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Executive Summary

The Falling Weight Deflectometer (FWD) is a widely used non-destructive test device
for estimating the pavement stiffness properties. However, the conventional elastostatic
interpretation of FWD measurements is generally associated with a number of incon-
sistencies (e.g. Chang et.al. [34]). The purpose of this project is to develop a reliable
and effective dynamic backcalculation method capable of estimating the location and
properties of the permanent or seasonal stiff layer (as well as other pavement stiffness
properties) from FWD measurements. The backcalculation method is implemented in
the form of a user-friendly software that allows unedited deflection time histories from
the FWD test to be used as an input to the back-analysis.

The backcalculation scheme developed in this study is based on the Artificial Neu-
ral Network (ANN) approach and employs a three-dimensional multilayer viscoelastic
dynamic model (Guzina and Pak, [4]) as a predictive tool. The key features of the

proposed backcalculation scheme are:

e The hot mix asphalt (HMA) is characterized as a viscoelastic material using the
power law model (Findley, [12]) whose coefficients are assumed to be known and are
used as an input to the ANN-based backcalculation. For a specific type of the hot
mix asphalt, these parameters are calibrated via an empirical formula (Witczak,
[17]) describing the HMA’s stiffness variation with frequency as a function of the

mix characteristics and HMA temperature.

e The FWD measurements are interpreted in terms of the pavement’s frequency re-
sponse functions (FRE’s), which are estimated from the measured FWD deflection

time histories via the discrete Fourier transform.

e Due to the finite width of the pavement profile, wave reflections from lateral pave-
ment edges are found to influence the FWD measurements significantly, which is
a phenomenon that is not accounted for by the elastodynamic model used. To

minimize the effect of side reflections, the useful frequency range for the frequency



response functions that are used as an input to the back-analysis is taken to be
1 Hz < f < 51 Hz, thus avoiding the pronounced resonance peak due to the lateral

wave reflections typically located between 50 Hz and 70 Hz.

e The inputs to the featured ANN backcalculation scheme are (i) the frequency
response functions synthesizing the FWD measurements, (ii) the coefficients of
the power law model describing the HMA properties, and (iii) the thicknesses of
the HMA and aggregate base layers. The outputs of the backcalculation scheme
are the shear moduli of aggregate base, subgrade, and stiff layer (i.e. bottom half-
space), as well as the thickness of the subgrade which represents the depth to the
stiff layer.

The proposed ANN backcalculation scheme is applied to several field FWD mea-
surements. The predicted pavement properties are compared to those given by the
conventional static backcalculation software Evercalc ([33]) for a representative field
test. Table 1 shows the comparison where “E” stands for the Young’s modulus, “h”
denotes the layer thickness, while subscripts “B”, “S” and “H” stand for the aggregate
base, subgrade, and half-space (i.e. stiff layer), respectively. From the Table, it can be
seen that Evercalc yields a smaller value for the stiffness of the aggregate base (Ep)
than that of the subgrade (Eg), which is contrary to the physical situation. In contrast,
the ANN backcalculation scheme (row labeled “ANN” in the Table) gives a reasonable
estimate, i.e. Fp > Fg. Another advantage of the ANN backcalculation scheme over
Evercalc is that both depth to the stiff layer and its stiffness are given as outputs, while
either of them must be specified in advance in Evercalc. As for the thickness of the
subgrade (i.e. depth to the stiff layer), Evercalc apparently overestimates its true value
because the prediction method used by Evercalc is based on the assumption that the
stiff layer is approximately 100 times stiffer than the subgrade ([33]).

To improve the performance of the ANN backcalculation model developed, the fol-

lowing recommendations are made:

e The mechanical properties of the HMA layer are characterized by the power law



Table 1: ANN vs. Evercalc (Test Section 33, May 22, 2001)

Parameter | Eg [MPa] | Eg [MPa] | hg [m] | Ey [MPa]
ANN 136 87 0.9 265
Evercalc 44 151 2.8 176

model. Currently, the coefficients of the power law model are obtained based on
the empirical equation given by Witczak ([17]) describing HMA’s Young’s modulus
as a function of the HMA aggregate coefficients, temperature and the viscosity of
the asphalt binder. A method capable of producing more accurate estimates of

the power law coefficients would certainly be beneficial.

The FWD deflection records, which are inherently affected by the noise accumu-
lated through integrating the geophone (i.e. velocity) measurements, are repre-
sented by the suitable frequency response functions in the backcalculation scheme.
A significant difference between the FRF estimates based on various baseline
correction methods (i.e. methods designed to delete the noise accumulated in
the FWD deflection records) is observed, which has a substantial effect on the
estimated pavement properties. Therefore, a more accurate baseline correction
method is expected to further improve the backcalculation performance. On the
other hand, according to the definition of the frequency response function and
Fourier transform, the FRF’s of interest in this study can be obtained through
either deflection, velocity, or acceleration time histories. Therefore, a direct use of
the velocity records which do not require the baseline correction (but are currently
unavailable through the FWD setup) would substantially improve the prediction

quality of the backcalculation scheme proposed.

To further alleviate the problem associated with lateral reflections in FWD testing,
it is recommended that the FWD test be performed near the center line of the

pavement (i.e. away from pavement edges).



e The ANN backcalculation scheme is designed to interpret the deflection measure-
ments at distances 0.305, 0.914 and 1.829 meters from the center of the loading
plate. To allow for the continuing use of the backcalculation method developed,
it is recommended that the geophones at these distances be retained in future

alterations of the FWD setup.



1 Introduction

The Falling Weight Deflectometer (FWD) is a non-destructive testing device widely
used in pavement assessment. As shown in Figs. 1 and 2, the FWD test is performed
by applying an impulse load on the pavement surface through a circular loading plate
and monitoring the induced pavement deflection at several distances from the source.
In the test, the recorded impact force and displacement signals are used as a basis for
estimating the pavement stiffness properties, which is an inverse problem of interest in
this study. There are two major parts in solving the inverse problem: one is the choice
of an appropriate forward model that can be used to simulate the FWD test, and the

other is a suitable inversion algorithm.

With regard to the first problem component, the forward model that simulates the
FWD test is typically given by an elastostatic multi-layered model (e.g. Khazanovich
and Roesler, [1]), in which the equivalent static load on the pavement is represented by
the peak value of the FWD load time history, while the equivalent static displacement
is represented by the peak value of the FWD deflection record. More realistically, the
FWD test can be characterized via an elastodynamic model (e.g. Meier and Rix, [2])
in which the entire load time history is used to calculate the transient pavement de-
flection at control points. Because the FWD test is essentially a dynamic test and the
dynamic backcalculation methods are typically able to extract more information from
FWD measurements (Magnuson et.al [3]), an interpretation method based on elastody-
namic theory is preferred over that based on static models. Consequently, in the current
project, the multilayer viscoelastic dynamic model developed by Guzina & Pak ([4]) is

used as a basis for the forward analysis.

Given the forward model (e.g. an elastodynamic multilayered model), various tech-
niques are available to solve the inverse problem. Most available methods are based on
the iterative gradient-based minimization of an objective function (Harichandran, et.al.
[5], Hossain and Zaniewski [6]). In this class of methods, an assumed objective (i.e.

cost) function is usually defined as a measure of the misfit between the theoretical and



measured deflections at control locations. When the objective function is minimized,
the pavement properties used in calculating the theoretical deflections at the minimum
point are taken as the backcalculation result. For example, Harichandran et. al [5] em-
ployed the modified Newton algorithm to backcalculate the pavement properties. With
the development of artificial intelligence, an alternative minimization method known as
Genetic Algorithm (Fwa et. al. [7]) has also been employed to solve the foregoing class
of inverse problems. However, the main drawback of the gradient-based minimization
methods and genetic algorithms is that they require an extensive computation time be-
cause the forward (i.e. predictive) model needs to be run multiple times. The artificial
neural network (ANN) approach overcomes this problem because it eliminates the need
to evaluate the forward model during backcalculation of the pavement properties from
FWD measurements (Kim and Kim [8]; Meier and Rix [2]; Khazanovich and Roesler
[1]; Williams and Gucunski [9]).

In the current project, a novel backcalculation technique is developed to estimate
the pavement stiffness properties from the FWD measurements based on a dynamic
pavement model and an artificial neural network approach. The advantages of the
proposed backcalculation model involve: (i) the use of a three-dimensional multilayer
visco-elastodynamic model as a predictive tool that accounts for the dynamic nature of
the FWD test and the creep behavior of the Hot Mix Asphalt (HMA) layer, (ii) the
computation efficiency of the ANN, and (iii) the fact that the ANN predictions do not
rely on initial seed values. In the report, the term “HMA” and ”asphalt concrete” will

be used interchangeably.
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Figure 2: Layout of the FWD apparatus






2 Physical Problem

2.1 Experimental Setup

Fig. 2 shows the setup of the Falling Weight Deflectometer used by the Minnesota
Department of Transportation (Mn/DOT). In the setup, a buffered annular loading
plate with a radius of 15 c¢m resting on the pavement surface is used to transfer the
impact load from the falling weight to the pavement. The induced vertical surface
displacement is monitored at nine control points using the velocity sensors (G;, i = 0, 1,
..., 8) known as geophones whose spacing is listed in Table 2. In the current project, the
velocity measurements at geophones 2, 5 and 8 are used as a basis for the wave-based

pavement characterization.

2.2 Back-analysis of Pavement Properties

As shown in Fig. 3, the pavement profile in this study is approximated as a multilayer
visco-elastic system consisting of the hot mix asphalt (HMA) layer, aggregate base,
subgrade, and semi-infinite half-space. The interface between the subgrade and half-
space is taken to represent the location of a permanent or seasonal stiff layer (e.g.
groundwater table or frozen ground), which is an important factor in determining the
highway load restrictions. As such, the depth to the stiff layer will be one of the key issues
addressed in the current project. Also of interest in this study are the stiffness (i.e. shear
modulus) and thickness of each pavement layer. It should be noted that throughout
this report, “E” stands for the Young’s modulus, “G” indicates the shear modulus, “h”
denotes the layer thickness, subscript “HMA” stands for the asphalt concrete, while
subscripts “B”, “S”, and “H” refer to the aggregate base, subgrade, and half-space (i.e.
stiff layer), respectively.

In the quest to resolve the elastic moduli of individual pavement layers from the FWD
measurements, it should be kept in mind that the significant frequencies generated by

the impulse load and recorded by the velocity sensors in the FWD test rarely exceed



80 to 100 Hz, so that the corresponding wave lengths (A\;,) in the asphalt layer are
typically longer than 2 meters. On the basis of an empirical finding that the seismic
waves are typically not capable of resolving layers thinner than \,;,/12 (Farr, [10]), it
may be difficult to estimate properties of the HMA layer (whose thickness in the field is
typically 0.1 m to 0.2 m) exclusively from FWD measurements. Moreover, the thickness
and the basic material properties of the HMA layer are available from the construction
record for many existing pavements. As a result, the thickness and the stiffness of the
HMA layer are taken as inputs to the proposed backcalculation methodology. In this
study, also assumed available (i.e. known) is the thickness of the aggregate base, which
is taken as an input to the backcalculation model as well.

To summarize, the inputs for the backcalculation model developed in this study are
(i) the thickness and material properties of HMA (i.e. asphalt concrete) layer, (ii) the
thickness of the aggregate base, and (iii) the FWD force and deflection measurements;
the outputs are (i) the stiffness of the aggregate base, subgrade and half-space, and (ii)
the thickness of subgrade. The above categorization of the pavement properties and the
basic structure of the proposed backcalculation approach are summarized in Table 3 and

Fig. 4, respectively.
HMA:GHMA ,VHMA ) pHMA ,ES HMA EP,HMA

hHMA

22
hey Agoregate Base: Gs Vi, Ps &5 s, Eps

A
\ hs Subgrade Gs ,Vs,Ps, &s s, &ps

Halfspace
GH 1VH lpH ,ESyHlEer

Figure 3: Pavement Profile



Table 2: Geophone Spacing in the FWD Setup

Geophone Number

Distance to center of loading plate [m]

0

0

1

0.203

0.305

0.457

0.610

0.914

1.219

1.524

0y | OO e W N

1.829

Table 3: Classification of Pavement Properties

Layer Known Properties | Unknown Properties
HMA Stiffness, Thickness (N/A)
Aggregate Base Thickness Stiffness
Subgrade (N/A) Thickness, Stiffness
Half-space (N/A) Stiffness
Inputs Outputs
HMA Properties Stiffness of Aggregate Base

(Stiffness & Thickness)

Thickness of Aggregate Base

Stiffness of Subgrade

FWD Measurements

ANN Backcalculation Model

Stiffness of Half-space

Thickness of Subgrade

Figure 4: Overall Backcalculation Scheme






3 Forward Model

3.1 Introduction

In this investigation, the FWD test is simulated using the three-dimensional dynamic
model developed in Guzina and Pak [4]. In this model, the pavement is represented by
a multilayer viscoelastic system resting on a semi-infinite half-space (see Fig. 5). Each
layer extends infinitely in the horizontal direction and is characterized by the shear
modulus (G), Poisson’s ratio (v), mass density (p), and the damping ratios & and &, for
shear and compressional waves, respectively. The load acting on the pavement surface is
assumed to be time harmonic and uniformly distributed over the circular contact area.
This assumption is considered reasonable because, upon applying the Fourier transform,
the impulse load in the FWD test can be decomposed into a series of time harmonic loads
at different frequencies. Also, based on the study of Guzina and Nintcheu ([11]), the
systematic errors induced by approximating the contact load distribution in the FWD
test as uniform are insignificant as long as the deflection measurements are performed
outside of the loaded annular area.

It should be noted that in the dynamic analysis of linear viscoelastic systems, ma-
terial damping can be effectively taken into account by introducing the complex shear
modulus (G*) and the complex Poisson’s ratio (*) instead of the respective elastic con-
stants G and v into the linear elastic analysis (Findley et. al. [12]). In what follows,
the choice of the complex shear modulus and Poisson’s ratio for the asphalt concrete as
well as the base, subgrade, and half-space soils will be discussed in detail with reference

to Table 3 and the assumptions of above forward model.

3.2 Hot-Mix Asphalt (HMA) Layer

For the hot-mix asphalt (HMA) layer, the mass density (pmara) and the elastic Pois-
son’s ratio (vgpr4) do not vary significantly for different mixtures and are consequently

assumed to be constant. On the other hand, the thickness of the HMA layer (hgpa)
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Figure 5: Forward Model

is assumed to be available from the construction record of the pavement tested. The
particular values of the mass density, Poisson’s ratio and the thickness of the asphalt

concrete layer that are considered in this study are:

prma = 2335 kg/m®, vima = 0.4 (1)

0.lm<hygys<04m (available from construction record)

Owing to the asphalt’s creep behavior, its complex shear (G%,,4) modulus and
complex Poisson’s ratio (vj,,4) are in general frequency-dependent and a variety of
experimental methods are available to measure their frequency variation. For generality
of the neural network developed in this study, the complex shear modulus and complex
Poisson’s ratio of asphalt concrete that are used to simulate the FWD measurements are

approximated using the power law model (Findley et. al. [12], Zhang and Drescher [13]).

According to the theory of viscoelasticity (Findley et. al. [12]), if the uniaxial creep

compliance of a viscoelastic material in time domain (J(t)) is known, its strain-stress
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relationship can be stated as:

(0= [ 7-97% )
By substituting £’ = ¢t — £ into eq. (2), one has:
0 =- [ a2 ) )

Further, upon substituting () = ¢*¢™! and o(t) = 0¢e™’ (where w is the circular

frequency) into eq. (3), one obtains:

. 00 0 iw(t—¢')
g*ezwt — _/0 J(gl)% (4)

As a result, the complex uniaxial creep compliance J*(w) in the frequency domain

can be expressed as:

*

«_ € OO e —iwE! et
== (w) [ (e e (5)
Owing to the fact that J(£') = 0 when & < 0, eq. (5) can rewritten as:
T = (i) [ I(€)e = dg = () FLIE) ()

where F[J(¢')] denotes the Fourier transform of J(£) (see [15]).
In this investigation, the creep compliance behavior in time domain for the hot-mix

asphalt is described by the power law model:
J(t) = Dy + Dyt™ (7)

where Dy, D; and m are material parameters, with 1/D, denoting the elastic Young’s
modulus. Substituting this relationship into (6), the complex compliance for the HMA
can be written as

J'(w) = Do + DiI(1 +m)(iw) ™ (8)

By virtue of the fact that the uniaxial complex compliance and the complex Young’s

modulus (E*) are reciprocal, i.e.

(W) Egaa(w) = 1, (9)
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The complex Young’s modulus of the HMA can be obtained from (8) as

. 1 1
Ernnalw) = J*(w) D+ DiT'(1 +m)(iw)—™

(10)

On the basis of (10) and an additional assumption that the complex bulk modulus
of HMA (K3;,,4) is equal to the elastic bulk modulus (K 4) (e.g. Hopman [16]), i.e.

Euna (1)

Kiya=Kyya=—224
HMA HMA 3(1 - QVHMA)

where vy a4 = 0.4 is the elastic Poisson’s ratio and Egas4 is the elastic Young’s modulus
of asphalt concrete, the complex shear modulus (G%,,4) and complex Poisson’s ratio

v} of the asphalt concrete layer are finally obtained as:
HMA

3Kpma— Elpa
* = 13
Vgma 6K rraa ( )

According to the physical meaning of power law model, the elastic Young’s modulus
(Exma) is the inverse of Dy, i.e.
1

0

As aresult, the complex shear modulus (G%;,,4) and complex Poisson’s ratio (vj;3,4)
of HMA can be expressed as a function of Dy, D; and m only. For the backcalculation
model developed here, there are no restrictions on how to obtain these three parameters,
as long as the values obtained characterize the HMA appropriately. In the current
project, Dy, D; and m are obtained by minimizing the difference between the amplitude
of the complex Young’s modulus given by the power law model (10) and that given by an

appropriate empirical relationship. In this project, the empirical relationship proposed

by Witczak ([17]) is used:
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where

|E;IMA|:

Vhers:
P34:
pag:
P4t

P200-

log|Efra(f)| = —0.261 4 0.008225p909 — 0.00000101(,0200)2
Vierr

V;Jeff + Va

1.87 + 0.002808p4 + 0.0000404p35 — 0.0001786(p33)2 + 0.0164p34

+0.00196p4 — 0.03157V, — 0.415

(15)

1+ e(—0.716log f —0.7425logn)

Amplitude of the complex Young’s modulus of HMA, in 10° psi;

Asphalt binder viscosity, in 10° poise (at any temperature, degree of
Y. y

aging);

Frequency of the load, in Hz (f = 3%, w is the circular frequency);

Percent air voids in the mix, by volume;

Percent effective bitumen content, by volume;

Percent retained on 2 in. sieve, by total aggregate weight (cumulative);

Percent retained on £ in. sieve, by total aggregate weight (cumulative);

Percent retained on No. 4 sieve, by total aggregate weight (cumula-
tive);

Percent passing No. 200 sieve, by total aggregate weight (cumulative).

The parameters that describe the HMA grading (V,, Viess, P34, pss, pa, p200) are

assumed to be known for a specific HMA and Table (4) lists their respective values for

three characteristic types of HMA used by the Mn/DOT. Besides these parameters, the

bitumen viscosity (n) in eq. 15 is calculated using the Superpave equation (Witczak,

[17]) which is defined as:

loglo (loglo nTRankine) = A + VTS(loglo TRankine) (16)

TRankine = TFahrenheit + 459.67

where Trgnrenneir 18 the asphalt temperature in Fahrenheit, A is the y-axis intercept

(in the plot of log;y(1081o Mrpy,ri.) 28ainst (10819 Trankine)) and VTS is the viscosity
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temperature slope given by

VTS — log log nr, — loglognr

Ty — Ty

(17)

where 77 and 7T, denote the binder temperature in Rankine. In general, parameters

A and VTS depend on the type of HMA and Table (4) shows their values for three

representative types of HMA.

Table 4: HMA Parameters

Type A VTS | Val%] | Veersl%] | p3al%] | p3s[%] | pal%] | p200]%]
PG 58-28 | 8.1099 | —2.6413 | 5.37 10.07 0 15.5 33.3 5.2
PG 58-34 | 8.8606 | —2.9286 | 5.09 10.49 0 13.5 31.5 5.2
PG 58-40 | 9.2113 | —3.0685 | 5.75 10.31 0 14 33 4.7

Based on the foregoing developments and a typical range of HM A grading parameters

(see Table 5), the range of parameters Dy, D; and m in the power law model that are

appropriate for simulating the viscoelastic behavior of asphalt concrete in Minnesota

are listed in Table 6.

Table 5: Typical Ranges of HMA Parameters

Parameters | Npinder [10° Poise] | V, [%] | Vierr (%] | psa (%] | pas (%] | pa [%] | paoo [%)]
Minimum 0.00004 3.0 7.0 N/A N/A | N/A N/A
Medium 15000 60 | 110 | N/A | N/A | NJA | N/A
Maximum 30000 00 | 150 | N/A | N/A | N/A | N/A
Grade 1 N/A N/A N/A 0 10.0 20.0 7.0
Grade 2 N/A N/A | N/A | 50 | 500 | 60.0 | 5.0
Grade 3 N/A N/A | NJ/A | 450 | 700 | 85.0 | 2.0

14




Table 6: Range of Parameters in Power Law Model

Name Dy [107""Pa~!] | D; [107""Pa~!] | m
Minimum Value 4 2 0.15
Maximum Value 100 700 0.45

3.3 Aggregate Base, Subgrade and Half-space

For the aggregate base, subgrade and half-space soils, elastic Poisson’s ratio (v), mass
density (p), and the hysteric (i.e. frequency-independent) damping ratios (&, &,) do not
vary greatly in typical field situations, and they are assumed to have constant values as
shown in Table 7. The complex shear moduli (G*) and complex Poisson’s ratios (v*)
for each layer that are required to simulate the FWD test using the dynamic model are

calculated from the correspondence principle (Christensen, [18]) according to

G = (1+2€,)G (18)

. 261 —v) =281 -2v) —iv
YT a1 —v) — 26,(1— 20) —

where elastic shear modulus (G) for each layer is specified in Table 7. As examined by

(19)

Table 7: Aggregate Base, Subgrade and Half-space Properties

Property hm] | G[MPa] | v |plkg/m3| & & | E [MPa]
Aggregate Base | 0.1 ~ 1.0 | 10 ~ 130 | 0.35 2027 0.01 | 0.005 | 27 ~ 351
Subgrade 03~30]10~130| 04 1865 0.01 | 0.005 | 28 ~ 364
Half-space N/A 10 ~ 130 | 0.45 2160 0.01 | 0.005 | 29 ~ 377

Ewing et.al. [14] among others, the hysteric damping model provides a close approxi-

mation of attenuation mechanisms in soils subjected to small-strain seismic waves (such

as those generated in the FWD test).
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4 Data Interpretation

4.1 Frequency Response Function (FRF)
4.1.1 Definition of FRF

To estimate the pavement stiffness properties from FWD measurements, the dynamic
pavement response is characterized in the frequency domain using the concept of a
frequency response function (FRF) whose values are taken as input to the back-analysis.
If the temporal variation of an input to a linear system is denoted as z(¢) and its output
is denoted as y(t), the frequency response function characterizing the system is defined

as:

FRF(f) = 2\ (20)

X(f)
where Y (f) and X (f) are the Fourier transforms of y(t) and z(t), respectively (see

Fig. 6). In the above, the forward and inverse Fourier transform of a given time history

h(t) are defined as

H(f) = /_ 7 h(t)e 2ty (21)
nt) = [ H(p)e

where i = /=1 (see [15]).

X (f) Y (f)

FRF(f)

Figure 6: Linear System
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4.1.2 Selection of Input and Output Signals

As demonstrated in Guzina and Nintcheu [11], the contact pressure distribution between
the pavement and the loading plate in an FWD test is typically non-uniform. This
interaction effect, which is in contradiction with the assumption of the forward model
employed, is known to affect the response of the center geophone (Gy) significantly. As a
result, the deflection measured at the center geophone is eliminated from consideration
in this study. Moreover, due to the inertia of the loading plate (see Fig. 7), the force
F(t) measured on top of the loading plate is not equal to the actual force Q(t) acting
on the pavement, and thus may not represent a reliable measure of dynamic excitation
of the pavement system. To alleviate the problem, instead of taking the load signal as
an input and deflection signal as the output, the displacement time history at geophone
p (denoted as d,(t)) is taken as the input signal while the displacement time history at
geophone ¢ (denoted as d,(t)) is taken as the output. As a result, the transfer functions

characterizing the pavement system in this study can be written in compact form as

Dy(f)
Dp(f)

where D,(f) and D,(f) are the Fourier transforms of d,(¢) and d,(t), respectively. In this

FRFy, = q>p (22)

project, the pair (p, q) takes two sets of values, namely (p = 2,¢ =5) and (p = 5,¢ = 8)

with reference to geophones 2, 5 and 8 in Fig. 2.

4.1.3 Usable Frequency Range

Due to the finite width of the pavement section, it is reasonable to expect that lateral
reflections from the edges of the asphalt concrete layer would influence the FWD mea-
surements. Unfortunately, such reflections could not be accounted for by the forward
model employed which assumes that all pavement layers infinitely extend in the lateral
direction. In the frequency domain, this effect takes the form of an unusual peak around
50 to 60 Hz, and Fig 9 shows one such example.

To substantiate the foregoing argument, the fundamental resonant frequency for

transverse vibration of the HMA layer of width wgr4 can be estimated by approxi-
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‘ F(t) \ F(t) (measured force)

 Sted Plate | -~ M
Th
u(t)

Q(t) = F(t) - mu(t) ‘ Q(t) (force applied to pavement)

Loading Plate Discrete Model

Figure 7: Illustration of Inertial Effects in FWD Testing

mating the asphalt layer as a free-free rod as shown in Fig. 8. According to the one-

dimensional theory of wave propagation, the kth resonant frequency of the free-free rod

in transverse vibration can be written as

k csmma
= = 23
Ji 2WEMmA (23)

where k is the mode number, ¢, mara is the shear wave speed of asphalt concrete, and

wrma 18 the width of the pavement.

By letting £ = 1, the fundamental resonant
frequency is

CS,HMA (24)
2wrma

resonant —

As a result, for the test section examined in Fig 9, the fundamental resonant fre-

quency of the asphalt concrete layer in transverse vibration can be approximated by

Cs HMA
resonant — 2107 (25)
HMA
_ |Gama
Cs,HMA =
PHMA
Euna
GHMA =

2(1 + VHMA)
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Figure 8: Fundamental Vibration Mode for the Free-Free Rod

where cs gara is the shear wave speed of asphalt concrete, wgara is the width of the
pavement, which in this case is 7.32 meters (24 feet), Gy is the elastic shear modulus
of HMA, vgya = 0.4 is the Poisson’s ratio of HMA, pgpra = 2335 kg/m3 is the mass
density of the HMA, and Ey 4 is the elastic Young’s modulus of HMA with an assumed
value of 5 GPa. Based on these assumptions, the fundamental resonant frequency of the
asphalt layer can be can be calculated to be fesonant = 60 Hz.

To alleviate the problem associated with lateral reflections, the frequency range used

in this study is taken as:

[fmina fmaw] - [1, 51] Hz (26)

4.1.4 Reliability of the FRF Measurements

The FWD device used by the Mn/DOT (i.e. the loading plate, falling weight, geophones
and other components) is built on a steel frame (see Fig. 11). To check whether the
vibration transmitted through the frame has any effect on the deflection measurements,
a comparison test was made by comparing the frequency response functions obtained

using the frame-mounted FWD geophones and the FRF obtained using the high fidelity
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Figure 9: FRF in FWD Test (Test Section 33, May 22, 2001)

accelerometers mounted independently at the same position. In the comparison, the
FWD geophones were used first and the frequency response functions were obtained

from the deflection time histories as measured by the geophones. Second, the geophones

21



2, 5 and 8 are lifted and three accelerometers were glued onto the pavement at the same
place corresponding to the three geophones. Third, the FWD test with the same load
level was performed and the frequency response functions were (22) re-computed from
the acceleration time histories. The comparison is shown in Fig. 10. From the Figure,

it can be seen that:

e The common feature of the FRF’s measured using both geophones and accelerom-
eters is that there is an unusual resonance peak located around 50 Hz to 60 Hz.
This means that this peak is not induced by the FWD device, but rather by the
pavement characteristics. Therefore, the above speculation that this peak is due
to the finite width of the pavement appears to be reasonable. Also, the device
that was used to record the vibrations with the aid of high fidelity accelerometers

is DC powered, which eliminate the possible influence of AC electrical noise.

e It should be noted that the frequency response functions given by the two sets
of transducers differ significantly in the low frequency range (below 10 Hz). The
reason for this irregularity is that the accelerometers are not well-suited for vi-
bration measurements at very low frequencies (Nazarian and Stokoe, [19]) owing
to the high noise-to-signal ratio. One may also observe that this irregularity is
more pronounced for F'RFg/s than FRFy/,, which can be explained by the lower

signal-to-noise ratio at the location of geophone 8 than that at geophone 5.

4.1.5 FRF Sampling Scheme

To use the selected frequency response functions as an input to the backcalculation
analysis, the simplest way is to take the values of the FRF of interest at several dis-
crete frequencies as an input. This is shown in Fig. 12a, where the real and imaginary
components of the FRF at five evenly distributed frequency points are taken as an
input. However, this strategy may not be robust when dealing with actual data be-
cause of (i) the inevitable presence of noise in the FWD measurements, and (ii) the fact

that frequency response function represented by the five sampling frequencies would be
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Figure 10: Comparison of FWD using Geophones and Accelerometers

influenced greatly even if there is only a slight level of noise around the sampling fre-
quencies. An alternative sampling scheme is illustrated in Fig. 12b. In this approach,

the frequency range of interest is divided into several segments. For each segment, the
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Figure 11: Dynatest FWD Device used by the Minnesota Department of Transportation

areas under the real and imaginary components of the FRF over that segment are taken
as an input to the backcalculation analysis. This strategy is more robust than the point
sampling scheme because the frequency response function represented by the segmental

areas will not be as sensitive to the noise at several isolated frequency points.

4.2 FRF from Forward Model

The visco-elastodynamic forward model employed in this study simulates the FWD test
in the frequency domain. For a given set of pavement properties at a certain frequency,
the FREF’s of interest at this specific frequency can be calculated. To obtain the variation
of FRF’s over a certain frequency range, the FRF must be evaluated multiple times
within this range. However, due to the sampling scheme adopted in the current project
(see Section 4.1.5), it is important that the simulated frequency response functions be
evaluated using a sufficient density of sampling points so that the integration results have

an acceptable level of error. However, it will be impractical to simulate the FWD test
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using a very large number of frequencies. To determine the optimal number of sampling
frequencies for the theoretical, i.e. forward model, a sensitivity study is performed as
shown in Fig. 13. In this comparison, the “exact” integration was based on the frequency

response function represented by 2000 frequencies, which is a far greater number than
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needed. In the figure, the integration error is defined as:

1 Narea AT@ai,QOOO - Area,-,Nj

(27)

(ETTOTz’nteg'ration)Nj = Norea = Areds o
where Ny, is the number of integration intervals times 2 (for real and imaginary parts),
Area; y, is the ith area under the frequency response function calculated when N; fre-
quencies are used, Area; 2000 is the ¢th area under the frequency response function calcu-
lated when 2000 sampling frequencies are used, and (E7707insegration)n; is the integration
error when N; frequencies are used in calculating the area under the frequency response
function. From Fig. 13, it can be seen that N; = 50 is sufficiently large to minimize the

integration error.
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Figure 13: Selection of the Number of Sampling Points Needed for FRF Integration
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4.3 FRF from FWD measurements

Because the experimental (i.e. field) frequency response functions are used as an input
to the backcalculation scheme developed in this project (as they encode the pavement
stiffness and damping properties), it is imperative that the FRF’s be computed from

FWD measurements effectively and accurately.

4.3.1 FRF Estimates

In general, there are two basic ways to estimate the frequency response function of

interest from the measured deflection time histories.

e Direct Division: This method is directly based on eq. (22). Because the
recorded time history is a digitized signal which includes only values at discrete
points, the discrete Fourier transform (DFT) is used to calculate D,(f) and D,(f)
featured in (22). For test j (j = 1,2, ...,n, where n is the total number of FWD
tests), the DFT of the displacement time histories at geophones p and ¢ is calcu-

lated respectively as

M-1
[Dy(f)ly = At 3 [dy(tm)]je™ 5, k=0,1,2,..,M -1 (28)
m=0
M1 s 2mkm
[Dy(fe)]; = At > [dy(tm)lje ™, k=0,1,2,..,M -1
m=0

where At is the sampling interval, M is the length of the discrete Fourier transform
record, and fi = 5/5; (see also Bendat and Piersol, [20]). On the basis of (28),the

averaged FRF can be written as:

FRqu(f):%é% » 4>p (29)

e Spectral Average: In this method, the FRF is estimated using the concepts of
the cross spectral density and the auto spectral density (Bendat and Piersol, [20])
in the form of

FRE,, = =227 (30)
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where Gpq(f) is the cross spectral density between the displacement signal at
geophone p and the one at geophone ¢, while G, (f) is the auto-spectral density
of the displacement signal at geophone p. In practice, Gp,(f) and G,,(f) are
estimated via (Bendat & Piersol, [20])

Goalf) = SO D)) G1
Gunlfe) = 5 LD LD, (32)

where n is the total number of tests, i = 1,2, ..., n is the test number, D,(f) is the
Fourier transform of the deflection signal at geophone p, and D;‘( f) is the complex
conjugate of Dy(f). To eliminate the effect of side leakage in eq. (28), [D,(f)]; is

calculated via

_;2mkm

[Dp(fi)]; = AL Y v(tm)[dy(tm)] e ™

k=0,1,2,.,M—1 (33)

where [d,(t)]; is the signal at geophone p for test i, v(¢) is a window function

used to smooth the estimation, and C is the loss factor caused by a given window

function v(¢). In general, C' can be defined as
Y R(t)dt
-y ()t

where T is the signal duration of, and vy, (t) is the boxcar window function. A

(34)

definition analogous to (33) applies to [Dy(f)];- In (34), all window functions are
assumed to be zero for t <0 and t > T. For 0 <t < T, the most commonly used

window functions are defined as

Upoe(t) = 1 Boxcar Window (35)
v(t) = 0.5(1— cos?) Hanning Window
v(t) = % 0<t< % Triangular Window
o(t) = Q(TT_ ) g <t<T
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Table 8: Pavement Properties Used in Windowing Function Comparison

Property hm]| G[MPa] | v |plkg/m3| & |& | E[MPa]
HMA 0.1 1200 | 0.35 2335 0.01 | 0 3240
Aggregate Base | 0.3 80 0.35 2027 0.005 | 0 216
Subgrade 1.0 40 0.4 1865 0.005 | 0 112
Half-space N/A 120 0.45 2160 0.005 | 0 348

Together with the direct division method, the spectral average method with three
window functions (Boxcar, Hanning and Triangular) is used to evaluate the FRF’s from
a synthetic displacement time history record for which the exact FRF’s are known. The
synthetic displacement time history is generated using the forward model in Guzina &
Pak [4] based on profile shown in Fig. 5 with pavement properties listed in Table 8.
From Fig. 14, which plots the frequency response functions obtained via the respective
methods, it can be concluded that the boxcar window is the best choice for the current

project.

4.3.2 Quality of FWD Measurements

In order to interpret the field data and backcalculate the pavement properties reliably,
it is necessary to ensure that the field measurements have an acceptable accuracy. The
coherence function is an effective criterion that can be used for this purpose. Upon as-
suming the deflection time history at geophone p to be an input signal and the deflection
time history at geophone ¢ to be an output signal, the coherence function is defined as

(Bendat & Piersol, [20]):

G
T = G GulD

where G, denotes the auto-spectral density, and G, is the cross-spectral density func-

(36)

tion as given in Section 4.3.1.
For a linear system with no extraneous noise, y*(f) is unity for all frequencies. If

the system is non-linear or noise is present in the measurements, ?(f) is smaller than
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Figure 14: Comparison of Window Functions

unity. Therefore, the measured data should be considered acceptable only if +*(f)

is equal or close to unity. Figs. 15 and 16 illustrate this criterion. In Fig. 15, the

coherence function is significantly smaller than unity (especially at lower frequencies)

30



and this measurement should be discarded. In Fig. 16, the coherence is close to unity
and the associated measurements can be considered to have an acceptable level of noise.
The foregoing method of input data quality checking has been incorporated into the
backcalculation software developed in this study.

It should be noted, however, that the coherence criterion is only a measure of the rel-
ative noise in experimental observations, and not a check of the measurement accuracy.
Based on the study of the field FWD measurements, another criterion for estimating the
quality of the FWD measurements has been established that is based on the deflection
time history measured by the center geophone. When this deflection time history oscil-
lates below and above zero after the main peak (Fig. 17a), this measurement is judged
to be acceptable. Otherwise, if it hovers above zero after the main peak (Fig. 17b), this

measurement is believed to have a poor quality.
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Figure 15: Coherence Illustration for Test Section 28, Aug. 4th, 1999
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4.3.3 Baseline Correction

As stated above, the FRF’s (FRF,; and F'RF}sg) are estimated from the deflection time
histories at selected geophones (G2, G5 and G§) as measured by the FWD. Because
the FWD apparatus actually measures the particle velocity at geophone locations, the
velocity time histories must be integrated to obtain the pavement deflections. However,
owing to the noise embedded in the measured velocity time histories, such integration
will cause the measurement error to be accumulated. As shown in Fig. 18, the accu-
mulated noise results in a deflection time history that has a non-zero value at the end,
which is not reasonable for a linear pavement system. The purpose of baseline correc-
tion is to delete this accumulated noise from the deflection time history and three such
approaches are shown below. In these three methods, the deflection time history starts
at time to and ends at time ¢;, and the corresponding deflections d(t);—s, and d(t);—¢,

are denoted as dy and d;.

e Linear Correction The noise 6(¢) embedded in a deflection time history d(t)
is assumed to take the linear temporal variation, and the deflection time history
after baseline correction (d'(t)) can be calculated as:

dy — dy
t1 — 1o

d'(t) = d(t) / (37)

e Quadratic Correction The noise §(¢) embedded in a deflection time history
d(t) is assumed to take the quadratic temporal variation, and the deflection time
history after baseline correction (d'(t)) can be calculated as:

dy — dy

R

12 (38)

e Square Root Correction The noise 6(¢) embedded in a deflection time history
d(t) is assumed to take the square root temporal variation, and the deflection time

history after baseline correction (d'(t)) can be calculated as:

() = d(t) — L%\/i (39)
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Fig. 19 shows the effects of baseline correction on the estimated frequency response
functions. From the figure, it can be seen that (i) the baseline correction greatly improves
the estimated FRF, and (ii) FRF’s based on three baseline correction methods do not
differ significantly at frequencies above 10 Hz. Fig. 20 shows the effects of baseline
correction on the coherence function. From the Figure, the beneficial effect of baseline

correction should again be noted.
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Figure 18: Effects of Baseline Correction On Deflection Time History (Test Section 33,
05/22/2001)
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Figure 19: Effects of Baseline Correction on the Frequency Response Functions
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5 Artificial Neural Network (ANN)

5.1 Introduction to ANN

Artificial Neural Network (ANN) is a relatively new computational tool that is well
suited for an effective treatment of a variety of inverse problems. With reference to
Fig. 21 showing the architecture of a commonly used three-layer, feed-forward neural

network, the ANN can be described as follows:

1. A neural network consists of many interconnected processing elements called neu-
rons. For the multilayer feed-forward configuration used in this investigation, the
ANN takes a special form. It has several layers, and each layer has a number of
neurons. Every neuron is connected to the neurons of the neighboring layers only.
The connection is one-direction, which means that the information is passed only
from layer k—1 to layer &k, and not vice versa. There are also no connections among
neurons in the same layer. The strength of connection between the two neurons
is represented by the weight attached to this connection. For the connection from

neuron j to neuron 7, the corresponding weight is defined as w; ;.

2. Each neuron performs a simple computation on incoming signals in three steps
(Russell and Norvig, [21]). First, it calculates the net input using (here neuron s

in layer k£ is used as an example)

Sk—1
k_ ko k-1, 1k
ns - Z ws,mam + bs (40)
m=1
where n* is the net input to neuron s; Sj_; is the number of neurons in layer
k—1; w¥  is the weight from neuron m to neuron s; af, ! is the output of neuron

m in layer k — 1, and b* is the bias of neuron s in layer k. Secondly, the neuron
calculates its own output (a*) by applying the activation function of layer k to the
net input (n%) via

ag = f*(nf) (41)
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Theoretically, activation function f*(z) can take any form, such as the threshold
function and Gaussian function, and each neuron can have a different activation
function. In the current project, the neurons in the last layer (i.e. output layer)

use the linear activation function [22] given by

fHa)=a (42)

while the neurons in all other layers (excluding input layer) use the hyperbolic

tangent sigmoid function defined as

2

k = — — =
f(x)—1+672w 1, k=12 (43)

Third, this output is propagated to the neurons in the next layer (k + 1) through
its output connections, which in turn becomes the incoming signal for the neurons

in the next layer.

. Neural network receives its inputs at the input layer. The number of neurons in
the input layer is equal to the number of input parameters for a specific inverse
problem. The neurons of input layer forward the signals directly to the next layer
without performing any other operations. The input layer is typically labeled as

layer 0.

. For each layer in the network except the input one, there is a special neuron called
bias neuron with a fixed output of unity. The bias neuron is connected to every
neuron in its layer, and the weight of these connections is adjusted during ANN
training. For layer £, the weight from the bias neuron to neuron s is labeled as
b¥. The use of a bias neuron is not required for some problems, but it is generally
beneficial in most cases. This can be illustrated as follows (see also [23]). For a
fully connected feed-forward neural network, a neuron in layer £ will have Sy_;
inputs (there are Sy neurons in layer k£ and Sk_; neurons in the layer k — 1),
which defines a S, _;-dimensional space. This neuron draws a hyperplane through

the corresponding Sy ;-dimensional space, whose position is determined by the
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weights from the previous layer to this neuron and the weight from the bias neuron
in layer k. For the entire layer &, there are Sy such hyperplanes. Without the use of
a bias neuron, all the hyperplanes are constrained to pass through the origin. This
constraint is appropriate for some cases, but not appropriate for many problems
such as the one shown in Fig. 22. In Fig. 22, a neural network is trained to classify
the points labeled with “+” from the points labeled with “0”. An appropriate line
that separates these points should be similar to line AB. The orientation of line
AB is determined by the input weights, while the distance from the origin to line
AB is determined by the internal weight originated from the bias neuron. It can
be seen that a line passing through the origin (without bias neuron) is not capable

of classifying the “+” from the “o0”.
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Figure 21: Architecture of Three-layer Feed-Forward Neural Network
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Figure 22: Pattern Classification Example. A neural network is trained to classify the
point “+” from the point “0”. There is two neurons in the input layer which represent
the “x” coordinate and “y” coordinate, one neuron in the output layer and no hidden
layer. The output of 1 means point “4” and the output of 0 means point “0”. There
is a bias neuron in the output layer with fixed output 1. The activation function of the
neuron in the output layer is the threshold function which takes the value 1 when the

input is greater than zero and 0 otherwise.
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5.2 Neural Network Training

With reference to Fig. 21, it can be concluded that the input/output relationships rep-
resented by the ANN are determined by its architecture (i.e. the number of neurons and
the way in which all these neurons are interconnected) as well as the weights associated
with the neuron connections. Because the architecture of the neural network is typi-
cally pre-determined by a “rule of thumb” for a specific problem, the weights associated
with the connections are iteratively adjusted so that the ANN produces the desired (i.e.
target) output for a given input. This adjustment process is called training, and a set
of well-chosen input-output pairs which are called the training data set is required to
complete the training process.

During the training process, the weights are adjusted so that the difference between
the output given by the ANN and the target output is minimized for a given training
data set. The training process can also be viewed as a minimization process. Like
any minimization problem, there is an objective function (or error function) associated
with the training process. There are two distinct training modes that correspond to
different forms of the objective function. One is called the progressive mode, in which
the weights are adjusted based on the ANN’s performance on each training data pair
separately. The other is called the batch mode, in which the weights are adjusted based
on the ANN’s cumulative performance on all training data pairs. The objective function
for the batch mode which is used in this project is defined as

1 9 M 2
V=22 (a5, — 1) (44)

g=1j=1
where () is the total number of training data pairs, M is the index of the output layer,
t,q is the jth component of the target output vector for gth training data pair, Sy, is

aM

the number of outputs and aj,

is the jth component of the neural network’s output
vector for the ¢th training data pair.

The algorithm which is commonly used to adjust the weights is the backpropagation
(BP) method (Rumelhart, Hinton and Williams, [24]). The essence of the BP method is

to adjust each weight in an iterative fashion based on its “contribution” to the objective
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function (44). Because the standard BP method typically converges very slowly for
large problem, the training methods that are commonly used in practice represent the
modified versions of BP such as the BP with momentum (Plaut, Nowlan and Hinton,
[25]) and the quickprop [26]. In the current project, the BP method with Levenberg-

Marquardt algorithm [27] is used.

5.2.1 Backpropagation with Levenberg-Marquardt Method

Upon defining a new vector x composed of all the interconnection weights and bias in

the neural network, the objective function shown in (44) can be rewritten as:

Vi) =35> &) (45)

i=1

N | —

where N = Q) X Sy, @ is the number of training data pairs, Sy, is the number of outputs,

and e;(x) is defined as:
ei(x) = alt —t;, i=1,2,...N (46)

where i =Q(j —1)+¢q,7=1,2,....,5uv,¢=1,2,...,Q, a%] is the jth component of the
predicted output vector for the gth training data pair, and ¢, , is the jth component of
the target output vector for the ¢th training data pair. This form of an objective function
is common to general optimization problems and a number of traditional optimization
algorithms can be used to minimize it. For example, the gradient search-based iterative

algorithm according to traditional Newton’s method can be written as
Ax = —[V2V(x)]'VV (x) (47)

where Ax is the update of x resulting from a single iteration, V2V (x) is the Hessian
operator, and VV (x) is the gradient vector. For the objective function V' (x) given by
(45), the Hessian matrix and the gradient vector can be computed respectively via
VAV (x) = J*(x)J(x) + S(x) (48)
VV(x) = J"(x)e(x)
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where J(x) is the Jacobian matrix, i.e.

[ Bei(x)  Bei(x) de1 (x)
0x1 O0x2 e Oxn
dea(x)  dea(x) o dea(x)
J(X) — Vei(x) _ 6.’/.61 3:.52 . aa.vn
den(x) Oen(x) dep (x)
Oz Ox2 o Orn,
and S(x) is defined as
N
S(x) =Y ei(x)V7e;(x) (49)
i=1

To simplify the gradient evaluation following the Gauss-Newton method, it is assumed

that S(x) & 0 so that
Ax ~ —[JT(x)J(x)] I (x)e(x) (50)

The Levenberg-Marquardt method is a modification of the standard Gauss-Newton

method where:

Ax = —[J"(x)J (x) + pd] 7" (x)e(x) (51)

The parameter p in the Levenberg-Marquardt method plays the role of “exploration”
and “stabilization”. When an update step increases the objective function, y is increased
by a factor § (3 > 1) to stabilize the minimization process. When a step decreases the
objective function, p is decreased by multiplying % to explore wider error “surface”. In
the current project, # takes the value of 10.

Based on the Levenberg-Marquardt method, Hagan and Menhaj ([27]) proposed a
fast version of BP method, which is usually called Levenberg-Marquardt method in
artificial neural network training. With reference to the symbols defined in Table 9 and

Fig. 23, this BP with Levenberg-Marquardt algorithm is summarized as follows:

1. Calculating Objective Function:

All the training pairs are presented to the neural network to evaluate objective

function (45) using Eq. (46) based on target output vector and the predicted
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Table 9: Symbols used in the Levenberg Marquardt Method

Symbol | Meaning of Symbols

Sk: Number of neurons in layer k

nk: Net input of neuron ¢ in layer &

ak: Output of neuron 7 in layer £

ak: Output vector of layer k£, with Sy components

M + 1: | Total number of layers starting from 0, the input layer is layer 0
and the output layer is layer M

;o | Weight from neuron j of layer k£ — 1 to neuron ¢ in layer &

Wk: | Weight matrix composed of weights from layer k —1 to layer k, with

dimension Sy_; x Si

bk bias of neuron i of layer &

bk: bias vector layer £ with S components

R: Number of inputs

I Input vector with R components

t: Target output vector with S, components, given I
f* Activation function for all the neurons in layer &
Q: Total number of training data pairs

output vector (a™) obtained through a recursive formula
a’=1 (52)

where £k = 0,1,2,..., M — 1, M + 1 is the total number of layers (including the
input layer), f**! denotes the activation function in layer k + 1, W**! denotes
the weighting matrix from layer k to layer k + 1, a* denotes the outputs given by
the neurons in layer k, and b**! denotes the bias at layer k 4+ 1. At this time, all

weights and biases are kept unchanged.
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Figure 23: Illustration of Levenberg-Marquardt Algorithm

2. Calculating Jacobian Matrix:

Because x is composed of weights and biases of every layer, different methods
should be used for the calculation of the Jacobian matrix. The following equations

explain how to calculate the ith row of the Jacobian matrix.

For weight and bias of the output layer (w;j and b}),

O _ Oft— M) __0fM (i) on __0fM(n)
owM 8w% o onM 8w% B onM J

= AMa;-V[_l (54)

and

Oei _ Ot — fM(ni")) _ _ofM(M)on} _ 0f¥(n}")

oM oM - o M onM
=AM (55)
For the weight and bias of layer M — 1 (w};~" and b}’ ~"):
de; AMan_l(néM_l) M2, M
ow T i 4{9”;\4_1 — 0y ij
=AMl 2 (56)
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(961'
o

anil (nj'\/[_l) M
W’wi,j

J
=AM (57)

=AM

For the weight and bias of layer & (0 < k < M — 2, wk  and b¥):

Sk41 afk(nk)
Ak — 7 I'c—}—lAl?—i—l
s Jz_l a(nf) wj,z j (58)
de; _
o = Abal! (59)
, 862' k
a0k = A; (60)

3. Calculating Weight and Bias Update

Solve eq. (51) to obtain A(x).

4. Recalculate the Objective Function

Update the objective function (eq. (45)) using (x + Ax). If V(x + Ax) < V(x),
then multiply p by % (decrease ), update x by x = x + Ax and go back to Step
1 for next iteration. If V(x + Ax) > V/(x), then multiply x4 by § (increase u) and
go back to Step 3. As stated earlier, § = 10.

5. Stop Training

The training process is terminated when (i) the value of the objective function falls
below the predefined threshold value, or (ii) u is greater than a predefined large
value, or (iii) the predefined maximum number of iterations has been reached, or

(iv) the norm of the gradient is less than some predefined value.

5.3 Generalization Ability of ANN

From the statistical point of view, ANN can be seen as a regression model. For any
regression tool, an important criterion that evaluates the quality of the model is its

generalization ability. An ANN with good generalization ability is capable of producing
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good predictions (i.e. output) on novel inputs, which are not included in the training
data set. When neural network loses its generality, it gives poor prediction on novel

data although it may give very good prediction on the training data.

5.3.1 Over-fitting and Optimal Network Size

One of the reasons that can cause neural network to lose generality is that the network is
too large, i.e. that the input-output relationship which the neural network is capable of
representing is more complex than necessary. This phenomenon is called over-fitting, and
it can be demonstrated by training a network to learn the sine function (y = sin(z)) in
the range [—27, 27]. The example network has one neuron in the input layer representing
x, one neuron in the output layer representing y, and one hidden layer with ny neurons.

The training data is generated using:
y = sin(z) +e (61)

where z is an array of equally spaced sampling points within [—27, 27| and e is a Gaus-
sian random variable with mean value equaling zero and variance equaling 1. A total of
41 training data pairs is generated. Fig. 24 shows the comparison of the performance of
two networks with ny = 4 and ny = 20. In the diagram, the thick solid line represents
the exact sine function, which should be learned by the neural network, while the “+”
symbol denotes the “noisy” training data generated using eq. (61). It can be seen that
the large network “remembers” the training data set and the noise embedded in it, while
the small network “learns” the basic rules embedded in the training data. On the basis
of this example, it may be concluded that the ANN should not be too complex for a
given input-output relationship.

In solving inverse problems via the ANN approach, however, it is also not appropriate
to use excessively small neural network to prevent over-fitting because small neural
network is not capable of encoding complex relationships. Furthermore, according to
the study of Caruana et.al. [28] and Bartlett [29], the neural network’s generalization

ability is less sensitive to the size of network than to the magnitude of weights, which
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Figure 24: Effect of Network Size on Performance

makes it safe to use a neural network that is slightly more complex than necessary as
long as the magnitude of weights do not become too large during training.

For the feed-forward multilayer neural network used in the current project, the ad-
justable parameters that control the neural network’s architecture and therefore its
complexity are the (i) number of hidden layers and (ii) number of neurons in each hid-
den layer. Kim and Kim [8] suggested that the optimal number of neurons (ng) for a
network with one hidden layer should be approximately equal to

nr+ no

nu = round(————=+ \/Nirain) (62)

where n; is the number of inputs, np is the number of outputs, 1.4, is the number of
training data pairs, and round(- - -) takes the nearest integer. For the current project
where n; = 25 and np = 4 (as will be explained later), the above recommendation

(eq. (62)) implies that the number of weights should approximately be equal to the
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number of training data pairs times 0.3. Duda, Hart and Stork ([30]) suggested that the
total number of weights should be roughly equal to the number of training data pairs
times 0.1. In the current project, networks based on both recommendations are tried,
together with an intermediate case in which the number of weights is equal to the number
of training data pairs times 0.2. Although the backpropagation network with one hidden
layer proved to be capable of approximating any continuous function with sufficient
accuracy, a network with two or more hidden layers can achieve similar accuracy with
fewer neurons (e.g. [30]). To examine the computational efficiency of different ANN,
neural networks having one and two hidden layers with the above number of weights

were both trained.

5.3.2 Overtraining and Early Stopping

In neural network training, the magnitude of individual weights can become excessively
large when the neural network is overtrained. In general, overtraining results in similar
phenomena (i.e. loss of the generalization ability) as over-fitting. However, while over-
fitting relates to the inherent excessive complexity of the neural network, overtraining is
caused by over-minimization of the objective function which forces the neural network
to remember the training data rather than learn the rules embedded in the training
data.

On the other hand, the neural network will not learn the necessary rules well if the
objective function is not minimized to an acceptable level. According to Caruana et.al.
([28]), a technique called early stopping can overcome this problem. In this method,
a separate set of input-output data pairs is used to monitor the performance of the
trained network. This separate set of input-output data pairs, which must be novel to
the neural network (i.e. distinct from the training data set), is usually called test data
set. When the prediction error on the test data set reaches its minimum value and begins
to increase, the training is terminated and the network corresponding to the minimum
prediction error on test data is taken as the optimal neural network (Duda, Hart and

Stork, [30]). This is another criterion on stopping training described in Section 5.2.1.
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5.3.3 Noise Injection

Because the neural network developed in this project is designed to be used on the
field data in order to predict the pavement properties, it is logical to expect that the
experimental input to ANN would contain some variability. This is shown in Fig. 9,
which plots the frequency response function from multiple FWD tests performed on
the same test location on the same day. From the Figure, one can see that the FWD
measurements have significant variance even for the same test location. To develop a
trained neural network that is robust in the presence of such noisy inputs (i.e., to ensure
that the ANN has a good generalization ability on noisy inputs), one approach is to
add some variability (i.e. perturbation) into the input portion of the training data set,
while keeping the corresponding output unchanged (Matsuoka, [31], Grandvalet and
Canu [32]). This technique is called noise injection. In this study, the training data are
generated by simulating the FWD test using a three dimensional multilayer viscoelastic
dynamic model that produces results with no variability, i.e. noise-free training data.
Upon denoting the noise-free training data pair as (I, t') where I’ is the input vector
and t’ is the output vector, the “noisy” training data pair can be written as (I, t) with

its components defined using either

Ik = I]Ic(l + arele) (63)
ty =1,
or
Iy = I}, + caps Ry (64)
tj = t;-

where [ and ¢; are the components of the input vector and output vector of “noisy”
training data pair, while I; and ¢} are the components of the input and output vector
comprising the noise-free training data pair. In the above, R is a random variable with

uniform distribution within [—1, 1], ¢ is the relative noise level, and ;s denotes the
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absolute noise level. For a given noise-free training data pair (I, t'), eq. (63) and/or
eq. (64) is applied to all components of the exact (i.e. noise-free) input vector NN,, times.
For example, if there are 5000 noise-free training data pairs, there will be N,., x 5000
noisy training data pairs used in the neural network training. In the following, the
expression “number of training data pairs” will refer to the number of noise-free training

data pairs.
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6 Backcalculation Using ANN

6.1 Back-analysis Approach

Based on the foregoing developments (see Fig. 4), the ANN based backcalculation scheme

developed in this project is detailed in Fig. 25. This scheme is explained as follows:

e For a given type of hot-mix asphalt at certain temperature, its viscosity is calcu-
lated using eqs. (16). Together with the HMA grading parameters, this viscosity
is applied to the empirical equation (15) (Witczak [17]) to calculate the complex
Young’s modulus of the HMA. Second, the parameters in the power law model
(Dy, Dy and m) in eq. (7) are adjusted using regression so that the amplitude
of the complex Young’s modulus given by the power law model (10) is approxi-
mately equal to that given by empirical equation (15). (Fig. 26 shows the example
comparison of the amplitude of the complex Young’s modulus given by empiri-
cal formula and that given by the power law model.) Finally, the complex shear
modulus (G%,,4) and the complex Poisson’s ratio (v}, 4) of the asphalt layer are

calculated using egs. (10) to (14).

e Thickness of the HMA layer (hgara) and aggregate base (hg) are obtained from

the construction record.

e Frequency response functions (FRF) of interest are estimated from the FWD mea-

surements at geophones 2, 5 and 8 using eq. (30).

e Parameters of the power law model, the thickness of HMA, the thickness of the
aggregate base, and the segmental areas under the real and imaginary components
of the selected frequency response functions comprise an input to the ANN (see
Fig. 25). The outputs of the ANN are the thickness of subgrade (hgs) and the
shear moduli of aggregate base, subgrade and half-space (G, Gs and Gp).
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6.2 Generation of the Training and Test Data Sets

As stated before, the input-output relationship embedded in the neural network is ob-
tained by training the neural network using a properly selected, synthetic training data
set. In the current project, the training data set is generated by simulating the FWD
test using a computer program, which is an implementation of the three-dimensional
multilayer viscoelastic dynamic model (Guzina and Pak, [4]). With reference to Ta-
bles 6 and 7, the range of pavement properties that are used to generate the training
data set are summarized in Tables 10 and 11 that list (i) the parameters whose values

are assumed to be fixed, and (ii) the ones with variate values, respectively.

Table 10: Pavement Properties with Fixed Values

o8

Property h [m] G [MPa] v | plkg/m3] | & &
HMA Variable Value N/A 0.4 2335 N/A | N/A
Aggregate Base | Variable Value | Variable Value | 0.35 2027 0.01 | 0.005
Subgrade Variable Value | Variable Value | 0.4 1865 0.01 | 0.005
Half-space N/A Variable Value | 0.45 2160 0.01 | 0.005
Table 11: Pavement Properties with Variate Values
Property h [m] G [MPa] E [MPa]
HMA 0.1~0.4 N/A 1000 ~ 25000
Aggregate Base 0.1~1.0 10 ~ 130 27 ~ 351
Subgrade 0.3~3.0 10 ~ 130 28 ~ 364
Half-space N/A 10 ~ 130 29 ~ 377
Property Dy [107""Pa~!] | Dy [107''Pa™!] m
HMA 4 ~ 100 2 ~ 700 0.15~0.45

On the basis of Tables 10 and 11, the training data set is generated using the follow-



ing procedure, where R is a random variable with uniform distribution within [—1, 1],
[ frnins fmaz) 1 the selected frequency range (fim = 1 Hz and f;,, = 51 Hz based on
eq. 26), Ny = 50 is the total number of sampling frequencies, and feq; (j = 1,2, ..., Ny)

is the sampling frequency defined as

=1

cal,j = Jmin maz — Jmin) 37 1 65
1. Set the values of the fixed pavement parameters according to Table 10:
prra = 2335 kg/m’ (66)

pp = 2027 kg/m*
ps = 1865 kg/m®
pg = 2160 kg/m®

VaHMA = 0.4

vg = 0.35
vg =04

vy = 0.45
&, =0.01
&, =0.01
&, = 0.01
&p,s = 0.005
&p,s = 0.005
&p,r = 0.005

2. Initialize the index of the generated input/output training data pair (k) to zero;

3. With reference to Table 11, specify the randomly-selected values of the variate pavement parameters

according to:
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hg =0.1+ (1.0 —0.1)(0.5R+0.5) [m]

hs = 0.34 (3.0 — 0.3)(0.5R +0.5) [m]

Gp =10+ (130 — 10)(0.5R +0.5) [MPa]

Gs =10+ (130 — 10)(0.5R + 0.5) [MPa]

Gg =10+ (130 — 10)(0.5R + 0.5) [MPa]

Dy =4x10"" 4 (100 x 107" — 4 x 107'")(0.5R 4+ 0.5) [1/Pa]
Dy =2x10" 4 (700 x 107" — 2 x 107 ')(0.5R 4+ 0.5) [1/Pa]

m = 0.15+ (0.45 — 0.15)(0.5R + 0.5)
while satisfying the constraints:
Gp > Gs and Gs <Gy (68)

The above constraint is enforced because the aggregate base is typically stiffer
than the subgrade soil, and the half-space (stiff layer) is usually saturated or

frozen which makes it stiffer than the subgrade.
. Set the index for calculation frequency j to 1

. For frequency f.u ;, calculate the frequency-dependent parameters G 4(fear;)

and v} 4 (fear,j) according to eqgs. (12) and (13)

. Substitute Gipra(fearj)s Virara(fear;) and parameters set by eqgs. (66) and (67)

into the forward model to calculate the displacement response for geophones 2, 5

and 8 at frequency feq j, namely, Do(fearj), Ds(fearj) and Ds( fearj)-

. Increase the index for calculation frequency j by one, if j is greater than Ny,

continue to Step 8, otherwise go to Step 5.

. Use the calculated displacement response at geophones 2, 5 and 8 within [ fiin, fraz]

to calculate the frequency response functions according to eq. (22) which are
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rewritten here for convenience:

Ds(f)

FREy; = RO (69)
Ds(f)

FRFy = Bl

9. Use the integration scheme stated in Section 5.1.5, integrate the real and imagi-

nary parts of FFRFy5 and F'RFsg over the five selected frequency intervals, namely

[f1, fol, [f2, f3], [fs, fa], [fa, f5] and [fs, fs], where:

fi =1Hz
fo =11Hz
f3 =21Hz
fi1=31Hz
fs = 41Hz
fe = 51Hz

With reference to Fig. 12b, the resulting segmental integrals are denoted by
Areafgal,%, ATeaf,zmg,%, Areafﬁal’sg and Areaff,;agﬁs, where £k = 1,2,3,4,5, and

j = k + 1 conrrespondingly.

10. Based on the method of noise injection described in Section 6.3.3, construct
N,p noisy input/output pairs by applying eq. (63) and/or eq. (64) N,., times
to the noise-free segmental areas obtained in Step 9. The resulting (i.e. noise-

contaminated) input vector (I) and output vector (t) can be summarized as
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(1+ a’relR)ATea;gal,%
(1 + o, R)Area,?

imag,25
23
(]‘ + Crel R) Area’real,?f)

(1 + Qe R) AT@CLZZSW!J’%

(1+ arelR)Areaggal,%
(1+ arelR)Area%al,%

(1 + oy R)Areals

imag,25
45
(1 + aTelR) Areareal,%

(1 + o, R)Areat

imag,25

1+ aTelR)Areafgal’Qs
(1+ e R)Area,?, s
(1+ arelR)Area}fnagﬁg
(1+ arelR)Areafi?al’sg
(1+ ozrelR)Areaff;lag’sg

(1+ arelR)Area%al,E)s
(1+ O‘relR)ATea%al,E)s
(1+ ozrelR)Area?f,’mgﬁs
(1+ arelR)Areafgaws
(1+ ozmlR)Area?fnag,58
(1+ aTelR)Areafgal’sg
(1 + e R)Dy or Dy + agps R
(1 + oyt R) Dy or Dy + orgps R
(1 + ayegR)m or m + ags R
(1+ e R)hana or hgara + aaps R

(1 =+ arelR)hB or h,B + CkabsR
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11.

Gp

G
t=| (71)
hs

Gu

where a,.; denotes the relative noise level, and o4 denotes the absolute noise level.
The selection of o, and oy, for the last five components in I will be discussed in

detail in Section 6.3.

Increase the index of the generated input/output training data pair (k) by one. If
k is greater than the total number of training data pairs required, the computation

terminates; otherwise, go to Step 3.
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6.3 ANN Development

From the foregoing outline of the backcalculation technique proposed (see Fig. 25), it
can be seen that the neural network is the key component of the featured method. To
develop an optimal ANN for the problem of interest, many alternative neural networks
with different architectures were developed. As stated before, the ANN-based backcal-
culation is designed to be applied to actual FWD measurements as a tool for estimating
the stiffness properties of the pavement section. To aid the development process, back-
calculation models based on different ANNs are applied to actual FWD measurements
obtained at the Minnesota Road Research Project (Mn/ROAD) testing facility, and
the results are studied to decide which ANN model is most appropriate for the inverse
problem of interest. In this process, competing neural networks are trained using the
Matlab Neural Network Toolbox ([22]) and numerous Matlab routines written by the

author.

6.3.1 Summary of Neural Networks Developed

To find the optimal neural network, a total of 32 ANNs were developed based on the
considerations given in Section 5.3. For brevity, only five representative neural networks

will be discussed. They are described as follows.

e ANN 1 There are (i) 25 inputs to the network including 20 FRF values, Dy, D;,
m, hyma and hg, and (ii) 4 outputs including G, Gs, hs and Gy (see Fig. 27).
The network has two hidden layers, with 40 neurons in the first hidden layer and 20
neurons in the second hidden layer. The network is trained using 10, 000 training
data pairs and 653 test data pairs. In the noise injection process (see eq. (70)), the
relative noise level a,,.; which represents the perturbation of the noise-free FRF’s is
taken as o, = 0.03, while the noise level for the remaining five input components

takes the form of relative noise level with a value of a,¢ = 0.03 (eq. (63)).

e ANN 2 There are (i) 25 inputs to the network including 20 FRF values, Dy, D1,

m, hgna and hpg, and (ii) 4 outputs including Gg, Gs, hs and Gy (see Fig. 27).
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Figure 27: Ilustration of ANN 1, 2, 3 and 4

The network has two hidden layers, with 24 neurons in the first hidden layer and
12 neurons in the second hidden layer. The network is trained using 5, 000 training
data pairs and 653 test data pairs. In the noise injection process (see eq. (70)), the
relative noise level a,.; which represents the perturbation of the noise-free FRF’s is
taken as ay.¢ = 0.2, while the noise level for the remaining five input components

takes the form of relative noise level with a value of a,¢ = 0.2 (eq. (63)).

ANN 3 There are (i) 25 inputs to the network including 20 FRF values, Dy, D1,
m, hgma and hp, and (ii) 4 outputs including Gg, Gs, hs and Gy (see Fig. 27).
The network has two hidden layers, with 40 neurons in the first hidden layer and 20
neurons in the second hidden layer. The network is trained using 10,000 training
data pairs and 653 test data pairs. In the noise injection process (see eq. (70)), the
relative noise level o, which represents the perturbation of the noise-free FRF’s
is taken as «, = 0.2; the noise level for Dy, D; and m takes the form of relative
noise level with a value of a,.¢; = 0.03 (eq. (63)); the noise level for Az 4 takes the

absolute value agp; = 0.0127 meters, and the noise level for hp takes the absolute
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Figure 28: Illustration of ANN 5

value agps = 0.0254 meters (eq. (64)).

e ANN 4 There are (i) 25 inputs to the network including 20 FRF values, Dy, D;,
m, hgnara and hp, and (ii) 4 outputs including Gg, Gs, hs and Gy (see Fig. 27).
The network has two hidden layers, with 24 neurons in the first hidden layer and 12

neurons in the second hidden layer. The network is trained using 10,000 training
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data pairs and 653 test data pairs. In the noise injection process (see eq. (70)), the
relative noise level a,, which represents the perturbation of the noise-free FRF’s
is taken as ;. = 0.2; the noise level for Dy, D; and m takes the form of relative
noise level with a value of a,.¢; = 0.03 (eq. (63)); the noise level for Az 4 takes the
absolute value ag, = 0.0127 meters, and the noise level for hg takes the absolute

value agps = 0.0254 meters (eq. (64)).

ANN 5 (ANN Committee) In what follows, this model will also be referred
to as the sequential approach since the two consecutive neural networks are used

to solve the problem.

In the first network, there are (i) 25 inputs to the network including 20 FRF
values, Do, D1, m, hgya and hp, and (ii) 1 output, namely hg (see Fig. 28). The
network has two hidden layers, with 40 neurons in the first hidden layer and 20
neurons in the second hidden layer. The network is trained using 10,000 training
data pairs and 653 test data pairs. In the noise injection process (see eq. (70)), the
relative noise level o, which represents the perturbation of the noise-free FRF’s
is taken as a,. = 0.2; the noise level for Dy, D; and m takes the form of relative
noise level with a value of a,.¢; = 0.03 (eq. (63)); the noise level for hgpr4 takes the
absolute value ag, = 0.0127 meters, and the noise level for hg takes the absolute

value agps = 0.0254 meters (eq. (64)).

In the second network, there are (i) 26 inputs to the network including 20 FRF
values, Dy, D1, m, hgpa, hg and hg which is the output of the first network,
and (ii) 3 outputs including Gg, Gg and Gy (see Fig. 28). The network has
two hidden layers, with 40 neurons in the first hidden layer and 20 neurons in
the second hidden layer. The network is trained using 10,000 training data pairs
and 653 test data pairs. In the noise injection process (see eq. (70)), the relative
noise level a,.¢; which represents the perturbation of the noise-free FRF’s is taken
as ¢ = 0.2; the noise level for Dy, D; and m takes the form of relative noise

level with a value of a,¢ = 0.03 (eq. (63)); the noise level for hynra takes the

67



absolute value ag,; = 0.0127 meters, the noise level for hp takes the absolute
value agp; = 0.0254 meters, and the noise level for hg takes the absolute value

agps = 0.3 meters, which is the averaged prediction error of the first network

(eq. (64)).
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6.3.2 Computation Requirements

The neural network development is in general a computationally extensive process. In
this project, development of the ANN took approximately six months. The reasons for
such high computational cost are elucidated in the following.

First, training data generation took a significant computation time because the FWD
is simulated using a three dimensional dynamic model. To generate one training data
pair, it takes approximately 4 minutes. Including the 10,000 training data pairs which
were used to train the final network, a total of 28, 000 training data have been generated,
which would take about 78 days on a single personal computer. To accelerate this
process, two to three computers were used simultaneously over the period of one month.

Second, because of the large size of neural network used in this project, the neural
network training requires a long period of time. To accelerate the training, the second-
order Levenberg-Marquardt algorithm is used. However, the price of this acceleration
is the requirement for a large amount of physical memory, which is 7 to 12 GB for the
neural network developed. For each neural network, it takes an average of two days to
complete the training process.

Third, to choose a neural network that is most appropriate for the FWD field mea-
surement, all neural networks developed were applied to field FWD measurements. It
takes about 4 minutes to apply a neural network to one measurement (i.e., specific com-
bination of specific test time, test section, load level and test location). For all available

FWD field measurements, this process takes about 400 hours.
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7 Results

7.1 Performance on Synthetically-generated Test Data

To assess their performance, the competing backcalculation models based on the above
five ANN’s were applied to the synthetically-generated test data set first. In Figs. 29
to 33, the predicted values of each output parameter (Gg, G, hs and Gy) as given by
the ANN backcalculation model are plotted against their true values given by the test
data set. In the ideal case, the predicted values should be the same as their true values
for all test data, and all the points in the figure would lie on the line with the 45 degree
slope denoted by the thick line in the figures. Also shown in the figure is the correlation

coefficient defined as:
Cov(P,T)

T \/COU(P,P)\/OO’U(T,T) (72

where P represents the vector of predicted values of the selected property, T represents
the vector of true values of the same property, and Cov(P, T) is the covariance between

P and T. In the ideal case, the correlation coefficient is equal to unity.
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Figure 29: ANN Performance on Synthetically-generated Test Data, ANN 1
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Figure 30: ANN Performance on Synthetically-generated Test Data, ANN 2
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Figure 31: ANN Performance on Synthetically-generated Test Data, ANN 3
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Figure 32: ANN Performance on Synthetically-generated Test Data, ANN 4
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Figure 33: ANN Performance on Synthetically-generated Test Data, ANN 5
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7.1.1 Prediction Error

On the basis of the results plotted in Figs. 29 to 33, Table 12 summarizes the averaged

prediction error (L, norm) on each property for all five neural networks. From the

Table 12: ANN Prediction Error (Ls norm)

ANN | G [MPa] | Gg [MPa] | hg [m] | Gy [MPa]
ANN 1 4 3 0.10 2
ANN 2 9 4 0.31 )
ANN 3 7 4 0.31 4
ANN 4 8 4 0.30 2
ANN 5 7 4 0.28 4

table, it can be seen that the average prediction error for the thickness of subgrade is
approximately 0.3 meters, except for ANN 1. Such prediction error can be justified by
the inherent resolution limits of seismic waves. According to the seismological literature
(Farr [10]), seismic waves are typically not capable of resolving layers thinner than
Amin/12, where Ap, is the minimum wave length. To illustrate, the minimum shear

wave length in the subgrade layer for the problem of interest can be calculated as:

Cs,S
Amin = — 73
fmaz ( )
Gs
Cs,8§ =\ —
Ps

where ¢, g is the shear wave speed of the subgrade, Gs and pg are the respective shear
modulus and mass density of the subgrade, and f,,., = 51 Hz is the upper frequency
limit of FWD measurements used in the current project. Substituting Gg = 70 MPa
(which is an average subgrade shear modulus from Table 11) and ps = 1865 kg/m?® into
eq. (73), the subgrade thickness resolution can be calculated as

Amz’n _
T = 0.31m (74)
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which compares well with the average prediction error on hg given in Table 12.

From Table 12 and Figs. 29 to 33, it can also be seen that relative to Artificial Neural
Networks 2, 3, 4 and 5, ANN 1 has a lower level of noise in the training data set and
thus has a better performance on the test data set. As a result, from the stand point of

noise-free test data, higher noise level leads to the drop in ANN performance.
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7.2 Performance on Actual FWD Measurements

As stated earlier, the ANN backcalculation model developed in this study is designed
to be applied to field FWD measurements. As a result, the prediction performance on
the actual FWD measurements is considered to be the most appropriate criterion for
evaluating the effectiveness of each neural network. There are two representative low-
volume road (LVR) test sections at the Mn/ROAD research facility (see Fig. 34) from

which the FWD test data were used to evaluate the foregoing five neural networks.

Date Revisad: 01/18/2000
s docstain:rmes Low Volume Test Road
(\ 33t33|3435|3s|37|3s|39|4o\/q
L |24|25|2s|27|+2s‘za|3n|31|32|52‘53|54|

Test Section

Figure  34: Low Volume Road (LVR) Layout (Excerpted from
http://www.mrr.dot.state.mn.us /research/MnROAD Project/LVR.pdf and Modi-
fied by the author)

7.2.1 Regular Pavement Section

The backcalculation methodology based on the foregoing neural networks is applied to
the representative FWD measurements performed at the Mn/ROAD Test Section 33
(see Fig. 34) on May 22, 2001, for which the testing locations are shown in Fig. 35.
For this test, Table 13 shows the predicted pavement properties as given by each
of the five neural networks, and for each ANN, the properties shown in the Table are
the average values over the prediction results on six testing locations. Because the
FWD measurements in the current project are interpreted in terms of the frequency re-
sponse functions, it is also natural to compare the prediction quality of above five ANNs
by comparing the frequency response function (FRF’s) calculated using the estimated

pavement properties (Gg, G, hs and Gg) with the experimental FRF’s computed from
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Figure 35: Testing Locations of Special FWD Test (Mn/ROAD, Low Volume Road,
Test Section 33 and 33t)

FWD measurements. For the FWD tests performed at test location 3 under the load of
34 kN (Mn/ROAD Test Section 33, May 22, 2001), this FRF comparison is shown in
Figs. 36 to 40. From Table 13 and these figures, it can be seen that:

e Allfive ANNs yield (i) mutually consistent estimates of the four output parameters
(Gg, Gs, hs and G), and (ii) a reasonable good agreement between the predicted

and measured FRF.

e Although ANN 1 gives better results on the synthetically-generated, i.e. noise free
test data than the other four ANNs (e.g. column hg in Table 12), it does not

outperform other networks on the actual FWD measurements (see Table 13).

As an illustration, Table 14 summarizes the predicted pavement properties given by
ANN 5 in detail that includes six test locations (see Fig. 35) and two different impact
load levels. In Table 14, the last two rows show the average value and standard deviation

of the predicted values for all test location and load level combinations. From the Table,

80



it can be seen that ANN 5 gives consistent predictions for the FWD measurements at
different test location and load level combinations. This finding holds for other four

ANNSs as well.

Table 13: Comparison of ANN Predictions (Average+STD), Mn/ROAD Test Section
33, 05/22/01

ANN | Gg [MPa] | Gs [MPa] | hg [m] | Gy [MPa]
ANN 1| 55+£12 32+£3 0.9£0.10 90=x9
ANN 2 62E£5 33+4 0.8£0.05 96 £5
ANN 3| 57+£13 283 0.8+0.07| 102£5
ANN 4 61+8 31+4 1.0 £ 0.05 97+4
ANN 5| 51+£10 31+3 0.9+0.08 91+7
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Figure 36: Prediction of ANN 1, Test Location 3, Impact Load 34 kN (Mn/ROAD Test
Section 33, 05/22/01)
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Figure 38: Prediction of ANN 3, Test Location 3, Impact Load 34 kN (Mn/ROAD Test
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Table 14: Detailed Prediction Results (ANN 5), Mn/ROAD Test Section 33, 05/22/01

Point | Load Level [kN] | Gg [MPa] | Gg [MPa] | hs [m] | Gy [MPa]
1 34 71 28 0.9 99
1 25 64 28 0.9 100
2 34 o7 30 1.0 97
2 25 95 31 1.0 100
3 34 95 34 1.0 91
3 25 48 39 1.2 83
4 34 39 33 0.9 83
4 25 42 34 0.9 84
) 34 39 29 0.9 84
5 25 40 31 0.9 85
6 35 45 29 0.9 92
6 25 51 28 0.9 97
Average N/A 51 31 0.9 91
STD N/A 10 3 0.08 7
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7.2.2 Transition Section

At the Mn/ROAD testing facility, there is a transition section located between the Test
Section 33 and the west loop on the low volume road (see Fig. 34). This section will be
referred to as Test Section 33t (t means transition). Fig. 41 illustrates the profile of the
transition section, which means that this section does not have an aggregate base layer.
As a result, by assuming the existence of a “fictitious” aggregate base layer with an
arbitrary thickness (hp), the ANN backcalculation model can be used to estimate the
thickness of the remaining subgrade (hg) as well as the shear modulus of the fictitious
aggregate base and remaining subgrade (Gp, Gg). Because the fictitious aggregate
base is in fact a part of the subgrade, the following two facts should hold if the ANN
backcalculation model is capable of backcalculating the pavement properties from FWD

measurements appropriately:

e The shear modulus of the fictitious aggregate base and the remaining subgrade

(Gp and Gg) should be the same;

e The sum of the thicknesses of fictitious aggregate base and remaining subgrade
layers (hp + hg) should not vary when the assumed thickness of the fictitious
aggregate base (hg) (used as an input to ANN predictions) takes on different

values.

To check whether the above two requirements are satisfied, the FWD test was per-
formed on the transition section at six different testing locations across the width of the
pavement (see Fig. 35) on May 29, 2001. In the comparison, all five neural networks de-
scribed in Section 6.3.1 are applied to the FWD measurements performed at the six test
locations using various load levels by assuming the thickness of the fictitious aggregate
base hg = 0.4 m. Table 15 shows the comparison of the average predicted values of the
shear modulus of fictitious aggregate base (Gg) and subgrade (Gg). From the column
labeled |Gg — G5/, it can be seen that ANN 5 gives the smallest value of |Gg — G|
among the five competing ANNs. In the table, the shear modulus is given in the form

of “Average value + Standard deviation”.
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Figure 41: Pavement Profile, Test Section 33t (Transition Section)

Table 15: Comparison of Gp and Gg, Average+STD (Mn/ROAD Test Section 33t,
05/29/01), hy = 0.4 m

ANN | Gp [MPa] | Gs [MPa] | |Gp — Gs| [MPa]
ANN1| 3345 | 53412 20
ANN 2| 5144 46+ 5 5
ANN 3| 3249 4745 15
ANN 4| 4749 3543 12
ANN 5| 4945 46 + 3 3

To further investigate the performance of the neural networks studied, the assumed
thickness of the fictitious aggregate base (used as an input to ANN) was varied from
hg = 0.2 m to hg = 0.7 m with 0.1 m increments. With such input variation, the five
ANNs were applied to the FWD measurements from Test Section 33t (May 29, 2001).
Table 16 shows the comparison of hp + hg as given by each ANN under different values
assumed for hg. From Table 16, it can be seen that ANN 5 yields a more consistent

value of (hg + hg) than the other four ANNs under varied input hp.
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Table 16: Comparison of hg + hg [m|, Mn/ROAD Test Section 33t, 05/29/01

hB [m]

0.2

0.3

0.4

0.5

0.6

0.7

ANN 1

1.0+ 0.12

1.1 +£0.13

1.1£0.14

1.1 +£0.15

1.2£0.17

1.2+0.19

ANN 2

0.9 £0.07

1.0 = 0.06

1.0 £ 0.06

1.1 +£0.05

1.1+ 0.05

1.2£0.04

ANN 3

1.3+ 0.08

1.4£0.08

1.4+£0.10

1.5+0.11

1.5+ 0.13

1.6 £0.16

ANN 4

1.2+0.04

1.2£0.04

1.2£0.04

1.2£0.04

1.3£0.04

1.3 £0.04

ANN 5

1.2+ 0.13

1.2+ 0.11

1.24+0.11

1.2+ 0.10

1.2+ 0.11

1.2+ 0.11

From the above comparisons, it appears that ANN 5 produces most consistent results
among five networks with regard to the FWD measurements obtained at Section 33t.
The performance of ANN 5 on the transition section is shown in detail in Table 17
where the thickness of fictitious aggregate base (hg) is assumed to be 0.4 m. From
Table 17, it can be seen that for different combinations of the testing location and
load level, the selected backcalculation model (ANN 5) gives similar values for Gp and
Gs and that (hg + hg) does not vary significantly between individual FWD tests. For
completeness, Fig. 42 plots the comparison between the measured FRF and the predicted

FRF stemming from ANN 5, from which a reasonable agreement should be observed.
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Table 17: Prediction Results of ANN 5, Mn/ROAD Test Section 33t, 05/29/01 (hg =
0.4m)

Point | Load Level [kN] | Gg [MPa] | Gs [MPa] | hg + hs [m] | Gy [MPa]
1 34 43 42 1.0 111
1 25 46 42 1.0 113
2 34 45 45 1.1 113
2 25 50 47 1.0 109
3 34 39 46 1.3 117
3 26 49 49 1.2 108
4 35 o1 46 1.3 112
4 26 55 46 1.2 113
) 35 51 48 1.3 111
) 26 52 o1 1.3 108
6 35 52 42 1.1 114
6 26 53 43 1.2 115
Average N/A 49 46 1.2 112
STD N/A 5 3 0.11 3
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Section 33t, 05/22/01)
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7.3 Discussion and Comments
7.3.1 Comparison with Evercalc

Evercalc ([33]) is a widely used backcalculation software based on elastostatic multi-
layer analysis. Table 18 shows the comparison between the prediction results given by
the proposed ANN backcalculation scheme and those given by Evercalc for Test Section
33, May 22, 2001. From the table, it can be seen that Evercalc gives a smaller value
of the estimated Young’s modulus for the aggregate base than for the subgrade which
is contrary to the physical situation, while the ANN backcalculation scheme (the row
labeled with “ANN 5” in the table) yields a reasonable result, i.e. Eg > Fg. It should
be noted that, based on the author’s experience, the depth to the stiff layer given by
Evercalc is not sensitive to the stiffness of the stiff layer (Ey). Therefore, Evercalc is
used as follows: First, assuming the Young’s modulus of the stiff layer (i.e. half-space)
to be 350 MPa, Evercalc gives the depth to the stiff layer; Second, this depth to the stiff
layer is fed into Evercalc resulting in the stiffness of the stiff layer (together with other
pavement parameters). Finally, the calculated depth to the stiff layer in the first step
and the calculated stiffness for every layer from the second step are taken as the final

results.

Table 18: ANN Prediction vs. Evercalc (Test Section 33)

Parameter | Gg [MPa| | Gg [MPa] | hs [m] | Gg [MPa]
ANN 5 o1 31 0.9 91
Evercalc 16 o4 2.8 61

The comparison between the ANN and Evercalc performance is also made for Test
Section 33t (May 29, 2001) as shown in Table 19, where properties specified with bold
face denote the input to the corresponding backcalculation model. In the comparison,
the thickness of the fictitious aggregate base takes the assumed value of 0.4 m. With

reference to the iterative procedure of using Evercalc as described in the above para-
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graph, the row labeled “Evercalc(1)” denotes the back-calculation results given by the
first step (the Young’s modulus of half-space is assumed to be 350 MPa), while the row
labeled “Evercalc(2)” stands for the calculation results given by the second step. It can
be seen that the difference between Ep and Eg given by ANN 5 is smaller than that
given by Evercalc(1) and Evercalc(2). Actually, from the results shown in the bottom
row, it can be concluded that Evercalc fails to give reasonable predictions when being

applied to the FWD measurements on transition section.

Table 19: ANN Prediction vs. Evercalc (Test Section 33t)

Parameter | hp [m] | Gg [MPa] | Gg [MPa] | hg [m] | Gy [MPa]
ANN 5 0.4 49 46 0.8 112
Evercalc(1) | 0.4 27 30 1.2 112
Evercalc(2) | 0.4 10 443 1.2 68

7.3.2 Depth to Stiff Layer

One of the main goals of the ANN backcalculation scheme developed here is to predict
the depth to the stiff layer. As a result, it is important to compare the ANN-predicted
depth to the stiff layer with the one given by the construction record and other methods.
For the Test Section 33 examined before, there is a construction record of the pavement
profile as shown in Fig. 43. The FWD measurements from Test Section 33 that are used
in the current project were performed at 64 + 25 (see Fig. 43, 64 + 25 means 25 feet far
to the beginning of the station 64) and, from Fig. 43, the depth to the bottom of the

fill soil (i.e. top of the stiff layer) is
dsi, Actuar = 0.0254 X (6 + 6 4 48) = 1.524m (75)

There are three ways available to the author that can be used to estimate the depth
to the stiff layer: Evercalc, ANN backcalculation model developed here and the empirical
formulas given by Chang et.al. [34]:

94



Cell #33-L.ow Volume Road
Station 62+50 - 69+10
Subsurface Profile

B &

6 g & g ] g
=) = - - :
18 48 43 48
s | &9 B

T
138
100 +—

252
150 +—

Depth (in)

200 —

250 4+4—

625 64 65 66" &7 B8 63 631
300 - -

Station

BClazz B B Clasz1c OFill OLloam @ SityLoam BSand

Figure 43: Actual Pavement Profile for Test Section 33 (Provided by Mn/DOT)

e Evercalc Based on Table 18, the depth to the stiff layer given by Evercalc is:

dSL,Eve'rcalc = hHMA + hB + hS =0.14+034+28=32m (76)

e ANN Backcalculation Model On the basis of the average value of the thickness
of subgrade (hg) given in Table 14 for Test Section 33, the depth to the stiff layer

(i.e. half-space) can be calculated as:

dsp,ann 5 = hgma +hp+hs =0.1+0.3+0.9=13m (77)

e Empirical Formula According to the observation of the Chang et.al. [34], the
depth to the bedrock (i.e. very stiff half-space) can be estimated based on the
deflection time history obtained in the FWD Tests. As shown in Fig. 44, there are

several oscillations following the main pulse, which represent the free vibrations
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of the pavement system under the impulse load. Based on the observation that
the period of these residual oscillations corresponds approximately to the natural
period of the profile in compression, Chang proposed that the depth to the bedrock

can be estimated by:
h =10.25 cp.5 Thsc (78)

c _ G5(2 — 21/5)
P,S ,05(]_ — 21/5)

where ¢, g is the compressional wave speed of the subgrade, T, is the period of the
residual oscillation in deflection time history (Fig. 44), G is the shear modulus of
the subgrade, vg is the Poisson’s ratio of the subgrade, and pg is the mass density

of the subgrade. Using the assumed values:
Gs = T0MPa, vg = 0.4, ps = 1865kg/m® (79)
and the oscillation period estimated from Fig. 44
T,sc = 0.028sec, (80)

the depth to the bedrock (i.e., stiff layer) is obtained:

dsr,Empirical = 3-3M (81)

In the above methods for estimating the depth to the stiff layer, ds; ann 5 appears

to be the most accurate when compared with dsr, cuqe- The reason for the inaccuracy

of dsr, Empiricar 1 that derivation of Eq. (78) assumes the stiff layer to be a bedrock,

which is much stiffer than the half-space addressed in the current project, and therefore

dsr, Empirical 15 an over-estimated value. Moreover, according to [33], the stiff layer in

Evercalc is assumed to be 100 stiffer than the subgrade, resulting in an over-estimate of

the depth to the stiff layer as well.

It should be noted that the ANN backcalculation model developed in this study has

a limitation on the depth to the stiff layer that can be estimated from the range of
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hHMA, h,B and hs in Table 11 as

dst,min = hanvamin + hBmin + Asmin =0.14+0.140.3=0.5m

dSL,ma:c = hHMA,maw + hB,ma;v + hS,ma:c =04+10+3.0=44m

On may also observe that the above depth range refers on an extreme case, and the
actual range of the depth to the stiff layer recognizable by the ANN backcalculation

model developed here is determined by:
[hHMA+hB+O3 m,h,HMA—i-hB—}-?).O m] (82)

where hgara and hp are determined by the specific pavement profile.
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7.3.3 Baseline Correction

Because of the experimental noise embedded in FWD measurements, the baseline cor-
rection must be applied to the deflection time histories before they can be used to
estimate the FRF’s as examined in Section 4.3.3. As shown in Fig. 19, there is a vis-
ible difference between the experimental FRF’s at lower frequencies depending on the
baseline correction method used. Table 20 shows the effect of baseline correction on the
backcalculation results. It can be seen that, although the only significant difference of
FRF’s occurs below 10 Hz, there is a substantial effect of this difference on the predicted
values of Gg and Gg. It is anticipated that further investigation and development of an
optimal baseline correction method would improve the prediction quality of the backcal-
culation model developed. In this study, the linear baseline correction is recommended

and set as the default baseline correction method.

Table 20: Effect of Baseline Correction on Prediction Results (ANN 5, Mn/ROAD Test
Section 33, 05/22/01)

Method Gp [MPa] | Gs [MPa] | hg [m] | Gy [MPa]
Linear Correction 51 +£10 31+£3 0.9£0.08 91+7
Quadratic Correction 3548 26 £ 2 094014 | 119+5
Square Root Correction | 62 412 33+3 1.0£0.10 76 +£9
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8 Summaries and Conclusions

In this investigation, a novel backcalculation scheme is developed that is capable of
reliably estimating the location and properties of the permanent or seasonal stiff layer
(underlying asphalt pavements) from faling weight deflectometer records. Performance
of the method is validated through field measurements.

The backcalculation technique proposed is based on the Artificial Neural Network
(ANN) approach as a pattern recognition tool and a three-dimensional multilayer visco-
elastodynamic model as a predictive tool. The key features of the proposed backcalcu-

lation technique are summarized below.

1. Resolution Limits of Seismic Waves: Recognizing the inherent inability of
low-frequency seismic waves (such as those generated by the FWD impulse loading)
to resolve thin layers, material properties of the asphalt layer are assumed to be

known and are therefore used as an input to the ANN-based back-analysis.

2. Material Behavior of Asphalt Concrete: The Hot Mix Asphalt (HMA) layer
is modeled as a viscoelastic material using the power law model. For a specific
type of hot-mix asphalt, the power-law parameters are estimated via empirical

formulas as a function of the mix characteristics and daily temperature.

3. Representation of Field Measurements: The FWD measurements are in-
terpreted in terms of the pavement’s frequency response functions (FRF’s) which
are shown to be an effective tool to characterize any linear (pavement) system in

the frequency domain and thus expose its resonance and stiffness characteristics.

4. Backcalculation Strategy: The inputs to the ANN-based backcalculation of
pavement stiffness characteristics are (i) the frequency response functions rep-
resenting the FWD measurements, (ii) the coefficients of the power law model
synthesizing the asphalt properties, and (iii) the thicknesses of the asphalt and

aggregate base layers. The outputs of the backcalculation scheme are (i) the shear
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moduli of aggregate base, subgrade, and the stiff layer, as well as (ii) the thickness

of the subgrade layer.

. Integral Sampling Scheme: Like any experimental data, it is inevitable that
the FWD measurements are noise contaminated, which in turn influences the esti-
mated frequency response functions. To render the backcalculation model robust
in the presence of noisy measurements, the experimental frequency response func-
tions (synthesizing the pavement response to dynamic loading) are interpreted in
terms of their segmental areas (see Section 4.1.5). On applying the backcalculation

model to field FWD data, this approach has been shown to be very effective.

. Lateral Wave Reflections in Pavement Testing: Due to the finite width of
the pavement section, wave reflections from lateral pavement edges are found to in-
fluence the FWD measurements significantly, a phenomenon that is not accounted
for by the predictive (i.e. forward) model employed. To minimize the effect of side
reflections, the useful frequency range for the frequency response functions that
are used as an input to the back-analysis is taken to be from 1 to 51 Hz, thus
avoiding the pronounced resonance peak due to lateral wave reflections which is
typically located between 50 and 70 Hz. To further alleviate the problem associ-
ated with lateral reflections in FWD testing, it is recommended that the FWD test

be performed near the center of the pavement (i.e. away from pavement edges).

. ANN Architecture: Because a backpropagation neural network with two hid-
den layers is capable of representing the same input/output relationship with a
reduced number of neurons when compared to the neural network with a single
hidden layer, the neural network with two hidden layers is used in this study. How-
ever, there are no generally accepted rules regarding how to determine the number
of neurons in each hidden layer for a given problem. In the current project, the
preferred “rule of thumb” is that the number of neurons in the first hidden layer
(next to the input layer) is twice the number of neurons in the second hidden layer

(located next to the output layer).
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8.

10.

11.

Sequential Approach: As suggested by Kim et.al. [8], two neural networks
were used sequentially in the backcalculation process. For a given input vector,
the first network predicts the thickness of the subgrade, which is related to the
depth to the stiff layer. On employing the estimated thickness of the subgrade
to enrich the original input vector, the second network predicts the stiffnesses of
the base, subgrade, and the stiff layer. This approach has been shown to have
a superior performance relative to the direct approach, in which only one neural

network is used.

Noise Injection: Neural network training using the noise injection technique
is necessary for ANN to have a good performance on the field data. On the basis
of developments in this project, it was found that the performance of noise-free
neural networks on the field data is inferior to that of the ANN’s trained with noise
injection. For instance, through the comparison of alternative backcalculation al-
gorithms using field measurements, it was found that the ANN’s with a relative
noise level of 20% (applied to input data) perform significantly better than the
networks trained with a relatively low noise level of 3%. Moreover, the neural net-
works with the noise level tailored to each input component were found to perform

better than the networks with the uniform noise level for all input parameters.

Measurement Quality: As examined before, the coherence function is a conve-
nient criterion to judge whether the FWD measurements have an acceptably low
level of noise. However, the coherence criterion is only a measure of the relative
noise in experimental observations, and not a check of the measurement accuracy.
Based on the parametric study using field measurements, another criterion for
estimating the quality of the FWD measurements has been established that is
based on the deflection time history measured by the center geophone (see Section
4.3.2). The second criterion has been effectively applied to all field measurements

available to the author.

Computational Efficiency: Compared with the conventional minimization

101



methods such as gradient-based techniques, the use of artificial neural network
in the backcalculation method reduces the computation time by more than two

orders of magnitude.

To further improve the performance of the backcalculation model developed, the

following recommendations are suggested:

e The mechanical properties of the asphalt layer are characterized by the power
law model. Currently, the coefficients in power law model are obtained by fitting
the empirical equation describing the Young’s modulus of hot-mix asphalt (HMA)
[17], whose inputs are the HMA aggregate coefficients, HMA temperature, and
the viscosity of asphalt binder. A method that can give a more accurate estimate

of the power law coefficients would certainly be beneficial.

e The noise in the FWD measurement requires the application of baseline correc-
tion to the deflection time histories (obtained by integrating the measured velocity
records) before their use as a basis for the back-analysis. In this study, a signifi-
cant sensitivity of the FRF estimates to the choice of baseline correction method
is observed, resulting in an observable variation of the estimated pavement prop-
erties. Therefore, a more reliable baseline correction method would improve the
backcalculation performance. At the same time, according to the definition of the
frequency response function and Fourier transform, the FRF’s of interest in this
study can be directly obtained from either deflection, velocity, or acceleration time
histories. As a result, a direct use of the original, i.e. measured velocity records
(which are currently unavailable through the FWD setup) would significantly im-

prove the prediction capabilities of the backcalculation scheme proposed.

e In order to detect seasonal or permanent stiff layer at larger depths (> 3 m), the
use of geophones at distances larger than those available in the current FWD setup
would be necessary. In that case, however, the neural network would have to be

retrained using an appropriate training data set.
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