

Design of Turn Lane Guidelines

Prepared By:

Howard Preston, PE

CH2MHILL

Minnesota Department of Transportation

Research Services

Office of Policy Analysis, Research & Innovation

July 2010 Final Report #2010-25

Technical Report Documentation Page

1. Report No.	2.	3. Recipients Accession N	0.	
MN/RC 2010-25				
4. Title and Subtitle	5. Report Date			
Design of Turn Lane Guidelines		July 2010		
		6.		
7. Author(s)		8. Performing Organization Report No.		
Howard Preston, Nicole Farrington and Michael Ele	der			
9. Performing Organization Name and Address		10. Project/Task/Work Un	it No.	
CH2M HILL		MPR-9(003)		
1295 Northland Drive		11. Contract (C) or Grant	11. Contract (C) or Grant (G) No.	
Mendota Heights, MN 55120				
12. Sponsoring Organization Name and Address		13. Type of Report and Period Covered		
Minnesota Department of Transportation		Final Report		
Research Services Section		14. Sponsoring Agency Co	ode	
395 John Ireland Boulevard Mail Stop 330				
St. Paul, Minnesota 55155				
15. Supplementary Notes				
http://www.lrrb.org/pdf/201025.pdf				
The guidance in MnDOT's Road Design Manual relative to the design of turn lanes is at least 35 years old and is reflective of a time when vehicle speed and volume were lower than they are today. In response to these current conditions, some designers have been providing longer turn lanes. However, this approach has resulted in inconsistent designs across MnDOT's system. In response to concerns about the dated guidance in the Road Design Manual, the inconsistent treatment across the system and the lack of a documented design process; MnDOT developed and documented a new turn lane design process. The suggested design process is based on the notion that turn lanes should be designed to be long enough to accommodate deceleration from the prevailing highway speeds plus the storage needed for left or right turning vehicles. The new guidance provides a check list for designers that have links to look up tables for deceleration based on speed, storage based on volume of turning vehicles and type of intersection control and adjustments for grades and the fraction of heavy vehicles. These guidelines provide a resource for designers that will allow greater consistency between the length of turn lanes and traffic and roadway characteristics.18.Availability Statement No restrictions. Document available from:				
		Springfield, Virgin	ia 22161	
19. Security Class (this report)20. Security Class (this page)		21. No. of Pages	22. Price	
Unclassified	Unclassified	60		

Acknowledgements

Thanks to the following TAP members for their input to this document:

- Glen Ellis
- Jim Rosenow
- Mohammad Dehdashti
- David Engstrom
- Terry Humbert
- Adam Pohlman

- Gayle Gedstad
- Brian Gage
- Lars Impola
- Zachary Tess

Authors: Howard Preston, PE, Nicole Farrington, PE & Michael Elder, EIT

The contents of this document reflect the views of the authors who are responsible for the facts and accuracy of the data presented. The contents do not necessarily reflect the policies of the Minnesota Department of Transportation at the time of publication. This document does not constitute a standard or specification and is neither intended to be, nor does it establish, a legal standard of care for users. This document is intended to be a resource to aid designers and to provide greater consistency between the length of turn lanes and traffic characteristics.

Table of Contents

Part A – Introduction

- Factors that Affect Turn Lane Length	A-1
- Facility Type Conversion	A-2
- List of Tables	A-3
- Basic Objectives	A-5
Part B – Process	
- Collect Data	B-1
Vehicle Speed	B-2
Forecast Traffic Volume	B-3
Seasonal Variation	B-4
Grade & Heavy Commercial	B-5
Roadway Geometry & Adjacent Intersections	B-6
- Determine Facility Type	B-7
Function al Classification	B-8
Intersection Control	B-9
- Calculate Turn Lane Demand	B-10
Deceleration Length	B-11
Storage Length – Unsignalized Intersections	B-12
Storage Length – Signalized Intersections	B-13
- Calculate Turn Lane Design	B-16
Taper Length	B-17
Adjustments	B-18
- Grades	B-19
- Heavy Commercial	B-20
- Horizontal Curves	B-21
- Dual Left Turn Lanes	B-22
- Location Constraints	B-23
- Corridor Consistency	B-24

B-25

Part C – Examples

- Turn Lane Design Checklist	C-1
- List of Examples	C-3
- Example 1 – Rural Expressway Unsignalized	C-4
- Example 2 – Rural Expressway Signalized	C-6
- Example 3 – Rural Conventional Unsignalized	C-8
- Example 4 – Rural Conventional Signalized	C-10
- Example 5 – Urban Expressway Unsignalized	C-13
- Example 6 – Urban Expressway Signalized	C-15
- Example 7 – Urban Conventional Unsignalized	C-18
- Example 8 – Urban Conventional Signalized	C-20

List of Tables and Figures

List of Tables

- Table B-1 – Deceleration Distances for Lower Speed Urban Conventional Roadways	B-11
- Table B-2 – Deceleration Distances for High Speed Urban and Rural Roadways	B-11
- Table B-3 – Storage Length for Unsignalized Intersections	B-12
- Table B-4 – Storage Length (60 sec cycle length)	B-14
- Table B-5 – Storage Length (90 sec cycle length)	B-14
- Table B-6 – Storage Length (120 sec cycle length)	B-14
- Table B-7 – Suggested Signal Cycle Lengths	B-15
- Table B-8 – Taper Lengths	B-17
- Table B-9 – Grade Adjustments	B-19
- Table B-10 – Average Percent Heavy Vehicle	B-20

List of Figures

- Figure A-1 – Mn/DOT Facilities	. A-1
- Figure A-2 – Mn/DOT Facilities and Tables	. A-3
- Figure B-1 – Statewide Average Speed Trends	. B-2
- Figure B-2 – Mn/DOT Access Categories	.B-8
- Figure B-3 – Estimated Probability of Traffic Signal Installation	B-9

Part A - Introduction

- Factors that Affect Turn Lane Length	A-1
- Facility Type Classification	. A-2
- List of Tables	A-3
- Basic Objectives	A-5

- Recent safety research has identified indirect turns as an intersection design concept that:
 - Reduces or eliminates the high-risk crossing maneuvers.
 - Substitutes with low-risk turning, merging or diverging maneuvers.
- This concept is considered experimental because it has been deployed at approximately 20 locations, primarily in Maryland, North Carolina and Missouri. Initial evaluations have documented an 80% - 90% overall crash reduction and 100% reduction in the most severe angle crashes.
- A directional median was installed along TH 169 in Belle Plaine. A preliminary evaluation found crash reductions consistent with the national results.

Part A - Introduction

Factors that Affect Turn Lane Length

Figure A-1 – Mn/DOT Facilities

- These turn lane length guidelines document the primary factors that influence the suggested length of any particular turn lane and a best practices design process.
- These suggested turn lane lengths are considered to be *reasonable default values* that should be used when more precise output from computer modeling (SYNCHRO, SimTraffic, CORSIM, etc.) is not available.
- The primary factors affecting the suggested length of turn lanes along Mn/DOT facilities include:
 - Location: Rural vs. Urban
 - Facility Type: Expressway vs. Conventional
 - Intersection Type: Uncontrolled or Signalized
 - Speed: 30 mph to 65 mph
 - Traffic Volumes
- Other Factors Include:
 - Grade
 - Vehicle Mix: passenger vehicles or heavy commercial
 - Proximity to Horizontal Curves
 - Single vs. Dual Turn Lane operation
 - Consistency Along Corridor

Part A - Introduction

Facility Type Classification

Rural Expressway

Divided roadways with limited access and high speeds in rural area

Rural Conventional

Undivided two-lane roadway with multiple access locations and low to high speeds in rural area

Urban Expressway

Divided roadway with limited signalized intersections and high speeds in urban area

Urban Conventional

Undivided two-lane or four-lane roadway with multiple access locations with low speeds in urban area

List of Tables (1 of 2)

List of Tables (2 of 2)

Deceleration Tables	 •Table B-1 – Urban Conventional Roadway (10 mph deceleration in thru lane) Page B-11 •Table B-2 – Urban/Rural Expressway Roadway (no deceleration in thru lane) Page B-11
Storage Length Tables	 Table B-3 – Unsignalized Intersection – Page B-12 Table B-4 – Signalized Intersection – 60 sec cycle – Page B-14 Table B-5 – Signalized Intersection – 90 sec cycle – Page B-14 Table B-6 – Signalized Intersection – 120 sec cycle – Page B-14
Suggested Signal Cycle Length Table	•Table B-7 – Page B-11
Taper Table	•Table B-8 – Page B-17
Grade Adjustment Table	•Table B-9 – Page B-19

Basic Objective

Source: AASHTO Green Book – Geometric Design of Highways and Streets, 2004

- Step 1 - Collect Data	B-1
- Step 2 - Determine Facility Type	B-7
- Step 3 - Calculate Turn Lane Demand	B-10
- Step 4 - Calculate Turn Lane Design	B-16
- Step 5 - Determine Turn Lane Length	B-25

- A variation of the indirect turn intersection design concept is being used in Missouri. This design is more compact than the directional median version and prohibits all movements except the right turns at the minor road.
- The downstream u-turns which provide access between all legs, are located approximately 600 feet past the minor leg. The left turn lane for the u-turn extends all the way back to the minor roads to encourage drivers on the minor road to turn directly into the left turn lane (instead of into the through lanes on the major road and then weaving).

Turn Lane Length Process

Step 1	Collect Data	Demand FactorsDesign Factors- Speed- Distance to Adjacent Intersections- Forecast Volumes- Roadway Geometry (Horizontal Curve)- Seasonal Variations- Grade- Heavy Commercial %- Note the section of the sec	
Step 2	Determine Facility Type	- Facility type in <i>Figure B-1</i> - Intersection control	
Step 3	Calculate Turn Lane Demand	 Calculate deceleration based on <i>Tables B-1 & B-2</i> Calculate storage needs based on <i>Tables B-3 to B-6</i> Suggested signal cycle lengths on <i>Table B-7</i> 	
Step 4	Calculate Turn Lane Design	 Determine taper length based on Table B-8 Calculate turn lane design (turn lane demand length from Step 3 minus taper) Determine appropriate adjustments based on list. 	
Step 5	Document Turn Lane Length	- Depending on constraints of the area, characteristics of the intersection and their applicability to the stated assumptions, and engineering judgment, determine final length of turn lane.	

Vehicle Speed

Figure B-1 - Statewide Average Speed Trends

Forecast Traffic Volumes

Forecast traffic volumes were estimated using the following sources:

- 1 Historic Traffic Growth Linear Regression (MnDOT)
- 2 State Aid Manual (County growth rate)
- 3 US Highway 52: Oronoco to Pine Island Sub-Area Study

Source: CH2M HILL

2009 TRAFFIC FACTOR PROJECTION

Example of Different

Forecast Methods

County Number	County Name	State Aid District Number	Traffic Projection Factor	County Seat
1	Aitkin	3	1.5	Aitkin
2	Anoka	5	1.5	Anoka
3	Becker	4	1.4	Detroit Lakes
4	Beltrami	2	1.3	Bemidji
5	Benton	3	1.6	Foley
6	Big Stone	4	1.1	Ortonville
7	Blue Earth	7	1.6	Mankato
8	Brown	7	1.4	New Ulm
9	Carlton	1	1.3	Cariton
10	Carver	5	1.8	Carver
11	Cass	3	1.5	Walker
12	Chippewa	8	1.2	Montevideo

Forecast Traffic Volumes (both turning and mainline volumes) should be calculated by one of the following methods (in order of preference):

- 1. Design Year Volumes (provided by District/Central Office Planning Staff)
- 2. Historic Volumes extrapolated to estimate 20 Year forecast volumes
- 3. 20-Year Multiplier as documented by State Aid and found at the following website under County Reference Data: www.dot.state.mn.us/ stateaid/sa_csah.html
- In no case should existing volumes be used in computing the estimated future demand.

Source: Mn/DOT State Aid, 20-Year Traffic Projection Factors

Seasonal Variations

Example of Seasonal Variation

- If the segment of highway is subject to large seasonal variations (recreational routes, primary farm to market routes, etc.), the designer should make a decision – is the turn lane going to be designed to accommodate the seasonal peak or the yearly average?
- There is no correct answer to this question, but the answer may impact construction costs (designing for the seasonal peak will likely result in the need for longer turn lanes) and public perception (the road was just reconstructed – why are queues of vehicles backing out of the brand new left turn lane?).

Grade and Heavy Commercial

14.63 m [48 ft] Trailer 1.37 m Heavv 12.34 m [40.5 ft] 4.57 m 4.5 ft Commercial Size Example 5 ft 10 ft 2.5 m 0.91 m 1 m scale [3 ft] 5.30 m 1.22 m 1.35 m 5.95 m [17.4 ft] [4.2 ft] [4 ft] [4.42 ft] [19.5 ft] 18.90 m [62 ft] Wheelbase 20.88 m [68.5 ft]

Example of Intersection on Grade

- **Grade at Intersection** what is the roadway grade at the intersection? Downhill grades in excess of 3% increase deceleration distances by 20% to as much as 35%. Uphill grades in excess of 3% shorten deceleration distances by 10% to 20%.
- Heavy Commercial what is the fraction of heavy commercial in the traffic stream? Determining a storage length requires an understanding of the composition of the traffic stream. The distance required to store a platoon of passenger cars (at 20 feet/vehicle) is much less than for commercial vehicles single unit trucks (30 feet), buses (up to 45 feet) and interstate semi trailers (75 feet).

Source: AASHTO Green Book, WB-19 [WB-62] Design Vehicle

Roadway Geometry & Adjacent Intersections

Example of Turn Lane on Horizontal Curve

Intersection Influence Areas **Roadway Geometry** – Is the intersection located near or in a horizontal curve? The use of 15:1 tapers to transition into turn lanes has been observed to result in erratic maneuvers on the part of some drivers when the beginning of the turn lanes is located near or on the outside of a horizontal curve.

The 15:1 taper can look very much like the tangent extended and the entrance to the turn lane is, therefore, not well define. In this case, the designer is encouraged to use a sharper taper to better identify the entrance to the turn lane.

Distance to Adjacent Intersections – How constrained are the conditions in terms of distances to adjacent intersections and driveways? The distance to adjacent intersections can have a significant effect on the recommended turn lane length.
Intersections have influence areas both upstream and down and basic access management principles suggest that to optimize safety these influence areas should not overlap. In addition, an effort should be made to avoid the placement of private driveways anywhere along the length of either the full width turn lane or taper.

Turn Lane Length Process

Step 1	Collect Data	Demand FactorsDesign Factors- Speed- Distance to Adjacent Intersections- Forecast Volumes- Roadway Geometry (Horizontal Curve)- Seasonal Variations- Grade- Heavy Commercial %- Note to Adjacent Intersections	
Step 2	Determine Facility Type	- Facility type in <i>Figure B-1</i> - Intersection control	
Step 3	Calculate Turn Lane Demand	 Calculate deceleration based on Tables B-1 & B-2 Calculate storage needs based on Tables B-3 to B-6 Suggested signal cycle lengths on Table B-7 	
Step 4	Calculate Turn Lane Design	- Determine taper length based on Table B-8 - Calculate turn lane design (turn lane demand length from Step 3 minus taper) - Determine appropriate adjustments based on list.	
Step 5	Document Turn Lane Length	- Depending on constraints of the area, characteristics of the intersection and their applicability to the stated assumptions, and engineering judgment, determine final length of turn lane.	

Functional Classification

Category	Land-Use or Facility Type	Typical Functional Classification	Typical Posted Speed	
1 - High-Priority Interregional Corridors (IRCs)				
1F	Interstate Freeway	Interstate Highways	55 – 75 mph	
1AF	Non-Interstate Freeway	Principal Arterials	55 – 65 mph	
1A	Rural	Principal Arterials	55 – 65 mph	
1B	Urban / Urbanizing	Principal Arterials	40 – 55 mph	
1C	Urban Core	Principal Arterials	30 – 40 mph	
2 - Med	ium-Priority Interregional Corrid	ors		
2AF	Non-Interstate Freeway	Principal Arterials	55 – 65 mph	
2A	Rural	Principal Arterials	55 – 65 mph	
2B	Urban / Urbanizing	Principal Arterials	40 – 55 mph	
2C	Urban Core	Principal Arterials	30 – 40 mph	
3 - Regi	ional Corridors			
3AF	Non-Interstate Freeway	Principal Arterials	55 – 65 mph	
3A	Rural	Principal/Minor Arterials	45 – 65 mph	
3B	Urban / Urbanizing	Principal /Minor Arterials	40 – 45 mph	
3C	Urban Core	Principal/Minor Arterials	30 – 40 mph	
4 - Prino (Non-l	cipal Arterials in the Twin Cities ! IRCs)	Metropolitan Area and Primary	Regional Trade Centers	
4AF	Non-Interstate Freeway	Principal Arterials	55 – 65 mph	
4A	Rural	Principal Arterials	45 – 55 mph	
4B	Urban / Urbanizing	Principal Arterials	40 – 45 mph	
4C	Urban Core	Principal Arterials	30 – 40 mph	
5 - Mine	or Arterials			
5A	Rural	Minor Arterials	45 – 55 mph	
5B	Urban / Urbanizing	Minor Arterials	40 – 45 mph	
5C	Urban Core	Minor Arterials	30 – 40 mph	
6 - Collectors				
6A	Rural	Collectors	45 – 55 mph	
6B	Urban / Urbanizing	Collectors	40 – 45 mph	
6C	Urban Core	Collectors	30 – 40 mph	
7 - Specific Area Access Management Plans				
7	All	All	All	

Source: Mn/DOT Access Management Manual

Figure B-2 - Mn/DOT Access Categories

Examples:	Location	Category
US Highway 10	Anoka Co	1A-F
US Highway 10	Washington Co	5A

Facility Type Non-Interstate Freeway Rural Conventional

Functional Classification

Roadway

Principal Arterial Minor Arterial Selecting a facility type is an important step because the facility type suggests a speed, which influences deceleration distances, and it suggests a design priority.

On high speed (rural and urban) arterials it is suggested that *ALL* deceleration take place in the turn lane but on low speed urban roadways a fraction of the deceleration can take place in the through lane.

- Determination of rural or urban category is based on *Access Management Category Assignments* prepared by the *Mn/DOT Office of Investment Management* Access Management Website: <u>www.dot.state.mn.us/accessmanagement/</u> <u>index. categoryassignments.html</u>
- The roadway is categorized as expressway or conventional roadway based on segment determinations completed by district staff and collected by the *Mn/DOT Office of Traffic, Safety,* and Technology.

Example Rural Conventional Roadway

Intersection Control

Source: CH2M HILL

Figure B-3 - Estimated Probability of Meeting the Volume Warrant for Traffic Signal Installation

- Assigning a type of intersection control (Thru/STOP, All-Way STOP or Traffic Signal) has a significant effect on the determination of turn lane lengths.
- Controlled intersections which require vehicles to stop, increase storage lengths while vehicles wait for their turn to enter the intersection.
- It is important to remember that turn lanes are designed for a point in time 20 years in the future. As a result, it is **NOT** sufficient to document the existing intersection control. An effort should be made to estimate the type of control that would likely be in place in the design year. Discussion with District Traffic Engineering staff can provide insight.
- In addition, plotting the forecast traffic volumes on the adjacent graph results in an estimate of the probability of the combination of major and minor road forecast volumes exceeding the warrants for signalization in the *Minnesota Manual* on Uniform Traffic Control Devices (MNMUTCD).

Turn Lane Length Process

Step 1	Collect Data	Demand FactorsDesign Factors- Speed- Distance to Adjacent Intersections- Forecast Volumes- Roadway Geometry (Horizontal Curve)- Seasonal Variations- Grade- Heavy Commercial %- Vertice (Commercial %)
Step 2	Determine Facility Type	- Facility type in <i>Figure B-1</i> - Intersection control
Step 3	Calculate Turn Lane Demand	 Calculate deceleration based on <i>Tables B-1 & B-2</i> Calculate storage needs based on <i>Tables B-3 to B-6</i> Suggested signal cycle lengths on <i>Table B-7</i>
Step 4	Calculate Turn Lane Design	 Determine taper length based on <i>Table B-8</i> Calculate turn lane design (turn lane demand length from Step 3 minus taper) Determine appropriate adjustments based on list.
Step 5	Document Turn Lane Length	- Depending on constraints of the area, characteristics of the intersection and their applicability to the stated assumptions, and engineering judgment, determine final length of turn lane.

Deceleration Length

Table B-1 Deceleration Distances for Lower Speed Urban Conventional Roadways

	(No Deceleration i	n Through Lane)	(10 mph Deceleration in Through Lane)				
Design Speed (mph)	Stop Condition (feet)	To 15 mph (feet)	Stop Condition (feet)	To 15 mph (feet)			
20	70	35	20	-			
25	110	75	40	5			
30	160	125	70	35			
35	215	180	110	75			
40	275	240	160	125			
45	350	215	215	180			
50	425	390	275	240			

Table B-2 Deceleration Distances for High Speed Urban & Rural Roadways

	(No Deceleration in	n Through Lane)	(10 mph Deceleration in Through Lane)				
Design Speed (mph)	Stop Condition (feet)	To 15 mph (feet)	Stop Condition (feet)	To 15 mph (feet)			
45	350	315	215	180			
50	425	390	275	240			
55	515	480	350	315			
60	605	570	425	390			
65	715	680	515	480			
70	820	785	605	570			
75	940	905	715	680			

- The deceleration component of the turn lane length is a function of the design speed of the facility and the amount of deceleration that is allowed in the through lanes.
- Deceleration lengths are provided for both a stop condition that would apply to left turn lanes and to 15 mph that would apply to right turn lanes.

- Table B-1 Urban Conventional Roadway – assumes 10 mph deceleration in through lane
- Table B-2 Urban/Rural Expressway Roadway – assumes no deceleration in through lane
- Italicized values within the tables are interpolated. The 15 mph values were calculated by subtracting 35 feet from the stop condition column.

Table Source: ITE Traffic Engineering Handbook (2009), Table 10-2, Page 172

Storage Length – Unsignalized Intersection

Table B-3

Storage Length for Unsignalized Intersections

1 - 64	Storage Length (feet)							
Turning Volume	0 – 5% Heavy Commercial	>5 – 10% Heavy Commercial	>10 – 15% Heavy Commercial					
50	50	50	60					
60	55	60	70					
70	65	70	80					
80	75	80	90					
90	85	90	100					
100	95	100	115					
110	105	110	125					
120	110	120	135					
130	120	130	150					
140	130	140	160					
150	145	150	170					
160	150	160	180					
170	160	170	190					
180	165	180	205					
190	175	190	215					
200	185	200	225					

- The storage length computation for left turn lanes at unsignalized intersections is based on accommodating the average number of arrivals in the turn lane during a two-minute period. The two minute period represents the upper range of the typical delay incurred by a left turning vehicle waiting for opposing vehicles to clear the intersection.
- The recommended practice assumes a minimum storage length for 2 vehicles equals 50 feet.
- The storage length requirements for right turn lanes at unsignalized intersections is assumed to be zero since, in virtually all cases, these vehicles would have the right-of-way entering the intersection and would incur no delay.

Storage Length = ((Turn Lane Peak Hour Volume / 60)*2) * ((% Passenger Vehicles * 25 feet) + (% HC * 75 feet))

Average number of cars in 2-minute arrival period

Weighted average between passenger cars and heavy commercial

Storage Length – Signalized Intersection (1 of 3)

Method 1 – Basic Equation

- Note: The following method for estimating the storage length requirements at signalized intersections should only be used when the output from computer models (Synchro, VISSM, etc.) are not available.
- The storage length requirements for both right and left turn lanes at signalized intersections are based on the premise that vehicles only need to be stored during the red portion of the signal cycle. As a result, the basic equation includes the following mathematical operations:
 - Dividing the design hour approach volume by the number of signal cycles/hour.
 - Multiplying the vehicles per signal cycle by the fraction of the cycle that is red for that movement.
 - Multiplying by the average of 25 feet per vehicle and adjusting for the fraction of heavy commercial and the number of turning lanes.
 - Multiplying the results by 2 to account for the random arrival of vehicles.

Storage Length – Signalized Intersection (2 of 3)

Method 2 – Look Up Tables

- A second method for determining the storage length at a signalized intersection involves using Tables B-4, B-5 and B-6. The storage lengths in these tables are the output from the basic equation and represent the recommended left turn storage lengths in a single left turn lane for three common cycle lengths. The tables assume 5% heavy commercial and one turn lane.
- Storage Length Determination Use of the tables require estimation of cycle length and the percent of left turn green time. Designers are encouraged to coordinate with District traffic signal operations staff for assistance. If signal operations staff are not available, *Mn/DOT's Traffic Signal Timing and Coordination Manual*, Section 3.7 Critical Lane Analysis, should be reviewed to estimate cycle length and percent of green time for left turn movements. See *Page B-15* for the Sum of Critical Movement approach for determining cycle length and percent of left turn green time.

Tak	ole B	-4 –	60 Se	econd	Sign	al Cy	cle Le	ength		Та	able E	3-5 –	90 S	econ	d Sig	nal C	ycle L	engtl	า	Та	ıble E	3-6 –	120	Seco	nd Sig	gnal C	Cycle	Leng	th	_
Sto	Storage Length in Feet (60 second cycle)						Sto	Storage Length in Feet (90 second cycle)				Sto	orage	Leng	gth in	Feet	(120	seco	ond cy	vcle)										
				Perce	nt Left	t-Turn	Green	Time						Perce	nt Lef	t-Turn	Green	Time						Perce	nt Left	-Turn	Greer	Time		•
		10%	20 %	30%	40%	50%	60%	70 %	80%			1 0 %	20%	30%	40%	50%	60%	70 %	80%			1 0 %	20 %	30%	40%	50%	60%	70 %	80%	
	100	80	70	70	60	50	40	30	20		100	120	110	100	80	70	60	40	30		100	160	140	130	110	90	70	60	40	
	125	100	90	80	70	60	50	40	30		125	150	140	120	100	90	70	50	40		125	200	180	160	140	110	90	70	50	
	150	120	110	100	80	70	60	40	30		150	180	160	140	120	100	80	60	40		150	240	210	190	160	140	110	80	60	
٢	175	140	130	110	100	80	70	50	40	٣	175	210	190	170	140	120	100	70	50	٢	175	280	250	220	190	160	130	100	70	
Ť.	200	160	140	130	110	90	70	60	40	eft-	200	240	210	190	160	140	110	80	60	eft-	200	320	280	250	210	180	140	110	70	
ſuri	225	180	160	140	120	100	80	60	40	「urı	225	270	240	210	180	150	120	90	60	「urı	225	360	320	280	240	200	160	120	80	
ning	250	20	180	160	140	110	90	70	50	ning	250	300	270	230	200	170	140	100	70	ning	250	400	350	310	270	220	180	140	90	
2 V	275	220	200	170	150	120	100	80	50	o> B	275	330	290	260	220	180	150	110	80	o> b	275	440	390	340	290	250	200	150	100	
olun	300	240	210	190	160	140	110	80	60	olun	300	360	320	280	240	200	160	120	80	olun	300	480	420	370	320	270	210	160	110	
ne	325	260	230	200	180	150	120	90	60	ne	325	390	350	300	260	220	180	130	90	ne	325	520	460	400	350	290	230	180	120	
	350	280	250	220	190	160	130	100	70		350	420	370	330	280	230	190	140	100		350	560	490	430	370	310	250	190	130	
	375	300	270	230	200	170	140	100	70		375	450	400	350	300	250	200	150	100		375	600	530	460	400	330	270	200	140	
	400	320	280	250	210	180	140	110	70		400	480	420	370	320	270	210	160	110		400	630	560	490	420	350	280	210	140	B-14

Storage Length – Signalized Intersection (3 of 3)

Sum of Critical Movements - Estimating Cycle Lengths and Percent Left Turning Green Time

- The process of summing critical movements at a signalized intersection (basically the addition of the left turn and opposing through volume on the N/S and E/W legs of intersections) provides a reasonable estimate of signal cycle lengths and the percent of left turn green time.
- The estimated cycle lengths are obtained from *Table B-7* and the percent of left turn green time is computed by dividing the left turn volume on any given approach by the total sum of the critical movements

Sum of Critical Volume	2 Phase Signal	5 Phase Signal	8 Phase Signal	
700	45	60	90	
800	60	75	105	
900	60	75	105	
1000	75	90	105	
1100	75	90	105	
1200	90	105	120	
1300	105	120	135	
1400	120	135	150	
1500	135	150	165	
1600	150	165	180	
1700	165	180	180	
1800	180	180	180	

Table B-7 Suggested Signal Cycle Lengths

3.7.3. Summary of Critical Lane Analysis

A summary of the critical lane method for evaluating the adequacy of a signalized intersection is as follows:

- Assign traffic volumes to lanes.
 - 1. Separate turn lanes accommodate their respective turning movements.
 - 2. Right turns are equivalent to through movements if a separate turn lane is not provided.
 - 3. If separate left turn lanes are not used, lane distribution is attained through the use of through vehicle equivalents.
 - If there are single lane approaches, special adjustments must be made to account for the impeding effect of left turning vehicles.
- Check if two-phase signal operation is feasible or if a multi-phase operation is required to provide protected left turn movements.
- Identify critical movements for each signal phase.
- Evaluate level of intersection operation based on summation of critical movements.

Source: Mn/DOT Traffic Signal Timing and Coordination Manual

Turn Lane Length Process

Step 1	Collect Data	Demand FactorsDesign Factors- Speed- Distance to Adjacent Intersections- Forecast Volumes- Roadway Geometry (Horizontal Curve)- Seasonal Variations- Grade- Heavy Commercial %- None to Adjacent Intersections
Step 2	Determine Facility Type	- Facility type in <i>Figure B-1</i> - Intersection control
Step 3	Calculate Turn Lane Demand	- Calculate deceleration based on Tables B-1 & B-2 - Calculate storage needs based on Tables B-3 to B-6 - Suggested signal cycle lengths on Table B-7
Step 4	Calculate Turn Lane Design	 Determine taper length based on <i>Table B-8</i> Calculate turn lane design (turn lane demand length from Step 3 minus taper) Determine appropriate adjustments based on list.
Step 5	Document Turn Lane Length	- Depending on constraints of the area, characteristics of the intersection and their applicability to the stated assumptions, and engineering judgment, determine final length of turn lane.

Taper Lengths

Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet

Table B-8Taper Lengths

Example of Constrained Urban Environment

Tapers are the transition from the through lanes to the full width portion of the left or right turn lane. The basic taper length that should be used in most cases is 1:15 or 180 feet for a twelve foot wide turn lane.

The two most common cases where consideration should be given to reducing the length of the taper include:

- Beginning turn lanes near or in horizontal curves. At many curves, the 1:15 taper does not provide enough of a visual cue to drivers and they may end up following the taper because it can appear to be the tangent extended. If a shorter taper is used it is the recommended practice to add the difference to the full width portion so that the overall turn lane length remains sufficient to accommodate both deceleration and storage.
- In **constrained urban environments** where the distance between adjacent intersections is insufficient to provide both the recommended taper and full width storage distances. In these constrained conditions, the recommended practice is to provide as much of the full width storage as possible and to sacrifice taper lengths to the extent necessary to make the design fit the available space. However, in all cases the length of the full width turn lane should exceed the taper length.

Adjustments - Summary (1 of 7)

Adjustments - Grades (2 of 7)

Table B-9Grade Adjustment

Grade	Upgrade Adjustment	Downgrade Adjustment
3% to 4%	0.9	1.2
5% to 6%	0.8	1.35

Grades in excess of 3% significantly effect vehicle speeds and, therefore, deceleration distances. It is the recommended practice to apply the adjustment factors in *Table B-9* in order to shorten deceleration distances on uphill grades and to lengthen deceleration distances on downhill grades.

Adjustments – Heavy Commercial (3 of 7)

Table B-10

Average % Heavy Vehicle Based on Facility Type

Facility Type	Sample Size	Average % Heavy Commercial
Rural Conventional	11	14%
Rural Expressway	7	9%
Urban Conventional	1	7%
Urban Expressway	2	4%

Source: Heavy Commercial Volumes at Selected Piezo and Wim Sites (2004 – 2009), Office of Transportation Data and Analysis, March 2010.

Example of Heavy

Commercial Vehicle

Example of Heavy Commercial Vehicle Dimensions from Green Book

Source: AASHTO Green Book, WB-20D [WB-67D] Design Vehicle

Adjustments to Storage based on Higher Heavy Commercial % :

- Synchro Method In the Synchro computer model the default value for heavy commercial is 2% and the analyst needs to replace the default volume with the actual value.
- Method 1 Basic Equation use the actual % heavy commercial in the equation to account for the higher truck volume.
- Method 2 *Tables B-4* through *B-6* – if the % heavy commercial is greater than 15%, use Method 1 to determine storage needs.
- Adjust Deceleration Lengths -Consider providing more deceleration length than shown in *Tables B-1 and B-*2 to accommodate heavy commercial deceleration characteristics if the % heavy commercial is higher than the averages shown in *Table B-10*. The suggested increase is 30% to the deceleration length. (Source: Current practice of Illinois DOT)

Adjustments – Horizontal Curves (4 of 7)

Example of Intersection Located on a Horizontal Curve

Example of Horizontal Curve Adjustment to Taper Length

Full Width Turn Lane Length =

Turn Lane Design =

Adjusted Design =

Π.

- Deceleration + Storage 570 feet + 0 = 570 feetTaper + Full Width 180 feet + 390 feet = 570 feetTaper + Full Width 180 feet + 390 feet = 570 feet-80 feet + 80 feet
- 100 feet + 470 feet = 570 feet

- The recommended practice for designing turn lanes that begin near or in the outside of a horizontal curve is to shorten the taper from the typical 1:15 (180 feet) to 1:8 (100 feet) in order to better delineate the entrance to the turn lane. The recommended practice also includes adding the difference (80 feet) back to the full width portion.
- An example of this adjustment on a rural two-lane highway with a design speed of 60 mph, the design of a right turn lane that begins near the start of a horizontal curve is shown to the left.

Adjustments – Dual Left Turn Lanes (5 of 7)

It is recommended practice to consider providing two left turn lanes at signalized intersections whenever the following conditions are present:

- The design year peak hour left turn volume approaches 300 vehicles per hour.
- On divided roadways where the median is wide enough such that dual turn lanes can be provided without having to realign the opposing roadway.
- The primary advantage associated with the use of dual left turn lanes is improved traffic operations due to the shorter queue of vehicles in each of the two left turn lanes. The shorter queue requires less green time to clear, allowing the cycle length to be shorter, which reduces the average vehicle delay, the established performance measure for signalized intersection operations. If dual left turn lanes are provided, the receiving leg of the intersection also needs to provide two departing lanes for a minimum distance of 500 feet (distance to allow the two lanes of vehicles to merge back to a single lane).

Adjustments – Location Constraints (6 of 7)

Source: CH2M HILL, TH 14 in Rochester

Example of Constrained Corridor and Access/Turn Lane Design Decisions

Some access were closed in order to accommodate longer turn lanes at adjacent intersections.

- The most common local constraint involves short block spacing in established urban areas, where the distance between adjacent intersections can be as little as 300 to 400 ft.
- In these cases it is important to note that vehicle speeds along urban conventional roadways are low (especially if the facility experiences congestion during peak traffic periods), so deceleration distances are relatively short. In addition, the recommended deceleration lengths in these low speed, urban conditions are further shortened as a result of allowing for a 10 mph speed reduction in the through lanes.
- In constrained urban corridors with frequent intersections and many turning opportunities, the number of turning vehicles at any one intersection will likely be low, particularly at unsignalized intersections. As a result, turn lane lengths will likely be the minimum = 60 feet taper + 60 feet full width = 120 feet. If these minimum values cannot be provided, consideration should be given to closing adjacent intersections in order to provide the space necessary for the recommended turn lane lengths.

Adjustments – Corridor Consistency (7 of 7)

Example of Corridor with Multiple Turn Lane Design

Source: CH2M HILL, TH 14 in Rochester

- The key corridor consistency issue involves determining whether the design of turn lanes along a corridor is uniform because of similar conditions – volumes, speed, vehicle types – or do conditions across the corridor vary sufficiently to warrant a different design. Consistency with the design of adjacent turn lanes will better meet driver expectations throughout the corridor.
- The basic objective of turn lanes is to accommodate deceleration plus storage of the turning vehicles at an intersection. One common corridor issue on high volume urban arterials is that the queue of vehicles in the through lanes lined up from a traffic signal often extend beyond the entrance to the turn lanes. In these cases, the length necessary for deceleration plus storage in the turn lanes is less than the length of the queue in the through lanes. In order to support improved intersection operations designers should consider lengthening the full width portion of the turn lane beyond the length for storage so that turning vehicles have full access to the turn lanes.

Turn Lane Length Process

Step 1	Collect Data	Demand Factors - Speed - Forecast Volumes - Seasonal Variations - Grade - Heavy Commercial %	Design Factors Distance to Adjacent Intersections Roadway Geometry (Horizontal Curve) 				
Step 2	Determine Facility Type	- Facility type in <i>Figure B-1</i> - Intersection control					
Step 3	Calculate Turn Lane Demand	 Calculate deceleration based on Tables B-1 & B-2 Calculate storage needs based on Tables B-3 to B-6 Suggested signal cycle lengths on Table B-7 					
Step 4	Calculate Turn Lane Design	- Determine taper length based on Table B-8 - Calculate turn lane design (turn lane demand length from Step 3 minus taper) - Determine appropriate adjustments based on list.					
Step 5	Document Turn Lane Length	- Depending on constraints o their applicability to the state determine final length of turn	f the area, characteristics of the intersection and d assumptions, and engineering judgment, lane.				

- Example 1 – Rural Expressway Unsignalized C	C-4
- Example 2 – Rural Expressway Signalized C	C-6
- Example 3 – Rural Conventional Unsignalized C	C-8
- Example 4 – Rural Conventional Signalized C	C-10
- Example 5 – Urban Expressway Unsignalized C	C-13
- Example 6 – Urban Expressway Signalized C	C-15
- Example 7 – Urban Conventional Unsignalized C	C-18
- Example 8 – Urban Conventional Signalized C	C-20

Innovative Intersection Design Concept – Positive Offset Turn Lanes

- The traditional turn lane design along median divided roadways has opposing left turn lanes negatively offset to the left each driver in the left turn lanes.
- This negative offset results in a drivers line of sight to opposing through vehicles being intercepted by the queue of vehicles in the other left turn lane and this creates conflicts at signalized intersections when the left turn movements are permitted (pick a group during the green ball instead of an exclusive turn arrow).
- An innovative solution involves creating a positive offset by putting some (or all) of the median on the right side of the left turn lane to the right and completely opens the line of sight to oncoming vehicles in the through lane.
- If there is a history of left turn (head on) crashes, at a negative offset permitted left turn lane, there are two likely mitigations – conversion to exclusive left turn phasing or construction of the positive offset. The use of the positive offset would allow the continued use of a permitted left turn operation which would result in a lower level of intersection delay and a better level of service.

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2)						
	STEP 1 – DATA GATHERING						
Location	State Readway:						
	State Roddway Intersection						
	\square Right Turn Lane Design for Approach: N / S / E / W						
Vehicle Speed	Choose one. Shown in order of preference.						
Page B-2	Design Speed: mph						
	□ 85 th Percentile Speed: mph						
	□ Statewide Average Speed: mph (<i>page B-2, Figure B-1</i>)						
Forecast Traffic Volumes							
Page B-3	Office Planning Staff)						
	□ Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes)						
	□ 20-Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.state.mn.us/stateaid/sa_csah.html						
	Turning Volumes: see graphic at right, also note the						
	Daily Volumes						
	Major Street Daily Traffic Volumes: vehicles per day						
	Minor Street Daily Traffic Volumes: vehicles per day						
Heavy Commercial <i>Page B-5</i>	Percent Heavy Vehicle:% (If percentage of heavy commercial is high special consideration should be taken in Step 4 for deceleration and storage length of turn lane)						
Grade	Upgrade Downgrade						
Page B-5	Grade of approach:% (If greater than 3%, apply deceleration adjustment in Step 4)						
Seasonal Variations	Is there a large seasonal variation within the corridor (recreational routes, primary farm to market routes, etc)? If yes, consider the variation and potential increase in traffic volumes during peak periods. Is it enough of an						
Page B-4	increase to change the design? \Box Yes, adjust traffic volumes \Box No						
Roadway	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See Page B-17 and Table B-8)						
Corridor	□ Yes, on horizontal curve □ No						
Characteristics Page B-6	Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the turn lane design to better accommodate the constrained conditions. (See <i>Pages B-23 and 24</i>)						
	□ Yes, constrained location □ No						
	STEP 2 – DETERMINE FACILITY TYPE						
Determine Facility Type	Rural vs. Urban (based on Access Management Category Assignments: www.dot.state.mn.us/accessmanagement/index. categoryassignments.html						
Page B-8							
	Expressway vs. Conventional (determined by Mn/DOT Office of Traffic, Safety and Technology)						
	Expressway Conventional						
Intersection Control Page B-9	□ Signalized:sec cycle length □ Unsignalized □ Future Signal? (see <i>Figure B-3</i>)						

	TURN LANE DESIGN CHECKLIST (F	PAGE 1 OF 2)		
	STEP 3 – CALCULATE TURN LANE DEMAND				
Deceleration Length <i>Page B-11</i>	 Based on speed and facility type determine deceleration length for turn la Table B-1 for low speed (20 – 50 mph) Urban Conventional Roa Table B-2 for high speed (45 – 75 mph) Rural and Urban Roady Interpolation between values in the tables may be necessary based on speed on speed to the tables may be necessary based on speed on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on speed to the tables may be necessary based on specific tables. 	Deceleration Distance			
Storage Length Page B-12	Storage Distance				
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance		Turn Lane Demand		
	STEP 4 – CALCULATE TURN LANE DESIGN		1		
Determine Taper <i>Page B-17</i>	Determine Taper based on Facility Type .17 □ Unconstrained Conventional/Expressway = 180 feet (1:15 taper) □ Constrained Expressway = 100 feet (1:8 taper)				
	□ Constrained Conventional = 60 feet (1:5 taper)		feet		
Full Turn Lane Length (before adjustments)	Take the Turn Lane Demand minus Taper Length		Full Width Turn Lane Length (no adjustments)		
	ADJUSTMENTS AND FINAL TURN LANE DESIG	N	1001		
Adjust Taper Page B-21	If the intersection is located on a horizontal curve, use a 1:8 taper	(100 feet)	Adjusted Taper Length		
Adjust Full turn Lane Length	If grade is greater than 3% adjust based on <i>Table B-9</i> (multiply the Deceleration Distance by adjustment in table and document the difference in deceleration to the right. <i>Page B-19</i>	+ /ft			
	If heavy commercial is greater than averages shown in <i>Table B-10</i> , increase Deceleration Distance by 30% and document the difference in length to the right. <i>Page B-20</i>	+ ft	Full Width Turn Lane		
	Are there more than 300 vehicles per hour? May consider <i>dual lefts</i> . The storage length required would be half of the calculated Storage Distance . Document the difference in distance to the right. <i>Page B-22</i>	ft	Length (with adjustments)		
	Are there <i>constraints</i> with the adjacent intersections or driveways? Does the <i>through lane queue</i> extend further than the turn lane length? Document a review of the potential impact to the desired turn lane length and adjust accordingly. <i>Page B-23 & B-24</i>	+ /ft	feet		
	Total Adjustments	+ / ft			

Examples

Example 1 – Rural Expressway Unsignalized (1 of 2)

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2)
	STEP 1 – DATA GATHERING
Location	State Roadway: TH 99 Intersection: CR 10 X Left Turn Lane Design for Approach: N / S / E / W Bight Turn Lane Design for Approach: N / S / E / W
Vehicle Speed Page B-2	Choose one. Shown in order of preference.
Forecast Traffic Volume s Page B-3	Choose one. Shown in order of preference. Choose one. Choose one. Choo
Heavy Commercial Page B-5	Percent Heavy Vehicle:% (If percentage of heavy commercial is high special consideration should be taken in Step 4 for deceleration and storage length of turn lane)
Grade Page B-5	Grade of approach:% (If greater than 3%, apply deceleration adjustment in Step 4)
Seasonal Variations Page B-4	Is there a large seasonal variation within the corridor (recreational routes, primary farm to market routes, etc)? If yes, consider the variation and potential increase in traffic volumes during peak periods. Is it enough of an increase to change the design? Yes, adjust traffic volumes No
Roadway Geometry and Corridor Characteristics Page B-6	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See Page B-17 and Table B-3) XYes, on horizontal curve INO Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the turn lane design to better accommodate the constrained conditions. (See Pages B-23 and 24) Yes, constrained location XNO
	STEP 2 - DETERMINE FACILITY TYPE
Determine Facility Type <i>Page B-8</i>	Rural vs. Urban (based on Access Management Category Assignments: www.dot.state.mn.us'accessmanagement'indexcategory.assignments.html) Urban (X Rural Expressway vs. Conventional (determined by Mn/DOT Office of Traffic, Safety and Technology) X Expressway © Conventional
Intersection Control	□ Signalized:sec cycle length □XUnsignalized □ Future Signal? (see Figure B-3)

Table B-2 Dec	celeration Distanc	es for High Spe	ed Urban & Rural I	Roadways	120 5%) turning ve heavy con	hicles wit
	(No Deceleration i	n Through Lane)	(10 mph Decelerat	ion in Through L	ane)	nouvy con	moroidi
				To 15 mph (feet)			
45	350	315	215	Table B-3			
50	425	390	275	Storage Le	ngth for Unsig	nalized Intersed	tions
55	515	480	350	Left-	s		
60	605	570	425	Turning Volume	0 – 5% Heavy Commorcial	>5 – 10% Heavy	>10 - 15% Heavy
65	715	680	515	50	commercial	commercial	Commercia
70	820	785	605	00	50	50	50
75	940	905	715	70	65	70	80
10	010	000	110	80	75	80	90
				90	85	90	100
Speed of	70 mph, No)		100	95	100	115
Decelerat	tion in Throι	ıgh		110	105	110	125
l ane on l	Expresswav	sand		120	(110)	120	135
Stop Con	dition for Lo	ft Turn		130	120	130	150
Stop Con	allion for Le	iit Tum		140	130	140	160
Lanes				150	145	150	170
				160	150	160	180
				170	160	170	190
				180	165	180	205

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2))
	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. • Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway • Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	<u>Unsignalized Intersections</u> Left Turn Lane – see <i>Table B-3</i> , based on Left-Turning Volume and Heavy Commercial %, or equation on <i>Page B-12</i> . Sight Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance
	Signalized Intersections Synchro Output Available: 95 th percentile queue length. Hethod 1 – Basic Equation: equation on Page B-13. Hethod 2 – Lock Up Tables: Tables B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

180 feet

100 feet

60 feet

1:15

1:8

1.5

Road curves to the right, the left turn lane

the curve so an adjustment is necessary.

would be considered on the outside of

Table B-9

Grade

3% to 4%

5% to 6%

Grade Adjustment

Upgrade

Adjustment

0.9

0.8

Example 1 – Rural Expressway Unsignalized (2 of 2)

- 82 (total adjustments)

The recommended design of this turn lane would be **100 feet taper** and 670 feet (rounding to the nearest 10 foot) of full width turn lane.

Downgrade

Adjustment

1.2

1.35

Example 2 – Rural Expressway Signalized (1 of 2)

	STEP 1 – DATA GATHERING							
Location	TH 99	CR 15						
	State Roadway:							
	Left Turn Lane Design for Approach: N S E / W							
Jahiela Speed	Hight Turn Lane Design for Approach: N / S / E / W Choose one. Shown in order of preference.							
Page B-2	Design Speed: mph							
	X 85 th Percentile Speed: 73 mph							
	Statewide Average Speed: mph (page B-2, Figure	e B-1)						
Forecast Traffic	Choose one. Shown in order of preference.							
/olumes Page B-3	X Design Year Volumes (provided by District/Central Office Planning Staff)	3440 14 -2076 76						
	 Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes) 							
	20-Year Multiplier (documented by State Aid and found at the following website under County Reference Data:	288 1 1 1						
	Turning Volumes: see graphic at right, also note the number of lanes for each movement.	99 552 122 552 22						
	Daily Volumes							
	Major Street Daily Traffic Volumes: 50,000 vehicles per day							
	Minor Street Daily Traffic Volumes: 11.120 vehicles per day	, ¹⁶						
Heavy Commercial Page <u>B-5</u>	Percent Heavy Vehicle: 7.5% (If percentage of heavy comm be taken in Step 4 for deceleration and storage length of turn lane)	nercial is high special consideration should						
Grade	Upgrade Downgrade							
Page B-5	Grade of approach:% (If greater than 3%, apply decelerati	ion adjustment in Step 4)						
Seasonal / ariations	Is there a large seasonal variation within the corridor (recreational ro yes, consider the variation and potential increase in traffic volumes d	utes, primary farm to market routes, etc)? I luring peak periods. Is it enough of an						
rage a-a	increase to change the design? Yes, adjust traffic volumes	X No						
Roadway Geometry and	Is the intersection located on a horizontal curve? If yes, adjust taper	in Step 4. (See Page B-17 and Table B-8)						
Corridor	Yes, on horizontal curve XI No							
Page B-6	Are there adjacent intersections that may influence the turn lane design to better accommodate the constrained conditions. (See	ign? If yes, consider adjustments to the tur Pages B-23 and 24)						
	Yes, constrained location XI No							
	STEP 2 - DETERMINE FACILITY TYPE	ate :						
Facility Type	www.dot.state.mn.us/accessmanagement/index.category.assignmen	its.html)						
Page B-8	Urban XI Rural							
	Expressway vs. Conventional (determined by Mn/DOT Office	of Traffic, Safety and Technology)						

Table B-2 Deceleration Distances for High Speed Urban & Rural Roadways

	(No Deceleration i	n Through Lane)	(10 mph D	eceleration in Th	rough	i Lan	e)									
								l		g	Svn	ch	ro (Dut	ซนเ	t
45	350	315	215		180		,								1	
50	425	390	275	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
55	515	480	350	Lane Configurations Total Lost Time (s) Satd. Flow (prot)	4.0 3433	4.0 1863	4.0 1583	4.0 3433	4.0 1863	4.0	4.0	4.0 3539	4.0	4.0	4.0 3539	4.0
60	605	570	425	Fit Permitted Satd. Flow (perm)	0.950 3433	1863	1583	0.950 3433	1863	1583	0.950 3433	3539	1583	0.950 1770	3539	1583
65	715	680	515	Volume (vph) Adj. Flow (vph)	288 313	99 108	192 209	41 45	76 83	20 22	122 133	661 718	30 32 35	14 15	776 843	334 307 334
70	820	785	605	Lane Group Flow (vph) Turn Type Protected Phases	313 Prot	108	209 Free	45 Prot	83	Free Free	133 Prot	718	35 Perm	Prot 3	843	334 Free
75	940	905	715	Permitted Phases Detector Phases	1	2	Free	1	2	Free	7	4	4	3	8	Free
				Minimum Initial (s) Minimum Split (s)	4.0	4.0		4.0	4.0		4.0	20.0	20.0	7.0	20.0	1000000

Speed of 75 mph, No Deceleration in Through Lane on Expressways, and Stop Condition for Left Turn Lanes

	Lane Configurations	- 11	+		- 11	•		5	- ++			* *	
50	Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
00	Satd. Flow (prot)	3433	1863	1583	3433	1863	1583	3433	3539	1583	1770	3539	1583
~ ~	Fit Permitted	0.950			0.950			0.950			0.950		1000
25	Satd. Flow (perm)	3433	1863	1583	3433	1863	1583	3433	3539	1583	1770	3539	1583
	Satd. Flow (RTOR)			209			22			35			334
46	Volume (vph)	288	99	192	41	76	20	122	661	32	14	776	307
15	Adj. Flow (vph)	313	108	209	45	83	22	133	718	35	15	843	334
	Lane Group Flow (vph)	313	108	209	45	83	22	133	718	35	15	843	334
05	Turn Type	Prot		Free	Prot		Free	Prot		Perm	Prot		Free
	Protected Phases	1	2		1	2		7	- 4		3	8	
	Permitted Phases			Free			Free			4			Free
15	Detector Phases	1	2		1	2		7	4	4	3	8	
	Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	20.0	20.0	7.0	20.0	20000
	Minimum Split (s)	8.0	20.0		8.0	20.0		8.0	27.5	27.5	12.0	34.5	
	Total Split (s)	46.0	41.1	0.0	46.0	41.1	0.0	33.0	84.9	84.9	28.0	79.9	0.0
	Total Split (%)	23.0%	20.6%	0.0%	23.0%	20.6%	0.0%	16.5%	42.5%	42.5%	14.0%	40.0%	0.0%
	Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	5.5	5.5	3.0	5.5	
	All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	2.0	2.0	2.0	2.0	
	Lond/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	101107
	Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	
	Recall Mode	None	Min		None	Mn		None	None	None	None	None	1000000
	Act Effct Green (s)	12.0	9.7	73.7	12.0	9.7	73.7	8.3	37.3	37.3	8.4	29.4	73.7
	Actuated g/C Ratio	0.16	0.13	1.00	0.16	0.13	1.00	0.11	0.51	0.51	0.10	0.40	1.00
	v/c Ratio	0.56	0.44	0.13	0.08	0.34	0.01	0.35	0.40	0.04	0.08	0.60	0.21
	Control Delay	31.3	34.5	0.2	30.4	34.0	0.0	34.9	13.3	5.4	40.9	20.1	0.3
	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Total Delay	31.3	34.5	0.2	30.4	34.0	0.0	34.9	13.3	5.4	40.9	20.1	0.3
	LOS	C	C	A	C	C	A	C	B	A	D	C	A
	Approach Delay		21.5			27.9			16.2			14.8	
	Approach LOS		C			C			В			В	
	Oussia Longth ECth (th)	66	45	0	8	34	0	28	90	0	6	158	0
	Queue Length 95th (It)	139	117	0	28	95	C	71	227	19	30	290	0
	Internal Link Dist (k)	10.00	8124			4930	100000		- 20			2983	
	Turn Bay Length (ft)	600		600	350		250	380		380	400		600
	Base Capacity (vph)	1421	701	1583	1421	701	1583	1055	2455	1109	439	2252	1583
	Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
	Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	Ő	0	0
	Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
	Reduced v/c Batio	0.22	0.15	0.13	0.03	0.12	0.01	0.13	0.29	0.03	0.03	0.37	0.21
		- 14140	2110	2410	2.66		2.001	0110	016.0	0.00	0,000	2.07	and a second

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2))
	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial %, or equation on Page B-12. Sight Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay Signalized Intersections Synchro Output Available: 95 th percentile queue length. Mathematics and the section on One B-15	Storage Distance
	Method 1 - Cask Explaint, explaint of Page B-15. Method 2 - Lock Up Tables: <i>Tables B-4</i> through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	feet
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

Example 2 – Rural Expressway Signalized (2 of 2)

	STEP 4 – CALCULATE TURN LANE DESIGN			
Determine Taper Page 8-17	hine Determine Taper based on Facility Type X Unconstrained Conventional/Expressway = 180 feet (1:15 taper) Constrained Expressway = 100 feet (1:3 taper)			
Full Turn Lane Length (before adjustments)	Constrained Conventional – 60 feet (1:5 taper) Take the Turn Lane Demand minus Taper Length 1,011 -	- 180 =	Full Width Turn Lane Length (no adjustments)	
	ADJUSTMENTS AND FINAL TURN LANE DESIG	N		
Adjust Taper Page B-21	If the intersection is located on a horizontal curve, use a 1:8 tape	Adjusted Taper Length		
Adjust Full turn Lane Length	If grade is greater than 3% adjust based on <i>Table B-9</i> (multiply the Deceleration Distance by adjustment in table and document the difference in deceleration to the right. <i>Page B-19</i>	+/- t		
	If heavy commercial is greater than averages shown in <i>Table B-10</i> , increase Deceleration Distance by 30% and document the difference in length to the right. <i>Page B-20</i>	Full Width Turn Lane Length (with adjustments)		
	Are there more than 300 vehicles per hour? May consider dual lefts. The storage length required would be half of the calculated Storage Distance. Document the difference in distance to the right. Page 6-22			
	Are there constraints with the adjacent intersections or driveways? Does the <i>through lane queue</i> extend further than the turn lane length? Document a review of the potential impact to the desired turn lane length and adjust accordingly. Page B23 & B-31	+/- t	_ <u>831</u> feet	
	Total Adjustments	+/- ft		

Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8		

Check for blockage by queues in the northeast bound through lane. The queue in the through lane is 227 feet, less than the full width turn lane length, therefore no adjustment is necessary.

	4	×	2	5	•	ť	3	*	3	5	×	~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
ane Configurations	ካካ	+	ť	ካካ	+	٢	ካካ	<u>++</u>	٢	۲	++	1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	3433	1863	1583	3433	1863	1583	3433	3539	1583	1770	3539	1583
Fit Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	3433	1863	1583	3433	1863	1583	3433	3539	1583	1770	3539	1583
Satd. Flow (RTOR)			209			22			35			334
Volume (vph)	288	99	192	41	76	20	122	661	32	14	776	307
Adj. Flow (vph)	313	108	209	45	83	22	133	718	35	15	843	334
Lane Group Flow (vph)	313	108	209	45	83	22	133	718	35	15	843	334
Furn Type	Prot		Free	Prot		Free	Prot		Perm	Prot		Free
Protected Phases	1	2		1	2		7	4		3	8	
Permitted Phases			Free			Free			4		1000000	Free
Detector Phases	1	2		1	2		7	4	4	3	8	
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	8.0	20.0		8.0	20.0		8.0	27.5	27.5	12.0	34.5	
Total Solit (s)	46.0	41.1	0.0	46.0	41.1	0.0	33.0	84.9	84.9	28.0	79.9	0.0
Total Split (%)	23.0%	20.6%	0.0%	23.0%	20.6%	0.0%	16.5%	42.5%	42.5%	14.0%	40.0%	0.0%
fellow Time (s)	3.5	3.5		3.5	3.5		3.5	5.5	5.5	3.0	5.5	000000
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	2.0	2.0	2.0	2.0	
endlag	Lead	Lan		Lead	Lag		Lead	Lag	Lag	Load	Lag	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yos	Vos	Yes	
Recall Mode	None	Min		None	Min		None	None	None	None	None	
Act Effet Green (s)	12.0	9.7	73.7	12.0	9.7	737	83	37.3	37.3	8.4	20.4	79.7
Actuated o/C Batio	0.16	0.13	1.00	0.16	0.13	1.00	0.11	0.51	0.51	0.10	0.40	1.00
de Batio	0.56	0.44	0.13	0.08	0.34	0.01	0.35	0.40	0.04	0.08	0.40	0.21
Control Delay	31.3	34.5	0.2	30.4	34.0	0.0	34.9	12.3	5.4	40.9	20.1	0.3
Dueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.3	345	0.2	30.4	34.0	0.0	24.0	12.2	5.4	40.0	20.1	0.0
OS.	C	C	A	00.4	04.0	0.0	04.0	10.0	A.	40.0	20.1	0.0
Approach Delay		21.5			27.9	-		16.2	<u></u>	0	14.8	-
Annroach LOS		C			C.			R			14,0	
Duning Logath 50th /th	66	45	0	8	24	0	28	B	0		031	
usua Length 95th (It)	110	117	0	28	05	0	1	207	10	20	200	0
to contil Link Disk (b)	-	0194		20	4000		1	4600	10	30	20093	0
Furn Bay Length (9)	600	0124	600	250	40.00	250	200	- and a state	200	400	2003	000
Rase Canacity (yoh)	1491	701	1583	1491	201	1583	1055	2465	1100	400	2252	1693
Stanuation Can Reducte	0	0	1303	0	0	-303	000	6400	1109	439	203.0	1003
Colliberty Can Deducto	. 0	0	0	0	0	0	0	0	0	0	0	0
Spinicesk Gep Preductin	0	0	0	0	0	0	0	0	0	0	0	0
Sociage Cap Heducth	0	0	0.10	0	0	0	0	0	0	0	0	0
Reduced with Ratio	0.22	0.15	0.13	0.03	0.12	0.01	0.13	0.29	0.03	0.03	0.37	0.2

The recommended design of this turn lane would be **180 feet taper** and **830 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

Example 3 – Rural Conventional Unsignalized (1 of 2)

	STED 1 DATA CATHEDING
Logation	
Location	State Roadway: US 1 Intersection: CR 2
	□ Left Turn Lane Design for Approach: N / S / E / W
	X Right Turn Lane Design for Approach: N / S (E) W
Vehicle Speed	Choose one. Shown in order of preference.
Page B-2	Design Speed: mph
	X 85" Percentile Speed: 00 mph
Farmerst Tartin	Statewide Average Speed: mph (page B-2, Figure B-1) Choose one Shown in order of orderence
Porecast Traffic Volumes Page B-3	Design Year Volumes (provided by District/Central Office Planning Staff)
	Historic Volumes (existing volumes extrapolated to setimate 20 year (orecast volumes)
	20 Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.state.mn.us/stateaid/sa_osah.html Turning Volumes: see graphic at right, also note the number of lanes for each movement. Datily Volumes
Heavy	Major Street Daily Traffic Volumes: <u>5,000</u> vehicles per day Minor Street Daily Traffic Volumes: <u>580</u> vehicles per day
Page 8-5	Percent Heavy Vehicle:% (It percentage of heavy commercial is high special consideration should be taken in Step 4 for deceleration and storage length of turn lane)
Grade Page B-5	Grade of approach:% (If greater than 3%, apply deceleration adjustment in Step 4)
Seasonal Variations <i>Page B-</i> 4	Is there a large seasonal variation within the corridor (recreational routes, primary farm to market routes, etc)? I yes, consider the variation and potential increase in traffic volumes during peak periods. Is it enough of an increase to change the design? Yes, adjust traffic volumes X No
Roadway Geometry and Corridor Characteristics Page B-6	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See <i>Page B-17</i> and <i>Table B-8</i>) XI Yes, on horizontal curve □ No Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the turn lane design to better accommodate the constrained conditions. (See <i>Pages B-23 and 24</i>)
	□ Yes, constrained location XI No
	STEP 2 – DETERMINE FACILITY TYPE
Determine Facility Type Page B-9	Rural vs. Urban (based on Access Management Category Assignments: www.dot.state.mn.ue/accessmanagement/index.category assignments.html) Urban XI Rural
	Expressway vs. Conventional (determined by Mn/DOT Office of Traffic, Safety and Technology)
Intersection Control Page B-9	□ Signalized:sec cycle length X Unsignalized □ Future Signal? (see Figure B-3)

		n Through Lane)	(10 mph Deceleration in Through Lan		
Design Speed (mph)					
45	350	315	215	180	
50	425	390	275	240	
55	515	480	350	315	
60	605	570	425	390	
65	715	680	515	480	
70	820	785	605	570	
75	940	905	715	680	

85th Percentile speed of 65 mph, No Deceleration in Through Lane on Rural Conventional, and up to 15 mph condition for Right Turn Lanes

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2)
	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. • Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway • Table B-2 for high speed (45 – 55 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial 5%, or equation on Page B-12. Right Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance
	Signalized Intersections ☐ Synchro Output Available: 95 th percentile queue length. ☐ Method 1 - Basic Equation: equation on Page B-13. ☐ Method 2 - Lock Up Tables: <i>Tables</i> B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of Checklist)	
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

Example 3 – Rural Conventional Unsignalized (2 of 2)

Facility TypeTaperLengthUnconstrained Conventional/Expressway1:15180 feetConstrained Expressway Roadway1:8100 feetConstrained Conventional Roadway1:560 feetTable B-8Taper Lengths

Turn Lane is on the outside of a horizontal curve, the taper is shortened to 100 feet (1:8 taper instead of the typical 1:15)

Table B-9 Grade Adjustment

Grade	Upgrade Adjustment	Downgrade Adjustment
3% to 4%	0.9	1.2
5% to 6%	0.8	1.35

500 (full width from Step 4) <u>+ 136</u> (total adjustments) = 636

The recommended design of this turn lane would be **100 feet taper** and **640 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

Example 4 – Rural Conventional Signalized (1 of 3)

	STEP 1 – DATA GATHERING						
Location	State Roadway: US 1 Intersection	m: CR 6					
	X Left Turn Lane Design for Approach: N / S / E 🔍	19					
	Right Turn Lane Design for Approach: N / S / E / W Chorse one Shown in order of conference						
Page 8-2	Design Speed: mph						
	X 85 th Percentile Speed: 65 mph						
	□ Statewide Average Speed: mph (<i>page B-2, Figur</i>	re B-1)					
Forecast Traffic	Choose one. Shown in order of preference.						
Page B-3	 Design Year Volumes (provided by District/Central Office Planning Staff) 						
	X Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes)						
	□ 20-Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.state.mn.us/stateaid/sa_csah.html						
	Turning Volumes: see graphic at right, also note the number of lanes for each movement. Daily Volumes						
	Major Street Daily Traffic Volumes: <u>14,600</u> vehicles p Minor Street Daily Traffic Volumes: <u>5,600</u> vehicles per day	erday Y					
Heavy Commercial Page 8-5	Percent Heavy Vehicle:% (If percentage of heavy comm be taken in Step 4 for deceleration and storage length of turn lane)	mercial is high special consideration should					
Grade Page B-5	Grade of approach:% (If greater than 3%, apply decelerat	ion adjustment in Step 4)					
Seasonal Variations Page B-4	Is there a large seasonal variation within the corridor (recreational ro yes, consider the variation and potential increase in traffic volumes of increase to change the design?	utes, primary farm to market roules, etc)? If during peak periods. Is it enough of an X No					
Roadway	Is the intersection located on a horizontal curve? If yes, adjust taper	in Step 4. (See Page B-17 and Table B-8)					
Corridor	Yes, on horizontal curve X No						
Page B-8	Are there adjacent intersections that may influence the turn lane des lane design to better accommodate the constrained conditions. (See	ign? If yes, consider adjustments to the turr e Pages B-23 and 24)					
	Yes, constrained location XI No						
and the second	STEP 2 – DETERMINE FACILITY TYPE						
Determine Facility Type	Hurar vs. Urban (based on Access Management Category Assignment www.dot.state.mn.us/accessmanagement/index.categoryassignment	ents: <u>nts.html)</u>					
Page B-8	□ Urban XI Rural						
	Expressway vs. Conventional (determined by Mn/DOT Office	of Traffic, Safety and Technology)					
Intersection Control	Expressway X Conventional X Signalized: 90 sec cycle length Unsignalized	□ Future Signal? (see <i>Figure E</i>					

	(No Deceleration i	n Through Lane)	(10 mph Deceleratio	n in Through	Lane)								
				To 15 mp (feet)	Table	B-6	5 - 1	90 Se	cond	Sign	al Cy	cle Le	er
45	350	315	215	180	Stora	ge L	eng	th in	Feet	(90 s	econ	d cyc	1
50	425	390	275	240					Perce	nt Left	-Tum	Green	1
55	515	480	350	315		1	10%	20%	30%	40%	50%	60%	
60	605	570	425	390	1	90	120	110	100	80	70	60	
65	715	680	515	480		25 50	180	140	120	100	90	80	
70	820	785	605	570	- 1	75	210	190	170	140	120	100	
75	940	905	715	680	eft-1	00	240	210	190	160	140	110	
					E A	25	270	240	210	180	150	120	

Speed of 65 mph, No Deceleration in Through Lane on Expressways, and Stop Condition for Left Turn Lanes

				Perce	nt Left	-Turn	Green	Time		
		10%	20%	30%	40%	50%	60%	70%	80%	
	100	120	110	100	80	70	60	40	30	
	125	150	140	120	100	90	70	50	40	
	150	180	160	140	120	100	80	60	40	
5	175	210	190	170	140	120	100	70	50	
eft-	200	240	210	190	160	140	110	80	60	
II.	225	270	240	210	180	150	120	90	60	
ning	250	300	270	230	200	170	140	100	70	
2	275	330	290	260	220	180	150	110	80	
ŭ	300	360	320	280	240	200	160	120	80	
ne	325	390	360	300	260	220	180	130	90	
	350	420	370	330	280	230	190	140	100	
	375	450	400	350	300	250	200	150	100	
	400	480	420	370	320	270	210	160	110	

	STEP 3 – CALCULATE TURN LANE DEMAND		
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance	
Storage Length Page 8-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial 5%, or equation on Page B-12. Right Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance	
	Signalized Intersections ☐ Synchro Cutput Available: 95 th percentile queue length. ☐ Method 1 - Basic Equation: equation on Page B-13. Method 2 - Lock Up Tables: <i>Tables</i> B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	_120 _{feet}	
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand	

See next page (Page 2 of 3 for Example 4) for Forecast using Historical Volumes and Sum of Critical Movement Analysis to determine Cycle Length & Percent of Left-Turn Green Time C-10

Example 4 – Rural Conventional Signalized (2 of 3)

Estimate Cycle Length & % Left Turn Green Time based on Sum of Critical Movements and Table B-5

Sum of Critical Movements = 1,040

Table B-7

Suggested Signal Cycle Lengths

Sum of Critical Volume	2 Phase Signal	5 Phase Signal	8 Phase Signal
700	45	60	90
800	60	75	105
900	60	75	105
1000	75	00	105
1100	75	90	105
1200	90	105	120
1300	105	120	135
1400	120	135	150
1500	135	150	165
1600	150	165	180
1700	165	180	180
1800	180	180	180

Cycle Length = 90 sec (Table B-7)

% Left Turn = <u>100 left turns</u> = 10% Green Time 1,040 sum of critical

3.7.3. Summary of Critical Lane Analysis

A summary of the critical lane method for evaluating the adequacy of a signalized intersection is as follows:

- Assign traffic volumes to lanes.
 - 1. Separate turn lanes accommodate their respective turning movements.
 - 2. Right turns are equivalent to through movements if a separate turn lane is not provided.
 - If separate left turn lanes are not used, lane distribution is attained through the use of through vehicle equivalents.
 - If there are single lane approaches, special adjustments must be made to account for the impeding effect of left turning vehicles.
- Check if two-phase signal operation is feasible or if a multi-phase operation is required to provide protected left turn movements.
- Identify critical movements for each signal phase.
- Evaluate level of intersection operation based on summation of critical movements.

Source: Mn/DOT Traffic Signal Timing and Coordination Manual

Example 4 – Rural Conventional Signalized (3 of 3)

	STEP 4 – CALCULATE TURN LANE DESIGN				
Determine Taper <i>Page B-17</i>	ermine Determine Taper based on Facility Type er # 8-17 Unconstrained Conventional/Expressway – 180 feet (1:15 taper)				
	_180 teet				
Full Turn Lane Length (before adjustments)	Full Width Turn Lane Length (no adjustments) 655 feet				
	ADJUSTMENTS AND FINAL TURN LANE DESIG	iN .			
Adjust Taper Page B-21	If the intersection is located on a horizontal curve, use a 1:8 tape	Adjusted Taper Length			
Adjust Full turn Lane Length	If grade is greater than 3% adjust based on <i>Table B-9</i> (multiply the Deceleration Distance by adjustment in table and document the difference in deceleration to the right. <i>Page B-19</i>	+/- ît			
	If heavy commercial is greater than averages shown in <i>Table B-10</i> , increase Deceleration Distance by 30% and document the difference in length to the right. <i>Page B-20</i>	ŧ	Full Width Turn Lane		
	Are there more than 300 vehicles per hour? May consider <i>dual lefts.</i> The storage length required would be half of the calculated Storage Distance. Document the difference in distance to the right. Page 6-22	t	Length (with adjustments)		
	Are there constraints with the adjacent intersections or driveways? Does the <i>through lane queue</i> extend further than the turn lane length? Document a review of the potential impact to the desired turn lane length and adjust accordingly. <i>Page</i> 22 5 8 -34		655 feet		
	Total Adjustments	+/.]		

Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8 Taper Lengths		

Check for blockage by queues in the northeast bound through lane – the through lane is 245 feet, less than the full width turn lane length, therefore no adjustment is necessary.

Queue Through Lane = (1 - G/C) (DHV) (25) (2) / (cycles/hr) = (1 - 780/1,040) (780) (25) (2) / 40 = 245 feet

655 (full width from Step 4) + 0 (total adjustments) = 655

The recommended design of this turn lane would be **180 feet taper** and **660 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

Example 5 – Urban Expressway Unsignalized (1 of 2)

	STEP 1 – DATA GATHERING
Location	State Roadway: TH 80 Intersection: CR 99
Vehicle Speed Page 8-2	Choose one Shown in order of preference. Design Speed: mph 85 th Percentile Speed: mph X Statewide Average Speed: mph
Forecast Traffic Volumes Page B-3	X Design Year Volumes (provided by District/Central Office Planning Staff) Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes) 20. Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.tate.mn.us/statesid/sa_csah.html Turning Volumes: see graphic at right, also note the number of lanes for each movement. Daily Volumes Major Street Daily Traffic Volumes: 20,7000 vehicles per day
Heavy Commercial Page 8-5	Percent Heavy Vehicle:% (If percentage of heavy commercial is high special consideration shouk be taken in Step 4 for deceleration and storage length of turn lane)
Grade Page B-5	□ Upgrade X Downgrade Grade of approach:% (If greater than 3%, apply deceleration adjustment in Step 4)
Seasonal Variations Page 8-4	Is there a large seasonal variation within the corridor (recreational routes, primary farm to market routes, etc)? yes, consider the variation and potential increase in traffic volumes during peak periods. Is it enough of an increase to change the design? □ Yes, adjust traffic volumes X No
Roadway Geometry and Corridor Characteristics Page B-6	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See <i>Page B-17</i> and <i>Table B-8</i> Yes, on horizontal curve X No Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the tu- lane design to better accommodate the constrained conditions. (See <i>Pages B-23 and 24</i>) Yes, constrained location X No
	STEP 2 - DETERMINE FACILITY TYPE
Determine Facility Type Page B-8	Rural vs. Urban (based on Access Management Category Assignments; www.dot.state.mn.us/accessmanagement/index.category assignments.html) X Urban Rural Expressway vs. Conventional (determined by Mn/DOT Office of Traffic, Safety and Technology) X Expressway vs. Conventional
Intersection Control Page B-9	□ Signalized:sec cycle length X Unsignalized □ Future Signal? (see <i>Figure B-3</i>

		n Through Lane)			ough Lane)		
					5 mph eet)		
45	350	315	215	Table B-3			
50	425	390	275	Storage Le	ngth for Unsigr	nalized Intersed	tions
55	515	480	350	Left- Turning Volume	0 - 5%	orage Length (fe	et)
60	605	570	425		Heavy Commercial	Heavy Commercial	Heavy Commercia
65	715	680	515	50	50	50	60
70	820	785	605	60	55	60	70
75	0.40	005	745	70	65	70	80
/5	940	905	/15	80	/5	80	90
				100	95	100	115
rage Fac	cility speed of	67 mph, No		110	105	110	125
eleratior	n in Through L	ane on Rura	al	120	110	120	135
ventional and Ston condition for Left Turn			130	120	130	150	
~~~				140	130	140	160
ies.				150	145	150	170
				160	150	160	180

	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections         Left Turn Lane - see Table B-3, based on Left-Turning Volume and Heavy Commercial %, or equation on Page B-12.         Sight Turn Lane - assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay         Sight Turn Lane - assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay         Sight Turn Lane - assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay         Sight Turn Lane - assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay         Sight Turn Lane - assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay         Sight Turn Lane - assist Equation: equation on Page B-13.         Method 2 - Lock Up Tables: Tables B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	Storage Distance
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

# Example 5 – Urban Expressway Unsignalized (2 of 2)



Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8 Taper Lengths		

Heavy Commercial of 17% is above the average of 4% for an Urban Expressway so the deceleration length was increased to accommodate the higher % of heavy commercial

The recommended design of this turn lane would be **180 feet taper** and **1,110 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

= 1,111

## Example 6 – Urban Expressway Signalized (1 of 2)

	STEP 1 – DATA GATHERING					
Location	State Frankrung TH 99	US 5				
	M Left Turn Lang Design for Approach: N S E / W					
Vahirla Sneed	Choose one. Shown in order of preference.					
Page B-2	Design Speed: mph					
	X 85 th Percentile Speed: <u>67</u> mph					
	Statewide Average Speed: mph (page B-2, Figure	9 B-1)				
Forecast Traffic	Choose one. Shown in order of preference.					
Page B-3	X Design Year Volumes (provided by District/Central		€ ₆₀			
1.10	Office Planning Staff)	30 480 60	<b>←</b> 580			
	Historic Volumes (existing volumes extrapolated to estimate 20 year format weburnes)		↓ 580 ↓ 140			
		+ + +	*			
	20-Year Multiplier (documented by State Aid and found at the following website under County Beference Data:	<b>+</b>	- ·			
	http://www.dot.state.mn.us/stateaid/sa_csah.html	200				
	Turning Volumes: see graphic at right, also note the	970	80 710 40			
	number of lanes for each movement.	100				
	20.000					
	Major Street Daily Traffic Volumes: 20,000 vehicles per day					
	Minor Street Daily Traffic Volumes: 6,700 vehicles per day	6				
Heavy	Parcent Haavy Vehicle: 5 % (If percentage of heavy comm	ercial is high special (	consideration should			
Page 8-5	be taken in Step 4 for deceleration and storage length of turn lane)	eren is right special i				
Grade	Upgrade Downgrade					
Page 8-5	Grade of approach:% (If greater than 3%, apply decelerations)	on adjustment in Step	4)			
Seasonal	Is there a large seasonal variation within the corridor (recreational rou	ites, primary farm to n	narket routes, etc)? If			
Variations Page 8-1	yes, consider the variation and potential increase in traffic volumes d	uring peak periods. Is	it enough of an			
rage and	increase to change the design?  Yes, adjust traffic volumes	No				
Roadway Geometry and	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See Page B-17 and Table B-8)					
Corridor	□ Yes, on horizontal curve X No					
Page B-8	Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the turn lane design to better accommodate the constrained conditions. (See Pages B-23 and 24)					
	□ Yes, constrained location X No					
	STEP 2 – DETERMINE FACILITY TYPE					
Determine Facility Type	Rural vs. Urban (based on Access Management Category Assignmen www.dot.state.mn.us/accessmanagement/index. category assignmen	nts: ts.html)				
Page B-9	🗙 Urban 🗆 Bural					
	Expressway vs. Conventional (determined by Mn/DOT Office of	of Traffic, Safety and	d Technology)			
	X Expressway  Conventional					
Intersection Control	X Signalized: 180 sec cycle length	🗆 Future Signa	l? (see Figure B-3)			

*Interpolate between the 65 mph and 70 mph stop condition (left turn lane) and no deceleration in through lane for Expressways = 750 feet

#### Table B-2 Deceleration Distances for High Speed

		Through Lane)
Design Speed (mph)		
45	350	315
50	425	390
55	515	480
60	605	570
65	715	680
70	820	785
75	940	905

C-15

Use the Storage Length equation for the 180 second cycle length.

Storage Length = (1 - G/C) (DHV) (25) (2) / (cycles/hr) = (1 - 20/180) (200) (25) (2) / 20 = 445 feet

	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial %, or equation on Page B-12. Right Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance
	Signalized Intersections ☐ Synchro Cutput Available: 95 th percentile queue length. Method 1 – Basic Equation: equation on Page B-13. ☐ Method 2 – Lock Up Tables: <i>Tables B-4</i> through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	445_ feet
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

# Example 6 – Urban Expressway Signalized (2 of 3)



180

180

180

165

180

1700

1800

% Left Turn = <u>200 left turns</u> = **11%** Green Time 1,880 sum of critical

C-16

# Example 6 – Urban Expressway Signalized (3 of 3)



Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8 Taper Lengths		

Check for blockage by queues in the through lane – the through lane queue is 1,212 feet, more than the full width plus taper turn lane length. Consideration should be given to extending the left turn lane 17 feet to have the taper start at the end of the through lane queue.

Queue Through = (1 - G/C) (DHV) (25) (2) / (cycles/hr) = (1 - 50/180) (970) (25) (2) / 20 = 1,212 feet

**1015** (full width from Step 4) <u>+ 17</u> (total adjustments) = **1,032** 

The recommended design of this turn lane would be **180 feet taper** and **1,040 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

# Example 7 – Urban Conventional Unsignalized (1 of 2)

Location		
Location	State Roadway:     US 99     Intersection:     CR 1       X Left Turn Lane Design for Approach:     N (S)     E / W       Right Turn Lane Design for Approach:     N / S / E / W	_
Vehicle Speed Page 8-2	Choose one. Shown in order of preference. X Design Speed: mph 85 th Percentile Speed: mph Statewide Average Speed: mph (page B-2, Figure B-1)	
Forecast Traffic Volumes Page 8-3	Choose one. Shown in order of preference.  X Design Year Volumes (provided by District/Central Office Planning Staff)  Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes)  20. Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.state.mn.us/stateaid/sa_csah.html Turning Volumes: see graphic at right, also note the number of lanes for each movement. Dally Volumes Major Street Daily Traffic Volumes: <u>4,000</u> vehicles per day	]
Heavy Commercial Page 8-5	Percent Heavy Vehicle:% (If percentage of heavy commercial is high special consideration sho be taken in Step 4 for deceleration and storage length of turn lane)	uld
Grade Page B-5	Grade of approach:% (If greater than 3%, apply deceleration adjustment in Step 4)	
Seasonal Variations <i>Page B-</i> 4	Is there a large seasonal variation within the corridor (recreational rcutes, primary farm to market routes, etc yes, consider the variation and potential increase in traffic volumes during peak periods. Is it enough of an increase to change the design?  Yes, adjust traffic volumes X No	;)? If
Roadway Geometry and Corridor Characteristics Page B-6	Is the intersection located on a horizontal curve? If yes, adjust taper in Step 4. (See Page B-77 and Table I □ Yes, on horizontal curve X No Are there adjacent intersections that may influence the turn lane design? If yes, consider adjustments to the lane design to better accommodate the constrained conditions. (See Pages B-23 and 24) X Yes, constrained location □ No	3-8) turn
	STEP 2 - DETERMINE FACILITY TYPE	
Determine Facility Type Page B-8	Rural vs. Urban (based on Access Management Category Assignments: www.dot.state.mn.us/accessmanagement/index.category.assignments.html)         X Urban       Rural         Expressway vs. Conventional (determined by Mn/DOT Office of Traffic, Safety and Technology)         Expressway       X Conventional	
Intersection Control	□ Signalized:sec cycle length X Unsignalized □ Future Signal? (see Figure !	3-3)

Table B-1 Dec	celeration Distanc	es for Lower Spe	eed Urban Convent	tional	Roadways			
	(No Deceleration i	n Through Lane)	(10 mph Deceleratio	on in T	hrough Lane)			
					o 15 mph (feet)			
20	70	35	20		Table B-3	oath for Unciar	alized Interco	otio
25	110	75	40		Storage Lei		torage Longth (fo	
30	160	125	70		Left-	0 5%		
35	215	180	110		Turning Volume	U – 5% Heavy Commercial	Heavy Commercial	
40	275	240	( 160 )		50	50	50	
45	350	215	215		60	55	60	
50	425	390	275		70	65	70	
				_	80	75	80	
				-	90	85	90	
Design Sp	beed is 40 m	ph, 10 mph			100	95	100	
Decelerati	, ion in Throuc	h Lane on	l Irhan		110	105	110	
Decelerati	on in Thoug		ondan		400	440	100	

Conventional, and Stop condition for Left Turn Lanes

Volume	Heavy Commercial	Heavy Commercial	Heavy Commercial
50	50	50	60
60	55	60	70
70	65	70	80
80	75	80	90
90	85	90	100
100	95	100	115
110	105	110	125
120	110	120	135
130	120	130	150
140	130	140	160
150	145	150	170
160	150	160	180
170	160	170	190
180	165	180	205
190	175	190	215
200	195	200	225

Storage Defaults to the minimum of 50 feet

	STEP 3 – CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. • Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway • Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial 5%, or equation on Page B-12. Right Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance
	Signalized Intersections ☐ Synchro Output Available: 95 th percentile queue length. ☐ Method 1 – Basic Equation: equation on Page B-13. ☐ Method 2 – Look Up Tables: Tables B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	_50_feet
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

# **Example 7 – Urban Conventional Unsignalized** (2 of 2)



Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8 Taper Lengths		

The taper length can not be longer than the full turn lane length. Add 10 feet to have equal taper to full length.

50 (full width from Step 4) +10 (total adjustments) =60

The recommended design of this turn lane would be **60 feet taper** and **60 feet** (rounding to the nearest 10 foot) **of full width turn lane**.

# Example 8 – Urban Conventional Signalized (1 of 2)

	STED + DATA CATHEDING	
Location		
Location	State Roadway: III I Intersection	
Vehicle Speed Page B-2	Choose one. Shown in order of preference.  Design Speed: mph X 85 th Percentile Speed: mph Statewide Average Speed: mph (page 8-2 Figur	78 B.1)
Forecast Traffic Volume s <i>Page B-3</i>	Choose one. Shown in order of preference. X Design Year Volumes (provided by District/Central Office Planning Staff) Historic Volumes (existing volumes extrapolated to estimate 20 year forecast volumes) 20 Year Multiplier (documented by State Aid and found at the following website under County Reference Data: http://www.dot.state.mnus/stateeid/sa_cseh.html Turning Volumes: see graphic at right, also note the number of lanes for each movement. Daily Volumes Major Street Daily Traffic Volumes: 20,000 vehicles pr da	$ \begin{array}{c}  & 100 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 000 \\  & 0$
Heavy Commercial Page 8-5	Percent Heavy Vehicle:% (If percentage of heavy comm be taken in Step 4 for deceleration and storage length of turn lane)	mercial is high special consideration should
Grade Page B-5	Grade of approach: □ Upgrade X Downgrade Grade of approach: % (If greater than 3%, apply decelerat	tion adjustment in Step 4)
Seasonal Variations Page B-4	Is there a large seasonal variation within the corridor (recreational ro yes, consider the variation and potential increase in traffic volumes increase to change the design?	outes, primary farm to market roules, etc)? If during peak periods, Is it enough of an X No
Roadway Geometry and Corridor Characteristics Page B-6	Is the intersection located on a horizontal curve? If yes, adjust taper X Yes, on horizontal curve □ No Are there adjacent intersections that may influence the turn lane design to better accommodate the constrained conditions. (See Y Yes, constrained location, □ No	in Step 4. (See <i>Page B-17</i> and <i>Table B-8</i> ) sign? If yes, consider adjustments to the turn e <i>Pages B-23 and 24</i> )
	STEP 2- DETERMINE FACILITY TYPE	
Determine Facility Type Page B-8	Rural vs. Urban (based on Access Management Category Assignme www.dot.state.mn.us/accessmanagement/index.category.assignme Urban □ Rural Expressway vs. Conventional (determined by Mn/DOT Office Expressway X Conventional	ents: nts html) of Traffic, Safety and Technology)
Intersection Control	X Signalized: <u>120</u> sec cycle length	□ Future Signal? (see <i>Figure B-3</i> )

Table B-1         Deceleration Distances for Lower Speed Urban Conventional Roadways				
	(No Deceleration in Through Lane)		(10 mph Deceleration in Through Lane)	
Design Speed (mph)				To 15 mph (feet)
20	70	35	20	-
25	110	75	40	5
30	160	125	70	35
35	215	180	110	75
40	275	240	160	125
45	350	215	215	180
50	425	390	275	240

Design Speed is 45 mph, 10 mph Deceleration in Through Lane on Urban Conventional, and Stop condition for Left Turn Lanes

	TURN LANE DESIGN CHECKLIST (PAGE 1 OF 2)	)
	STEP 3 - CALCULATE TURN LANE DEMAND	
Deceleration Length Page B-11	Based on speed and facility type determine deceleration length for turn lane. Table B-1 for low speed (20 – 50 mph) Urban Conventional Roadway Table B-2 for high speed (45 – 75 mph) Rural and Urban Roadways Interpolation between values in the tables may be necessary based on speed data.	Deceleration Distance
Storage Length Page B-12	Unsignalized Intersections Left Turn Lane – see Table B-3, based on Left-Turning Volume and Heavy Commercial %, or equation on Page B-12. Sight Turn Lane – assumed to be 0 feet since in virtually all cases these vehicles would have the right-of-way entering the intersection and would incur no delay	Storage Distance
	Signalized Intersections Synchro Output Available: 95 th percentile queue length. Hethod 1 – Basic Equation: equation on Page B-13. Hethod 2 – Lock Up Tables: Tables B-4 through B-6 on Page B-14 using Sum of Critical Movement Calculations (see Page 4 of checklist)	825 feet
Turn Lane Demand	Add the Deceleration Distance and the Storage Distance	Turn Lane Demand

# Example 8 – Urban Conventional Signalized (3 of 3)



Facility Type	Taper	Length
Unconstrained Conventional/Expressway	1:15	180 feet
Constrained Expressway Roadway	1:8	100 feet
Constrained Conventional Roadway	1:5	60 feet
Table B-8		
Taper Lengths		

Table B-9

5% to 6%

3% downgrade, so the deceleration length determined in Step 3 (215') is lengthened by 43 feet based on 20% increase shown in Table B-9

Grade Adju	stment	
Grade	Upgrade Adjustment	Downgrad Adjustmer
3% to 4%	0.9	1.2

08

1.35

There are 400 turning vehicles in the peak hour, a dual left turn lane would cut the required storage need by  $\frac{1}{2}$  (825 feet of storage/2 = 413)

- 980 (full width from Step 4)
- + 43 (grade adjustment)
- -<u>413 (single turn lane to a dual turn lane)</u>
- = 663

The recommended design of this turn lane would be **60 feet taper** and **660 feet** (rounding to the nearest 10 foot) **of full width turn lane**.



### Mn/DOT Research Services Section MS 330, 395 John Ireland Blvd St. Paul, MN 55155



