not significant in lane departure crashes.  These can be dealt with 
using other methods when needed for other applications.  In this document, the focus will be on 
the details of a geospatial database that is needed for lane or road departure warning on rural 
roads.  However, the result of this research (i.e. the map) can also be used for road maintenance 
purposes, such as snow removal operations, when visibility is poor. 
 
Therefore, this document will discuss mapping in the context of parallel road fog lines and lane 
boundaries.  Other road features not relevant to lane or road departure will be ignored. 
 
 
2.2 Data Collection 
 
The procedure for collecting data can be discussed in the context of the stated road definition.  
As mentioned earlier, the fog lines define the edges of the physical lanes in each direction.  If 
these are accurately defined, it is then possible to define the entire road.  The width of the lanes 
may introduce a problem.  In Minnesota, most interstate, state, and county highways use 3.7 
meter (12 feet) - wide lanes.  However, in many places on state and county roads, lanes can be 
reduced to 3.0 meters (10 feet) wide.  However, if the number of lanes is known, in addition to 
the placement of the fog lines, then the road can be defined regardless of the lane width.   
 
There are three separate cases that need to be considered.  The first, shown in Figure 2.3, is the 
case when a double yellow line divides the opposing lanes of traffic.  Figure 2.4 shows a second 
situation where a physical barrier divides the directions.  This physical barrier can be a guardrail, 
Jersey barrier, or a median of some type.  Finally, there is the case when there is a special lane 
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that exists, as shown in Figure 2.5.  This special condition occurs when there is a two-way left 
turn lane in the center of the road, also known as a “suicide” lane.  The lane in between the lanes 
of traffic exists solely for left turns.  On a two-lane, non-divided highway, vehicles that wish to 
turn off of the main artery and onto a minor road can obstruct traffic and cause rear end crashes.  
With the addition of these left-turn-lane-in-center lanes, vehicles can leave the main traffic flow 
and not obstruct traffic while waiting to turn left.   
 

 
 

Figure 2.3 – Four -lane highway, double yellow divider 
 

 
 

Figure 2.4 – Multi-lane, divided highway (Jersey Barrier) 

 

 
 

Figure 2.5  - 4-Lane highway with left turn lane in center 
 

In Figure 2.3, there exist two fog lines.  Each fog line lies on the right side of the respective 
directions on the road.  The data collection vehicle needs only to drive each direction once with 
data collection taking place on the right side of the vehicle if the lane widths are known.  While 
the pictured images have two lanes per direction, the data collection vehicle will only need to 
drive each direction once regardless of the number of lanes between the fog lines.   
 
In Figure 2.4, there are two lanes in each direction, and four distinct fog lines.  Each direction of 
travel contains two fog lines, one on each side.  In this case, data must be collected for each fog 
line and the vehicle must make two passes in each direction, collecting data on the right side for 
the right fog line and on the left side for the left fog line.  
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Figure 2.5 shows a situation where there is a left turn lane in the center of the road.  Typically 
this is only one additional lane.  However, because its width is unknown, it will be treated in a 
similar manner as a divided highway as shown in Figure 2.4. 
 
 
2.3 Global Positioning System 
 
The Global Positioning System (GPS) [18] consists of 24 satellites in 6 orbital planes with each 
satellite circling the earth in 11 hours and 58 minutes.  At any given moment on the earth’s 
surface, there are between 6 and 12 satellites available above the horizon.  These satellites 
broadcast data including an accurate timestamp of when the data left the satellite.  Stations on the 
ground can receive this information and calculate the distance to the satellite.  Knowing the 
distance to multiple satellites allows the receiver to triangulate its position to within several 
meters.  This is known as a single point fix.  Due to timing errors and propagation delays in the 
ionosphere, the unaugmented single point position is accurate to 10 meters (32.8 feet).   
 
2.3.1 Differential GPS 
 
Ten meters is far from accurate enough for any diver assistive system.  In order to increase the 
accuracy, Differential GPS (DGPS) is used.  DGPS requires a GPS receiver and an additional 
antenna located on the ground at a known, surveyed location (a base station).  The base station 
compares its location against the calculated position from the satellites and computes a 
representation of the error.  This position error is known as a differential correction and it is 
transmitted to a receiver (roving receiver) requesting an accurate position.  The IV Lab uses a 
Trimble MS750 DGPS unit, which is a dual-frequency, carrier phase, Real-Time Kinematic 
(RTK) unit, because high positional accuracy is required.  The static accuracy of this system is 
on the order of 2-5 cm (0.8-2.0 inches) at ± 1σ and has a dynamic accuracy of 5-8 cm (2.0-3.1 
inches) at ± 1σ.   
 
 
2.3.2 Real Time Provision of the Differential Correction 
 
Once the difference between the surveyed location of the base station and the calculated position 
determined from the GPS satellites is known, this information is broadcast to the roving receiver.  
This can be done in several ways.  The IV Lab has extensively used two different methods.  The 
first method is through the use of a radio frequency modem.  This requires a radio modem, an 
antenna, and an FCC license.  DGPS is based on common mode errors.  However, beyond a 
certain distance, common mode assumptions fail and a reliable correction is difficult. 
 
A second method used by the IV Lab for receiving the correction is through the use of digital 
data channels on cellular phones.  This method is very similar to that of the radio modem, but it 
does not require an additional FCC license.  The cell phone provider handles the license and a 
correction can be received as long as the cell phone is within the cell phone provider area.  The 
IV Lab used this method almost exclusively with a Virtual Reference Station correction 
explained in section 2.3.3. 
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2.3.3 Virtual Reference Station 
 
There is another way to receive a differential correction without the need of a dedicated local 
base station.  Network solutions for differential corrections utilize multiple base stations that 
have been accurately surveyed.  While this is similar to a local base station, these stations send 
the raw satellite observables to a central server.  Raw observables are used to compute a least 
squares optimal solution for any coarse position located within the area between the immediate 
outermost base stations.  Users of this correction method can access the servers via wireless 
connection.  The wireless connection can be in the form of a Cellular Digital Packet Data 
(CDPD) modem, a line relay server, radio modems, or the use of a cellular phone capable of 
high-speed data transfers.  The user’s uncorrected GPS point is sent to the server and is used as a 
seed value from which a correction is determined and then transmitted back to the user.     
 
Mn/DOT currently operates such a system, Trimble’s (http://www.trimble.com) Virtual 
Reference Station (VRS), along Interstate 94 from Wisconsin to North Dakota.  As shown in 
Figure 2.6, they operate 32 stations located at the intersections of the lines.  By July 2005, 
Mn/DOT hopes to expand the coverage of VRS by 17 stations that would cover most of 
Minnesota.  The proposed coverage is pictured in Figure 2.7.  Data is typically sent using high 
speed, data capable cellular phones.  Unfortunately there is not a single wireless carrier that has 
the ability to supply a digital signal, which is required for digital data transfers, for the entire 
state of Minnesota.  In some cases, short-range (3.2-4.8 km, 2-3 mile) radio broadcasting can 
augment the correction.   
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Figure 2.6 – Current Mn/DOT VRS coverage 
 

 
 

Figure 2.7 – Proposed Mn/DOT VRS coverage by July 2005 (Source: Mn/DOT Office of 
Land Management) 
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Chapter 3: 
Vision-based Data Collection 
In all of the vehicle-based data collection techniques mentioned in Chapter 1, the accuracy of the 
data with respect to a world coordinate frame is critical.  It is next to impossible for any vehicle 
operated manually to remain perfectly centered in a driving lane.  It has been shown in [19][20] 
that drivers can deviate laterally as much as 25.4 cm (10) inches within their lane while driving 
under normal conditions.  Collecting data in a single pass is normally not accurate enough for 
creating a map used for a lane assistive system for the prevention of lane departures.  It also 
produces a less than favorable view in a HUD based vision enhancement system.  If the data 
collection process exhibits this much inaccuracy, then the resulting map will have inaccurate 
centerlines, lane boundaries, and road shoulder demarcations. 
 
Data collection can be improved using other methods.  The simplest approach, although time-
consuming, is to average multiple runs.  The data collection vehicle is driven along the same lane 
multiple times and the data is averaged together.  This method results in a map that has a good 
accuracy but can be biased due to the driver’s preference.  If a driver is consistently biased 
towards the left lane boundary during the drive, the data for the lane will consequently be biased 
to the left and vice versa. While shifting the data can negate this, it can be a time consuming 
manual modification.  Another downside to this method is the number of runs required for each 
road.  If the area requested is very large, it can be very time consuming to collect the data.  A 
similar method was used by [5][6] where multiple drivers are employed to collect the data 
instead of a single driver.  Using multiple drivers instead of one can effectively remove the bias, 
but it fails to reduce the time required for data collection. 
   
A different and more accurate method would be to employ a lane-striping machine.  As 
mentioned in Chapter 2, the fog lines, which are lane boundary markings, define the road.  The 
use of the line-striper as a data collection vehicle is advantageous since it creates the physical 
lane marking that defines the road.   
 
By tracking the location of all paint nozzles or striping tape-applying mandrels with respect to a 
high accuracy DGPS system located on the vehicle, one can readily (and for relatively little 
incremental cost) digitize the roads.   
 
Roads are repainted only when they require it.  In Minnesota, interstates typically use tape or 
epoxy lane markings.  Tape can last from 10 to 12 years whereas the epoxy only marking lasts 
from 2 to 5 years.  A third type of lane marking that is applied is latex based.  Latex, which has a 
life span of about one year, is common and is used on state and county highways.  Presumably, it 
would take a number of years to map every road if data collection occurs only when the stripes 
are repainted.  Painting for the sake of data collection could be quite expensive.  However, a 
method based on lane-striping equipment would only require a single pass to generate an 
accurate collection of data. 
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The main issue with using a lane-striping vehicle is that the operators are busy with the striping 
process and the data collection may require a dedicated operator or an autonomous mapping 
system.  Lane-striping equipment is expensive to purchase and may not be available if a DOT 
contracts a company to repaint lane markings.  However, since the lane markings are visible, 
there exists another method for locating the lane marking: a computer vision-based approach 
integrated with DGPS. 
 
 
3.1 A Computer Vision-Based Approach to Data Collection 
 
There are a number of ways using computer vision based methods to locate a simple geometric 
object in an image.  Ohio State University’s Center for Mapping [11] (discussed in Chapter 1) 
used a camera to aid in the determination of the lane marking position.  However, this system is 
not a unique application.  Cameras and computers can be used in numerous ways for mapping 
applications and to locate entities visually.  Many times, the camera is used to collect a multitude 
of objects, not just the road.  This is the case in [11][21][22].  In all of these cases, the camera is 
either forward looking or positioned with a downward angle.  This camera orientation provides a 
larger perspective view of the scene. 
 
This chapter will describe and explain an integrated DGPS and vision-based system that is used 
to quickly and accurately collect lane boundary data.  This results in an efficient use of time 
collecting data for the purposes of creating a high-accuracy geospatial database.  Figure 3.1 
illustrates the vision-based system flowchart that will be followed in this chapter.  In section 3.2, 
the vision-based data acquisition system will be described and the image processing algorithms 
will be explained in section 3.3. 
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Figure 3.1 – Vision-based system flowchart 
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3.2 Data Acquisition 
 
The Intelligent Vehicles Laboratory at the University of Minnesota operates an International 
model 2450 truck, normally used as a snowplow (the SAFEPLOW) as a test bed for many new 
IV Lab systems.  The SAFEPLOW is a useful data collection vehicle since it is equipped with 
strobe lights that alert people to its location.  All experiments to collect data were performed 
using the SAFEPLOW. 
 
 
3.2.1 Camera 
 
In order to use a computer vision system, a camera was mounted to the exterior of the 
SAFEPLOW.  Most cameras require an image capture board, which is an additional piece of 
hardware.  However, due to an increase in the use of the Internet, there has been a market niche 
for cheap cameras that are used to broadcast images over the web.  Typically, these cameras 
connect to a computer using the Universal Serial Bus (USB).  Using this interface, there is no 
need for an image capture board. However, the resolution tends to suffer and the image may not 
be as crisp as a high-end camera, especially when the scene is in motion. 
 
Since the focus of the data collection is the lane marking, the field of view can be restricted to 
the lane marking.  The resolution is inconsequential due to the proximity of the camera to the 
actual lane marking and to the fact that it is a simple geometric shape.  This allows the exclusion 
of an image capture board and the ability to use a simple web-based camera with a USB 
connection. 
 
 
3.2.2 Illumination 
 
The quality of the image processing will depend on the quality of the image.  This can be 
affected by many things, most of all by illumination.  An image can change based on the 
dynamics of the ambient light.  If the illumination of the scene can be controlled, the ambient 
light is less of a factor.  In an outdoor environment, there exist two extremes, day and night.  
During the day, the illumination is affected by the time of year, the cloud cover, the position of 
the sun, nearby physical objects (i.e. trees, buildings, etc.), which can temporarily reduce the 
available light or introduce shadows.  Operating at night offers fewer problems than the day.  
Cloud cover, the cycle of the moon, and the placement of streetlights, can still affect the 
available light.  However, at night there is a better opportunity to control the illumination 
through the use of an external light source. 
 
 
3.2.2.1 Light 
 
It is important to illuminate the scene so that other light sources, streetlights, vehicle headlights, 
etc., do not substantially alter the scene.  By using a halogen light to illuminate the area that the 
camera is capturing, it becomes possible to maintain a uniformly lit scene under a variety of 
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conditions.  However, most lights are typically spotlights.  A spotlight will have a bright center 
“spot” with reduced intensity in concentric rings moving away from the center.  If the software is 
too sensitive to minor intensity changes, a spotlight can produce false edges.  Painted lane 
markings may cause problems because they are retro reflective.  Retro reflective material is 
engineered to reflect the light along the same path it was received.  If the light “spot” is trained 
on the lane marking, the light is reflected back and the lane marking can disappear in an area 
known as a “wash out.”  This happens when the camera receives too much light and the area 
appears as a large white spot.  This is an undesired result and can be dealt with by correctly 
positioning the light and using a diffuser. 
 
A diffuser is a piece of optical glass that alters the angular divergence of the light.  An opal glass 
diffuser thoroughly diffuses the light and produces a near Lambertian source.  By placing the 
diffuser in between the light source and the scene, a uniform intensity is produced.  This reduces 
or removes the effect of a spotlight and subsequent “wash out” when the lane marking and light 
center coincide.   
 
 
3.2.3 Computers 
 
The computer that is running the software must be able to collect information from the DGPS 
receiver, and the camera, and run the required software. The image processing software used for 
the experiments was written in the C language and designed to be operating system independent.  
While the software can run on Windows, Linux, Unix, or QNX, Windows 2000 Professional was 
the operating system used. 
 
 
3.2.3.1 Computer Processor Speed 
 
Aside from the operating system, the computer’s processing speed is a concern.  Restricted by 
the acquisition speed of new DGPS position information at 10 Hz, the software must run in real-
time and with a processor speed fast enough for real-time processing of all data.  A Pentium III, 
1.26 GHz dual processor computer was used for collecting data.   
 
 
3.2.4 GPS 
 
When the camera acquires an image, a DGPS position is captured at the same time.  This DGPS 
position corresponds to the location of the vehicle when the image was captured and will be used 
in Section 3.4. 
 
 
3.3 Image Processing 
 
Attention was focused on an approach in which the field of view is limited and oriented to 
optimize the accurate tracking and isolation of a lane marking.  In this case, the object under 
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investigation is a line that consumes the majority of the image.  The background is always either 
dark (asphalt) or light (concrete) and the line in the image is either white or yellow.  Even though 
the possibility of a white line on a light background exists, the colors are not the same shade and 
the lane marking can be identified.  To further enhance this difference, the camera image was 
always converted to a gray scale.  This conversion can be done in one of two places: either using 
a gray scale camera or by using the appropriate software with a color camera.  Once the image is 
converted to gray scale, the lane marking can readily be detected. 
 
 
3.3.1 Gray Scale Image 
 
Each pixel in an image, whether color or gray scale, has a numerical value that reflects its 
intensity.  In a gray scale image (8 bit), the intensity value varies between a black pixel (0) and a 
white pixel (255).  When observing a single lane marking in an image, there are two defining 
characteristics, as shown in Figure 3.2. 
 

 
 

Figure 3.2 – Gray scale image – white lane marking on black background 
 

The first characteristic is the boundary, or edge, between the lane marking and the background.  
There are two edges in the image shown and they define the width of the lane marking.  The 
second characteristic is the fact that the area between to two edges has a relatively uniform 
intensity.  The background doesn’t have a uniform intensity, but its intensity relative to the lane 
marking’s intensity, is significant.  This allows the use of an edge detector to find the lane 
marking in the image.  
 
3.3.2 Edge Detector 
An edge is located by finding where the gray level intensity rapidly changes.  Edges are 
associated with intensity discontinuity in the image.  The discontinuity marks the rapid change 

Edge 
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from the background to the white lane marking and vice versa.  This can be shown as a simple 
step plot in Figure 3.3.  The rapid change occurs when moving from the background pixels 
(pavement background) to the pixels that capture the lane marking.   
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Figure 3.3 – Step edge 
 
An edge detector generally consists of two convolution masks, one for each direction.  These 
masks are specifically designed to enhance the rapid intensity changes.   
 
Each pixel, and its neighboring pixels, is examined to determine if there is a rapid intensity 
change.  In order to determine this, a convolution is used.  A convolution blends one function 
with another one.  For edge detection, a convolution mask is blended with the image.  The mask 
uses the neighboring pixel values and a weighted value to enhance the edge.  The number of 
neighbors that are used dictate the size of the convolution mask.  The larger the mask, the more 
sensitive it will be to locating intensity changes.  The mathematics required for a convolution is 
explained in depth in [23][24][25]. 
 
For simplicity, a Sobel 3x3 edge detector was investigated first because it returns a quality result 
with minimal computations.  This edge detector masks, shown in Figure 3.4, observes the 
neighbors within one pixel.  As mentioned above, this results in a less sensitive mask and may 
not locate edges that are less obvious.   
 

                
Figure 3.4 Sobel 3x3 edge detector – X and Y directions respectively 

  

Edge

Background 

Lane Marking

Pixel Address 
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If the image is too dark or too light, a 3x3 edge detector may not be able to distinguish the lane 
marking from the background.  By increasing the size of the mask and using more neighboring 
pixels, one achieves a better result.  This will result in a more robust edge detector that can 
handle lighting changes or poorer quality lane markings.   
 
A Sobel 5x5 edge detector, shown in Figure 3.5, is more sensitive because it uses more 
neighboring pixels to enhance the edges.   
 

         
 

Figure 3.5 – Sobel 5x5 edge detector – X and Y directions 
 
By increasing the size of the edge detector, there is an increase in computation time due to extra 
mathematical operations.  Based on the road definition (from Chapter 2), the lane marking is 
always parallel to the direction of travel.  If the camera is aligned with respect to the vehicle, the 
lane markings are along the Y-axis (longitudinal direction).  This has a twofold benefit.  First, 
since only edges in one direction are important, only one of the convolution masks is required 
and this reduces the computation time.  Second, the edges that the second mask would have 
enhanced are suppressed and can reduce the possibility of false positive results.   
 
An image of a white lane marking on asphalt, as well as the processed images using the Sobel 
3x3 and Sobel 5x5 are shown in Figure 3.6. 
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(a)    (b)    (c) 

 
Figure 3.6 – (a) Initial image, (b) Processed Sobel 3x3, (c) Processed Sobel 5x5 

 
By inspecting Figure 3.6 (b) and (c), it is obvious that the Sobel 3x3 detector is less sensitive to 
the artifacts and minor edges that exist in the original image Figure 3.6 (a).  The Sobel 5x5 
image, seen in Figure 3.6 (c), has the same information that was found in Figure 3.6 (b), but 
enhanced all possible edges.  Since all possible edges, regardless of their intensity, were 
enhanced due to the Sobel 5x5 edge detection mask, it was used to locate the lane marking.  This 
prevents poorly defined lane markings from escaping detection. 
 
 
3.3.3 Threshold 
 
In order to complete the edge detection process, the edges that do not correspond to the lane 
marking need to be suppressed.  An adaptive threshold program was used to allow each image to 
have a unique threshold value.  In doing this, the selected threshold value is based on the pixel 
intensities in the image and is independent of lighting changes.  To calculate a threshold value, a 
smoothed histogram of pixel intensity values is created from the result of the edge detection 
process.  Figure 3.7 shows the smoothed histogram for the Sobel 5x5 result from Figure 3.6(c). 
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Figure 3.7 – Smoothed histogram for the Sobel 5x5 edge detected result for a single, white 
lane marking on asphalt 

 
It can be seen from Figure 3.7 that most of the image is dark, but not completely black, due to 
the background consuming about three-quarters of the image.  This results in a large peak 
towards the zero pixel intensity portion of the histogram.  The lane marking edges, as well as the 
road artifacts, range widely in their pixel intensity values, but all are greater than zero.  Due to 
this phenomenon, there is one significant peak, which is assumed to be the mean intensity level 
of the distribution.  Examining the pixels to the left of the maximum peak, the value that reflects 
95 percent of the number of occurrences between the maximum peak value and zero can be 
determined.  In order to determine how far to the right of the maximum peak value to choose the 
threshold value, the difference between the value of 95 percent of the pixels between the 
maximum peak and zero is added to the maximum peak pixel intensity value. This gives the 
corresponding symmetrical 95-percent pixel value to the right of the maximum peak, shown in 
Figure 3.8.   
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Figure 3.8 – Obtaining the threshold value 
 
For Figure 3.8, the Maximum Peak value was determined to be 48 and the 95-percent pixel value 
is 2, with their difference being 46.  Taking the maximum peak value of 48 and adding 46 to it, 
the threshold value is set at 96.  The threshold value allows some of the pixels to be suppressed.  
In order to do this, each pixel intensity value is examined.  If the pixel value is less than the 
determined threshold value, it is reset to a zero or black pixel.  Any value above the threshold 
value, is set to 255 or white pixel. 
 
Figure 3.9 shows the result of applying the threshold value to the Sobel 5x5 image used in Figure 
3.6. 
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Figure 3.9 – Original image and images after applied threshold – pixel values for the 
processed images have been inverted (white pixels have been converted to black and vice 

versa) for ease of viewing 
 
 
3.3.4 Hough Transform 
 
Now that the image contains binary pixel values for black (0) and white (1), the program must 
detect the location of the lane marking.  Due to the simplicity of the object and the fact that it 
consists of straight lines in a known orientation, a Hough Transform [26] is used.  After the edge 
detection is completed and the threshold has been applied, the Hough Transform determines if 
each white pixel is part of a line.  Since the orientation of the lane in the image is known (vertical 
as shown in Figure 3.9), the algorithm can be restricted to search for lines parallel to each other 
representing the left and right edge of the lane making in that specific orientation.  This reduces 
the amount of computations required to locate the lane marking, and insures that there are fewer 
false detections.   
 
Once all lines have been located using the Hough Transform, it can be determined which two 
lines are valid.  In order to decide this, the width of a lane marking and the size of each pixel are 
required.  Because these parameters are known it is possible to determine which two lines are 
most likely the edges of the lane marking.  The center of the lane marking is the midpoint of the 
two valid lines.  The midpoint of the lane marking is required, in conjunction with DGPS, to 
accurately locate the center of the lane marking as a single point in a global coordinate frame.  
Figure 3.10 shows the results of the Hough Transform on the threshold image shown in Figure 
3.9. 
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Edge Lines

Center Line

 
Figure 3.10 – Hough Transform result 

 
The red lines represent the location of the edges found using the Hough Transform and the blue 
line represents the midpoint of those lines, or the center of the lane marking. 
 
3.3.5 False Negatives and False Positives  
 
As with any computer vision-based system, there are circumstances where the system has 
difficulty.  When these situations occur, the result is often degraded accuracy.  In the best case, 
the vision system does not return a solution (false negative) even though a lane marking is 
present.  This can happen when the entire lane marking is not in the image, or the system cannot 
extract the edges in the image (i.e., fading paint or undefined paint boundary).  The worst-case 
scenario returns a false positive position.  This can occur when the system mistakes the 
boundaries of the lane marking for a shadow or a misplaced lane marking during re-striping.  
 
In the best-case scenario, the system fails to return a valid position, or results in a false negative.  
Typically, this is because the entire lane marking is not captured by the image.  However, there 
are cases when a lane marking exists, but the system cannot locate it.   
 
Figure 3.11 shows an example when a portion of the lane marking is outside of the field of view 
of the camera.  In this case, the system can only assume where the center of the lane marking is 
based on the amount of visible lane marking.  Since accuracy is the main focus, the system does 
not assume where the center may be; instead, it ignores the image and proceeds to the next one.  
Ignoring this situation decreases the number of DGPS positions that can be used to create a 
geospatial database, but prevents geometrical inaccuracies due to false assumptions. 
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Figure 3.11 – Lane marking partially outside camera field of view 
 
False positives pose a different problem.  In these cases, the location of the lane marking is 
identifiable, but is either erroneous or in the wrong spot.  One situation that can produce a false 
positive is a shadow.  Shadows can either obscure a portion of the lane marking or artificially 
create an edge.  Direct control of the illumination helps to reduce this problem, but there are 
times when the situation exists as shown in Figure 3.12. 
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(a)                                              (b)                                              (c) 

 
Figure 3.12 – Shadows visible in camera image 

 
All three images in Figure 3.12 show a lane marking as well as a shadow.  Even with the correct 
placement of an external light source, shadows can occur.  Objects such as curbs or guard rails or 
parts of the data collection vehicle can introduce shadows to the scene.  Careful placement of the 
light source can eliminate most shadows.  Figure 3.13 shows a set of lane markings that can 
cause a problem for a vision system.   
 

Shadow Shadow Shadow 
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Figure 3.13 – Double lane marking 
 
Figure 3.13 shows a double lane marking, but not by design.  This occurs when the road is re-
striped and the new lane marking does not overlay the original marking.  When this happens, the 
location of the center of the lane marking is not accurate.  The original marking can cause the 
vision system to offset the position of the lane marking.  However, the two lines are close to each 
other and therefore the offset is relatively small and is not a significant problem. 
  
Another problem occurs when collecting data on a road with crosswalks or stop lines at an 
intersection.  These types of markings are designed for pedestrian traffic.  The crosswalk is the 
area that the pedestrians should use to cross the road and the stop line is a painted line along the 
road to signal where the drivers should stop to allow the pedestrians room to cross.  These 
markings are shown in Figure 3.14.   
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Figure 3.14 – Crosswalk and stop line 
 
If the crosswalk or stop line is in the field of view of the camera, especially inline with the lane 
markings, the vision system gets an image where it is almost entirely white.  This situation is 
shown in Figure 3.15. 
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Figure 3.15 – Crosswalk or stop line 
 
Figure 3.15 shows a portion of the lane marking with most of the image consisting of the 
crosswalk paint.  Typically, this only appears in a single image for each occurrence of a 
crosswalk or stop line.  In such cases, the data point does not get recorded. 
 
There is also the situation where the lane marking is augmented.  Botts’ Dots, used extensively in 
California, are raised reflectors that allow drivers to see the lane markings at night or in the rain.  
Due to their reflectivity and circular shape, they may cause the computer vision-based system to 
incorrectly locate the lane marking.  The author recognizes that this is a potential problem, but 
this type of lane marking was not available for testing during the research project as snowplows 
will quickly destroy any raised pavement marking. 
 
 
3.4 Global Coordinates 
 
Once the lane marking location in the image has been determined, it is important to know where 
the lane marking is with respect to a global positional reference frame.  In order to determine 
this, the camera position and orientation, with respect to a DGPS unit, is required.   
 
 
3.4.1 DGPS Adjustment 
 
There are five parameters that are required in order to compute the transformation from camera 
coordinates (pixels) to local global coordinates (meters).  The result of the Hough Transform 
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provides the position of the lane marking in pixel coordinates and DGPS provides the position of 
the DGPS antenna in global coordinates.  That accounts for four of the required parameters: local 
position (x, y) and DGPS position (x, y).  The fifth parameter is the heading of the vehicle with 
respect to the global coordinate system.  Heading is computed based on previous DGPS 
positions. 
 
In order to convert from the local coordinates (pixels) to global coordinates (meters), the size of 
each pixel must be known.  This parameter is determined prior to data collection.  It is a simple 
procedure requiring an image of an object of known size in the global coordinate system.  By 
measuring the size of the object in the image in pixels and having the known size in meters, the 
size of a pixel can be determined. 
 
Using the size of a pixel in meters and knowing the position of the line in pixels, the position of 
the lane marking can be determined in meters.  By knowing where the camera is with respect to 
the DGPS antenna, the position of the lane marking can be determined in the global coordinate 
frame.  
 
 
3.4.2 Quantity of Collected Data 
 
Traditionally, when using a camera to collect data, the image is stored for post processing.  This 
enables the data collection program to run at a reasonably fast rate, but requires a large amount 
of storage space.  Collecting 128 pixel x 240 pixel, 8 bit images at 30 Hz (30 frames per second) 
requires one megabyte (MB) of space per second.  Collecting data for one hour produces 3600 
MB of image data.  Storage quickly becomes a problem.  However, if the image is processed 
during data collection, there is no reason to save the image.  Data is saved only when the image 
processing portion of the software locates the center of the lane marking.  In addition to saving 
the processed position of the lane marking in the image, raw DGPS data is saved to a text file in 
ASCII format as shown in the data string below. 

 
 

GPS Time, GPS X, GPS Y, GPS Height, GPS Quality, Vehicle Heading, Vehicle Speed, 
Processed X, Processed Y 

These items are defined as follows: 
GPS Time – The DGPS unit time 
GPS Latitude, Longitude, Height – The location of the DGPS antenna in three 
dimensions 
GPS Quality – The quality of the differential solution as a numerical value 
Vehicle Heading – The angle of the vehicle with respect to North 
Vehicle Speed – The vehicle speed as calculated by DGPS 
Processed X, Y – A single adjusted value of the DGPS position based on the Image 
Processing Result explained above  

 
Data is only saved if the vision-based system determines the position of the lane marking.  If 
there is no lane marking in the image, the system doesn’t record the data string and processed 
position.  
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3.5 Real-Time Data Collection Approach 
 
At highway speeds of 88.5 kph (55 mph), a vehicle will travel 24.6 meters (80.7 feet) in one 
second.  At that speed, a camera capturing images at 30 Hz will capture nearly three feet of new 
data per image.  The Trimble MS750 DGPS unit provides non-extrapolated position data at 10 
Hz.  Therefore, collecting data at 30 Hz does not provide any information that is useable since 
2/3 of the data does not have an updated position.  Currently, collection and processing takes 78 
milliseconds, or can run at 12.75 frames per second (fps).  Therefore, data collection is restricted 
by the rate of the DGPS data availability, 10 Hz.  Figure 3.16 shows the position of the camera 
and its field of view at each DGPS position update where ∆tx is equivalent to 0.1 second.  This 
results in the camera image capturing a new data point every 2.5 meters (8.1 feet) when traveling 
at 88.5 kph (55 mph). 

 

 
Figure 3.16 – Camera images based on dynamic vehicle 
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Chapter 4: 
Post Processing and Database Creation 
Even though the data can be collected in real-time, there is still the need for some post 
processing work.  Focusing on a two-lane road, one lane in each direction, the data collected can 
be reduced to the right fog line in each direction as per our definition of a road.  This data, 
collected in real-time, consists of the DGPS position adjusted to the center of the fog line.  The 
text files of DGPS positions are stored with a filename that encodes information about the road 
and is needed for post processing.  Using that information, in addition to the number of lanes and 
the road’s name, the files can be processed and a geospatial database can be created.   
 
 
4.1 Software 
 
4.1.1 Filename and Data Files 
 
As mentioned earlier, the filenames for each run of data collected contain information about the 
enclosed data.  Each filename is divided into four parts: Road Type (RT), Data Type (dt), 
Direction (d), and File Number (#) as shown in Figure 4.1. 
 

RT_dt_d_# . txt 
Figure 4.1 – Filename format 

 
Each part of the filename has multiple options that define the road for the post processing 
software.  These choices are shown in Table 4.1. 
 

Table 4.1 – Filename options 
Road Type Data Type Direction  File Number 

(RT) (dt) (d) (#) 
Interstate Center Line North 1 

(IN) (cl) (n) 2 
State Highway Lane Boundary South 3 

(SH) (lb) (s) : 
County Highway Road Shoulder East : 

(CH) (rs) (e) : 
Residential/Commercial   West : 

(RC)   (w) inf 
 
There are two basic types of public roads, a highway and all of the other roads.  Highways are 
major roads within cities or linking cities, which can have multiple lanes of traffic, and are 
designed for high-speed traffic.  There are sub-categories for highways that are listed in Table 
4.1.  They are interstate, state highways, and county highways.   
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Residential or commercial roads are smaller volume roads that are found in urban or suburban 
areas.  They tend to have many intersecting roads with stop signs and/or traffic signals.  These 
roads typically have pedestrians moving across or along them, which demand extra caution on 
the part of drivers.  Residential or commercial roads have typical speed limits of 48.2-72.4 kph 
(30-45 mph) and may not have fog lines.  These types of roads are less of a concern here due to 
the limited number of lane departure fatalities and abundance of physical references, which 
facilitate snowplowing in low visibility conditions.  However, these are valid roads and the 
option for adding them is included for future use.  The focus described herein is on the highway 
category. 
  
The data type (Table 4.1) is used to allow the post processing software to determine what the 
enclosed data represents.  The data type for the vision-based data collection will always be lb 
(i.e. for lane boundary).  The inclusion of cl (i.e. centerline) and rs (i.e. road shoulder) allows 
flexibility in the collection software.  Depending on the data type, the post processing software 
will process the data differently.    
 
The direction utilizes the four major compass directions: North, South, East, and West.  All 
highways in the United States use one of these four compass directions to indicate their general 
direction of travel.   
 
Since there are never more than two fog lines per direction, the maximum number of files in each 
direction will be two.  However, for flexibility, this number can be increased.   
 
Every road has a name and it is an important identifier for distinguishing one road from another.  
The filename fields were chosen because they give information about the actual road, whereas, 
the name of the road does not.  Road names are not always static.  If the filename uses the road 
name, data collection would need to stop and restart at each road name change.   
 
 
4.1.2 Post Processing Collected Data 
 
Standardized filenames allow for post-processing simplification.  Software can search through a 
specified folder and group all of the files according to their filenames.  All similar road types are 
grouped together and are arrayed by the data type, direction, and file numbers.   
 
Based on the road definition, the files can give insight into the nature of the road.  Table 4.2 
shows six arbitrary files of collected data.  They have been grouped by their filenames.   
 

Table 4.2 – Example – grouped files 
Road 1 Road 2 

CH_lb_e_1.txt IN _lb_e_1.txt
CH_lb_w_1.txt IN _lb_e_2.txt

  IN _lb_w_1.txt
  IN _lb_w_2.txt
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By observing the filenames for each road in Table 4.2, it is possible to determine the basic road 
type.  If the data in Table 4.2 was collected using the vision-based system, then Road 1 is an 
undivided county highway (CH) and Road 2 is a divided Interstate (IN).  Road 1 is undivided 
because there are two files in opposite directions.  If just the fog lines are collected, as in the 
vision-based data collection method, that reveals that each file is the rightmost fog line.  Figure 
4.2 shows where each file for Road 1 would be collected. 
 

 

 
 
 

Figure 4.2 – Data file positions for Road 1 
 
In the case of Road 2, there are four total files with two files per direction.  This would mean that 
there is some form of road divider present.  The road divider could be anything from a jersey 
barrier to a grass ditch or a median.  Since the road divider width is an unknown, both fog lines 
must be collected in each direction.  Figure 4.3 shows the placement of the files for Road 2. 
 
 

 
 
 

Figure 4.3 – Data file positions for Road 2 
 
Once all of the files are grouped, they can be processed into a geospatial database.  In order to do 
this, the total number of lanes is required.  For example, Figure 4.2 has four lanes, two per 
direction.  Figure 4.3 also has four total lanes separated by a road divider.  This results in two 
lanes and two fog lines in each direction.  When a road divider is present, each set of two fog 
lines is processed separately.  Table 4.3 shows the input requirements needed per road. 
 

Table 4.3 – Input information for Figures 4.2 and 4.3 

Road Input File 1 Input File 2 
# Of Lanes 

(NOL) 
1 CH_lb_e_1.txt CH_lb_w_1.txt 4 
2 IN_lb_e_1.txt IN_lb_e_2.txt 2 
2 IN_lb_w_1.txt IN_lb_w_2.txt 2 

 

CH_lb_w_1.txt 

CH_lb_e_1.txt

IN _lb_e_1.txtIN _lb_e_2.txt

IN _lb_w_1.txtIN _lb_w_2.txt Road Divider 
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Lane width has not been mentioned because it varies from state to state.  In Minnesota, the 
standard width of an interstate, state highway, and county highway is 3.7 meters (12 feet).  
However, this is not always the case.  A 3.0-meter (10 feet) wide lane is also common, but 
experience has shown that any width from 2.4 meters (8 feet) for a residential road to 4.0 meters 
(13 feet) for a county highway can exist.  While lane width is an important attribute for a 
geospatial database, it is not always possible to measure a lane in order to ensure its accuracy.  
Because of this fact, it must be possible to measure the lane’s width in another fashion.  This can 
be done with another camera observing the scene from another angle or using satellite-based or 
photogrammetry-based images.  However, using the method described herein, the extreme 
physical boundaries of the lane are known as well as the number of lanes between these 
boundaries, once the data collection for the fog lines has been completed.  It is also known, based 
on the road definition stated in Chapter 2, that all of the lanes are effectively parallel.  This 
provides enough information to calculate the lane width and, subsequently, create the 
intermediary lanes and boundaries described in the following section. 
 
 
4.1.3 Lane Width Calculation 
 
If the distance between the two fog lines is known, the lane width is found by dividing that 
distance by the number of lanes (NOL).  By sampling the collected data, the distance between 
the fog lines can be computed.  One major problem arises when sampling data.  This occurs 
when there is a lane addition or reduction on the road (adding or removing a lane along the road).  
An incorrect sampling may hide the beginning of the addition or reduction.  By computing the 
distance between all of the DGPS position points in the data files, the start of the addition or 
reduction can be determined. 
 
Since there are two fog lines, which are parallel to one another, it is possible to compute the 
distance of a point on one fog line to the other fog line.  Choosing which file is used for line 
segments or points is an arbitrary choice.  Figure 4.4 shows a single point, (x0, y0) and two points 
((x1, y1) and (x2, y2)) that construct the line segment.  The perpendicular distance d is shown 
between the single point and line segment and the vector r represents the distance of the single 
point to a point on the line segment.  The vector v is an arbitrarily positioned vector 
perpendicular to the line segment. 
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Figure 4.4 – Perpendicular distance between a point and a line segment.  Please note that 
either file can be File 1 or File 2.  Because the distance between the two fog lines is desired, 

the order of the files is irrelevant. 
 
The equation of a general line segment in the slope-intercept form is 
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The vector r, which is the vector between the single point (x0, y0) and the line segment, is  
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By projecting r onto v, the distance d is computed. 
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Choosing the single point from one of the files and locating the two points that it lies between 
can reliably compute the perpendicular distance.  Once each distance is computed and the 
number of lanes (NOL) is known, the lane width can be determined.   

      
NOL

dwidthlane =_     (5) 

Single Point 
From File 1 

Two Points 
From File 2 



 40 
 
 

As mentioned earlier, most highways in Minnesota use a 3.7-meter (12 feet) lane and some use a 
3.0-meter (10 feet) lane.  Occasionally, the lane width is neither of these choices.  The lane width 
on a highway is generally never less than 3.0 meters (10 feet) or greater than 3.7 meters (12 feet).   
 
Sudden lane additions and reductions can cause additional problems.  If, during the course of 
data collection, a lane is added or removed, a slightly different method is employed.  The 
computations discussed earlier for lane width calculations are still valid, but some conditions for 
the lane width final decision are required.  If the computed lane width is less than 3.0 meters (10 
feet) wide or greater than 4.0 meters (13 feet) wide, a lane has been added or removed, 
respectively.  It is unlikely that the width of a lane will suddenly change; there is usually a 
transition zone.  As soon as this is detected, a single lane is added or subtracted and the lane 
width is recomputed.  This process can run iteratively until a result is achieved given that the 
width of a lane is typically no smaller than 3.0 meters (10 feet) and no wider than 3.7 meters (12 
feet). 
 
4.1.4 Database Files 
 
At this point, the distance between the fog lines and the number of lanes are known.  Using the 
assumption that all lanes are parallel, it is possible to copy the input files and offset the data by 
the computed lane width.  This results in a number of lane boundary files originally derived from 
the fog line (a lane boundary) and centerline files.  Centerlines are located mid-way between two 
lane boundaries.  These are found by creating files that have been offset one half of the lane 
width from each lane boundary. 
 
Finally, the data type, road shoulder can be created.  As defined earlier, road shoulders are the 
boundary of the drivable surface.  Experience has shown that this can be a distance from 0-3.7 
meters (0-12 feet).  The width can change suddenly and this can be problematic for an automated 
measuring system.  The road shoulder permits a driver, using a HUD, to see where the road 
surface actually ends and allows the radar-target filter (RTF) to exclude any radar target beyond 
that boundary.  For lane departure prevention, the road shoulder’s exact size is less important.  
Therefore, the size of a road shoulder is assumed to be 1.8 meters (6 ft) [27].  Six-foot road 
shoulders were chosen because they are Mn/DOT’s minimum allowed road shoulder or “clear 
zone” width.  This value was chosen in order to give an adequate estimation of the extent of the 
road.  Again, this is not as crucial for a lane departure prevention system, but is required for the 
Radar Target Filter (RTF). 
 
All of the lane boundaries, centerlines, and road shoulders have been created, but lack any 
attribute information that defines them.  Attributes define other non-spatial properties, which 
remain static for the data they define.  The attributes for each data type were defined in [13], with 
minor updates, and are shown in Table 4.4. 
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Table 4.4 – Data type attributes 
Lane Boundary  Centerline  Road Shoulder 

Road Name  Road Name  Road Name 
Lane Right  Lane  Group 
Lane Left  Group  Id 

Group  Id  Next 
Id  Next  Previous 

Next  Previous  Direction 
Previous  Direction  Side 
Direction  Speed   

Type     
Marking     

Color     
 
All three data types have Group, Id, Next, and Previous attributes which define the position of 
each group of data within the data type.  This organizes the data based on the direction of travel.  
Road Name and Direction also make an appearance in each data type.  This is supplied by the 
input file’s filename. 
 
Lane boundaries exist between two drivable lanes.  Therefore, there exists a lane to the left and 
right of each lane boundary marking.  The Type refers to what type of lane exists on either side 
of the lane boundary and is useful for the RTF.  There are three options: there is no drivable lane 
on one side, both sides have drivable lanes in the same direction, both sides have drivable lanes 
in opposite direction.  The marking and color explain the actual lane marking on the road: double 
lines, single line, skip line, yellow or white colored lines.  These attributes allow a VES to draw 
representations of the lane boundaries that are similar to the actual lane markings. 
 
Each centerline has a unique numerical Lane identifier.  The rightmost lane is set to one and 
increases when moving to the left.  This is true regardless of the direction of travel.  The Speed 
attribute is the posted speed limit applied to the road.   
 
Road Shoulders appear on one or both sides of a road and are captured in the Side attribute (For 
each database created in the IV Lab, a road shoulder entity, which is used by the RTF, is created 
regardless of whether or not an actual road shoulder exists.  The road shoulder is not used for 
anything other than the RTF).  If a road has road shoulders, there always exists a road shoulder 
on the right side of the road, but if there is a road divider of any sort, there will be a road 
shoulder on the left in addition to the one on the right side of the road. 
 
Nearly all of the attributes are determined by the filename from Figure 4.1 and passed to the 
geospatial database creation software.  All of the attributes can be automated and assembled 
prior to the geospatial database creation and passed to the geospatial database creation software. 
 
At the completion of the attribute addition stage, each road can be processed as a separate entity 
unto itself or grouped together.  For example, using the information from Table 4.2, there are two 
possibilities for the final geospatial database.  Three geospatial databases can be created: one for 
Road 1 and two for Road 2 because of the road divider, or one geospatial database containing 
both sets of roads.  This is left to the discretion of the mapmaker.   
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An extra option has been added to facilitate data modification.  There is a second set of files that 
can be output from the software.  These files are constructed in a format for ArcView 
(http://www.esri.com).  ArcView is a popular GIS software package that many DOTs use.  The 
second set of files created allows the data to be imported and retain all of the attributes 
previously assigned.  This can prove useful when adding a road to an existing geospatial 
database or when a road has undergone construction and has been modified.  These sets of files 
are not needed for the creation of the geospatial database, but are present to allow another means 
of data manipulation.  Once the data is in ArcView, scripts have been created to export the 
ArcView data back into geospatial database files. 
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Chapter 5: 
Experiments 
Experiments were designed to test the accuracy of the vision-based mapping system on actual 
roads.  In order to reduce the amount of time required for data collection, the system must collect 
an accurate lane marking position in a single pass.  There is also a safety concern since the best 
time to collect data is during the night, when illumination can be controlled.  While this tends to 
reduce traffic load on the road, it also reduces visibility.  A data collection vehicle traveling at 
less than posted speeds increases the possibility of a collision with another vehicle.  Since roads 
that will be digitized using this method are open to the public, care must be taken to ensure that 
the road-digitizing vehicle can move at speeds, which will have little effect on other normal 
traffic. 
 
For all experiments, the data collection vehicle was the SAFEPLOW, an instrumented 1998 
International model 2450 truck outfitted with strobe lights.  These lights increase the visibility of 
the vehicle while collecting data.  A Trimble MS750, which is a dual-frequency carrier phase, 
real-time kinematic, DGPS unit was used for all data collection.  This unit has the ability to 
compute a new position at 10 Hertz (Hz) and has a static accuracy of 2-5 cm and a dynamic 
accuracy of 5-8 cm [28], both at ± 1σ. 
 
Since the DGPS updates at 10 Hz, the collection and processing of each image should be 
completed before the next DGPS update.  As the data collection vehicle speed increases, the 
distance between successive DGPS points increases.  If the system cannot keep pace with the 
DGPS updates, the resulting data may not accurately capture the road geometry. 
 
 
5.1 Experimental Setup 
 
As mentioned earlier, a Pentium III, 1.26 GHz dual processor computer running Windows 2000 
Professional was used as the data collection computer.  The two inputs to the computer included 
the DGPS information and the image capture source.   
 
The DGPS information from the DGPS unit is captured in latitude and longitude and passed to a 
PC104 computer running the QNX/Neutrino real-time operating system.  There the latitude and 
longitude information is converted into a local state plane coordinate system as per the geospatial 
database described in [13].  A diagram of this is shown in Figure 5.1.  The Windows computer 
requests the DGPS information from the QNX machine through an Ethernet connection. 
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Figure 5.1 – Experimental setup 
 

The camera used for these experiments was an iBot2 USB 2.0 web cam manufactured by Orange 
Micro, Inc. (http://www.orangemicro.com) shown in Figure 5.2.   
 

 
 

Figure 5.2 – Orange Micro iBot2 web cam 
 

This camera requires a USB 2.0 connection so there was no need for an image capture board.    
 
As mentioned in Chapter 3, the vision system locates the position of the lane marking in the 
camera coordinate frame (pixels) and must convert the result to local global coordinates, the 
Minnesota State South Plane in this case.  In order to do that, the position of the DGPS antenna 
with respect to the camera must be known.  To simplify this constraint, a mount was designed so 
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that the phase center of the DGPS antenna and the center of the camera lens were collinear.  
Figure 5.3 shows the vision system mount attached to the front of the SAFEPLOW. 
 

     
(a)                                                                        (b) 

 
(c) 

 
Figure 5.3 –Vision system mount – (a) passenger side view, (b) front side view,  (c) view of 

mounted camera (from below) 
 

Notice the mount is on the passenger side of the vehicle.  In this position the rightmost fog line 
can be collected.  However, this position makes it difficult for the driver of the vehicle to know 

DGPS 
Antenna

Camera 
(in housing)

Illumination 
Source 
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where the lane marking is with respect to the camera.  This can be seen from the driver’s 
perspective in Figure 5.4. 
 

 
 

Figure 5.4 – Vision system mount – driver’s view 
 
A small video screen, shown in Figure 5.4, was provided to the driver so that he or she could see 
what was in the camera’s field of view.  The video screen was used in order to train the driver as 
to where he or she should position the vehicle to capture the lane marking.   
 
During the experiments, it took the driver a short time to recognize where to position the vehicle 
so the video screen was not a necessity.  Please note that safely controlling the vehicle in traffic 
had the highest priority and maintaining the lane marking in the image was not.  However, it was 
requested that the drivers do their best to keep the lane marking in the image.   
 
 
5.2 Validation Method 
 
Each of these roads required an accurate set of data with which to compare the vision-based data 
collection system.  Since the vision-based system is designed to accurately determine the lane 
marking position, its accuracy should be compared against the most accurate data available.  
Presently, photogrammetry is the most widely used data with good accuracy.  Mn/DOT provided 
photogrammetry data for State Highway 252 that was digitized in 2003 and meets the National 
Standard for Spatial Data Accuracy (NSSDA) horizontal accuracy of 30.5 cm (12 inches).  
However, the vision-based system uses a DGPS unit that has static accuracy from 2-5 cm (0.8-
2.0 inches) and a dynamic accuracy of 5-8 cm (2.0-3.1 inches) both at ± 1σ.  Therefore, 
comparing the vision-based system results against photogrammetry is not a true measure of the 

DGPS 
Antenna 

Small Video 
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mapping system’s accuracy.  As a result, another set of accurate data was needed to compare 
against the vision-based system. 
 
Ideally, the accurate set of data used to compare the vision-based system results should be an 
order of magnitude better than the accuracy of the DGPS unit: 2-5 cm (0.8-2.0 inches) static and 
5-8 cm (2.0-3.1 inches) dynamic both at ± 1σ.  At this time, the DGPS accuracy when statically 
acquired is the most accurate; the vision-based system will be compared to it.  In order to 
accomplish this, each route used for validation was mapped using static DGPS measurements.  
The SAFEPLOW was stopped at intervals along the road and the DGPS antenna was positioned 
over the center of the lane marking.  By collecting data for a period of time (3-5 seconds at 10 
Hz) and averaging that data, the true location of the lane marking was determined to within the 
accuracy of the DGPS unit.  This data will be referred to as the validation map. 
 
All experimental results used the Orange Micro iBot camera positioned 82.6 cm (32.5 inches) 
from the ground and having a 64.8 cm (25.5 inches) wide field of view.  The lane marking 
measured width was 10.2 cm (4.0 inches). 
 
 
5.3 Experimental Routes 
 
In order to test the system, two routes were chosen and are described in detail below.  These 
routes were chosen due to their design and because each road had been mapped previously for 
research projects in the IV Lab.   
 

 
Figure 5.6 – Hwy 252– Minnesota counties with Hennepin County inset 
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The first route, State Highway 252 shown in Figure 5.6, is a multi-lane divided highway, which 
is approximately 16.1 km (10 miles) north of downtown Minneapolis.  It is one of the few 
highways that travel through the northern suburbs of the Twin Cities.  This corridor contains 
traffic signals and is subject to a large volume of traffic during rush hour.  Highway 252 runs 
north and south and was used in [29] for transit buses.  The length of the route is 4.0 kilometers 
(2.5 miles).   
 

 
Figure 5.7 – McLeod County 2 – Minnesota counties with McLeod County inset 

 
McLeod County 2 in McLeod County Minnesota, shown in Figure 5.7, was chosen as the second 
route.  McLeod County 2 had been mapped in the past in order to support a snowplow stationed 
in McLeod County as part of a field operational test of vision enhancement systems [30] in 2001.  
McLeod County 2 is a two lane, bi-directional, undivided road that runs between Silver Lake and 
Glencoe.  This particular road has a small volume of traffic, but is situated between farm fields 
and is subject to winds and snowdrifts.  McLeod County 2 runs north and south between the 
cities of Silver Lake and Glencoe and is 15.3 kilometers (9.4 miles) long.   
 
 
5.3.1 Highway 252 Intersections 
 
State Highway 252 has signal-controlled intersections, all with right and left turn lanes.  Some of 
the intersections have off- and on-ramp style turn lanes with road islands.  This results in the 
absence of data through the intersection and adjacent to the turn lanes.  Figure 5.8 shows State 
Highway 252 and the location of the intersections. 
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Figure 5.8 – State Highway 252 photogrammetry with intersections 
 

The fog line transitions away from the driving lane when a turn lane begins.  This turn lane data 
is not collected by the vision system since it is offset 3.7 meters (12 feet) to the right of the 
drivable lane on the far side of the turn lane and outside the field of view of the camera.  Since 
the drivable lanes are the focus here, the data collection vehicle does not collect data in the turn 
lanes (Please keep in mind that for lane departure, it should only be necessary to digitize the 
commonly driven lanes, so warnings can be issued when unintended lane departure occurs).  
This results in areas where it is not possible to calculate the accuracy of the vision-based 
mapping system.  Some of the off/on ramp-styled turn lanes have different lengths and, 
therefore, there are some intersections that appear relatively large.  The data was collected on 
Highway 252 from 66th Ave to 85th Ave and there are no lane markings through the intersections.   
 
 
5.4 Experimental Results 
 
Data collected using the vision-based mapping system was compared to the static DGPS points 
collected for each route.  All of the vision-based system’s collected data was filtered and reduced 
using the linear regression model illustrated in Figure 5.9.  
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Figure 5.9 – Linear regression flow chart 
 

Linear regression is a method for fitting a straight line through a set of data points [31][32].  A 
line is fit through a series of points using the Least Squares linear regression method.  This 
method calculates the perpendicular offset, or residual, for each point from the fit line.  The 
process begins with a query of a subset of data points in the file.  A linear regression is 
performed on this initial set of data and the residuals for each point from the fit line are 
calculated.  If the calculated residuals of each point are less than the specified tolerance level, an 
additional subset of points is added to the previous set and the regression is performed again until 
the residuals exceed the specified tolerance level.  Once the specified tolerance level has been 
exceeded, the process moves backward through the list of points one at a time and recalculates 
the residuals.  This continues until the residuals are within the specified tolerance level; the line 
segment is then defined and saved and the process starts anew.   
 
For these experiments, three tolerance levels were specified: 5, 10, and 20 cm (2.0, 3.9, and 7.9 
inches).  By comparing the results of three different tolerance levels, it is possible to reduce the 
amount of data required to capture the geometry of the road and still maintain accuracy.  All of 
the data was fit using the linear regression method described above.  This results in curves 
consisting of many short, straight segments.  It is possible to perform a regression using arcs of 
constant radii, but that was not used for these experiments. 
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The error between the vision-based mapping system results and the validation map was 
calculated as the perpendicular distance between the two files using the same perpendicular 
distance algorithm as described in Chapter 4, Section 4.1.3. 
 
 
5.4.1 State Highway 252 
 

 
        (a)                    (b)                   (c)                      (d) 

 
Figure 5.10 – (a) State Highway 252 – northbound lateral error at three tolerance levels – 
(b) 0.05 meter tolerance level, (c) 0.10 meter tolerance level, (d) 0.20 meter tolerance level 

plotted against location  
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        (a)                    (b)                   (c)                      (d) 

 
Figure 5.11 –  (a) State Highway 252 – southbound lateral error at three tolerance levels – 
(b) 0.05 meter tolerance level, (c) 0.10 meter tolerance level, (d) 0.20 meter tolerance level 

plotted against location  
 

The plotted data in Figure 5.10 and 5.11 (a) has been zeroed-out for route length clarity.  The 
actual data is in the Minnesota State South Plane Coordinate System. 
 
Figures 5.10 (a) and 5.11 (a) illustrate the geometry of State Highway 252 along with the 
associated error along the route for each of the specified tolerance levels of 5, 10, and 20 cm 
(2.0, 3.9, and 7.9 inches), which are plotted in Figures 5.10 and 5.11 (b), (c), and (d) 
respectively.  All data shown is for the rightmost fog line in each direction.   
 
Note that for the wider 0.20 meter tolerance level, more data is allowed by the linear regression 
model as part of a lane boundary and therefore results in larger errors. 
 
Notice that all three error plots in Figure 5.11 (b), (c), and (d) do not have data for the entire 
route (meters east).  This was due to the existence of long “on ramps” at the beginning of the test 
section and turn lanes at the end of the test section, as explained in Section 5.3.1, in which no fog 
line data exists.  State Highway 252 was used as one data set because it was an example of a road 
with many intersections and turn lanes that can affect the mapping process and the accuracy. 
 
For both the Northbound and Southbound routes, the data collected using the vision-based 
system was reduced using the linear regression model explained in Section 5.4.  It is possible to 
see that the greatest error occurs near the curved sections of the road.  Since the data is fit using a 
linear regression model, this was expected.   
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Table 5.1 shows statistics for the data collection vehicle’s speed and the vision-based data 
collection rate in frames per second.  State Highway 252 has signaled controlled intersections, 
which require the vehicle to stop occasionally and cause the minimum speed to become 0.00 kph 
(0.00 mph). 
 

Table 5.1 – Highway 252 – Vehicle speed (kph) during collection 

Speed 
Maximum Speed 

(kph) 
Minimum Speed 

(kph) 
Mean Speed 

(kph) 
Frames per  

Second 
Northbound 76.51 0.00 66.45 15.71 
Southbound 77.46 0.00 61.67 16.06 

 
Since the raw, collected data was filtered using linear regression, this resulted in a data file with 
the same geometry, but with a reduced density of points.  Table 5.2 shows length of the route, the 
number of points collected with the vision-based system, and the resulting number of points after 
performing linear regression at each specified tolerance level:  5, 10, and 20 cm (2.0, 3.9, and 7.9 
inches). 
 

Table 5.2 – Highway 252 – Number of data points collected and database results 

Direction 
Length of 

Route 
km / miles 

Collected 
Number of 

Points 

Number of Points, 
5 cm Tolerance 

level 

Number of Points, 
10 cm Tolerance 

level 

Number of Points, 
20 cm Tolerance 

level 
Northbound 4.0 / 2.5 1886 70 49 32 
Southbound 4.0 / 2.5 1713 73 46 33 

 
It is important to note that the data was reduced for the 5 cm tolerance level 27:1 and 23:1 
northbound and southbound respectively.  By doubling the tolerance level to 10 cm, the 
reduction is 38:1 northbound and 37:1 southbound and for quadrupling the tolerance level to 20 
cm, the data reduces to 59:1 and 52:1 for north and southbound directions respectively. 
 
Figures 5.12 show histograms (all histogram bins are one centimeter wide.) of the position errors 
for State Highway 252 for Northbound and Southbound.  Tables 5.2 and 5.3 lists the error 
statistics for each of the three specified tolerance levels: 5, 10, 20 cm (2.0, 3.9, and 7.9 inches). 
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5 cm (2.0 inch) tolerance level 

 
10 cm (3.9 inch) tolerance level 

 
20 cm (7.9 inch) tolerance level 

 
Figure 5.12 – State Highway 252 – position error histogram – northbound left column, 

southbound right column 
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Table 5.3 – Highway 252 northbound – errors 
Specified 

Tolerance level 
(cm) 

Max Error  
Right of  

Lane Marking 
(cm) 

Max Error  
Left of  

Lane Marking 
(cm) 

Mean  
Error  
(cm) 

Standard  
Deviation 

(cm) 
5 65.92 -53.75 1.99 21.36 

10 69.03 -53.65 0.84 21.97 
20 75.25 -53.31 0.20 23.48 

 
Table 5.3 lists the error statistics for the northbound lane on State Highway 252.  Positive error 
denotes the data is to the right of the lane marking center and negative error is to the left of the 
lane marking.  The mean error is very small for each of the three tolerance levels and the 
standard deviation is slightly more than 20 cm (7.9 inches).  The right column of histograms 
from Figure 5.12 shows that nearly all of the data (91.8 %, 89.0 %, and 80.8 % for 5, 10, and 20 
cm tolerance levels respectively) is within 30.5 cm (12 inches) of the center of the lane marking.   
 

Table 5.4 – Highway 252 southbound – errors  
Specified  

Tolerance level 
(cm)  

Max Error  
Right of  

Lane Marking  
(cm) 

Max Error  
Left of  

Lane Marking 
(cm) 

Mean  
Error 
(cm) 

Standard  
Deviation 

(cm) 
5 35.35 -25.64 -0.09 14.61 

10 45.05 -27.69 -2.93 15.94 
20 61.17 -38.95 -4.05 21.67 

 
The error statistics for the southbound lane of State Highway 252 are shown in Table 5.4.  The 
mean error is again small for each of the three tolerance levels but with a smaller standard 
deviation.  Observing the position error histograms in the right column of Figure 5.12, the 
majority of the data (94.9 %, 93.7 %, and 83.6 % for the 5, 10, and 20 cm tolerance levels 
respectively) is within 30.5 cm (12 inches).   
 
Reducing the amount of data using linear regression and computing the perpendicular distance of 
the data from the validation map can increase the errors by not accurately capturing the curved 
geometry.  However, the majority of error for State Highway 252 is less than 30.5 cm (12 inches) 
with a significant amount (Northbound – 64.4 %, 64.4 %, and 63.0 % and Southbound – 81.0 %, 
81.0 %, and 57.5 % for the 5, 10, and 20 cm tolerance levels respectively) within 20 cm (7.9 
inches) for the center of the lane marking.   
 
The number of data points is also important to look at in the context of the error.  Relaxing the 
tolerance level from 10 cm (3.9 inches) to 20 cm (7.9 inches) reduces the number of data points 
(Table 5.2), but can result in greater positional error and a larger standard deviation (Tables 5.3 
and 5.4).   
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5.4.2 McLeod County 2 
 

 
          (a)                    (b)                     (c)                      (d) 

 
Figure 5.13 – McLeod County 2 – northbound lateral error at three tolerance levels – (b) 

0.05 meter tolerance level, (c) 0.10 meter tolerance level, (d) 0.20 meter tolerance level 
plotted against location  
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       (a)                      (b)                      (c)                      (d) 

 
Figure 5.14 – McLeod County 2 – southbound lateral error at three tolerance levels – (b) 

0.05 meter tolerance level, (c) 0.10 meter tolerance level, (d) 0.20 meter tolerance level 
plotted against location 

 
The plotted data in Figure 5.13 and 5.14 (a) has been zeroed-out for route length clarity.  The 
actual data is in the Minnesota State South Plane Coordinate System. 
 
Figure 5.13 and 5.14 (a) shows the geometry of McLeod County 2 northbound and southbound 
routes respectively.  The error along the northbound and southbound routes for each of the three 
linear regression tolerance levels, 5, 10, and 20 cm (2.0, 3.9, and 7.9 inches) are shown in 
Figures 5.13 (northbound) and 5.14 (southbound) (b), (c), and (d).  Again all data shown is for 
the rightmost fog line in each direction.   
 
The raw data from the vision-based system was fit using the linear regression model described in 
Section 5.4 and the result was compared to fiduciary points for the McLeod County 2 route.  The 
error shown in Figures 5.13 and 5.14, plots (b), (c), and (d), show that there were large errors 
when the road curved.  Since McLeod County 2 has very sharp curves, which can lead to larger 
errors, it is an ideal test route for the vision-based data collection system.  However, the error in 
the middle of the longest straight section also has a large error spike.  Since the data was fit using 
a linear regression model and the error was calculated using a perpendicular offset method, large 
errors along the curves are expected.  Along the straight segment the error may be due to a false 
positive data point. 
 
The statistics for the data collection vehicles’s speed and the data collection rate is shown in 
Table 5.5.  Since McLeod County 2 does not have any signal-controlled intersections, the vehicle 
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does not stop and results in a positive minimum speed.  The reduced speed is due to sharp 
curvature along the road. 
 
 

Table 5.5 – McLeod County 2 – vehicle speed (mph) during collection 

Speed 
Maximum Speed 

(kph) 
Minimum Speed 

(kph) 
Mean Speed 

(kph) 
Frames per  

Second 
Northbound 60.40 24.64 54.09 10.46 
Southbound 67.54 10.14 53.09 10.77 

 
The density of the collected points for McLeod County 2 was reduced using the same linear 
regression method and tolerance levels (5, 10, and 20 cm (2.0, 3.9, and 7.9 inches)) described 
earlier.  The length of the route and the number of data points collected are shown in Table 5.6.  
Also included in Table 5.6 is the number of remaining points after fitting the raw data at 5, 10, 
and 20 cm (2.0, 3.9, 7.9 inch) tolerance levels. 
 

Table 5.6 – McLeod County 2 – number of data points collected and database results 

Direction 
Length of 

Route 
km / miles 

Collected 
Number of 

Points 

Number of 
Points, 5 cm 

Tolerance Level

Number of 
Points, 10 cm 

Tolerance Level

Number of 
Points, 20 cm 

Tolerance Level
Northbound 15.3 / 9.4 7262 230 138 89 
Southbound 15.3 / 9.4 7703 233 133 90 

 
Data reduction is significant for McLeod County 2 due to the long straight sections of the road.  
The data was reduced for the 5 cm tolerance level 32:1 northbound and 33:1 southbound.  Using 
a 10 cm tolerance level, the reduction is 53:1 and 58:1 northbound and southbound respectively 
and for the tolerance level of 20 cm, the data reduces to 82:1 northbound and 86:1 and 
southbound directions. 
 
The position error histograms (all histogram bins are one centimeter wide) for northbound and 
southbound McLeod County 2 at each tolerance level are shown in Figures 5.15.  Tables 5.7 and 
5.8 list the error statistics. 
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5 cm (2.0 inch) tolerance level 

   
10 cm (3.9 inch) tolerance level 

   
20 cm (7.9 inch) tolerance level 

 
 
 
 
 
 

 
Figure 5.15 – McLeod County 2 – position error histogram – northbound left column, 

southbound right column 
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Table 5.7 – McLeod County 2 northbound – errors 
Specified 

Tolerance level 
(cm) 

Max Error  
Right of  

Lane Marking 
(cm) 

Max Error  
Left of  

Lane Marking  
(cm) 

Mean  
Error 
(cm) 

Standard  
Deviation 

(cm) 
5 51.23 -42.13 -9.58 14.14 

10 64.68 -54.06 -9.45 17.96 
20 75.13 -73.68 -8.12 24.62 

 
The error statistics for the northbound lane of McLeod County 2 are shown in Table 5.7.  The 
mean error is nearly 10.0 cm (3.9 inches), but the standard deviation is under 25.0 cm (9.8 
inches).  Again, a positive error is to the right of the lane marking center and a negative error is 
to the left of the lane marking center.  Most of the data (94.5 %, 89.7 %, and 79.5 % for the 5, 
10, and 20 cm tolerance levels respectively), as shown in Figures 5.18 – 5.20, is again within 
30.5 cm (12 inches) of the validation map. 
 

Table 5.8 – McLeod County 2 southbound – errors 
Specified 

Tolerance level 
(cm) 

Max Error  
Right of  

Lane Marking 
(cm) 

Max Error  
Left of  

Lane Marking 
(cm) 

Mean  
Error 
(cm) 

Standard  
Deviation 

(cm) 
5 57.47 -36.16 -4.18 16.30 

10 57.49 -42.63 -5.91 19.14 
20 61.40 -67.78 -4.09 25.81 

 
Table 5.8 displays the error statistics for the southbound lane of McLeod County 2.  The standard 
deviation for the 5 and 10 cm (2.0 and 3.9 inches) tolerance levels are under 20 cm (7.9 inches) 
and the 20 cm (7.9 inches) tolerance level is below 30.5 cm (12 inches).  The mean error for the 
three tolerance levels is small and within the accuracy of the DGPS unit.  Examining the position 
error histograms for the southbound lane (Figures 5.21-5.23), the majority of the data points 
(93.9 %, 89.4 %, and 75.6 % for the 5, 10, and 20 cm tolerance levels respectively) are within 
30.5 cm (12 inches).   
 
Most of McLeod County 2’s geometry is straight, but there are some very sharp curves (four 90° 
curves, one less than 90° curve).  Through the combination of linear regression and using the 
perpendicular offsets of the data points from the validation map, the error may appear larger on 
the curved sections than in reality.  The majority of the data is again less than 30.5 cm (12 
inches) with a significant amount (Northbound – 78.7 %, 69.0 %, and 59.8 % and Southbound – 
78.8 %, 66.7 %, and 56.5 % for the 5, 10, and 20 cm tolerance levels respectively) within 20 cm 
(7.9 inches) from the center of the lane marking.   
 
Table 5.6 shows the significant reduction in the density of data points when using the linear 
regression method to reduce the raw data.  Again, by relaxing the tolerance level to 20 cm (7.9 
inches), the standard deviation increases.  By setting the linear regression tolerance level to 10 
cm or less, it is possible to create a map that is accurate to 20 cm (7.9 inches) when using the 
vision-based data collection system. 
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It is important to understand that computer vision systems may give conflicting results for the 
same image depending on many circumstances (light index, reflection, etc.).  The size of one 
pixel is known to be 0.45 cm (0.18 inches) square and this results in a 10.2 cm (4 inch) wide lane 
marking measuring approximately 25 pixels wide in the image.  False positives can occur, as 
explained in Chapter 3, and those can offset the raw data by as much as the field of view of the 
camera, 25.5 inches. 
 
 
5.5 Quality Assurance 
 
While it may not be possible to always check the results against photogrammetry or a very 
accurate map, such as the fiduciary point method described in this document, it is possible to 
perform an on-site check immediately after the data is collected by using the HUD [14][15][16] 
which is shown in Figure 1.1.  By creating a road geospatial database from the collected data, it 
is possible to drive the newly digitized route and use the HUD to determine whether or not the 
geospatial database is lined up and correct.   
 
 
5.6 Alternative Data Collection Comparison 
 
Previously, the IV Lab created high accuracy digital maps by collecting data for each lane by 
making multiple passes.  This is a time-consuming collection task that produces multiple files for 
a single lane.  By using the vision-based system, multiple passes and data collection in each lane 
is not necessary.  This reduces the number of files requiring processing as well as the time spent 
collecting data on each route.   
 
As previously mentioned, each of the routes, State Highway 252 and McLeod County 2, had 
been digitized for past projects.  This enabled a comparison between the amount of data needed 
and time required for each method.  Table 5.7 shows the raw numbers using each method on 
each route. 
 

Table 5.7 – Data collection comparison statistics 

Route Method 
Time Required 
for Collection 

Number of 
Files Saved 

Amount of 
Data Stored 

 Multiple Runs 107.90 min 18 5.49 MB 
Highway 252 Vision System 16.32 min 4 438 KB 

 Multiple Runs 86.33 min 8 4.20 MB 
County 2 Vision System 34.08 min 2 1.78 MB 

 
State Highway 252 is a 4.0-km (2.5-mile), multi-lane, divided highway with a maximum of three 
lanes in each direction, totaling six lanes.  By using the Multiple Run method, each lane was 
driven a minimum of three times.  This resulted in eighteen files requiring 107.90 minutes to 
collect the data.  Consequently, the amount of storage space required increases due to the number 
of files containing (roughly) the same amount of data per file.  While this increase of data is 
relatively negligible, it can add up over time for routes that are longer and similarly constructed.  
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The Vision System method, based on the definition described in Chapter 2, allows for fewer 
passes over the road, one pass per fog line.  This results in a shorter time collecting data and 
requires less storage space.  If the Vision System method is used, it is possible to collect the 
same amount of information 1.5 hours faster and using 5 MB less of storage space than using the 
Multiple Run method.   
 
McLeod County 2 is a 15.1 km (9.4-mile), two-lane, non-divided highway.  In this case, there is 
only one lane in each direction.  However, data was collected for three runs using the Multiple 
Runs method, which required 86.33 minutes to complete the data collection.  Due to the longer 
length and the sharper turns, which required slower speeds, the amount of data that is stored is 
larger than for Highway 252.  The amount of storage using the Multiple Run method is 2.4 times 
as much as the Vision System and takes 2.5 times longer to collect.  
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Chapter 6: 
Costs 
A high-accuracy geospatial database representing lane boundaries for all national rural roads and 
highways would support numerous safety applications, and lane departure warnings in particular.  
National deployment of these systems would produce substantial benefits, both in terms of lives 
saved and in increased mobility.  The technologies enabled by this geospatial database could 
potentially save hundreds of lives annually in the US as well as improve mobility for those 
vehicle operators required to drive under difficult environmental conditions.   
 
Two unanswered questions have delayed the deployment of a national map: 

1. The cost to create the initial geospatial database 
2. The cost to maintain the geospatial database once it is created. 
  

To address these questions, a model to estimate the cost to develop a geospatial database 
containing lane boundary information is presented.  The model presented is based on data 
collection efforts documented in previous chapters and on weather, road, and DGPS correction 
conditions found in Minnesota.  Two important assumptions guide the development of this 
model: 

 
� The road model contains only information regarding the location of lane boundaries. 

Information regarding guardrails, signage, mailboxes, and intersection geometry are 
not contained within the proposed database.  Limiting the database to this data set 
enables a significant number of applications, in particular lane departure warning and 
rural snowplowing, and facilitates a relatively rapid deployment of the database. 
Should applications requiring additional information be developed, the lane boundary 
database can be augmented to included additional data.  

� Weather effects, including rain, snow, and ice allows data collection to occur only 30 
weeks of the year.  Productivity in more southern states is likely higher, which would 
result in a lower overall cost to create the map.  

 
A third assumption affects the cost model, but not to the extent that the two assumptions above 
do.  Minnesota is working to provide VRS-based DGPS correction coverage throughout the 
state.  This coverage greatly expedites the creation of geospatial databases because corrections 
are readily available.  In Minnesota, as of April 2005, approximately thirty percent of the state 
was covered by VRS.  In locations where DGPS corrections are unavailable, two options are 
available: 

� Establishment of a local GPS base station, which combined with a wireless 
communication channel, provides Real Time Kinematic (RTK) DGPS capability 
when in relatively close proximity to the base station. 

� Collection of raw satellite observable data to be subsequently post-processed using 
reference station data.  
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Both options add cost to the data collection process. To support RTK corrections from a local 
base station, the base station GPS antenna location must be accurately located. This can be done 
either by placing the base station antenna on a High Accuracy Reference Network (HARN) 
survey marker or by collecting static location data, and subsequently post-processing to 
determine an accurate position.  HARN survey marker density is quite variable, so the presence 
of a marker suitably located to support map data collection is not guaranteed. Collecting base 
station location data and subsequent post-processing requires 4 hours of data collection, and a 12 
hour delay before that position can be post-processed.  On average, this RTK approach would 
likely decrease the amount of lane miles, which could be mapped in any given year by one-half.  
 
The second option involves the collection of raw satellite observable information on the mapping 
vehicle while image data is captured and processed.  Once raw observable data is collected, it 
can be post-processed using data collected from a GPS reference network and post-processing 
software which is commercially available. (One source of post-processing software is Waypoint 
Consulting, Inc; see http://www.waypoint.com/.)  Assuming that a source of reference GPS base 
station data is available, this approach would have an insignificant impact on the amount of lane 
miles that could be mapped in any given year.  The primary impact on the mapping process 
would be on the capital cost of the software needed to execute the post-processing task.  
 
With these caveats, costs to create a road boundary geospatial database for Minnesota, and 
subsequently extrapolated to the entire US is provided below. 
 
6.1 Equipment 
 
6.1.1 DGPS 
 
The primary (and most costly) piece of equipment is the DGPS unit.  A Trimble MS750 DGPS 
unit, used for the experiments conducted in this paper, can cost up to $15,000 (DOT price for the 
MS750 system including receiver, antenna, and cable set).  The MS750 has been used 
satisfactorily by the IV Lab for six years and has verified and documented its accuracy.  The 
MS750 unit can achieve a mean error of about 2-5 cm statically at ± 1σ and 5-8 cm dynamically 
at ± 1σ, while using an RTK or VRS correction [28].  This system requires a differential 
correction method and some states, as well as the FHWA, are looking into methods to achieve a 
broadly available correction system.  Currently Minnesota is leading statewide deployment of 
VRS on a national basis, with other states such as North Carolina and Ohio also operating VRS 
systems. 
 
The FHWA is working on a nationwide correction system, the High Accuracy Nationwide DGPS 
(HA-NDGPS) [33].  This method compresses and modulates a GPS signal and uses the existing 
NDGPS (1-3 meter (3.3-9.8 feet) accuracy) infrastructure in order to broadcast the corrections.  
The HA-NDGPS signal uses a low frequency broadcast technique that has been used by aviation 
and maritime radio navigation systems.  The correction signal, which has carrier phase 
resolution, is compressed to best utilize available broadcast frequency bandwidth.  Use of this 
HA-NDGPS correction requires specially equipped GPS units which can decompress the HA-
NDGPS signal.  The static accuracy of a HA-NDGPS receiver is currently within 10 cm (3.9 
inches). 
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VRS is most likely the preferred choice for the near future differential corrections because there 
are fewer reference stations required (one every 50 km (31 miles) versus RTK’s requirement of 
one approximately every 24 km (15 miles)).  Given a fixed number of DGPS base station 
receivers, the coverage area of a networked solution is typically four times greater then the area 
provided by non-networked base stations.  At this time, the IV Lab does not pay a fee to 
Mn/DOT (Minnesota’s VRS provider and maintainer) to use Mn/DOT’s VRS service.  It is 
reasonable to assume that there would be a fee for a user if the data were used for commercial 
purposes.   
 
If the proper telecommunication infrastructure is in place, the correction signal can be broadcast 
and received using existing, widely available, wireless services. This circumvents the need to 
broadcast corrections on a dedicated, FCC-licensed radio frequency.  The IV Lab has used a 
data-capable CDMA cellular phone in order to receive DGPS corrections, both from a discrete 
base station and from the Mn/DOT VRS server.  Depending on the wireless plan purchased, the 
phone can cost anywhere from $0-250.00 with an accompanying wireless plan.  Table 6.1 lists 
the required items and their current price, assuming a VRS-based GPS correction. 
 

Table 6.1 – DGPS cost 
Item 

 
Cost 

(US Dollars/Unit)
Capital Costs  

DGPS - Trimble MS750 15,000.00
Cellular Phone 250.00

Annual Operational Costs 
Cell plan (Unlimited Data) 
$80/month (x 12 month/year) 960.00
Total 16,210.00

 
 
6.1.2 Computer 
 
The computer used in this system can either be a desktop, a laptop, or a rugged laptop such as the 
Panasonic Toughbook CF-18.  The minimum requirements are: 

� a 2 GHz processor,  
� USB 2.0,  
� and two RS-232 serial ports (one for DGPS, one for VRS correction).   

 
While these requirements are readily available on a basic desktop computer, most laptops only 
have a single RS-232 serial port.  An additional piece of hardware, an RS-232 Serial PCMCIA 
card can be employed to expand the number of serial ports.  Because of the difficult data 
collection environment, a Toughbook computer is recommended due to its rugged design.  Table 
6.2 lists the cost for a Panasonic Toughbook and a RS-232 Serial PCMCIA card. 
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Table 6.2 – Computer capital costs 

Item 
 

Capital Cost 
(US Dollars/Unit)

Panasonic Toughbook CF-18 3,300.00
Qautech 2 port RS-232 PCMCIA 200.00
Total 3,500.00

 
 
6.1.3 Camera, Illumination, Hardware 
 
The required hardware associated with the camera and the illumination source is listed in Table 
6.3.  For the experiments described in this document, the system consists of an Orange Micro 
iBot camera with USB extension cable and an illumination source consisting of a 300-Watt 
commercial grade quartz floodlight with an opal diffuser and the associated hardware.  The 
equipment is attached to a camera mount that was custom designed specifically for the 
SAFEPLOW.  The University of Minnesota Mechanical Engineering Machine Shop built the 
camera mount to IV Lab specifications.  A power inverter is both used to power the illumination 
source and as an AC power source for the computer. 
 
 

Table 6.3 – Camera, illumination source, and mounting hardware 
Item 

 
Capital Cost 

(US Dollars/Unit) 
Camera - Orange Micro iBot 80.00 
USB Extension Cable - 10 ft 25.00 
Light - 300 W with Diffuser and Hardware 76.00 
Camera Mount 546.00 
Inverter - Radio Shack 300 W 100.00 
Total 827.00 

 
The final cost for all of the equipment is $20,537.00 based on the selected Toughbook computer.   
 
 
6.2 Vehicle Costs 
 
Given the relatively low technical demands placed on the data collection vehicle, it is unlikely 
that a county or state agency will purchase and dedicate a vehicle to the data collection process. 
Therefore, it is assumed that parties interested will allocate a vehicle that can be used for data 
collection.  However, the maintenance and operational costs of a vehicle are important and are 
considered here.  In order to evaluate the maintenance and operational costs, the following 
assumptions are made: 
 

• 231.7 km (144 miles) lane miles of good data collected per day (based on 4.5 hours of 
data collection at an average speed of 64.4 kph (40 mph) of which 80% of the collected 
data is good) 
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• 218.9 km (136 miles) per day of additional driving not used for collecting data (160.9 km 
(100 miles) to and from route, gas station, etc., 57.9 km (36 miles) of data collected but 
not useable) 

• Data collected 3 days per week, data is processed and formatted 2 days per week 
• Data collected 30 weeks per year (only 30 weeks are assumed due to times when 

collection is not possible due to inclement weather (rain or snow) in Minnesota) 
• Mileage and maintenance cost at $0.47 per km ($0.76 per mile) – Mn/DOT pick-up truck 

rate (not including vehicle insurance) 
This amounts to a total of 20,857.1 km (12,960 miles) collected per year with an additional 
19,698.4 km (12,240 miles) that are driven but for which data is not collected, yielding a total of 
40,555.5 km (25,200 miles) per year.  At $0.47 per km ($0.76 per mile), the approximate cost is 
$19,152.00 per year for refueling costs and vehicle maintenance.   
 
6.3 Labor 
 
The data collection system uses a GUI to facilitate collection and appropriate filenames as 
explained in Chapter 4.  For the method described herein, the data collection typically consists of 
starting and stopping the system with an occasional change in filename information.  The driver 
of the vehicle can easily accomplish this.  While it is reasonable to assume that a second operator 
could monitor the system and assist with data collection, it is possible to collect the basic 
geometry with a single operator.  The assumed salary plus benefits for a full time employee (8 
hours per day, 5 days per week, 52 weeks per year) was set at $53,000.  Because the driver 
would be collecting data for mapping purposes only 30 weeks of the year, $31,000 of the 
$53,000 salary (benefits included) factors into the cost model.   
 
Table 6.4 shows the capital and operational costs for data collection explained thus far. 
 

Table 6.4 – Data collection costs 

Data Collection 
Cost 

(US dollars) 
Capital Cost   

Equipment 19,577.00
Annual Operational Cost   

Equipment (Cell phone service) 960.00
Vehicle 19,152.00
Operator 31,000.00
Total 70,689.00

 
 
6.4 Quality Assurance 
 
The quality of the collected data must be checked, and improved where found deficient.  In order 
to accomplish this, additional personnel and equipment is required.  Because the data collection 
must occur during the night, the data can be checked for accuracy in the daytime.  This allows 
the vehicle used for data collection to be used for the quality assurance.  
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As explained in Chapter 5, Section 5.5, the use of a VES system, which includes a HUD (as 
shown in Figure 1.1), can be used to compare the physical road to the newly created geospatial 
database for that same road.  This requires additional hardware consisting of a combiner, 
projector, and a computer that can run the software required to project the geometry of the lane 
boundaries in the geospatial database.  This additional hardware is approximately $7,000. 
 
Because the route must be driven again for quality assurance, there are additional miles that must 
be factored into the cost.  The amount of miles driven during quality assurance is limited by the 
total amount of miles driven by the data collection vehicle.  These numbers are summarized 
below: 

• 289.7 km (180 miles) lane miles driven per day (based on 4.5 hours of data collection at 
an average speed of 64.4 kph (40 mph)) 

• 160.9 km (100 miles) per day of additional driving to and from route, gas station, etc. 
• Quality Assurance performed 3 days per week 
• Quality Assurance performed 30 weeks per year (only 30 weeks are assumed due to times 

when quality assurance is not possible due to inclement weather (rain or snow) in 
Minnesota) 

• Mileage and maintenance cost at $0.47 per km ($0.76 per mile) – Mn/DOT pick-up truck 
rate (not including vehicle insurance) 

This amounts to a total of 26,071.4 km (25,200 miles) driven for quality assurance per year at a 
cost of $19,152.00 per year for refueling costs and vehicle maintenance.   
 
An operator is also required to drive the vehicle and to check the quality of the data collected.  
An additional operator salary plus benefits for quality assurance was assumed to be $63,000 (a 
higher pay scale for this employee).  Again this operator only performs the quality assurance task 
for 30 weeks out of the year and therefore only $37,000 (salary and benefits) is applied to the 
cost of mapping. 
 
The costs associated with the quality assurance function are shown below in Table 6.5. 
 

Table 6.5 –Quality assurance costs 
Quality Assurance Cost (US dollars) 

Capital Cost   
VES System 7,000.00

Annual Operational Cost   
Vehicle 19,152.00
Operator 37,000.00
Total 63,152.00

 
 
6.5 Total Cost to Map 
 
Table 6.6 below indicates the initial per mile cost to create a geospatial database in Minnesota 
under the assumption that the capital costs are covered in the first year. Clearly, second year per 
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mile costs will be lower regardless whether capital costs are amortized or completely absorbed in 
the initial year costs.  
 
Table 6.6 – Minnesota calculated cost per mile (first year cost: operating and capital cost) 

  
 

Expense 
Cost 

(US Dollars) 

Capital Cost  
Equipment (Data Collection and Quality Assurance) 26,577.00 

Annual Operational Cost  

Equipment (Data Collection and Quality Assurance) 960.00 
Vehicle (Data Collection + Quality Assurance) 38,304.00 
Operator (1 each for Data Collection and Quality Assurance) 68,000.00 

Total Annual Operating Cost 107,264.00 
  

Total Expenses (Capital + Operational) 133,841.00 
    
Total Equivalent Lane Miles Mapped per Year 12,960 
    
Cost To Map (per Mile per Vehicle per Year) 10.33 

 
According to the FHWA’s “Public Road Length in the United States” data (See Appendix A, 
Table A.1) for 2003, Minnesota has 186,175.4 total rural road kilometers (115,684 miles).  In 
order to map every rural road in Minnesota, in both directions, data needs to be collected for at 
least 372,350.7 lane km (231,368 miles) (i.e. 186,175 km multiplied by two directions).  Many 
roads, including interstates, are divided by some means and, therefore, require more than a single 
pass per direction.  Since more than a single pass may be necessary, the number of divided and 
undivided roads is required.  According to the FHWA (See Appendix A, Table A.2), 
approximately 91% of rural roads are undivided.  As explained earlier, an undivided road 
requires one pass per direction and a divided road requires 2 passes per direction.  Taking this 
into account and approximating the number of miles that are divided and undivided, a multiplier 
of 2.18 is assumed to be satisfactory and results in the 405862.1 total rural kilometers (252,191 
miles) of road in Minnesota that require data collection.  The multiplier, 2.18, is found by adding 
2 passes multiplied by 91% and 4 passes multiplied by 9%.  Table 6.7 shows the required cost 
and the time frame required to complete data collection for the state of Minnesota. 
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Table 6.7 – Total cost and time frame required for Minnesota  

(dollars rounded to nearest 500) 

Number of 
Collection 
Vehicles 

 
Rural Road 

Miles 
Mapped 

Equivalent 
Lane Miles 

Mapped 

Time 
Frame 
(Years) 

 
Total Capital

Cost  
(US Dollars)

Total 
Operating 

Cost 
 (US Dollars)

Total 
Cost per  

Year 
(US Dollars) 

 
Cost per 

Lane Mile 
(US Dollars)

1 
 

115,684 252,191 19.5 26,500 2,092,000 109,000
 

8.40 

4 
 

115,684 252,191 4.9 106,000 2,102,000 451,000
 

8.76 
 
The total operating cost is found by taking $107,264 (Total Operating Cost from Table 6.6) and 
multiplying by the number of required vehicles and the number of years required to complete 
mapping.  By summing the Total Capital Cost and Total Operating Cost and dividing by the 
number of years required to complete mapping the rural road system of the specified area, the 
Total Cost per Year was determined. 
 
For illustrative purposes, statistics for Minnesota (from Table 6.6) and the United States are 
shown in Table 6.8 along with the cost of mapping per calendar year. 
 

Table 6.8 – Total cost and time frame required for Minnesota  and the United States 
(dollars rounded to nearest 500) 

Area - 
Number of 
Collection 
Vehicles 

 
Rural Road 

Miles 
Mapped 

Equivalent 
Lane Miles 

Mapped  

Time 
Frame 
(Years) 

 
Total Capital

Cost  
(US Dollars)

Total 
Operating 

Cost 

 (US Dollars)

Total 
Cost per  

Year 
(US Dollars) 

 
Cost per 

Lane Mile
(US Dollars)

Minnesota 
- 1 

 
115,684 252,191 19.5 26,500 2,092,000 109,000

 
8.40 

Minnesota 
- 4 

 
115,684 252,191 4.9 106,000 2,102,000 451,000

 
8.76 

U.S. - 50 
 

3,036,293 6,619,119 10.2    1,325,000 54,705,000 5,493,000
 

8.46 

U.S. - 100 
 

3,036,293 6,619,119 5.1    2,650,000 54,705,000 11,246,000
 

8.67 

U.S. - 200 
 

3,036,293 6,619,119 2.6    5,300,000 55,777,000 23,491,000
 

9.23 
 
Table 6.8 shows that with additional vehicles, it is possible to collect highly accurate data for a 
geospatial database for the entire rural road system in the United States within three years.  
While this method requires the use of 200 vehicles, on average, there are four vehicles per state.  
However, with the increase in the number of vehicles, the equipment and operating costs to map 
the entire rural road system in the U.S. is approximately 61 million dollars.    
 
The data computed here is for a stand-alone mapping group and does not account for DOTs or 
other groups using vehicles and personnel already in service as a mapping team.  Training a team 
to collect and process data is minimal and can be delegated to those people already doing field 
work for state DOTs or counties.   
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Chapter 7: 
Conclusions 
 
This report outlines the concept of using a vision-based data collection system to create a high 
accuracy geospatial database.  The proposed geospatial database is accurate enough to determine 
where each lane boundary is and when a lane departure may occur.  Due to the many fatalities 
that occur on rural roads because of vehicular lane departures, this accurate lane marking 
database can help reduce those fatalities.  Note in the interest of cost and time reductions, details 
regarding intersections, turn lanes, etc. were not included, but these can be added later as needed. 
 
Using road design standards and some assumptions, it is possible to define the road so that data 
collection can occur efficiently.  Real-time data collection of the outermost lane markings, 
defined as the fog lines, using a camera and DGPS antenna aligned coaxially, can capture 
enough information to accurately locate the lane marking in the image.  By using the DGPS data 
collected for the imaged lane boundaries, the lane marking can be accurately placed with respect 
to the global coordinate frame. 
 
By saving the data in a file with a specified format, it is possible to process the files and create a 
high accuracy geospatial database with minimal passes on each road, little intervention, and little 
processing time. 
 
In order to validate the accuracy of the vision-based system, data was collected on two roads, 
State Highway 252 and McLeod County 2.  State Highway 252 was chosen as a test route 
because it contains intersections and turn lanes, which can affect the mapping process and 
accuracy.  McLeod County 2 has many sharp turns that can lead to large errors, which can distort 
the accuracy.  The data collected on these two roads was compared to a set of fiduciary points 
that were specially collected for these tests.  By positioning a DGPS antenna over the lane 
marking and collecting data, it was possible to collect accurate data of the lane marking which 
could be compared against the vision-based data collected.  The accuracy of this system is 
actually the static accuracy of the DGPS unit, approximately 2-5 cm (0.8-2.0 inches) at ± 1σ.   
 
The vision-based data collected was fit using a least squares linear regression model.  Each data 
point was fit to within a specified tolerance level of 5, 10, and 20 cm (2.0, 3.9, and 7.9 inches).  
This resulted in a reduced density map while maintaining accurate geometry.  If the linear 
regression tolerance level is 10 cm (3.9 inches) or less, it is possible to reduce the number of data 
points one-fortieth and maintain a map that is accurate to within 20 cm (7.9 inches). 
 
While the results are promising, there were some concerns when using computer vision.  These 
include the possibility of false positives and negatives. Shadows, additional paint markings for 
intersections, etc., can skew the actual results and incorrectly shift the derived position.  
However, these happen infrequently, and were not found to be a problem.  The data is filtered 
after acquisition, which can remove this type of inconsistent data.  Because the image captured is 
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nearly always a white lane marking on a dark (asphalt) or light (concrete) background and the 
lane marking orientation is known, many limiting factors of computer vision can be dealt with in 
software. 
 
Having a nationwide correction signal for DGPS is not yet in place.  While Minnesota has an 
extensive correction system in place for most of the state, there are many rural areas that do not 
yet receive the correction.  Currently, this problem is being addressed by many DOTs using VRS 
corrections and the FHWA creating HA-NDGPS.  In the future, this should not be a significant 
problem. 
 
Since the system’s accuracy relies on DGPS, it is the most limiting factor.  There is also a 
reduction in the accuracy of the DGPS in urban areas when there is a reduced amount of sky 
available due to buildings, bridges, etc.  These are typically not issues in rural areas where most 
lane departure fatalities occur.  Roads on mountainsides, in canyons, or in deep valleys may be 
problematic because of limits in the availability of a reasonable number of satellites in the sky to 
achieve an accurate solution.  Alternative solutions may be more appropriate in these locations.  
Focusing on the vast majority of rural areas in which this is not a problem could still eliminate 
most rural lane departure crashes.  It is highly likely that with the deployment of next generation 
GPS satellites, such concerns will be significantly reduced. 
 
In conclusion, the system presented in this paper has the ability to accurately capture the road 
geometry for a lane-level accurate geospatial database.  A geospatial database with this type of 
accuracy can alert a driver to a potential lane departure.  By using this system, it is feasible to 
collect and process accurate data in an efficient manner.  This can produce a high accuracy 
geospatial database with little post-processing work in less time than those previously employed. 
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Table A.1: Public road length – 2003 miles by functional system – FHWA Table  HM-20 
(Only the rural mileage shown.  The original table includes both rural and urban mileage.) 

 
(Tables found at: http://www.fhwa.dot.gov/policy/ohim/hs03/re.htm) 

 
 

 RURAL 

State  Interstate 
Other  

Principle 
Arterial 

Minor 
Arterial  

Major  
Arterial  

Minor  
Collector   Local Total  

Alabama 604 2,077 3,625 11,979 6,338 48,853 73,476 
Alaska 1,012 805 442 1,383 1,055 7,463 12,160 
Arizona 980 1,141 1,260 4,236 2,122 25,890 35,629 
Arkansas 467 2,167 2,997 12,489 6,659 62,954 87,733 
California 1,357 3,751 7,002 13,170 8,712 49,935 83,927 
Colorado 687 2,263 3,389 5,818 8,919 47,617 68,693 
Connecticut 43 164 262 917 362 4,372 6,120 
Delaware - 214 122 554 166 2,809 3,865 
Dist. of 
Columbia - - - - - - - 

Florida 951 3,501 2,830 4,358 4,052 36,204 51,896 
Georgia 806 2,807 5,586 13,679 7,510 57,589 87,977 
Hawaii 6 179 317 364 131 1,184 2,181 
Idaho 526 1,721 1,281 5,431 4,065 29,493 42,517 
Illinois 1,508 2,599 4,778 14,143 3,490 75,001 101,519 
Indiana 852 1,742 2,235 10,760 9,699 48,709 73,997 
Iowa 628 3,459 3,927 14,246 16,194 64,357 102,811 
Kansas 691 3,147 4,302 23,053 9,266 83,960 124,419 
Kentucky 553 2,310 1,740 6,132 8,914 45,380 65,029 
Louisiana 612 1,122 1,766 5,049 3,679 34,759 46,987 
Maine 313 788 1,043 3,263 2,233 12,420 20,060 
Maryland 184 445 832 1,635 1,653 9,159 13,908 
Massachusetts 91 164 406 1,138 775 5,335 7,909 
Michigan 611 2,567 3,836 15,996 5,936 58,188 87,134 
Minnesota 683 3,596 6,416 16,286 11,759 76,944 115,684 
Mississippi 481 1,826 3,709 11,613 2,289 43,526 63,444 
Missouri 807 3,134 3,440 17,910 5,455 76,363 107,109 
Montana 1,130 2,618 2,989 7,058 8,988 43,914 66,697 
Nebraska 429 2,724 4,194 11,525 8,826 59,733 87,431 
Nevada 480 1,396 721 2,185 2,272 21,196 28,250 
New Hampshire 184 481 505 1,253 1,247 8,924 12,594 
New Jersey 65 254 313 917 389 5,473 7,411 
New Mexico 868 1,831 1,982 3,885 2,629 45,944 57,139 
New York 946 1,850 4,131 6,131 10,374 48,547 71,979 
North Carolina 645 2,220 2,992 8,668 7,333 55,892 77,750 
North Dakota 531 2,933 2,514 11,448 - 67,522 84,948 
Ohio 724 1,935 2,655 11,201 6,687 57,058 80,260 
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Oklahoma 682 2,316 2,679 21,233 3,008 67,669 97,587 
Oregon 582 2,817 2,252 8,977 7,184 33,072 54,884 
Pennsylvania 1,107 2,066 4,642 7,381 7,415 60,123 82,734 
Rhode Island 21 48 66 145 125 817 1,222 
South Carolina 682 1,487 3,687 8,128 3,782 37,779 55,545 
South Dakota 629 2,544 3,351 12,431 6,596 55,873 81,424 
Tennessee 682 1,785 3,346 5,132 10,754 46,401 68,100 
Texas 2,192 6,851 9,631 36,035 18,300 145,691 218,700 
Utah 769 1,012 1,535 3,322 3,947 23,942 34,527 
Vermont 280 317 733 2,007 912 8,728 12,977 
Virginia 669 1,444 3,461 9,365 2,462 32,830 50,231 
Washington 501 2,097 1,993 8,389 6,377 43,449 62,806 
West Virginia 455 1,081 1,469 5,999 2,331 22,468 33,803 
Wisconsin 516 3,254 4,894 13,333 6,311 64,669 92,977 
Wyoming 826 1,988 1,318 2,538 7,842 10,466 24,978 

U.S. Total 32,048 97,038 135,596 424,288 267,524 2,076,644 3,033,138 
Puerto Rico 31 48 71 378 272 2,355 3,155 
Grand Total 32,079 97,086 135,667 424,666 267,796 2,078,999 3,036,293 
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Table A.2: Federal-aid highway length – 2003 miles by traffic lanes and access control – 
FHWA Table HM-36 (Only the rural mileage shown.  The original table includes both 

rural and urban mileage.) 
 

Traffic Lanes and 
Access Control 

National Highway 
System 

Other Federal-Aid 
Highways 

All Federal-Aid 
Highways 

 Miles Percent Miles Percent Miles Percent 

Rural:             

     One-way streets 42 0.0 123 0.0 165 0.0 

     2 lanes 57,312 49.5 558,460 97.9 615,772 89.7 

     3 lanes 1,671 1.4 1,035 0.2 2,706 0.4 
     4 or more lanes – 
          undivided 3,374 2.9 3,979 0.7 7,353 1.1 

   Divided highways –  
        4 or more lanes:       

       Degree of access      
         control:       

         None 10,977 9.5 5,784 1.0 16,761 2.4 

         Partial 6,481 5.6 1,145 0.2 7,626 1.1 

         Full 35,864 31.0 195 0.0 36,059 5.3 

Total Rural 115,721 100.0 570,721 100.0 686,442 100.0 

 




