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Executive Summary

Departments of Transportation (DOTs) hire contractors to perform pavement construction and re-
habilitation work and use a variety of protocols to determine the quality of contractors’ work.
This report concerns hot-mix asphalt pavement construction and focuses on Minnesota DOT’s
(Mn/DOT’s) problem of determining the number of samples that contractors should be required to
test to determine pay factors. Although our approach is validated with Mn/DOT data, our proce-
dure is applicable to all DOTs that use a similar approach fordetermining contractor payments.

Mn/DOT divides each day’s work by contractors into a small number of lots. Then, core
samples are taken from two locations within each lot and the relative densities of the cores are
calculated by performing standardized tests in materials testing laboratories. The average of these
two values is used as an estimate of the lot’s relative density, which in turn determines the pay
factor. This procedure is not sensitive to desired reliability in pay factor calculations. Unreliable
calculations can result in excessive over- and under-payments, which affects project cost and the
DOT’s ability to affect contractor performance over time.

We describe a procedure, based on Bayesian statistics, thatdetermines the requisite number of
test samples to achieve user-specified reliability in pay factor estimation. We perform a variety of
calculations to compare our approach with the current approach and describe the development of
two decision support tools that can be used by DOT project engineers to specify test protocols. The
first procedure works in an offline environment where the number of tests must be known before
any samples are obtained. The second procedure works in the field where the decision to continue
testing is taken after knowing the result of each test. We also provide guidelines for estimating key
parameters needed to implement our protocol.



Chapter 1

Introduction

The Minnesota Department of Transportation (Mn/DOT) uses contractors to build/resurface pave-
ments. A standard testing protocol is used to determine the quality of materials and contractors’
compaction effort. This report is concerned with the goodness of the procedure used by Mn/DOT
to determine contractors’ compaction effort. According tothis protocol, the daily amount of pave-
ment built by each contractor is divided into a small number of lots. Then, core samples are taken
from two locations within each lot and the relative densities of the cores are calculated by perform-
ing standardized tests in materials testing laboratories.The average of the two values is used as an
estimate of the lot’s relative density, which in turn determines the pay factor. [Mn/DOT obtains two
cores per location, one core is tested by the contractor and the other by Mn/DOT. If the observed
densities from paired cores are within a pre-specified range, then the contractors’ values are used
to calculate the average, otherwise Mn/DOT’s values are used.]

Pay factors depend on ranges within which estimated relative density lies, with the pay factor
remaining unchanged within each range. Pay factors translate into either incentive or disincentive
(I/D) payments to the contractor for each piece of work (lot). For example, a pay factor of 102%
results in a 2% incentive per ton, and a 96% pay factor penalizes the contractor by 4% per ton.

How many samples should Mn/DOT require the contractor to test per lot to determine pay
factors? The trade offs that Mn/DOT must consider are as follows — too few samples increase
the probability of assessing an incorrect pay factor, whereas too many samples increase testing
cost. Too many cored samples also weaken the pavement. This is clearly an important question
as illustrated by the following example. Suppose a testing regime determines the lot density to be
in one range (say 100% pay factor range), but the true densitylies in an adjacent range (say 98%
range). For a typical material cost of $40 per ton and lot sizeof 500 tons, this amounts to a payment
calculation error of $400 per lot. Furthermore, when the correlation between compaction effort and
incentive payment is low on account of inaccurate testing procotol, I/D payment schemes are less
likely to have their intended effect on contractor effort.

This project addresses the problem of determining the number of test samples needed to de-
termine pay factors that are accurate up to a user-specified reliability level. We do not propose
changing either the method used to detect if contractor’s orMn/DOT’s density values should be
used, or the I/D schedule (i.e. the relative density ranges that result in different pay factors), al-
though both are worthy topics for future research. The approach presented in this report will remain
valid for any I/D schedule.

We capture the reliability of the testing protocol by two metrics, which we call critical ratio
and critical number. We first divide the range of relative densities in equal-sized intervals, called
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bins, such that each bin lies within a single pay-factor range. This step is necessary because in
Mn/DOT’s pay factor calculation method, the sizes of intervals over which pay factors remain
invariant are not constant. Our procedure then simulates the result of taking each test sample, one
at a time. After each simulation, a Bayesian approach is utilized to update (1) the current most
likely bin within which the true relative density lies, (2) the critical ratio for each bin, and (3)
the critical number. For each bin, the denominator of the critical ratio is the maximum likelihood
among all bins that the true relative density lies in a bin, whereas the numerator is the likelihood
that the true density lies in the chosen bin. The critical number is the number of bins for which
the critical ratio is above a certain threshold specified by the user. The latter is referred to as the
cutoff ratio. The process terminates when the most recent value of the critical number is less than
or equal to the cutoff number.

For a given set of values of the cutoff number and the cutoff ratio, an iteration refers to the
series of updates needed to obtain a single estimate of the required number of tests. For the same
reliability metrics, we repeat these iterations many timesto obtain an average number of tests
needed. The number of iterations is determined by the desired level of accuracy in the estimation
of the average number of required tests.

The first half of this report describes two variations of our procedure. The first is used when
sample size must be determined in advance. This approach is intended to be used when cored
samples are used to determine pavement density, because in that case, the number of cores to be
cut must be known in advance. These cores are later tested in alab. This approach is implemented
using a computer program. The user enters certain parameters derived from historical data and a
pair of reliability measures, i.e. the cutoff ratio and the cutoff number. The program then calculates
the number of samples that should be tested for each lot.

The second variation of our procedure can be used when density observations are available
immediately. This approach is implemented in an Excel worksheet for use in the field. As before,
the user enters certain parameters derived from historicaldata and a pair of reliability measures
up front. The difference is that after each sample is tested,the user also enters observed relative
density value from the current test. The worksheet calculates the current most likely bin within
which the true relative density lies and also recommends whether at least one more sample is
needed to achieve the desired reliability or the procedure should terminate.

A key input for the aforementioned procedures is the variance of density values for each con-
tractor. We denote this variance byσ2. Our procedure for determining sample sizes requires fewer
samples (cores) to be tested for contractors who have a smaller value ofσ2. This is likely to create
an incentive for contractors to lower variance over time. Although such a change will be beneficial
for Mn/DOT (because of more consistent pavement density), this creates the need to estimateσ2

at regular intervals and to update its value when changes aredetected. In particular, the problem
involves the following steps: (1) determine the initial estimate ofσ2 when the new protocol is first
implemented or each time a new contractor wins the bid (“new”means Mn/DOT does not have
data on this contractor’s performance from past projects),(2) determine for each contractor ifσ2

has changed during the course of a project or between projects, and (3) update the estimate ofσ2.
This second half of this report concerns how Mn/DOT would estimate and updateσ2 if our sug-

gested protocol were to be implemented. Note that in our approach, variance values are expected
to be different for different contractors over time depending on their performance. We develop and
report a methodology for carrying out each of the three steps.

For setting up the initial estimate, we recommend using a value that is based on all available
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data for a particular mix or a set of similar mixes for a periodof two or three years. This esti-
mate would be the same for all contractors. It will ensure equal treatment of all contractors and
allow Mn/DOT to assign initial values to new contractors as well. As contractors reduce their per-
formance variability, industry-wide statistics would change. Because of this, the baseline inputs
should be recalculated yearly (using data from the most recent two or three years) so that new
contractors will continue to be held to the updated industrynorms.

Our proposed methodology for carrying out steps 2 and 3 depends on the nature of change in
σ2. We conceptualize two types of changes. The first type of change occurs when the compaction
process (and hence the variance of lot densities) is generally stable but experiences jumps every
once in a while. The process returns to its stable state afterthe contractor detects and fixes the
process anomaly. For this type of change, we develop an updating procedure based on hypothesis
testing because the latter can detect jumps and allow Mn/DOTto update variance estimate. The
second type of change occurs when the variance is not stable and changes frequently. For this type
of change, we recommend an updating procedure based on a smoothing approach because that
avoids large swings in estimated values.

The organization of the remainder of this report is as follows. The second chapter contains
an overview and analysis of the current testing protocols employed by Mn/DOT. Our sample size
determination approach is described and analyzed in the third chapter. The fourth chapter contains
a description and analysis of the methodology for estimating and updatingσ2. The fifth chapter
concludes the report.
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Chapter 2

Understanding Current Protocols

2.1 Data Description

From the Mn/DOT Materials Lab in Maplewood, we received datafrom a project labeled SP 1013-
80, including Test Summary Sheets and Density Incentive/Disincentive Worksheets. The project
took place between Cologne and Chaska, MN and used two gyratory mix designs - SPWEB440
and SPNWB430. The contractor was Knife River and paving tookplace between 6/4/07 – 6/19/07.

The data consisted of Test Summary Sheets and Density Incentive/Disincentive Worksheets.
The Test Summary Sheets include results from materials tests performed on the loose mix. These
sheets also include, among other results, max specific gravity (SpG), air voids, and sample ton
number which is the tonnage at which the sample was taken.

The Density Incentive/Disincentive Worksheets display reference information from the Test
Summary Sheets, the date paved, total tons paved each day, sample number, the tonnage at which
the sample was taken, how many tons since the last sample was taken, the individual voids of that
sample, and the individual max SpG of that sample. Also recorded on these sheets is a moving
average of the max SpG (used to find pavement density).

These sheets also include test results from bothmatandlongitudinal jointdensity samples. The
mat is the main part of the road and the longitudinal joint is either the curb side of the mat or the end
that joins another mat segment longitudinally. The longitudinal joint density is tested separately
because there are geometric limitation of achieving density with an unsupported edge and/or when
a roller bridges onto an existing mat, curb, or gutter. Results concerning the longitudinal joint
density include sample number, bulk SpG, bulk SpG used (after consistency testing), average bulk
SpG, pavement density, air voids (lots with low air voids do not receive incentive), tons represented,
pay factor, and incentive/disincentive in dollars.

The pay factor for the mat is determined by the mean density ofcores taken from the mat. For
lots that are not tested for longitudinal joint density, this is the total pay factor. For longitudinal
joint lots (20% of lots are tested for longitudinal joint density), two cores are sampled for measuring
longitudinal density and each is assigned a pay factor according to a schedule that is specific to
longitudinal cores. Then, the total pay factor for a lot for which longitudinal joint density is
measured is the product of the three pay factors (one from themat and two from the longitudinal
joints).
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2.2 Methodology

We analyzed the data to shine light on consistency, variability, quality, and correlation. All of
these analyses were performed on the SP 1013-80 data, but ourapproach can be replicated for any
similar data set. We compared the consistency of the contractor’s bulk SpG values with that of
the agency using two methods that Mn/DOT currently employs.First, the bulk SpG value of each
contractor core must be within±0.03 of the agency’s companion core value. Second, excluding
any cores that failed the first method, the contractor’s average daily bulk SpG value must be within
±0.03/

√
n of the agency’s average daily value, wheren is the number of samples averaged. In

addition to performing this analysis numerically, we also analyzed the data graphically to visualize
if there were any patterns.

We tested variability using two methods. The first method highlights the variability of the bulk
SpG measurements over time against the natural variabilitythat is estimated from the first few days
of data. The second method compares the variability of the contractor’s bulk SpG measurements
with that of the agency’s. In the first method, we began by calculating the sample average and
standard deviation of the first 32 samples (16 lots) of the SPWEB440 mix. We then graphed
the average of the two bulk SpG values in each of the remaining16 SPWEB440 lots along with
previously calculated average and the average± 2 × standard deviation/

√
2 as reference lines.

Such time-series charts are also called X-bar charts. Processes are deemed to be in control if
observations remain within the two standard deviation limits. In our experiment, the upper limit is
not relevant because greater SpG is generally more desirable, except when it implies low voids.

To compare the variability in bulk SpG measurements by the contractor with that of the agency,
we performed a hypothesis test. We performed this test in twodifferent ways first testing loose
mix and core sample data together and second, testing them separately. In each instance, our null
hypothesis was that the variance of the contractor’s measurements was no different from that of
the agency’s values.

Next we examined the pavement quality by graphing the percent density. Included in these
graphs were 100% pay factor reference lines of 92 and 93 percent for the wearing mix and 93
and 94 percent for the non-wearing mix. Having percent density within these limits earns the
contractor 100% pay for the corresponding lot. Assuming that actual density within the 100% pay
factor reference lines represents a norm, graphing this data helped us visualize how frequently and
how regularly the contractor performed quality work. Analogous to the X-bar chart, here too we
paid more attention to density values that were below the 100% pay-factor level because higher
density values are generally deemed to be desirable.

Lastly we performed a test of correlation between the Bulk SpG of the loose mix and the Bulk
SpG of the core samples for approximately the same mix. To do this, we paired the core samples
with the loose-mix sample taken from the nearest location (in terms of tons represented) and then
performed an analysis of these pairings. However, we ran into some difficulty in pairing because
some data were missing. Therefore, we performed the test in two different ways. In the first
approach we treated any missing data as missing, whereas in the second approach, we replaced
any missing data by daily averages.
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2.3 Results

We found that by and large, the contractor was highly consistent with the agency; see Figures 2.1
– 2.5. In these plots, Figures 2.1 – 2.3 show data by core, whereas Figures 2.4 – 2.5 show data
that is aggregated by day. Furthermore, Figures 2.1 – 2.2 show data for cores corresponding to
the wearing mix and Figures 2.3 shows similar data for non-wearing mix cores. For the entire
duration of the project, only two samples were not within 0.03 of the agency (see circled data in
Figure 2.2) and only one day’s average was not within±0.03/

√
n of the agency (see circled data in

Figure 2.4). An interesting aspect of this analysis was thateven at times when test outcomes were
highly variable (for example, density values at the beginning of the project were more variable) the
contractor was still consistent with the agency.
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Figure 2.1: Agency’s value± 0.03 followed by the contractor’s value for each core. Therewere
no unacceptable values.
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Figure 2.2: Agency’s value± 0.03 followed by the contractor’s value for each core. Unacceptable
values are circled.

Figures 2.6 and 2.7 contain plots of lot percent densities and the target density ranges. A
significant number of lot densities are below the 100% pay-factor limits. In particular, about a
fourth of the wearing mix lots and half of the non-wearing mixlots are below the 100% pay-
factor limits. This suggests, at least in our limited analysis, that consistency testing encourages
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Figure 2.3: Agency’s value± 0.03 followed by the contractor’s value for each core. Therewere
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the contractor to be consistent (which is good), but it does not necessarily result in uniformly
high quality (by which we mean percent densities at or above 100% pay factor values). We also
hypothesize that variability in bulk SpG values over time may lead to poor road quality. Therefore,
in addition to consistency, variability should also be taken into account when developing testing
protocols.

 

 
 

Figure 2.6: A scatter plot of percent density for each lot with reference lines at 100% pay-factor
limits for the wearing mix.

Figure 2.8 is an attempt to display the natural variability in the Bulk Specific Gravity testing
process. The points on the graph represent the averages of the two bulk specific gravities found by
the contractor in the corresponding lot. The lot numbers represented are 30, 31, 36-49 (the last 16
lots of the SPWE mix). The center reference line is the average of the first 32 samples (16 lots)
of the SPWE mix. The other reference lines are the average± the standard deviation of the 32
samples divided by the square root of 2 (our sample size per lot).

Normally, if data lies outside the two standard deviation bounds, then the process is considered
to be out of control. However, in this test, only data points that lie below two standard deviations
of the mean would be considered undesirable because higher bulk SpG values are typically better.
In Figure 2.8 we see that many data points lie above the upper control limit but none lie below
the lower control limit. This implies that bulk specific gravity measurements by the contractor do
not suggest an out of control process. Moreover, the variability in bulk SpG values appears to be
higher during the first few days of the project.

Because a significant amount of variability exists in pavement densities from one lot to the
next, we demonstrate one example protocol in this section that may encourage uniform higher
density. This scheme is proposed as an example of what Mn/DOTmay consider when revising
I/D payment schemes. The determination of I/D schedule is not within the scope of this research
project. The researchers do, however, recommend additional research effort on quantifying the
impact of different schedules that reward uniformly greater compaction effort.

Under the current I/D payment scheme, the contractor is rewarded or penalized for each lot
independently. Because the I/D scheme is set up this way, uniform good performance is not specif-
ically rewarded and conversely, variability in performance is not specifically penalized. We demon-
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Figure 2.7: A scatter plot of percent density for each lot with reference lines at 100% pay-factor
limits for the non-wearing mix.

 

Figure 2.8: Control chart for average bulk SpG for the wearing mix. The reference lines are the
mean and the mean± 2 × standard deviation/

√
n.
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strate an example I/D payment scheme that modifies the current I/D protocol to encourage uniform
good performance. We modeled this scheme after the consistency testing protocol that Mn/DOT
currently uses by not only testing individual cores but alsodaily averages. Analogously, the ex-
ample scheme not only uses each lot’s density (mat or longitudinal joint) but also daily average
densities and the average density from the start of the project to date to calculate pay factors.

We calculate I/D payments according to the current method (see the column titled original
under I/D payments in Tables 2.1 and 2.2), based on daily averages, and based on averages to date.
The minimum of either the first two or of the first and third I/D payments is what the contractor
would receive. To calculate I/D based on daily averages, first calculate the average density for
each day (not including any lots that had low voids because lots with low voids will automatically
receive no incentive, see Table 2.1). Then calculate I/D payments that each lot would receive based
on this new average density. In Table 2.1, the final column entitled proposed I/D payments, shows
the minimum of the original payment and the payment based on daily averages. For example, lots
30 and 31 in Table 2.1 have densities 91.3 and 93.1 (lot 31 alsohas longitudinal joint densities
92.9 confined and 87.7 unconfined) and original pay factors of98% and102% × 102% × 100%
The average of these mat densities is 92.2 and this average corresponds to a 100% pay factor. Lot
30 receives the minimum of 98% and 100% pay factor and so the pay factor remains at 98%. On
the other hand, lot 31 receives the minimum of 102% and 100% pay factor and so changes to
100% × 102% × 100%.

To calculate I/D based on average density to date, first calculate the average of densities real-
ized from the start of the project to date (again, not including any lots with low voids) and then
calculate the corresponding I/D that each lot would receive(see Table 2.2). Finally, for each lot,
the minimum of the original I/D and the new I/D based on average density to date is the pay factor
that the contractor would receive for that lot. The final column in Table 2.2, entitled proposed
I/D payments, is the minimum of these two payment schemes. For example, consider lots 30 and
31 in Table 2.2. The average mat density for lots 1-7 and 21-31is 91.864, which translates to
a 98% pay factor. Since the original pay factor for lot 30 was 98% this lot’s pay factor remains
unchanged. However, the pay factor for lot 31 was102% × 102% × 100% and now it is replaced
with 98% × 102% × 100%. As expected, the modified procedure results in lower I/D payments
because the contractor’s performance is not uniform in thissample.

Because we observed variability in SpG values during the first few days of the project, we
compared the SpG values from the first few days of production to those taken over the remaining
days of the project. We did this in two ways, comparing the mean bulk SpG value and comparing
the variance of the bulk SpG value. When we compared the meanswe found some statistically
significant results which imply that the mean bulk SpG value of the first few days of production
may be different from the rest of the days. For example, when we compared the mean SpG of
the first two days of the project with the remaining days for the wearing data, our results were as
follows: t-statistic = -1.88, andp-value = 0.064. Similarly, when we compared the variances, this
time treating the first three days as the first sample and the remaining days as the second sample, we
obtainedF -statistic = 2.39 andp-value = 0.024, which also suggest that the mean and the variance
of bulk SpG values may be different at the beginning of a project. It is in part for this reason that
we recommend updating estimatedσ2 periodically (details in Chapter 4).

We performed a correlation analysis between loose mix and core bulk specific gravity values.
When we treated the missing data as missing, the wearing mix results forn = 32 gave an estimate
of correlation coefficient = -.006 andp-value = 0.976. The non-wearing results forn = 13 gave
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Table 2.1: Daily averages for wearing mix, required density= 92%, bid price = $40.82.

Pay Factor I/D Payments
Lot % Densities (Low Voids) Average

%
Den-
sities
per
Day

Tons
Paved
Per
Day

Original Proposed Original Proposed

1 94.5 (low) 91.1 1899 1 1 $0.00 $0.00
2 90.3, 91u, 92.2c 0.94676 0.94676 -$1031.65 -$1031.65
3 93.1 (low) 1 1 $0.00 $0.00
4 91.9 0.98 0.98 -$387.58 -$387.58
5 92.7 (low) 92 1447 1 1 $0.00 $0.00
6 92.7 (low) 1 1 $0.00 $0.00
7 93.5, 93.2c, 91.5u (low) 1 1 $0.00 $0.00
21 92.2 (low) 92 3007 1 1 $0.00 $0.00
22 92.4 (low) 1 1 $0.00 $0.00
23 93.0 (low) 1 1 $0.00 $0.00
24 92.6, 91.1c, 89.0u (low) 1 1 $0.00 $0.00
25 90.9 92.02 4106 0.95 0.95 -$1676.05 -$1676.05
26 92.8 1 1 $0.00 $0.00
27 92.1, 92.2c, 91.1u 1.0404 1.0404 $1354.25 $1345.25
28 92.4 1 1 $0.00 $0.00
29 91.9 0.98 0.98 -$670.42 -$670.42
30 91.3 92.2 895 0.98 0.98 -$365.33 -$365.33
31 93.1, 92.9c, 87.7u 1.0404 1.02 -$670.42 -$670.42
36 94.2 93.35 3505 1.04 1.02 $1430.72 $715.37
37 92.3 1 1 $0.00 $0.00
38 94.3, 93.3c, 85.2u 1.00776 1.00776 $277.56 $277.56
39 92.6 1 1 $0.00 $0.00
40 96.0 (low) 92 2012 1 1 $0.00 $0.00
41 95.5, 93.6c, 93.8u (low) 1 1 $0.00 $0.00
42 94.0 (low) 1 1 $0.00 $0.00
43 94.2 (low) 1 1 $0.00 $0.00
44 91.9 92.77 1577 0.98 0.98 -$429.15 -$429.15
45 93.3 1.02 1 $429.15 $0.00
46 93.2, 91.4c, 88.2u 1.0302 1.01 $648.01 $214.58
47 94.1 92 3007 1.04 1 $868.09 $0.00
48 93.4, 93.0c, 92.4u 1.06121 1.0404 $1328.35 $876.79
49 90.2 0.91 0.91 -$1953.20 -$1953.20
Totals $819.22 -$3402.69
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Table 2.2: Daily averages for wearing mix, required density= 92%, bid price = $40.82.

Pay Factor I/D Payments
Lot % Densities (Low Voids) Average

%
Den-
sities
per
Day

Tons
Paved
Per
Day

Original Proposed Original Proposed

1 94.5 (low) 91.1 1899 1 1 $0.00 $0.00
2 90.3, 91u, 92.2c 0.94676 0.94676 -$1031.65 -$1031.65
3 93.1 (low) 1 1 $0.00 $0.00
4 91.9 0.98 0.98 -$387.58 -$387.59
5 92.7 (low) 92 1447 1 1 $0.00 $0.00
6 92.7 (low) 1 1 $0.00 $0.00
7 93.5, 93.2c, 91.5u (low) 1 1 $0.00 $0.00
21 92.2 (low) 92 3007 1 1 $0.00 $0.00
22 92.4 (low) 1 1 $0.00 $0.00
23 93.0 (low) 1 1 $0.00 $0.00
24 92.6, 91.1c, 89.0u (low) 1 1 $0.00 $0.00
25 90.9 92.02 4106 0.95 0.95 -$1676.07 -$1676.07
26 92.8 1 0.98 $0.00 -$670.43
27 92.1, 92.2c, 91.1u 1.0404 1.01959 $1354.25 $656.75
28 92.4 1 0.98 $0.00 -$670.43
29 91.9 0.98 0.98 -$670.42 -$670.43
30 91.3 92.2 895 0.98 0.98 -$365.34 -$365.34
31 93.1, 92.9c, 87.7u 1.0404 0.9996 $996.47 -$7.31
36 94.2 93.35 3505 1.04 1 $1430.72 $0.00
37 92.3 1 1 $0.00 $0.00
38 94.3, 93.3c, 85.2u 1.00776 0.969 $277.56 -$1108.82
39 92.6 1 1 $0.00 $0.00
40 96.0 (low) 92 2012 1 1 $0.00 $0.00
41 95.5, 93.6c, 93.8u (low) 1 1 $0.00 $0.00
42 94.0 (low) 1 1 $0.00 $0.00
43 94.2 (low) 1 1 $0.00 $0.00
44 91.9 92.77 1577 0.98 0.98 -$429.15 -$429.15
45 93.3 1.02 1 $429.15 $0.00
46 93.2, 91.4c, 88.2u 1.0302 1.01 $648.01 $214.58
47 94.1 92 3007 1.04 1 $868.09 $0.00
48 93.4, 93.0c, 92.4u 1.06121 1.0404 $1328.35 $876.79
49 90.2 0.91 0.91 -$1953.20 -$1953.20
Totals $819.22 -$7222.36
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an estimate of correlation coefficient = 0.1381 andp-value = 0.1278. In the analysis that replaced
missing data with daily averages the SPWE mix results withn = 32 gave an estimate of correlation
coefficient = 0.350 andp-value = 0.050. The non-wearing results withn = 13 gave an estimate
of correlation coefficient = - 0.646 andp-value = 0.017. The negative correlation between these
values can be explained in a number of ways. For example, upon observing relatively low loose-
mix sample results, the contractor may increase compaction effort. Alternatively, low loose-mix
bulk specific gravity values may be correlated with low loose-mix max specific gravity values. The
latter would result in higher densities of cored samples, all else being equal. Overall, researchers
did not pursue this analysis further because of the lack of practical significance when correlation
can be negative for some data and positive for some other data.

2.4 Conclusions

Current testing protocol includes tests for consistency and quality for each lot. However because
incentives/disincentives are awarded independently for each lot, this protocol does not pay atten-
tion to the variability in core densities over time. In other words, there is no memory of past
performance in current testing protocols that could encourage uniformly good work over time. In
most analyses that we performed we found variability in the bulk SpG values over time, which we
conjecture may lead to poor road quality overall. For this reason, the proposed testing protocols
presented in Chapter 3 reward both higher relative density and uniformity of density values across
different lots.

One alternative that could be considered without adding any extra testing effort is to base in-
centives/disincentives not only on each lot separately but also on daily averages or averages from
the start of the project to date. This approach would encourage contractors to aim for lower vari-
ability. However, it may not provide significant incentive for achieving high density in subsequent
lots if the initial lots were of poor quality. Design of an appropriate I/D schedule is a worthy topic
for future research, but not within the scope of the current project.
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Chapter 3

Procedures for Determining Sample Size

3.1 Introduction

Mn/DOT determines pay factors based on an estimate of relative density for each lot. This chapter
focuses on a method for specifying how many samples should be tested from each lot. If too
few samples are tested, then this may result in a greater error in contractor payment calculations.
In contrast, taking too many samples consumes time and money without significantly improving
the accuracy of payment calculations. Throughout this report, we use density to refer to relative
density of the paved road. In all cases, it is the relative density that determines the contractors’ pay
factors.

There are two variations to our procedure. The first is used offline to predetermine sample sizes.
In contrast, the second is used in the field — as samples are observed it dynamically determines
whether to take another sample or terminate sampling. Both variations use the same inputs. Based
on past data, the user estimatesσ2 (the variance of density observations), andσ2

0 (the variance of
the observed mean density). The programs allow the user to also input an estimate of mean density,
m0. However, the determination of sample sizes is, for the most part, insensitive to the choice of
m0. Therefore, our approach will select a default mean density of 0.925, if nothing is specified by
the user. This default lies at the center of 100% pay factor range for a commonly used wearing
mix. Details of how to estimate these parameters from historical data can be found in Section
3.4. The user also specifies two reliability metrics — a cutoff ratio above which a bin remains a
candidate and a cutoff number of bins that are permitted to remain candidates. An explanation of
how to choose the reliability metrics can also be found in Section 3.4. In this section, we focus on
describing the steps necessary to implement our approach in practice.

3.1.1 Offline Sample-Size Determination

This approach will be used when sample sizes need to be determined in advance. For example,
when core sampling is used to determine pavement density, sample are taken in advance and tested
in an offsite materials lab and so the sample size must be predetermined.

Figure 3.1 displays the steps a user would take to implement this variation of the procedure and
the following paragraph gives detail to these steps. After the inputs are entered into a computer
program developed for this purpose (the program is coded in Matlab), the procedure randomly
generates a density sample from a normal distribution with a known mean and variance. Based
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on this new information, the procedure then updates the distribution of the mean density using a
Bayesian approach. Because in practice, one would not know what mean density value to use to
generate samples, our procedure is repeated with differentassumed values of the true mean. Our
program reports the range of sample sizes needed for different assumed pavement mean density
values. As we show in Section 3.4, the assumed value of density does not affect our calculations
in a significant way. In nearly all cases, the required samplesizes vary by at most 1.

Using the updated distribution obtained above, the procedure determines the likelihood that
mean density lies in each of several intervals of density values. Each interval is called a bin.
Finally, the procedure takes the ratio of the likelihood that the mean lies in each of the bins to the
maximum likelihood among all bins. The procedure continuestaking samples until the reliability
criteria are met and then records how many samples were needed to meet the reliability criteria.
This is counted as one iteration of the simulation. The procedure described above is repeatedly
simulated (details of how many simulations should be performed are also found in Section 3.4).
Finally, the largest average sample size needed to meet the reliability criteria from the simulations,
irrespective of the value of the assumed mean, is the recommended number of samples.

Find estimates for σ
2
, σ0

2
, 

and m0 and specify 

reliability metrics

Enter these inputs into the 

Matlab program

Matlab outputs 

recommended sample size

In each lot, take 

recommended number of 

samples and obtain test 

results

Use sample test results to 

estimate  which bin the 

mean density lies in

Figure 3.1: Steps for using the offline procedure.

The user will then take the recommended number of samples andobtain test results from those
samples. The test results will be entered into a program thatuses Bayesian updating to determine
which bin is most likely to contain the true mean (available as an Excel Worksheet), on which the
pay factor will be based.
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3.1.2 In-field Sample-Size Determination

This variation will be used when results from density observations are available immediately, as is
the case with a nuclear density gauge. Figure 3.2 displays the steps a user would take to implement
this variation of the procedure and the following paragraphgives detail to these steps.

First determine the inputs and reliability metrics described in Section 3.1.1. Next, observe
one density sample and enter this data into a computer program developed for this purpose (the
program is imbedded in a Microsoft Excel Worksheet, which provides a familiar user interface).
The program then determines if another sample is needed or ifthe user can stop taking samples.
If another sample is needed, then the user will continue observing density samples one at a time
and entering them into the program until the program determines that enough samples have been
taken. Once the program determines that enough samples havebeen taken, it will recommend that
the user should stop taking samples. The program will also display the current best estimate of
which bin contains the true mean.

Find Estimates for σ
2
, σ0

2
, and 

m0 and specify  the reliability 

metrics

Enter inputs into the Excel 

Program

Observe one density sample 

Enter density value into 

dynamic program.

Dynamic program 

recommends taking 

another density sample

Dynamic program 

recommends to stop taking 

samples. 

Program indicates which 

bin is most likely to contain 

the mean density

Figure 3.2: Steps for using the in-field procedure.
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3.2 Results

The section displays sample outputs from the offline variation of our procedure that determines
sample sizes in advance. The following tables display the output of the program for a particular
estimate of the density variance,σ2, and for various reliability criteria. In these tables,r is the
cutoff ratio above which bins remain candidates andb is the cutoff number of bins that are allowed
to remain candidates.

Table 3.1: Recommended sample sizes forσ2 = 70 × 10−6.

r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9
b = 1 7 5 3 2 2
b = 2 3 1 1 1 1
b = 3 1 1 1 1 1

Table 3.2: Recommended sample sizes forσ2 = 131 × 10−6.

r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9
b = 1 13 9 6 3 2
b = 2 4 3 2 1 1
b = 3 2 1 1 1 1

Table 3.3: Recommended sample sizes forσ2 = 149 × 10−6.

r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9
b = 1 15 9 6 4 2
b = 2 5 3 2 1 1
b = 3 2 2 1 1 1

Observe that for each pair of reliability metrics, the sample sizes are non-decreasing in the
value ofσ2. This means that our procedure will prescribe more testing for contractors with greater
historical variability in observed density values. In the long run, our procedure will provide an
incentive for contractors to focus attention on achieving consistent density values across all lots in
a project. In contrast, the current testing procedure is insensitive to a contractor’s historical perfor-
mance as well as Mn/DOT’s desire to achieve different levelsof pay factor reliability in different
projects depending on the importance of the work being performed, the unit cost of materials, and
the dollar amount affected by pay factors.
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3.3 Spatial Analysis

Core locations are defined by theiroffset, which is generally the distance from the center of lane,
andstation, which is the distance from the start of the lot. Both the offset and station are randomly
generated in accordance with the Mn/DOT Bituminous Manual Section 5-693.7 or ASTM D3665
Section 5 Table A. To find the offset, a random two-decimal number between 0 and 1 is generated
and then multiplied by the width of the mat. The resulting number is the offset of the core location.
Similarly, another randomly generated two-decimal numberis multiplied by the total length of the
lot which results in the station of the core location.

Mats are thicker near the center of lane. Hughes (1989) reports that thicker mats cool more
slowly. Consequently, thicker mats have more time for adequate compaction to occur before cool-
ing beyond the cessation limit — the cessation limit is the temperature below which compaction
will not have a significant effect on pavement density. That is, if mats are thicker nearer the center
of lane, then it would be reasonable to hypothesize that the pavement closer to the center of lane is
likely to have higher density.

If the offset is found to be a statistically significant factor influencing density, then one option
would be to adjust payment schedule to account for the spatial distribution of mat density. This is
because a core with a randomly generated location that is closer to the center of lane will be more
likely to result in a higher pay factor than a core whose location is further from the center of lane.
So, the payment schedule should potentially take into account both the location and the observed
density of a core.

A spatial analysis of core locations was performed in order to determine if the offset of a core
sample has a statistically significant effect on the densityof that sample. The researchers had no
evidence that suggested that the station might influence thepavement density. Consequently the
spatial analysis was limited to analyzing the influence of the offset. To perform this analysis, an
Analysis of Variance (ANOVA) was performed on the data. ANOVA is a method for testing the
impact levels of one or morefactors, in this case the levels of offset, on aresponse variable, in this
case pavement density (Hayter 2007).

To begin, a One-Way ANOVA was performed with density as the response variable and offset
as the factor. Another One-way ANOVA was performed with density as the response variable and
the day of the project on which the sample was cored as the factor. Also, a General Linear Model
ANOVA was performed with the density as the response variable and both offset and the day of
the project as factors.

An advantage of the General Linear Model is that it can test more than one factor for signifi-
cance. In addition, the General Linear Model can be unbalanced, as was the case in this analysis. A
balanced design has the same number of observations for eachcombination of factors. In contrast,
an unbalanced design has missing or unequal number of observations for certain combinations of
factors. The General Linear Model reports whether each factor and/or any interaction between the
factors had a significant influence on the response variable.

The researchers had access to core location and density datafor eight projects. The offset
data for each project was grouped into ranges of offset levels. Similarly, days of the project were
grouped into several ranges of days. Without the grouping, ANOVA would treat each offset value
and each date as a different level. That would cause problemsbecause each day there is a different
number of lots tested and also the number of offset values realized is different. We need ranges of
offset and project days as distinct levels to ensure that theANOVA would be meaningful.

18



For each project, the groupings were chosen so as to make the number of density samples
in each grouping as close to equal as possible. Consequently, each project had its own unique
groupings, corresponding to the data available for that particular project. For example, in project
SP 2180-94, the offset values were grouped into five levels:

Level 1 : 0 to 0.2

Level 2 : 0.2 to 0.4

Level 3 : 0.4 to 0.5

Level 4 : 0.5 to 0.6

Level 5 : 0.6 to 1

54321

Offset Level

Figure 3.3: Number of cores in each offset level for SP 2180-94 shoulder.

Figure 3.3 displays a dotplot of these four levels which demonstrates that the levels have approx-
imately the same number of cores. For the same project, the day of the project was grouped into
three levels:

Level 1 : Days 1 to 2

Level 2 : Days 3 to 5

Level 3 : Days 6 to 8

Figure 3.4 displays a dotplot of how many core samples were ineach level of the day of the project
in order to demonstrate that the levels contain approximately the same number of core samples.

Table 3.4 displays the resultingp values, corresponding to each combination of project and run
of ANOVA. A p-value of 0.05 or smaller implies that the factor does have statistically significant
influence on the response variable. In Table 3.4, statistically significant data is shown in bold font.
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321

Day of the Project Level

Figure 3.4: Number of cores in each day of the project level for SP 2180-94 shoulder.

Table 3.4: Thep-value results from the various ANOVA tests.

General Linear Model
SP One-Factor

ANOVA
for Offset

One-Factor
ANOVA for Day
of Project

Offset Day of
Project

Interaction

2180-94 - Shoulder 0.047 0.011 0.009 0.004 0.299
2180-94 - SPWE 0.298 0.646 0.391 0.670 0.974
2903-10 0.065 0.796 0.066 0.785 0.264
2509-19 0.475 0.008 0.487 0.006 0.122
3108-63 0.322 0.023 0.192 0.023 0.588
7602-15 0.012 0.579 0.039 0.507 0.737
8003-29 - Shoulder 0.048 0.000 0.423 0.000 0.299
8003-29 - SPWE 0.062 0.001 0.340 0.000 0.487

The results were that when a One-Way ANOVA was performed withoffset as a factor, three out
of eightp values were statistically significant. When a One-Way ANOVAwas performed with day
of the project as a factor, five out of eightp values were statistically significant. With the General
Linear Model of ANOVA with both offset and day of the project as factors, the results for the offset
had two out of eight significantp values, the results for the day of the project had five out of eight
significantp-values, and the results for the interaction between the dayof the project and the offset
had zero out of eight significantp values.

Because there are so few significantp-values corresponding to offset as a factor, the conclusion
of this analysis is that the offset of a core location does nothave a consistent statistically significant
influence on the density of that core sample. This implies that applying a payment schedule that
adjusts for the spatial distribution would be erroneous in the majority of instances.
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In contrast, morep values are significant when we consider the date of the project as a factor.
This means that the day of a project has some effect on the density in a reasonably consistent
manner. Because of this, scatterplots were made which show the average density corresponding
to each level of days for a project and are displayed in Figure3.5. In analyzing these scatterplots,
about half seemed to show density increasing as time went on and the other half showed density
decreasing over time. Because no pattern was observed, we cannot conclude that density values
consistently increase or decrease with time. Rather, it appears that there is variability in production
from day to day which influences the density differently on different days. In short, the day of the
project is not correlated with realized densities according to a pattern that would be useful for
materials testing.

21

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

4321

0.94

0.92

0.90

Level Correspnding to Day of the Project 
A
v
e
ra
g
e
 D
e
n
s
it
y

321

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

21

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

21

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

321

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

7654321

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

321

0.94

0.92

0.90

Level Correspnding to Day of the Project 

A
v
e
ra
g
e
 D
e
n
s
it
y

Sp 2180-94 - Shoulder SP 2180-94 - Wearing

SP 2903-10

2509-19

SP 3108-63

SP 7602-15

SP 8003-29 - Shoulder

SP 8003-29 - Wearing

Figure 3.5: Scatterplot of average density by levels corresponding to day of the project.

There may be several explanations for why the offset is not a statistically significant factor
influencing pavement density. In addition to the offset, there are other influences on pavement
density. For example, as mentioned above thicker mats have more time available for adequate
compaction before it cools below the cessation point. A carefully planned compaction effort can
overcome the limited time constraint for thinner mats. Moreover, factors such as mix design, air
temperature, base (material below the mat) temperature, moisture content in the base, and human
error all influence pavement density (Hughes 1989). These factors introduce substantial variability
in observed density values.
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3.4 A Bayesian Approach for Pavement Density Sampling

3.4.1 Background

Mn/DOT determines pay factors according to a published schedule Mn/DOT (2007). The schedule
for determining the pay factor for a particular type of mix and target level of air voids is shown in
Table 3.5 below. Air voids are “the pockets of air between theasphalt-coated aggregate particles
in a compacted asphalt mixture” (AASHTO T 269-97). A lab technician calculates the air voids
(AASHTO T269-97) of core sample by measuring the bulk SpG (A)and the maximum SpG (B).
Then, the air voids are equal to100(1−A/B) (for further details, see Section 3.4.2 and Appendix
A). No incentive payments are given if the realized air voidsexceed a pre-specified threshold.
All relative density observations are rounded to three decimal digits accuracy. Thus, the range
“0.936 and above” in Table 3.5 equals(0.935, 1], and the next range equals(0.93, 0.935], and so
on. Similar pay factor schedules are available for other types of mix.

Table 3.5: Payment schedule for mat relative density (SP wearing mix, 4% void).

Density Value Pay Factor
0.936 and above 1.04

0.931 - 0.935 1.02
0.92 - 0.93 1.00
0.91 - 0.919 0.98
0.905 - 0.909 0.95
0.900 - 0.904 0.91
0.895 - 0.899 0.85
0.890 - 0.894 0.7
less than 0.89 0.7

This research focuses on more reliable pay factor calculations. For this purpose, it suffices to
identify the correct pay factor range for each unit of contractor’s work. Our approach is designed
to achieve precisely this outcome. Before presenting the technical details of this approach, we
illustrate its key ideas with the help of an example. Consider project number SP 8055-19, which
was completed during 9/5/07 to 9/25/07. Specifically, in this example, we focus on the sixth lot
that was a part of the contractor’s second day of work. For thesixth lot, the contractor’s bulk SpG
values were 2.334 and 2.347 and the max SpG value was 2.484. Thus, the average relative density
for this lot was 0.942 which corresponded to a 4% pay factor (see Table 3.5).

How reliable is the pay factor calculation described above?In order to answer this question, we
need to determine the relative likelihood that the estimated pay factor is the correct pay factor. For
this purpose, we divide the range of relative density valuesin equal-length intervals, called bins,
and assess the likelihood that the true density lies in each interval — see Table 3.6. Calculations
based on our procedure, which is described in more detail later in this section, show that the bin
most likely to contain the lot’s relative density is(0.93, 0.935] with a pay factor of 1.02. However,
bins (0.925, 0.93] and(0.935, 0.94] cannot be ruled out as possible candidates because the likeli-
hood that the true density lies in these bins is not sufficiently low relative to the most likely bin
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(0.93, 0.935]. That is, pay factors 1.0 and 1.04 cannot be ruled out.

Table 3.6: Reliability of pay factor calculations after twosamples.

bin 0.91–.915 0.915–.92 0.92–.925 0.925–.93 0.93–.935 0.935–.94 0.94–.945 0.945–.95 0.95–.955
likelihood 0.001 0.011 0.064 0.194 0.311 0.266 0.120 0.029 0.004
critical ratio 0.003 0.036 0.205 0.622 1.000 0.854 0.387 0.093 0.012

With the background developed above, we are now ready to provide more details of our ap-
proach. Note that most of the technical details are presented in Section 3.4.4, which may be skipped
by those not interested in mathematical details without affecting the readability of the rest of this
chapter. We first divide the range of relative densities in equal-sized intervals (see Table 3.6), such
that each bin lies within a single pay-factor range. This step is necessary because in Mn/DOT’s
pay factor calculation method, the sizes of intervals over which pay factors remain invariant are
not equal. In Table 3.6, double vertical lines demarcate payfactor ranges. Our procedure, which
utilizes a Bayesian approach, then simulates the result of taking each test sample, one at a time. At
each iteration, the outcomes of this procedure are (1) the current most likely bin within which the
true relative density lies, (2) the critical ratio for each bin, and (3) the critical number. The critical
ratio is a fraction. For each bin, its denominator is the maximum likelihood, among all bins, that
the true relative density lies in a bin, and the numerator is the likelihood that the true density lies
in the chosen bin.

The user (Mn/DOT) in our protocol will specify two numbers toindicate desired reliability
— a cutoff ratio and a cutoff number. The critical number is the number of bins for which the
critical ratio is above a threshold specified by the user, which we refer to as the cutoff ratio. The
cutoff ratio is used to determine the critical number after each sample is observed and the process
terminates when the critical number is less than or equal to the cutoff number. In one iteration of the
procedure, we repeatedly simulate taking test samples and determine the average number of tests
needed to achieve a desired combination of cutoff ratio and cutoff number. The procedure is run
several times using different parameters to generate sample data. We also test our procedure against
the current procedure used by Mn/DOT. Our procedure resultsin significantly more accurate pay
factor determination and provides a direct link between a user-specified reliability of pay factor
calculations and the number of tests required.

Returning to the calculations underlying Table 3.6, we assume that relative density is not con-
stant at different spots within a lot. In particular, density is normally distributed with parameters
µ andσ2. The aim of our procedure is to determineµ, and we estimateσ2 from historical data.
That is, the variance of relative density values observed inhistorical samples is assumed to reflect
the natural variability underlying density measurements.However, the mean density may vary
from one lot to another. Because there may exist some prior information aboutµ, e.g. a particular
contractor’s prior record or performance on previous days of the same project, we assume that the
uncertainty about the true value ofµ is captured by a normal distribution with initial parameters
m0 andσ2

0 . We setm0 = 0.925 because it corresponds to center of the 100% pay factor rangeand
therefore gives the contractor the benefit of the doubt, and varianceσ2

0 = σ2/2 because two sam-
ples are taken from each lot in the current procedure used by Mn/DOT. We will show that the value
of m0 does not significantly affect the number of test samples needed. However, the estimated
value ofσ2

0 does affect the testing protocol.
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The estimated,σ2
0 , based on the variance of three previous 2007 projects performed by the

same contractor who performed project SP 8055-19 is 0.00015. After observing each sample, we
update the estimated parameters of the distribution ofµ. This process, after two samples gives
an estimated mean0.934, and variance0.0000374, knowing which the likelihoods of the mean
relative density lying in each bin can be determined. Table 3.6 displays 9 density-value bins (note
that more bins were considered but are not shown in this table). The first row shows the likelihood
that the mean density lies in each bin. This likelihood was found using the updated parameter
estimates of the distribution of the mean density. Next a ratio of each of these likelihoods to the
maximum among all likelihoods is found and these ratios are shown in the second row of Table
3.6.

Observe that after two samples are taken and measured, the bin most likely to contain the mean
density is the bin which correspond to the range 0.93 to 0.935. Moreover, two adjacent bins also
have relatively high likelihoods. In particular, the bin that corresponds to a range of 0.935 to 0.94
has a 26.5% likelihood of containing the mean, relative to a 31.1% likelihood for range 0.93 to
0.935. That is, after observing two samples, Mn/DOT cannot conclude with confidence that pay
factor 1.02 is the right pay factor. This results contrasts with the current method in two ways. First,
we make use of historical information and obtain a differentestimate than what one would obtain
by simply averaging the densities of the two samples. Second, our procedure provides relative
likelihood estimate that the chosen bin is the correct bin tocontain the mean density. If we were to
apply our procedure with cutoff ratio of 0.5 and cutoff number equal to 2, two samples would be
inadequate for this level of reliability because as seen in Table 3.6 there are three bins that have a
critical ratio of at least 0.5.

We used our procedure and the current Mn/DOT procedure (Mn/DOT 2007) to compare the
magnitude of payment errors. Assuming that a lot equals 500 tons of material and that the unit
price is $40 per ton, the procedure currently used by Mn/DOT resulted in an average overpayment
of $109.60 and underpayment of $287.33 per lot based on representative historical data. Also,
the relative frequency of accurate payment, where accurateimplies within $100 of the correct
payment, was 47%. When we used the number of tests recommended by our method, it resulted
in an average overpayment of $44.50 and underpayment of $90.74 per lot. The relative frequency
of accurate payment was 71%. Details of experiments that ledto these results are described in
Section 3.4.5.

3.4.2 Testing Methods

The most common method for obtaining pavement density observations is core sampling in which
cylindrical cores are cut from the pavement and tested in an offsite materials lab. A lab technician
calculates the bulk specific gravity, bulk SpG (AASHTO T166-07), of each core by measuring its
dry mass in air (A), its mass in water in water (B), and its saturated surface dry mass (C). The bulk
SpG is calculated as

Bulk SpG =
A

C − B
.

The calculation of the pavement density also requires the maximum specific gravity (max SpG) of
the mix. The max SPG is an intrinsic property of the mix which is determined by the mix composi-
tion and is used to determine air voids and a target level of compaction (AASHTO T209-05). The
max SpG calculation measures loose mix because this gives a theoretical maximum specific grav-
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ity of mix that has no air voids. This is obtained by performing the Rice Test (AASHTO T209-05)
on a loose-mix sample. The test requires measurements of themass of dry (heated) loose mix in
air (A), in water (B), and its saturated surface dry weight(C). The max SpG is calculated as

Max SpG =
A

A − (C − B)
.

Mn/DOTs then determines the relative density of each core asthe ratio of the bulk SpG of that core
sample and the max SpG. The average of core densities for eachlot is treated as that lot’s relative
density.

Yet another method for testing pavement density uses a nuclear density gauge WSDOT (2008).
This gauge records how gamma radiation interacts with the electrons in the pavement to deter-
mine the pavement density. The key advantages of this methodare that it is non-destructive, it
gives results in about five minutes, and the entire procedurecan be performed at the worksite. The
disadvantages to this method are that the use of nuclear density gauges requires a special license
because of the radiation hazard and that it requires an initial calibration, as well as periodic recal-
ibration, to ensure that its readings are correctly converted into pavement density values. Usually,
each calibration exercise may require up to ten core samplesto be tested. In addition, the nuclear
density gauge may add additional noise to the density readings. The effect of additional noise will
be addressed in Section 3.4.4.

Irrespective of the method used, a key question facing DOT project engineers is how to deter-
mine the number of density observations that should be obtained in any given situation. Too many
observations are expensive. Too many cores can also compromise the integrity of the pavement
and increase contractors’ effort of filling the holes left behind after coring. Thus, additional testing
requirements would be factored into the contractors’ bid ashigher bid prices. Too few observations
may lead to errors in pay factor determination and uncertainpavement quality.

3.4.3 Relevant Literature

Hughes (1989) describes the effect of compaction on pavement quality. This article concludes that
good compaction effort is necessary to achieve high pavement quality. This report also describes
many factors that influence the amount of compaction effort needed to achieve quality pavement
density, such as base temperature, moisture in the base, laydown temperature, and lift thickness.

Lenth (2001) describes the importance of adequate sample sizes. The author states that “sample
size is important for economic reasons: an under-sized study can be a waste of resources for not
having the capability to produce useful results, while an over-sized one uses more resources than
are necessary.” The article lists several methods for determining sample size including specifying
a confidence interval and a Bayesian approach, both of which are used in the procedure described
in this report.

Rilett (1998) explores the use of end product (paved road) specification. This is consistent with
the approach used by Mn/DOT that allows the contractor freedom in choosing how to compact
the roads using a subset of standard engineering practices so long as the end product meets certain
specifications. This article also seeks to determine an optimal sampling strategy for density testing.
One difference between Rilett (1998) and our research is that the former is concerned with a percent
within limits specification for density whereas our procedure considers each lot separately. Rilett
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(1998) first estimates the variance of density values, sayσ, from historical data, and then argues
that the sample size,n, can be determined by considering a confidence interval on the average
density, e.g.̄x ± 1.96 × σ√

n
is the 95% confidence interval. The sample size is chosen to achieve

a desired precision in the size of the confidence interval. Incontrast, our approach for sample size
determination is a Bayesian approach that depends on the user-specified reliability measures.

McCabe et al. (1999) also utilizes the precision of the confidence interval to determine sample
size. This article suggests that agencies may incorporate variance (in addition to mean) to their
end product specifications. While our procedure does not adda specification for variance, it does
reward contractors who are more consistent and thus provides an incentive to contractors to have
a lower variance. Another benefit gained from our methodology is that it takes into account both
historical data and sample observations from the current project.

Buttlar and Hausman (2000) describe a computer simulation program that calculates the risk
to the agency and to the contractor of using a particular sampling method, measurement method,
spec limits, and pay scales. Similar to our procedure, the user inputs the mean density and stan-
dard deviation of the density. The user also inputs the standard deviation of the testing method,
number of samples to be taken, the sampling procedure, the spec limits, the pay factor schedule,
and any cap on pay factors. The program, ILLISIM, then calculates the risk to the contractor (un-
derpayment) and the risk to the agency (overpayment). The goal of this program is to help the user
determine the optimal value for the inputs. In contrast withthis paper, our research mainly focuses
on determining the number of samples to be tested. In addition, given reliability criteria specified
by the user, our procedure gives a specific method for determining the sample size.

Chouband et al. (1999) compare the use of nuclear density gauges to core sampling. Our pro-
cedure can be adapted for use with a nuclear density gauge, although this may add some additional
variability to the density test results. Chouband et al. (1999) show that core sampling is a more
reliable method of sampling. In addition, the article concludes that nuclear density gauges should
be used with caution and after careful calibration. Romero and Kuhnow (2002) compare nonnu-
clear density gauges to nuclear density gauges and concludethat nuclear density gauges are more
reliable than nonnuclear gauges.

3.4.4 Methodology

Inputs

Our procedure assumes that density observations are normally distributed with parametersµ andσ,
whereµ, the mean density, is unknown andσ2, the variance, is estimated from historical data and
denoted bys2. To analyze what distributions fit the data, we took data fromone project and tried to
fit it to several known distributions. The normal distribution was among several distributions that
fit the data. Others in the literature have also assumed that pavement density is normally distributed
(see Rilett 1998).

Our procedure further assumesµ is normally distributed, with mean,mk, and variance,σ2
k

(similar assumption was also made in Rilett 1998). Again, the estimate ofσ2
k is denoted bys2

k. The
parameters(mk, s

2
k) are estimates of the distribution ofµ after thek-th sample results have been

observed. In this notation,k = 0 corresponds to the state of knowledge before sampling begins.
In reality the true mean is just a number and not a random variable. The reason for assigning a

prior distribution toµ and developing a procedure for updating the parameters of this distribution
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after each sample observation, is to incorporate both the prior information and the sample informa-
tion to estimate its most likely value. In addition to computational simplicity, another reason for
using a normal distribution is that it has two parameters that can be modified independently. For
example, if the user is less confident in the initial estimateof the mean ofµ, then a largerσ2

0 can
be chosen to reflect this lack of confidence. The initial estimates of the density varianceσ2, mean
of the mean densitym0, and variance of the mean densityσ2

0 are the inputs for this procedure.
Assuming that both the density and the mean density are normally distributed greatly simplifies

the Bayesian updating process because the normal distribution is self-conjugate. This means that
if the prior distribution is normal then the posterior distribution will also be normal. After each
observation, the Bayesian updating method updates the prior distribution using a combination of
new data and prior information. The result is the posterior distribution (Carlin and Louis 2000).
The posterior distribution obtained after thek-th sample becomes the prior before the(k + 1)-th
sample.

There are various ways to estimateσ2, m0, andσ2
0 , some of which are described next. For

example, the parameterσ2 may be estimated by the sample variance of density values from similar
past projects because sample variance is an unbiased estimator of population variance. To over-
come any objection to this estimation, each contractor’s inputs may be based on their individual
past performance. In the event that there is not enough data for a particular contractor, an industry
average may be used. The parameterσ2

0 may be estimated ass2/2 because in the current testing
protocol, two samples are taken per lot. However, in situations where a Mn/DOT engineer prefers
to use a more conservative approach, we recommend settings2

0 = s2 as the default relationship.
In addition, one may nominally setm0 = 0.925 because this is the center of the 100% pay

factor bin and provides a neutral starting disposition towards the contractor’s quality. In fact, while
m0 is a necessary input for this procedure, its value can be chosen arbitrarily and thus setting it at
the neutral value of .925 provides an unbiased prior. An explanation of this is presented later in
this section, after additional notation has been introduced. In addition to these inputs, the user must
specify two reliability metrics — a cutoff ratior, and a cutoff numberb. Smaller values ofr and
b imply stricter reliability requirements. Details on how tochoose reliability metrics are presented
in Section 3.4.5.

Updating

After s2, m0, s2
0, and the reliability criteria are entered, the procedure randomly generates a sample

core density value from a normal distribution, with a known mean and variance, in order to simulate
sample data. Given the initial estimates2

0 of σ2
0, definel0 = σ2/s2

0. Then, after obtaining thekth
sample, using a Bayesian approach we obtain the following updated distributional parameters of
the unknown mean density (see Clemen and Reilly 2001 for details).

mk =
l0m0 + (x1 + · · ·+ xk)

l0 + k
(3.1)

and

s2
k =

σ2

l0 + k
. (3.2)

Consistent with the notation introduced above, we also setlk = l0 + k.
Let (a−∞, b−∞), . . . , (a∞, b∞) denote the bins. Note that bins are chosen such thatbj − aj
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is a constant that is independent ofj. Specifically in our procedure,bj − aj = .005. Then using
the updated prior distribution, the procedure determines the likelihood of the mean density lying
in each bin and the ratio of the likelihood that the mean density lies in each bin to the maximum
likelihood among all bins. Specifically, the probability that the mean density,µ, lies in bini after
k samples is

P (ai ≤ µ ≤ bi) = Φ((bi − mk)/sk) − Φ((ai − mk)/sk) (3.3)

The ratio associated with theith bin is

ri =
P (ai ≤ µ ≤ bi)

maxj P (aj ≤ µ ≤ bj)
=

Φ((bi − mk)/sk) − Φ((ai − mk)/sk)

maxj [Φ((bj − mk)/sk) − Φ((aj − mk)/sk)]
(3.4)

Let c∗ andr∗ denote the cutoff number and the cutoff ratio which are the reliability criteria for this
procedure. Our procedure continues to generate sample dataand ultimately terminates when there
are no more thanc∗ bins for which the above ratio is greater thanr∗.

Effect of m0

In order to show that a change in the value ofm0 does not significantly affect the outcome of the
procedure, consider two runs of the procedure which generate sample observations from normal
distributions with the same mean and variance but each run has a different assumed value form0.
In particular, the first run assumesm0 and the second run assumesm0+δ, for someδ > 0. Assume
both runs generate data from the exact same sample density values from a normal distribution, say
xk ∼ N(µs, σ

2). Also, assume that both runs have the same estimates fors2
0, which implies that

both runs assume the same value ofl0.
After each sample is generated, the estimated distributionof the mean densityµ is updated

and denoted by N(mk, s
2
k) and N(m′

k, s
′2
k), for the first and second run respectively. The area

under these normal curves and within the ranges of a certain bin, represents the likelihood that the
true mean lies in that particular bin. Because (bj − aj) is a constant independent ofj andk, in
each iteration (that is, after an additional sample is observed) of the two runs, the bin containing
the center of the normal curve will also have the most area under the curve. Moreover, in each
iteration of the two runs, the center of the normal curve willbe eithermk or m′

k because this is the
current best estimate of the mean ofµ. In the event thatmk lies on the edge of two bins, the two
bins will have an equal likelihood for containing the true mean because the normal distribution is
symmetrical about the mean and bin size remains constant. So, the bin(s) most likely to contain
the true mean density also contain(s)mk. In the first run, let the most likely bin be denoted by
Bk which represents (ai∗, bi∗) and similarly in the second run the most likely bin is andB′

k which
represents (a′

i∗, b
′
i∗).

Equation 3.2 shows clearly that ask increases,s2
k will decrease. This implies that as more

samples are observed, the estimated distribution of the true mean,µ, will be less spread out and
more concentrated aroundmk. Becauses2

k decreases ink, the denominator in Equation3.4 will
increase ink. However, for a particular bin (ai, bi), the likelihood thatµ lies in that bin (the
numerator in Equation3.4) depends both onmk and s2

k. This implies that the likelihood may
increase or decrease as we observe more samples. Sori may increase or decrease over time.

Also, equation3.2 shows that, for a givenk, s2
k = s′2k because both runs of the procedure begin

with the same values forσ2 andl0. Thus, termination of the procedure is determined entirelyby
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the current estimate ofmk. From Equation 3.1 we see that if the two runs of the procedure drew
the same set of sample data and for a givenk, the difference betweenmk andm′

k will always be
δ

1+k/l0
. This is because

mk − m′
k =

l0m0 +
∑

xi

l0 + k
− l0(m0 + δ) +

∑
xi

l0 + k

=
l0δ

l0 + k

=
δ

1 + k/l0
(3.5)

This difference quickly goes to zero ask increases.

Number of Simulations

Since the data used in this procedure was randomly generated, each simulation of this procedure
can result in a different recommended number of samples. Therefore the procedure is repeatedly
simulated. The number of simulations, saym, must be large enough to overcome the variation
between simulations. Ifn1, n2, . . . , nm is a series of the sample sizes from simulations1, 2, . . . , m,
thenn̄ =

∑m
i=1 ni/m is the recommended sample size.

We use a two-step procedure to determine m. The first step performs 1000 simulations to de-
termines2

n =
∑1000

i=1 (ni − n̄)2/999, an estimate of the variance of recommended sample sizes.
Next, we choose a numberm that limits the size of the confidence interval ofn̄ to a user speci-
fied limit. For example, the half length of a 95% confidence interval equals1.96×sn√

m
. If the user

wants this quantity to be at most0.01 × n, then we can obtain the minimum value ofm by solv-
ing 1.96×sn√

m
= 0.01 × n̄, which givesm = (1.96×sn

0.01×n̄
)2. If m is larger than 1000, then we perform

additionalm − 1000 simulations and the average of the recommended sample sizes from the to-
tal m simulations is the recommended sample size. Ifm is less than 1000, then the average of
recommended sample sizes from the original 1000 simulations is the recommended sample size.

Recall that the simulation randomly generates sample data from a normal distribution with a
known mean and variance. The variance used to generate the sample data is the inputs2. The entire
procedure is repeated for several values of the mean (µs), ranging from .88 to .96 in increments of
.005. To be conservative, the maximum recommended samples size from each of these repetitions
is the final recommended sample size.

Implementation

Knowing the recommended sample size, the contractor takes the appropriate number of samples
and obtains test results. The test data is entered into a separate program that uses Bayesian updating
to determine which bin is most likely to contain the true mean density. If a potential user were
implementing a method of density testing that requires the sample size to be predetermined, as is
the case when core samples are observed, this procedure would be run offline and in advance. In
contrast, if the user were implementing a non-destructive method that can test pavement density
quickly in the field, then a dynamic variation of this procedure could be used. For example, if
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a nuclear density gauge were being used then the contractor could enter density observations as
they are observed. The updating procedure would be the same as described above. The contractor
would continue taking samples until the number of bins for which the ratio of likelihoods is above
a certain threshold, based on the specified performance measure. In this variation, the number of
samples taken for each lot is not necessarily equal to the expected number of tests.

Devises used to test pavement density in the field may add to the variation in test readings
because such test devices are usually less accurate than offsite testing of cores. In such cases,
the variation of the testing devise should be ascertained bytaking pairs of density readings and
core samples from the same locations. Then, the difference between the variation of the density
readings and the variation of the core sample test results would be the added variation, says2

d, due
to the testing devise. Finally, this variation would be added to the initial estimate of the variance
(based on historical data) to find a total variance,s2

total = s2 + s2
d, which will be the input for

density variance in the procedure.
Generally cores taken from the mat are evaluated apart of those taken from the longitudinal

joint. Current Mn/DOT protocol requires contractors to evaluate the longitudinal joint density on
20% of the lots each day, with a minimum of 1 lot designated as alongitudinal joint density lot.
Currently, in a longitudinal joint density lot, the contractor takes 2 longitudinal joint samples on
each side of the lane that is being paved. Since the longitudinal joint has a relatively small area
compared to the area of the mat, taking too many samples wouldcompromise the integrity of the
longitudinal joint. For these reasons, our procedure may not be appropriate to the longitudinal joint
unless a non-destructive test is being used.

3.4.5 Analysis and Results

The procedure was analyzed to determine if it improved the accuracy of I/D payments. To do so
a random mean was generated. Then, based on this mean, randomsamples were generated from a
triangular distribution, which provided a good fit with datafrom one historical project. To simulate
the current procedure two samples were generated to simulate one lot. To simulate the proposed
procedure, a performance measure of one bin remaining abovea cutoff ratio of 0.7 was used and
this performance measure required 13 samples per lot. For each lot, the generated samples were
averaged to estimate the mean density. Finally, the payments based on the estimate of the mean
density were compared with payments based on the true mean density, which had been used to
generate the samples.

This procedure was simulated1, 500 times and the relative frequency of under- and overpay-
ments were recorded. Lots where the payment based on the estimated mean density was higher
than the payment based on the true mean density counted as an overpayment. Conversely, lots
where the payment based on the true mean was higher than the payment based on the estimated
mean density counted as an underpayment. The results from the current procedure are displayed
in Figure 3.6 and the results from the proposed procedure aredisplayed in Figure 3.7. All values
on the horizontal axis correspond to under- or overpaymentswithin $100 of that value. For exam-
ple, payments between -$100 and $100 were considered accurate and are displayed above the 0 in
Figures 3.6 and 3.7.

In Figure 3.6 accurate payment was given 47.0% of the time, the average overpayment was
$109.60, and the average underpayment is $287.33. In figure 3.7 accurate payment was given
70.6% of the time, the average overpayment was $44.50, and the average underpayment is $90.74.
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Figure 3.6: Relative frequency of over- and underpayments under the current procedure.

According to this, using the proposed procedure increased accurate payments by over 20% as well
as significantly reduced under- and overpayments.

To help the user understand how to choose a performance measure, Table 3.7 displays the
required sample size and incremental benefit per test for various performance measures. The in-
cremental benefit per test is the increase in accuracy of pay factors that the agency would realize
for each additional sample observation. To determine the incremental benefit, an analysis was
performed which randomly generated density samples from a normal distribution with a known
mean. The number of density samples generated was based on the various required sample sizes,
which are recorded in Table 3.7. Then the under or overpayment was calculated by comparing the
payment based on the mean density of the generated samples tothe payment based on the known
mean used to generate these samples. Finally, this was simulated 1500 times so that an average
under- or overpayment for our procedure could be estimated.In addition, to simulate Mn/DOT’s
current procedure the expected under- or overpayment basedonly on the first two samples was also
calculated. This was calculated as follows:

Incremental Benefit per Test=
A − B

C − 2

where for each performance measure A was the expected under-or overpayment from Mn/DOT’s
procedure, B was the expected under-or overpayment from ourprocedure, and C was the required
sample size based on our procedure.

As long as the expected benefit per test is greater than the cost per test, then choosing that per-
formance measure would be beneficial to the agency. Moreover, choosing the strictest performance
measure that still has a greater expected benefit per test than cost per test will give the agency the
most benefit.
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Figure 3.7: Relative frequency of over- and underpayments under the proposed procedure.

Table 3.7: Economic impact of higher pay factor reliability.

r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9

Sample

Size

Extra

Benefit

Sample

Size

Extra

Benefit

Sample

Size

Extra

Benefit

Sample

Size

Extra

Benefit

Sample

Size

Extra

Benefit

b = 1 37 $4.99 25 $7.04 16 $11.92 10 $21.45 5 $40.40
b = 2 14 $13.11 10 $21.45 7 $28.68 4 $33.33 2 $0.00
b = 3 6 $34.90 5 $40.40 3 $47.74 2 $0.00 1 $188.27

3.5 Conclusions

Materials testing activities are important steps in pavement construction process because they help
improve quality. This chapter describes a procedure for determining the number of samples that
should be taken to meet user-specified reliability criteria. In addition to the reliability measures,
several inputs based on past data are entered prior to running the procedure. These inputs deter-
mine the prior distribution of the mean density, which represents current knowledge about the true
mean density. Then the procedure generates random density samples. After each sample the prior
distribution is updated. Next, using the updated prior distribution, the procedure determines the
likelihood of the mean density lying in each of many equal-sized bins. Lastly, the procedure finds
the ratio of the likelihood that the mean density lies in eachbin to the maximum likelihood among
all bins. The procedure terminates when the number of bins for which the ratio of likelihoods is
above a cutoff ratio is equal to or less than a cutoff number. This procedure is repeatedly simulated
to find the expected required sample size.

After analysis of the current procedure and the one described here, it was determined that using
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the sample size suggested by the procedure described here resulted in more accurate I/D payments
than using the current sample size of two. One simulation increased accuracy from 47.0%, under
the current method, to 70.6%, under the suggested method.

For smaller values ofσ2, our procedure results in smaller recommended sample sizes. In other
words, contractors with consistent performance are rewarded because they are required to do fewer
tests. In addition, contractors are still encouraged to perform high quality work because of the pay
factor schedule. So implementing our procedure will encourage contractors to perform consistently
high quality work.
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Chapter 4

Updating Estimated Variance

4.1 Introduction

Mn/DOT’s current testing protocol rewards a contractor forachieving high mean lot density. It
does not consider variability in density observations as a measure of pavement quality. In reality,
density variation also determines pavement quality. Our proposed procedure (described in Chapter
3) requires more samples to be tested when a contractor’s quality (i.e. pavement relative density)
is more variable. This gives the contractor an incentive to reduce variance.

Supposeσ2 denotes the variance of density observations that is used todetermine the number
of required samples for a particular contractor. Before implementing our proposed procedure,
Mn/DOT needs to address three issues:

1. How to calculate an initial estimate ofσ2 when the new protocol is first implemented or
when a new contractor wins the bid to do the work? [Note, “new”in our terminology means
that Mn/DOT does not have data on this contractor’s performance from past projects.]

2. How to determine for each contractor ifσ2 has changed during the course of a project or
between projects?

3. How to update the estimate ofσ2 if a change is detected in step 2?

In this chapter, we develop and report a methodology for carrying out each of the three steps. But
first, we analyze the correlation between the mean and variance of density samples from thirteen
projects. For each project, the mean and variance were calculated for each day of the project. Then
a correlation analysis was performed. The results are shownin Table4.1. The purpose of this
analysis is to demonstrate that a contractor can achieve high mean density even as its day-to-day
performance varies significantly.
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Table 4.1: Correlation analysis.

Project SP Number p-value Correlation
of Days Coefficient

0206-116 21 0.174 -0.308
0402-05 10 0.930 0.017
0405-12 18 0.272 -0.273
0413-30 18 0.927 0.023
0415-18 5 0.089 0.820
0506-10 11 0.505 0.226
0603-11 8 0.301 -0.419
0710-29 20 0.000 -0.725
1013-80 8 0.530 -0.263
1805-71 16 0.755 0.085
4009-14 11 0.206 -0.501
8055-19 14 0.730 -0.101
8611-18 12 0.330 -0.308

Only one out of the thirteen projects, SP 0710-29, had a significant correlation between mean
and variance of daily pavement densities (i.e.p-value≤ 0.05). This implies that generally the
mean and variance of a project are not correlated. The correlation coefficient across the thirteen
projects is more often negative, suggesting that higher mean density is weakly associated with
lower variance, but this effect is not statistically significant. A possible inference from this analysis
is that a change in reward structure is needed to incentivizecontractors to place greater effort on
improving the consistency of their compaction effort.

In the remainder of this section, we set up a framework for thinking about the three questions
posed above. This differs from the presentation in Chapter 3because we now allow the possibility
thatσ2 may change over time. We define an update epoch to be a moment when new information
is available to potentially consider the question whether the variance of pavement density has
changed. From a practical viewpoint, update epochs will arise no more frequently than once each
day after that day’s cores are tested and their results are tabulated. However, our formulation is
general and allows an arbitrary definition of an update epoch.

Because we allow both the true varianceσ2 and its estimate to change at each update epoch,
we index both these quantities by the epoch indext = 0, · · · . Let σ2(t) andσ2

m(t) denote the
population and mean lot density variances at update epocht. We uses2(t) ands2

m(t) to denote
their estimates. In the implementation of our approach, we will work primarily with s2(t) and
s2

m(t) becauseσ2(t), σ2
m(t) cannot be ascertained. In this terminology, the initial variances are

denoted byσ2(0), σ2
m(0) and their estimates bys2(0) ands2

m(0).
In general, we expect the relationship betweens2(t) ands2

m(t) to be independent oft. That is,
at the start of each new cycle of samples, we will have some relative uncertainty about the mean
lot density, which will be captured bys2

m(t). We expect this to be a known function ofs2(t). It
is reasonable to expect that the assumed functional relationship will remain unchanged because
s2

m(t) captures the variance of mean density of a subgroup, given a population variance ofs2(t).
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Put differently, updating primarily affectss2(t). We obtains2
m(t) from a hypothesized relationship

betweens2(t) ands2
m(t). In situations where a Mn/DOT engineer does not have a strongintuition

about what relationship to use, we recommend settings2
m(t) = s2(t) as the default relationship.

Figure4.1 displays a timeline for the updating procedure. At update epoch t, there is some
estimate of the variancês2(t) which is based on a sample size ofn(t − 1). This estimate of the
variance is used as an input to the procedure described in Chapter 3, which determines the sample
size for lots observed between thet and (t + 1)-th update epochs. So,n(t) total samples are
observed between thet and(t + 1)-th update epochs and these samples have a variance ofs2(t).
Then at the(t + 1)-th update epoch, a new estimate of the variance is found (using one of the two
methodologies described in this chapter),ŝ2(t+1), which is based on a sample size ofn(t). Then,
this estimate of the variance is used to determine sample size for lots observed between the(t + 1)
and(t + 2)-th update epochs, according to the procedure described in Chapter 3.

�� �'"�
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Figure 4.1: Updating timeline.

The Bayesian updating procedure describes the process by which we refine our estimate of
s2

m(t) for each lot by taking more samples. In particular, startingwith s2
m,0(t) = s2

m(t), the new
estimates2

m,k(t) after takingk samples is

s2
m,k(t) =

s2(t)

l0(t) + k
, (4.1)

wherel0(t) = s2(t)/s2
m(t) is the equivalent number of initial samples corresponding to the as-

sumed functional relationship betweens2(t) ands2
m(t). We caution the readers not to be confused

by the two levels of updating – one that updatess2(t) at each update epocht and the other that
updatess2

m(t) by taking the required number of samples from each lot being tested between update
epochst and(t+1). Chapter 3 concerned the latter, whereas Chapter 4 (this chapter) concerns the
former.

We describe two methodologies for updatings2(t). The first methodology is based on applying
a hypothesis testing procedure at each update epoch to checkif the variance has changed. This
methodology is appropriate in situations where the variance is generally stable but periodically
jumps to another value. An advantage of this procedure is that it can be quite sensitive to changes
in the variance. Conversely, a disadvantage is that it may changes2(t) too frequently, leading to
unnecessary fluctuations in sample size.

The second methodology uses a smoothing approach to update the value ofs2(t) using current
and historical data. This methodology is appropriate in situations where the variance changes
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frequently but by a small amount each time. An advantage of this procedure is that it avoids large
swings in values ofs2(t). A disadvantage is that it always lags the observed changes in s2(t),
which can make it relatively unresponsive.

We provide both methodologies because Mn/DOT project engineers can best decide which
methodology will work best in particular situations. We do report an extensive comparative analy-
sis of both methodologies to help project engineers in this task.

4.2 Methodology

To illustrate how the variance of density values changes over time, we analyzed data from nine
projects. For each project, the data was clustered into groups of 4 days. For example, clusters
consisted of days 1-4, days 5-8, and days 9-12. Groups of 4 days were chosen because generally
a day had 4 lots with 2 samples per lot, which gives an approximate sample size of 32 for each
group. This is just enough to carry out meaningful comparisons of changes across groups.

We performed a hypothesis test, known as the Bartlett’s test, for each project. The null hypoth-
esis for this test was that all groups have equal variances and the alternative hypothesis was that at
least one of the groups has a different variance. The resultsof these tests are shown in Table4.2.
The significant (less than 0.05)p-values are shown in bold font.

Table 4.2: Bartlett hypothesis test results.

Project SP p-value Number Number Number
of Groups of Adjacent of F-tests

Groups that failed
0206-116 0.556 5 4 0
0402-05 0.016 3 2 0
1413-30 0.864 5 4 0
0506-10 0.184 4 3 1
0710-29 0.016 5 4 2
1805-71 0.044 4 3 1
4009-14 0.013 2 1 1
8055-19 0.941 4 3 0
8611-18 0.387 6 5 0

In addition, for each project, a hypothesis test was performed over all pairs of adjacent groups.
This hypothesis test was an F-test with the null hypothesis being that the two groups have the same
variance and the alternative hypothesis being that the two groups have different variances. For
example, if a project had 4 groupings, there were 3 hypothesis tests with the following three null
hypotheses:σ2(1) = σ2(2), σ2(2) = σ2(3), andσ2(3) = σ2(4). Table4.2 also displays, for each
project, the total number of groups, the number of adjacent groups, and the number of F-tests that
failed (had significantp-values). In the terminology introduced in the previous section, each group
represents a potential update epoch. For each project, we also plotted the variance of each group
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and a 95% confidence interval on the variance. These results are shown in Figures4.2(a) through
4.3(c).

Table4.2 shows that in four out of nine projects, at least one group hada significantly different
variance than the others. Table4.2 also displays that five out of nine projects had zero rejected
F-tests, three out of nine projects had one rejected F-test,and one out of nine projects had two
rejected F-tests. This means that most projects had no change in variance from one group to the
next, a few projects had one change between adjacent groupings, and one project had two changes.
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(a) Project 0206-116.
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(b) Project 0402-05.
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(c) Project 0413-30.
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(d) Project 0506-10.
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(e) Project 0710-29.
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(f) Project Project 1805-71.

Figure 4.2: Confidence intervals.
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(a) Project 4009-14.
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(b) Project Project 8055-19.
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(c) Project 8611-18.

Figure 4.3: Confidence intervals – continued.

From Figures4.2(a) through4.3(c), it appears that the variance changes smoothly and does not
jump much. This is particularly noticeable for projects 0206-116, 0413-30, 8055-19, and 8611-18,
which are shown in Figures4.2(a), 4.2(c), and4.3(b), respectively. The graph for project 0710-29,
Figure4.2(e), seems to have jumps between the 2nd and 3rd and the 3rd and 4thgroupings. Also,
project 1805-71, Figure4.2(f), might have a jump between the 3rd and 4th groupings. These
are visually the most noticeable jumps. Overall, it is not possible to say conclusively whether
the changes in variance occur gradually or via a jump process. Therefore, in what follows, both
procedures are presented and the choice of which methodology to implement is left to the user.

For both methods described below, the initial estimates2(0) is obtained from the most recent
2-3 years of data from projects involving the same or similarmix. We propose to update this initial
estimate each year on a rolling basis to allow for changing industry standard of performance.

4.2.1 Hypothesis-Test-Based Updates

We propose performing a hypothesis test at each update epochto determine whether the variance of
the most recent data,s2(t), is significantly different from the most recent estimate ofthe variance.
The latter is denoted bys2(t). If n(t) (the number of samples that have been observed between the
t and the(t+1)-th update epoch) is very small, then a test of hypothesis would not be able to detect
a change even when a change has actually occurred. Therefore, it is important to define the update
epoch carefully. We propose that update epochs occur daily (if the number of samples observed
each day is at least 30) or over the minimum number of days thatcontain just over 30 samples. A
more precise argument can be constructed to determine the appropriate update interval. However,
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this argument cannot be operationalized because it requires the user to specify certain costs that
cannot be estimated from available data.

There are two possible results of the hypothesis test – either the null hypothesis is not rejected,
or it is rejected. In each instance, the proposed updating procedure will find a slightly different
estimate of the variance,ŝ2(t + 1), that will be used to determine sample size for lots taking place
between the(t + 1) and the(t + 2)-th update epoch. A failed hypothesis test implies that the
variance of observed density values since the most recent update epoch is significantly different
from the most recent estimate of the variance,ŝ2(t). In this case, we drop historical data and set
ŝ2(t + 1) = s2(t), which is the current best estimate of variance and is based on a sample of size
n(t).

In contrast, if the null hypothesis is not rejected, we utilize the new information in conjunction
with the historical information. Specifically, if̂s2(t) were the previous best estimate of variance of
densities and this estimate were based on a sample size ofn(t−1), we would computês2(t+1) =
n(t)s2(t)+n(t−1)ŝ2(t)

n(t)+n(t−1)
as the updated estimate of variance and setn(t) = [n(t) + n(t − 1)] as the size

of the sample on which this estimate is based.
Regardless of how the updated estimate is obtained, the newŝ2(t + 1) is used to determine the

required sample sizes for lots completed between the(t + 1) and the(t + 2)-th update epoch.

4.2.2 Smoothing-Approach-Based Updates

Rather than attempting to detect changes that have already occurred in the data, this procedure
attempts to predict future changes based on past behavior. In a typical smoothing procedure,
we have both the forecast of the unknown quantity and its realized value at each update epoch.
We denote the forecast of variance for periodt by ŝ2(t) and the actual observed variance by the
previously introduced notations2(t). The procedure is initialized by settinĝs2(1) = s2(0). For
update epocht ≥ 1, we perform the following operation.

ŝ2(t + 1) = αs2(t) + (1 − α)ŝ2(t) (4.2)

whereα is a smoothing constant chosen by the user.
Supposedi(t) is the observed density from thei-th sample in periodt andd(t) = average

density for that period. Then, using the data observed in epoch t, we obtain an estimate of variance
at the end of periodt as follows:

s2(t) =

∑n(t)
i=1 (di(t) − d(t))2

n(t) − 1
(4.3)

Ideally, it is desirable to weights2(t) values differently for eacht because we do not expect the
number of samples taken to be invariant between two consecutive update epochs. However, weight-
ing of s2(t) values introduces significant complexity and is not likely to have much of an impact
on the quality of this procedure becauseα values are chosen optimally and periodically updated,
as explained next

We obtain the bestα by applying smoothing procedure to a set of data that we call the training
sample. At each update epoch, we keep track ofs2(t) andŝ2(t). This allows us to calculate the sum
of squares of errors

∑t
τ=1[s

2(t)− ŝ2(t)]2, wheret in this expression is the number of observations
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in the training sample. We then choose a value ofα that minimizes this sum. Note that the sum
of squares of errors is one measure of the accuracy ofŝ2(t) to the actual variances2(t). There are
other criteria that could be used to measure accuracy and to obtain the bestα with respect to those
criteria.

4.3 Comparative Analysis

In this section, we compare and contrast the two methodologies discussed above. This section is
divided into three parts. We describe the experimental set up first, followed by the key performance
metrics we calculated to compare the two methodologies, andfinally, we present the results. A
discussion of the implications of these results and our results are presented in the next section.

4.3.1 Experimental Setup

A full evaluation of the two procedures required the abilityto adjust the number of samples taken
each day according to the previous day’s test results. Sincehistorical data contained at most 2
samples per lot, historical data could not be used to test ourprocedures. Because of this, we
simulated density observations in the experiments described in this section.

Historical projects typically lasted between 10 and 30 daysand most days had 4 lots. On the
basis of this observation, in the experiments we conducted,each scenario was simulated for 20
days and each day had 4 lots. Also, in each scenario the starting value of true process variance was
σ2(0) = 0.0003. The number of samples were determined according to a targetcutoff ratio of .6
and a cutoff number of 2 (see Chapter 3 for details on choosingthese performance measures).

The two methodologies described in the previous sections were analyzed under three different
scenarios. The first scenario represented a situation in which the true process variance changed
randomly each day from the base-case value of0.0003 during the course of the project. In the
second scenario, the variance also changed randomly, but anup or down change could last for
up to three consecutive days. The third scenario contained an initial period of instability after
which the variance stabilized, representing contractor’sefforts to gain control over the production
process. Unstable values at the start of a project are a common occurrence in historical data because
contractors try to vary mix composition and production processes to realize higher density. Each
scenario was simulated three times using a different initial value fors2(0) each time – the correct
value of .0003 and two incorrect values which were .0002 and .0004. In each case, we assumed
thats2(0) was based on an initial sample of sizen(0) = 100.

Under each scenario, data was randomly generated to represent density samples. Consider,
for example the case when the initial estimate of the variance of was .0003. We used the static
program from Chapter 3 to find that 8 samples should be taken per lot. So each scenario began by
generating data samples for 4 lots with 8 samples each (a total of 32 samples) for day 1. In each
scenario, the density samples were generated from a normal distribution with a mean .925 and the
specified variance for that particular day and scenario. Under the first scenario, the variance values
were either a big or small jump from .0003, where a small jump is 5%-20% above or below .0003
and a big jump is 20% to 50% above or below .0003. The second scenario had the same type of
jumps, except that big jumps could remain for up to 3 days. Under the third scenario, the first 5
days of the project consisted of big jumps from .0003 and days6 through 20 consist of small jumps
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from .0003. The specified values for the variance can be foundin Table4.3. For example, the first
day of the third scenario generates 32 random samples from a normal distribution with mean .925
and variance .000412412.

Once the samples were generated, the hypothesis testing methodology found the value of the
test statistic,f = ŝ2(t)/s2(t), whereŝ2(t) was the variance used to determine sample size for day
t and ands2(t) was the observed variance on dayt. Then, the critical points,fα/2,n(t−1),n(t) and
f1−α/2,n(t−1),n(t), were found, whereα = 0.05 was the significance level,n(t − 1) was the sample
size used to find̂s2(t) andn(t) was the sample size used to finds2(t).

If we observed thatf > fα/2,n(t−1),n(t) or f < f1−α/2,n(t−1),n(t) then the null hypothesis was re-
jected and̂s2(t+1) was set equal tos2(t). Otherwise, the hypothesis test was deemed inconclusive
and we updated̂s2(t + 1) as follows:ŝ2(t + 1) = n(t)s2(t)+n(t−1)ŝ2(t)

n(t)+n(t−1)
andn(t) = [n(t) + n(t − 1)].

The new value of̂s(t + 1) was then used to determine the sample size for the next day, using the
static program developed in Chapter 3. This process was continued throughout the 20 simulated
days in each scenario.

The smoothing methodology required an extra step in which weused a training sample to
determine optimalα. For each scenario, we used a unique training sample of 120 days, in which
the variance values were randomly generated in the same fashion that the variance values were
generated for the analysis. The training sample for each scenario resulted in a unique optimal
value for alpha. For the first scenario,α = 0, for the second scenarioα = 0.14634, and for the
third scenario,α = 0.00053.

However, the agency will not always be confident that the available training sample was an
accurate representation of the project on which the smoothing methodology is implemented. So,
rather than using a training sample to determine the optimalvalue ofα, some literature suggests
a nominal value ofα = .10 can be used when the process is somewhat stable (not too variable)
(Silver et al., 1998). In addition, the performance of the smoothing procedure is normally quite
insensitive to the chosen value ofα. Due to this, the smoothing methodology was simulated three
times for each scenario withα = .10 and the initial value ofs2(0) = .0003, .0002, and .0004.
Analyses that used the customized training samples to determine α will be referred to as Ideal
Smoothing and the analysis using the nominal value ofα = .10 will be referred to as Nominal
Smoothing.

After theα values were found, the analysis could be performed. To begin, sample density val-
ues were randomly generated from a normal distribution witha mean .925 and the corresponding
variance for each day and scenario. Once the samples were generated, the smoothing methodology
estimated the variance for dayt, denoted bŷs2(t). Then the smoothing procedure was applied in
order to estimate the variance used in the next epoch. The smoothing procedure is as follows:

ŝ2(t + 1) = αs2(t) + (1 − α)ŝ2(t) (4.4)

The value ofŝ2(t + 1) was then used to determine the sample size for each lot on the next test
epoch. This procedure was repeated for each day for each testscenario.

4.3.2 Performance Metrics

The simulation results were analyzed in terms of three key performance metrics to test the effec-
tiveness of each procedure. The first metric calculated the proportion of Type I and Type II errors.
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A Type I error would occur if it was deemed that the variance had significantly changed when it
actually had not changed and a Type II error would occur if it was deemed that the variance had
not significantly changed when it actually had. This analysis considered a change to be significant
if the variance changed by more than 15% from one day to the next (note that this level of signifi-
cance could be set to another percentage). Table4.3 displays the variance used on each day in each
scenario as well as an indicator of whether the variance on a particular day is significantly differ-
ent than the previous day. This performance metric is relevant only for the hypothesis-test-based
updating method.

The second metric measured the difference between the number of samples that were obtained
on a particular day (based on the estimate of the variance) and the ideal number of samples that
should have been obtained that day (based on the actual variance). Note that each day had 4 lots.
So this metric equaled the average absolute difference in actual and the ideal number of samples
per lot over the 20 days multiplied by four. A metric such as this is also called mean absolute
deviation (MAD) in statistics and operations research literature.

Table 4.3: Specified variance values and an indicator of whether that variance is significantly
different (> 15%) than the previous day’s variance in each scenario.

Day Variance Jumps Variance Jumps for up to 3 Days Initial Chatter in Variance
Variance Change Variance Change Variance Change

1 0.000232764 change 0.000224222 change 0.000412412 change
2 0.00027594 change 0.000184061 change 0.000429679 no change
3 0.000346777 change 0.000268627 change 0.000226105 change
4 0.000396462 no change 0.000316477 change 0.000212513 no change
5 0.0002468 change 0.000320343 no change 0.000412803 change
6 0.000280703 no change 0.000353463 no change 0.000268127 change
7 0.000356188 change 0.000246757 change 0.000326252 change
8 0.000166403 change 0.000240402 change 0.000335311 no change
9 0.000359444 change 0.000262746 no change 0.000279845 change
10 0.000320562 no change 0.000266211 no change 0.000348596 change
11 0.000356113 no change 0.00035386 change 0.000335519 no change
12 0.000328325 no change 0.000265233 change 0.000345423 no change
13 0.000270069 change 0.000284182 no change 0.000337954 no change
14 0.000270707 no change 0.000405208 change 0.000274099 change
15 0.000221313 change 0.000450505 no change 0.000340227 change
16 0.000201703 no change 0.000320809 change 0.000333308 no change
17 0.000331298 change 0.000267149 change 0.000318237 change
18 0.000338313 no change 0.000207188 change 0.000356318 change
19 0.000248293 change 0.000229312 no change 0.000344064 no change
20 0.000352914 change 0.00017083 change 0.000357063 no change

Finally, the third metric measured the economic impact of using each updating methodology.
For each method, on any given day we might take either too few or too many samples per lot rela-
tive to the ideal number. The latter can only be known in a simulation exercise such as the one we
constructed. If too many samples were taken, this resulted in both an extra cost and an extra bene-
fit. Clearly, the extra cost would come from performing more than the ideal number of tests. The
benefit would come from increased accuracy in Incentive and Disincentive payment calculations.
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Similarly, if fewer samples were taken, then this would alsohave two opposing effects. In this
case, the cost would be caused by the decreased accuracy in Incentive and Disincentive payment
calculations, whereas the benefit would be smaller testing cost.

4.3.3 Results

The proportion of Type I and Type II errors for hypothesis-testing-based updating procedure are
shown in Table 4.4 below. Recall a Type I error would occur if it was deemed that the variance had
significantly changed when it actually had not changed and a Type II error would occur if it was
deemed that the variance had not significantly changed when it actually had. Also, recall that here
a change in variance is deemed significant if only the variance changed by more than 15% from
one day to the next (note that this level of significance couldbe set to another percentage).

Table 4.4: Proportion of type I and type II errors in each scenario withs2(0) = .0003.

Initial Value ofs2(0) Scenario Proportion of
Type I Errors

Proportion of
Type II Errors

.0003
Variance Jumps .1 .5

Variance Jumps for Up to 3 Days.05 .5
Initial Chatter in Variance .1 .5

.0002
Variance Jumps 0 .5

Variance Jumps for Up to 3 Days.1 .65
Initial Chatter in Variance 0 .3

.0004
Variance Jumps 0 .45

Variance Jumps for Up to 3 Days0 .5
Initial Chatter in Variance 0 .5

Clearly, Table 4.4 shows that the proportion of Type I errorswas at most.1 in our simulations
which confirms that the proposed procedure is biased toward protecting against Type I errors. This
is exactly as one would expect. However, protecting againstType I errors can result in an increased
frequency of Type II errors, which we see in this analysis. Type II errors are more likely when the
change in variance is relatively small, as is the case in thisour simulations. Using an incorrect
estimate ofσ2(0) that errs on the side of being larger produces better outcomes, as one would
expect.

Similarly, Table4.5 shows calculations of mean absolute deviation for each scenario. A smaller
value for the MAD is desirable and this implies greater accuracy of updating protocol. Consider
the hypothesis testing and ideal smoothing methodologies.Whens2(0) = .0003, the hypothesis
testing methodology has a smaller MAD in one scenario and theideal smoothing methodology has
smaller values in the other two scenarios. Whens2(0) = .0002, the hypothesis testing methodology
has a smaller MAD in two scenarios and the ideal smoothing methodology has a smaller MAD in
one scenario. Whens2(0) = .0004, the hypothesis testing methodology has a smaller MAD in one
scenario and the two methodologies have the same MAD in the remaining scenarios. So, while
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neither methodology clearly dominates, the hypothesis testing methodology appears to be slightly
more accurate.

Table 4.5: Mean absolute deviation per day for each scenariowith s2(0) = .0003.

Initial Value
for s2(0)

Scenario Hypothesis
Testing
Methodology

Ideal Smoothing
Methodology

Combination
Smoothing
Methodology

.0003
Variance Jumps 2.45 1.35 1.35
Variance Jumps
for Up to 3 Days

1.55 1.75 1.45

Initial Chatter in
Variance

1.7 1.5 1.5

.0002
Variance Jumps 1.75 2.45 2.45
Variance Jumps
for Up to 3 Days

2.2 1.7 2.15

Initial Chatter in
Variance

2 3.1 3.1

.0004
Variance Jumps 2.15 2.65 2.5
Variance Jumps
for Up to 3 Days

2.1 2.1 3.15

Initial Chatter in
Variance

2.0 2.0 2.05

Also, Table4.5 shows that when the ideal smoothing methodology is used the MAD is signifi-
cantly higher whens2(0) = .0002 and.0004 than whens2(0) = .0003 in two of the three scenarios.
In addition, when the combination smoothing methodology isused the MAD is significantly higher
whens2(0) = .0002 and.0004 than whens2(0) = .0003 in all three scenarios. Because of this,
we can conclude that having the wrong initial estimate ofs2(0) results in an increased MAD and
underscores the importance of having accurate initial estimates.

Tables4.6, 4.7, and4.8 display the cost and benefit for performing too many tests. Recall that
each simulation has 20 days with 4 lots each. Tables4.6, 4.7, and4.8 show for each simulation, how
many days took too many tests, the total number of extra teststhat were taken during the course of
the simulation, the average number of extra tests over all 20days, and the average number of extra
tests over just the days that had extra tests. These extra tests are considered a cost. In addition,
Tables4.6, 4.7, and4.8 record the total savings from taking the additional tests, the average savings
over all 20 days, and the average savings over just the days that took extra tests.
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Table 4.6: Economic impact of performing too many tests whens2(0) = .0003.

Scenario A B C D E F G

Variance Jumps 10 104 1.3 2.6 $1,429.39 $71.47 $142.94
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

11 84 1.05 1.91 $1,214.24 $60.71 $110.39

Initial Chatter in
Variance

4 64 0.8 4 $886.03 $44.30 $221.51

Variance Jumps 6 40 0.5 1.67 $759.89 $37.99 $126.65
Ideal Smoothing Variance Jumps for

Up to 3 Days
6 56 0.7 2.33 $981.63 $49.08 $163.61

Initial Chatter in
Variance

2 16 0.2 2 $295.62 $14.78 $147.81

Variance Jumps 6 40 0.5 1.67 $905.36 $45.27 $129.34
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

8 56 0.7 1.75 $1,022.73 $51.14 $127.84

Initial Chatter in
Variance

3 32 0.4 2.67 $556.70 $27.84 $185.57

[A: number of occurrences, B: total number of extra tests, C:average number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too manytests, E: total savings, F: average savings per
day for all days, G: average savings per day for days with too many tests.]

Table 4.7: Economic impact of performing too many tests whens2(0) = .0002.

Scenario A B C D E F G

Variance Jumps 7 64 0.8 2.29 $1,330.73 $66.54 $147.86
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

12 120 1.5 2.5 $1,710.13 $85.51 $142.51

Initial Chatter in
Variance

10 96 1.2 2.4 $1,223.37 $61.17 $122.34

Variance Jumps 1 4 0.05 1 $78.76 $3.94 $78.76
Ideal Smoothing Variance Jumps for

Up to 3 Days
4 32 0.4 2 $646.73 $32.34 $161.68

Initial Chatter in
Variance

0 0 0 0 $0.00 $0.00 $0.00

Variance Jumps 4 32 0.4 2 $568.22 $28.41 $142.06
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

7 56 0.7 2 $1,008.78 $50.44 $144.11

Initial Chatter in
Variance

0 0 0 0 $0.00 $0.00 $0.00

[A: number of occurrences, B: total number of extra tests, C:average number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too manytests, E: total savings, F: average savings per
day for all days, G: average savings per day for days with too many tests.]
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Table 4.8: Economic impact of performing too many tests whens2(0) = .0004.

Scenario A B C D E F G

Variance Jumps 8 72 .9 2.25 $1,163.26 $58.16 $145.41
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

6 76 0.95 3.17 $1,194.97 $59.75 $199.16

Initial Chatter in
Variance

1 20 0.05 5 $295.74 $14.79 $295.74

Variance Jumps 20 212 2.65 2.65 $3,031.92 $151.60 $151.60
Ideal Smoothing Variance Jumps for

Up to 3 Days
9 104 1.3 2.89 $1,736.62 $86.83 $192.96

Initial Chatter in
Variance

17 156 1.95 2.29 $2,176.80 $108.84 $128.05

Variance Jumps 10 108 1.35 2.7 $1,620.88 $81.04 $162.09
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

16 148 1.85 2.31 $2,349.40 $117.47 $146.84

Initial Chatter in
Variance

9 76 0.95 2.11 $1,080.18 $54.01 $120.02

[A: number of occurrences, B: total number of extra tests, C:average number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too manytests, E: total savings, F: average savings per
day for all days, G: average savings per day for days with too many tests.]

Table 4.9: Economic impact of performing too few tests whens2(0) = .0003.

Scenario A B C D E F G

Variance Jumps 7 92 1.15 3.29 $1,982.14 $99.11 $220.24
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

5 40 0.5 2 $528.12 $26.41 $105.62

Initial Chatter in
Variance

7 72 0.9 2.57 $1,358.69 $67.93 $169.84

Variance Jumps 10 68 0.85 1.70 $1,102.04 $55.10 $110.20
Ideal Smoothing Variance Jumps for

Up to 3 Days
10 84 1.05 2.1 $1,381.37 $276.27 $138.14

Initial Chatter in
Variance

15 104 1.3 1.73 $1,888.89 $94.44 $125.93

Variance Jumps 10 68 0.85 1.70 $1,025.16 $51.26 $102.52
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

7 56 0.7 2 $782.33 $39.12 $111.76

Initial Chatter in
Variance

10 76 0.95 1.9 $1,193.24 $59.66 $119.32

[A: number of occurrences, B: total number fewer tests, C: average number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too few tests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too few tests.]
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Table 4.10: Economic impact of performing too few tests whens2(0) = .0002.

Variance Jumps 9 64 0.8 1.78 $981.64 $49.08 $109.07
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

5 56 0.7 2.8 $1,064.03 $53.20 $177.34

Initial Chatter in
Variance

6 64 0.8 2.67 $1,346.14 $67.31 $224.36

Variance Jumps 17 192 2.4 2.82 $3,846.40 $192.32 $226.26
Ideal Smoothing Variance Jumps for

Up to 3 Days
10 100 1.25 2.5 $2,015.53 $100.78 $201.55

Initial Chatter in
Variance

18 248 3.1 3.44 $4,952.03 $247.60 $275.11

Variance Jumps 13 116 1.45 2.23 $2,048.03 $102.40 $157.54
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

7 72 0.9 2.57 $1,258.04 $62.90 $179.72

Initial Chatter in
Variance

17 164 2.05 2.41 $2,925.48 $146.27 $172.09

[A: number of occurrences, B: total number fewer tests, C: average number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too few tests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too few tests.]

Table 4.11: Economic impact of performing too few tests whens2(0) = .0004.

Variance Jumps 11 108 1.35 2.45 $1,889.12 $94.46 $171.74
Hypothesis Test-
ing

Variance Jumps for
Up to 3 Days

5 56 0.7 2.8 $1,850.19 $92.51 $185.02

Initial Chatter in
Variance

16 140 1.75 2.19 $2,511.41 $125.57 $139.52

Variance Jumps 0 0 0 0 $0.00 $0.00 $0.00
Ideal Smoothing Variance Jumps for

Up to 3 Days
7 64 .8 2.29 $1,042.47 $52.12 $148.92

Initial Chatter in
Variance

1 4 0.05 1 $39.38 $1.97 $39.38

Variance Jumps 5 20 0.25 1 $247.57 $12.38 $49.51
Nominal
Smoothing

Variance Jumps for
Up to 3 Days

4 24 0.3 1.5 $330.86 $16.54 $82.71

Initial Chatter in
Variance

3 12 0.15 1 $196.00 $9.80 $65.33

[A: number of occurrences, B: total number fewer tests, C: average number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too few tests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too few tests.]

Similarly, Tables4.9, 4.10, and4.11 display the cost and benefit for performing too few tests.
Tables4.9, 4.10, and4.11 show for each simulation, how many days took too few tests, the total
number of fewer tests that were taken during the course of thesimulation, the average number of
fewer tests over all 20 days, and the average number of fewer tests over just the days that had fewer
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tests. These fewer tests are considered a savings. In addition, Table Tables4.9, 4.10, and4.11
record the total cost from taking fewer tests, the average cost over all 20 days, and the average cost
over just the days that took fewer tests.

For calculating economic impact of incorrect I/D payments,it was necessary to carry out sim-
ulations with the true mean density and the best estimate of density that was obtained from using
either the ideal number of tests or the number of tests that our update procedure recommended.
Consider for example, the situation when the updating procedure leads to too few tests. In each
simulation when this happened, lots where the payment basedon the estimated mean density was
higher than the payment based on the true mean density counted as an overpayment. Conversely,
lots where the payment based on the true mean was higher than the payment based on the estimated
mean density counted as an underpayment. This procedure wassimulated 1,500 times and the av-
erage absolute error for all 1,500 simulations (either an over- or underpayment) was found. Lastly,
the difference between average absolute error in payments based on the proposed procedure and
the ideal number of samples was found. This is the cost of taking too few samples in one lot. This
number was multiplied by 4 to represent the cost of taking toofew samples for that day. A similar
procedure was repeated to find the benefit from taking more than the ideal number of samples.

Tables4.6, 4.7, and4.8 show the economic impact of simulations that performed too many
tests. Whens2(0) = .0002 and.0003, the hypothesis-test-based updates tended to take extra tests
more frequently, take a greater number of extra tests, and have a higher average number of extra
tests over all days than the smoothing methodology. In addition, the average number of extra tests
over days that had extra tests were also higher whens2(0) = .0002, .0003, and.0004. Tables4.9,
4.10, and4.11 display the economic impact of simulations that performed too few tests. These
results correspond to times when our procedure recommendedtaking fewer tests than should have
been observed based on the true variance of a particular day of a simulation. Here, the smoothing
methodology seems to take fewer tests more frequently as well as take more fewer tests than the
hypothesis testing methodology whens2(0) = .0002 and.0003.

4.4 Conclusions

Neither method dominates the other. This is not surprising because each method is designed to
perform better in different situations. Figures4.4(a), 4.4(b), and4.4(c) show the Total benefit for
each scenario and methodology whens2(0) = .0003, .0002 and .0004. Figures4.5(a), 4.5(b),
and4.5(c) show the Total benefit for each scenario and methodology whens2(0) = .0003, .0002
and .0004. In our simulations, there is a higher total benefitfor the hypothesis test methodology
than the smoothing methodology whens2(0) = .0003 and .0002 than whens2(0) = .0004. Also,
the total cost for the hypothesis testing methodology is lower than the total cost for the smoothing
methodology whens2(0) = .0002 and higher whens2(0) = .0004. So, in general, it seems that if
the estimate fors2(0) is low, then the hypothesis test methodology is better in terms of economic
impact. In contrast, it seems that if the estimate fors2(0) is high, then the smoothing methodology
is better in terms of economic impact.
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(b) s
2(0) = .0002.
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(c) s
2(0) = .0004.

Figure 4.4: Total benefit with different values ofs2(0).
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Figure 4.5: Total cost with different values ofs2(0).
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Chapter 5

Conclusions

This report describes a procedure to determine how many samples should be taken to achieve a
user-specified level of accuracy in identifying mean lot density. Inputs to this procedure include
reliability measures (called the cutoff ratio and cutoff number) and several estimates based on past
data, which represent the current knowledge about the true mean density. Then the procedure
randomly generates sample density values and updates the prior distribution based on this new
sample data. Using the updated prior distribution, the procedure determines the likelihood of the
mean density lying in each of several ranges of density values that are equal in length. Lastly, the
procedure finds the ratio of the likelihood that the mean density lies in each bin to the maximum
likelihood among all bins. Termination of sampling occurs when the number of bins for which the
ratio of likelihoods is above a cutoff ratio is equal to or less than a cutoff number. This procedure
is repeatedly simulated to determine the recommended sample size.

Analysis of the current sampling procedure and the one we describe in this report determined
that using the sample size recommended by our procedure resulted in more accurate incentive and
disincentive payments than using the current sample size oftwo. In a simulated scenario based
on representative data, accuracy increased from 47.0% under the current sampling procedure, to
70.6% under the recommended procedure.

In addition, in our procedure, smaller estimates of the variance,s2, result in smaller recom-
mended sample sizes. Put differently, contractors whose performance is more consistent are re-
warded because they are required to test fewer samples. Moreover, the pay factor schedule still
encourages contractors to perform quality work. Because ofthis, our procedure will encourage
contractors to perform both consistent and high quality work.

As mentioned above,s2 is a measure of the consistency of a contractor’s compactioneffort.
Becauses2 is a key input to our procedure, we developed a method for estimating it. Furthermore,
since a contractors level of consistency may change over time, we also developed methods for
updating the estimate ofs2 if a change is detected. Due to the nature of changes in the variance,
two methods were developed - one based on hypothesis testingand one cased on smoothing.

A comparative analysis of the two methods revealed that neither method dominates the other.
This is not surprising because each method is designed to perform better in different situations.
Moreover, both methodologies result in fairly accurate incentive and disincentive payments. Fig-
ures 4.5(a) to 4.5(c) show that the total cost in inaccurate incentive and disincentive payments was
at most $5000 for a project lasting 20 days. Assuming a bid price of $40 per ton and production
quantity of 2000 tons per day, a project lasting 20 days wouldcost $1.6 million. So inaccuracy of
$5000 is relatively low as a fraction of total project cost. Moreover, even when an inaccurate esti-
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mate ofs2 is used, the two methodologies still result in fairly accurate incentive and disincentive
payments. In summary, implementation of the procedure presented in Chapter 3 after choosing
rational reliability measures, and estimating and updating the variance according to methods pre-
sented in Chapter 4, will together result in more accurate incentive and disincentive payments.
This approach will also help achieve the original intent of instituting I/D schemes by strengthening
the coupling between contractor performance and its rewards/penalties.
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Appendix A

Background – HMA Mixing Process & Tests



Hot Mix Asphalt Mixing Process

• Over 90% of roads are paved with HMA (Hot Mix Asphalt) becauseit is long lasting, cost
effective, and recyclable. Asphalt is the same as Blacktop and comes from Petroleum Oil but
it should not be confused with Coal Tar which comes from coal.Asphalt comes from refined
crude oil and Asphalt Cement, abbreviated as AC, is a type of asphalt) that is used in Hot
Mix Asphalt (HMA). To make HMA, crushed stone, gravel, and sand are mixed with AC
that performs as a glue to hold the aggregates together. The mix is paved while hot which
is why it is called Hot Mix Asphalt. The compaction temperature depends on both the air
temperature and mat thickness and can range from 225-270 ◦F. HMA is designed to increase
fuel efficiency of automobiles and reduce traffic build up andwear on roads due to traffic.
Reclaimed Asphalt Pavement (RAP) can be reused in future road mixtures, which reduces
landfill space and is just as effective as roads paved only with new materials.

• The properties of the asphalt cement and the aggregate used in a mix are important factors
that determine how well the pavement will perform. The properties of asphalt cement are
found using one of three procedures: penetration and viscosity grading systems, Superpave
performance grading (pg) system, and temperature-viscosity characteristics. The viscosity
grading system measures the viscosity of the AC at 140 degrees Fahrenheit. The Superpave
performance grading system tests the performance of the AC in the climate in which the
mix will be paved. The temperature-viscosity method measures how the viscosity in the AC
changes as the temperature changes.

• The most important property of aggregate is surface texturebecause this determines its fric-
tional resistance. Greater friction increases rutting resistance. The surface texture is mea-
sured in terms of the coarse aggregate angularity (CAA) and fine aggregate angularity (FAA)
tests (see description below). Another important quality of the aggregate is particle size dis-
tribution, also known as gradation.

• Two types of facilities make HMA, called batch and drum facilities. The key difference be-
tween the two is that batch facilities make mixes in batches,whereas drum facilities produce
mix in a continuous fashion.

• The following mixing procedures are common to both types of facilities:

– The aggregates are stored in stock piles

– Front end loaders fill a series of bins with aggregate

– Adjustable openings at the bottom of these bins allow aggregate to fall onto a conveyor
belt at varying rates which are monitored by computer and canbe adjusted by plant
employees. In addition, plant employees also control whichaggregates are added to
the mix, how much of each aggregate is added, the speed of the conveyor belt, how
much oil is added to the mix later, and the temperature of the mix. Computerized
monitoring allows precise amount of each ingredient to be used to create the HMA
ensuring consistency with the Mix Design Report (MDR) and the production of the
right quantity needed for the project.
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– From the conveyor belt, the aggregate is moved to a dryer where aggregate mix mois-
ture is removed by heating the mix in a long cylindrical drum

– A burner is located at one end of the dryer, where the aggregate tumbles in hot air and
becomes dry and heated

• Batch facilities make mixes in batches

– From the dryer, the aggregate is transported in an elevator to the mixing tower

– The hot aggregate is separated by size and placed into different weigh buckets

– From the weigh bucket, the aggregate is transported to a mixing bucket which mixes
the aggregate and asphalt cement together until the mixtureis properly coated

– From the mixer, the mix is either loaded directly into trucksor stored in a holding silo
until needed

• Drum facilities make mixes in a continuous stream

– In Drum facilities the drying occurs at the beginning of a long cylindrical drum.

– After drying, the mix passes to the other end of the drum wherethe asphalt and RAP
(if needed) are added.

– The mix cannot be placed directly into the trucks because themix is made continuously.
So the mix is stored in a silo from where trucks pick up the mix as needed.

• The holding silo stores and keeps the mix heated until it is picked up. The truck driver drives
the truck under the silo and a plant employee loads the truck with the desired weight of
HMA.

• Trucks should not have to travel too far between the plant andthe paving site because other-
wise the mix may cool too much in transit and no longer be at thenecessary paving temper-
ature.

Purpose of Tests

• Maximum Specific Gravity – Max specific gravity is the ratio ofthe mass of loose material
to the mass of water with the same volume as the material and atthe same temperature.
This test measures the volume of the mix without any air voids. The max specific gravity of
HMA depends on the ingredients used in making the mix. The results of this test are used in
calculating air voids (Pa).

• Bulk Specific Gravity – Bulk specific gravity is the ratio of the mass of compacted material
to the mass of water with the same volume as the material and atthe same temperature. Bulk
specific gravity is used in calculating air voids of compacted samples.

• Asphalt Content (AC) – Asphalt content of HMA has a direct effect on the overall life and
performance of the pavement. Pavement that has too much asphalt is unstable and pavement
with too little asphalt is not durable.
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• Gradation – Gradation testing determines the percentage ofaggregate that falls within cer-
tain ranges of size and whether these percentages meet the specifications. There are three
different gradation tests one for material that does not pass the # 4 (4.75 mm) sieve, one for
material that passes the #4 sieve but not the #200 (75µm), and one for material that passes
through the #200 sieve. The last test verifies whether the pavement will be susceptible to
frost and/or permeability.

• Voids in Mineral Aggregate (VMA) – This test verifies whetherthere is a sufficient amount
space between the aggregate so that the asphalt can adequately coat the aggregate. Roads
that do not have enough asphalt coating the aggregate tend tobe less durable.

• Adjusted Asphalt Film Thickness (Adjusted AFT) – This test is similar to the VMA test but
recently has been deemed more accurate. This calculation isa ratio between effective asphalt
volume and aggregate surface area.

• Air Voids – This is the percentage of the mix that is made up of air pockets. Pavement that
has high air voids is susceptible to stripping, premature oxidation, premature deterioration,
and rutting. On the other hand, pavement that has low air voids is susceptible to bleeding
and shear flow.

• Fines/Effective Asphalt Content (AC) – This is a ratio between the percentage of aggregate
that passes the #200 (75µm) sieve and the effective asphalt content.

• Superpave consensus properties

– Coarse Aggregate Angularity (CAA) – This test measures the percentage of coarse
aggregate that is angular (not round). Coarse aggregate is aggregate that does not pass
the #4 (4.75 mm) sieve. Mixes with sufficiently angular aggregate will have increased
internal friction and be resistant to rutting.

– Fine Aggregate Angularity (FAA) – This test has the same purpose as the CAA test
except it is performed on aggregate that does pass through the #4 (4.75 mm) sieve.

– Flat and Elongated Particles – This test determines the percentage of aggregate that
have flat surfaces because aggregate with flat faces can crackand break during con-
struction.

– Clay Content – This test measures how much clay is in the mix. Water causes clay to
expand and so too much clay in the mix will lead to poor road quality.

Testing Procedures

• Take sample (about 6000 grams) out of oven once it reaches 160-230 degrees Fahrenheit

• Blend the mix by hand

• For the Marshall design, quarter the mix for three Marshall specimens and one rice specimen
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– Load the three Marshall quarters with an equal weight (ideally 2.5 inches tall and 1200-
1225g of mix) into three Marshall molds that were also heatedin oven to 275 10
degrees Fahrenheit

– Rice sample is 2000-2050 grams

– Place rice sample in a larger pan and spread it out so that the mix is no larger than the
largest aggregate or as small as of an inch

– Re-blend the leftover material and take an extraction sample of 2000-2100g which will
be used for the % Asphalt Cement and Gradation tests

• For the gyratory design (which require larger samples), divide the mix in half

– Load two Gyratory specimens that are each 4800 g and 115mm 5 inheight. Also
include a thermometer in the bucket to indicate when the mix reaches compaction tem-
perature (based on pg grade of the sample).

– Replace the specimens in the oven.

– Re-blend the leftover material

– Take out 2000-2050g for rice test (same as above)

– Take out 2000-2100g for extraction (same as above)

• Gyratory Compaction

– Remove thermometer once the mix reaches compaction temperature

– Place paper at the bottom of mold

– Place mix in mold in one pour so as not to cause segregation

– Place top paper and top plate on top of mix

– Place mold in machine, set the machine for the desired numberof gyrations and angle.
Push start.

– A ram places pressure on the mix from above while the machine spins the mold and
tilts the mold at a desired angle.

– If needed, leave material to set and cool for a few minutes

– Extract sample, remove top plate, top paper, and bottom paper

– Set sample in front of fan to cool completely

• Marshall Compaction

– Once mix is at compaction temperature remove from oven and remove thermometer

– Set all three molds on machine

– Turn machine on and spade the material 15 times on the outside, 10 in the middle, and
then bring the material to a cone

– Turn the machine off

– Put paper on the top of each sample
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– Load hammers, which have been heated on a hot plate (200-300 degrees Fahrenheit),
on machine and engage safety counter-weight

– Set the machine to the required number of hammer blows (determined by mix type)
and turn machine on

– The hammers each give a certain number of blows to the mix inside the mold while the
molds spin

– Make sure all hammers had the exact same number of blows

– Turn samples over, remove any mix that might have been loosened, rotate hammers,
and repeat the same number of blows in the same manner on the other side

– Remove hammers and replace on hot plate

– Remove samples, remove paper from both sides of sample, markthe last side pounded
on each sample with the sample number

– Set samples in front of fan to cool to room temperature

• Maximum Specific Gravity (Rice) Test

– Chop up mix for rice test so that it is smaller than its largestaggregate or smaller than
1/4 inch

– Transfer all of the mix into a calibrated container along with a screen that allows the
water to flow freely through the mix

– Weigh the sample in air. The scale used in weighing the samples should be sufficiently
accurate so that the max SpG can be calculated to four decimalplaces.

– Fill the container with77± 1.8 degree Fahrenheit water at least a half inch higher than
the mix

– Make sure there are no floating particles. If there are some that cannot be knocked
down by hand, use up to 15 drops of aerosol OT. Aerosol OT is a wetting agent that
solubilizes, emulsifies, and reduces interfacial tension.

– Place sample in rice apparatus, put top on to seal apparatus,turn vacuum on until the
sample reaches a vacuum of 30mm of mercury pressure, and thenturn on vibrator and
set timer for 15 minutes

– After 15 minutes turn off vibrator, slowly remove vacuum, remove sample from appa-
ratus, and check for floating particles, knocking them down with finger or using any
remaining drops of aerosol OT (recall that the maximum is 15 drops).

– Carefully place sample on scale in77 ± 1.8 degree Fahrenheit water bath

– Set timer for 10 minutes

– After 10 minutes, weigh sample and remove sample from scale

– The max SpG is calculated by:

Max SpG =
A

A − (C − B)
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where:
A = weight of dry sample in air in grams
B = weight of container in water in grams
C = weight of container and sample in water in grams

• Bulk Specific Gravity

– Marshall specimens

∗ Bulk all three samples at once

∗ The test requires a scale that reads to 1/10g, a water bath that is 77 ± 1.8 degrees
Fahrenheit, timer for 3-5 minutes, and a damp towel

∗ Weigh each dry sample in air

∗ Place samples in water bath for 3-5 minutes, turn off bath so there is no motion,
and weigh each sample under water

∗ Take less than 15 seconds to roll the samples on the damp towel(removes excess
water) and weigh each saturated sample in air. This is the surface saturated dry
weight (SSD).

– Gyratory specimens

∗ Only bulk one sample at a time

∗ Measure dry weight in air

∗ Place sample in water bath for 3-5 minutes and weigh sample inwater

∗ In less than 15 seconds, take sample out, roll on damp towel, and weigh surface
saturated weight

– The bulk Specific Gravity calculation is:

Bulk SpG =
A

B − C

where:
A = weight in grams of the specimen in air
B = weigh in grams, surface saturated dry
C = weight in grams, in water

– The bulk SpG should be recorded to the nearest 0.001 grams.

• Asphalt Content (%AC)

– Wear a face shield, gloves, long sleeve jacket or long sleeves, and apron that are all
appropriate for high temperatures

– Preheat the ignition oven to1000 ◦F

– Weigh the container and lid to the nearest 0.1 gram at300 ◦F or more.

– Pour sample tray and spread it out with a hot spatula. Return tray to preheat oven until
it reaches a constant mass. Constant mass is achieved when the change in mass of the
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sample and tray does not exceed 0.01% of the original mass of the specimen. For ex-
ample, in step 2 check if:

W1 − W2

W2
× 100 ≤ .01% × original mass

If this is not true, repeat until in Step 3:

W2 − W3

W3
× 100 ≤ .01% × original mass

Keep repeating until the change in mass is less than 0.01% of the original mass. After
constant mass is achieved, weigh the tray and material to thenearest 0.1 gram. This is
the initial weight of the specimen.

– Place the tray in the ignition oven (recall that it is at1000 ◦F).

– After the burn cycle is complete, remove the tray from the oven using safety equipment.
Place the sample in an oven heated to300 ◦F. Once the specimen reaches300 ◦F,
record the weight. The return the tray to the ignition oven (1000 ◦F) for an additional
15 minutes to ensure constant mass has been achieved. If constant mass has not been
achieved, repeat this step until it is achieved

– Finally, once the tray and sample have achieved constant mass at or above300 ◦F,
weigh the sample and tray together to the nearest 0.1 gram.

– Deduct tray and lid weight from all measurements.

– AC is calculated as:

%AC =
Ws − Wa

Ws

× 100 − Cf

where:
Wa = the total weight of aggregate remaining after ignition
Ws = the total weight of the HMA sample prior to ignition
Cf = calibration factor, percent by weight of HMA sample

– Cf depends both on the asphalt calibration factor and the aggregate correction factor.

– %AC should be recorded to the nearest 0.01%

• Gradation

– The sieves used in this test are 1.06 in. (26.5 mm), 3/4 in. (19.0 mm), 1/2 in. (12.5
mm), 3/8 in. (9.5 mm), #4 (4.75 mm), #8 (2.36 mm), # 16 (1.18 mm), #30 (600µ m),
#50 (300µm), #100 (150µm), and #200 (75µm).

– Fine and Coarse Aggregate

∗ For fine aggregate, this test is performed on aggregate that passes the #4 sieve but
not the #200 sieve. For coarse aggregate, this test is performed on aggregate that
does not pass the #4 sieve.
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∗ Weigh the sample to the nearest 0.1g. This measurement will be used to calculate
the percentage in each sieve as well as to check for any lost material.

∗ Nest the sieves in ascending order with the smallest sieve atthe bottom. Load the
aggregate into the top of the nested sieves, taking care not to overload the sieves.

∗ Place nested sieves in a shaking mechanism
∗ After sieving, remove each tray and record each corresponding weight to the near-

est 0.1g, taking care to remove all material from each tray, including any material
stuck to the sides or in the sieve openings.

∗ The total weight of the aggregate in each sieve should be within 0.3% of the orig-
inal weight (i.e., no more than 0.3% should be lost in this testing process).

– Finer than #200 sieve aggregate

∗ Take a sample of mix (entire mix, not just mix that passes the #200 sieve). Dry the
sample to a constant weight. Weigh the sample to the nearest 0.1 gram, this is the
dry weight.

∗ Place the sample into a large container and cover the material with water (if nec-
essary, add wetting agent).

∗ Agitate the container so that particles finer than the #200 sieve are suspended in
the water

∗ Pour the water (not the mix) through a #200 (75gm) sieve.
∗ Add more water to the container and re-pour through the #200 sieve until the water

is clear. Any aggregate remaining in the #200 sieve should bere-placed in the
original container.

∗ Place the aggregate remaining in the container into a tray and heat in an oven,
on an electric skillet, or over an open flame until the sample reaches a constant
weight. Record this as the new dry weight.

∗ The calculation for percentage passing the #200 sieve is

finer than #200 sieve=
B − C

B
× 100

where:
B = Original dry weight of sample in grams
C = Dry weight of sample after washing and drying to constant weight in grams

∗ The percentage passing the #200 sieve should be recorded to the nearest 0.1%.

• Voids in Mineral Aggregate (VMA)

– This test measures the percentage of this mix that is not madeup of air voids or effective
AC

– VMA is calculated by:

VMA = 100 − Ps × Gmb

Gsb

where:
Ps = Aggregate content, percent by total mass of mixture
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Gsb = bulk specific gravity of total aggregate
Gmb = bulk specific gravity of compacted mixture

• Adjusted AFT

– This test is similar to the test for VMA and will eventually replace the VMA test be-
cause it is more accurate

– The purpose of this test is to calculate the surface area of the aggregate so that an
estimate can be found for the amount of asphalt coating the aggregate

– First calculate the aggregate surface area (SA) by:

Sa = 2 + 0.02a + 0.04b + 0.08c + 0.14d + 0.30e + 0.60f + 1.60g

where: a, b, c, d, e, f, g are the percentage of aggregate passing through the #4, #8,
#16, #30, #50, #100, and #200 sieves, respectively. The percentage passing through the
#200 sieve should be rounded to the nearest 0.1% and the rest to the nearest 1%. Recall
that sieve #4 is 4.75 mm, #8 is 2.36 mm, #16 is 1.18 mm, #30 is 600µm, #50 is 300
µm, #100 is 150µm, and #200 is 75µm.

– Next AFT is calculated by:

AFT =
Pbe × 4870

100 × Ps × SA

where:
Pbe = Effective asphalt content as a percent of the total mixture 4870 = Constant Con-
version Factor
Ps = Percent Aggregate in Mixture/100 or equivalently100−Pb

100

Pb = Percent Total Asphalt Cement in Mixture
SA = Calculated Aggregate Surface Area in SF/lb.

– Finally, Adjusted AFT is calculated by:

Adjusted AFT = AFT + 0.06 × (SA − 28)

• Air Voids

– A ratio of how many air voids are present in the mix

– Air voids are calculated as:

Air Voids = 100(1 − A

B
)

where:
A = bulk specific gravity
B = maximum specific gravity

A-9



• Fines / Effective AC

– This test is a ratio of the percentage of aggregate that passes the #200 (75µm) sieve
divided by the effective AC

– The fines/effective AC is determined by:

fines/effective AC=
A

Pbe

where:
A = percentage of aggregate passing the #200 sieve
Pbe = effective asphalt

Pbe =Pb − Pba × Ps

100

Pb = percent asphalt in mix
Pba = percent absorbed asphalt
Ps = percent stone in mix (100-%AC)

Pba =100 × Gse − Gsb

Gse − Gsb
× Gb

Gse = effective specific gravity of the aggregate
Gsb = bulk specific gravity of the aggregate
Gb = specific gravity of the asphalt

Gse =
100 − Pb
100

Gmm
− Pb

Gb

Gmm = max gravity (rice test) of the mix
Pb = percent asphalt in mix

• Superpave – Superior Performing Asphalt Pavement. Four consensus properties are critical
for testing the quality of Superpave

– Coarse Aggregate Angularity (CAA)

∗ Ensures a high degree of aggregate internal friction and rutting resistance
∗ It is defined as the percent by weight of particles retained onthe #4 (4.75 mm)

sieve with one or more fractured faces
∗ The procedure to determine the percentage varies from stateto state but usually

involves manually counting the stones and visually determining whether they have
been crushed adequately

∗ Crushed particles are preferred because they will interlock with each other

– Fine Aggregate Angularity (FAA)

∗ This also ensures a high degree of aggregate internal friction and rutting resistance
∗ It is defined as the percent of air voids present when the aggregates that do pass

the #4 (4.75 mm) sieve are loosely packed in a container
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∗ The sample of fine aggregate is blended and weighed and pouredinto a funnel and
held in place. Then the mixture is allowed to flow into a cylindrical container of
known volume. The cylinder is then weighed to determine the amount of air voids.

∗ The calculation is: (V-W/Gsb)/V x 100% where V is the known volume of the
cylinder, W is the weight of the aggregate, and Gsb is the fine aggregate bulk
specific gravity. Superpave requirements for FAA are 40-45%

– Flat and Elongated Particles

∗ Flat surfaced aggregate is undesirable because it can crackand break during con-
struction

∗ This test is performed on materials retained on the #4 (4.75 mm) sieve

∗ A proportional caliper device is used to measure the dimensional ratio of a sample
of aggregate. The ratio of the longest dimension to the shortest dimension should
not exceed 5:1, otherwise the aggregate is considered flat. No more than 10%
of the aggregate should have more than a 5:1 ratio. If a mix fails, the aggregate
content would need to be adjusted

– Clay Content

∗ Water causes clay to expand. So this test is used to limit the amount of clay in the
mix because in excessive amounts clay can harm the quality ofthe pavement.

∗ Mix any sand present in the MDR with a sample of aggregate thatpasses the #4
(4.75 mm) sieve in order to keep the clay content in proportion to the MDR

∗ Place the mix in a graduated cylinder. Agitate the cylinder until the ingredients
settle

∗ Measure the clay and sedimented sand. Then the height of the sand is divided by
the height of the clay and sand (the sand settles to the bottomand the clay settles
in the middle) and then that quotient is multiplied by 100. The clay content has a
maximum of 40-50%.
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