

Mesabi-Select Concrete Pavement Five Year Performance Report

Minnesota Department of Transportation

RESEARCH SERVICES

Office of Policy Analysis, Research & Innovation

Ryan Rohne, Primary Author Office of Materials and Road Research Minnesota Department of Transportation

May 2010

Research Project Final Report #2010-19

Your Destination...Our Priority

Technical Report Documentation Page

		¥				
1. Report No.	2.	3. Recipients Accession No.				
MN/RC 2010-19						
4. Title and Subtitle		5. Report Date				
Mesabi-Select Concrete Pavement	Five Year	May 2010				
Performance Report		6.				
-						
7. Author(s)		8. Performing Organization Report No.				
Ryan J. Rohne						
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.				
Minnesota Department of Transpo	ortation					
Office of Materials and Road Rese	earch	11. Contract (C) or Grant (G) No.				
1400 Gervais Avenue						
Maplewood, MN 55109						
12. Sponsoring Organization Name and Addres	SS	13. Type of Report and Period Covered				
Minnesota Department of Transpo	ortation	Final Report				
Research Services Section		14. Sponsoring Agency Code				
395 John Ireland Boulevard Mail	Stop 330					
St. Paul. MN 55155	btop 550					
15. Supplementary Notes						
http://www.lrrb.org/pdf/201019.pd	lf					
16. Abstract (Limit: 250 words)						
Call 54 was constructed in the fall	of 2004 on the MnDOAD low	volume loop. It is made up of eight inches of				
Cen 34 was constructed in the ran of 2004 on the MinKOAD low-volume loop. It is made up of eight menes of						
concrete undertain by Class 5 aggregate base and approximately three inches of compacted in-situ fill. Mn/DOT						
constructed this cell to study the p	roperties of Mesabi-Select as co	barse aggregate in concrete. This mineral				
I see a see a de dissa se salatione la seconda di di		encembre and ence in the inclusion and he have in the O				

aggregate that contains less iron than the ore, was obtained from overburdens in the iron ore ledges in northern Minnesota. There is no record of a previous cell constructed to study the suitability of Mesabi-Select in concrete.

Cell 54 is in very good condition after five years. There are very few cracks of low severity. The types of distress found were spalling of transverse joints, longitudinal cracking, and transverse cracking. Very little joint faulting has occurred. In-situ concrete surface permeability measurements indicate that the concrete is good quality. Friction and ride quality measurements indicate that Cell 54 is in very good condition. Falling weight deflectometer (FWD) deflections at the surface and top of the base were of similar magnitude as in other doweled jointed plain concrete pavement (JPCP) test cells of similar design.

17. Document Analysis/Descriptors Cell 54, Taconite, Concrete paven Overburdens Mesabi-Select, Fricti Minerals, Analysis, Field tests, Co	nents, Taconite-Overburdens, on, Bituminous bases, ourse aggregates, Load cells	 18. Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 				
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price			
Unclassified	Unclassified	38				

Mesabi-Select Concrete Pavement Five Year Performance Report

Final Report

Prepared by:

Ryan J. Rohne Minnesota Department of Transportation Office of Materials and Road Research

May 2010

Published by:

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, Mail Stop 330 St. Paul, Minnesota 55155

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation. This report does not contain a standard or specified technique.

The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Any trade or manufacturers' names that may appear herein do so solely because they are considered essential to this report.

Acknowledgements

We acknowledge the Minnesota Department of Transportation (Mn/DOT), Minnesota Department of Natural Resources (MDNR), and Federal Highway Administration (FHWA) for facilitating this initiative through funding. We are grateful to employees of the Mn/DOT Office of Materials for their effort toward a successful construction of the pavement.

We are especially indebted to Rebecca Embacher who had the oversight of sampling during construction and subsequent laboratory testing and to Tom Burnham, Ronald Mulvaney, Robert Strommen, and Eddie Johnson who installed the sensors.

Table of Contents

1 Introduction1
1.1 Background1
1.2 MnROAD Instrumentation and Performance Database1
1.3 Research Objectives
2 Five Year Performance
2.1 Surface Distress
2.2 Joint Faulting
2.3 Concrete Permeability
2.4 Friction Testing 6 2.4.1 KJ Law Skid Trailer 6 2.4.2 Grip Tester 7
2.5 Ride Quality
2.6 Falling Weight Deflectometer Deflections
3 Strain Response
3.1 Shrinkage
3.2 Joint Closure Temperatures13
4 Summary and Conclusion
References17
Appendix A MnROAD Test Sections
Appendix B MnROAD Grip Tester Runs
Appendix C Shrinkage Plots

List of Figures

Figure 1	Inside lane right wheel path grip number.	7
Figure 2	Cell 54 FWD deflection basins	10
Figure 3	Cell 52 FWD deflection basins	10
Figure 4	Cell 38 FWD deflection basins	11
Figure 5	Shrinkage and bottom VW 2 sensor	13
Figure 6	Joint closure temperature	14
Figure B	1 Inside lane left wheel path grip number	.B1
Figure B2	2 Outside lane right wheel path grip number	.B1
Figure B3	3 Outside lane left wheel path grip number	.B2
Figure C	1 Shrinkage at top VW 1 sensor.	.C1
Figure C2	2 Shrinkage at top VW 3 sensor.	.C1
Figure C.	3 Shrinkage at bottom VW 4 sensor.	.C2
Figure C4	4 Shrinkage at top VW 5 sensor.	.C2
Figure C:	5 Shrinkage at bottom VW 6 sensor.	.C3
Figure Co	6 Shrinkage at top VW 7 sensor.	.C3
Figure C'	7 Shrinkage at bottom VW 8 sensor	.C4

List of Tables

Table 1	Transverse Joint Faulting	4
Table 2	Surface Distress	5
Table 3	Permeability Measurements	6
Table 4	Friction Testing	7
Table 5	Ride Quality	8
Table 6	Falling Weight Deflectometer Deflections at Surface	9
Table 7	Falling Weight Deflectometer Deflections at Top of Base	9
Table 8	Spring Joint Closure Temperatures	14
Table 9	Summer Joint Closure Temperatures	15

Executive Summary

A joint venture of Federal Highway Administration (FHWA), Minnesota Department of Transportation (Mn/DOT), Minnesota Department of Natural Resources (Mn/DNR), and the Minnesota Local Roads Research Board (LRRB) collaborated to build a test section labeled as Cell 54 in MnROAD Low Volume Road (LVR). It is made up of 8 in. of concrete underlain by Class 5 aggregate base and approximately 3 in. of compacted in-situ fill. Mn/DOT constructed Cell 54 to study properties of Mesabi-Select as coarse aggregate in concrete. This mineral aggregate, which contains lesser iron than the ore, was obtained from overburdens on the iron ore ledges in northern Minnesota. There is no record of a previous cell constructed to study the suitability of Mesabi-Select in concrete.

This project constructed a 192-ft, jointed-plain-dowelled concrete pavement comprising two lanes of 12- by 15-ft slabs paved by slip-form construction process on October 22, 2004. The longitudinal joints were tied and unsealed. Mn/DOT laboratory tested concrete samples for mechanical properties after rheological properties had been field evaluated.

The research objectives for the Cell 54 initiative included:

- To construct a concrete pavement with Mesabi-Select aggregate and investigate the material properties of the product placed.
- To investigate the rheological and mechanical properties of Mesabi-Select aggregate concrete.
- To study long-term performance of a concrete pavement in a low-volume road scenario built out of Mesabi-Select aggregate.
- To ascertain the susceptibility of the aggregate to synergistic effects in the presence of conventional admixtures.
- To investigate the adaptation of Mesabi-Select aggregate to traditional mix design variables, such as low water cement ratio, well-graded aggregates, and aggregate absorption.
- To construct an un-textured strip on the finished surface for a continuation of Mn/DOT's study of the effect of pavement texture and joints on ride quality.
- To provide a framework for the structural use of taconite aggregate in concrete.

The inside lane of Cell 54 has been loaded by the standard MnROAD 80-kip truck for over five years. Performance data was continuously obtained from embedded strain gauges, vibrating wires, moisture sensors, and thermocouples. After five years:

- Surface Distress: there are very few cracks of low severity. The types of distress found were spalling of transverse joints, longitudinal cracking, and transverse cracking. Very little joint faulting has occurred.
- Permeability: in-situ concrete surface permeability measurements indicate that the concrete is good quality.
- Friction: friction number with a smooth tire ranged from 29.1 to 42.5 and with a ribbed tire from 51.2 to 63.5.
- IRI: varies from 79.4 to 91.3 in/mi.

- The joint closure temperature, measured by vibrating wire strain gauges, was lower than that in other concrete test cells of similar design and thickness at MnROAD.
- FWD deflections at the surface and top of the base were of similar magnitude as in other doweled JPCP test cells of similar design.

1 Introduction

1.1 Background

The Minnesota Department of Transportation (Mn/DOT) constructed the Minnesota Road Research Project (MnROAD) between 1990 and 1994. MnROAD is located along Interstate 94 forty miles northwest of Minneapolis/St. Paul and is an extensive pavement research facility consisting of two separate roadway segments containing dozens of distinct test cells. Each MnROAD test cell is approximately 500 feet long. Subgrade, aggregate base, and surface materials, as well as roadbed structure and drainage methods vary from cell to cell. All data presented herein, as well as historical sampling, testing, and construction information, can be found in the MnROAD database and in various publications. Layout and designs used for the Mainline and Low Volume Road are shown in Appendix A. Additional information on MnROAD can also be found on its web site at http://www.dot.state.mn.us/mnroad.

Parallel and adjacent to Interstate 94 and the Mainline is the Low Volume Road (LVR). The LVR is a 2-lane, 2½-mile closed loop that contains over 20 test cells. Traffic on the LVR is restricted to a MnROAD operated vehicle, which is an 18-wheel, 5-axle, tractor/trailer with two different loading configurations. The "heavy" load configuration results in a gross vehicle weight of 102 kips (102K configuration). The "legal" load configuration has a gross vehicle weight of 80 kips (80K configuration). On Wednesdays, the tractor/trailer operates in the 102K configuration and travels in the outside lane of the LVR loop. The tractor/trailer travels on the inside lane of the LVR loop in the 80K configuration on all other weekdays. This results in a similar number of ESALs being delivered to both lanes. ESALs on the LVR are determined by the number of laps (80 per day on average) for each day and are entered into the MnROAD database. Beginning in the winter of 2008, the MnROAD truck operated only in the 80K configuration and only on the inside lane of the LVR loop. The outside lane is left unloaded to study environmental effects.

The mainline consists of a 3.5-mile 2-lane interstate roadway carrying "live" traffic. The Mainline consists of both 5-year and 10-year pavement designs. The 5-year cells were completed in 1992 and the 10-year cells were completed in 1993. Originally, a total of 23 cells were constructed consisting of 14 HMA cells and 9 Portland Cement Concrete (PCC) test cells. Phase 2 reconstruction during the construction season of 2008 involved the reconstruction of more than 35 new test cells. Detailed information about the original and new test cells can be found in Appendix A.

Traffic on the mainline comes from the traveling public on westbound I-94. Typically the mainline traffic is switched to the old I-94 westbound lanes once a month for three days to allow MnROAD researchers to safely collect data. The mainline ESALs are determined from an IRD hydraulic load scale that was installed in 1989 and a Kistler quartz sensor installed in 2000. Currently the mainline has received roughly 5 million flexible Equivalent Single Axle Loads (ESALs) and 7.8 million Rigid ESALS as of December 31, 2004.

1.2 MnROAD Instrumentation and Performance Database

Data collection at MnROAD is accomplished with a variety of methods to help describe the layers, the pavement response to loads and the environment, and actual pavement performance. Layer data is collected from a number of different types of sensors located throughout the pavement surface and sub-layers, which initially numbered 4,572. Since then we have added to

this total with additional installations and sensors types. Data flows from these sensors to several roadside cabinets, which are connected by a fiber optic network that is feed into the MnROAD database for storage and analysis. Data can be requested from the MnROAD database for each sensor along with the performance data that is collected thought the year. This includes ride, distress, rutting, faulting, friction, and forensic trenches. Material laboratory testing and the sensors measure variables such as temperature, moisture, strain, deflection, and frost depth in the pavement along with much more.

1.3 Research Objectives

Northern Minnesota has abundant deposits of iron ore. These deposits are either harnessed for ore extraction or are removed as overburdens if the rock contains lesser iron content. In either case, piles of available aggregate are the byproduct of the mining activities. Extraction of iron from the ore has resulted in-stockpiles of taconite tailings. These tailings, labeled Mesabi Select when used as construction aggregates, are believed to be of some use as aggregate. Test Cell 54 was therefore built with concrete that has Mesabi-Select as the only coarse aggregate.

The research objectives for the Cell 54 initiative included:

- To construct a concrete pavement with Mesabi-Select aggregate and investigate the material properties of the product placed.
- To investigate the rheological and mechanical properties of Mesabi-Select aggregate concrete.
- To study long-term performance of a concrete pavement in a low-volume road scenario built out of Mesabi-Select aggregate.
- To ascertain the susceptibility of the aggregate to synergistic effects in the presence of conventional admixtures.
- To investigate the adaptation of Mesabi-Select aggregate to traditional mix design variables, such as low water cement ratio, well-graded aggregate, and aggregate absorption.
- To construct an un-textured strip on the finished surface for a continuation of Mn/DOT's study of the effect of pavement texture and joints on ride quality.
- To provide a framework for the structural use of taconite aggregate in concrete.

This project constructed a 192-ft jointed-plain-dowelled concrete pavement comprising two lanes of 12- by 15-ft slabs paved by slip-form construction process. The longitudinal joints were tied and unsealed.

2 Five Year Performance

The previous chapter introduced the MnROAD test facility and the research objectives of test Cell 54. This chapter discusses the performance of Cell 54 after five years. Performance was measured through surface distress, transverse joint faulting, concrete surface permeability, friction testing, ride quality, and falling weight deflectometer (FWD) deflections.

2.1 Surface Distress

Distress surveys were performed at regular intervals to monitor the field performance of test Cell 54. The data collected included the distress type, extent or amount of distress, and the severity of the distress. The test cell was surveyed for spalling of the transverse and longitudinal joints, transverse and longitudinal cracking, cracked panels, broken panels, faulted panels, patched panels, and D-cracking.

Cell 54 is in very good condition after five years. There are very few cracks of low severity. The types of cracking found were spalling of transverse joints, longitudinal cracking, and transverse cracking. The severity levels for these distress types are defined as:

Spalling of Transverse Joints

Low – Less than 3" wide spalls **Moderate** – 3" to 6" wide spalls **High** – Greater than 6" wide spalls

Longitudinal Cracking

Low – Well sealed or hairline cracks with no spalling or faulting

Moderate – Cracks with low or moderate severity spalling; faulting less than $\frac{1}{2}$; crack widths $\frac{1}{2}$ or less

High – Cracks with high severity spalling; faulting $\frac{1}{2}$ " or more; crack widths greater than $\frac{1}{2}$ "

Transverse Cracking

Low – Hairline cracks with no spalling or faulting

Moderate – Cracks with low severity spalling; faulting less than $\frac{1}{4}$; crack widths $\frac{1}{2}$ or less

High – Cracks with moderate or high severity spalling; faulting $\frac{1}{4}$ " or more; crack width greater than $\frac{1}{2}$ "

2.2 Joint Faulting

A modified version of the Georgia Faultmeter is used to measure transverse joint faulting. Faulting is measured in the wheel path at three and ten foot offsets from the centerline. Cell 54 was a 7.5 inch thick JPCP with 15 ft long and 12 ft wide panels with 1 inch diameter dowels spaced at 12 inches. For a doweled pavement of this thickness, there should be very little joint faulting after five years. As shown in Table 2, joint faulting ranged from 0.00 to 0.70 mm with the average joint faulting 0.24 mm.

Cell No.	Lane	Wheel Path	Date	Joint No.	Fault Depth (mm)
54	Inside	Right	6/18/09	1279	0.20
54	Inside	Right	6/18/09	1280	0.40
54	Inside	Right	6/18/09	1277	0.50
54	Inside	Right	6/18/09	1285	0.70
54	Inside	Left	6/18/09	1285	0.00
54	Inside	Left	6/18/09	1279	0.00
54	Inside	Left	6/18/09	1277	0.30
54	Inside	Left	6/18/09	1280	0.40

TABLE 1 Transverse Joint Faulting

TABLE 2 Surface Distress

00/21/0	9/1//U9 2	1	×	0	-	-	1	17	,	-	¢	4	0	>	0	>	0	0	0	0	-	-	¢	1
	0/24/09 1	,	s	J	1	I	17	14	+	I	K	+	0	v	U	v	0	U	U	0	1	I	V	+
00/0/	4/2/08	,	0	0	U	>	0	0	U	Ο	Ċ	>	U	0	U	0	U	n	U	`	U	>	U	>
L0/L/11	0	,	0	0	U	D	0	0	C	D	C	D	U	0	U	0	U	Ο	U	0	U	>	0	>
vey Date	4/13/0/	,	0	0	U	D	0	0	U	D	0	D	U	0	U	0	U	0	U	0	U	>	U	>
Sur	0//00	,	0	n	0	0	-	n	Ċ	D	-	0	0	0	0	0	0	n	0	n	0	>	0	>
	4/20/00)	0	n	U	D	0	n	U	D	C	>	U	N	U	N	U	N	U	N	U	>	U	>
20/13/05	CU/CI/UI)	0	n n	U	D	0	A	U	D	C	D	U	0	U	0	U	Λ	U	0	U	þ	U	>
210.05	CU/61/C)	0	0	U	0	-	0	Ū	Ο	-	D	U	0	U	0	U	0	U	0	U	>	U	>
	Longitudinal Crack	Low Severity No.	Longitudinal Crack	Low Severity Length (ft)	Transverse Crack	Low Severity No.	Transverse Crack	Low Severity Length (ft)	Transverse Spalling	Low Severity No.	Transverse Spalling	Low Severity Length (ft)	Longitudinal Crack	Low Severity No.	Longitudinal Crack	Low Severity Length (ft)	Transverse Crack	Low Severity No.	Transverse Crack	Low Severity Length (ft)	Transverse Spalling	Low Severity No.	Transverse Spalling	Low Severity Length (ft)
						Inside	Lane											Outside	Lane					

2.3 Concrete Permeability

The Proceq permeability tester was used to measure the in-situ permeability of the concrete. The device has a probe with two chambers; inner and outer. A vacuum is created between the concrete surface and the two chamber probe. The two chambers insure that in the inner chamber, the air is moving through the concrete perpendicular to the surface, similar to how a double ring infiltrometer works. After establishing the vacuum, it is removed and the change in pressure over 12 minutes is measured, the smaller the change in pressure, the lower the permeability. The WENNER probe is used with the Proceq permeability tester to measure concrete resistivity. This information along with the permeability can be used to find the quality of the cover concrete. Measurements taken on April 8, 2009 indicate that the surface concrete on Cell 54 is in good or very good condition.

Lane	Panel No.Resistivity (k-Ohms)Permeal 1x10-16		Permeability 1x10 ⁻¹⁶ m ²	Concrete Quality
Outside	3	21	0.024	Good
Outside	4	21	0.052	Good
Outside	9	31	0.086	Good
Outside	10	36	0.001	Very Good

2.4 Friction Testing

Friction was measured by the KJ Law skid trailer and grip tester. The KJ Law skid trailer was used annually and the grip tester was used for the first time in 2009.

2.4.1 KJ Law Skid Trailer

Pavement friction was measured using the KJ Law (Dynatest) skid trailer. Pavement surface friction is regarded as an indicator of safety for vehicles on highways because it is a measure of the force that resists sliding of vehicle tires on a pavement. Friction resistance is the force developed when a tire that is prevented from rotating slides along the surface of the pavement. Although friction resistance is often thought of as a pavement property, it is actually a property of both the pavement surface characteristics and the vehicle tires. The Friction Number testing process involves application of water to the pavement surface prior to determination of the friction value. The skid number (SN) is calculated as the average coefficient of friction across the test interval. Skid Numbers could theoretically range from 0 to 100. As a general rule, a SN above 25 on a smooth tire gives adequate friction, and a SN below 15 needs remediation. Likewise, a SN above 40 on a ribbed tire gives adequate friction, and a SN below 25 needs remediation.

Friction measurements were made annually starting in the summer of 2005. As shown in Table 4, friction measurements made with a smooth tire started at 42.5 in 2005 and decreased to 29.1 in 2009. Friction measurements made with a ribbed tire started at 58.6 in 2005 and decreased to 52.2 in 2009.

Date	Time	Lane	Air Temp [F]	Pavement Temp [F]	Tire Type	SN	Peak	Speed
6/13/05	13:31	Outside	-	97	Ribbed	58.6	90.4	38.9
6/13/05	13:37	Outside	-	98.8	Smooth	42.5	65.3	38.7
6/14/06	11:00	Inside	87	-	Smooth	42.1	66.86	41.4
6/14/06	11:16	Outside	86	-	Ribbed	61.9	93.29	40.6
11/6/07	11:30	Inside	37	47.1	Ribbed	63.5	97.42	38.7
10/31/08	9:15	Outside	68	59.8	Ribbed	55.7	89.1	39.6
10/31/08	9:28	Inside	68	59.6	Smooth	36.2	49.2	40.1
10/31/08	9:40	Inside	68	58.6	Ribbed	51.2	83.4	38.9
6/4/09	10:17	Inside	68	96.8	Ribbed	58.4	85.5	39.4
6/4/09	10:25	Inside	68	94.3	Smooth	29.1	34.7	41.9
6/4/09	10:50	Outside	68	98.3	Ribbed	52.2	85.4	40.6
6/4/09	11:00	Outside	68	96.5	Smooth	42	63.9	40.5

TABLE 4 Friction Testing

2.4.2 Grip Tester

The Grip Tester is a braked wheel, fixed slip device with drag and load (horizontal and vertical force) continuously monitored and their quotient (coefficient of friction) calculated and displayed. A grip number of 0.0 is frictionless with friction increasing up to a maximum grip number of 1.0. Figure 1 shows grip test results taken on April 24, 2009 on the inside lane (trafficked lane) right wheel path. The results from four different test runs are shown in the figure. Since there is not an automated trigger to start and stop testing, the test results may be slightly offset from each other. Additional grip tester results are in Appendix B.

FIGURE 1 Inside lane right wheel path grip number.

2.5 Ride Quality

At MnROAD, a Lightweight Inertial Surface Analyzer (LISA) profiler mounted on a utility vehicle is used to measure ride quality in term of International Roughness Index (IRI). Ride quality is typically measured three times per year, although it was not measured on Cell 54 until the spring of 2009. The typical design terminal Present Serviceability Rating (PSR) for Mn/DOT pavements is 2.5, which corresponds to an IRI of 150 in/mile. Cell 54 was tested for IRI on April 2, 2009. As shown in Table 5, IRI is still very good in Cell 54.

Lane	Wheel Path	IRI (in/mi)
Outside	Left	79.4
Outside	Left	82.0
Outside	Right	91.3
Outside	Right	86.8
Inside	Left	81.1
Inside	Left	83.6
Inside	Right	86.0
Inside	Right	89.9

 TABLE 5
 Ride Quality

2.6 Falling Weight Deflectometer Deflections

The primary objective of this research project was to determine if the Mesabi Select coarse aggregate had the durability to resist chemical attack and freeze-thaw cycles. Falling Weight Deflectometer (FWD) deflections can be used to determine if the concrete pavement has lost some of its strength. Table 6 shows the deflections in Cell 54 and two other doweled JPCP test cells of similar thickness with similar base layers, Cells 52 and 38. Test cell 54 is a 7.5 in. thick JPCP with 1.0 in. dowels and 15 x 12 ft panels. It has a 12 in. thick Class 6 base and clay subgrade. Test cell 52 is a 7.5 in. thick JPCP with 1.0 in. dowels and 15 x 14 ft panels. It has a 5 in. thick Class 4 base and clay subgrade. Test cell 38 is a 6.5 in. thick JPCP with 1.0 in. dowels and 15 x 12 ft panels. It has a 5 in. thick Class 5 base and clay subgrade.

As shown in Table 6 and 7, the deflections in Cell 54 are very similar to the deflections in the other two cells. This indicates that Cell 54 has not lost strength as measured by FWD. Figures 2, 3, and 4 shows center panel FWD deflection basins for test Cells 54, 52, and 38. The deflections of Cells 54 and 52 are of similar magnitude but the deflections for Cell 38 are higher. This is most likely because Cell 38 is one in. thinner than Cells 54 and 52.

	Drop Weight (lbs)	Center Panel Deflection (mils)	Corner Panel Deflection (mils)	Mid Edge Deflection (mils)
Cell 54	6000	2.9	4.8	7.2
May 5, 2005	9000	4.4	7.5	10.8
May 5, 2005	12000	6.1	10.5	14.2
Call 54	6000	3.1	13.6	8.2
October 26, 2000	9000	4.5	18.0	11.4
October 20, 2009	12000	5.9	22.0	14.5
Call 52	6000	3.4	12.4	8.2
October 26, 2000	9000	5.0	18.8	12.2
October 20, 2009	12000	6.8	24.7	16.4
Call 29	6000	6.2	11.2	12.0
October 27, 2000	9000	9.0	16.6	17.6
October 27, 2009	12000	11.8	22.6	23.8

 TABLE 6 Falling Weight Deflectometer Deflections at Surface

 TABLE 7 Falling Weight Deflectometer Deflections at Top of Base

	Drop	Center Panel	Corner Panel	Mid Edge
	Weight	Deflection	Deflection	Deflection
	(lbs)	(mils)	(mils)	(mils)
Call 54	6000	2.7	4.6	6.6
May 5, 2005	9000	4.2	7.0	10.0
May 5, 2005	12000	5.7	10.0	13.1
Call 54	6000	2.9	12.1	7.8
Cell 34	9000	4.2	16.1	11.1
October 20, 2009	12000	5.5	19.7	14.0
Call 52	6000	3.2	10.9	7.9
Cell 52 October 26, 2000	9000	4.8	16.2	11.7
October 20, 2009	12000	6.4	21.9	16.0
Call 29	6000	5.9	10.2	11.1
October 27, 2000	9000	8.6	15.3	16.5
0010001 27, 2009	12000	11.3	20.8	22.3

FIGURE 2 Cell 54 FWD deflection basins.

FIGURE 3 Cell 52 FWD deflection basins.

FIGURE 4 Cell 38 FWD deflection basins.

3 Strain Response

This chapter discusses the drying shrinkage and joint closure temperatures of Cell 54. Since the behavior of Mesabi Select Aggregates is under investigation, comparing the shrinkage and joint closure temperatures to standard concrete mixes is of interest.

3.1 Shrinkage

The total strain was calculated from the vibrating wire (VW) strain data from:

$$\varepsilon_{total} = (R_1 - R_0) + ((T_1 - T_0) * CF_{st})$$
[1]

where:

 ε_{total} : total strain

R₀: initial strain value (immediately after paving)

 R_1 : measured strain value at time T_1

T₀: initial temperature value (immediately after paving)

 T_1 : measured temperature value at time T_1

CFst: coefficient of thermal expansion for VW sensor

The second half of Equation 1 is used to correct the sensor reading for the difference between the thermal expansion of the steel vibrating wire sensor and the concrete. Since the VW sensors were not collecting data when the test cell was paved, the earliest values collected were used for the initial strain value (R_0) and the initial temperature value (T_0). The temperature values were not the air temperature, instead it was the temperature of the concrete at the location of the VW sensor. The mechanical strain, or the total strain minus the environmental strain, can be used to determine the drying shrinkage.

$$\varepsilon_{mechanical} = (R_1 - R_0) + \left((T_1 - T_0) * (CF_{st} - CF_c) \right)$$
^[2]

where:

CFc: coefficient of thermal expansion of concrete (from laboratory tests)

The drying shrinkage at VW sensor 2 (1 in. above the bottom of the slab) is shown in Figure 2. Additional shrinkage plots are included in Appendix C. As shown in Figure 5, shrinkage is affected by temperature and relative humidity, with the greatest shrinkage occurring in the summer and the least in the winter.

FIGURE 5 Shrinkage and bottom VW 2 sensor.

3.2 Joint Closure Temperatures

The joint closure temperature was found using the mechanical strain from Equation 2. The joint closure temperature was then determined by plotting the mechanical strain versus temperature as shown in Figure 6. When the joint closes, the slope of the strain temperature plot should change. The temperature at which the curve significantly changes slope is considered the joint closure temperature. Due to increased moisture contents in the spring, joint closure temperatures were analyzed for spring and summer separately. Temperatures in the fall and winter typically are not hot enough to cause joint closure therefore those seasons were left out.

The coefficient of thermal expansion for concrete is typically between 7.4×10^{-6} and 13×10^{-6} mm/mm/°C. The concrete containing Mesabi Select aggregates used in Cell 54 had an average coefficient of thermal expansion of 7.28×10^{-6} mm/mm/°C. As shown in Tables 8 and 9, the joints in Cell 54 typically locked up at lower temperatures than Cells 5, 8, and 10; three JPCP on the MnROAD Mainline.

FIGURE 6 Joint closure temperature.

		Joint Closure Temperature (°C)											
	VW03	VW04	VW05	VW06	VW07	Cell 5	Cell 5	Cell 8	Cell 8	Cell 10	Cell 10		
Age (months)	Тор	Bottom	Тор	Bottom	Тор	Тор	Bottom	Тор	Bottom	Тор	Bottom		
6													
7	19	17	17	17	17								
8													
10										21	16		
11										27	29		
18													
19	22	26	26	27	23	19	15						
20						24	22						
22										20			
23								23	21	26	22		

 TABLE 8 Spring Joint Closure Temperatures

 Loint Closure Temperature (%C)

	Joint Closure Temperature (°C)													
	VW03	VW04	VW05	VW06	VW07	Cell 5	Cell 5	Cell 8	Cell 8	Cell 10	Cell 10			
Age (months)	Тор	Bottom	Тор	Bottom	Тор	Тор	Bottom	Тор	Bottom	Тор	Bottom			
9														
10	23	25	25	25	23									
11														
12										30	28			
21						28	24							
22	23	28	25	26	23									
23														
24										30	27			
33						31	30							
35						33	28							
36						30	28			30	24			
39										31	24			
45						33	30	35	35					
47						35	30	35	39					
48										28	24			
51										30	24			
57						31	27	33	37					
58	19	25	21	26	21	34	32	34	41					
59						26	35	29	41					
60						26	25	27	22	29	22			
61								29	27	31	28			

 TABLE 9
 Summer Joint Closure Temperatures

4 Summary and Conclusion

Mn/DOT constructed Cell 54 to study properties of Mesabi-Select as aggregate in concrete. This mineral aggregate, which contains lesser iron than the ore, was obtained from overburdens on the iron ore ledges in northern Minnesota. There is no record of a previous cell constructed to study the suitability of Mesabi-Select in concrete. This project constructed a 192-ft, jointed-plain-dowelled concrete pavement comprising two lanes of 12- by 15-ft slabs paved by slip-form construction process on October 22, 2004. The longitudinal joints were tied and unsealed. The inside lane has been loaded by the standard MnROAD 80-kip truck for over five years. Performance data was continuously obtained from embedded strain gauges, vibrating wires, moisture sensors, and thermocouples.

After five years:

- Surface Distress: there are very few cracks of low severity. The types of distress found were spalling of transverse joints, longitudinal cracking, and transverse cracking. Very little joint faulting has occurred.
- Permeability: in-situ concrete surface permeability measurements indicate that the concrete is good quality.
- Friction: friction number with a smooth tire ranged from 29.1 to 42.5 and with a ribbed tire from 51.2 to 63.5.
- IRI: varies from 79.4 to 91.3 in/mi.
- The joint closure temperature, measured by vibrating wire strain gauges, was lower than that in other concrete test cells of similar design and thickness at MnROAD.
- FWD deflections at the surface and top of the base were of similar magnitude as in other doweled JPCP test cells of similar design.

References

- 1 T. Burnham and A. Boubaa (2001). "A New Approach to Estimate the In-Situ Thermal Coefficient and Drying Shrinkage for Jointed Concrete Pavement," 7th International Conference on Concrete Pavements, Orlando, FL, September 9-13.
- 2 B. I. Izevbekhai and R. Rohne (2008). *MnROAD Cell 54: Cell Constructed With Mesabi-Select (Taconite-Overburden) Aggregate; Construction and Early Performance*, Report No. MN/RC 2008-18, Minnesota Department of Transportation, St. Paul, MN.

APPENDIX A MnROAD Test Sections

								N	InROA	D Main	lin	e													
50 51	1 2	3 4	5 105 205 305 405	6 106 206]	8	9 Vesti	5y 93 - 9 60 - 61 - 50md 1	n - 10 yr Transfor 94 - 95 - 96 - 62 - 63 L-94 (ByPass	97 - 92 11 97 - 92 11 31 31 41	1 1 2 3 4 5		2	13 113 213 313 413	14 114 214 314 424	15	16	17	18	19	20	21	22	23	
 							23	Eastfbor	und 1-94		- 61	1													

Original	Hot Mix	Asphalt

-	- 5 year	designs -	\rightarrow	-				 10 years 	designs -				-
1	2	3	4	14	15	16	17	18	19	20	21	22	23
6" 58-28 75 blow	6.1" 58-28 35 blow	6.3" 58-28 50 blow	9.1" 58-28	10.9" 58-28	11.1" 62-22	8" 62-22 gyratory	7.9" 62-22 75 blow	7.9" 62-22 50 blow	7.8" 62-22 35 blow	7.8" 58-28 35 blow	7.9" 58-28 50 blow	7.9" 58-28 75 blow	9.2" 58-28
	4"cl61p	4"c35sp	Clas	75 blow	75 blow	5,							30 6851
33"			C.A.J	Clay	Clay			120					4" PSAB
C14sp								Drain				18"	3"cl4sp Clay
						78"	28"	-	281	78"	23" Cl5m	Ci6sp	en,
Driving	28"	1.000				Cl3:p	Cl3:p	9"	Cl3sp	C13sp			
Lane 1.5" 52-34	Cittsp	33" Cl3sp						C131p				Clay	8
HMA inlay								Clay			Class		
2000											Cay		
	Clay					Clay	Clay		Clay	Clay			
Clay	Caty												
San 97	San 02	Clay San 97	San 92	Tel 03	5-103	1-103	7-1.03	1.1.03	T1 03	7-1 03	Tel 03	1-1 03	Sen 01
May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08	May 08

Original Concrete

Original	Concret	e		2.1	12			1.23
5	6) year design 7	8	9	10	- 10 yes:	designs — 12	13
7.1" Trans Tine	7.1" Trans Tined	7.1" Trans Tined	7.1= Trans Tined	7.1" Trans Tined	9.9" Trans	9.9" Trans	9.9" Trans	9.9" Trans
3"cl4sp	6"	4" PSAB	4" PSAB	4" PSAB	lined	lined	Imed	Inned
C13:m	Catesp	3"cl4sp	3"cl4sp	3"cl4sp	4" PSAB	5	5	51 615-0
cioty	Clay	Clay	Clay	Clay	3"cl4sp	Clay	Clay	Clay
20x14 20x13 HMA Should 1" dowel	15x14 15x13 1° dowel	20x14 20x13 1" dowel 2007 Innov Grind	15x14 15x13 13° PCC Should 1° dowel 2007 Trad Grand	15x14 15x13 13' PCC Should 1" dowel 2009 Improved Innovat Grind	Clay 20x12 20x12 1.25" dowel	24x12 24x12 1.25° dowel	15x12 15x12 1.25° dowel	20x12 20x12 1.5" dowel
Sep 92	Sep 92	Sep 92	Sep 92	Sep 92	Sep 92	Sep 92	Sep 92	Sep 92
34	31 00	Current	Comment	C	Contract	Current	Current	34

1997 & 2004 Whitetopping

93	94	95	96	97	92	60	61	62	63
3.9"	2.8*	3"	5.9"	5.9"	5.9"	5" sealed	5" noseal	4" sealed	4" noseal
9" 58-28 1993 HMA	10" 58-28 1993 HMA	10" 58-28 1993 HMA	7" 58-28 93HMA	7" 58-28 93HMA	7" 58-28 93HMA	7" 58-28 93HMA	7= 58-28 93HMA	8" 58-28 93HMA	8" 58-28 93HMA
Clay	Clay	Clay	Clay	Clay	Clay	Clay	Chy	Clay	Clay
Trans Timed 4x4 Polypro	Trans Tined 4x4 Polypro	Trans Tined 6x5 Poly- olefin	Trans Tined 6x5 Polypro	Trans Tined 12x10 Polypro	Trans Timed 12x10 Polypro 1° dowel	Turf 6x3	Turf 6x3	Turf 6x3	Turf 6x5
Oct 97	Oct 97	Oct 97	Oct 97	Oct 97	Oct 97	Oct 04	Oct 04	Oct 04	Oct 04

Full Depth
Reclamation

2 3 4 1"TBWC 1"TBWC 2"64-34 2"64-34 3*64-34

2"64-34	2"64-34	5 61 51
6" FDR treated	6" FDR treated	8" FDR treated
6"	2" FDR	
FDR	2 capsp	9"
		FDR + Fly Ash
26" C14:p	33" C13:p	Clay
Clay		
	Clay	
Oct 08	Oct 08	Oct 08
Current	Current	Current

LTC Overlay	Unboun Recycled	d I Base			Mesabi Stone Base				
15	16	17	18	19	20	21	22	23	
3" WM	5" WM 58-34	5" WM 58-34	5" WM 58-34	5" WM 58-34	5" 58-28	5" 58-28	5" 58-34	5" WM 58-34	
11.1" 64-22 1993 HMA	12" 100% recycle PCC	12" 50% RePCC 50% Class 5	12" 100% RAP	12" CL5	12" C1-5	12" CL-5	12" C1-5	12" Mesabi Ballast	
58-34 Surface Binder	12* ՇԱհթ	12" СІЗар	12" СЮзр	12" СВър	12" СЮзр	12" C131p	12" Շենք	12" Cl3:p	
	7*	7"	7"	7"	7"	7"	7"	7"	
	Select	Select	Select	Select	Select	Select	Select	Select	
	Gran	Gran	Gran	Gran	Gran	Gran	Gran	Gran	
	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	
					30% Man	2/06/	2084		
					Fract	Fract	Fract		
					RAP	RAP	RAP		
Sept 08	Sept 08	Sept 08	Sept 08	Sept 08	Sept 08	Sept 08	Sept 08	Sept 08	
Current	Current	Current	Current	Current	Current	Current	Current	Current	

Unbond	ed PCC (Overlay		Compos	ite
105	205	305	405	106	206
5	5	5	5	6	6
4"	4"	5"	5"	2"64-34	2"64-34
1" PEAR	PRAR			5"	5"
7.1" cracked '93 PCC	7.1" '93 PCC	7.1" '93 PCC	7.1" cracked '93 PCC	6" CI-1 Stab Agg	6° CI-1 Stab Agg
3"cl4sp	3"cl4sp	3"cl4sp	3"cl4sp	<u>s"</u>	67
27" Cl3m	27" CBan	27"	27**	C1-5	C1-5
<i>c.a.</i> ,p		C13sp	Cl3sp	Clay	Clay
Orig 20x14 20x13 HMA	Orig 20x14 20x13 HMA	Orig 20x14 20x13 HMA	Orig 20x14 20x13 HMA	Mesabi 4.75 SuperP	Mesabi 4.75 SuperP
Should 1" dowel	Should 1" dowel	Should 1" dowel	Should 1° dowel	15'x12' 1" dowel	15'x12' no dowels
Clay LTine	Clay LTine	Clay LTine	Clay LTine		
Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08
Current	Current	Current	Current	Current	Current

Compos	ite Desigi	15 (Design	1 Stage)
1	70	71	72
1	92-97	10	11
3" HMA	3" SMA	3" PCC	3" PCC
6" PCC 15% recyc	6" PCC 15% recyc	6" PCC 15% recyc	6" PCC 100% recy
8" C1-5	8" C1-5	81 C1-5	81 C1-5
22" Cl-4sp	Clay	Clay	Clay
•	15 Panel	EAC	EAC
15' Panel	1" dowels	Surface	Surface
1" dowels	driving	15' Panel	15' Panel
driving	none	1" dowels	1° dowels
none	passing	driving	driving
passing		none	none
Clay		passing	passing
2009	2009	2009	2009

Thin Concret 113	e 213 13	313 13	413 13	2008 Whiteto 114 14	pping 214 14	314 14	414 14	514 14	614 14	714 14	81 4	914 14
5"	5.5"	6"	6.5"	6" long broom	6" long broom	6" long broom	6" long broom	6" long broom	6" long broom	6" long broom	6" long broom	6" long broom
5"Cl-1 Stab Agg 5" Cl-5 Clay heavy turf 15'x12"	5°Cl-1 Stab Agg 4.5° Cl-5 Clay heavy turf 15'x12'	5"Cl-1 Stub Agg 4" Cl-5 Clay heavy turf 15'x12"	5°Cl-1 Stab Agg 3.3° Cl-5 Clay heavy turf 15'x12'	5"58-28 93 HIMA Clay 6 x6 1" dowels driving no dowels passing	5"58-28 93 HMA Clay 6'x6' No dowels	6"58-28 93HMA Clay 6'x6' 1" dowels driving no dowels passing	6"38-28 93HIMA Clay 6'x6' 20 dowels	7* 58-28 93HMA Clay 6'x6' 1" dowels driving no dowels passing	7" 58-28 93HMA Clay 6x12' Flat dowels driving no dowels passing	7.5° 58-28 93:HMA Clay 6'x6' 1" dowels driving no dowels passing	8" 58-28 93HMA Clay 6'x6' no dowels	8* 58-28 93:1MA Clay 6'x6' 1" dowels driving no dowels passing
Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08	Oct 08
Current	Current	Current	Current	Current	Current	Current	Current	Current	Current	Current	Current	Current

		Mn	MnROAD Low Volume Road											
		33	34	35	36	37	38	39	40					
24	25	26	27	28	29	30	31	32	52	53	54			
	03-00-0	1-00-09			11-1	0-19								

Original	HMA						
24	25	26	27	28	29	30	31
Surry	Slurry				Slarry	Surry	
3.1" 58-28	52"	5.2"	33" 58-28	3.3" 59-28	5.2"	5.2"	3.3" 58-28
42	39-20	30-20			30-20	30-20	Sec.
Clésp	Sand	Clay					0.0015
Sand			11.º Chiep	13° C15op	10* C14p	12" (13 g	12" Cibip
			Clay	6	Clay		
				Clay		Clay	
							Gay
Aug 93	Aug 93	Aug 93	Aug 93	Aug 93	Aug 93	Aug 93	Aug 93
May 08	May 08	Sep 00	Aug 99	Aug 99	Aug 07	Aug 07	Sep 04

6*			
CFIL	6* Clóip	6* G5ip	6" G - H
6" Cl-18	e" Cl-1e	6° Си	е. 0-п
Clay	Clay	Clay	Casy
Multiple	Multiple	Multiple	Multiple

Original	PCC			
36	37	38	39	-40
6.5° Trans Tined 15x12 1° dowel	6.5" Trans Tined 12x12	6.5" Trans Tined 15x12 1" dowel	6.5° Trans Tined 20x12 1° dowel	6.3*-7.6* Trans Tined 15x12
5° 05.p	12* O5ep	5° Ci5op	5° Ci5ip	5° Cifup
Sand	20.07	Chy	City	Clay
	Grind Strips Outside Lane			
Jul 93	Grund Strips Outside Lune Sand Jul 93	Jai 93	Ja193	Jul 93

HMA C	onstructe 26	d 27	27	28	Р	CC Cor	1structed	57	53	60-Year PCC	Mesabi Hard Ro	ck 54	60" Culverts	Geo Barr	compo rier Di	osite rain 28
25 Oil Gravel 8 ¹ FDR	4* 58-28	2X Chip 14"	2.5 Oil Gravel	2.5 Oil Gravel 1°C-6		5" Astro Turf 10x12 C1-1f	4" Perv Overlay 6.5" 20x12	7.5" Astro Turf 15x13/14 Var Dowels	7.5" Astro Turf 15x13/14	12" Trans Broom 15x12 1.5" SS	4* 6434 4* Cidop	7.5" Astro Turf 15"x12" 1" dowel	60* Plantic		34 - 54	27 53,34 58-34
Clay	12" Clésp	Stane	Large Stone	14* Large Stane		G - 1e Clay	1° dowel 5° Cl5np	5° Cláp Clay	5° Cl4p Clay	dowels PCC Should 5* CL6	12* CDap	12* Cl6mp	Seel Culverts Clay		BD ,	7* Gar
	Gay	clay	Gay	Clay			Cay			36" SG Clay	Cay	Clay		Bor	row ky	Barraw Clay
Sep 00 May 04	May 04 Current	Aug 99 Sep 00	Sep 00 Aug 06	Aug 99 Aug 06		Jun 00 Surrent	Oct 08 Current	Jun 00 Current	Jun 00 May 08	Oct 08 Current	Sep 04 Cursent	Oct 04 Current	Oct 00 Oct 04	Au	g 06 rreat	Aug 06 Current
							C T T T				<u>constant</u>	Carrie				

Pervious	s Full Dep	oth					Fly Ash S	Stabilizati	on							Impleme	nts	Aging
Park Lot 64	Sidewalk 74	85 25	86 25	87 25-26	88 26	89 26	77 29	78 29-30	79 30	1999 Su 33	perPave 34	35	Acid Mo 33	dified 34	35	of Husba 83	ndry 84	Study 24
7* Perv	4" Perv PCC	7* Perv	5" Perv HMA	Control	5* Pev HMA	7* Perv	4* 58-34 Elvaloy + PPA	4" 58-34 Elvaloy +PPA	4* 58-34 Elvaloy + PPA	58-28	4" 58-34	4" 58-40	4" 58-34 PPA	4" 58-34 585 +FPA	4* 58-34 585	3.5* 58-34	5.5° 58-34	3* 6434
PCC	6* Washed Stone	PCC	4" RR Ballast	4" Mesabi Ballast	4" RR Ballast	PCC	8'	8"	8" FDR									4º Clúp
	Type V Con	4° RR Ballas				4" RR Ballast	FDR	Clósp	Fly Ash	12* Clósp	12* Clósp	12* Clúp	12* Сбіф	12* Сбір	12* Clósp	сі.я	9" C1-5	Sand 100'Fog Seai 2008
12" CA-15	Textile	8" CA-15	10" CA-15	11" CA-15	10" CA-15	8" CA-15	Clay	Clay	Clay							Chry	Chr.	100 Chip Seals 2008
Type V Geo- Textile		Type V Geo- Textile				Clay	Clay	Ciay	Clay	Clay	Clay		Cay	2009 2010 2011 2012				
cay	1	34.85	Sand	Sand	Cay	cay	0	0.19	6 - M	1.100		2.100	0	0		0.1.0	0	0
2007 Current	Aug 06 Current	Current	Carrent	Oct 08 Carrent	Carrent	Current	Carrent	Oct 07 Current	Sep 07 Current	Jul 99	J al 99 J al 07	Jul99 Jul07	Sep 07 Current	Sep 07 Current	Sep 07 Current	Oct 07 Current	Current	Carrent

APPENDIX B MnROAD Grip Tester Runs

FIGURE B1 Inside lane left wheel path grip number.

FIGURE B2 Outside lane right wheel path grip number.

FIGURE B3 Outside lane left wheel path grip number.

APPENDIX C Shrinkage Plots

Figure C1 Shrinkage at top VW 1 sensor.

Figure C2 Shrinkage at top VW 3 sensor.

Figure C3 Shrinkage at bottom VW 4 sensor.

Figure C4 Shrinkage at top VW 5 sensor.

Figure C5 Shrinkage at bottom VW 6 sensor.

Figure C6 Shrinkage at top VW 7 sensor.

Figure C7 Shrinkage at bottom VW 8 sensor.