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EXECUTIVE SUMMARY 
 

The objective of this report is to complete work undertaken at the University Minnesota in the mid 

1990’s. This work was directed at developing an understanding of frost heave in relationship to the 

lifting of buried objects such as shallow sewers. 

There were three distinct parts to this work. 

1. A field Investigation where the progressive lifting of a sewer in Little Canada over the winter of 

1994 was measured. 

2. The development and testing of a frost heave model. 

3. The development of a thermal thawing model suitable for describing the movement of buried 

structures during freeze-thaw cycles.  

The critical findings in the field investigation were detailed in a Final Report: 

“Progressive Lifting of Shallow Sewers: Field Investigation,” Prepared by Ray Sterling in 

October 1995.   

Preliminary details of the modeling work were provided in an interim project report and 

complete details were provided in the MS Thesis of Lingjun Hou,“An Investigation of a Lumped 

Parameter Frost Heave Model,” published by the University of Minnesota in January 1994.   

The objective of the current report is to outline the critical findings in the modeling work detailed in 

the previous interim report and Hou’s thesis. This document should be seen as a compliment to the 

original final report submitted by Sterling in 1995. The central objective of the modeling study is the 

investigation of the lumped parameter frost heave model developed by Blanchard and Fremond (1).  The 

key contributions are: 

1. The development of general transport governing equations based on an averaging multi-phase 

analysis. 



2. The application of an efficient numerical phase change algorithm for the solution of the lumped 

parameter frost heave model.  In this numerical solution, the heaving deformations of the domain 

and convection effects are fully accounted for. 

3. The development of a simplified two-dimensional thermal model that can be used to investigate 

the effects of freeze-thaw cycles on buried infrastructure. 

The work in this report shows that a lumped porosity model can generate an accurate comparison 

with experiments and is a feasible tool for the investigation of the effect of freeze thaw on buried 

infrastructure. It is recommended that further work is undertaken to develop user friendly software based 

around the lumped porosity model and extend its application across a range of transportation 

infrastructure problems. In the mean time it is recommended that practical construction methods and non 

frost susceptible materials are utilized, see Svec and Gallagher(2). A synthesis of innovative 

construction practices should also be completed. 
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CHAPTER 1 

INTRODUCTION 

 

Introduction to Frost Heave Phenomena 

 Under winter conditions, when water freezes and expands in a soil such as clay or silt, a 

phenomenon known as frost heave can occur. The expansion of the freezing zone in the ground results 

in the upward movement of structures. In spring, as the ground thaws, an excess of water is produced, 

this excess reduces the effective stress in the soil and results in a loss of bearing capacity. 

 The critical feature to note in frost heaving is that, in most cases, the level of heaving can not be 

fully accounted for by simply considering the freezing expansion of the existing water in the soil. 

Experiments carried out by Taber (3 and 4) showed that when a soil column freezes additional moisture 

is sucked into the freezing zone thereby increasing the level of heave. Taber conducted experiments in 

which the water in the soil was replaced by liquids (benzene and nitrobenzene), which decrease in 

volume when frozen. In these experiments, provided the freezing soil column was able to draw up 

additional liquid into the freezing zone, significant heaving was still observed.   

 There are several factors, which influence the moisture migration and frost heaving in freezing soils: 

1. Capillary size: the size of the capillaries in the soil determines the height to which water may be 

lifted above the phreatic surface (water table) by surface tension.  In the absence of other effects, 

the water rise is inversely proportional to the diameter of the soil capillaries. This relationship, 

however, can break down in fine soils where the presence of colloids decreases the apparent 

permeability.  

2. Size of soil particle: the size of the soil particles has a large influence on the level of heave. 

When a growing ice crystal closely approaches a soil particle the water separating them is 

reduced to a thin film and further growth of the crystal can only take place as molecules of water 

enter this film. If the soil particle is small and the crystal growth slow, water molecules have 

time to enter between the ice and the particle and the growing crystal will exclude the particle. 

This process, referred to as segregation, leads to the formation of ice lenses in the soil that 
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significantly contributes to the level of heave. On the other hand, if the soil particles are large 

and freezing is rapid, water can not freely move into the layer between the ice crystals, the 

particle is gradually surrounded by the ice and the heave associated with segregation is reduced.  

3. Water-content of soil: the amount of heaving that takes place when soils freeze is limited by the 

supply of available water; not only the water present in soils before freezing, but also the water 

that can be drawn from points below the depth of freezing.  So if the water table is close to the 

frost front in the soil, there is an increased likelihood that water can be drawn into the freezing 

zone.  Since there is considerable friction resistance to water passage through the soil, frost 

heaving tends to decrease as the depth of the water table increases.  However, the effect of a low 

water table could be in part compensated by changes in other parameters such as a slower 

cooling rate. 

4. Rate of cooling: it is evident that, over a certain range of temperatures, increasing the rate of 

cooling by applying lower cold-side temperatures does increase the heave rate (5).  The rate of 

cooling is also dependent on the thermal conductivities and specific heats of the different 

materials present and by the latent heat effects present in the phase change.  Most soil minerals 

differ from one another little in their thermal properties; however, they differ significantly from 

water and ice.  At temperatures above freezing, the rate of cooling of soils is affected greatly by 

the porosity and the water content.  When the soil temperature drops below freezing, the fraction 

of water converted into ice at a given temperature will also influences the rate of cooling. 

5. External pressure: when vertical displacement is prevented in a frost-heaving soil a positive 

pressure is developed at the ice-water interface.  This pressure is known as the heaving pressure 

(5).  Such pressures can be sufficiently high to destroy foundations and lift buildings.  

Determination of the maximum force exerted by growing ice crystals is an interesting but 

difficult problem. It is common to state that, to prevent heaving, the applied external pressure 

should be equal to the pressure generated by ice formation.  The original experiment by Taber 

(4), however, showed that the force exerted by the ice crystals is greater than expected, because 

when forming each layer of ice it is necessary to pry apart the clay cylinder used in the test and 
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overcome side wall friction.  It is clear from the tests that excessive heaving still may occur 

under surface loads of 150 or 200 lb/in2, but that the rate of heaving is smaller than that under 

lower applied pressure.  On the other hand, when the surface pressure is increased, the freezing 

point of water in the soil will be depressed.  So, even though extremely high pressures would 

compact the clay, reduce porosity, and make it less permeable to water, the entrance of water 

would be only retarded rather than prevented, and heaving can still take place.  

6. Effects of thawing and refreezing: it has been shown that freezing may result in the concentration 

of excessive amounts of water in the form of ice at, or near, the surface.  During or immediately 

after thawing, when an excessive amount of water is left in the surface soil, refreezing should 

result in greater segregation than on the first freezing, since segregation is accentuated by high 

water content near the soil surface. 

 Through the above discussion, the complexity of frost heave problems can be appreciated.  There 

are, however, three simple conditions that are required for frost heaving to occur: 

  

1. There must be freezing temperature conditions within the soil. 

2. There must be a source of water to feed the ice lens growth. 

3. The physical composition of the soil must allow sufficient migration of the moisture to the 

freezing front to cause heaving within the time scale of the propagation of the freezing front into 

the soil. 

 

Problems Caused by Frost Heave 

 When the air temperature falls below freezing for extended periods of time it is possible for the pore 

water in soils to freeze.  Frost action in soils result in several important engineering consequences.  First, 

the volume of the water in the pore spaces can immediately increase about 10% just due to the 

volumetric expansion of water upon freezing.  A second but significantly more important factor is the 

formation of ice crystals and lenses in the soil.  These lenses can grow to several centimeters in 
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thickness and cause heaving and damage to light surface structures such as small buildings and highway 

pavements.  The ice lenses can be seen as the dark bands within the soil.  

 If soils simply freeze and expand uniformly, structures would be evenly displaced since the 

pressures associated with ice lens formation are much greater than the loading provided by these light 

structures.  However, just as with swelling and shrinking soils, the volume change is usually uneven, 

causing differential movement and thus structural damage. 

 Also, during the spring, the ice lenses melt and greatly increase the water content and decrease the 

strength of the soil.  This thaw weakening of soils allows rapid damage to road pavements under heavy 

loads, potholes occur easily and fine soils can be "pumped" through cracks in the road pavement.  

Damage to highways in cold regions because of frost action is a very expensive problem and highway 

load restrictions during the thaw period add to the economic burden.   

 In addition to the load restrictions mentioned above, other techniques used to combat frost heave and 

thaw weakening problems include lowering of the ground water table, removal of frost susceptible soils 

in the subgrade or foundation (2), use of impervious membranes, chemical additives, and foam 

insulation under highways, buildings, and railroads, etc. 

 The refinements of these techniques for reducing or eliminating frost-related problems is aided by an 

ability to simulate the soil conditions throughout the winter and to refine solutions without resorting to 

full-scale testing.  Improvements in our ability to simulate frost heaving and thaw weakening in soils are 

the ultimate goals of the research described here. 

 

Objective and Scope 

 The objectives of the research are: 

1. To develop an effective lumped macro-scale frost heaving model:  most existing models deal 

with micro-scale process where an attempt is made to predict the moisture migration and velocity 

of ice lens, the 'Rigid Ice Model' by O'Neill and Miller (6) is an example of such a model.  Since 

it is very hard to deal with micro-scale process, the alternative engineering approach is to 

develop a lumped parameter model in which it is attempted to model the macro effects of the 
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micro-scale processes rather than the processes themselves.  Furthermore, the lumped parameter 

model has considerable advantages with its simplicity for application to two- or three-

dimensional problems. 

2. To develop an efficient numerical algorithm based on the enthalpy approach (7):  the key feature 

in a phase change problem is the presence of a moving boundary on which heat and mass 

balance conditions have to be met.  The classical approach to deal with moving boundary 

problem is the Stefan approach (8).  A popular approach in the numerical modeling of such 

problems is the so-called enthalpy method, see Voller and Cross (7).  The major advantage of 

this method is that despite the presence of moving boundaries, the problem is cast in a 

conservative form that allows for the solution to be obtained on a fixed space grid. Also, since 

the water content-temperature curve has a discontinuity when ice first forms, there are problems 

in numerical calculation.  An efficient algorithm will be discussed in this report.  
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CHAPTER 2.  

THE MECHANISM OF FROST HEAVE 

  

 In chapter 1, the frost heave problem was briefly introduced.  Here the mechanism of frost heave 

will be described in greater detail. 

 The phenomenon of frost heave may be considered to consist of four major rate processes: heat 

transport, water transport, ice growth, and soil deformation (9).   A one-dimensional experiment scheme 

by Miller (10) is shown in Fig 2.1.  Soil is confined in a rigid cylinder with a porous base at the bottom 

and a loaded piston at the top to simulate an overburden pressure.  A temperature gradient is established 

across the soil sample such that the temperature of the soil decreases with elevation over time from an 

initial constant temperature condition. 

 

Figure 2.1 Schematic of a Frost heave Test (After Miller 1978) 

 

Moisture Migration 

 At the beginning of the experiment, pore water near the top of the soil sample will freeze.  As 

discussed in chapter 1, frost heaving requires additional moisture to migrate to the freezing zone.  In 

saturated soils, migration occurs only in the form of water while in unsaturated soils, vapor diffusion is 

also possible.  Evidence presented by Nakano et. al. (11,12), however, suggests that the vapor diffusivity 

in frozen soil is very low.  This is expected because when pore ice is formed it inhibits vapor flow but as 

weight
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water
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will be discussed later, there is an adsorbed water film between pore ice and soil particles through which 

some movement of water can occur.  Also, from the magnitude of the respective diffusivities, Williams 

and Smith (13) have shown that the vapor diffusion in frozen soil is several orders of magnitudes less 

than the water flow. 

 The classic works of Taber (3) and Beskow (14) on the migration of water to a growing ice lens 

represented, until the 1950s, the most serious attempts to identify the mechanism of frost heaving.  

Taber (3, 4) attributed the migration to "molecular cohesion" and identified the factors controlling ice 

segregation as soil particle size, amount of water available, size of voids, void ratio, and rate of cooling.  

Beskow (14) related the suction pressure to "capillary rise" and showed the relationship of the height of 

capillary rise to grain size and depth to the water table.  Neither of these explanations provided a 

rigorous theory for frost heave. 

 From the 1960s to the 1980s, three fundamentally different explanations for ice segregation and frost 

heave have received considerable attention.  These are capillary theory, secondary heaving theory and 

adsorption force theory.  In a broad sense these three theories are in general agreement on the major 

factors affecting frost heave (15).  Each theory is described in the following sections. 

 

Capillary Theory 

 In general explanations of frost heave phenomena, capillary theory (or the surface tension effect) are 

often used to explain the large suctions and the consequent moisture migration into freezing soil.  The 

philosophy of the capillary theory is that the heave pressure and the suction pressures that develop 

during the formation of ice lenses are related to the porous matrix of the soil (15).  Penner (16) and Gold 

(17) observed that the geometry of the porous soil matrix in which ice lenses develop is very important 

in determining the magnitude of the suction.  Penner concluded that moisture tensions develop as a 

result of freezing point depressions and that higher tensions develop in soils with small pores than in 

soils with large pores because the freezing point decreases with the radius of curvature of the ice/water 

interface. 

 The mathematical form of the capillary theory is 
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r

2+P=P
iw

wi
wi

σ      (2.1) 

where: 

 Pi is steady state heaving pressure at the base of the ice lens (or pore ice pressure). 

 Pw is pore water pressure. 

 iwσ  is surface tension at an ice/water interface 

 riw is radius of the ice/water interface.  

 It is assumed that adsorption forces are negligible and that the soil is an ideal granular material 

(15).  To determine the maximum heaving pressure, the radius, ri,w, is set to the radius of the pore necks 

through which ice must grow. 

 Penner (18) used experiments to verify Eq.(2.1) for uniform glass spheres in a close-packed array.  

For nongranular soil, however, it is hard to choose a representative value of ri,w . Also Penner (19) found 

that the heaving pressure from Eq.(2.1) is too large when the average value of ri,w is used, but that the 

results agree well with the measured values when the size of the smallest particles is used (15). 

 Because the effective stress beneath or between ice lenses will increase when frost heave occurs, the 

rate of heaving for a given soil also depends on the compressibility of the soil in addition to the rate of 

heat extraction at the freezing front, the stress borne by the ice lens, the suction in the pore water and the 

hydraulic conductivity of the zone beneath the ice lens formation.   Bishop and Blight (20) and Miller 

(10) suggested applying Terzaghi's concept of effective stress and pore pressure for frozen  

soils.  This effective stress can be expressed as: 

 

       ns σ−σ=σ       (2.2) 

where: 

 sσ  is the effective inter-granular stress 

 σ is the total stress right below ice lens 

 nσ is the neutral stress (or pressure supported by the pore contents) 
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 In saturated soils, σn is equal to the pore water pressure Pw (15).  Because σn is always negative 

beneath a growing ice lens, the effective stress on the soil beneath is always higher than before freezing.  

If the soil is practically incompressible under this stress (like most dense sands), then σn has little effect 

on the soil structure.  But, if the soil is compressible (e.g. clay soils), then the void ratio decreases as the 

effective stress increases and the soil becomes more dense.  This effect leads to two important influences 

on frost heave: 1) the compensating effect of the void ratio decreases beneath the ice lens may lessen or 

eliminate the apparent frost heave.  The resulting effect is to over consolidate the soil by freezing, Nixon 

and Morgensten (21), and Chamberlain and Blouin (22) because pore size decreases due to the  increase 

of effective stress, the pore water suction, -Pw, and the frost heaving stress also will increase, and this 

will affect  the hydraulic conductivity of the soil. 

 In general, according to the capillary theory, the frost heave should depend on 1) the rate of heat 

removal, 2) the pore size, 3) the hydraulic conductivity of the unfrozen soil, 4) the compressibility of 

unfrozen soil, and 5) the weight of material above the ice lens (15). 

 

Secondary Heave Theory 

 Usually, the aspect of frost heaving explained by capillary theory is considered as "primary heave".  

After frequently finding disagreement between the measured and calculated values of heaving pressure 

using the simple capillary model, Miller (23) concluded that the only kind of ice segregation consistent 

with the model was the formation of needle ice at the soil surface.  In order to supplement the  primary 

frost heave , Miller put forward his "secondary" frost heave theory.  He contended that secondary frost 

heave involves the pore ice under an ice lens, which exists and allows the transport of pore water in a 

region between ice lens and the freezing front.  This region is called the "frozen fringe". 

According to Miller (6), the driving force for frost heave in saturated granular soil is the interaction of 

pore ice, pore water, temperature and the swelling properties of adsorbed films within the frozen fringe. 

 It is well established that all water in a fine-grained soil does not freeze at a unique temperature and 

also that under a given set of conditions, some minimum temperature drop below 0oC is required (i.e. 

freezing point depression) before pore ice can exist.  The finer grained a soil is, the greater the freezing 
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point depression, and the more unfrozen water it will retain under a given set of conditions.  This effect 

is most pronounced for clays for which significant amounts of unfrozen water have been observed at 

temperatures lower than -10oC, while most of the water in silts freezes within a couple of tenths of a 0 
oC (24). 

 One relation which is applicable to the ice-liquid mixture in frozen soil is the generalized Clapeyron 

equation 

 

      T
T
L+P=P

oi

i

w

w
ρρ

      (2.3) 

where: 

 Pw = pore water pressure. 

 ρw = density of water.  

 Pi = pore ice pressure. 

 ρi = density of ice. 

 L = latent heat of fusion 

 To = normal freezing point of water, 273.15(K). 

 T = absolute current temperature,(K) 

 Miller also used Eq.(2.1) to describe the relationship between the radius of curvature of the ice/water 

interface in a pore and the pore ice pressure and pore water tension.  Most investigators have been 

interested in relations of Eq.(2.1) and Eq.(2.3), because they might provide some means of determining 

the magnitude of suction developed in the pore water in terms of temperature, O'Neill(24). 

 The most important aspect of the secondary heave model is the impact of regelation. The most 

familiar demonstration of regelation is mechanically induced (25).  It involves a thin wire, with a heavy 

weight at one end, draped over a block of ice.  In this situation the wire will slowly sinks through the 

solid block of ice.  The ice beneath the wire is subjected to high pressure, which, according to Eq.(2.3), 

lowers the freezing temperature so that the ice melts.  The melted water flows up around the wire and 

promptly refreezes so that the solid block of ice shows no evidence of the passage of the wire through it.   
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 The evidence that an ice lens can form within frozen soil at some distance from the freezing front 

can not be explained by the capillary theory, but it can be explained by the regelation phenomenon 

O'Neill and Miller (6).  It can be observed that a solid particle embedded in ice moves under conditions 

of temperature and pressure gradient (26, 27).  Koopmans and Miller (28) showed that for non-colloidal 

soils, suction in the freezing fringe is much higher than the capillary equation can predict.  Based on that 

observation, they noted that there must be some other driving force or some other mode of transport in 

freezing soils.   Koopmans and Miller (28) then  postulated that ice moves through the soil by regelation 

around the soil grains during freezing.  Water is more strongly attracted to a solid particle and hence a 

thin layer of water exists around it (26).  Since ice melts at the warmer side or at the lower suction side 

of the solid particle the resulting water is transported around the particle through the thin liquid layer to 

the cooler side or to the higher suction side and freezes there (13).  This process causes an uneven 

thickness of the adsorbed film but the surface adsorption forces try to center the grain or solid particle.  

Consequently, the grain moves towards the warmer or high suction environment inducing further 

regelation. 

 In general, according to the secondary heave theory, frost heaving depends on 1) the rate of heat 

extraction, 2) the size of the soil pores, 3) the freezing point of the water at the base of the growing ice 

lens, 4) the hydraulic conductivity of the freezing fringe, 5) the temperature gradient within the freezing 

fringe, 6) the thickness of the freezing fringe, 7) the in-situ moisture tension in the unfrozen soil, 8) the 

hydraulic conductivity of the unfrozen soil, 9) the compressibility of the unfrozen soil, and 10) the 

magnitude of the overburden pressure (15). 

 

Adsorption Force Theory  

 In the previous section, we neglect the adsorbed or film moisture effect, only considering the 

moisture effect due to capillary theory.  Takagi (29, 30) proposed another explanation of frost heaving.  

He suggested that there is a 'solid-like stress' in the adsorbed film of water between the ice and soil 

surface, which primarily causes frost heaving.  The water film and the soil particle support the weight of 

the ice lens and the heaving stress is determined by the solid-like stress in the film not the heaving 
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pressure Pi which is derived from Eqs. (2.1)-(2.3) in the other two frost heave theories.  Takagi (30) 

stated that the heaving stress is also limited by the segregation freezing temperature, which cannot be 

lower than the freezing point of the film water, and that the decisive factor for determining the freezing 

point depression, and thus the limit of the heaving pressure, is the specific surface area of the soil 

particles, as suggested by Anderson and Tice (31).   

 According to Takagi's adsorption force theory, the tension in the pore water is independent of the 

heaving stress.  The origin of the tension is in the film water.  The freezing film, in response to the loss 

of its thickness of the growing ice lens, generates the tension that draws pore water to the region of 

freezing.   

 In general, according to segregation freezing theory, frost heaving depends on 1) the rate of heat 

removal, 2) the freezing point of the film water, 3) the specific surface area of the soil particles, 4) the 

hydraulic conductivity of the film water, 5) the thickness of the zone of freezing, 6) the temperature 

gradient in the zone of freezing, 7) the hydraulic conductivity of the unfrozen soil, 8) the compressibility 

of the unfrozen soil, and 9) the weight of the material supported by the ice lens (15). 

 

Overburden Pressure and Shut-Off Pressure  

 In Eq.(2.2), there is a total stress σ, which includes the weight of soil above the ice lens and any 

overburden pressure P.  Penner and Ueda (32) and Nixon, J.F. and N.R. Morgenstern (21) show, 

experimentally that the magnitude of heave decreases as the external overburden pressure is increased 

on heaving soils.  When the overburden pressure is very high, they found that the water from the 

freezing fringe exudes for a certain time and then reverses its direction of flow. Other researchers have 

suggested that for any soil there exists an overburden pressure at which the heaving of soil would be 

prevented completely.  This overburden pressure is termed the "shut-off pressure".  Konrad and 

Morgenstern (33) calculated the theoretical values of shut-off pressure from the Clausius-Clapeyron 

equation assuming the no flow condition, i.e. Pw=0.  But Penner and Ueda (32) showed that any 

overburden pressure just delays the process of water intake and hence there always would be some 
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amount of heave given sufficient time. In practical cases, however, the delay induced by an overburden 

is beneficial.  

 

Frost Heaving and Ice-Lens Formation Criteria 

 There are various criteria that frost heave models use to determine when and where ice-lens and 

heave could occur.  For simplicity, some frost heave models monitor the ice content in the freezing 

fringe and when it exceeds a critical ice content, it is allowed to heave.  Taylor and Luthin (34) use a 

critical ice content equal to 85% of porosity, regardless of unfrozen water content.  Others assume that if 

the ice content is equal to or greater than the porosity minus the unfrozen water, then heave would occur.  

For some other models, they attribute frost heave to new ice-lens forming, so the issue is when and 

where the new ice lens will be formed. Konrad and Morgenstern (35) assume that when the existing 

warmest ice-lens reaches a certain temperature, Tsm, a new ice-lens forms where the temperature is Tsf.  

The magnitudes of both Tsm and Tsf were less than zero and Tsm was less than Tsf.  This criterion means 

that an ice-lens initiates at temperature Tsf and develops till its temperature reaches Tsm.  O'Neill and 

Miller (36) assume that when the effective stress at a point in the soil goes to zero (i.e, the neutral 

pressure in the soil surpasses the overburden pressure) a new ice-lens will form.  They use the stress 

partition factor to determine the neutral pressure. That is 

 

      P)-(1+P= iwn χχσ       (2.4) 

where: 

 σn is the neutral pressure which equals σ-σs  

 χ is a stress partition factor  

This last factor can be evaluated in several ways. It mainly depends on the ice content, unfrozen water 

content and porosity of soil.  There are experimental results and empirical formulas available for 

prediction of the factor.  As the ice content increases, we expect the contribution of ice pressure to the 

neutral stress to increase, which means that the stress partition factor must decrease.  O'Neill and Miller 

(36) used the following expression for χ based on experimental observations: 
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       )
n
W(= 1.5χ       (2.5) 

where: 

 n is porosity of soil. 

 W is volumetric unfrozen water content. 
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CHAPTER 3 

GOVERNING EQUATIONS FOR FROST HEAVE 

 

Assumptions  

 Frost heave is a very complicated phenomenon and numerical modeling is impossible without 

making a number of reasonable assumptions.  Existing frost heave models usually assume that: 

• the soil is saturated and isotropic,  

• the soil is solute and ion free, 

• the soil grains are incompressible, 

• the pore water pressure and water flow are related by Darcy's law. 

• there is no mass transport beyond the warmest ice-lens, and 

• the freeze-thaw cycle has no effect on the frozen soil properties. 

  

Definition of Terms  

 When modeling frost heave, it is necessary to solve several transport equations (e.g. mass and energy 

conservation).  These conservation equations should be applied at a microscopic level where we focus 

our attention on what happens at a point within a given phase (water, ice or soil).  These microscopic 

equations cannot be easily solved, because the geometry of the surface that bounds each individual 

phase is complicated in nature and may not be observable (37).  Hence, the description and solution of a 

transport problem at the microscopic level is impractical.  Therefore, another level of description is 

needed, namely the macroscopic level, at which measurable, continuous and differentiable quantities 

may be determined and boundary-value problems can be stated and solved (37).  Following Bear (37) 

and Ni and Beckermann (38), the macroscopic governing equations can be derived by averaging the 

microscopic equations over a finite sized averaging volume that contains a number of phases (e.g. solid, 

liquid, etc).  This volume, called a Representative Elementary Volume (REV), is much smaller than the 

system but large compared to the characteristic size of the interfacial structures. Assuming the volume of  

the REV is Vo, each phase k in Vo occupies a volume Vk and is bounded by the interfacial area Ak.  The 
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symbol nk is the outwardly directed unit normal vector on the interface Ak, and wk is the velocity of the 

interface Ak.   

 For any quantity, say 'E', the definition of the volume average of E in phase k is : 

 

      dVEX
V
1>=E< kkV

o
k o∫      (3.1) 

where: 

 Xk is a phase function, being equal to unity in the phase k and zero outside the phase k. 

 Ek is the value E at a microscopic point in phase k. 

The intrinsic volume average of E is defined as  

 

      dVEX
V
1=>E< kkV

k
k

k
o∫      (3.2) 

where: 

 Vk is the volume of phase k within volume Vo. 

The volumetric fraction of phase k is defined as  

 

       
V
V=

o

k
kθ       (3.3) 

such that 

           >E<>=E< k
k

kk θ      (3.4) 

 When deriving macroscopic transport equations, rules for averaging of a time derivative and a 

spatial derivative are needed, they are (37):  
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Microscopic Transport Equations in Frost Heave 

 Since frost heave problems involve displacements caused by heat transfer in porous media, we need 

to use the mass, momentum and energy transport equations to model the phenomena.  To the author's 

knowledge, most of the frost heave models used so far only consider the coupled mass and heat transport 

equations and not the momentum equation.  The mass and energy equations at a microscopic point are as 

follows: 

Mass: 

0=)v(+
t

    kkk ρ∇ρ
∂
∂      (3.7) 

where: 

 ρk =density of phase k at a microscopic point. 

 vk =velocity of phase k at a microscopic point. 

Energy: 

 

q-=)vH(+)H(
t

   kkkkkk ∇ρ∇ρ
∂
∂      (3.8) 

where: 

 Hk =specific enthalpy of phase k at a microscopic point. 

 qk =heat flux in phase k. 

 

Macroscopic Transport Equations in Frost Heave 

Mass Conservation Equation: 

 On averaging the microscopic mass equation Eq.(3.7) over the REV and employing the appropriate 

volume averaging rules Eq.(3.5) and Eq.(3.6), the macroscopic mass conservation for the phase k can be 

obtained (38).     

 

Γρθ⋅∇ρθ
∂
∂

kk
k

kkkk =)>v<(+)(
t

    (3.9) 

where: 
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 θk is volumetric fraction of the k phase  

 <vk>k is intrinsic velocity of the k phase 

 Γk is interfacial transfer term  due to phase change 

 In a frost heaving problem, there are three phases present, i.e. soil, water and ice.  Therefore three 

macroscopic mass conservation equations in the form Eq.(3.9) are required.  On adding the equations 

together, the interfacial transfer term Γk will be canceled out.  If, further, we neglect the velocity of soil 

particles and ice in comparison with that of water, and use Darcy's law, we will arrive at the following 

mixture mass conservation equation, 
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where: 

 ρs, ρw, and ρi are density of soil particle, water and ice respectively,(assumed to be constant in our 

consideration). 

 K is hydraulic conductivity 

 h is pressure head 

 θs, θw, and θi are volumetric fraction of soil particles, unfrozen water and ice respectively, i.e. 

       1=++ siw θθθ       (3.11) 

 In one dimensional case, Eq (3.10) can be written as 
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Energy Conservation Equation: 

 Similar to the mass conservation equation, the macroscopic energy conservation equation for each 

phase can be written as 

Q+)>q<+>q(<=)>v<>H<(+>H<
t kk

t
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k
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∂
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where: 
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 <qk>t is the dispersive heat flux 

 Qk is the net heat taken in from other phases 

 wk is the interfacial velocity  

 According to Bear (37), we can make an assumption that there is thermal equilibrium between the 

phases, i.e., the averaged temperature T in the REV is the same for all the phases.  Further, for 

computation convenience, if we assume all the material and thermal properties (i.e. density, heat 

capacity and thermal conductivity) are constant in each phase and velocity of each phase are constant 

within the REV, and use the Fourier Law of heat conduction, then Eq.(3.13) becomes, 
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where: 

 Khk is heat conductivity of phase k. 

 Q'k is the net heat taken in from other phases 

 Eq.(3.14) is applicable to each of the phases present, e.g. soil, water and ice. After adding the three 

equations together, and eliminating the interfacial term Q'k,  the 'mixture' energy equation is: 
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  ks, kw, ki = thermal conductivity of soil particles, unfrozen water and ice respectively. 

 In one dimension, Eq (3.15) can be written as 

  

    )
x
T

K(x
=)vH(

x
+H

t h ∂
∂

∂
∂

∂
∂

∂
∂      (3.16) 

 

 



20  

Simplifying the Energy Equation: 

 By definition of enthalpy (8) and an assumption of constant material properties over time and space, 

the enthalpy of soil, water and ice can be respectively written as: 

 <Hs>s=csT, 

 <Hw>w=cwT+L, 

 <Hi>i=ciT, 

where: 

 cs, cw, ci = specific heat capacity of soil particles, unfrozen water and ice respectively.  

 L = latent heat of water. 

In this case, Eq.(3.16) can be written in terms of temperature as, 
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where: 

     c+c+c=C iiiwwwsss ρθρθρθ  

is a mixture heat capacity. 

 Throughout the remainder of the work, Eq.(3.12) and Eq.(3.17) will be the governing equations 

used. 
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CHAPTER 4  

MODELLING OF FROST HEAVE 

  

 Though the frost heave process is not fully understood existing frost heave models can provide 

worthwhile qualitative estimates of heaving.  The models discussed in Chapter 2 focus on micro-scale 

process and attempt to predict quantities such as the growth of ice lenses, e.g. the 'Rigid Ice Model', 

O'Neill and Miller (6).  When trying to predict the response of field scale problems, however, it is better 

to develop a lumped parameter model which considers the global effects (i.e. the response of the whole 

mixture).  Examples of a micromechanical micro-scale model and a lumped parameter model follow. 

 

The Rigid Ice Model (RIM) 

 This model focuses on the micro-process of ice lens formation. In this model the porosity is treated 

as constant, the amount of heave is due to the ice lens movement VI.  To date, this model has only been 

applied to one-dimensional cases.   

 The basic assumption in the RIM is that the pore ice in the freezing fringe and the warmest ice-lens 

are inter-connected and form an intricate and rigid body of ice.  Although this 'rigid ice' assumption has 

not been experimentally verified, O'Neill and Miller (6) provided some rational explanations to support 

it.   

 Since there are more than two unknowns in Eq.(3.12) and  Eq.(3.17), an additional relation is needed 

to solve them.  O'Neil and Miller (6) propose that the unfrozen water fraction θw is a function of 

temperature T and the difference of ice pressure Pi and water pressure Pw defined by φiw.  Note that this 

relation can be obtained from experiments.  The pressure difference, φiw, may be expressed as a linear 

function of water pressure and temperature by using the Clausius-Clapeyron Eq.(2.3).  That is 
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where: A and B are material constants.   From Eq.(4.1), we can write 
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where iwi
' d/dI φθ= . 

O'Neil and Miller (6) propose that the ice movement will determine the frost heave.   From the rigid-ice 

assumption, the ice flux vi can be written as  

 

       θiIi V=v       (4.3) 

where: 

 VI = ice lens velocity. 

By using Eq.(4.2) and Eq.(4.3), the mass governing equation Eq.(3.12) can be written as 
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where 

 ∆ρ=ρi-ρw 

 g =gravitational acceleration.  

 Similarly, on neglecting the convection term )vH(
x∂

∂ , the energy governing Eq.(3.17) can be 

written as 
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Both the above equations contain the same three unknowns, namely water pressure, Pw, temperature, T 

and ice velocity, VI.  Hence an additional equation is required to determine the ice velocity VI. 

O'Neil and Miller (6) develop a formula using the mass balance over the entire length of whole (lens 

free) soil to calculate VI.  The total mass flux through the plane at xb is given by ρiVI while the mass flux 

at the warm end of the column is given by (ρv)w, as evaluated at xw using Darcy's law. The difference 

between these two fluxes must equal the rate of change of the aggregate mass content in between, 
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After specifying suitable initial and boundary conditions, Eq.(4.4), Eq.(4.5) and Eq.(4.7) represent a 

closed set in the unknowns, namely water pressure, temperature and ice velocity.  After getting the ice 

lens velocity VI, the heave can be calculated as follows, 

 

dtVo
t

 = S(t) I∫       (4.8) 

 Since the formation of ice lenses is not continuous, in order to calculate the new ice lens velocity, we 

must know when and where a new lens will be initiated.  The various available criteria to determine 

when and where a new ice-lens forms were discussed in Chapter 2.  O'Neill and Miller (6) used the 

concept of the stress partition factor to determine the location and the time for the formation of a new 

ice-lens.  This criterion predicts the formation of new ice-lens somewhere behind the freezing front 

rather than at the freezing front.  This is in agreement with experimental evidence (39).  An ice-lens is a 

macroscopic discontinuity in the soil fabric and hence it can form only by moving the soil grains apart.  

This would be possible when grain-to-grain contact stresses, i.e. the effective stress, becomes zero.  

 

The Lumped 'Macro-Scale' Frost Heave Model 

 Though the Rigid Ice Model is popular and well-verified by experiment, the current stage of 

development of the model only allows one-dimensional freezing simulation.  This is because this 

microscopic approach is limited to the investigation of small-scale problems in simplified domains and it 

is extremely difficult to measure ice velocity at each location.  

 To avoid the complexity of modeling micro-scale frost heave, the alternative is to use a so called 

"lumped parameter" frost heave model.  This model, first presented by Blanchard and Fremond (1), is a 

macro-scale model which captures the micromechanical process of ice lens formation and the associated 

frost heave via a constitutive relationship for the porosity rate.  In effect, the ice growth is described as 
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the average increase in porosity (volume) of a soil element rather than separate ice lens growth as in the 

RIM.  Michalowski and Voller (40) use the analogy of mechanics of solids to explain the idea of this 

lumped frost heave model.  From theories of the mechanics of solids, it has been shown that 

phenomenological models based on introducing material parameters on the macroscopic level can be 

more successful in predicting such global quantities as displacements and limit loads than using 

micromechanics-based models.  One of the simplest examples of a phenomenological model is Hook's 

model of linear elasticity.  Unlike the use of a micromechanical-based model, it cannot explain why the 

deformation is elastic, but it can be quite accurate in determining the magnitudes of deformation or the 

stress state when material parameters such as Young's modulus and Poisson's ratio are given.  These 

parameters are taken from macroscopic level experiments.   

 The specific assumptions used in the lumped macro-scale model are the following: 

• the frost heave accumulation in the frozen soil can be described by a constitutive equation: i.e, the 

porosity rate is a known function of freezing temperature (see Fig 4.1), 

• the unfrozen water content of the frozen soil depends on temperature,  

• the frozen soil is a viscoelastic material for which mechanical properties depend on temperature. 

 In this model, the key is the porosity rate function.  The porosity rate function must account for 

characteristic features of the freezing process of frost susceptible soil known from laboratory tests.   In 

Frémond's model, it is assumed that rate of porosity n& is only a function of temperature, which is 

expressed as 
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n=n
−

&&       (4.9) 

where: 

 nm& : maximum rate of porosity increase 

 Tm: the temperature where nm&  occurs 

Eq.(4.9) can be written in a general form 

       eT-=n T)(βα&       (4.10) 
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where, α and β are quantities to be determined from experimental data.  In addition to the rate of 

porosity change function, the relation of unfrozen water content θw and temperature T is also needed, 

which can be obtained from experiments.  

 

 Figure 4.1 Schematic of Porosity Rate Model 

 

 Using the porosity rate and water content sub-models, we can solve the mass and energy governing 

equations Eq.(3.12) and Eq.(3.17) to get temperature, moisture content and pore pressure fields. 

 An effort was undertaken at Laboratory Central des Ponts et Chausses (Paris) to evaluate parameters 

α and β from experiments. The value of β for frost-susceptible soils appears to be of the order of unity, 

while the value of α is of the order of 10-6 to 10-8 (41). The values of  α and β describe the evolution of 

the porosity within the soil. To avoid costly experimentation these are derived from the average 

temperature of whole domain and the average heave rate for each time (42).  This can lead to the 

situation where the temperature distribution from the model turns out to be reasonable, but the pore 
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pressure field and stress-strain field from the model can be unrealistic (43).  Nevertheless, the idea of 

using a porosity rate function has great potential.   The major advantage of this lumped model is that it is 

easy to extend to a two-dimensional model without any consideration of the direction of ice lens 

movement. 
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CHAPTER 5  

THE LUMPED MACRO-SCALE MODEL: MODEL SPECIFICATION  

 

 The success of the lumped macro-scale model depends on how accurately the factors that affect the 

porosity growth are captured.  As was noted in the previous chapter, there is some uncertainty in the 

porosity rate function, and an investigation of the porosity rate function sub-model is merited.  In a 

modification of Fremond's model, Michalowski and Voller (40) considered porosity growth as a 

function of temperature, temperature gradient, current porosity and stress condition.  In this approach 

porosity growth depends on five parameters.   

 The most useful constitutive model usually is one that can simulate the behavior of the material to an 

acceptable degree of accuracy with the least number of parameters introduced.  Ideally, these parameters 

should be based on experimental measurements. But, due to the difficulty of developing experimental 

techniques to measure each parameter, this is not always possible.  The value of the parameter can be 

optimized, however, using parametric computer simulations to find the parameter values which match 

experimental results as closely as possible. 

 The objective of this study is to investigate the lumped macro-scale frost heave model without 

considering overburden pressure and pore water pressure effect on the porosity rate sub-model.  This 

will be carried out by consideration of frost heave in a one-dimensional domain.  In order to set up the 

model, we need to provide: 1) a governing equation, 2) a porosity rate function, 3) an unfrozen water 

content vs. temperature relationship and 4) a heave simulation model.  Focus will be placed on the 

parameters used to describe the porosity rate and the water content sub-models. 

 

Domain and Governing Equation 

 In a one-dimensional situation, frost heave can be determined from the solution of the heat equation 

Eq.(3.17), i.e., 
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coupled with sub-models (e.g. porosity rate function n& ), initial and boundary conditions which are 

illustrated in Fig 5.1.    

 

Figure 5.1 The Solution Domain 

 

Appropriate forms of the sub-models are discussed below 

 

Porosity Rate Function 

 The porosity rate model adopted for this research is based on the model suggested by Michalowski 

and Voller (40) which is an extension of Fremond's  model.  This is, 
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Note that there are four unknown parameters nm& , Tm, ε and γ in this sub-model.  Where ε is the 

"temperature gradient factor" in the porosity rate sub-model n&, and γ is the "exponential factor of 

porosity" in the porosity rate sub-model n&. 

 The function, Eq.(5.2), is constructed in such a way that its first part, 
)

T
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−
&  , describes the 

porosity rate as Frémond's model did, while the next two terms are dimensionless factors, all ranging 
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from 0 to 1.   The first term expresses the dependence of the porosity rate on temperature and is 

controlled by the maximum rate of porosity increase, nm&  and the temperature where nm&  occurs, Tm.   

With this term, as the temperature drops below 0 oC  the porosity rate increases from zero to a 

maximum, and then diminishes back to zero for temperatures well below 0 oC.  This behavior matches 

real freezing soil situations where, due to the freezing depression, water can exist at temperatures below 

0°C.  "The rapid increase of porosity at temperatures slightly below 0 oC can be treated as primary frost 

heave, while its slow growth at lower temperature can be viewed as the secondary frost heave process" 

(40). 

 The second component of the porosity rate function )e1( x
T

∂
∂

ε
− expresses the dependence of the 

porosity rate on temperature gradient.  The coordinate x is from the warm side of the freezing front 

toward the cold side, hence, ∂T/∂x<0.   We can see that, when |∂T/∂x| is large, this term is close to unity, 

and when |∂T/∂x| is small, this term drops to zero.  This behavior of this term can be explained in the 

following way (40):  let's assume that temperature is the only factor influencing cryogenic suction, so 

the suction gradient must be zero when ∂T/∂x=0.  According to Darcy's law, no water influx takes place 

at this time so that no heave takes place.  If there is temperature gradient applied through the soil, due to 

the cryogenic suction, the additional water will be sucked towards the freezing front to cause frost 

heave.  According to experimental observation, however, if the temperature gradient is too large, then 

soil freezing will be very fast, there is not enough time to let additional water enter the frozen soil so that 

no heave takes place. 

 The third component of the porosity rate function, (1-n)γ, expresses the dependence of the porosity 

rate on the current porosity.  This term will cap the porosity at a maximum value of 1. 

 

Unfrozen Water Content  

  The relationship of unfrozen water content ω in terms of the temperature T is discussed in many 

prior papers.  Based on experimental tests (44, and 45), the unfrozen water content can be assumed as,  

      T
rr e)( ηω−ω+ω=ω       (5.3) 
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where:  
 ω is the mass fraction of unfrozen water content. 

 ωr is the residual unfrozen water content at a very low temperature.  

 ω  is the minimum unfrozen water content at 0 oC 

η is the "exponential factor of temperature" in the water content sub-model ω .  

 

Figure 5.2 Water Content vs. Temperature 

 

 Fig 5.2 shows a typical water content and temperature relationship.  Note that 1) the step 

discontinuity at T=0°C indicates the sudden mass fraction change of water due to the nucleation when 

releasing the latent heat and 2) the "tail" indicates the unfrozen water existence below 0°C due to the 

depression of the freezing point. 

 In the governing equation Eq.(5.1), we use volumetric fraction instead of mass fraction, so the 

relationship needs to be converted to volumetric terms.  This is done using the basic soil phase 

relationship (46), 
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Heave Calculation 

 By utilizing to the consolidation model in soil mechanics (46), we can obtain the following 

expression for heave, 
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where: 

 ∆S: change in sample height  

 So: initial height of sample 

 ∆e: change of void ratio 

 e0: initial void ratio 

  

To convert to an equation involving the porosity, n, instead of void ratio, e, the following relationships  
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are used to get  
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 Eq.(5.6) assumes a constant porosity throughout the sample.  In general, this is not the case and the 

heave needs to be calculated as  
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CHAPTER 6  

NUMERICAL SOLUTION AND VERIFICATION 

 

Numerical Methodology 

 Calculation of the frost heave from the proposed model requires the numerical solution of Eq.(5.1) 

with appropriate coupling to the porosity rate sub-model Eq.(5.2) and the unfrozen water content sub-

model Eq.(5.3).  This problem falls into the class of phase change problems, which requires the tracking 

of a moving front on which heat balance conditions have to be met.   The classical approach to deal with 

moving boundary problem is the Stefan approach.   Numerical solutions based on this approach require 

the accurate tracking of the phase change boundary, which, in turn, requires that the numerical space 

grid deforms.  A popular alternative approach is the so-called enthalpy method.  The major advantage of 

this method is that despite the presence of moving boundaries, the problem is cast in a conservative form 

that allows for the solution to be obtained on a fixed space grid.  There are a variety of ways in which 

the enthalpy methods can be implemented (47).  Two common ways are:(1) the apparent heat capacity 

methods (48, 49), in which the nonlinearity associated with the evolution of latent heat is accounted for 

using a modified heat capacity term, and (2) the source based methods (50, 51, and 52), in which the 

latent heat evolution is represented by a suitable source term.  In this work, the second method, i.e. 

source based method, will be applied to the solution of frost heave. 

 Using a fully-implicit control-volume finite difference scheme, Eq.(5.1) can be discretized as (see 

Patankar 1980 (53) and Fig 6.1) 

      B+Ta+Ta=Ta PSSNNPP      (6.1) 

where: 
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 θP is unfrozen water content at node P 
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 the 'convecection term' is a discretized form of )vH(
x∂

∂ .   

Note that according to Fig 6.1, this scheme has been applied on a continual deforming grid of control 

volumes. 

 

 

Figure 6.1 Arrangement of Control Volumes 

 Eq.(6.1) is non-linear and an iteration procedure is needed to get consistent results between 

temperature, unfrozen water content and porosity.  In arriving at an iterative solution, Eq. (6.1) is written 

as 

B+Ta+Ta=Ta PS
1m+

SN
1m+

NP
1m+

P      (6.2) 

where m is the iteration level 

 The basic steps in the iteration are  

1) guess (θp)m 

2) solve Eq (6.2) to get Tm+1 
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3) update water content (θp)m+1 from the sub-model Eq.(5.3). 

Precise details are given below. 

Representation of the Convection Term: 

 In arriving at a representative of the convection term, the basic assumption that the ice and soil 

velocity are the same is made, i.e, Vs=Vi=V.  Further on the deforming grid in Fig 6.1, the control 

volume interface velocity is set to V.  In this case, a given volume of soil and ice will always remain in 

the same control volume and only water will cross the boundary of the control volume.  So the only 

contribution to make the porosity increase in a volume is due to the water movement through that 

volume, and in this case, the 'convec.term' in Eq(6.2) can be calculated as  

 

    )dxdx)(LTc(term.convec oldmm
PWw

m
P −+ρθ=     (6.3) 

Linearization: 

 To fashion a solution Eq(6.2) needs to be linearized.  As we know, the unfrozen water content has a 

step discontinuous at T=0°C, which will make the problem strongly non-linear.  Here the so called 

"general slope method" (52) is used to linearize Eq.(6.2).  Using a Newton expansion, we can write   

 

       [ ] )TT(dT/d m1mm
P

m
P

1m
P −θ+θ=θ ++                (6.4)  

 

and a linearized form of Eq(6.2) follows, i.e, 
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 The following algorithm is used to solve Eq.(6.5): 

1. Set time step dt, initial space step dx  and all material properties 

2. Set initial and boundary condition including temperature, water content, porosity, etc. 

3. Begin time loop 

4. Begin iteration loop 

• calculate all coefficients of Eq.(6.5) using previous iterate values where appropriate.  Set 

the 'slope' dθp/dT to an appropriate value as follows: 
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where 

 np is the current porosity at node p.   

 θr is the unfrozen volumetric water content when temperature is far below 0°. 

 θ-  is the minimum unfrozen volumetric water content at 0°. 

• solve the system equations represented by Eq.(6.3). 

• calculate temperature gradient at each node. 

• calculate new porosity at each node according to the porosity rate from Eq(5.2). 

                 nm+1 = nold + n&dt  

• update water content θp from Eq.(6.4): 

 

     )T - T( )
dT
d

( +  = p
m

p
1m+p

m

p
m

p
1m+ θθθ      (6.7) 

   Apply Eq.(6.7) at every node and then use the over/under shoot correction  

to account for the non-phase change nodes. 

  



36  

     






≥θ

≤θ
θ

n    if       n  

 0    if       0
 = 

ppp

p
p        (6.8) 

• after calculating of (θp)m+1 the nodal temperature at phase change node should be updated to 

be consistent with unfrozen water content, i.e. 
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• calculate each new control volume dxm+1 based on porosity increase. 

• repeat all steps in 4) until convergence is achieved, i.e. the residual of Eq.(6.5) less than  

     10-6. 

5. After convergence, calculate the heave from Eq.(5.7). 

6. Move to the next time and repeat until maximum time of analysis. 

  

 The "general slope method" is very efficient for this problem, the average iteration number in each 

time step is only two or three times. 

 

Verification of the Algorithm 

 Hou (54) considers a simple one-dimensional freezing phase change problem is considered to verify 

the numerical algorithm that the phase change part of the algorithm works. Complete details of this 

verification can be found in Hou (54).   

 

A Test Problem 

 The test problem which is used to calibrate the model is taken from Konrad and Morgenstern (36).  

The test  configuration consists of a cylindrical soil sample 0.18 m in height.  The sides of the sample 

are perfectly insulated so that heat flow is only in the vertical direction.  The soil is Denvon silt which is 

very frost-susceptible and the soil in the experiment is fully saturated.  Initially the soil sample is at the 
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uniform temperature of T=1°C.  At time t=0, the temperature of the top surface (x= 0.18 m) is lowered 

and fixed at the temperature of (T=-6°C).  The bottom of sample is exposed to an additional water 

source so that the water can be sucked into the soil to cause heave.  During the experiment, the length of 

the sample increases.  The value (i.e, new length - original length) is defined as the "heave" (see Fig 

6.2).  The experimental result in terms of the heave history is shown as the solid line in Fig 6.3. 

 

 

Figure 6.2 The Konrad and Morgenstern Test Problem 

 

Thermal and Material Properties 

 The thermal and material properties appropriate for the experiment, chosen from Williams and 

Smith (13), are given in Table 6.1.    
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Table 6.1 Values of Constant Thermal & Material Properties for the Simulations 

 

soil particle density, ρs 2650       (Kg/m2) 

soil particle heat capacity,cs 900        (J/Kg°C) 

soil particle conductivity,ks 2.92       (W/m°C) 

water density,ρw 1000       (Kg/m2) 

water heat capacity,cw 4180       (J/Kg°C) 

water conductivity,kw 0.56       (W/m°C) 

ice density, ρi 917        (Kg/m2) 

ice heat capacity, ci 2100       (J/Kg°C) 

ice conductivity,ki 2.24       (W/m°C) 

water latent,L 3.3×105      (J/Kg) 

initial porosity,no 0.35 

 

 In addition to these property values, values are also needed to specify the parameters in the porosity 

rate and water content sub-models Eq.(5.2) and Eq.(5.3), i.e, 

 nm&  is the maximum rate of porosity increase 

 Tm is the temperature where nm&  occurs 

 ε is the "temperature gradient factor" in the porosity rate sub-model n&. 

 γ is the "exponential factor of porosity" in the porosity rate sub-model n&. 

 ωr is the residual unfrozen water content at a very low temperature 

 ω  is the minimum unfrozen water content at 0 0C. 
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 η is the "exponential factor of temperature" in the water content sub-model ω .  

 

 For these seven parameters, some of them can be directly obtained from experimental results.  The 

maximum porosity rate nm&  can be obtained on calculation of the steepest slope of the heave result in Fig 

6.3, the value of  mn&  should be of the order of 10-5 to 10-4.  Based on the temperature depression in 

frozen soil, Tm should have a value slightly below 0°C (~ -0.1 0C).  The three parameters (ωr, ω and η) 

that define the water content sub-model can be obtained from water content experiment results.  The 

remaining two parameters (i.e, ε and γ) are adjusted in order to give a best fit to the experimental heave 

results.  The best-fit values referred to a "best values" are given in Table 6.2.  The comparison of the 

predicted heave and the experiment result using 30 numerical grid and 120 seconds time step is shown in 

Fig 6.3.  

 The numerical results match the experiment quite closely.  The major discrepancy occurs at a later 

time.   This is due to the fact that the last term (1-n)γ  in the porosity rate sub-model Eq(5.2) can not 

reach zero. 

 

Table 6.2 Base Property Values 

 

nm&  10-4 

Tm -0.2°C 

ωr  2% 

ω  15% 

η 0.5 

ε 0.5 

γ 6.5 
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Figure 6.3 Comparison between Model and Experiments 

 

Sensitivity Study 

 Hou, 1993 undertook an extensive assessment of the sensitivity of the parameters in Eq(5.2) and 

Eq(5.3), (i.e,  ηωωγε and,,,,,T,n rmm& ).  This was achieved by changing each best value in Table 6.2 by 

+10% and then by -10% while keeping the other best values fixed. Full results are reported by Hou, 1993. 

The key finding are 

1. The heave results are not very sensitive to parameters ηωωε and,,, r . 

2. Are sensitive to  nm& , Tm and especially γ.   

This means that, in the proposed frost heave model, the sub-model which decides the porosity rate has 

more impact on heave results than the other sub-model which characterizes the unfrozen water content 

with temperature. 
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 The porosity rate function characterizes individual soil samples and our sensitivity results indicate 

that frost heave is strongly dependent on the nature of the soil sample.  This phenomenon is in 

accordance with real observations: sand does not have a frost heave problem, while clay and silt do.  

Due to differences in particle size, porosity, heat conductivity, etc, different clays or silts also have 

different degrees of frost susceptibility.   

 

Numerical Considerations 

 For the above calculations, the domain was described using 30 control volumes and a 120 second 

time step.  The CPU time required on the an Intel III processor is about 10 seconds for the 200 hours 

total analysis time.  Also, if reasonable variations of different grid spacing and time step are chosen, the 

heave results are independent of them. 

 All the predicated results are calculated on a deforming grid and include the water convection term.  

Most frost heave models neglect the convection term and the effect of domain change on the heave 

calculation, (i.e, they use a fixed grid).  The impact of the domain movement and water convection was 

investigated by Hou, 1993 (54).   The effect of domain change on the heave calculation is significant 

(almost 10%) variation.  The effect of the convection term is small. 
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CHAPTER 7 

A THERMAL THAWING MODEL 

 

Overview 

 As an extension of the one-dimensional frost heave model a thermal model that describes the 

development of the thermal field in a two-dimensional road cross-section during a freeze-thaw cycle is 

developed. This model focuses on predicting the thermal field in the sub-grade. The model is based on a 

finite element code and deal with non- rectangular geometries and non-constant thermal properties (e.g., 

different conductivities in different space regions). 

 

Model Framework 

 From a scientific viewpoint the freezing and thawing in soil is a problem that is driven by events 

occurring at a microscopic scale (i.e., on the scale of the soil grains). Many of the soil freezing models 

focus on understanding these microscopic phenomena (e.g., modeling the formation of the so called ice 

lenses). This microscopic approach is limited to the investigation of small scale problems in simplified 

domains. An alternative engineering approach is to "lump" the micro-scale phenomena into a single 

variable [e.g., Blanchard and Fremond (1985)(1)] proposes a porosity rate term. In this way 

freezing/thawing processes in large-scale domains and the relevant engineering problems can be 

investigated. A full application of a Fremond-like model requires two steps. In the first step, for a given 

geometry and cooling conditions, the energy equation is solved and the porosity changes in the domain 

calculated. In the second step the strains resulting from porosity changes are incorporated in to a suitable 

constitutive equation and the stresses and displacements in the domain are calculated. This approach 

bears a strong resemblance to methods for calculating thermal stresses in metal solidification processes. 

In the current project, as a starting point, only the first step in the Fremond model will be developed. Our 

rational is that, with careful interpretation, much information can be gained from knowing the evolution 

of the temperature and porosity fields. Note an example of the full application can be found in the 

previous chapters of this report.  



43  

 A simplified energy transport equation can be obtained from Eq. (3.16) 

 

      
t

n
C
L)T(

t
T

p ∂
ν∂

−∇α∇=
∂
∂      (7.1) 

where 

T is temperature (K) 

L is latent heat (KJ/kg) 

Cp is the specific heat (KJ/kg-K) a is diffusivity (m2/day) 

n is porosity 

ν is the pore liquid fraction 

As noted in previous parts of this report, a key parameter in the model is the porosity rate function. At this 

point, in contrast to the more general model given above Eq (5.2)  the  simple model 

BTATen β=&       (7.2) 

suggested by Fremond is used. In (7.2) A and B are material properties which can be measured in a 

laboratory test and β = 1 if T < 0 (freezing) or β = -1 it T > 0 ( thawing). 

Effect of Thawing around a Buried Culvert 

 The following example problem of a shallow sewer culvert is chosen, see Fig.7.1. This problem 

consists of a square culvert (0.5 m x 0.5 m) buried 1.25 m below the surface of 5 m x 5 m test section. 

The sides of the test section are insulated, the bottom temperature is fixed at the initial temperature of T 

= 10 oC. An initial porosity of n = 0.4 is assumed and the thermal properties used are as follows, L = 150 

J/Kg, a = 0.11 J/m oC in silt and 0.1 J/m oC in sand, Cp=l J/Kg oC. The top temperature is given by the 

function 
 

 

 



44  

Figure 7.1 Test Geometry for Culvert Problem 
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and the pore water content and temperature  relationship is given by  
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During the freeze-thaw cycle, the inside surface temperature of the culvert is fixed at the same 

temperature as the upper surface ,Ta. The rate of heat transfer, per unit area of the culvert, into soil is 

given by 

 

Q = h(Ts – T)       (7.5) 
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In the current work, we will investigate the effect of the heat transfer coefficient, h, in Eqn. (7.5). In 

particular its effect on the movement of the freezing front (i.e., the T = 0 °c contour) will be examined. 

Two cases will be looked at. In the first case, h = 2 J/m2-day corresponding to a culvert in good thermal 

contact with the soil. In the second case, h = 0.2 J/m2-day corresponding to a case where the culvert is 

insulated. In each case predictions for the position of the freezing front with time (based on a 20x20 

finite element grid) can be obtained. Of particular interest in these predictions is the extent of the region 

of “unstable soil” (i.e. thawed-previously frozen soil) around the culvert.  Due to the melting of the 

water, which migrated into the freezing zone, this region will, if drainage is not sufficient, be over-

saturated and lose its ability to support weight. If the region is large, the culvert may "shift" upwards 

driven by buoyancy forces. Figure 7.2 compares the predictions for the maximum penetration of the 

frost line at t = 105 days (the solid line) with the frost penetration after thawing has started at t = 120 

days (the dashed line) when h = 2 J/m2-day. The region in the vicinity of the culvert, "sandwiched" 

between the dashed and full lines, represents a region of unstable soil. In this case, the region is 

relatively large indicating a potential problem of culvert lift. Figure 7.3 shows the equivalent result for 

the case of the insulated culvert (h = 0.2 J/m2-day). In this case, the region of unstable soil in the 

vicinity of the culvert is noticeably reduced. Shifting of the culvert may not occur in this case. 
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Figure 7.2 Frozen-Thawed Region when h = 2 J/m2-day 

 

 

Figure 7.3 Frozen-Thawed Region when h = 0.2 J/m2-day 
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CHAPTER 8 

 SUMMARY AND RECOMMENDATIONS 

 

Summary 

 The objective of this study has been to investigate the lumped parameter frost heave model 

developed by Blanchard and Fremond.  In this respect, the key contributions have been: 

1. The development of general transport governing equation based on an averaging multi-phase 

analysis, i.e, Eq.(3.12) and Eq.(3.17). 

2. The application of an efficient numerical phase change algorithm for the solution of the lumped 

parameter frost heave model.  In this numerical solution, the heaving deformations of the domain 

and convection effects are fully accounted for. 

3. The development of a simplified two-dimensional thermal model that can be used to investigate 

the effects of freeze-thaw cycles on buried infrastructure. 

 

Recommendations  

 Towards developing an understanding of how thawing and freezing cycles impact transportation 

infrastructure there are significant advantages in building a lumped 'macro-scale' model, especially when 

dealing with two- or three-dimensional problems, where it is extremely difficult to measure micro-

process parameters (e.g. ice velocity and its direction). This work has shown that a lumped porosity 

model can generates accurate comparison with experiments and is feasible in gaining insights into the 

effect of freeze thaw on buried infrastructure. It is recommended that further work is undertaken to 

develop user friendly software based around the lumped porosity model and thereby extend its 

application across a wide range of transportation infrastructure problems. In the mean time it is 

recommended that practical construction methods and non frost susceptible materials be utilized, see 

Svec and Gallagher (2002). A synthesis of innovative construction practices should also be completed.   
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