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Executive Summary  

Improving the ability of asphalt pavement to survive the weather cycles in Minnesota has been 

the subject of research for many years.  Asphalt durability is often linked to the thickness of the 

asphalt coating on the aggregate particles.  In order for a pavement to have adequate film 

thickness, there must be sufficient space between the aggregate particles in the compacted 

pavement.  This void space is referred to as Voids in the Mineral Aggregate (VMA).  It must be 

sufficient to allow adequate effective asphalt (that which is not absorbed into the aggregate 

particles) and air voids. 

The study described in this report was conducted to investigate the level of VMA in Minnesota 

paving projects.  A problem develops when a mix with sufficient VMA is produced in the mix 

design procedure, yet after construction the measured VMA is significantly lower.  This 

phenomenon is referred to as “VMA collapse” and is the suspected cause of many durability 

related failures. 

Ten Minnesota paving projects from 1996 were analyzed to determine if a VMA decrease 

occurred, the magnitude of the decrease, and the potential causes of the decrease.  Potential 

causes include the generation of fines, high production temperatures, and long storage or cure 

times.  The generation of fines may be due to construction-related aggregate degradation, and 

can decrease VMA by increasing the surface area of the aggregate blend.  High temperatures and 

long storage times can result in increased asphalt absorption into the aggregate relative to the 

mix design, making less asphalt available to coat the particles. 

Three of the ten projects had a VMA decrease of 1.9 or more.  These three projects also had the 

highest plant temperatures and had fairly long storage times, which makes increased asphalt 

absorption a likely cause of the VMA decrease.  There were five projects with a moderate drop 

in VMA.  Most had some increase in fines, and some had moderately high plant temperatures 

and storage times.  The two projects with little or no change in VMA had very little change in 

gradation, and moderate to low plant temperatures and storage times. 

The Lottman moisture sensitivity test was also performed on samples from the ten projects, but 

no correlation was found between the test results and change in VMA.  A precision analysis was 



 

also conducted for the Lottman moisture sensitivity test.  Asphalt samples were sent to several 

laboratories in Minnesota for compaction and moisture sensitivity testing.  The between-

laboratory variability was considered unacceptable according to statistical tests recommended by 

the American Society for Testing and Materials (ASTM).  Among the assumed causes of this 

variability were the use of assumed rather than measured specimen heights and variations in 

saturation procedures. 
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CHAPTER 1  
INTRODUCTION 

BACKGROUND 

Durability of Hot-Mix Asphalt 

Durability of an asphalt mixture refers to the ability of the mixture to retain the original 

properties.  These include the resistance to load and abrasion.  Resistance to load can be impaired 

when:  

1. The asphalt becomes hard and brittle and thus cannot withstand strains without 

fracturing.  

2. The asphalt debonds from the aggregate (truly strips) causing the surface to lose 

strength and subsequently crack and disintegrate. 

Durability also refers to the ability of the mixture to resist abrasion of the surface due to the 

scraping action of tires combined with water.  The surface is more susceptible to abrasion if: 

1. The void content is high allowing air and water to prematurely harden the asphalt. 

2. The asphalt and aggregate are not chemically compatible, making it easier to "strip" 

the asphalt from the aggregate. 

3. The asphalt film thickness is not sufficient to protect the mix from the abrasive action 

of tires and water. 

For a given asphalt and aggregate mixture, the durability is enhanced if adequate film thickness 

is attained.  For a given effective asphalt content, the film thickness will be greater if the 

aggregate gradation is coarser.  This can most effectively be accomplished by decreasing or 

minimizing the percentage of fines.  Establishing an adequate Voids in Mineral Aggregate 

(VMA) during mix design and in the field will help establish adequate film thickness without 

excessive asphalt bleeding or flushing. 

Krugler, et al [1] described durability as one of the most important factors in the performance of 

hot-mix asphalt (HMA).  Durability refers to the ability of an HMA pavement to resist changes 

in properties as the pavement weathers and ages.  
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Voids in Mineral Aggregate (VMA) 

VMA is the volume of intergranular void space between the aggregate particles of a compacted 

paving mixture.  It includes the air voids and the volume of the asphalt not absorbed into the 

aggregate (Roberts, et al [2]).  Stated another way, VMA describes the portion of space in a 

compacted asphalt pavement or specimen which is not occupied by the aggregate. VMA is 

expressed as a percentage of the total volume of the mix.   

When aggregate particles are coated with asphalt binder, a portion of the asphalt binder is 

absorbed into the aggregate, whereas the remainder of the asphalt binder forms a film on the 

outside of the individual aggregate particles.  Since the aggregate particles do not consolidate to 

form a solid mass, air pockets also appear within the asphalt-aggregate mixture.  Therefore, as 

Figure 1.1 illustrates, the four general components of HMA are: aggregate, absorbed asphalt, 

asphalt not absorbed into the aggregate (effective asphalt), and air.  Air and effective asphalt, 

when combined, are defined as VMA. 

VMA is calculated according to the following relationship: 

 VMA
P G

G
s mb

sb

= −
×

100  (1.1) 

Where:  

Ps = Aggregate content, percent by total mass of mixture 

Gsb = Bulk specific gravity of total aggregate 

Gmb = Bulk specific gravity of compacted mixture 

Effect ive
Asphal t

Air

Absorbed
Asphalt

Aggregate

V M A

Aggregate
Particle
V o l u m e

 
Figure 1.1  Illustration of VMA 
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Figure 1.1 illustrates how VMA is derived in terms of volume and mass.  VMA is the percentage 

of the compacted HMA mixture that is made up of asphalt not absorbed into the aggregate and 

air voids.  Asphalt not absorbed into the aggregate is referred to as the effective asphalt binder.  

According to Krugler , et al [1], the absorbed asphalt is excluded because it does not contribute 

significantly to the durability or strength properties of the mixture. 

The importance of designing VMA into an HMA mix has been recognized for many years.  It 

was first discussed and used by McLeod in 1956 [3].  For many years, the Asphalt Institute mix 

design procedures have used a minimum VMA criteria that is dependent upon maximum 

aggregate size.  If the VMA is too low, it can be increased by modifying the gradation, asphalt 

content, or particle angularity.  Table 1.1 shows typical minimum VMA values recommended by 

the Asphalt Institute [4]. 

Asphalt Film Thickness 

One of the key elements in the durability and moisture susceptibility of an asphalt mixture is 

asphalt film thickness.  Asphalt film thickness describes the dimension of the asphalt binder 

coating of the aggregate particles.  A thin asphalt coating on aggregate particles is one of the 

Table 1.1  Minimum VMA (after Asphalt Institute [4]). 

Minimum VMA, percent Nominal Maximum 
Particle Size1, 2 Design Air Voids, percent3 

mm in. 3.0 4.0 5.0 
1.18 No. 16 21.5 22.5 23.5 
2.36 No. 8 19.0 20.0 21.0 
4.75 No. 4 16.0 17.0 18.0 
9.5 3/8 14.0 15.0 16.0 
12.5 1/2 13.0 14.0 15.0 
19.0 3/4 12.0 13.0 14.0 
25.0 1.0 11.0 12.0 13.0 
37.5 1.5 10.0 11.0 12.0 
50 2.0 9.5 10.5 11.5 
63 2.5 9.0 10.0 11.0 

1 - Standard Specification for Wire Cloth Sieves for Testing Purposes, ASTM E11 (AASHTO M92) 
2 - The nominal maximum particle size is one size larger than the firs sieve to retain more than 10 percent. 
3 - Interpolate minimum voids in the mineral aggregate (VMA) for design air void values between those listed.  
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primary causes of premature aging of the asphalt binder, and is one definition of lack of 

durability.  

According to Roberts, et al [2], inadequate film thickness can create a lack of cohesion between 

aggregate particles and create a "dry" mix.  Also, if the asphalt film is too thin, air which enters 

the compacted HMA can more rapidly oxidize the asphalt, causing the pavement to become 

brittle.  Additionally, if the aggregates are hydrophilic, thin asphalt films are more easily and 

rapidly penetrated by water than thick ones, causing stripping or debonding of the asphalt binder 

from the aggregate. 

When film thickness is being calculated (estimated) it should be based on the quantity (volume) 

of asphalt on the surface of the aggregate and not include that which is absorbed into the 

aggregate particles.  The quantity of asphalt on the aggregate surface is defined as the effective 

asphalt content which can be calculated by subtracting the percent asphalt absorption from the 

total asphalt content. 

Asphalt film thickness is measured in microns as shown in Figure 1.2.  It can be calculated by 

dividing the effective volume of asphalt binder by the total estimated surface area of the 

aggregate particles. 

Film thickness has been shown to be a function of size distribution, particle shape, and the 

amount of asphalt binder in the mix. 

Asphalt Film
Thickness

Aggregate
Particle

Asphalt Cement  
Figure 1.2  Illustration of Asphalt Film Thickness 
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Kandhal and Chakraborty [5] noted difficulties in defining the concept of an “average film 

thickness”.  The validity of assigning a film thickness calculated simply by dividing the total 

surface area of the aggregate, obtained from its gradation, by the volume of effective asphalt 

binder is questionable.  It is unlikely that all the particles in a mix will have the same average 

asphalt film thickness.  Coarser aggregate particles may or may not have the film thickness that 

fine aggregate particles have, and the extremely fine portions of the aggregate may become 

embedded in the asphalt binder completely. 

Aljassar and Haas [6] described a simple method of estimating aggregate surface area.  This 

method involves assuming a smooth, spherical shape for aggregate particles, with the particle 

diameter equal to the size of the opening of a mesh screen on which the aggregate particle would 

be retained during a sieve analysis.  The formula stated below can be used to determine the 

approximate surface area of an aggregate gradation: 

 s
T s

sb w

6W
A a N

G d
= × =

× ρ ×
 (1.2) 

Where: 

AT  = Total surface area of all aggregate particles (m2) 

as = Surface area of an aggregate particle (m2) 

N = Number of aggregate particles 

Ws = Mass of aggregate (kg) 

Gsb = Specific gravity of the aggregate 

ρw = Density of water (assume 1000 kg/m3) 

d = Diameter of aggregate particle (m) 

When the surface area is calculated using Equation 1.2, the film thickness can be estimated using 

Equation 1.3 developed by Hveem at the California DOT (Roberts, et al [2]). The formula 

provides only an estimation of the average film thickness on an aggregate particle: 

 T
V

A WF
be

T s

=
×

× 304 800  (1.3) 

Where: 

TF = Average film thickness, microns 
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Vbe = Volume of effective asphalt binder (ft3) 

AT  = Surface area of the aggregate (ft2 / lb of aggregate) 

Ws = Mass of aggregate (lb) 

(304 800 is a conversion factor used to express TF in microns.) 

The calculated film thickness should be considered an estimate, but it does give a measure of 

how film thickness will vary with gradation, absorption, and other parameters. 

Generally, it has been found that adequate film thickness can only be maintained without a 

tendency to bleeding by providing adequate volume between the aggregate particles.  This can be 

accomplished by selecting an aggregate gradation and mix design with appropriate VMA.  The 

definition of and mix design for appropriate levels of VMA are covered in the next section. 

In order to ensure durable flexible pavements, it is necessary to design mixes with adequate film 

thickness.  The mixes must be able to maintain the design asphalt film thickness in the produced 

pavement following construction. 

Moisture Susceptibility Testing 

The susceptibility of asphalt mixtures to moisture is another measure of the durability of an 

asphalt mixture.  Moisture susceptibility of a mix is determined by first testing the mixture dry 

and then after soaking and/or freezing for specified periods.  One standard method used to 

evaluate moisture susceptibility and stripping is the Lottman Test (ASTM D 4867) [7].  For this 

test, six specimens are compacted to 7 ± 1 % air voids.  The six specimens are divided into two 

groups of three so that the average air void content of the groups are approximately equal.  One 

group is tested dry and the other is tested after a period of moisture conditioning.  The 

conditioning consists of vacuum saturating the specimens to between 55 and 80 % saturation.  

They are then placed in a 60 °C (140 °F) water bath for 24 hours followed by a 25 °C (77 °F) 

bath for 1 hour.  Indirect tensile strength is then determined for the dry and wet samples. 

Moisture susceptibility is reported as a tensile strength ratio (TSR) which is calculated using 

Equation 1.4: 

 TSR
S
S

tm

td

= × 100  (1.4) 
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Where: 

TSR = Tensile Strength Ratio 

Stm = Average tensile strength of the moisture-conditioned samples, kPa 

Std = Average tensile strength of the dry samples, kPa 

In a study by Stroup-Gardiner, et al [8], three Minnesota Department of Transportation 

(Mn/DOT) projects were selected to analyze stripping, cohesion problems, and mix design 

problems.  It was concluded that moisture-related pavement distress in Minnesota could be 

associated with one of three mechanisms:  

1. True stripping 

2. Loss of binder cohesion 

3. Low initial mixture tensile strength 

Stroup-Gardiner, et al [8] concluded that mixture properties can be improved by increasing film 

thickness, reducing air voids, and minimizing the use of marginal aggregate sources. 

VMA Change 

During the mix design phase, asphalt-aggregate mixtures are designed to achieve a set of 

minimum standards with regard to volumetrics.  A minimum VMA requirement is indicative of 

this type of standard.  In the production of HMA pavements, a phenomenon referred to as VMA 

collapse may occur.  VMA collapse describes the situation in which the VMA in a produced 

HMA is lower than the VMA determined during mix design.  Due to the ramifications of 

producing a pavement that does not achieve desired VMA specifications, a need exists to 

research the causes of the collapse and determine ways to adjust for it.  If the causes of VMA 

collapse cannot be sufficiently controlled, then the design must be adjusted; VMA collapse must 

be predicted to some extent so that the design VMA is equal to the production VMA.  Also, 

investigation into the effect of VMA collapse on asphalt film thickness is needed.  

OBJECTIVES 

The main objective of this research was to determine if a VMA collapse had occurred in any of 

ten paving sites across the state of Minnesota in 1996, investigate the possible causes of the 

VMA collapse if it had occurred, and recommend solutions that might aid in resolving the 
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problem. The investigation focused on the factors that contribute to the variability in VMA, 

including material properties and plant production characteristics, with an emphasis placed on 

the factors that might decrease VMA.  Variability in the determination of VMA was also 

explored.  Incorporation of the concept of asphalt film thickness and its relationship to VMA was 

also investigated. 

SCOPE 

This research program investigated the phenomenon of VMA collapse and the parameters which 

influence VMA.  The emphasis of the study was to analyze a paving project mix design, the 

physical properties of the project aggregate before production, and the material properties of the 

mix after it was obtained from behind the paver.  Possible correlations between the analysis of 

the materials both before and after production with the preliminary results from the mix design 

phase obtained from Mn/DOT were explored. 

Ten paving projects from around Minnesota were included.  Supplies of all aggregate used in the 

mix during construction, as well as any recycled asphalt pavement (RAP), were sampled.  

Behind-the-paver samples were obtained during construction for each project for analysis.  

Detailed information regarding plant production procedures was recorded. 

The following tests were performed on the aggregates [9]: 

1. ASTM C 127 Specific Gravity and Absorption of Coarse Aggregate 

2. ASTM C 128 Specific Gravity and Absorption of Fine Aggregate 

3. ASTM C 136 Sieve Analysis of Fine and Coarse Aggregates 

4. ASTM D 5821 Percentage of Fractured Particles in Coarse Aggregate (Coarse 

Aggregate Angularity) 

5. ASTM D 4791 Flat or Elongated Particles in Coarse Aggregate 

6. ASTM C 1252 Uncompacted Void Content of Fine Aggregate (Fine Aggregate 

Angularity) 

7. ASTM D 2419 Sand Equivalent Value Fine Aggregate 

In addition, the behind-the-paver samples were compacted according to mix design 

specifications, and the air void content, VMA, and film thickness were determined and compared 
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to original specifications.  Testing on the compacted specimens included dry indirect tensile 

strengths and retained tensile strengths after moisture conditioning.  An ignition oven was used, 

following the Mn/DOT standard test method described in Chapter 3, to determine asphalt content 

of the behind-the-paver samples.  The aggregate remaining after ignition was analyzed to 

determine the extent of aggregate degradation occurring between mix design and construction.  

Comparisons were made between mix design gradations and aggregate gradations following 

ignition. 

Final conclusions and recommendations are based on a summary of the data accumulated during 

the research. 





 11

CHAPTER 2  
LITERATURE REVIEW 

FACTORS THAT CONTRIBUTE TO VARIABILITY IN VMA 

The importance of adequate VMA in an asphalt mixture was presented in Chapter 1.  To analyze 

the contribution of VMA to pavement durability, it is important to understand the parameters of 

an HMA that relate to the determination of VMA.  Certain characteristics of an HMA mixture 

and its components can change the VMA and film thickness.  These characteristics are 

summarized in Table 2.1. 

Table 2.1  Factors that Affect the VMA of an HMA 

Factor Effect on VMA 

Aggregate Gradation Dense gradations decrease VMA 

Aggregate Shape More rounded aggregates decrease VMA 

Aggregate Texture Smooth or polished aggregates decrease VMA 

Asphalt Absorption Increased asphalt absorption results in lower effective asphalt 
content and lower VMA (for the same level of compaction) 

Dust Content Higher dust contents increase surface area, decrease film 
thickness, and tend to lower VMA 

Baghouse 
Fines/Generation of Dust 

Increased fines and dust increase surface area, decrease film 
thickness, and tend to lower VMA 

Plant Production 
Temperature 

Higher plant production temperatures decrease asphalt binder 
viscosity,  which results in more asphalt absorption, lower 
effective asphalt binder and lower VMA 

Temperature of HMA 
during Paving 

Higher temperatures during paving create soft mixtures, lower 
air voids, and lower VMA 

Hauling Time Longer hauling times allow for increased asphalt absorption, 
lower effective asphalt content and lower VMA 

Aggregate Handling 
More steps in aggregate handling increases potential for 
aggregate degradation, resulting in an increase in fines, and 
lower VMA 
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Material Properties 

The extent to which an HMA mixture can be compacted is related to aggregate gradation, 

aggregate surface characteristics, amount of asphalt, and asphalt absorption by the aggregate.  

Aggregate gradation is the size distribution of the aggregate particles, including the amount of 

material passing the 75-µm sieve (dust content).  Aggregate surface characteristics include the 

shape, angularity, and surface texture.  Aggregate absorption of asphalt binder is dependent on 

the aggregate porosity, and pore size, as well as the viscosity of the asphalt binder. 

Aggregate Gradation 

When selecting an aggregate for an HMA mixture, the initial focus is on the aggregate gradation.  

The surface characteristics of the aggregate are analyzed after the gradation has been proven to 

be suitable.  Two factors relating to aggregate gradation having the most influence on VMA are 

density, or the ability of the aggregate particles to pack together, and the aggregate surface area. 

Density 

Figure 2.1 illustrates a 0.45 power plot of an aggregate gradation developed by the Federal 

Highway Administration (FHWA) and reported by Goode and Lufsey [10].  It is used to estimate 

how densely a given aggregate mixture will compact.  It consists of the particle size raised to the 

0.45 power on the x-axis and the percent passing each sieve size plotted on an arithmetic y-axis.  

A line drawn from the origin of this plot through the nominal maximum aggregate size is 

estimated as the maximum density line for any given aggregate (The nominal maximum 

aggregate size is defined as the first sieve to retain between 0 and 10% of the aggregate). Goode 

and Lufsey [10] demonstrated that an aggregate having a gradation that produces a straight line 

on a 0.45 power gradation graph will have the maximum achievable density, and subsequently 

(as shown by Nijboer [11]) the lowest air void content and the lowest VMA in an HMA mixture.  

Deviating from the maximum density line in either the fine or the coarse direction will tend to 

increase the VMA of the compacted mixture (see Figure 2.1). 

However, Huber and Shuler [12] note that significant confusion exists concerning different 

methods used to draw aggregate gradation “maximum” density lines.  Closely related to 

maximum density lines, and also in debate, is the definition of nominal aggregate maximum size.  
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For the purposes of this paper, the definitions used for the maximum density line and the 

aggregate nominal maximum size are stated above. 

Aschenbrener and MacKean [13] defined “distance” as the absolute value of the difference in 

percent passing between the actual gradation and the maximum density line at a given sieve size.  

This value characterizes the actual deviation from the maximum density line.  Increasing the sum 

of the distances between a gradation and the maximum density line will tend to increase the 

VMA.  Aschenbrener and MacKean [13] showed that the distances for the 2.36-mm and smaller 

sieve sizes had the greatest effect on the VMA of the compacted mixture.  Kandhal, et al [14] 

determined that the percent passing the 4.75-mm (No. 4), 2.36-mm (No. 8), 1.18-mm (No. 16), 

0.600-mm (No. 30), 0.300-mm (No. 50), 0.150-mm (No. 100), and 0.075-mm (No. 200) sieves 

were the most practical predictive variables for VMA.  Lefebvre [15] described attempts to 

correlate Aschenbrener and MacKean’s “distance” to VMA.  These two variables did not 

correlate well due to the many other factors that affect VMA.  Consequently, the only way to be 

certain of the VMA of a mix is to produce a sample and measure the parameters from which 

VMA is calculated. 

Surface Area 

The total surface area of an aggregate mixture is dependent primarily on the gradation. 

Aggregate gradations that deviate above the maximum density line are defined as “fine” while 

those that deviate below the maximum density line are “coarse”.  An analysis of Equation 1.2 

indicates that as particle diameter decreases, the surface area per unit mass increases.  Using this 

equation, a simple estimate of surface area can be determined for the purpose of comparing 
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Figure 2.1  Maximum Density Line Related to VMA 
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different aggregate gradations.  It should be noted that the results of this equation are 

approximate. 

The calculated surface area of a given aggregate gradation is related to the asphalt film thickness.  

As stated previously, deviating from the gradation maximum density line in either the fine or 

coarse direction will tend to increase the VMA of the compacted mixture for a given asphalt 

content. However, increasing the fine portions of an aggregate also increases the overall surface 

area of the aggregate.  This causes the asphalt film thickness to decrease, possibly leading to 

durability problems, as the same amount of asphalt binder is spread over a larger surface. 

Material Passing the 75 -µm Sieve (Dust Content) 

The amount of material passing the 75-µm sieve has a significant effect on HMA properties.  

Anderson [16] listed ways the dust or fine fraction can affect HMA: 

1. Stiffening the asphalt binder 

2. Extending the asphalt binder 

3. Altering the moisture resistance of the mix 

4. Affecting the aging characteristics of the mix 

5. Affecting the workability and compaction characteristics of the mix 

Fines that are less than 2 µm in diameter may become part of the asphalt, causing further 

hardening. 

An increase in the dust proportion will generally decrease the VMA.  Due to the relationship 

between particle diameter and surface area, increasing the amount of material passing the 75-µm 

sieve will result in a greater total surface area of the aggregate blend.  This results in a thinner 

average film thickness, lower effective asphalt content, and could lower the VMA. 

Aggregate Surface Characteristics 

Two primary aggregate surface characteristics are the shape of the aggregate particles and the 

aggregate surface texture.  Aggregate shape is related to angularity (the number of crushed faces 

on the aggregate particles) and the extent to which the particle is flat or elongated.  Aggregate 

surface texture is a qualitative description of the degree of roughness on the particle surface. 
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Aggregate Shape 

Generally, it is desirable to have aggregate particles with a somewhat angular shape in asphalt 

mixtures.  Flat and elongated particle shapes are undesirable.  In compacted mixtures, particles  

that are cubic in shape exhibit greater interlock and internal friction, resulting in greater 

mechanical stability than flat and elongated particles.  According to Roberts, et al [2], mixtures 

with flat and elongated particles tend to densify under traffic, ultimately leading to rutting due to 

low voids and plastic flow.  Higher quantities of crushed aggregates and more angular crushed 

aggregates will generally produce a higher VMA.  The increase in VMA results from the angular 

aggregates creating more void space during compaction due to the increased number of sharp 

edges and fractured faces.  Since VMA includes air voids and the effective asphalt content, 

increasing the air voids in the compacted mixture will increase the VMA and allow more asphalt 

into the mix. 

Aschenbrener and MacKean [13] determined that higher quantities of rounded, natural sands and 

more rounded aggregates will generally result in a lower VMA.  Round particles have the 

potential to fit very densely together because the smoothness of the surface and the lack of 

angular edges, which together reduce the internal friction.  The decrease in internal friction and 

the ability of uncrushed aggregates to compact more easily into a dense arrangement reduces 

void space, which ultimately leads to a reduction in VMA. 

Aggregate Surface Texture 

Aggregate surface texture is qualitatively described by the degree to which the aggregate is 

polished or dull.  Polished aggregate particles have smooth surfaces.  As with rounded aggregate 

particles, this contributes to a lack of internal friction, the ability to compact in a dense 

arrangement, and a decrease in void space and VMA.  Aggregates with rough surface textures 

have a high level of internal friction, higher air void contents, and higher VMA.  In addition, 

rougher aggregates also have the potential for improved adhesion of the asphalt binder to the 

aggregate due to the jagged surface texture. 

Another aspect of aggregate surface texture is the amount of surface area.  Generally, the rougher 

the surface is, the greater the surface area.  Therefore, rougher aggregates tend to require more 

asphalt binder to coat the individual particles.  This decreases the overall film thickness without 
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necessarily decreasing the VMA as the effective asphalt content remains the same.  However, 

durability problems can arise from the reduction of film thickness, regardless of the VMA of the 

mixture. 

Absorption 

The amount of asphalt binder absorbed by an aggregate is dependent on the porosity, void 

volume, and pore size of the aggregate, as well as the viscosity of the asphalt binder.  Porosity is 

directly influenced by the void volume and pore size. Aggregates with larger pore sizes allow for 

increased asphalt binder absorption.  However, aggregates with small pores have the potential for 

selective absorption of the lighter asphalt binder fractions.  This accelerates premature aging and 

can create a lack of durability. 

Asphalt binders that are more viscous tend to limit absorption by aggregates due to a lack of 

fluidity and an inability to fill aggregate pores.  Alternatively, asphalt binders that are not as 

viscous have a greater ability to fill aggregate pores. 

Aggregate Porosity 

All mineral aggregates have some porosity and have the potential to absorb asphalt binder.  The 

absorption may occur continually or at any point during mixing at the HMA plant, storage in a 

silo, hauling time in trucks, or in service. Kandhal and Maqbool [17] stated that although some 

absorption may lead to improved strength in a compacted mixture through particle adhesion, the 

portion of the asphalt that is absorbed is no longer available as binder.  Therefore, aggregates 

with a large void volume and/or pore size will have a reduced effective asphalt content.  This 

will lead to a decrease in VMA provided the air voids remain constant. 

In the past, Mn/DOT assumed that all aggregates had an asphalt absorption of one percent 

(measured as percent of asphalt binder absorbed by weight of aggregate), regardless of the 

aggregate source.  Actual aggregate porosity was not taken into consideration in this assumption.  

Porous aggregates were assumed to absorb the same amount of asphalt binder as relatively non-

porous aggregates.  As a result, aggregates with absorption values greater than one percent 

caused the VMA to be underestimated.  This resulted in a lower film thickness and a subsequent 
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lack of durability.  Conversely, aggregates with absorption values less than one percent resulted 

in over-asphalted and potentially unstable mixtures.  

Asphalt Binder Viscosity 

Asphalt binder absorption is also dependent on viscosity.  Viscous asphalt binders are not able to 

penetrate aggregate pores as readily as more fluid asphalt binders.  As temperatures increase, the 

viscosity of asphalt decreases.  Consequently, at higher temperatures, asphalt is more readily 

absorbed by aggregates.  

Kandhal and Maqbool [17] list the following HMA problems that may result from the use of 

incorrect asphalt absorption values: 

1. Incorrect computation of percent air voids, VMA, or voids filled with asphalt, which 

may lead to mixtures lacking durability or stability. 

2. Low effective binder content may lead to raveling, cracking, or stripping. 

3. Possible premature age hardening and low temperature cracking as a result of changes 

in asphalt properties due to selective absorption. 

4. Construction problems such as segregation and tender mixes. 

It has also been shown that the amount of asphalt absorbed by aggregates in the field may be 

substantially higher than in the laboratory.  This may be due to prolonged mixing, storing, or 

hauling times, or higher temperatures during construction.  Anderson, et al [18] cautioned that 

the potential absorption of asphalt in the field should be accounted for if realistic volumetric 

parameters are to be calculated for the completed mat.  In view of all the consequences above, 

and especially in the determination of VMA and film thickness, asphalt absorption needs to be 

accurately estimated.   

Plant Production Characteristics 

HMA plant production characteristics that can influence both the VMA and the film thickness of 

a completed mat are:  the use of baghouse fines and the generation of fines, plant production 

temperatures, and hauling time.  
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Use of Baghouse Fines / Generation of Fines (-75-µm) 

In the past decade, stricter air pollution controls have created a need for dust collection systems, 

such as baghouse filters, during the production of asphalt paving mixtures.  Kandhal [19] stated 

that asphalt plants frequently use the collected baghouse fines as a partial or total replacement for 

mineral filler in paving mixtures in order to conform with the pollution control regulations and 

avoid accumulation of excess fines. 

When the dust content is increased in the mixture, the potential exists for problems similar to 

those previously reported under the “dust content” of the Material Properties section.  If the 

amount of asphalt binder in the mix remains constant, the addition of baghouse fines will create 

more surface area and subsequently, a lower film thickness on the aggregate particles. 

Fines are also generated during the handling of the aggregate before it reaches the plant.  At the 

beginning of the production process, aggregate is loaded into a truck from a quarry or pit and 

hauled to the production plant site.  During this period, the potential exists for fines to be 

generated due to abrasion that occurs during handling.  As the individual particles rub against 

one another or against equipment, fines are able to break off of the larger particles. 

The same thing can occur at the plant site as the aggregate is separated and recombined.  

Abrasion occurs at many points during this process and more fines can be created.  As the 

aggregate is combined with the asphalt binder, again the potential exists for abrasion as the 

aggregate is still being handled and particles are in contact.   

Abrasion can cause an increase in fines and surface area and a reduction in film thickness.  The 

aggregate particles can also change shape.  Abrasion tends to round more angular particles.  As 

mentioned previously, rounded aggregate particles reduce the internal friction and result in a 

dense arrangement, consequently lowering the air void content and VMA. 

Plant Production Temperatures 

HMA plants produce mixes at temperatures ranging from 120 to 165 °C (250 to 325 °F).  As the 

temperature of the mixture increases, the asphalt binder viscosity decreases and the potential for 

the asphalt binder to be absorbed into the aggregate increases.  Therefore, if a plant produces an 
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HMA at temperatures that are higher than needed for compaction, the aggregate will absorb 

more asphalt binder, resulting in a lower effective asphalt content. 

Hauling Time 

After a mix is produced at an HMA plant, the mix is transported to the paving site.  At this point, 

the mix is unloaded into the paver or on the roadway in front of the paver.  The paver forms the 

mix into a paved mat.  The temperature of the mix at the end of this process is important in 

determining if adequate compaction can be obtained. 

Compaction has a great effect on the strength and durability of an HMA pavement.  The main 

objective of pavement compaction is to achieve density so that the pavement will gain the 

desired strength and durability.  The compactibility of HMA is related to the viscosity of the 

asphalt binder, which changes with temperature.  McLeod [3] described a 1,000-fold increase in 

asphalt viscosity as the temperature drops from 135 to 57 °C (275 to 135 °F) and a ten-fold 

increase in resistance to compaction as the mix temperature dropped from 135 to 63 °C (275 to 

145 °F).  If the temperature behind the paver is too cool, the mat will not achieve adequate 

density, resulting in poor stability and durability. 

Hauling time is the interval between the loading of the HMA from the plant into the truck until 

the time the mix is run through the paver and compacted.  A long hauling time can result in a 

mix that is too cool for adequate placement and compaction. 

VARIABILITY IN THE DETERMINATION OF VMA 

As can be deduced from the Equation 1.1, the overall precision of the VMA calculation depends 

on the precision of the bulk specific gravity and asphalt absorption calculations for the aggregate, 

the bulk specific gravity of the compacted mixture, and the effective asphalt content.  All 

laboratory tests performed on similar materials will have some variability due to inherent random 

testing errors.  Other causes of variability are sampling procedures, operator experience, 

equipment, and environmental factors such as temperature and humidity.  Due to the importance 

of repeatable estimates of VMA, it is essential to determine the variability of various test 

procedures used in standard specifications and to set acceptable specification limits for these test 

properties.  The procedure is described in ASTM C 802 (Practice for Conducting an 
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Interlaboratory Test Program to Determine the Precision of Test Methods for Construction 

Materials) [9]. 

Specific Gravity and Absorption of Coarse Aggregate 

ASTM C 127 [9] is used for measuring the specific gravity and absorption of the portion of the 

aggregate that is retained on the 4.75-mm (No. 4) sieve.  The greatest source of variation in this 

test method may be the difficulty in determining the saturated-surface-dry (SSD) condition.  The 

SSD condition is defined as the moisture content at which the aggregate surface pores are filled 

with water and the surface is dry.  The aggregate sample is to be dried until “all visible films of 

water are removed”.  At this point, the sample is considered to have reached a SSD condition. 

This is a subjective evaluation based on the opinion of the person who is performing the test.  In 

order to reduce the variation of the results of this test, there is a need to reduce the subjectivity of 

estimating this parameter. 

A frequently used rule-of-thumb is to dry the aggregate until it has a dull finish.  This means that 

the aggregate no longer has a shiny surface, which indicates the presence of surface moisture.  

However, there is still some subjectivity in determining the SSD condition.  In particular, this 

concept may apply to gravel, but may not be as suitable for a crushed limestone which does not 

achieve a shiny finish when wet.  Some aggregates change color as they dry and it may be 

possible to determine the saturated-surface dry condition of the aggregate by examining color 

changes.  However, it is difficult to define what the color should be when the aggregate is 

saturated-surface-dry, as different aggregate sources produce different colors as they dry. 

Krugler, et al [1] described a method of defining the SSD condition color that is consistent for all 

aggregate types.  This method involves comparing a drying test sample to an oven-dry sample of 

the same material.  The SSD condition is estimated as the point when the test sample has the 

same color as the oven-dry comparison sample. 

Absorption capacity also contributes to the ability to achieve repeatable test results.  Krugler, et 

al [1] showed that absorptive aggregates tend to have increased variability compared to 

nonabsorptive aggregates.  The mineral composition of the aggregate also can play a role in test 

result variability.  Some mineral aggregates, such as limestone, tend to have increased variability 

compared to gravel or granite.  Aggregate surface area can also contribute to the ability to 
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achieve repeatable test results.  Finer aggregate gradations or angular aggregate both have 

increased surface area, as discussed previously. 

According to ASTM C 127 [9], the acceptable variability, in terms of standard deviation, for 

coarse aggregate bulk specific gravity is 0.009 for within-lab precision and 0.013 for between-

lab precision. 

Specific Gravity and Absorption of Fine Aggregate 

ASTM Test Method C 128 [9] is used for measuring the specific gravity and absorption of fine 

aggregate or the portion of the aggregate passing the 4.75-mm ( No. 4) sieve.  As with coarse 

aggregates, the greatest source of variation is in determining when an aggregate has reached the 

SSD condition.  The variability is greater than that for coarse aggregate due to the greater 

complexity in determining the SSD condition.   

To determine the specific gravity of fine aggregate, the material is oven dried overnight, and then 

saturated with water for 24 hours.  Following saturation, the aggregate is dried to an 

approximately SSD condition, weighed, and then oven-dried and weighed again.  ASTM C128 

[9] prescribes the cone test for the determination of the SSD condition.  This is a procedure in 

which the aggregate is placed into a metal mold in the form of a frustum of a cone.  The mold is 

placed on a firm, nonabsorbent surface with the large diameter down, and is filled to overflowing 

with a portion of the fine aggregate.  The aggregate is lightly tamped with a metal tamper 25 

times, with each drop starting about 5 mm above the surface of the aggregate.  The mold is then 

removed from the sample.  The SSD condition is defined as the point at which approximately 25 

percent of the top surface of the cone falls. 

The determination of the SSD condition is subjective; based upon the opinion of the person 

performing the test.  It is difficult to accurately determine at which point 25 percent of the top 

cone surface falls.  Variability will result from uneven tamping, overcompacting the sample, and 

allowing portions of the sample that have dried to be recombined with the portion of the sample 

that is still either wet or SSD.  Also, the test method itself states that “some angular fine 

aggregate or material with a high proportion of fines may not slump in the cone test upon 

reaching a surface-dry condition.”  Since many bituminous mixture aggregates are angular in 
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nature, Kandhal and Lee [20] and Root [21] have stated that this test procedure needs 

improvement to consider all fine aggregates. 

As mentioned above with ASTM Test Method C 127, other factors can contribute to the 

variability in the determination of specific gravity and absorption of fine aggregate.  In general, 

the same factors that contribute to the variability of coarse aggregate test results will also 

contribute to the variability of fine aggregate test results.  Krugler, et al [1] identified absorptive 

aggregates, aggregate composed of limestone, and aggregates with large surface areas as those 

most likely to increase the variability of test results. 

According to ASTM Test Method C 128, the acceptable variability for fine aggregate specific 

gravity is a standard deviation of 0.011 for within-lab precision and 0.023 for between-lab 

precision. 

Specific Gravity of Compacted Specimens  

The bulk specific gravity of a compacted asphalt mixture is usually determined using ASTM C 

2726 [9].  Variations from the procedure can introduce significant variability in the specific 

gravity calculations. The procedure requires that the compacted mix be weighed in air, 

submerged, and SSD after being submerged.  The SSD condition is obtained by blotting the 

surface with a slightly damp towel after the submerged weight is measured.  Equation 2.1 is used 

to calculate the bulk specific gravity. 

 G
A

B Cmb =
−

 (2.1) 

Where: 

Gmb = Bulk specific gravity of compacted specimen 

A = Oven dry mass (g) 

B = SSD mass (g) 

C = Submerged mass (g) 

ASTM C 2726 specifies water temperature, time for compaction ,dimensions of the compacting 

hammer, and other conditions.  According to ASTM C 2726, the acceptable variability for bulk 

specific gravity is a standard deviation of 0.0269 for within-lab precision and 0.124 for between-
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lab precision.  To attain these levels of precision it is necessary to follow the procedures outlined 

in the test method. 

A source of variation in density is aggregate degradation during compaction.  Degradation is 

dependent on the type of aggregate.  The amount of degradation may vary from the laboratory to 

field compaction. 

Maximum Density of Hot-Mix Asphalt 

The theoretical maximum specific gravity of an asphalt mixture can be measured using ASTM 

D2041-95 Standard Test Method for Theoretical Maximum Specific Gravity and Density of 

Bituminous Paving Mixtures [7], commonly known as the Rice test.  For this test, a sample of 

the mix is broken up into a voidless mass of particles less than 4.75 mm (0.25 in.) in size.  The 

sample is placed in a calibrated container.  The weight and volume of the voidless mix are then 

used to calculate the maximum specific gravity as shown in Equation 2.2. 

 mm
A

G
A C

=
−

 (2.2) 

Where: 

Gmm = Theoretical maximum specific gravity 

A = Mass of oven dry sample in air, g 

C = Mass of water displaced by sample at 25 °C (77 °F), g 

The test can be run either by weighing the sample in a container that can be submerged or by 

placing the sample in a pycnometer (container with calibrated volume) filled with water. 

Knowing the bulk specific gravity of the compacted mixture and the maximum specific gravity, 

the air void content of the compacted mixture can be calculated using Equation 2.3. 

 mb
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 (2.3) 

Where: 

Va = Air voids in the compacted mix, percent 

Gmb = Bulk specific gravity of the compacted mix 

Gmm = Theoretical maximum specific gravity of the mix 



 24

Two other important properties of a mix can also be calculated if the composite aggregate 

specific gravity and asphalt binder specific gravity are known.  These are: 

1. The percent asphalt absorbed by the aggregate 

2. The effective asphalt content of the mix.  The effective asphalt content is the value 

used to estimate the asphalt film thickness and VMA. 

The percent of asphalt binder absorbed can be estimated from the theoretical maximum specific 

gravity (Gmm) of the HMA.  The following three equations were provided by the Asphalt 

Institute [22].  In Equation 2.4, the effective specific gravity (Gse) of the aggregate is calculated.  

Equation 2.5 is then used to calculate the absorbed asphalt (Pba).  The effective asphalt content 

can then be calculated using Equation 2.6. 

 b
se

b

mm b

100 P
G

P100
G G

−
=

−
 (2.4) 

Where: 

Gse = Effective specific gravity of aggregate 

Gmm = Maximum specific gravity of paving mixture (no air voids) 

Pb = Asphalt content, percent by total mass of mixture 

Gb = Specific gravity of asphalt 
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Where: 

Pba = Absorbed asphalt, percent by mass of aggregate 

Gse = Effective specific gravity of aggregate 

Gsb = Bulk specific gravity of aggregate 
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Where: 

Pbe = Effective asphalt binder content, percent by weight of aggregate 

Pb = Asphalt binder content, percent by total weight of mix 

Pba = Percent of asphalt absorbed by the aggregate, percent by mass of aggregate  
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Ps = Total aggregate content, percent by total weight of mix 

Factors such as mixing and placing temperature and time of storage can have an effect on the 

percent asphalt absorbed for a given mixture. 

Asphalt Content 

The asphalt content of an asphalt mix can be determined by one of three methods: 

1. Mix design 

2. Solvent extraction 

3. Ignition oven   

For the purposes of this research, the design asphalt content was used to determine the mix 

design VMA, and the asphalt content following ignition was used to determine the VMA of the 

sampled mixture.  Variability of asphalt content using an ignition oven is discussed in greater 

detail in the following chapter. 

EFFECT OF VARIABILITY ON VMA 

To calculate VMA, it is necessary to determine the bulk specific gravity of the aggregate and the 

compacted mixture, the theoretical maximum specific gravity of the mixture, and the asphalt 

content.  The greater the variability among these three properties, the greater the variability of 

the VMA.  Krugler, et al [1] stated that the variability of measured bulk specific gravity of the 

aggregate and compacted specimens can significantly affect the variability of VMA, regardless 

of whether the same asphalt content is used  

VMA CHANGE 

Kandhal, et al [14] described factors that may cause a decrease in VMA.  These include: 

1. Aggregate gradation 

2. Amount of rounded aggregate particles 

3. Aggregate absorption of asphalt binder 

4. Dust content 

5. Plant production temperature 

6. Hauling distance 
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A greater emphasis was placed on aggregate gradation, aggregate absorption, plant production 

temperatures, and hauling distances.  More limited research was conducted on the amount of 

rounded aggregate particles and dust content. 

In order to control VMA, factors contributing to the change in VMA must be identified and 

minimized to establish realistic expectations.  VMA collapse is defined as the decrease in VMA 

realized from a field mix during construction compared to  the VMA measured in the laboratory 

during the initial design of the mixture.  Therefore, all of the above parameters need to be 

quantified to study the problem of VMA variability.  Once the parameters are quantified, steps 

can be taken to reconcile the differences between mix design and production. 

SUPERPAVE CONSENSUS AGGREGATE PROPERTIES 

The Asphalt Institute [22] developed a manual for the Superpave (Superior Performing Asphalt 

Pavements) under contract with the FHWA.  Superpave is an asphalt mix design procedure 

developed as part of the Strategic Highway Research Program (SHRP).  Although the projects 

evaluated in this study were not Superpave projects, aggregate tests specified in the Superpave 

mix design procedure were conducted on the stockpile aggregates to further evaluate the 

performance of the mixtures.  Mn/DOT [23] has adapted this procedure in the 2360 Specification 

for HMA pavements.  The results of the aggregate tests must meet criteria that are based on the 

design traffic level for the pavement.  The Mn/DOT criteria are shown in  Table 2.2. 

Coarse Aggregate Angularity (CAA) 

The Asphalt Institute [22] defines this test as a means of evaluating a mixture’s internal friction 

and rut resistance.  CAA is measured using ASTM D 5821 [9].  The results are presented as two 

values separated by a slash (/).  The first number represents the percent by mass of particles that 

have one or more fracture faces, and the second number represents the percent that have two or 

more fractured faces.  A fractured face must have an area of at least 25 percent of the cross-

sectional area of the particle in order to be considered. 
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Fine Aggregate Angularity (FAA) 

This test is also used to evaluate a mixture’s internal friction.  FAA is measured using ASTM C 

1252 [9].  An oven dried sample of the aggregate is sieved and re-batched into a specified 

gradation before testing .  The sample is then placed in a funnel and allowed to fall from a 

specified height into a calibrated cylinder. The top is leveled with a straight edge, and the mass 

of the aggregate is determined.  Using the known mass, volume and bulk specific gravity of the 

aggregate, the volume of voids can be calculated.  It is assumed that an aggregate composed of 

rounded particles will have a lower internal friction, and therefore a lower volume of voids. 

Flat or Elongated Particles in Coarse Aggregate 

The Asphalt Institute [22] stated that flat or elongated particles are undesirable in an HMA mix 

because they tend to break during compaction.   The procedure is described in ASTM D 4791 

[9]. This value indicates the percent by mass of aggregate particles that fail a length-to-thickness 

test.  Mn/DOT [23] uses a 3:1 criteria (the particle fails if the length is more than three times the 

thickness).  A proportional caliper device is used in which the larger gap is three times as wide as 

the small gap.  The large gap is set to the maximum dimension of the particle, and the smaller 

gap is used to evaluate the minimum dimension of the particle. 

Sand Equivalent Value of Fine Aggregate 

This parameter is measured using ASTM D 2419 [9].  It is a measure of the ratio of sand to clay 

in a fine aggregate.  The test is conducted by suspending the aggregate in a fluid and allowing it 

to settle in a graduated cylinder.  The sand settles quickly, and the clay settles more slowly, 

Table 2.2  Mn/DOT 2360 Aggregate Criteria for Wear Courses (Depth ≤  100 mm) 

Traffic Level 
(Millions of ESALs) 

Level 1 
(under 0.3) 

Level 2 
(0.3 to 1) 

Level 3 
(1 to 3) 

Level 4 
(3 to 10) 

Level 5 
(10 to 30) 

Levels 6&7 
(over 30) 

At least 
1 FF 

55 or higher 75 or higher 75 or higher 85 or higher 95 or higher 100 CA Angularity 
(% Particles with 
Fractured Faces) At least 

2 FF ----- ----- ----- 80 or higher 90 or higher 100 

CA Flat or Elongated % ----- ----- 10 or lower 10 or lower 10 or lower 10 or lower 

FA Angularity 
(% Uncompacted Voids) ----- 40 or higher 40 or higher 45 or higher 45 or higher 45 or higher 

FA Sand Equivalent 40 or higher 40 or higher 40 or higher 45 or higher 45 or higher 50 or higher 
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forming a separate layer above the sand.  The Sand Equivalent value is the ratio of the sand 

column height to the total height of the column (sand + clay), expressed as a percentage. 

MOISTURE SENSITIVITY TESTING 

A test that is used to identify potential durability problems in HMA is ASTM D 4867 Standard 

Test Method for Effect of Moisture on Asphalt Content Paving Mixtures [7], commonly known 

as the Lottman test.  An even number (at least six) of specimens are compacted to 7 ± 1 % air 

voids.  The specimens are then sorted into two subsets so that the average air voids of two 

subsets are approximately equal. A subset to be tested dry was stored while the other subset 

underwent moisture conditioning.   

The subset to be moisture conditioned is partially saturated with distilled water at room 

temperature using a vacuum chamber.  The volume of absorbed water is obtained by subtracting 

the air dry mass of the specimen from the saturated surface-dry mass of the partially saturated 

specimen.  The degree of saturation is calculated by dividing the volume of the absorbed water 

by the volume of the air voids and express as a percentage.  The percent saturation must be 

between 55 and 80.  If this value is less than 55, the specimen is resaturated.  If the value is 

greater than 80, the specimen must be discarded. 

The partially saturated specimens are conditioned by soaking them in distilled water at 60 ± 

1.0 °C (140 ± 2.0 °F) for 24 hours.  The temperature of the moisture-conditioned and the dry 

subsets is then adjusted by soaking the specimens in a 25 ± 1.0 °C (77 ± 2.0 °F) water bath. 

Each specimen is placed in an apparatus capable of applying a diametral load at a rate of 50 

mm/min. while measuring the vertical load.  The load is applied until a drop in load is detected 

(specimen failure).  The tensile strength is defined as the maximum stress measured in the 

specimen prior to failure.  

The tensile strength is calculated using Equation 2.7. 

 S
P
tDt =

2
π

 (2.7) 

Where: 
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St = Tensile strength, psi 

P = Maximum load, lb. 

t = Specimen height immediately before tensile test, in. 

D = Specimen diameter, in. 

The tensile strength ratio is a ratio of tensile strength of the wet subset to the tensile strength of 

the dry subset.  It is calculated using Equation 1.4. 
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CHAPTER 3  
FIELD DETERMINATION OF VMA 

INTRODUCTION 

As discussed in Chapters 1 and 2, VMA has been determined during the laboratory phase of 

HMA design for a number of years.  The Asphalt Institute [4] defined criteria relating minimum 

VMA to maximum size of the aggregate have been used to assure appropriate film thickness for 

design voids in the total mix. 

There has been some concern that the VMA attained in the field can be somewhat different than 

the laboratory measured VMA for a given mix. 

Ten 1996 paving projects across Minnesota were used to study the variation between laboratory 

and field asphalt mixes.  These projects are summarized in Table 3.1. They were designated 

according to the location of the Mn/DOT district office to provide a geographical reference.  A 

map illustrating the approximate locations of the paving projects is shown in Figure 3.1.  

Detailed plant information for each project is provided in Appendix A. 

Samples were collected by filling two to four large buckets with behind-the-paver material 

before compaction.  The buckets were reheated for approximately one hour and separated into 

1300-g samples at the Pavement Materials Lab at the University of Minnesota. 

In addition to the behind-the-paver, or production samples, contractors sent the project 

aggregates used in the mixes to the University of Minnesota for analysis and provided plant 

information on the projects.  From this and the production samples, three major sources of 

information from each project were used to determine possible changes in VMA.  The three 

primary factors are: 

1. Aggregate properties 

2. Field mix properties 

3. HMA plant production characteristics 
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AGGREGATE PROPERTIES 

Aggregates used for nine of the ten projects were provided to the University of Minnesota.  

Aggregate from Project 7505-18, Detroit Lakes I was not available.  ASTM and the American 

Association of State Highway and Transportation Officials (AASHTO) standard tests performed 

on the aggregate were: 

1. Bulk specific gravity and absorption of coarse aggregate (ASTM C 127/AASHTO T85) 

2. Bulk specific gravity and absorption of fine aggregate (ASTM C 128/AASHTO T84) 

3. Sieve analysis (ASTM C 136/AASHTO T27) 

4. General aggregate mineralogy 

5. Ignition calibration factor (Mn/DOT standard test method) 

Bulk Specific Gravity and Absorption (ASTM C 127 and C 128) 

Bulk specific gravity tests were performed on the aggregate and the recycled asphalt pavement 

(RAP) portions of the HMA mixture mainly for the bulk specific gravity (Gsb), used in Equation 

1.1.  RAP portions were heated in the ignition oven to remove the asphalt binder and were then 

treated as virgin aggregates.  Once the bulk specific gravity of all the project aggregates and 

RAP were determined, a combined Gsb value was calculated using the mix design information 

Table 3.1  Summary of Paving Projects 

Project No. Name District Hwy Description Mix Type 

1506-30 Bemidji I 2 92 Bituminous Overlay 31 Level 

6007-10 Bemidji II 2 32 Bituminous Overlay 31 Level 

7505-18 Detroit Lakes I 4 59 Regrades 32 Base 

8408-48 Detroit Lakes II 4 75 Overlay/Widening 41 Binder 

1906-40 Metro Metro 52 Mill & Overlay 48 Level 

2514-89 Rochester I 6 61 Mill & Overlay 48 Level 

5503-28 Rochester II 6 14 Mill & Overlay 42 Wear 

5209-58 Mankato  7 169 Bituminous Overlay 47 Binder 

4201-36 Willmar I 8 14 Bituminous Overlay 41 Wear 

4303-36 Willmar II 8 15 Bituminous Overlay 41 Wear 



 33

for the project regarding aggregate proportions.  This combined Gsb value was calculated 

according to the Equation 3.1 and used to determine the VMA from Equation 1.1: 

 G
P

G
P

G
P

G

sb

sb sb

n

sb n

=
+ + +

100
1

1

2

2( ) ( ) ( )

L
 (3.1) 

Where:  

Gsb = Combined aggregate bulk specific gravity 

P1, P2,… = Percentage of aggregate (or RAP aggregate) 1, 2,… in the mixture 

Gsb(1), Gsb(2),… = Bulk specific gravity of aggregate (or RAP aggregate) 1, 2,… 

For the RAP aggregate, the standard Mn/DOT test procedure calls for initial extraction of the 

asphalt binder by solvent.  After extraction, the remaining aggregate is treated as a virgin 

aggregate and placed in the ignition oven for determination of a calibration factor.  However, 

 
Figure 3.1  Map of 1996 Minnesota VMA Projects 
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asphalt binder extraction by solvent was not available for this research.  Therefore, the RAP 

material was placed in the ignition oven for extraction and then the remaining aggregate was 

placed in the ignition oven again for determination of a calibration factor. 

A source of error in determining a calibration factor for RAP material is encountered when 

performing initial extraction with the NCAT ignition oven.  It may be assumed that there will be 

some fine aggregate material that will escape from the sample, rise with the heat, and be 

transported out of the oven along with the hot fumes and the asphalt binder.  Therefore, when the 

aggregate is put into the ignition oven for calibration factor determination, the aggregate is no 

longer a complete representative sample, as a portion of the fine material is absent.  

The Mn/DOT standard test procedure [24] calls for a 0.15% subtraction from the calibration 

factor determined for RAP aggregate if initial extraction is done by a solvent.  This is intended to 

compensate for any retained asphalt binder.  However, for this research, since the ignition oven 

was used for initial extraction, it was assumed that there was no retained asphalt binder and the 

0.15% was not subtracted from the calibration factor. 

Sieve Analysis (ASTM C 136) 

Since many project aggregates required both a coarse and fine bulk specific gravity test, a basic, 

unwashed sieve analysis was performed on the aggregate to separate the aggregate into its coarse 

and fine portions.  The bulk specific gravity of the separated portions was then determined. The 

gradation was also recorded during this sieve analysis to use as a comparison to the gradations 

determined by the contractor and Mn/DOT, if those data were available.  

Aggregate Mineralogy 

A determination of general mineralogy was made for each aggregate.  This was done by a visual 

inspection of a representative sample.  Limestone aggregate was identified using the HCl acid 

test.  Basic descriptions of igneous, limestone, granite or quartz were used to classify the 

material.  These descriptions were important in determining the type of aggregate available for 

use in different areas of Minnesota. 
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Ignition Oven Calibration Factor 

In addition to the common aggregate properties listed above, a calibration factor was determined 

for each project aggregate using the Mn/DOT test method for calibrating virgin aggregate 

sources using an ignition oven.  The calibration factor is a means of accounting for the organic 

components of the aggregate that are lost due to ignition as well as fine mineral material that is 

drawn through the exhaust pipe.  Calibration factors are determined by placing an aggregate 

sample of a known mass in an ignition oven set at 575 °C (1067 °F) for 60 minutes.  After the 

aggregate has cooled, the after-ignition mass is recorded and the calibration factor (Cn) is 

calculated from the following formula: 

 C
C E

Cn =
−

×100  (3.2) 

Where: 

Cn = Calibration factor, %  

C = Initial weight of sample, g 

E = Final weight of sample, g 

If a project contained RAP, a sample of the RAP was placed in the ignition oven and the asphalt 

binder was burned off the aggregate.  After allowing the aggregate to cool to room temperature, 

it was treated as a virgin aggregate source and the standard Mn/DOT test method for determining 

a calibration factor for virgin aggregate was used. 

A composite aggregate mixture calibration factor (Cm) was determined for each project using the 

following formula: 

 C
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Where: 

Cm = Combined aggregate calibration factor 

P1, P2, …= Percentage of aggregates 1, 2, … in mixture 

C1, C2, …= Calibration factor of aggregates 1, 2, … 
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One factor considered which affects VMA is aggregate gradation.  This report illustrates how the 

aggregate might break down and the gradation might change from initial production at the plant 

to paving.  To analyze the gradation after construction, the asphalt binder must be removed from 

the HMA mixture.  This was done by using the Mn/DOT ignition oven test procedure for 

determining asphalt content from asphalt paving mixtures.  Accurately determining the asphalt 

content calls for calibration factors to be determined for each aggregate source.  This allows for 

the distinction between asphalt binder lost during ignition and fine aggregate material lost during 

ignition.  The ignition test procedure is explained in greater detail in the following section. 

FIELD MIX PROPERTIES 

Each of the ten 1996 paving sites was visited during construction, and behind-the-paver samples 

were obtained.  These samples were collected to provide information about the material 

characteristics of the HMA once it had been mixed, hauled, and run through the paver.  These 

samples were collected from the paved mat behind the paver to give the best representation of 

the final mixture as it exists in the pavement.   

Procedures and tests performed on the field samples were: 

1. Marshall compaction (ASTM D 1559) 

2. Bulk specific gravity of compacted specimens (ASTM D 2726) 

3. Theoretical maximum specific gravity of mixture (ASTM D 2041) 

4. VMA from Equation 1.1 and air void computation 

5. Modified Lottman test (ASTM D 4867) 

6. Asphalt binder extraction in an ignition oven (Mn/DOT Standard Test Procedure) 

Marshall Compaction (ASTM D 1559) 

For each project, the Mn/DOT mix design information was obtained.  The behind-the-paver 

samples for each project were compacted according to the mix design that was used for that 

project and lift.  Every project was compacted using the 50-blow Marshall Mix Design 

procedure. 

The procedure consisted of heating the individual 1300-g samples in a 140 °C (285 °F) oven.  

The samples remained in the oven until they reached a temperature of 135 °C (275 °F), which 
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was considered equivalent to a curing time of two to three hours.  The standard Marshall Mix 

Design procedure was followed and a minimum of 18 samples were compacted for each project. 

Bulk Specific Gravity of the Compacted Specimens  

On the day following compaction, the bulk specific gravity of each sample was determined using 

ASTM D 2726 and Equation 2.1.  Four height measurements were recorded and the average of 

these four was used as the height of the specimen. 

Theoretical Maximum Specific Gravity / Air Void Computation 

In order to determine the air void content of the compacted specimens, the theoretical maximum 

specific gravity of the mixture was determined using ASTM D2041 and Equation 2.2.  A 

minimum of two maximum specific gravity tests were performed using 1300-g samples 

representative of the mixture used in compacting the 18 samples.  If the two results were within 

the single operator precision of ASTM Test Method D2726 (0.035), the average of the two 

values was used.  If the two results were not within the precision, a third test was run.  When two 

of three results were within the precision, the average was taken of those two and used as the 

theoretical maximum specific gravity.  The air void content (VTM) of each compacted specimen 

was determined according to the Equation 2.3. 

VMA Calculation 

VMA was computed for each compacted specimen using Equation 1.1.  The combined aggregate 

bulk specific gravity determined from the project aggregates was used.  The asphalt binder 

content was determined using the Mn/DOT ignition oven method. 

Moisture Sensitivity Testing 

A set of 18 compacted samples was tested to determine the TSR using ASTM D 4867 [7].  The 

samples used for this portion of the study were compacted at a reduced effort, with a target air 

void range of 7 ± 1 percent.  The bulk specific gravity and air void content of each sample was 

determined.  The 18 samples were separated and regrouped according to similar air void 

contents.  The samples were then tested following the procedure outlined in Chapter 2. 
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Asphalt Binder Extraction Using Ignition Oven 

The final test procedure performed on the behind-the-paver samples was extraction of the asphalt 

binder using an ignition oven, as presented briefly in the previous sections.  Two individual 

1300-g samples of the mixture were recombined and a 2000-g representative sample was placed 

in the ignition oven and tested at 538 °C (1000 °F).  The composite aggregate calibration factor, 

as determined prior to the test, was input into the ignition oven controls to allow for an accurate 

determination of the asphalt content without incorporating fine material lost from the aggregate 

during ignition.  The sample remained in the oven until its mass had stabilized, or for a 

maximum of 60 minutes. 

Determination of Asphalt Binder Content 

Using Equation 3.4, the asphalt binder content was determined and compared with the specified 

mix design asphalt binder content. 

 b m
C E

P 100 C
C
−

= × −  (3.4) 

Where: 

Pb = Asphalt content, percent 

C = Initial weight of sample, g 

E = Final weight of sample, g 

Cm = Aggregate mixture calibration factor, percent (from Equation 3.3) 

Gradation Analysis 

The aggregate that remained after the ignition oven test was tested to determine the change in 

aggregate properties from initial plant production to behind-the-paver sample.  A sieve analysis 

was performed using ASTM C 136 to determine the change in gradation. This gradation was 

compared with the mix design gradation to determine if degradation had occurred. 

Surface Area Analysis 

Two aggregate surface area calculations using Equation 1.2 were made for each project.  The 

surface area was determined using both the mix design gradation and the gradation determined 
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after the field sample had been tested in the ignition oven.  These two surface area values were 

compared. 

The portion of material passing the 75-µm sieve was not included in the surface area analysis for 

the following reasons: 

1. It is difficult to accurately determine the size distribution of the - 75-µm material. 

2. An unknown proportion of the fines was lost during the ignition test. 

3. The uncertainty regarding the quantity of fines combined with the large contribution 

of very small particles to the surface area calculation (see Equation 1.2) would result 

in erroneous surface area values. 

Asphalt Film Thickness 

Once the two surface areas were calculated, the asphalt film thickness was estimated using 

Equation 1.3, both for the mix design gradation and the post-construction gradation after 

ignition.  The asphalt film thickness estimated in the preliminary mix design was compared to 

that on the produced HMA aggregate. 

Since the material passing the 75-µm sieve was not included in the surface area estimation, it can 

be assumed that the estimated film thickness estimation was greater than the actual film 

thickness. 

HMA PRODUCTION CHARACTERISTICS 

Construction information and data which could affect the field mix VMA and other in-place 

HMA properties were documented  Details are included in Appendix A.  Eight of the ten project 

contractors provided information on the following factors: 

1. Plant Characteristics 

a. Type 

b. Make (model no.) 

c. Capacity 

d. Dust collection system 

2. Project Production Statistics 

a. Rate 
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b. Angle and speed of  drum 

c. Stockpile moisture content 

d. Temperature 

3. Transport 

a. Storage time 

b. Storage temperature 

c. Haul distance (maximum, minimum, average) 

Plant Characteristics 

All of the plants used for the ten projects were drum mix plants with baghouse dust collection 

systems.  The baghouse fines were reintroduced into all the mixes.  The first four plant 

characteristics (production rate, capacity, make of plant, and angle/speed of drum) were acquired 

to provide a general knowledge of the size and type of each paving project.  The fifth plant 

characteristic, type of dust system, was the same for all ten paving projects: all projects used 

baghouse collection systems and all the fines were reintroduced into the mixture. 

Project Production Statistics 

The production rates and angle and speed of the drum were noted.  The angle and speed should 

relate to the stockpile moisture content as adjustments are necessary if the moisture changes 

significantly.  Aggregate moisture content variations may also adversely affect the results of 

asphalt contents measured using the ignition oven. 

Plant and paving temperatures were recorded because of their potential effect on VMA.  High 

plant production temperatures, as stated previously, can decrease asphalt binder viscosity and 

cause more asphalt absorption and a subsequent decrease in VMA.  Lower paving temperatures 

can make the mix less workable and result in low density and higher VMA.  However, the 

increase in VMA is simply due to the increase in air voids which can result in low stability and 

durability. 

The final two factors were recorded to give an idea of how long the mixture cured before it was 

put through the paver.  Storing mixtures for longer times at elevated temperatures can cause 

increased asphalt absorption, lower effective asphalt content, and lower film thickness.  Plants 
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that were located farther away from the paving site had more potential for VMA collapse caused 

by prolonged storage and increased asphalt absorption. 
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CHAPTER 4  
RESULTS AND ANALYSIS 

INTRODUCTION 

This chapter provides the results and findings of the mixture durability research program.  The 

ten projects are summarized in Table 3.1.  Results of aggregate testing are listed in Appendix B, 

and aggregate gradations before and after construction are listed in Appendix C.  Each project 

was analyzed for changes in mix parameters during design and construction for aggregate 

gradation, VMA, and asphalt film thickness.  The projects were first separated according to the 

magnitude of the change in VMA and analyzed as three distinct groups.  The potential causes of 

VMA changes were then reviewed to determine which contributed to the decrease in VMA.  

Following the VMA analysis, asphalt film thickness was estimated to determine its relationship 

to the variability of VMA and to determine which parameters had the most effect on the film 

thickness.  The impact of change between design and production aggregate gradations was also 

examined through the use of the 0.45 power gradation chart.  Distances were measured between 

the project aggregate maximum density line and the aggregate gradation determined in mix 

design and following construction.  The distances were measured by determining the difference 

between the percent passing of two gradations and adding the distances over a standard set of 

sieves. 

The moisture sensitivity testing results are included to determine if low TSR values were caused 

by low film thickness or other parameters. 

PROJECT DESCRIPTIONS 

The ten projects used for this study are summarized in Table 3.1.  The mixes were designated by 

layer (base, binder, level, or wear).  The number in front of the mix type described the 

classification system used for the HMA mixtures in Minnesota and is related to the largest 

aggregate size, presence of recycled materials, and degree of fracture.  Three mix types were 

used: 

1. Type 31:  Low volume, low aggregate angularity mixture 
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2. Type 32:  Type 31 mix with RAP 

3. Type 41:  Medium volume and aggregate angularity mixture 

4. Type 42:  Type 41 mix with RAP 

5. Type 47:  High volume and aggregate angularity mixture 

6. Type 48:  Type 47 mix with RAP 

The general aggregate mineralogy consisted of identifying the largest one or two components of 

the aggregate.  If RAP was included, the percentage of RAP in the mix as a total percent of the 

aggregate was specified.  Finally, the asphalt binder penetration was recorded. 

VMA CHANGE 

In order to determine if there had been a decrease in the VMA between mix design and 

construction, a design VMA was calculated using Mn/DOT mix design data and material 

properties.  For post-construction VMA, the bulk specific gravity of the combined project 

aggregate was determined by testing the individual project aggregate samples and then using the 

aggregate proportions to calculate the combined aggregate bulk specific gravity.  The material 

Table 4.1  Post-Construction Results from Contractor, Mn/DOT, and the University of 
Minnesota 

Project Cumulative Aggregate 
Bulk specific gravity VMA 

 Cont. Mn/ 
DOT U of MN Std. 

Dev. Cont. Mn/ 
DOT U of MN Std. 

Dev. 

Bemidji I 2.646 2.604 2.598 0.030 n/a 15.1 14.1 0.7 

Bemidji II 2.603 2.594 2.612 0.006 n/a 15.0 15.0 0 

Detroit Lakes I 2.548 2.486 n/a 0.044 n/a n/a 14.4 -- 

Detroit Lakes II 2.588 2.550 2.553 0.027 n/a 13.9 13.6 0.2 

Metro 2.692 2.661 2.662 0.022 n/a 14.5 15.4 0.6 

Rochester I 2.643 2.634 2.613 0.006 n/a 14.1 13.2 0.6 

Rochester II 2.612 2.598 2.584 0.010 n/a 13.4 15.1 1.2 

Mankato 2.577 2.501 2.529 0.054 n/a 11.3 12.6 0.9 

Willmar I 2.606 2.608 2.599 0.005 n/a n/a 15.5 -- 

Willmar II 2.595 2.609 2.559 0.026 n/a 16.3 13.9 1.7 
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obtained from behind the paver was compacted according to mix design specifications and the 

bulk specific gravity of the compacted samples was determined. 

Table 4.1 is a summary of the aggregate bulk specific gravity used in the VMA calculation, as 

well as the VMA results from Mn/DOT and the University of Minnesota.  (Contractor data for 

VMA were not available.)  All VMA values are post-construction.  A standard deviation was 

included as part of the table to indicate the difference between material and mix parameters. 

VMA following construction was determined by averaging the resulting VMA for all the 

compacted samples.  Table 4.2 summarizes both the average mix design and average post-

construction VMA values for each project, as well as the difference between the two. 

In general, the greater the standard deviation for the combined aggregate bulk specific gravity, 

the greater the standard deviation of the three VMA values.  The table represents only 

differences between MnDOT and University of Minnesota data because contractor VMA data 

were not available.  

Table 4.2  Difference in VMA 

Group Project 
Mix Design 
VMA (%) 

Post-Construction 
VMA (%) 

Difference 
in VMA (%) 

 Rochester I 15.8 13.2 - 2.6 

Large Willmar II 16.2 13.9 - 2.3 

 Mankato 14.5 12.6 - 1.9 

 Detroit Lakes II 14.7 13.6 - 1.1 

 Rochester II 16.1 15.1 - 1.0 

Moderate Metro 16.1 15.4 - 0.7 

 Bemidji I 14.7 14.1 - 0.6 

 Willmar I 16.1 15.5 - 0.6 

Bemidji II 15.0 15.0 0 
Small 

Detroit Lakes I 14.2 14.4 + 0.2 
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Table 4.2 shows that the only two projects where the VMA did not decrease were Bemidji II and 

Detroit Lakes I.  There were three projects that had a slight decrease in VMA of approximately 

one-half percent: Bemidji I, Metro, and Willmar I.  There were two projects with a decrease in 

VMA of approximately one percent: Detroit Lakes II and Rochester II.  The other three projects 

had a VMA decrease of two percent or more: Rochester I (- 2.6%), Mankato (- 1.9%), and 

Willmar II (- 2.3%).  The projects were then grouped into three categories:  

1. Large decrease:  VMA decrease of approximately 2% or more. 

2. Moderate decrease:  VMA decrease of approximately 0.5 - 1.0% 

3. Small decrease:  Increase or no change in VMA 

Table 4.3 contains a summary of Superpave aggregate test results for the stockpile aggregates.  

The Asphalt Institute refers to these tests as “Consensus Properties” in its Superpave mix design 

manual [22].  Chapter 2 contains descriptions of these tests. 

Stockpile samples were tested at the University of Minnesota and summarized in a weighted 

average according to the percentages in the mix. Results are summarized in Appendix B. 

Table 4.3  Superpave Aggregate Test Results. 

Superpave Aggregate Test Results 
(weighted average of all stockpiles) 

Group Project Change in 
VMA 

CAA Flat/ 
Elongated 

FAA Sand 
Equivalent 

 Rochester I* - 2.6 82/75 15 40.8 81 

Large Willmar II - 2.3 99/96 12 40.0 84 

 Mankato - 1.9 99/90 10 40.6 59 

 Detroit Lakes II - 1.1 66/54 8 39.3 63 

 Rochester II* - 1.0 96/89 13 41.0 84 

Moderate Metro* - 0.7 91/83 12 41.6 83 

 Bemidji I - 0.6 97/88 17 41.2 76 

 Willmar I - 0.6 90/83 10 39.0 64 

Bemidji II 0 63/47 13 40.5 75 
Small 

Detroit Lakes I + 0.2 n/a n/a n/a n/a 

* Mix contained RAP which was not included in Superpave aggregate calculations. 
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Large Decrease in VMA 

Rochester I, Willmar II, and Mankato all had a decrease in VMA of approximately two percent 

or more.  In order to determine what caused the drop in VMA, four of the five potential causes 

were explored: 

1. Generation of fines 

2. Change in aggregate shape 

3. Mix production temperatures 

4. Storage and hauling times 

The use of baghouse fines was excluded because all projects used baghouse fines collection 

systems and all fines were fed back into the mix.  Since some projects exhibited a decrease in 

VMA and some did not, it was assumed that there were other factors contributing to the decrease 

in VMA.  The contribution of baghouse fines to the variability of VMA between mix design and 

post-construction was assumed to be similar for all projects. 

Generation of Fines 

In order to determine if fines were generated during construction, the aggregate gradations 

specified in mix design were compared to the aggregate gradation following construction.  For 

all three projects, there did not appear to be any significant increase in fines from mix design to 

post-construction.  In fact, two of the projects showed that the post-construction gradation was 

coarser than the mix design gradation.  As a result, a significant change in total surface area is 

not expected.  The three gradation comparisons are shown in Figure 4.1, Figure 4.2, and Figure 

4.3.  The difference in surface area between mix design and following construction for all three 

projects is summarized in Table 4.4 

Since the material passing the 75-µm sieve is collected in a pan, there is no direct measurement 

of particle diameter.  Without particle diameter, the contribution of this material to the surface 

area of the aggregate cannot be accurately estimated and was not included in the surface area 

analysis.  Therefore, the percentage of the aggregate gradation that this material makes up is 

included in Table 4.4.  It can be assumed that the larger this percentage is, the greater the actual 

surface area.  Therefore, in the case of Rochester I, since both gradations resulted in 5 percent 

minus 75-µm material, the difference in surface area recorded at the bottom of the table is 
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appropriate.  However, in the cases of both Willmar II and Mankato, the percentage of minus 75-

µm material determined for the mix design gradation is greater than that determined for the post- 

construction gradation.  In those two cases, it would be appropriate to assume that if this material 

was incorporated into the surface area estimation, the difference in the Willmar II gradations 

would be larger, whereas the difference in the Mankato gradations would be smaller. 

Since there was no notable change in the fineness of the aggregate gradations or a noticeably 
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Figure 4.1  Gradation Comparison for Rochester I 
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Figure 4.2  Gradation Comparison for Willmar II 



 49

large increase in surface area, it can be deduced that the generation of fines did not contribute 

significantly to the VMA decrease these projects experienced. 

Change in Aggregate Shape 

A brief visual inspection of the mixture aggregate following the ignition test indicated that for all 

three projects, there was not a significant change in aggregate shape compared to the virgin 

aggregate.  Also, since the aggregate gradation was not finer after construction, it can be 

Table 4.4  Summary of surface area estimations  

Project Rochester I Willmar II Mankato 

Mix Design Surface Area (m2/kg) 7.5 7.9 8.7 

- 75-µm Material Not Included 
(% of total aggregate) 5 4 7 

Post-Construction Surface Area (m2/kg) 8.3 6.5 9.3 

- 75-µm Material Not Included 
(% of total aggregate) 5 2.3 4 

Surface Area Difference (m2/kg) + 0.8 - 1.4 + 0.6 
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Figure 4.3  Gradation Comparison for Mankato 
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assumed that the aggregate degradation was negligible, and not a significant contributor to the 

decrease in VMA.  However, in order to accurately prove this assumption, a quantitative 

measurement of aggregate shape needs to be determined for both the virgin aggregates and the 

post-construction mix aggregate.  The Fine Aggregate Angularity (FAA) test is a candidate for 

this type of comparison.  Results of FAA testing on the original stockpile aggregates are 

summarized in Table 4.3.  Samples of post-construction aggregate were not available. 

Mix Production Temperatures / Storage and Hauling Times 

The plant mix production temperatures for the three projects were 160, 154, and 149 °C (320, 

310, and 300 °F) for Mankato, Willmar II, and Rochester I, respectively.  These three production 

temperatures were the highest of the ten projects.  The high production temperatures have the 

potential to increase the asphalt absorption due to the decrease in viscosity of the asphalt binder. 

Table 4.5 summarizes the asphalt binder absorption for mix design and post-construction for all 

ten projects.  The absorption values were calculated using the procedure outlined in Chapter 3.  

Plant production temperatures, hauling distances and storage times are also included.  It should 

be noted that high plant temperatures are generally correlated with long haul distances and curing 

times. 

Table 4.5 indicates that three of the four greatest increases in asphalt absorption between mix 

design and post-construction are Rochester I, Willmar II, and Mankato, the three projects with 

the greatest decrease in VMA.  From the data, it can be deduced that the increase in asphalt 

binder absorption could be attributed to three major causes: 

1. High plant mix production temperatures 

2. Haul distance or storage time 

3. Aggregate mineralogy 

High plant mix production temperatures 

All three projects with greater decreases in VMA had plant production temperatures in excess of 

150 °C (300 °F).  Plant production temperatures become a factor when they exceed the mixing 

temperatures stated for a specific grade of asphalt binder.  Both Rochester I and Willmar II used 

a 120/150 penetration asphalt binder, whereas the Mankato project used an 85/100 penetration 

asphalt binder.  
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Typical mixing temperatures according to Mn/DOT asphalt binder data for most 120/150 

penetration asphalt binders used in Minnesota range from 135 to 146 °C (275 to 295 °F); mixing 

temperatures for 85/100 penetration asphalt binders range from 146 to 152 °C (295 to 305 °F) 

[25].  Therefore, all three projects had mixing temperatures that were greater than the 

recommended temperature range. Figure 4.4 illustrates how high temperatures can affect the 

viscosity of the asphalt binder.  High mixing temperatures can decrease asphalt binder viscosity, 

lead to increased asphalt absorption.  If the mix is compacted to the same air void content, this 

will result in a lower VMA. 

Long Hauling Distances and/or Storage Times 

From Table 4.5 it appears that a long hauling distance may have played a role in the VMA 

decrease of the Willmar II project.  The average distance from the production plant to the paving 

site was 38 miles.  This amounted to an average asphalt mix storage time of about 1.25 hours.  

Table 4.5  Asphalt binder Absorption 
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Rochester I - 2.6 0.37 1.35 0.98 149 5 0.5 

Willmar II - 2.3 1.00 2.11 1.11 154 61 1.25 

Mankato - 1.9 0.80 2.45 1.65 160 16 0.75 

Detroit Lakes II - 1.1 1.12 1.29 0.17 n/a n/a n/a 

Rochester II - 1.0 0.69 1.51 0.82 143 24 1.0 

Metro - 0.7 0.13 1.50 1.37 138 8 0.5 

Bemidji I - 0.6 1.36 1.84 0.48 148 8 1.0 

Willmar I - 0.6 1.10 1.27 0.17 127 3 0.25 

Bemidji II 0 1.29 1.08 - 0.21 141 11 0.5 

Detroit Lakes I 0.2 1.62 1.65 0.03 n/a n/a n/a 
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The longer HMA mixes are stored at elevated temperatures, the greater the opportunity for 

asphalt absorption. 

The remaining two projects, Rochester II and Mankato, did not have long hauling distances or 

storage times.  Therefore, the majority of the absorption that occurred in those two projects could 

be assumed to be from the high plant mixing temperatures.  

Aggregate Mineralogy 

It is important to note that all three of these projects had limestone aggregate. Roberts, et al [2] 

stated that asphalt binder normally bonds well with carbonate aggregates, when compared to 

siliceous aggregates such as gravel.  Porous limestone may absorb more asphalt binder. 

Moderate Decrease in VMA 

Five projects had a moderate decrease in VMA of 1.1 to 0.6 percent.  The causes of VMA 

collapse for these projects are more difficult to define as there does not tend to be a single factor 

contributing to the decrease.  There are several factors involved with varying effects on VMA.  

In order to determine which are playing  roles in the decrease, the four potential causes of VMA 

drop were reviewed. 

Generation of Fines 

Of the five projects making up this group, only Detroit Lakes II showed a significant difference 

in gradation from mix design to post-construction (see Figure 4.5).  Bemidji I, Metro, Rochester 
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Figure 4.4  Relationship Between Asphalt Binder Viscosity and Temperature  
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II, and Willmar I, experienced little or no difference in gradation before and after construction.   

Figure 4.6 illustrates the Rochester II gradation, which is representative of the gradation 

differences in this group.  The pre- and post-construction gradations are very similar for 

Rochester II. 
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Figure 4.5  Gradation Comparison for Detroit Lakes II 
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Figure 4.6  Gradation Comparison for Rochester II 
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Change in Aggregate Shape 

By visual inspection, there was not an obvious change in aggregate particle shape indicating little 

aggregate degradation.  In order to accurately determine if any degradation had occurred, a 

comparison of FAA results for the aggregate blend sampled prior to construction and the 

aggregate remaining after the ignition oven test should be made. 

Mix Production Temperatures / Storage and Hauling Times 

Of the five projects experiencing a moderate decrease in VMA, aggregate degradation resulting 

in a finer gradation can be assumed to be the main factor only for Detroit Lakes II.  The other  

projects do not appear to have a large enough difference in aggregate gradation to explain the 

decrease in VMA it experienced.  Therefore, other factors must have contributed to the decrease. 

As shown in Table 4.5, the Metro project had a moderate plant mix temperature of 138 °C 

(280 °F).  The average distance from the plant to the paving site was five miles.  Both the 

temperature and hauling distance are in the medium range when compared to the other nine 

projects.  However, the difference in asphalt absorption between mix design and following 

construction was the second highest (1.37 percent), behind the Mankato project.  Therefore, the 

decrease in VMA can be assumed to have resulted primarily from the increase in asphalt 

absorption.  But, since the temperature and hauling distance alone do not seem to adequately 

account for such a large difference in asphalt absorption, the aggregate mineralogy was 

examined. 

Three of the remaining four projects, Detroit Lakes II, Bemidji I, and Willmar I, did not 

experience a large difference in asphalt absorption.  The fourth project, Rochester II, experienced 

nearly a one percent asphalt absorption (0.82 percent).  The plant mix temperature of 143 °C 

(290 °F) is moderately high and the hauling distance is above average when compared to the 

other nine projects.  Therefore, the increase in asphalt absorption could be accounted for by the 

mix temperature and hauling distance. 

Aggregate Mineralogy 

The five projects exhibiting a moderate decrease in VMA all contained aggregate that was made 

up of both limestone and granite, except for the Rochester II project, which consisted entirely of 
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limestone.  As stated previously, aggregate composed of limestone has the tendency to absorb 

more asphalt binder due to its porosity.  Thus, the increase in asphalt absorption for the 

Rochester II project can be attributed to the aggregate mineralogy, combined with a slightly high 

plant mix temperature and hauling distance. 

The Metro project can be only partially explained.  The increase in asphalt absorption cannot be 

entirely attributed to either the plant mix temperature or hauling time.  Neither parameter was 

high compared to the other projects.  The asphalt absorption can be entirely attributed to the 

aggregate mineralogy, as the project contained approximately an equal amount of granite and 

limestone.  The increase in asphalt absorption between mix design and construction can be 

caused by the combined effect of the three parameters produced a cumulative increase in asphalt 

absorption and a subsequent decrease in VMA. 

Low Decrease in VMA 

The two projects that experienced little or no drop in VMA were Detroit Lakes I and Bemidji II.  

By looking at the same four causes of VMA collapse, it is possible to explain why these two 

projects did not experience a decrease in VMA. 

Generation of Fines 

It has been hypothesized that aggregate degradation and the resulting change in aggregate 

gradation can contribute to a drop in VMA for a particular project.  Therefore, it can be assumed 

that hard aggregates that do not break down have the potential to maintain the mix design 

gradation throughout production. 

Detroit Lakes I and Bemidji II exhibited a negligible drop in VMA between mix design and 

production.  Figure 4.7 and Figure 4.8 show little change in aggregate gradation between mix 

design and following construction. 
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For Detroit Lakes I, the mix design and post-construction gradations are similar for both the 

larger and smaller sieve sizes, with some deviation in the middle.  For Bemidji II, the two 

gradations actually cross, with the post-construction gradation finer than the mix design 

gradation over the larger sieve sizes and coarser over the smaller sieve sizes. The difference 

between mix design and post-construction gradations for the two projects is minimal. 

The Bemidji II project, with only a 0.2 m2/kg difference between mix design and production, had 

the smallest change in surface area of the ten projects.  It appears that the minimal change in 

gradation and surface area helped minimize the VMA decrease. 

Change in Aggregate Shape 

Through visual inspection there was no noticeable degradation of the aggregate particles after 

production.  The aggregate remaining following the ignition oven test was nearly identical with 

the virgin aggregate for each project.  It was impossible to detect any change in aggregate shape.  

This statement is supported by the similar gradations between mix design and post-construction.  

However, as stated previously, this can be more reliably supported by comparing the results of 

the virgin aggregate and the mix aggregate using a quantitative result from the FAA Test. 
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Figure 4.7  Gradation Comparison for Detroit Lakes I 
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Mix Production Temperatures / Storage and Hauling Times 

The Detroit Lakes I project did not provide any data regarding mix production temperatures or 

hauling times.  However, from Table 4.5, the Bemidji II project had a moderate plant mix 

temperature of 141 °C (285 °F) and a relatively short hauling distance of approximately seven 

miles.  According to Table 4.5, the production asphalt absorption was 0.2 percent less than the 

mix design absorption.  In other words, there was no sign of additional absorption during 

construction, which explains why this project did not experience a VMA collapse. 

Both mix design and post-construction asphalt absorption were determined for Detroit Lakes I.  

Table 4.5 indicates there was an increase in asphalt absorption of 0.03 percent between mix 

design and post-construction.  Again, it can be assumed that the minimal additional asphalt 

absorption contributed to the low VMA difference. 

Aggregate Mineralogy 

The Detroit Lakes I project aggregate was never submitted to the University for analysis.  

Consequently, there was no record of the aggregate mineralogy for that project, so it cannot be 

considered. 
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Figure 4.8  Gradation Comparison for Bemidji II 
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The Bemidji II project aggregate was composed mainly of limestone which tends to have a high 

absorption.  Table 4.5 shows that the asphalt absorption for both mix design and post-

construction was over one percent.  However, due to the moderate plant mix temperature and 

short hauling distance, there was little additional absorption by the limestone aggregate during 

production, and consequently, minimal change in VMA. 

Asphalt Film Thickness Variability 

Because of the importance of asphalt film thickness to HMA durability, the asphalt film 

thickness was estimated for both mix design and following construction. The film thickness 

estimates, along with the corresponding VMA change, are summarized in Table 4.6.  It is 

important to note that the material passing the 75-µm sieve was not included in the surface area 

computation, and thus, the average asphalt film thickness calculation.  Since this material has the 

potential to increase the surface area by a fair amount, the estimate of average film thickness for 

each project contained in Table 4.6 can be assumed to be greater than what was calculated. 

Table 4.6 indicates that nine of the ten projects experienced a loss in average film thickness.  The 

only project that did not was the Bemidji II project, which also did not experience a drop in 

Table 4.6  Change in Asphalt Film Thickness 

Estimated Average Film Thickness (µm) 
Project 

VMA 
Difference (%) Mix Design  Post-

Construction  Difference 

Rochester I -2.6 7.1 6.2 - 0.9 

Willmar II - 2.3 7.5 6.3 - 1.2 

Mankato -1.9 5.6 3.8 - 1.8 

Detroit Lakes II -1.1 9.3 6.2 - 3.1 

Rochester II -1.0 6.2 4.4 - 1.8 

Metro -0.7 7.4 6.0 - 1.4 

Bemidji I -0.6 6.7 4.5 - 2.2 

Willmar I -0.6 9.4 7.1 - 2.3 

Bemidji II 0 4.8 5.1 + 0.3 

Detroit Lakes I 0.2 7.8 6.7 - 1.1 



 59

VMA.  The other project that did not experience a drop in VMA, Detroit Lakes I, had the 

smallest drop in asphalt film thickness when compared to the other nine projects. 

Asphalt film thickness is directly related to aggregate gradation.  In general, a fine-graded mix 

has a greater total surface area and therefore a lower film thickness than a coarse-graded mix.  

Figure 4.5 shows the change in aggregate gradation for Detroit Lakes II which experienced the 

greatest change in asphalt film thickness.  Figure 4.8 illustrates the gradations for Bemidji II, the 

only project without a loss in film thickness.  It did not experience any significant change in 

aggregate gradation between mix design and construction. 

Aggregate Gradation Distances 

As mentioned in Chapter 3, aggregate gradations can be evaluated using the 0.45 power 

gradation chart.  Both the mix design and post-construction aggregate gradations were compared 

to the maximum density line for each project.  This was done by determining the sum of the 

differences in percent passing between the maximum density line and the gradations over a 

standard set of sieves.  These results, along with VMA and asphalt film thickness comparisons, 

are listed in Table 4.7. 

Table 4.7 Aggregate Gradation Differences from the Maximum Density Line  

Sum of Distances from 
Maximum Density Line Project 

VMA 
Difference 

(%) Mix Design Post-
Construction 

Absolute 
Difference 

Change in 
Asphalt Film 
Thickness 

(µm) 

Rochester I - 2.6 59 74 15 - 0.9 

Willmar II - 2.3 20 46 26 - 1.2 

Mankato - 1.9 38 24 14 - 1.8 

Detroit Lakes II - 1.1 17 48 31 - 3.1 

Rochester II - 1.0 29 42 13 - 1.8 

Metro - 0.7 51 63 12 - 1.4 

Bemidji I - 0.6 61 81 20 - 2.2 

Willmar I - 0.6 19 30 11 - 2.3 

Bemidji II 0 72 76 4 + 0.3 

Detroit Lakes I + 0.2 56 50 6 - 1.1 
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Eight of the ten projects had post-construction aggregate gradations that deviated farther from 

the maximum density line than the mix design aggregate gradation.  In all but one of these cases, 

the deviation was caused by the aggregate gradation becoming finer.  It was suggested in Chapter 

2 that deviating from the maximum density line in either the coarse or fine direction tends to 

cause an increase in VMA.  However, it is also stated that the generation of fines increases 

surface area and tends to decrease VMA for the same level of compaction.   The results of this 

project show that deviating from the maximum density line in the fine direction did not 

necessarily result in a mix with a higher VMA 

The two projects that did not have a drop in VMA, Bemidji II and Detroit Lakes I, had very little 

change when comparing the mix design and post-construction gradations to the maximum 

density line (distances of 4 and 6, respectively).   These were the smallest changes of the ten 

projects.  These minimal changes also resulted in the smallest decrease in asphalt film thickness 

from mix design to post-construction. 

The project experiencing the greatest change in gradation from mix design to construction, 

Detroit Lakes II, also had the greatest decrease in asphalt film thickness.  Figure 4.5 indicates 

that the cause can be attributed to a much finer post-construction aggregate gradation. 

Moisture Sensitivity 

Each of the ten projects were subjected to a Lottman test as detailed in Chapter 2. Table 4.8 

shows that the majority of the projects had a tensile strength ratio (TSR) greater than 70 percent.  

The two projects that had lower values were the Metro project with a borderline TSR of 68.2 

percent and Willmar I, with a TSR of 59.5 percent.  The Willmar I mix would not meet current 

design specifications. 

The average dry tensile strengths for these two projects were also relatively low.  The two 

Bemidji projects exhibited the lowest dry tensile strengths, considerably lower than the other six 

projects tested.  These two projects were also the only two 31- type mixes, which are mixes used 

on low volume roadways.  All other projects were either designed for medium or high volume or 

contained RAP material.  Eliminating these two projects and Metro and Willmar I, the two 

projects with the lowest TSR, are also the two projects with the lowest average dry tensile 

strength.  
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The Willmar I project, with the lowest TSR, also had one of the greatest decreases in asphalt film 

thickness.  Detroit Lakes II, which had over a 3-µm decrease in asphalt film thickness, had an 

insufficient supply of behind-the-paver material to do moisture sensitivity testing.  The other 

project with a large decrease in asphalt film thickness, Bemidji I, had a TSR of 77 percent.  This 

project had one of the highest overall film thickness values.  

SUMMARY 

Of the possible causes of decrease in VMA, none stand out as a significant factor in all of the 

projects.  In the three projects with the largest decrease in VMA (Rochester I, Willmar II, and 

Mankato), increased asphalt absorption due to a combination of high plant temperatures, long 

haul times, and porous aggregates appears to be the main cause.  The relationship between plant 

temperature and change in VMA is shown in Figure 4.9, and the relationship between cure time 

and change in VMA is shown in Figure 4.10. 

Of the five projects with a moderate decrease in VMA, Rochester II and Bemidji I had 

moderately high plant temperatures and cure times of about 1 hour.  Detroit Lakes II had a 

significant change in gradation (see Figure 4.5) which indicates a generation of fines.  Detroit 

Table 4.8  Lottman Test Results 

Project 

Average Air 
Void Content 

(%) 

Average Dry 
Tensile Strength 

(MPa) 

Average Wet 
Tensile Strength 

(MPa) 
Tensile Strength 

Ratio (%) 

Bemidji I 7.0 0.717 0.552 77.2 

Bemidji II 6.5 0.738 0.593 79.6 

Detroit Lakes I 6.6 1.90 1.45 75.2 

Detroit Lakes II N/A N/A N/A N/A 

Metro 6.7 1.40 0.951 68.2 

Rochester I 5.1 1.96 1.54 78.5 

Rochester II 8.1 1.97 1.56 79.4 

Mankato 8.2 2.15 1.80 81.8 

Willmar I 8.0 1.52 0.903 59.5 

Willmar II N/A N/A N/A N/A 
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Lakes II, Bemidji I, and Willmar I all had an estimated drop in film thickness in excess of  2 µm, 

while the decrease for Rochester II was nearly 2 µm (see Table 4.6). 

The two projects with no VMA decrease (Bemidji II and Detroit Lakes I) had little or no 

decrease in film thickness, and very little change in gradation. 
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Figure 4.9  Relationship Between Plant Temperature and Change in VMA 
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Figure 4.10  Relationship Between Cure Time and Change in VMA 
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CHAPTER 5  
PRECISION OF THE LOTTMAN TEST 

BACKGROUND 

Test specimens of hot mix asphalt were proportioned and mixed in the Mn/DOT, Asphalt 

Engineering Laboratory according to Standard Test Method for Resistance to Plastic Flow of 

Bituminous Mixtures Using Marshall Apparatus (ASTM D 1559).  Six specimens were prepared 

per participating laboratory.  Three were tested dry and three were tested after partial saturation 

and moisture conditioning.  Specimens typically were 102 mm in diameter and 64 mm high.   

The samples were randomly divided and shipped to several Minnesota laboratories.  The 

laboratories were requested to compact the specimens in accordance with ASTM D 1559.  

Lottman tests on the compacted specimens were preformed in accordance to ASTM D 4867.  

The specimens were compacted to 7 ± 1 percent air voids. The Lottman test procedure was 

performed within 24 hours after compaction.  The theoretical maximum specific gravity was 

determined in accordance to ASTM D 2041.  The specimen height was determined in accordance 

to ASTM D 3549.  The bulk specific gravity was determined in accordance to ASTM D 2726.  

Calculations for the air voids content were performed in accordance to ASTM D 3203.  The 

specimens were sorted into two subsets so that the average air voids of two subsets are 

approximately equal. A subset to be tested dry was stored while the other subset underwent 

moisture conditioning.   

The subset to be moisture conditioned was partially saturated to between 55 and 80 percent with 

distilled water at room temperature using a vacuum chamber. The partial saturation was 

performed using a partial vacuum of approximately 508 mm Hg for approximately five minutes.  

The partially saturated specimens were conditioned by soaking them in distilled water at 60 ± 

1.0 °C (140 ± 2.0 °F) for 24 hours. The swell of the partially saturated specimens was 

determined by dividing the change in specimen volume by the original specimen volume.   

The temperature of the moisture-conditioned and dry subsets were adjusted by soaking the 

specimens in a water bath at 25 ± 1.0 °C (77 ± 2.0 °F).  The specimens were placed in the 

loading frame and the loading strips were placed so that they were parallel and were centered on 
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the vertical diametral plane.  A diametral load rate of 50 mm/min was applied until maximum 

load was reached.  Loading continued until the specimen fractured. The specimen was broken 

open to observe any moisture damage.  The dry and wet tensile strength and TSR were 

calculated.  

The results were sent to the Pavement Materials Laboratory at the University of Minnesota for 

analysis. The calculations and associated values presented in this report are based solely on the 

data received from these laboratories. 

CALCULATIONS 

Tensile Strength Ratio 

The tensile strength and TSR were calculated using Equations 2.7 and 1.4, respectively. 

The data were analyzed  statistically to determine if there was a  significant difference in TSR 

values within the 14 laboratories and between laboratories.  The variability was determined by 

first calculating the average value and standard deviation for each of the mixes tested by the 

individual laboratories.  The cell (laboratory) averages were then averaged to give a grand 

average of all TSR values.  The variation of individual laboratories from the overall average was 

then determined. 

Between laboratory consistency is defined using the h-value for each lab defined in Equation 

4.10.  The h-value is compared to the t-statistic to establish if the laboratory results are in the 

same population defined by the overall average and standard deviation. 

The within laboratory variation is defined using the k-value statistic defined by Equation 4.11.  

The k-value for each laboratory is used to determine if the laboratory is indicating a material in 

the same population defined by the total testing program. 

Cell Average  

The cell average is the average of all the data obtained for an individual laboratory. 
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Where: 

x = Cell average 

x = Individual test results in one cell 

n = Number of test results reported per laboratory 

Cell Standard Deviation 

The cell standard deviation is a measure of the within-laboratory variability of each individual 

laboratory.  
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Where: 

s = Cell standard deviation  

Average of the Cell Averages 

The Average of the Cell Averages is the mean value for the all of the samples produced. 
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Where: 

&x= Average of the cell averages for one material 

p = Number of laboratories participating in the study 

Cell Deviation 

The Cell Deviation is the deviation a particular laboratory average is from the overall average. 

 d x x= − &  4.4 

Where: 

d = Cell deviation 
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Standard Deviation of the Cell Averages 

The Standard Deviation of the cell averages is a measure of the variability of the cell averages. 
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Where: 

sX = Standard deviation of the cell averages 

Repeatability Standard Deviation 

The repeatability standard deviation is a measure of inner-laboratory variability.  
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Where: 

sr = Repeatability standard deviation 

Reproducibility Standard Deviation 

The reproducibility standard deviation is a measure of inter-laboratory variability. 
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Where: 

sR
* = Reproducibility standard deviation 

n = Number of test results reported per laboratory 

* indicates a provisional value 

Repeatability and Reproducibility Limits 

The repeatability and reproducibility limits are proportional the repeatability standard deviation 

and reproducibility standard deviation, respectively.   

 Repeatability limit = 2 8. × sr  4.8 

 Reproducibility limit = 2 8. *× sR  4.9 
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Consistency Statistics 

The h-value is defined as the between laboratory consistency statistic.  The h-value is an 

indicator of how one laboratory cell average compares with the other laboratory cell averages.  

Critical h-values are calculated using a relationship with the t-value.  The k-value is the within 

laboratory consistency statistic.  The k-value is an indicator of how one laboratory’s with-in lab 

variability compares with the combined variability of all the participating laboratories.  Critical 

k-values are calculated using a relationship with the F-value. 

 h
d
sx

=  4.10 

 k
s
sr

=  4.11  

Where: 

h = Between laboratory consistency statistic 

k = Within laboratory consistency statistic 

F-value 

The F-value is a ratio of variabilities, it indicates whether the data from the different laboratories 

are from the same population. 

 
2
x
2
r

s
F-value n

s
= ×  4.12 

RESULTS 

ASTM D 4867 [7] states that the repeatability limit of the tensile strength should be 159 kPa 

(23 psi).  This index is also known as the 95 percent limit on the difference between two test 

results, meaning that similar data between specimens can be expected to differ in absolute value 

by less than 2.8 times the repeatability standard deviation. The repeatability standard deviation is 

a measure of the inner-laboratory variability. The wet and dry tensile strength had values for the 

repeatability limit of 149 and 147 kPa (22 and 21 psi), respectively.  The repeatability limits for 

tensile strength in this study fall within the limit to be expected as reported by ASTM D 4867. 
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ASTM D 4867 reports that the reproducibility limit for the tensile strength ratio should be 23 

percent. This index is also known as the 95 percent limit on the difference between two test 

results, meaning that similar data between laboratories can be expected to differ in absolute value 

by less than 2.8 times the reproducibility standard deviation. The reproducibility standard 

deviation is a measure of the between-laboratory variability.  The tensile strength ratio had a 

value for the reproducibility limit of 138.1 percent.  This value exceeds the expected value 

reported by ASTM D 4867. 

The consistency statistics are a measure of within- and between-laboratory variability.  The h-

value is the between laboratory consistency statistic.  It is an indicator of how one laboratory cell 

average compares with another laboratory cell average.  Critical h-values are calculated using a 

relationship with the t-value.  The k-value is the within laboratory consistency statistic.  It is an 

indicator of how one laboratory’s inner-laboratory variability compares with the combined 

variability of all the participating laboratories.  Critical k-values are calculated using a 

relationship with the F-value.  A table of critical h- and k-values can be found in ASTM E 691 

[26].   

The critical h- and k-values are 2.64 and 2.24, respectively.  The laboratory 14 consistency 

statistics exceed the critical values in the wet and dry tensile strengths and in the tensile strength 

ratio.   Laboratory 14 data were excluded from all of the calculations because of the large 

variability.  Laboratory 56 also exceeded the critical k-value for the dry and wet tensile strengths.  

The reported dry tensile strengths vary from 1160 to 1425 kPa (168 to 207 psi). The reported wet 

tensile strengths vary from 969 to1156 kPa (141 to 168 psi).  Detailed tables of the statistical 

results are contained in Appendix D. 

The F-value is a ratio of between-laboratory variabilities to within-laboratory variabilities.  It is 

an indicator of whether the data reported by all the laboratories are from the same population.  

Critical F-values are found in most probability and statistic books.  The critical F-value for a 95 

percent confidence level is 1.67.  None of the laboratories met the criteria. The percent air voids 

was the closest with a F-value of 3.8 followed by tensile strength ratio having a F-value of 4.6.  

The other material characteristics also resulted in large F-values. 
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The high variability of the data in this study can be attributed to deviations from ASTM specified 

test procedure.  Three laboratories assumed a specimen thickness of  63.6 mm.  The laboratories 

used these assumed values to calculate the tensile strengths for the specimens.  ASTM specifies 

that a thickness of 63.6 mm should be targeted during compaction and measurement of the exact 

height should be made.  The thickness of each specimen was calculated using the measured 

volume and diameter.  The thickness was then used to calculate the tensile strength.  

Investigation into the difference in tensile strengths calculated using the assumed and actual 

values show a measurable difference.   

Another deviation from the ASTM procedure is the method used to saturate or moisture-

condition the specimens.  The time and pressure used to saturate the specimens was highly 

variable.  ASTM D 4867 specifies applying a partial pressure of 508 mm (29 in.) Hg for 5 min. 

targeting a percent saturation between 55 and 80 percent. 

CONCLUSIONS 

Deviations from the ASTM test procedure by the participating laboratories resulted in highly 

varied results.  It is recommended that ASTM procedures be followed closely.  On-going training 

of laboratory personnel and regular equipment calibration are recommended to improve on the 

repeatability of the Lottman test, especially if it is to be used for project mix design control. 
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CHAPTER 6  
CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS  

The following conclusions can be made based on the findings of this research program: 

1. VMA collapse usually cannot be explained by one cause.  In general, VMA collapse 

is caused by a combination of two elements:  (a) generation of fines and (b) asphalt 

absorption. 

2. The generation of fines can be caused by aggregate degradation due to aggregate 

handling during loading, hauling, mixing, and construction.  Aggregate degradation 

can cause particles to lose their shape or texture.  Degradation can cause more fines, 

significantly changing the gradation.   

3. If asphalt absorption is greater in the field than in the design mix and the mix is 

compacted to the same level of air voids, the field VMA will be lower.  Increased 

asphalt absorption into the aggregate can be caused by high plant mix temperatures, 

long hauling distances, and aggregate porosity.  Plant mix temperatures in excess of 

150 °C (300 °F) decrease the viscosity of the asphalt binder, increasing the potential 

for absorption by the aggregate.  Long hauling distances result in longer mix storage 

time.  The longer HMA mixes are maintained at elevated temperatures, the greater the 

potential for asphalt absorption.  Aggregates composed primarily of limestone have a 

potential for high absorption.  This shows the need to evaluate the mix as close to 

field conditions as possible. 

4. Asphalt film thickness can give insight into changes occurring between mix design 

and production.  However, because it is a general estimate, it is better analyzed in 

conjunction with other parameters, such as VMA or aggregate gradation distances 

from the maximum density line. 

5. In general, if an HMA has about the same asphalt film thickness from mix design to 

production, there will be little or no change in VMA. 

6. HMA mixes experiencing aggregate degradation during production tend to have 

increased aggregate surface areas and decreased asphalt film thickness. 
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7. If the difference in the sum of the distances in percent passing between the maximum 

density line and the two gradations, mix design and post-construction, is minimal, the 

HMA will experience little or no change in asphalt film thickness.  This also 

increases the potential for the HMA to maintain the mix design level of VMA. 

8. In general, aggregate gradations that deviate from the maximum density line in the 

fine direction did not increase the VMA.  Rather, finer aggregate gradations tended to 

result in a decrease in VMA due to the additional fine material and a lower film 

thickness. 

9. HMA mixes with significant decreases in asphalt film thickness between mix design 

and post-construction have more potential for low TSR values. 

10. Due to the limited amount of moisture sensitivity testing, acceptable correlations 

between either low asphalt film thickness or low VMA cannot be shown. 

11. The repeatability of the Lottman test was not acceptable because standard procedures 

were not followed; especially height measurements and saturation procedures. 

RECOMMENDATIONS   

Based on the conclusions above, the following recommendations have been determined: 

1. The properties and proportions of the materials in a hot-mix asphalt need to be 

measured carefully and consistently using standard ASTM or AASHTO procedures 

so that their effect on performance can be evaluated. 

2. The aggregate in an HMA is subject to crushing and degradation when stockpiled, 

loaded, fed through a hot-mix plant, hauled to the job site, placed through the paver, 

and compacted by the rollers.  There needs to be a test performed during mix design 

to determine the level of toughness and resistance to abrasion of the project 

aggregate.   If an aggregate is deemed suitable for an HMA mixture, except that it has 

a tendency to generate some fines during handling, this can be accounted for in the 

preliminary designs and adjusted so that the volumetric properties in the field are 

within specification. 

3. The absorption capacity of the aggregates must also be accurately measured in the 

design phase.  Absorptive aggregates must be acknowledged and designed for 
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appropriately by accounting for the additional asphalt binder that will be absorbed 

and no longer available to coat the aggregate particles. 

4. The bulk specific gravity of the aggregate must be accurately determined in the 

design phase.  It is apparent that the lack of precision in determining aggregate bulk 

specific gravity and absorption will directly cause poor precision in determining 

VMA.  Standard ASTM and/or AASHTO procedures must be followed carefully and 

consistently throughout MnDOT and by contractors. 

5. The tendency for increased absorption due to higher temperatures and/or increased 

storage time should be determined for specific aggregate sources.  This can be 

accomplished by running bulk specific gravity and maximum theoretical specific 

gravity tests on mixes using the same aggregate with various temperatures and 

storage times as a special study on some projects around the state. 

6. Plant mix temperatures must stay within the specified range for the asphalt binder 

grade being used in the HMA.  Plant mix temperatures that exceed this create the 

potential for increased asphalt absorption and lower VMA, as well as possible “drain 

down.” 

7. While asphalt film thickness is a very important parameter with regard to pavement 

durability, it has to be understood that because of variations in aggregate shape and 

surface characteristics, it is only an estimate and should be viewed with a level of 

caution.  Asphalt film thickness is best analyzed when it can be correlated and 

compared with other volumetric parameters. 

8. Continued research in this area, especially with regard to particle size and shape 

changes between mix design and post-construction, as well as potential correlations 

with decreases in VMA or asphalt film thickness and pavement durability.  This 

should include: 

a. Correlation of TSR with performance of the jobs being monitored. 

b. Correlation between VMA and TSR. 

c. Correlation between film thickness and TSR. 

d. Correlation between VMA collapse and durability problems. 

9. The performance of these projects should be monitored to determine how well the in-

service pavement durability relates to the results of the VMA and moisture 
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susceptibility tests run on the mixtures used during the design and construction of the 

projects. 
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APPENDIX A 

ASPHALT PLANT INFORMATION



  A-1

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 2 (Bemidji I)  1506-30  

Highway: 92 

Description: Bituminous Overlay 
 
 

Plant Information: 
 
 Production Rate: 360 - 370 ton/hr    (on average) 
 
 Capacity: 600 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Boeing 
 
 Angle of Drum: 3.5 in / 4 ft 
 
 Speed of Drum: 7.25 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 4 % 
 
 Temperature of Plant Mix During Production: 298 o F 
 
 Temperature of Plant Mix Behind Paver:  275 - 285 o F 
 
 Distance from Plant to Paving Site: 5 miles 
 

Average Curing Time of Mix: 1 hour, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-2

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 2 (Bemidji II)  6007-10  

Highway: 32 

Description: Bituminous Overlay 
 
 

Plant Information: 
 
 Production Rate: 340 - 350 ton/hr    (on average) 
 
 Capacity: 450 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Boeing 
 
 Angle of Drum: 3.5 in / 4 ft 
 
 Speed of Drum: 7.25 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 3.8 % 
 
 Temperature of Plant Mix During Production: 285 o F 
 
 Temperature of Plant Mix Behind Paver:  275 o F 
 
 Distance from Plant to Paving Site: 7 miles 
 

Average Curing Time of Mix: 30 - 45 minutes, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-3

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 4 (Detroit Lakes I)  7505-18  

Highway: 59 

Description: Regrades (Morris to south county line) 
 
 

Plant Information: 
 
 Production Rate: 360 - 370 ton/hr    (on average) 
 
 Capacity: 600 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Boeing 
 
 Angle of Drum: 3.5 in / 4 ft 
 
 Speed of Drum: 7.25 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 4 % 
 
 Temperature of Plant Mix During Production: 298 o F 
 
 Temperature of Plant Mix Behind Paver:  275 - 285 o F 
 
 Distance from Plant to Paving Site: 5 miles 
 

Average Curing Time of Mix: 1 hour, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-4

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 4 (Detroit Lakes II)  8408-41  

Highway: 75 

Description: Bituminous Overlay; Widening 
 
 

Plant Information: 
 
 Production Rate: 350 - 400 ton/hr    (on average) 
 
 Capacity: 600 ton/hr 
 
 Make of Plant/Model Number: Drum plant / DM 70 Barber Green 
 
 Angle of Drum: 3.5 in / 4 ft 
 
 Speed of Drum: 7.25 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 4 % 
 
 Temperature of Plant Mix During Production: 298 o F 
 
 Temperature of Plant Mix Behind Paver:  275 - 285 o F 
 
 Distance from Plant to Paving Site: 22-23 miles 
 

Average Curing Time of Mix: 1 hour, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-5

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 7 (Mankato)  5209-58  

Highway: 169 

Description: Bituminous Overlay, St. Peter to LeSeuer 
 
 

Plant Information: 
 
 Production Rate: 300 ton/hr    (on average) 
 
 Capacity: 400 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Gencorp (SP?) 
 
 Angle of Drum:  
 
 Speed of Drum:  
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 7 % 
 
 Temperature of Plant Mix During Production: 300 - 320 o F 
 
 Temperature of Plant Mix Behind Paver:  285 - 295 o F 
 
 Distance from Plant to Paving Site: 10 miles 
 

Average Curing Time of Mix: 40 minutes, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-6

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  Metro   1906-40  

Highway: 52 

Description: Mill and Overlay, south junction of highway 55 to highway 50 
 
 

Plant Information: 
 
 Production Rate: 560  ton/hr    (on average) 
 
 Capacity: 600 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Barber Green 
 
 Angle of Drum: 4 in 
 
 Speed of Drum: 6 - 7 rev. / min.  
 
 Dust System:  Baghouse Fines  
  At What Rate: Assumed a gain of 1% of -200 material 
     (It actually ran about 0.8%) 
 
 Stockpile Moisture Contents: RAP: 3.5 % ; 

Cold feed combined virgin aggregate: 2.6%  
 
 Temperature of Plant Mix During Production: 275 - 285 o F 
 
 Temperature of Plant Mix Behind Paver:  240 o F 
 

Distance from Plant to Paving Site: 0.5 miles from end of job; 5 miles to middle 
      of job. 

 
Average Curing Time of Mix: 15 - 20 minutes; 10 minute minimum; 30 - 45 min. 
     maximum, depending on traffic and location within 
     job. 

 
 Other Notes:  
 



  A-7

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 6 (Rochester I)  2514-89  

Highway: 61 

Description: Grade and Surface, North of Red Wing to Highway 316 
 
 

Plant Information: 
 
 Production Rate: 350 ton/hr    (on average) 
 
 Capacity: 400 ton/hr 
 
 Make of Plant/Model Number: Drum plant / DM 70 Barber Green 
 
 Angle of Drum: 1 in / 1 ft 
 
 Speed of Drum: 7 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines 
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 4 % 
 
 Temperature of Plant Mix During Production: 300 o F 
 
 Temperature of Plant Mix Behind Paver:  280 o F 
 
 Distance from Plant to Paving Site: 3 miles 
 

Average Curing Time of Mix: 30 minutes, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-8

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 6 (Rochester II)  5503-28  

Highway: 14 

Description: Mill and Overlay, Chester to St. Charles 
 
 

Plant Information: 
 
 Production Rate: 425 ton/hr    (on average) 
 
 Capacity: 450 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Magnum Series 500 
 
 Angle of Drum: 1 in / 1 ft 
 
 Speed of Drum: 7 rev. / min. (10 ft. diameter) 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
     0.5 - 1.0 % of total mix 
 
 Stockpile Moisture Contents: 4 - 4.5 % 
 
 Temperature of Plant Mix During Production: 290 o F 
 
 Temperature of Plant Mix Behind Paver:  256 o F 
 
 Distance from Plant to Paving Site: 15 miles 
 

Average Curing Time of Mix: 15 minutes to 1.5 hours, depending on paving 
location within job. 

 
 Other Notes: Mix Type: 42 Binder mix, 42 Wearing Coarse 
 



  A-9

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 8 (Willmar I)  4201-36  

Highway: 14 

Description: Bituminous Overlay, Florence to Balletin 
 
 

Plant Information: 
 
 Production Rate: 330 ton/hr    (on average) 
 
 Capacity: 250 - 500 ton/hr 
 
 Make of Plant/Model Number: Drum plant / DM 70 Barber Green 
 
 Angle of Drum: 3.5 o 
 
 Speed of Drum: 6 rpm 
 
 Dust System:  Baghouse Fines  
  At What Rate: 100% back into mix 
      
 
 Stockpile Moisture Contents: 5 % Washed Sand was 7%  
 
 Temperature of Plant Mix During Production: 250 - 260 o F 
 
 Temperature of Plant Mix Behind Paver:  250 o F 
 
 Distance from Plant to Paving Site: 1.5 miles 
 

Average Curing Time of Mix: 10 - 15 minutes, depending on paving 
location within job. 

 
 Other Notes:  
 



  A-10

 VMA 
 Bituminous Pilot Project 
 (Plant Information) 
 
 
 

Project:  District 8 (Willmar II)   4303-22  

Highway: 15 

Description: Bituminous Overlay, Winthrop to 212 
 
 

Plant Information: 
 
 Production Rate: 325  ton/hr    (on average) 
 
 Capacity: 400 ton/hr 
 
 Make of Plant/Model Number: Drum plant / Cedar Rapids 10040 HMS PR 
 
 Angle of Drum: 5/8” to 12 in 
 
 Speed of Drum: 9 rev. / min.  
 
 Dust System:  Baghouse Fines  
  At What Rate: All fines reentered into mix 
 

Stockpile Moisture Contents: 2.8 % 
 
 Temperature of Plant Mix During Production: 310 o F 
 
 Temperature of Plant Mix Behind Paver:  270 o F 
 

Distance from Plant to Paving Site: 38 miles 
 

Average Curing Time of Mix: 1 hour and ten minutes  
 
 Other Notes:  
 
 

 



APPENDIX B 

PROJECT INFORMATION 



Bemidji I         

TH-92   AC Content = 6.0 TSR Data:  VMA Data:  

Project 1506-30   Marshall Density (pcf) = 147.0 U of Mn: 79.6 Design 16.2 
   Design BSG = 2.367 Contractor: 71.0 U of Mn 15.5 
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 14.7 Mn/DOT: 72.4 Mn/DOT 14.9 
Minimum VMA = 13.3         
         

Aggregate Shevlin Fines Shevlin Fines Oein Fines Oein Fines Oein Coarse Blend  
Bulk Specific Gravity +4 -4 +4 -4      

  Percent 11.55 43.45 8.4 31.6 5 100  
                 

Design C-mid 2.687 2.639 2.676 2.618 2.757 2.646  
  Mn/DOT 2.690 2.587 2.671 2.556 2.764 2.604  
  Univ. of MN 2.612 2.612 2.561 2.561 2.763 2.598  
                 

Prod - 1 C-mid 2.682 2.642 2.650 2.591 2.772 2.637  
  Mn/DOT 2.687 2.628 2.650 2.501 2.748 2.600  

  Maplewood 2.672 2.626 2.647 2.515 2.767 2.603  
                 

Prod - 2 C-mid 2.691 2.646 2.667 2.615 2.727 2.647  
  Mn/DOT 2.682 2.596 2.657 2.572 2.772 2.611  
                 

  AVERAGE 2.675 2.622 2.647 2.566 2.759 2.618  
            U of M Avg: 2.598  

Superpave Tests (U of MN)              
Coarse Agg. Angularity (1 f.f./2 f.f.)         97/88 97/88  

Flat/Elongated Particles         17 17  
Fine Agg. Angularity   41.2   41.2   41.2  

Sand Equivalent   80   70   76  

B
-1 



 
Bemidji II         

TH-32   AC Content = 6.1 TSR Data:  VMA Data:  

Project 6007-10   Marshall Density (pcf) = 146.5 U of Mn: 86.0 Design 15.2 
   Design BSG = 2.352 Contractor: 73.0 U of Mn 15.0 
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 15.0 Mn/DOT: 78.3 Mn/DOT 15.4 
Minimum VMA = 13.3         
         

Aggregate Deloron Fines Deloron Fines Deloron Rock Reynolds Dust Reynolds Dust Blend  
Bulk Specific Gravity +4 -4   +8 -8    

  Percent 13.6 66.4 13 2.66 4.34 100  
Design Itt 2.647 2.580 2.663 2.647 2.626 2.603  

  C-mid 2.615 2.565 2.637        
  Mn/DOT 2.626 2.574 2.649 2.647 2.613 2.594  
  Maplewood 2.625 2.638 2.646 2.650 2.650 2.638  
  Univ. of MN 2.623 2.623 2.626 2.583 2.649 2.623  
                 

Prod - 1 C-Itt 2.615 2.568 2.634 2.624 2.585 2.585  
  Mn/DOT 2.566 2.566 2.650 2.615 2.580 2.579  
  Maplewood 2.626 2.623 2.648 2.632 2.627 2.627  
  Univ. of MN 2.623 2.587 2.630 2.583 2.649 2.600  
                 

Prod - 2 C-Itt 2.628 2.587 2.635 2.622 2.630 2.601  
  Mn/DOT 2.585 2.585 2.652 2.626 2.626 2.596  
  Maplewood 2.626 2.606 2.650 2.614 2.629 2.616  
  Univ. of MN 2.623 2.607 2.637 2.583 2.649 2.614  
                 
  AVERAGE 2.618 2.593 2.643 2.619 2.626 2.606  

            U of M Avg: 2.613  
Superpave  Tests (U of MN)              

Coarse Agg. Angularity (1 f.f./2 f.f.) 47/31   80/63     63/47  
Flat/Elongated Particles 15   11     13  
Fine Agg. Angularity   39.9   46.7 46.7 40.5  

Sand Equivalent   75   75 75 75  
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Detroit Lakes I          

TH-59   AC Content = 6.2 TSR Data:  VMA Data:    

Project 7505-18        Marshall Density (pcf) = 145.3 U of Mn: 72.7 Design 14.5   
   Design BSG = 2.332 Contractor: 71.0 U of Mn 14.3   
VMA Required:    Design VMA = 14.2        
Minimum VMA =            

          
Aggregate Moser BA Moser BA Moser Rock Moser Rock Moser Rock Johnson Rock TH-59 RAP TH-59 RAP Blend 

Bulk Specific Gravity Sand +4 Sand -4 Fines +4 Fines -4     +4 -4   
  Percent 3.3 29.7 0.6 4.4 6 6 7.5 42.5 100 

Design Contractor 2.566 2.566 2.607 2.588 2.634 2.640 2.535 2.509 2.548 
  Mn/DOT 2.443 2.505 2.600 2.562 2.666 2.669 2.603 2.403 2.486 
  Maplewood 2.618 2.466 2.490 2.567 2.655 2.664 2.610 2.407 2.481 
                      
  AVERAGE 2.542 2.512 2.566 2.572 2.652 2.658 2.583 2.440 2.506 
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Detroit Lakes II         

TH-75   AC Content = 5.7 TSR Data:    

Project 8408-41   Marshall Density (pcf) = 145.8 U of Mn: 84.6   
   Design BSG = 2.340 Contractor: 79.9   
VMA Required:    Design VMA = 14.7 Mn/DOT: 85.3   
Minimum VMA =          
         

Aggregate Schulstad Schulstad Schulstad Schulstad Kittleson Kittleson Blend 
Bulk Specific Gravity Dirty +4 Dirty -4 Clean +4 Clean -4 3/4" Rock 1/2" Rock   

  Percent 7.48 26.52 9.75 29.25 20 7 100 
Design Contractor 2.569 2.573 2.572 2.574 2.642 2.593 2.588 

  Mn/DOT 2.583 2.516 2.576 2.478 2.648 2.648 2.550 
  Maplewood 2.581 2.585 2.571 2.600 2.680 2.627 2.609 
  Midwest 2.583 2.578 2.576 2.553 2.646 2.666 2.589 

  Univ. of MN 2.579 2.508 2.574 2.520 2.626 2.610 2.553 
                  

Prod - 1 Mn/DOT 2.627 2.531 2.573 2.526 2.645 2.549 2.564 
                  

Prod - 2 Mn/DOT 2.599 2.516 2.593 2.523 2.680 2.687 2.575 
                  
  AVERAGE 2.589 2.544 2.576 2.539 2.652 2.626 2.575 

              U of M Avg: 2.553 

Superpave Tests (U of MN)               
Coarse Agg. Angularity (1 f.f./2 f.f.) 61/42       63/54 82/67 66/54 

Flat/Elongated Particles 7       9 5 8 
Fine Agg. Angularity   39.2   39.3     39.3 

Sand Equivalent   54   72     63 
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Mankato       

TH-169   AC Content = 5.3 TSR Data:  

Project 5209-58   Marshall Density (pcf) = 145.0 U of Mn: 81.7 
   Design BSG = 2.327 Contractor:   
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 14.5 Mn/DOT:   
Minimum VMA = 13.3       
       

Aggregate Woelpern Kasota Kasota Swenson Blend 
Bulk Specific Gravity 1/2" BA 3/4"Add Man. Sand 3/8" Screen   

  Percent 46 24.0 14.0 16.0 100.0 
Design C - SMC  2.603 2.534 2.519 2.620 2.577 
  S-D 2.483 2.513 2.433 2.598 2.501 
  S-CO 2.586 2.507 2.615 2.600 2.573 
  Univ. of MN 2.517 2.493 2.538 2.614 2.529 
              
  Average 2.547 2.512 2.526 2.608 2.545 
          U of M Avg: 2.529 

Superpave Tests (U of MN)           
Coarse Agg. Angularity (1 f.f./2 f.f.)   99/90     99/90 

Flat/Elongated Particles   10     10 
Fine Agg. Angularity 37.9   46.8 43.1 40.6 

Sand Equivalent 53   43 90 59 
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Metro           

TH-52   AC Content = 5.3 TSR Data:      

Project 1906-40         Marshall Density (pcf) = 148.6 U of Mn: 72.0     
   Design BSG = 2.386 Contractor: 71.5     
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 16.1 Mn/DOT: 77.6     
Minimum VMA = 13.3          
           

Aggregate Solberg  Kraemer  Ninnger  Fischer  TH 52 Millings TH 52 Millings Blend Moisture   
Bulk Specific Gravity 3/8" BA 3/4" Rock Ag-Lime Washed Sand CA FA   Test  

  Percent 20.0 20.0 17.0 13.0 4.5 25.5 100 TSR  
Design Contractor 2.640 2.689 2.811 2.660 2.678 2.678 2.692 71.5  
(Gsb) Maplewood 2.621 2.691 2.692 2.631 2.668 2.663 2.661    

  Univ. of MN 2.640 2.656 2.753 2.619 2.650 2.650 2.662    
                     

Prod - 1 Contractor 2.651 2.687 2.670 2.654 2.685 2.667 2.667 72.6  
  Maplewood 2.641 2.674 2.685 2.580 2.698 2.643 2.650 77.6  
                     

Prod - 2 Contractor 2.659 2.679 2.680 2.661 2.686 2.676 2.672 77.4  
  Maplewood 2.628 2.652 2.707 2.633 2.717 2.667 2.661 79.2  

                     
Prod -3 Contractor 2.663 2.685 2.683 2.654 2.684 2.680 2.675 74.8  

  Maplewood 2.617 2.644 2.713         72.4  
                     
  AVERAGE 2.640 2.673 2.710 2.637 2.683 2.666 2.667 75.1  

              U of M Avg: 2.662    
Superpave Tests (U of MN)                  

Coarse Agg. Angularity (1 f.f./2 f.f.)   91/83         91/83   
Flat/Elongated Particles   12         12   
Fine Agg. Angularity 38.6   47.1 38.9     41.6   

Sand Equivalent 89   66 97     83   
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Rochester I          

TH-61   AC Content = 5.4 TSR Data:     

Project 2514-89   Marshall Density (pcf) = 146.6 U of Mn: 86.6    
   Design BSG = 2.353 Contractor: 68.5    
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 15.8 Mn/DOT: 85.5    
Minimum VMA = 13.3 Design VMA = 14.5        
          

Aggregate     Keller 3/4" Bryan RS & G 5/16"  Blend Moisture  
Bulk Specific Gravity RAP - C RAP - F 3/4" lime Crushed Man san R S & G   Test 

  Percent 5.2 14.8 15.0 47.0 13.0 5.0 100.0 TSR 
Submitted   2.676 2.590 2.672 2.625 2.698 2.708 2.643 68.5 

                    
Design C 2.681 2.609 2.635 2.598 2.576 2.708 2.612 92.8 

  S-D 2.688 2.557 2.647 2.629 2.678 2.708 2.634 76.8 
  S-CO 2.659 2.605 2.637 2.622 2.678 2.708 2.635 73.4 
  Univ. of MN 2.676 2.590 2.569 2.622 2.619 2.660 2.613   
                    

Prod - 1 C               73.4 
  S-D 2.694 2.688 2.650 2.627 2.714     63.8 

  S-CO 2.675 2.668 2.644 2.623 2.662       
                    

Prod - 2 C     2.586 2.619   2.725   68.5 
  S-D               95.3 

  S-CO     2.618         75.4 
                    

Prod - 3 S-D     2.618         84.6 
  S-CO               86.6 

                    
  AVERAGE 2.678 2.615 2.628 2.621 2.661 2.703 2.627 78.1 
              U of M Avg: 2.613   

Superpave Tests (U of MN)                 
Coarse Agg. Angularity (1 f.f./2 f.f.)     82/66 86/75   84/68 85/72   

Flat/Elongated Particles     11 15   23 15   
Fine Agg. Angularity         40.8   40.8   

Sand Equivalent         81   81   
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Rochester II           

TH-14   AC Content = 6.0 TSR Data:      

Project 5503-28         Marshall Density (pcf) = 145.2 U of Mn: 84.8     
   Design BSG = 2.330 Contractor: 88.5     
VMA Required: 14.5 with 1.2% allowed for drop Design VMA = 16.1 Mn/DOT: 86.4     
Minimum VMA = 13.3 Design VMA = 15.9         
           

Aggregate RS&G 5/16" RS&G Man. RS&G RS&G 1/2" 3/4" 3/4" 3/4" Blend Moisture  
Bulk Specific Gravity Limestone Washed Sand Natural Sand Limestone RAP - C RAP - F Holst   Test 

  Percent 5.0 18.0 28.0 19.0 15.0 15.0 0.0 100.0 TSR 

Submitted (Gsb)   2.691 2.678 2.626 2.540 2.596 2.596 2.688 2.612   
                      

Design C 2.588 2.523 2.544 2.504 2.564 2.593 2.658 2.545 86.4 
  S-D 2.691 2.678 2.626 2.547 2.588 2.501 2.689 2.598 82.7 
  S-CO 2.634 2.600 2.634 2.536 2.613 2.613 2.705 2.602 92.2 
  Univ. of MN 2.665 2.584 2.629 2.504 2.583 2.583 2.674 2.584   
                      

Prod - 1 C 2.703 2.650 2.624 2.505 2.358 2.419 2.680 2.534 89.6 
  S-D 2.747 2.664 2.658 2.533 2.587 2.648 2.684 2.626 90.9 

  S-CO 2.639 2.549 2.598 2.545 2.587 2.629 2.692 2.584 92.2 
                      

Prod - 2 C 2.740 2.677 2.630 2.516 2.326 2.402 2.680 2.535   
  S-D 2.530 2.686 2.661 2.532 2.584 2.638 2.688 2.618   

  S-CO 2.676 2.606 2.624 2.550 2.570 2.561 2.701 2.591 91.2 
                      
  AVERAGE 2.664 2.627 2.623 2.528 2.541 2.562 2.685 2.585 89.3 
                U of M Avg: 2.584   

Superpave Tests (U of MN)                   
Coarse Agg. Angularity (1 f.f./2 f.f.)       96/89     82/67 96/89   

Flat/Elongated Particles       13     11     
Fine Agg. Angularity 44 42.3 39.7         41.0   

Sand Equivalent 66 88 84         84   
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Wilmar I       

TH-14   AC Content = 6.3   

Project 4201-36   Marshall Density (pcf) = 145.4   
   Design BSG = 2.334   
VMA Required:    Design VM A = 16.1   
Minimum VMA =   Design VMA = 14.8    
       

Aggregate Mitzner Mitzner Meridian Marshall S&G Blend 
Bulk Specific Gravity Fines Coarse GF CA 70 Washed Sand   

  Percent 50.0 20.0 15.0 15.0 100 
Design Contractor 2.577 2.614 2.677 2.626 2.606 

  Mn/DOT 2.578 2.613 2.686 2.630 2.608 
  Maplewood 2.608 2.607 2.658 2.610 2.615 

  Univ. of MN 2.578 2.600 2.663 2.605 2.599 
              

  AVERAGE 2.585 2.609 2.671 2.618 2.607 
         U of M Avg: 2.599 

Superpave Tests (U of MN)           
Coarse Agg. Angularity (1 f.f./2 f.f.)   82/71 100/100   90/83 

Flat/Elongated Particles   7 14   10 
Fine Agg. Angularity 38.8     39.8 39.0 

Sand Equivalent 57     87 64 
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Wilmar II         

TH-15   AC Content = 6.2     

Project 4303-22   Marshall Density (pcf) = 144.8     
   Design BSG = 2.320     
VMA Required: 16.0 with 1.2% allowed for drop Design VMA = 16.2     
Minimum VMA = 14.7         
         

Aggregate Duffy - BA Weckman  Carver Duffy  Blend TSR TSR 
Bulk Specific Gravity fines 1/2" clear Washed sand 3/4" rock   No With 

  Percent 72.0 20.0 8.0 0.0 100.0 Antistrip Anti strip 

Design C 2.583 2.624 2.638 2.611 2.595 64.4 74.4 
  S-D 2.571 2.610         76.8 
  S-CO 2.606 2.617 2.617 2.627 2.609     
  U of Mn 2.539 2.598 2.647 2.627 2.559     
                  

Prod-1 C 2.565 2.585 2.652 2.614 2.576     
  S-D 2.573 2.610 2.646 2.625 2.586     
  S-CO     2.642 2.643       
                  

Prod-2 C 2.581 2.592 2.642 2.620 2.588     
  S-D 2.569 2.599 2.655 2.620 2.582     
  S-CO 2.567     2.621       
                  

Prod-3 C 2.569 2.598 2.640 2.625 2.580     
  S-D 2.575 2.616 2.676 2.627 2.591     
  S-CO     2.648 2.595       
  U of Mn               

Average   2.573 2.605 2.646 2.621 2.585 64.4 75.6 
0          U of M Avg. 2.559     

Superpave Tests (U of MN)             
Coarse Agg. Angularity (1 f.f./2 f.f.)   99/96   71/57 99/96   

Flat/Elongated Particles   12   8 12   
Fine Agg. Angularity 40.3   38.8   40.2   

Sand Equivalent 81.0   100.0   83   
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APPENDIX C 

GRADATION ANALYSIS
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 Bemidji I    
 TH-92    
 Project 1506-30    

    
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 99.5 
 5/8" 16.0 98.0 98.0 
 1/2" 12.5 94.0 93.9 
 3/8" 9.5 89.0 89.2 
 #4 4.75 75.0 77.8 
 #10 2.00 58.0 64.0 
 #40 0.425 22.0 30.0 
 #200 0.075 5.0 2.5 
     

 Bemidji II    
 TH-32    
 Project 6007-10    

     
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 99.5 
 5/8" 16.0 98.0 98.0 
 1/2" 12.5 94.0 93.9 
 3/8" 9.5 89.0 89.2 
 #4 4.75 75.0 77.8 
 #10 2.00 58.0 64.0 
 #40 0.425 22.0 30.0 
 #200 0.075 5.0 2.5 
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 Detroit Lakes I    
 TH-59    
 Project 7505-18    

    
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 99.0 100.0 
 1/2" 12.5 93.0 93.6 
 3/8" 9.5 88.0 86.8 
 #4 4.75 77.0 72.4 
 #10 2.00 61.0 55.0 
 #40 0.425 19.0 19.0 
 #200 0.075 7.0 2.8 
     

 Detroit Lakes II    
 TH-75    
 Project 8408-41    

     
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 97.0 100.0 
 1/2" 12.5 86.0 100.0 
 3/8" 9.5 76.0 83.4 
 #4 4.75 57.0 66.0 
 #10 2.00 43.0 48.0 
 #40 0.425 14.0 20.0 
 #200 0.075 3.0 2.5 
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 Mankato    
 TH-169    
 Project 5209-58    

    
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 100.0 100.0 
 1/2" 12.5 95.0 95.5 
 3/8" 9.5 88.0 85.0 
 #4 4.75 71.0 66.3 
 #10 2.00 57.0 47.0 
 #40 0.425 29.0 29.0 
 #200 0.075 7.0 4.0 
     

 Metro    
 TH-52    
 Project 1906-40    

     
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 99.0 100.0 
 1/2" 12.5 93.0 95.7 
 3/8" 9.5 85.0 86.6 
 #4 4.75 72.0 74.6 
 #10 2.00 58.0 59.0 
 #40 0.425 24.0 26.0 
 #200 0.075 6.0 5.3 
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 Rochester I    
 TH-61    
 Project 2514-89    

    
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 95.0 100.0 
 1/2" 12.5 88.0 94.5 
 3/8" 9.5 85.0 87.0 
 #4 4.75 74.0 73.6 
 #10 2.00 56.0 56.3 
 #40 0.425 23.0 25.0 
 #200 0.075 5.0 5.0 
     

 Rochester II    
 TH-14    
 Project 5503-28    

     
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 100.0 100.0 
 1/2" 12.5 100.0 99.7 
 3/8" 9.5 95.0 95.0 
 #4 4.75 74.0 76.7 
 #10 2.00 62.0 64.0 
 #40 0.425 28.0 36.0 
 #200 0.075 5.0 5.1 
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 Wilmar I    
 TH-14    
 Project 4201-36    

    
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 100.0 100.0 
 1/2" 12.5 100.0 100.0 
 3/8" 9.5 95.0 96.5 
 #4 4.75 69.0 75.3 
 #10 2.00 54.0 60.0 
 #40 0.425 18.0 21.5 
 #200 0.075 6.0 3.8 
     

 Wilmar II    
 TH-15    
 Project 4303-22    

     
 Sieve Analysis 
 Sieve Size Gradation 
 U.S. mm Mix Design Post Ignition 
 1 1/2" 37.5 100.0 100.0 
 3/4" 19.0 100.0 100.0 
 5/8" 16.0 100.0 100.0 
 1/2" 12.5 100.0 91.9 
 3/8" 9.5 95.0 80.2 
 #4 4.75 75.0 63.4 
 #10 2.00 54.0 46.0 
 #40 0.425 23.0 17.0 
 #200 0.075 4.0 2.3 



 

 



APPENDIX D 

STATISTICS 



Table D1  Air Void Statistics 

Laboratory Cell Average, % 
Cell Standard 
Deviation, % Cell Deviation, % 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

14 *. 7.48 0.376 0.220 5.03 0.759 1.444 

45 7.23 0.493 -0.030 6.81 -0.102 1.889 

58 6.67 0.445 -0.598 6.68 -2.059 1.707 

66 7.27 0.216 0.004 2.97 0.013 0.8285 

40 7.45 0.125 0.190 1.68 0.655 0.4807 

47 7.18 0.133 -0.080 1.85 -0.274 0.5098 

28 7.44 0.289 0.172 3.89 0.592 1.1083 

81 7.85 0.489 0.587 6.23 2.021 1.8750 

36 7.48 0.212 0.212 2.83 0.730 0.8124 

29 7.18 0.098 -0.080 1.37 -0.274 0.3771 

26 6.98 0.325 -0.280 4.65 -0.963 1.2467 

* Note: Laboratory 14 was excluded from the overall statistic calculations. 
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Air Void Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, % Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

19 7.38 0.467 0.120 6.32 0.414 1.7893 

73 7.82 0.105 0.552 1.34 1.901 0.4021 

42 7.20 0.179 -0.063 2.48 -0.217 0.6861 

93 7.12 0.160 -0.146 2.25 -0.504 0.6144 

56 7.23 0.288 -0.030 3.97 -0.102 1.1027 

33 7.22 0.267 -0.048 3.70 -0.165 1.0250 

74 7.60 0.126 0.337 1.66 1.160 0.4851 

61 7.05 0.281 -0.213 3.99 -0.733 1.0780 

89 7.30 0.210 0.037 2.87 0.127 0.8045 

44 7.45 0.339 0.187 4.55 0.644 1.3006 

25 6.67 0.234 -0.596 3.51 -2.053 0.8967 

87 6.68 0.183 -0.580 2.75 -1.996 0.7037 
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Air Void Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, % Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

16 7.23 0.137 -0.030 1.89 -0.102 0.5240 

79 7.26 0.114 -0.008 1.58 -0.028 0.4391 

51 7.12 0.223 -0.146 3.13 -0.504 0.8547 

38 7.44 0.264 0.177 3.55 0.609 1.0133 

3 7.77 0.121 0.504 1.56 1.734 0.4645 

99 7.28 0.214 0.020 2.93 0.070 0.8196 

85 7.20 0.155 -0.063 2.15 -0.217 0.5942 

4 7.02 0.147 -0.246 2.10 -0.848 0.5645 

32 7.40 0.253 0.137 3.42 0.472 0.9703 

Average of the Cell Averages, % 7.263 
Standard Deviation of the Cell Averages, % 0.290 

Repeatability of Standard Deviation, %  0.261 
Repeatability Limit 0.730 

Reproducibility of Standard Deviation, % 0.376 
Reproducability Limit 1.051 

F-Value 3.722 
Overall Coefficient of Variation, % 4.0 
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Table D2  Percent Saturation Statistics 

Laboratory Cell Average, % 
Cell Standard 
Deviation, % Cell Deviation, % 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

14 *  64.10 2.621 -2.532 4.09 -0.460 1.027 

45 65.83 5.090 -0.798 7.73 -0.145 1.994 

58 68.33 2.479 1.702 3.63 0.309 0.971 

66 67.3 2.89 0.70 4.29 0.127 1.1308 

40 65.7 1.54 -0.90 2.34 -0.164 0.6018 

47 66.1 3.28 -0.56 4.97 -0.103 1.2851 

28 69.8 2.91 3.20 4.17 0.582 1.1395 

81 65.6 2.59 -1.01 3.95 -0.184 1.0157 

36 79.2 0.50 12.60 0.63 2.289 0.1956 

29 70.4 1.76 3.80 2.50 0.691 0.6900 

26 59.2 5.22 -7.43 8.81 -1.350 2.0433 

* Note: Laboratory 14 was excluded from the overall statistic calculations.
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Percent Saturation Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, % Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

19 67.2 2.02 0.57 3.01 0.103 0.7922 

73 69.8 0.89 3.17 1.27 0.576 0.3482 

42 63.6 2.80 -3.03 4.40 -0.551 1.0968 

93 70.6 2.25 3.97 3.19 0.721 0.8829 

56 66.4 3.71 -0.26 5.59 -0.048 1.4521 

33 74.7 0.75 8.04 1.01 1.460 0.2940 

74 63.2 2.76 -3.46 4.37 -0.629 1.0815 

61 68.5 3.59 1.90 5.24 0.346 1.4065 

89 70.0 2.20 3.34 3.14 0.606 0.8603 

44 59.3 1.11 -7.33 1.88 -1.332 0.4362 

25 68.0 1.00 1.37 1.47 0.249 0.3917 

87 65.5 1.80 -1.16 2.75 -0.212 0.7054 
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Percent Saturation Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, % Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

16 64.5 1.14 -2.13 1.76 -0.387 0.4449 

79 69.5 2.02 2.89 2.91 0.524 0.7914 

51 70.3 3.79 3.70 5.38 0.673 1.4830 

38 69.6 2.81 2.94 4.04 0.533 1.1012 

3 70.9 2.46 4.30 3.47 0.782 0.9629 

99 62.4 1.81 -4.20 2.91 -0.763 0.7109 

85 65.6 1.50 -1.06 2.28 -0.193 0.5867 

4 61.3 0.61 -5.33 0.99 -0.969 0.2383 

32 68.75 4.91 1.42 7.14 0.341 1.8195 

Average of the Cell Averages, % 67.3 
Standard Deviation of the Cell Averages, % 4.2 

Repeatability of Standard Deviation, %  2.7 
Repeatability Limit 7.6 

Reproducibility of Standard Deviation, % 4.7 
Reproducibility Limit 13.2 

F-Value 7.1 
Overall Coefficient of Variation, % 6.2 
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Table D3  Dry Tensile Strength Statistics 

Laboratory Cell Average, kPa 
Cell Standard 
Deviation, kPa Cell Deviation, kPa 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

14 *  3774.88 149.177 2490.374 3.95 8.157 2.842 

45 831.28 77.860 -453.228 9.37 -1.485 1.483 

58 1273.23 89.550 -11.274 7.03 -0.037 1.706 

66 1063.6 44.00 -220.87 4.14 -0.723 0.8381 

40 1168.7 17.52 -115.82 1.50 -0.379 0.3337 

47 1507.7 3.75 223.19 0.25 0.731 0.0715 

28 2289.7 94.26 1005.24 4.12 3.293 1.7955 

81 1210.7 8.80 -73.79 0.73 -0.242 0.1677 

36 562.9 3.24 -721.62 0.57 -2.364 0.0616 

29 1423.8 70.46 139.26 4.95 0.456 1.3422 

26 1403.8 72.57 119.27 5.17 0.391 1.3824 

19 1166.1 46.18 -118.37 3.96 -0.388 0.8797 

* Note: Laboratory 14 was excluded from the overall statistic calculations. 
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Dry Tensile Strength Statistics, continued 

Laboratory Cell Average, kPa 
Cell Standard 
Deviation, kPa 

Cell Deviation, kPa 
Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

73 1191.0 18.14 -93.55 1.52 -0.306 0.3456 

42 1288.6 17.48 4.12 1.36 0.014 0.3330 

93 1349.5 8.17 65.03 0.61 0.213 0.1556 

56 1307.5 135.04 22.97 10.33 0.075 2.5723 

33 1208.9 66.44 -75.63 5.50 -0.248 1.2655 

74 880.0 21.10 -404.51 2.40 -1.325 0.4019 

61 1077.9 18.00 -206.63 1.67 -0.677 0.3428 

89 1061.8 73.40 -222.71 6.91 -0.730 1.3981 

44 1610.6 51.37 326.11 3.19 1.068 0.9785 

25 1640.3 80.65 355.76 4.92 1.165 1.5361 

87 1598.7 21.38 314.16 1.34 1.029 0.4072 

16 1115.3 24.96 -169.16 2.24 -0.554 0.4754 

79 1131.5 21.80 -153.03 1.93 -0.501 0.4153 
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Dry Tensile Strength Statistics, continued 

Laboratory Cell Average, kPa 
Cell Standard 
Deviation, kPa 

Cell Deviation, kPa 
Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

51 1521.7 17.40 237.17 1.14 0.777 0.3315 

38 1575.5 7.17 290.95 0.45 0.953 0.1365 

3 1092.4 90.00 -190.47 8.24 -0.622 1.6672 

99 1343.6 12.72 59.05 0.95 0.193 0.2423 

85 1507.9 16.72 223.38 1.11 0.732 0.3185 

4 1169.4 14.33 -115.16 1.23 -0.377 0.2730 

32 1194.4 57.98 -90.10 4.85 -0.295 1.1045 

Average of the Cell Averages, kPa 1282.8 

Standard Deviation of the Cell Averages, kPa 306.2 

Repeatability of Standard Deviation, kPa  54.0 

Repeatability Limit 151.2 

Reproducibility of Standard Deviation, kPa 309.4 
 

Reproducibility Limit 866.3 

F-Value 96.5 

Overall Coefficient of Variation, % 23.9 
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Table D4  Wet Tensile Strength Statistics 

Laboratory 
Cell Average, 

kPa 
Cell Standard 
Deviation, kPa 

Cell Deviation, 
kPa 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

14 *  2635.64 575.420 1527.154 21.83 6.521 10.949 

45 728.32 34.476 -380.166 4.73 -1.623 0.656 

58 1568.79 50.696 460.305 3.23 1.966 0.965 

66 966.9 20.88 -141.61 2.16 -0.605 0.3974 

40 993.2 52.58 -115.27 5.29 -0.492 1.0006 

47 1252.7 34.46 144.23 2.75 0.616 0.6558 

28 1666.5 83.31 557.98 5.00 2.383 1.5853 

81 1045.0 24.90 -63.47 2.38 -0.271 0.4738 

36 532.1 3.46 -576.34 0.65 -2.461 0.0659 

29 1236.0 16.85 127.52 1.36 0.545 0.3206 

26 1080.4 24.13 -28.07 2.23 -0.120 0.4592 

19 1034.0 67.27 -74.50 6.51 -0.318 1.2801 

* Note: Laboratory 14 was excluded from the overall statistic calculations. 
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Wet Tensile Strength Statistics, continued  

Laboratory 
Cell Average, 

kPa 
Cell Standard 
Deviation, kPa 

Cell Deviation, 
kPa 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

73 992.2 17.93 -116.33 1.81 -0.497 0.3411 

42 1088.0 54.97 -20.49 5.05 -0.087 1.0460 

93 1143.4 83.52 34.90 7.30 0.149 1.5893 

56 1111.2 125.50 2.72 11.29 0.012 2.3880 

33 879.5 31.45 -228.94 3.58 -0.978 0.5984 

74 785.8 44.40 -322.71 5.65 -1.378 0.8448 

61 930.6 34.98 -177.92 3.76 -0.760 0.6657 

89 916.8 14.62 -191.71 1.59 -0.819 0.2781 

44 1410.7 59.81 302.19 4.24 1.290 1.1381 

25 1359.6 54.42 251.16 4.00 1.073 1.0356 

87 1322.6 30.79 214.16 2.33 0.915 0.5859 

16 985.7 19.99 -122.76 2.03 -0.524 0.3803 

79 1065.9 22.37 -42.55 2.10 -0.182 0.4257 
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Wet Tensile Strength Statistics, continued 

Laboratory Cell Average, 
kPa 

Cell Standard 
Deviation, kPa 

Cell Deviation, 
kPa 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

51 1234.9 27.29 126.37 2.21 0.540 0.5193 

38 1300.6 107.05 192.10 8.23 0.820 2.0370 

3 984.4 54.14 -122.76 5.50 -0.523 1.0321 

99 1185.4 40.32 76.96 3.40 0.329 0.7673 

85 1296.9 46.57 188.42 3.59 0.805 0.8862 

4 1075.4 76.86 -33.13 7.15 -0.141 1.4624 

32 1160.6 22.47 52.14 1.94 0.223 0.4276 

Average of the Cell Averages, kPa 1107.6 
Standard Deviation of the Cell Averages, kPa 234.6 

Repeatability of Standard Deviation, kPa  52.5 
Repeatability Limit 146.9 

Reproducibility of Standard Deviation, kPa 238.5 
 Reproducibility Limit 667.8 

F-Value 60.0 
Overall Coefficient of Variation, % 21.2 
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Table D5  Tensile Strength Ratio Statistics 

Laboratory Cell Average, % 
Cell Standard 
Deviation, % 

Cell Deviation, 
% 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

14 *  69.80 15.229 -15.845 21.82 -2.921 3.773 

45 87.57 4.150 1.921 4.74 0.354 1.028 

58 81.17 5.680 -4.479 7.00 -0.826 1.407 

66 90.9 1.95 5.22 2.15 0.963 0.4831 

40 85.0 4.50 -0.66 5.29 -0.122 1.1144 

47 83.1 2.27 -2.51 2.73 -0.463 0.5618 

28 72.8 3.65 -12.85 5.01 -2.368 0.9041 

81 86.3 2.08 0.65 2.41 0.121 0.5155 

36 94.5 0.61 8.89 0.65 1.639 0.1516 

29 86.8 1.22 1.19 1.41 0.219 0.3027 

26 77.2 1.80 -8.45 2.34 -1.557 0.4466 

19 88.7 5.77 3.02 6.51 0.557 1.4302 

73 83.0 2.14 -2.68 2.58 -0.494 0.5298 

* Note: Laboratory 14 was excluded from the overall statistic calculations. 
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Tensile Strength Ratio Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, 
% 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

42 84.4 4.25 -1.25 5.03 -0.230 1.0519 

93 84.8 6.21 -0.88 7.32 -0.162 1.5375 

56 85.0 9.56 -0.65 11.25 -0.119 2.3693 

33 72.8 2.60 -12.85 3.57 -2.368 0.6436 

74 89.3 5.02 3.69 5.62 0.680 1.2436 

61 86.4 3.27 0.72 3.78 0.133 0.8089 

89 86.4 1.37 0.72 1.58 0.133 0.3381 

44 87.6 3.72 1.92 4.25 0.354 0.9217 

25 82.9 3.30 -2.75 3.98 -0.506 0.8167 

87 82.7 1.94 -2.91 2.35 -0.537 0.4812 

16 88.4 1.82 2.72 2.06 0.502 0.4502 

79 94.2 2.01 8.52 2.14 1.571 0.4981 

51 81.2 1.75 -4.46 2.15 -0.823 0.4326 
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Tensile Strength Ratio Statistics, continued 

Laboratory Cell Average, % Cell Standard 
Deviation, % 

Cell Deviation, 
% 

Coefficient of 
Variation, % 

Consistency 
Statistic, h 

Consistency 
Statistic, k 

38 82.6 6.76 -3.08 8.19 -0.568 1.6758 

3 90.2 4.97 4.39 5.51 0.801 1.2289 

99 88.2 3.00 2.59 3.40 0.477 0.7433 

85 86.0 3.12 0.35 3.63 0.065 0.7723 

4 92.0 6.55 6.32 7.13 1.166 1.6237 

32 97.2 1.86 11.52 1.91 2.124 0.4603 

Average of the Cell Averages, % 85.8 
Standard Deviation of the Cell Averages, % 5.5 

Repeatability of Standard Deviation, % 4.0 
Repeatability Limit 11.3 

Reproducibility of Standard Deviation, % 6.4 
Reproducibility Limit 17.9 

F-Value 5.5 
Overall Coefficient of Variation, % 6.4 
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