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Executive Summary

Departments of Transportation (DOTS) hire contractorsetdgsm pavement construction and re-
habilitation work and use a variety of protocols to detemnihe quality of contractors’ work.
This report concerns hot-mix asphalt pavement constnuaiod focuses on Minnesota DOT'’s
(Mn/DOT’s) problem of determining the number of samples ttuatractors should be required to
test to determine pay factors. Although our approach islastid with Mn/DOT data, our proce-
dure is applicable to all DOTs that use a similar approachiébermining contractor payments.

Mn/DOT divides each day’s work by contractors into a smalinier of lots. Then, core
samples are taken from two locations within each lot and dtettive densities of the cores are
calculated by performing standardized tests in matergsitirtg laboratories. The average of these
two values is used as an estimate of the lot’s relative dgnsltich in turn determines the pay
factor. This procedure is not sensitive to desired relighih pay factor calculations. Unreliable
calculations can result in excessive over- and under-patsnehich affects project cost and the
DOT's ability to affect contractor performance over time.

We describe a procedure, based on Bayesian statisticsldtetnines the requisite number of
test samples to achieve user-specified reliability in pajofaestimation. We perform a variety of
calculations to compare our approach with the current aggtr@and describe the development of
two decision support tools that can be used by DOT projedhesegs to specify test protocols. The
first procedure works in an offline environment where the neindd tests must be known before
any samples are obtained. The second procedure works irettieviiere the decision to continue
testing is taken after knowing the result of each test. We jpilsvide guidelines for estimating key
parameters needed to implement our protocol.



Chapter 1

Introduction

The Minnesota Department of Transportation (Mn/DOT) usegractors to build/resurface pave-
ments. A standard testing protocol is used to determine ulaéty of materials and contractors’
compaction effort. This report is concerned with the gosdra the procedure used by Mn/DOT
to determine contractors’ compaction effort. Accordinghis protocol, the daily amount of pave-
ment built by each contractor is divided into a small numbdots. Then, core samples are taken
from two locations within each lot and the relative densitéthe cores are calculated by perform-
ing standardized tests in materials testing laboratofies.average of the two values is used as an
estimate of the lot’s relative density, which in turn detares the pay factor. [Mn/DOT obtains two
cores per location, one core is tested by the contractorfandther by Mn/DOT. If the observed
densities from paired cores are within a pre-specified ratigs the contractors’ values are used
to calculate the average, otherwise Mn/DOT'’s values ard.jise

Pay factors depend on ranges within which estimated rela@nsity lies, with the pay factor
remaining unchanged within each range. Pay factors tri@nisito either incentive or disincentive
(I/D) payments to the contractor for each piece of work (I6®r example, a pay factor of 102%
results in a 2% incentive per ton, and a 96% pay factor pezstize contractor by 4% per ton.

How many samples should Mn/DOT require the contractor toes lot to determine pay
factors? The trade offs that Mn/DOT must consider are asv@l— too few samples increase
the probability of assessing an incorrect pay factor, wleteo many samples increase testing
cost. Too many cored samples also weaken the pavement. sTtlsairly an important question
as illustrated by the following example. Suppose a testggme determines the lot density to be
in one range (say 100% pay factor range), but the true deliesityn an adjacent range (say 98%
range). For a typical material cost of $40 per ton and lotsfZ®0 tons, this amounts to a payment
calculation error of $400 per lot. Furthermore, when thealation between compaction effort and
incentive payment is low on account of inaccurate testimggtol, I/D payment schemes are less
likely to have their intended effect on contractor effort.

This project addresses the problem of determining the numibiest samples needed to de-
termine pay factors that are accurate up to a user-specdledbitity level. We do not propose
changing either the method used to detect if contractorBliiDOT’s density values should be
used, or the I/D schedule (i.e. the relative density rangasresult in different pay factors), al-
though both are worthy topics for future research. The agr@resented in this report will remain
valid for any I/D schedule.

We capture the reliability of the testing protocol by two nest, which we call critical ratio
and critical number. We first divide the range of relative siges in equal-sized intervals, called

1



bins, such that each bin lies within a single pay-factor eanghis step is necessary because in
Mn/DOT’s pay factor calculation method, the sizes of ingdsvover which pay factors remain
invariant are not constant. Our procedure then simulatesault of taking each test sample, one
at a time. After each simulation, a Bayesian approach igetilto update (1) the current most
likely bin within which the true relative density lies, (2)d critical ratio for each bin, and (3)
the critical number. For each bin, the denominator of thicatiratio is the maximum likelihood
among all bins that the true relative density lies in a bingrelas the numerator is the likelihood
that the true density lies in the chosen bin. The critical bams the number of bins for which
the critical ratio is above a certain threshold specifiedigyuser. The latter is referred to as the
cutoff ratio. The process terminates when the most recdué\a the critical number is less than
or equal to the cutoff number.

For a given set of values of the cutoff number and the cutdibyan iteration refers to the
series of updates needed to obtain a single estimate ofgneed number of tests. For the same
reliability metrics, we repeat these iterations many tirte®btain an average number of tests
needed. The number of iterations is determined by the delwel of accuracy in the estimation
of the average number of required tests.

The first half of this report describes two variations of otwmgedure. The first is used when
sample size must be determined in advance. This approacteisdied to be used when cored
samples are used to determine pavement density, becausa itase, the number of cores to be
cut must be known in advance. These cores are later testddln Bhis approach is implemented
using a computer program. The user enters certain parasreared from historical data and a
pair of reliability measures, i.e. the cutoff ratio and tlatf number. The program then calculates
the number of samples that should be tested for each lot.

The second variation of our procedure can be used when yaisservations are available
immediately. This approach is implemented in an Excel wioeks for use in the field. As before,
the user enters certain parameters derived from histatetia and a pair of reliability measures
up front. The difference is that after each sample is testeduser also enters observed relative
density value from the current test. The worksheet caleal#tte current most likely bin within
which the true relative density lies and also recommendsliveneat least one more sample is
needed to achieve the desired reliability or the proceduneld terminate.

A key input for the aforementioned procedures is the vagasfalensity values for each con-
tractor. We denote this variance by. Our procedure for determining sample sizes requires fewer
samples (cores) to be tested for contractors who have aamallie ofs2. This is likely to create
an incentive for contractors to lower variance over timeghaligh such a change will be beneficial
for Mn/DOT (because of more consistent pavement denstig,dreates the need to estimate
at regular intervals and to update its value when changedadeeted. In particular, the problem
involves the following steps: (1) determine the initialiestte ofo? when the new protocol is first
implemented or each time a new contractor wins the bid (“newans Mn/DOT does not have
data on this contractor’s performance from past proje¢®)determine for each contractordf
has changed during the course of a project or between psopud (3) update the estimatecdt

This second half of this report concerns how Mn/DOT wouléheste and update? if our sug-
gested protocol were to be implemented. Note that in ouraggbr, variance values are expected
to be different for different contractors over time depegdon their performance. We develop and
report a methodology for carrying out each of the three steps

For setting up the initial estimate, we recommend using aevttiat is based on all available



data for a particular mix or a set of similar mixes for a peraddwo or three years. This esti-
mate would be the same for all contractors. It will ensureagtpeatment of all contractors and
allow Mn/DOT to assign initial values to new contractors adlwAs contractors reduce their per-
formance variability, industry-wide statistics would cigg. Because of this, the baseline inputs
should be recalculated yearly (using data from the mosinteweo or three years) so that new
contractors will continue to be held to the updated industmyms.

Our proposed methodology for carrying out steps 2 and 3 dipen the nature of change in
o%. We conceptualize two types of changes. The first type ofghaccurs when the compaction
process (and hence the variance of lot densities) is géyastable but experiences jumps every
once in a while. The process returns to its stable state tféecontractor detects and fixes the
process anomaly. For this type of change, we develop an ingdatocedure based on hypothesis
testing because the latter can detect jumps and allow Mn/@Qipdate variance estimate. The
second type of change occurs when the variance is not stathlehanges frequently. For this type
of change, we recommend an updating procedure based on dhsngpapproach because that
avoids large swings in estimated values.

The organization of the remainder of this report is as folowhe second chapter contains
an overview and analysis of the current testing protocolgleyed by Mn/DOT. Our sample size
determination approach is described and analyzed in tree¢hapter. The fourth chapter contains
a description and analysis of the methodology for estingadind updating-2. The fifth chapter
concludes the report.



Chapter 2

Understanding Current Protocols

2.1 Data Description

From the Mn/DOT Materials Lab in Maplewood, we received daden a project labeled SP 1013-
80, including Test Summary Sheets and Density Incentigiibentive Worksheets. The project
took place between Cologne and Chaska, MN and used two gynaiia designs - SPWEB440
and SPNWB430. The contractor was Knife River and paving fwa&e between 6/4/07 — 6/19/07.

The data consisted of Test Summary Sheets and Density ineisincentive Worksheets.
The Test Summary Sheets include results from materialks pestormed on the loose mix. These
sheets also include, among other results, max specifictgrédpG), air voids, and sample ton
number which is the tonnage at which the sample was taken.

The Density Incentive/Disincentive Worksheets displafgmence information from the Test
Summary Sheets, the date paved, total tons paved each dgjesaumber, the tonnage at which
the sample was taken, how many tons since the last samplaes the individual voids of that
sample, and the individual max SpG of that sample. Also aExbion these sheets is a moving
average of the max SpG (used to find pavement density).

These sheets also include test results from batandlongitudinal jointdensity samples. The
mat is the main part of the road and the longitudinal jointtisex the curb side of the mat or the end
that joins another mat segment longitudinally. The lordjital joint density is tested separately
because there are geometric limitation of achieving dgmsth an unsupported edge and/or when
a roller bridges onto an existing mat, curb, or gutter. Rsstibncerning the longitudinal joint
density include sample number, bulk SpG, bulk SpG usedr(edtesistency testing), average bulk
SpG, pavement density, air voids (lots with low air voids dbreceive incentive), tons represented,
pay factor, and incentive/disincentive in dollars.

The pay factor for the mat is determined by the mean densitps taken from the mat. For
lots that are not tested for longitudinal joint densitystig the total pay factor. For longitudinal
joint lots (20% of lots are tested for longitudinal joint d&y), two cores are sampled for measuring
longitudinal density and each is assigned a pay factor doupto a schedule that is specific to
longitudinal cores. Then, the total pay factor for a lot foni@h longitudinal joint density is
measured is the product of the three pay factors (one frormtiteand two from the longitudinal
joints).



2.2 Methodology

We analyzed the data to shine light on consistency, vaitgbguality, and correlation. All of
these analyses were performed on the SP 1013-80 data, baypaaach can be replicated for any
similar data set. We compared the consistency of the cdottabulk SpG values with that of
the agency using two methods that Mn/DOT currently empl&yst, the bulk SpG value of each
contractor core must be withit0.03 of the agency’s companion core value. Second, excluding
any cores that failed the first method, the contractor'sayedaily bulk SpG value must be within
+0.03/4/n of the agency’s average daily value, wherés the number of samples averaged. In
addition to performing this analysis numerically, we alsalgized the data graphically to visualize
if there were any patterns.

We tested variability using two methods. The first methodhhggpts the variability of the bulk
SpG measurements over time against the natural variathiitys estimated from the first few days
of data. The second method compares the variability of tikractor’s bulk SpG measurements
with that of the agency’s. In the first method, we began byudatong the sample average and
standard deviation of the first 32 samples (16 lots) of the EBWI0 mix. We then graphed
the average of the two bulk SpG values in each of the remaibth§PWEB440 lots along with
previously calculated average and the average x standard deviationy/2 as reference lines.
Such time-series charts are also called X-bar charts. Bseseare deemed to be in control if
observations remain within the two standard deviationtbmin our experiment, the upper limit is
not relevant because greater SpG is generally more desietiiept when it implies low voids.

To compare the variability in bulk SpG measurements by tméraotor with that of the agency,
we performed a hypothesis test. We performed this test indifferent ways first testing loose
mix and core sample data together and second, testing thgamasely. In each instance, our null
hypothesis was that the variance of the contractor's measemts was no different from that of
the agency’s values.

Next we examined the pavement quality by graphing the pememnsity. Included in these
graphs were 100% pay factor reference lines of 92 and 93 pefoethe wearing mix and 93
and 94 percent for the non-wearing mix. Having percent dengithin these limits earns the
contractor 100% pay for the corresponding lot. Assumingdlctual density within the 100% pay
factor reference lines represents a norm, graphing thashtaped us visualize how frequently and
how regularly the contractor performed quality work. Argas to the X-bar chart, here too we
paid more attention to density values that were below thé&/d pay-factor level because higher
density values are generally deemed to be desirable.

Lastly we performed a test of correlation between the Bults $pthe loose mix and the Bulk
SpG of the core samples for approximately the same mix. Tiidowe paired the core samples
with the loose-mix sample taken from the nearest locationglims of tons represented) and then
performed an analysis of these pairings. However, we ransome difficulty in pairing because
some data were missing. Therefore, we performed the testandifferent ways. In the first
approach we treated any missing data as missing, wherehs getond approach, we replaced
any missing data by daily averages.



2.3 Results

We found that by and large, the contractor was highly coeststith the agency; see Figures 2.1
— 2.5. In these plots, Figures 2.1 — 2.3 show data by core,eadfigures 2.4 — 2.5 show data
that is aggregated by day. Furthermore, Figures 2.1 — 2@ slata for cores corresponding to
the wearing mix and Figures 2.3 shows similar data for noafrimg mix cores. For the entire
duration of the project, only two samples were not within 300 the agency (see circled data in
Figure 2.2) and only one day’s average was not within03/,/n of the agency (see circled data in
Figure 2.4). An interesting aspect of this analysis wasékiah at times when test outcomes were

highly variable (for example, density values at the begigruf the project were more variable) the
contractor was still consistent with the agency.

Lots 1-7, 21-29
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@
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Figure 2.1: Agency’s value- 0.03 followed by the contractor’s value for each core. Tiveeee
no unacceptable values.

Lots 30-31, 36-49
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RS . .
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Figure 2.2: Agency'’s valug- 0.03 followed by the contractor’s value for each core. Ueatable
values are circled.

Figures 2.6 and 2.7 contain plots of lot percent densitigs tae target density ranges. A
significant number of lot densities are below the 100% payefalimits. In particular, about a
fourth of the wearing mix lots and half of the non-wearing noxs are below the 100% pay-
factor limits. This suggests, at least in our limited analythat consistency testing encourages
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no unacceptable values.



the contractor to be consistent (which is good), but it dogtisnecessarily result in uniformly

high quality (by which we mean percent densities at or ab®@9d pay factor values). We also
hypothesize that variability in bulk SpG values over timeyrgad to poor road quality. Therefore,
in addition to consistency, variability should also be taka&o account when developing testing
protocols.

Percent Density for SPWE

6% .
-
95%
-
-
Z 94% - * . "
i
3 . -
2 93% — - . — — 93%
Q LI ]
2 . . :
1] - -
g 9% - — - 92%
-
91% .
. -
90%

Figure 2.6: A scatter plot of percent density for each lohwéference lines at 100% pay-factor
limits for the wearing mix.

Figure 2.8 is an attempt to display the natural variabilityhe Bulk Specific Gravity testing
process. The points on the graph represent the averagestofdlbulk specific gravities found by
the contractor in the corresponding lot. The lot numbersasgnted are 30, 31, 36-49 (the last 16
lots of the SPWE mix). The center reference line is the aweddghe first 32 samples (16 lots)
of the SPWE mix. The other reference lines are the avetagige standard deviation of the 32
samples divided by the square root of 2 (our sample size per lo

Normally, if data lies outside the two standard deviatioorms, then the process is considered
to be out of control. However, in this test, only data poihtsttie below two standard deviations
of the mean would be considered undesirable because higheBpG values are typically better.
In Figure 2.8 we see that many data points lie above the upp#rat limit but none lie below
the lower control limit. This implies that bulk specific gigvmeasurements by the contractor do
not suggest an out of control process. Moreover, the vdit\abi bulk SpG values appears to be
higher during the first few days of the project.

Because a significant amount of variability exists in pavehtensities from one lot to the
next, we demonstrate one example protocol in this sectiahrttay encourage uniform higher
density. This scheme is proposed as an example of what Mn/&f consider when revising
I/D payment schemes. The determination of I/D schedule iswithin the scope of this research
project. The researchers do, however, recommend addities@arch effort on quantifying the
impact of different schedules that reward uniformly greatampaction effort.

Under the current I/D payment scheme, the contractor isndeaor penalized for each lot
independently. Because the I/D scheme is set up this wagrangood performance is not specif-
ically rewarded and conversely, variability in performamgenot specifically penalized. We demon-
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strate an example I/D payment scheme that modifies the ¢wieprotocol to encourage uniform

good performance. We modeled this scheme after the coneystesting protocol that Mn/DOT

currently uses by not only testing individual cores but alady averages. Analogously, the ex-
ample scheme not only uses each lot’s density (mat or lodigiali joint) but also daily average
densities and the average density from the start of the girtgedate to calculate pay factors.

We calculate I/D payments according to the current methed {ee column titled original
under I/D payments in Tables 2.1 and 2.2), based on dailyagest and based on averages to date.
The minimum of either the first two or of the first and third I/Rypnents is what the contractor
would receive. To calculate I/D based on daily averageg, dakulate the average density for
each day (not including any lots that had low voids becausendh low voids will automatically
receive no incentive, see Table 2.1). Then calculate I/Drygats that each lot would receive based
on this new average density. In Table 2.1, the final columitledtproposed I/D payments, shows
the minimum of the original payment and the payment baseddy averages. For example, lots
30 and 31 in Table 2.1 have densities 91.3 and 93.1 (lot 31h&sdongitudinal joint densities
92.9 confined and 87.7 unconfined) and original pay facto@88&6 and102% x 102% x 100%
The average of these mat densities is 92.2 and this averagesponds to a 100% pay factor. Lot
30 receives the minimum of 98% and 100% pay factor and so thégosor remains at 98%. On
the other hand, lot 31 receives the minimum of 102% and 100¢4fgetor and so changes to
100% x 102% x 100%.

To calculate I/D based on average density to date, first lzdtethe average of densities real-
ized from the start of the project to date (again, not inclgdany lots with low voids) and then
calculate the corresponding I/D that each lot would recéee Table 2.2). Finally, for each lot,
the minimum of the original I/D and the new I/D based on averdgnsity to date is the pay factor
that the contractor would receive for that lot. The final cotuin Table 2.2, entitled proposed
I/D payments, is the minimum of these two payment schemeseXample, consider lots 30 and
31 in Table 2.2. The average mat density for lots 1-7 and 2is®11.864, which translates to
a 98% pay factor. Since the original pay factor for lot 30 w8%0&his lot’s pay factor remains
unchanged. However, the pay factor for lot 31 wag% x 102% x 100% and now it is replaced
with 98% x 102% x 100%. As expected, the modified procedure results in lower |/Dnpeyts
because the contractor’s performance is not uniform indhisple.

Because we observed variability in SpG values during the fies days of the project, we
compared the SpG values from the first few days of productidhdse taken over the remaining
days of the project. We did this in two ways, comparing themta#lk SpG value and comparing
the variance of the bulk SpG value. When we compared the megarfsund some statistically
significant results which imply that the mean bulk SpG valtithe first few days of production
may be different from the rest of the days. For example, whercempared the mean SpG of
the first two days of the project with the remaining days fa Wearing data, our results were as
follows: t-statistic = -1.88, ang-value = 0.064. Similarly, when we compared the variandaes, t
time treating the first three days as the first sample and thaireng days as the second sample, we
obtainedf -statistic = 2.39 ang-value = 0.024, which also suggest that the mean and thenearia
of bulk SpG values may be different at the beginning of a tojk is in part for this reason that
we recommend updating estimatetperiodically (details in Chapter 4).

We performed a correlation analysis between loose mix argl lmalk specific gravity values.
When we treated the missing data as missing, the wearingesudts forn = 32 gave an estimate
of correlation coefficient = -.006 angvalue = 0.976. The non-wearing results fo= 13 gave
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Table 2.1: Daily averages for wearing mix, required dersi®2%, bid price = $40.82.

Pay Factor I/D Payments

Lot | % Densities (Low Voids) | AverageTons || Original Proposeg Original Proposed

% Paveg

Den- | Per

sities | Day

per

Day
1 94.5 (low) 91.1 1899 1 1 $0.00 $0.00
2 90.3, 91u, 92.2c 0.94676 0.94676| -$1031.65| -$1031.65
3 93.1 (low) 1 1 $0.00 $0.00
4 91.9 0.98 0.98 -$387.58 | -$387.58
5 92.7 (low) 92 1447 || 1 1 $0.00 $0.00
6 92.7 (low) 1 1 $0.00 $0.00
7 93.5, 93.2¢, 91.5u (low) 1 1 $0.00 $0.00
21 92.2 (low) 92 3007 || 1 1 $0.00 $0.00
22 92.4 (low) 1 1 $0.00 $0.00
23 93.0 (low) 1 1 $0.00 $0.00
24 | 92.6,91.1c, 89.0u (low) 1 1 $0.00 $0.00
25 90.9 92.02 | 4106 || 0.95 0.95 -$1676.05| -$1676.05
26 92.8 1 1 $0.00 $0.00
27 92.1,92.2c, 91.1u 1.0404 | 1.0404 || $1354.25 | $1345.25
28 92.4 1 1 $0.00 $0.00
29 91.9 0.98 0.98 -$670.42 | -$670.42
30 |91.3 92.2 | 895 | 0.98 0.98 -$365.33 | -$365.33
31 93.1, 92.9c¢, 87.7u 1.0404 | 1.02 -$670.42 | -$670.42
36 94.2 93.35 | 3505 || 1.04 1.02 $1430.72 | $715.37
37 92.3 1 1 $0.00 $0.00
38 94.3, 93.3c, 85.2u 1.00776 1.00776| $277.56 | $277.56
39 92.6 1 1 $0.00 $0.00
40 | 96.0 (low) 92 2012 | 1 1 $0.00 $0.00
41 95.5, 93.6¢, 93.8u (low) 1 1 $0.00 $0.00
42 94.0 (low) 1 1 $0.00 $0.00
43 94.2 (low) 1 1 $0.00 $0.00
44 1 91.9 92.77 | 1577 | 0.98 0.98 -$429.15 | -$429.15
45 93.3 1.02 1 $429.15 | $0.00
46 93.2, 91.4c, 88.2u 1.0302| 1.01 $648.01 | $214.58
47 94.1 92 3007 || 1.04 1 $868.09 | $0.00
48 93.4, 93.0c, 92.4u 1.06121 1.0404 || $1328.35 | $876.79
49 90.2 0.91 0.91 -$1953.20| -$1953.20
Totals $819.22 | -$3402.69

11




Table 2.2: Daily averages for wearing mix, required dersi®2%, bid price = $40.82.

Pay Factor I/D Payments

Lot | % Densities (Low Voids) | AverageTons || Original Proposeg Original Proposed

% Paveg

Den- | Per

sities | Day

per

Day
1 94.5 (low) 91.1 1899 1 1 $0.00 $0.00
2 90.3, 91u, 92.2c 0.94676 0.94676| -$1031.65| -$1031.65
3 93.1 (low) 1 1 $0.00 $0.00
4 91.9 0.98 0.98 -$387.58 | -$387.59
5 92.7 (low) 92 1447 || 1 1 $0.00 $0.00
6 92.7 (low) 1 1 $0.00 $0.00
7 93.5, 93.2¢, 91.5u (low) 1 1 $0.00 $0.00
21 92.2 (low) 92 3007 || 1 1 $0.00 $0.00
22 92.4 (low) 1 1 $0.00 $0.00
23 93.0 (low) 1 1 $0.00 $0.00
24 | 92.6,91.1c, 89.0u (low) 1 1 $0.00 $0.00
25 90.9 92.02 | 4106 || 0.95 0.95 -$1676.07| -$1676.07
26 92.8 1 0.98 $0.00 -$670.43
27 92.1,92.2c, 91.1u 1.0404 | 1.01959| $1354.25 | $656.75
28 92.4 1 0.98 $0.00 -$670.43
29 91.9 0.98 0.98 -$670.42 | -$670.43
30 |91.3 92.2 | 895 | 0.98 0.98 -$365.34 | -$365.34
31 93.1, 92.9c¢, 87.7u 1.0404 | 0.9996 || $996.47 | -$7.31
36 94.2 93.35 | 3505 || 1.04 1 $1430.72 | $0.00
37 92.3 1 1 $0.00 $0.00
38 94.3, 93.3c, 85.2u 1.00776 0.969 $277.56 | -$1108.82
39 92.6 1 1 $0.00 $0.00
40 | 96.0 (low) 92 2012 | 1 1 $0.00 $0.00
41 95.5, 93.6¢, 93.8u (low) 1 1 $0.00 $0.00
42 94.0 (low) 1 1 $0.00 $0.00
43 94.2 (low) 1 1 $0.00 $0.00
44 1 91.9 92.77 | 1577 | 0.98 0.98 -$429.15 | -$429.15
45 93.3 1.02 1 $429.15 | $0.00
46 93.2, 91.4c, 88.2u 1.0302| 1.01 $648.01 | $214.58
47 94.1 92 3007 || 1.04 1 $868.09 | $0.00
48 93.4, 93.0c, 92.4u 1.06121 1.0404 || $1328.35 | $876.79
49 90.2 0.91 0.91 -$1953.20| -$1953.20
Totals $819.22 | -$7222.36
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an estimate of correlation coefficient = 0.1381 andalue = 0.1278. In the analysis that replaced
missing data with daily averages the SPWE mix results with 32 gave an estimate of correlation
coefficient = 0.350 ang-value = 0.050. The non-wearing results with= 13 gave an estimate

of correlation coefficient = - 0.646 angvalue = 0.017. The negative correlation between these
values can be explained in a number of ways. For example, upon observing relatively low loose-
mix sample results, the contractor may increase compaction effort. Alternatively, low loose-mix
bulk specific gravity values may be correlated with low loose-mix max specific gravity values. The
latter would result in higher densities of cored samples, all else being equal. Overall, researchers
did not pursue this analysis further because of the lack of practical significance when correlation
can be negative for some data and positive for some other data.

2.4 Conclusions

Current testing protocol includes tests for consistency and quality for each lot. However because
incentives/disincentives are awarded independently for each lot, this protocol does not pay atten-
tion to the variability in core densities over time. In other words, there is no memory of past
performance in current testing protocols that could encourage uniformly good work over time. In
most analyses that we performed we found variability in the bulk SpG values over time, which we
conjecture may lead to poor road quality overall. For this reason, the proposed testing protocols
presented in Chapter 3 reward both higher relative density and uniformity of density values across
different lots.

One alternative that could be considered without adding any extra testing effort is to base in-
centives/disincentives not only on each lot separately but also on daily averages or averages from
the start of the project to date. This approach would encourage contractors to aim for lower vari-
ability. However, it may not provide significant incentive for achieving high density in subsequent
lots if the initial lots were of poor quality. Design of an appropriate I/D schedule is a worthy topic
for future research, but not within the scope of the current project.
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Chapter 3

Procedures for Determining Sample Size

3.1 Introduction

Mn/DOT determines pay factors based on an estimate of relative density for each lot. This chapter
focuses on a method for specifying how many samples should be tested from each lot. If too
few samples are tested, then this may result in a greater error in contractor payment calculations.
In contrast, taking too many samples consumes time and money without significantly improving
the accuracy of payment calculations. Throughout this report, we use density to refer to relative
density of the paved road. In all cases, it is the relative density that determines the contractors’ pay
factors.

There are two variations to our procedure. The firstis used offline to predetermine sample sizes.
In contrast, the second is used in the field — as samples are observed it dynamically determines
whether to take another sample or terminate sampling. Both variations use the same inputs. Based
on past data, the user estimatés(the variance of density observations), arfd(the variance of
the observed mean density). The programs allow the user to also input an estimate of mean density,
my. However, the determination of sample sizes is, for the most part, insensitive to the choice of
mg. Therefore, our approach will select a default mean density of 0.925, if nothing is specified by
the user. This default lies at the center of 100% pay factor range for a commonly used wearing
mix. Details of how to estimate these parameters from historical data can be found in Section
3.4. The user also specifies two reliability metrics — a cutoff ratio above which a bin remains a
candidate and a cutoff number of bins that are permitted to remain candidates. An explanation of
how to choose the reliability metrics can also be found in Section 3.4. In this section, we focus on
describing the steps necessary to implement our approach in practice.

3.1.1 Offline Sample-Size Determination

This approach will be used when sample sizes need to be determined in advance. For example,
when core sampling is used to determine pavement density, sample are taken in advance and tested
in an offsite materials lab and so the sample size must be predetermined.

Figure 3.1 displays the steps a user would take to implement this variation of the procedure and
the following paragraph gives detail to these steps. After the inputs are entered into a computer
program developed for this purpose (the program is coded in Matlab), the procedure randomly
generates a density sample from a normal distribution with a known mean and variance. Based
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on this new information, the procedure then updates thelalision of the mean density using a
Bayesian approach. Because in practice, one would not knfeat mean density value to use to
generate samples, our procedure is repeated with diffassumed values of the true mean. Our
program reports the range of sample sizes needed for diffassumed pavement mean density
values. As we show in Section 3.4, the assumed value of gedsits not affect our calculations
in a significant way. In nearly all cases, the required samigles vary by at most 1.

Using the updated distribution obtained above, the prasedatermines the likelihood that
mean density lies in each of several intervals of densityesal Each interval is called a bin.
Finally, the procedure takes the ratio of the likelihood tih@ mean lies in each of the bins to the
maximum likelihood among all bins. The procedure contina&sg samples until the reliability
criteria are met and then records how many samples were adi¢edreet the reliability criteria.
This is counted as one iteration of the simulation. The pitaoe described above is repeatedly
simulated (details of how many simulations should be peréat are also found in Section 3.4).
Finally, the largest average sample size needed to meatltability criteria from the simulations,
irrespective of the value of the assumed mean, is the recow@denumber of samples.

Find estimates for a2, 0,2,
and mg and specify
reliability metrics

!

Enter these inputs into the
Matlab program

!

Matlab outputs
recommended sample size

!

In each lot, take
recommended number of
samples and obtain test
results

!

Use sample test results to
estimate which bin the
mean density lies in

Figure 3.1: Steps for using the offline procedure.

The user will then take the recommended number of sampleslaath test results from those
samples. The test results will be entered into a programuiseg Bayesian updating to determine
which bin is most likely to contain the true mean (availaldeaa Excel Worksheet), on which the
pay factor will be based.
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3.1.2 In-field Sample-Size Determination

This variation will be used when results from density obagons are available immediately, as is
the case with a nuclear density gauge. Figure 3.2 displaystéps a user would take to implement
this variation of the procedure and the following paragrgpes detail to these steps.

First determine the inputs and reliability metrics desedibn Section 3.1.1. Next, observe
one density sample and enter this data into a computer prodesxeloped for this purpose (the
program is imbedded in a Microsoft Excel Worksheet, whicbvptes a familiar user interface).
The program then determines if another sample is neededlue iiser can stop taking samples.
If another sample is needed, then the user will continuerglmgedensity samples one at a time
and entering them into the program until the program deteemthat enough samples have been
taken. Once the program determines that enough sample®bamdaken, it will recommend that
the user should stop taking samples. The program will alsplay the current best estimate of
which bin contains the true mean.

Find Estimates for %, 0¢?, and
m, and specify the reliability
metrics

Il

Enter inputs into the Excel
Program

!

Observe one density sample

!

Enter density value into
dynamic program.

Dynamic program Dynamic program
recommends taking recommends to stop taking
another density sample samples.

I

Program indicates which
bin is most likely to contain
the mean density

Figure 3.2: Steps for using the in-field procedure.
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3.2 Results

The section displays sample outputs from the offline vamabtf our procedure that determines
sample sizes in advance. The following tables display thipudwf the program for a particular
estimate of the density variance?, and for various reliability criteria. In these tablesis the
cutoff ratio above which bins remain candidates aisithe cutoff number of bins that are allowed
to remain candidates.

Table 3.1: Recommended sample sizessfoe= 70 x 107°.

r=05({r=06|r=07|r=08|r=0.9
b=1 7 5 3 2 2
b=2 3 1 1 1 1
b=3 1 1 1 1 1

Table 3.2: Recommended sample sizesfoe= 131 x 107°.

r=05({r=06|r=0.7|r=08|r=0.9
b=1 13 9 6 3 2
b=2 4 3 2 1 1
b=3 2 1 1 1 1

Table 3.3: Recommended sample sizessfor= 149 x 107F.

r=05({r=06|r=0.7|r=08|r=0.9
b=1 15 9 6 4 2
b=2 5 3 2 1 1
b=3 2 2 1 1 1

Observe that for each pair of reliability metrics, the sangikes are non-decreasing in the
value ofo?. This means that our procedure will prescribe more testingdntractors with greater
historical variability in observed density values. In tload run, our procedure will provide an
incentive for contractors to focus attention on achieviogsistent density values across all lots in
a project. In contrast, the current testing procedure iriggive to a contractor’s historical perfor-
mance as well as Mn/DOT'’s desire to achieve different legéfsay factor reliability in different
projects depending on the importance of the work being pexd, the unit cost of materials, and
the dollar amount affected by pay factors.
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3.3 Spatial Analysis

Core locations are defined by theifset which is generally the distance from the center of lane,
andstation which is the distance from the start of the lot. Both theetfnd station are randomly
generated in accordance with the Mn/DOT Bituminous Maneatisn 5-693.7 or ASTM D3665
Section 5 Table A. To find the offset, a random two-decimal benbetween 0 and 1 is generated
and then multiplied by the width of the mat. The resulting temis the offset of the core location.
Similarly, another randomly generated two-decimal nuniberultiplied by the total length of the
lot which results in the station of the core location.

Mats are thicker near the center of lane. Hughes (1989) teplwait thicker mats cool more
slowly. Consequently, thicker mats have more time for adégjaompaction to occur before cool-
ing beyond the cessation limit — the cessation limit is thmgerature below which compaction
will not have a significant effect on pavement density. Thaifimats are thicker nearer the center
of lane, then it would be reasonable to hypothesize thatdkerpent closer to the center of lane is
likely to have higher density.

If the offset is found to be a statistically significant factofluencing density, then one option
would be to adjust payment schedule to account for the $phsi@ibution of mat density. This is
because a core with a randomly generated location thatseicto the center of lane will be more
likely to result in a higher pay factor than a core whose locais further from the center of lane.
So, the payment schedule should potentially take into atdooth the location and the observed
density of a core.

A spatial analysis of core locations was performed in ordetetermine if the offset of a core
sample has a statistically significant effect on the derddityhat sample. The researchers had no
evidence that suggested that the station might influencealiement density. Consequently the
spatial analysis was limited to analyzing the influence efdffset. To perform this analysis, an
Analysis of Variance (ANOVA) was performed on the data. ANOX¥ a method for testing the
impact levels of one or motfactors in this case the levels of offset, omesponse variabldan this
case pavement density (Hayter 2007).

To begin, a One-Way ANOVA was performed with density as tlspoase variable and offset
as the factor. Another One-way ANOVA was performed with dgress the response variable and
the day of the project on which the sample was cored as therfakliso, a General Linear Model
ANOVA was performed with the density as the response vagiabd both offset and the day of
the project as factors.

An advantage of the General Linear Model is that it can tegenttean one factor for signifi-
cance. In addition, the General Linear Model can be unbalhras was the case in this analysis. A
balanced design has the same number of observations foceadfination of factors. In contrast,
an unbalanced design has missing or unequal number of @besas for certain combinations of
factors. The General Linear Model reports whether eaclofactd/or any interaction between the
factors had a significant influence on the response variable.

The researchers had access to core location and densityodagmht projects. The offset
data for each project was grouped into ranges of offsetde\&milarly, days of the project were
grouped into several ranges of days. Without the groupiM¢OXA would treat each offset value
and each date as a different level. That would cause proldeseuse each day there is a different
number of lots tested and also the number of offset valudizeeas different. We need ranges of
offset and project days as distinct levels to ensure thaAN®VA would be meaningful.
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For each project, the groupings were chosen so as to makeuthben of density samples
in each grouping as close to equal as possible. Consequeatk project had its own unique
groupings, corresponding to the data available for thaiquéar project. For example, in project
SP 2180-94, the offset values were grouped into five levels:

Levell: 0to0.2
Level2: 0.2t00.4
Level3: 0.4t00.5
Level4: 0.5t00.6
Level5: 0.6tol

1 2 3 4 5
Offset Level

Figure 3.3: Number of cores in each offset level for SP 218@#bulder.

Figure 3.3 displays a dotplot of these four levels which desti@tes that the levels have approx-
imately the same number of cores. For the same project, thefdae project was grouped into
three levels:

Level1l: Days1to?2
Level 2 : Days3to5
Level 3: Days6to8

Figure 3.4 displays a dotplot of how many core samples wegadh level of the day of the project
in order to demonstrate that the levels contain approxiip#te same number of core samples.
Table 3.4 displays the resultipgvalues, corresponding to each combination of project and ru
of ANOVA. A p-value of 0.05 or smaller implies that the factor does hasisgically significant
influence on the response variable. In Table 3.4, statistisignificant data is shown in bold font.
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1 2 3
Day of the Project Level

Figure 3.4: Number of cores in each day of the project leves® 2180-94 shoulder.

Table 3.4: Thep-value results from the various ANOVA tests.

General Linear Model

SP One-Factor| One-Factor Offset | Day of | Interaction

ANOVA ANOVA for Day Project

for Offset | of Project
2180-94 - Shoulder 0.047 0.011 0.009 | 0.004 0.299
2180-94 - SPWE | 0.298 0.646 0.391 | 0.670 0.974
2903-10 0.065 0.796 0.066 | 0.785 0.264
2509-19 0.475 0.008 0.487 | 0.006 0.122
3108-63 0.322 0.023 0.192 | 0.023 0.588
7602-15 0.012 0.579 0.039 | 0.507 0.737
8003-29 - Shouldef 0.048 0.000 0.423 | 0.000 0.299
8003-29 - SPWE | 0.062 0.001 0.340 | 0.000 0.487

The results were that when a One-Way ANOVA was performed affdet as a factor, three out
of eightp values were statistically significant. When a One-Way ANQVds performed with day
of the project as a factor, five out of eightvalues were statistically significant. With the General
Linear Model of ANOVA with both offset and day of the projestfactors, the results for the offset
had two out of eight significarg values, the results for the day of the project had five outgtitei
significantp-values, and the results for the interaction between thetithe project and the offset
had zero out of eight significaptvalues.

Because there are so few significantalues corresponding to offset as a factor, the conclusion
of this analysis is that the offset of a core location doedawe a consistent statistically significant
influence on the density of that core sample. This implies dpalying a payment schedule that
adjusts for the spatial distribution would be erroneouhernajority of instances.
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In contrast, morg values are significant when we consider the date of the gragea factor.
This means that the day of a project has some effect on thetgéms reasonably consistent
manner. Because of this, scatterplots were made which dh@waverage density corresponding
to each level of days for a project and are displayed in Fi@use In analyzing these scatterplots,
about half seemed to show density increasing as time wenhomnhe other half showed density
decreasing over time. Because no pattern was observed,nmetozonclude that density values
consistently increase or decrease with time. Rather, g#afgthat there is variability in production
from day to day which influences the density differently offiedent days. In short, the day of the
project is not correlated with realized densities accaydim a pattern that would be useful for
materials testing.

> 2509-19 = SP 8003-29 - Shoulder

g2 0.941 @ 0.94

a a .

o 0.921 ' ' S o2 0

g 2 |

o 0901 . o 0901 . . .

2 1 2 2 1 2 3 4
Level Correspnding to Day of the Project Level Correspnding to Day of the Project

= Sp 2180-94 - Shoulder = SP 2180-94 - Wearing

@ 0.94 @ 0.94

[ ]

a .  * 1 & — .

o 0921 ¢ o 0.924

=) =)

(o] (o]

o 0901, . . o 0901, .

E 1 2 3 2 1 2
Level Correspnding to Day of the Project Level Correspnding to Day of the Project

2 SP 2903-10 2 SP 3108-63

7] — —® (] .

s 0.94 s 0.94 u.

(] (]

o 0.92- o 0.921

=) =)

s o

o 0.901_ . o 0.901_ .

Z 1 2 Z 1 2 3
Level Correspnding to Day of the Project Level Correspnding to Day of the Project

= SP 8003-29 - Wearing = SP 7602-15

2 0.941 o ° 2 0.941

a e e ——— o a

o 0921 e o 0.924

) ) .\'

(o] (o]

o 0901, . . . . . . o 0901, .

2 1 2 3 4 5 6 7 2 1 2 3
Level Correspnding to Day of the Project Level Correspnding to Day of the Project

Figure 3.5: Scatterplot of average density by levels cpording to day of the project.

There may be several explanations for why the offset is ndatsscally significant factor
influencing pavement density. In addition to the offsetreéhare other influences on pavement
density. For example, as mentioned above thicker mats have tme available for adequate
compaction before it cools below the cessation point. Afadlyeplanned compaction effort can
overcome the limited time constraint for thinner mats. Mwer, factors such as mix design, air
temperature, base (material below the mat) temperaturstune content in the base, and human
error all influence pavement density (Hughes 1989). Thegeraintroduce substantial variability
in observed density values.
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3.4 A Bayesian Approach for Pavement Density Sampling

3.4.1 Background

Mn/DOT determines pay factors according to a publisheddaleeMn/DOT (2007). The schedule
for determining the pay factor for a particular type of mixdaarget level of air voids is shown in
Table 3.5 below. Air voids are “the pockets of air betweenabphalt-coated aggregate particles
in a compacted asphalt mixture” (AASHTO T 269-97). A lab teickan calculates the air voids
(AASHTO T269-97) of core sample by measuring the bulk SpGgAd the maximum SpG (B).
Then, the air voids are equal t60(1 — A/ B) (for further details, see Section 3.4.2 and Appendix
A). No incentive payments are given if the realized air voddtseed a pre-specified threshold.
All relative density observations are rounded to three rdatidigits accuracy. Thus, the range
“0.936 and above” in Table 3.5 equa(8.935, 1], and the next range equdl.93, 0.935], and so
on. Similar pay factor schedules are available for otheesyaf mix.

Table 3.5: Payment schedule for mat relative density (SRimgeanix, 4% void).

Density Value | Pay Factor
0.936 and above 1.04
0.931-0.935 1.02
0.92-0.93 1.00
0.91-0.919 0.98
0.905 - 0.909 0.95
0.900 - 0.904 0.91
0.895 - 0.899 0.85
0.890 - 0.894 0.7
less than 0.89 0.7

1%

This research focuses on more reliable pay factor calomstiFor this purpose, it suffices to
identify the correct pay factor range for each unit of coctwes work. Our approach is designed
to achieve precisely this outcome. Before presenting tblenieal details of this approach, we
illustrate its key ideas with the help of an example. Conspieject number SP 8055-19, which
was completed during 9/5/07 to 9/25/07. Specifically, irs #@ample, we focus on the sixth lot
that was a part of the contractor’s second day of work. Fosiki# lot, the contractor’s bulk SpG
values were 2.334 and 2.347 and the max SpG value was 2.484, fhie average relative density
for this lot was 0.942 which corresponded to a 4% pay facee [&ble 3.5).

How reliable is the pay factor calculation described abduweitder to answer this question, we
need to determine the relative likelihood that the estichatey factor is the correct pay factor. For
this purpose, we divide the range of relative density valnexjual-length intervals, called bins,
and assess the likelihood that the true density lies in eaenvial — see Table 3.6. Calculations
based on our procedure, which is described in more detail iatthis section, show that the bin
most likely to contain the lot’s relative density(i8.93, 0.935] with a pay factor of 1.02. However,
bins (0.925, 0.93] and(0.935, 0.94] cannot be ruled out as possible candidates because the likel
hood that the true density lies in these bins is not suffibydotv relative to the most likely bin
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(0.93,0.935]. That is, pay factors 1.0 and 1.04 cannot be ruled out.

Table 3.6: Reliability of pay factor calculations after ta@amples.

bin 0.91-915| 0.915-.92|| 0.92-.925| 0.925-.93|| 0.93-935|| 0.935-.94| 0.94-.945| 0.945-.95| 0.95-.955
likelihood 0.001 0.011 0.064 0.194 0.311 0.266 0.120 0.029 0.004
critical ratio 0.003 0.036 0.205 0.622 1.000 0.854 0.387 0.093 0.012

With the background developed above, we are now ready tageovore details of our ap-
proach. Note that most of the technical details are predemteection 3.4.4, which may be skipped
by those not interested in mathematical details withowgaiiig the readability of the rest of this
chapter. We first divide the range of relative densities madgized intervals (see Table 3.6), such
that each bin lies within a single pay-factor range. Thip s$enecessary because in Mn/DOT’s
pay factor calculation method, the sizes of intervals oveictv pay factors remain invariant are
not equal. In Table 3.6, double vertical lines demarcatefpetpr ranges. Our procedure, which
utilizes a Bayesian approach, then simulates the reswukaig each test sample, one at a time. At
each iteration, the outcomes of this procedure are (1) thrermumost likely bin within which the
true relative density lies, (2) the critical ratio for eadh,land (3) the critical number. The critical
ratio is a fraction. For each bin, its denominator is the mman likelihood, among all bins, that
the true relative density lies in a bin, and the numeratdneslikelihood that the true density lies
in the chosen bin.

The user (Mn/DOT) in our protocol will specify two numbersitwicate desired reliability
— a cutoff ratio and a cutoff number. The critical number is thumber of bins for which the
critical ratio is above a threshold specified by the usercthve refer to as the cutoff ratio. The
cutoff ratio is used to determine the critical number afterlesample is observed and the process
terminates when the critical number is less than or equaoatoff number. In one iteration of the
procedure, we repeatedly simulate taking test samples etedndine the average number of tests
needed to achieve a desired combination of cutoff ratio amdfftnumber. The procedure is run
several times using different parameters to generate seshaph. We also test our procedure against
the current procedure used by Mn/DOT. Our procedure resufignificantly more accurate pay
factor determination and provides a direct link between ex-specified reliability of pay factor
calculations and the number of tests required.

Returning to the calculations underlying Table 3.6, we amsthat relative density is not con-
stant at different spots within a lot. In particular, depss# normally distributed with parameters
w ando?. The aim of our procedure is to determipgand we estimate? from historical data.
That is, the variance of relative density values observdudstorical samples is assumed to reflect
the natural variability underlying density measuremert®wever, the mean density may vary
from one lot to another. Because there may exist some pifiomration abouj:, e.g. a particular
contractor’s prior record or performance on previous ddye®same project, we assume that the
uncertainty about the true value pfis captured by a normal distribution with initial paramster
mg ando?. We setm, = 0.925 because it corresponds to center of the 100% pay factor mdje
therefore gives the contractor the benefit of the doubt, anidnces? = 02 /2 because two sam-
ples are taken from each lot in the current procedure used3p®IT. We will show that the value
of my does not significantly affect the number of test samples estedHowever, the estimated
value ofc? does affect the testing protocol.
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The estimatedg?, based on the variance of three previous 2007 projects rpeefb by the
same contractor who performed project SP 8055-19 is 0.Q08ftér observing each sample, we
update the estimated parameters of the distribution.oThis process, after two samples gives
an estimated meain 934, and variancé).0000374, knowing which the likelihoods of the mean
relative density lying in each bin can be determined. Tab®ed&plays 9 density-value bins (note
that more bins were considered but are not shown in this)tables first row shows the likelihood
that the mean density lies in each bin. This likelihood wamtbusing the updated parameter
estimates of the distribution of the mean density. Next @ @fteach of these likelihoods to the
maximum among all likelihoods is found and these ratios amvs in the second row of Table
3.6.

Observe that after two samples are taken and measuredntheost likely to contain the mean
density is the bin which correspond to the range 0.93 to 0.88%eover, two adjacent bins also
have relatively high likelihoods. In particular, the biratttorresponds to a range of 0.935 to 0.94
has a 26.5% likelihood of containing the mean, relative tdd4% likelihood for range 0.93 to
0.935. That is, after observing two samples, Mn/DOT canoathide with confidence that pay
factor 1.02 is the right pay factor. This results contrastk e current method in two ways. First,
we make use of historical information and obtain a diffeestimate than what one would obtain
by simply averaging the densities of the two samples. Secomdprocedure provides relative
likelihood estimate that the chosen bin is the correct bicotatain the mean density. If we were to
apply our procedure with cutoff ratio of 0.5 and cutoff numbgqual to 2, two samples would be
inadequate for this level of reliability because as seerainld 3.6 there are three bins that have a
critical ratio of at least 0.5.

We used our procedure and the current Mn/DOT procedure (KM/R007) to compare the
magnitude of payment errors. Assuming that a lot equals 608 of material and that the unit
price is $40 per ton, the procedure currently used by Mn/Dé€3Tilted in an average overpayment
of $109.60 and underpayment of $287.33 per lot based onsemiaive historical data. Also,
the relative frequency of accurate payment, where accumgiées within $100 of the correct
payment, was 47%. When we used the number of tests recomohegdrir method, it resulted
in an average overpayment of $44.50 and underpayment of4$9@r lot. The relative frequency
of accurate payment was 71%. Details of experiments thatddlese results are described in
Section 3.4.5.

3.4.2 Testing Methods

The most common method for obtaining pavement density gagens is core sampling in which
cylindrical cores are cut from the pavement and tested irffaitematerials lab. A lab technician
calculates the bulk specific gravity, bulk SpG (AASHTO T1®8; of each core by measuring its
dry mass in air (A), its mass in water in water (B), and its sgted surface dry mass (C). The bulk

SpG is calculated as
A
Bulk =—.
ulk SpG o]
The calculation of the pavement density also requires therman specific gravity (max SpG) of
the mix. The max SPG is an intrinsic property of the mix whigkdétermined by the mix composi-
tion and is used to determine air voids and a target level wipaxtion (AASHTO T209-05). The

max SpG calculation measures loose mix because this giveoeetical maximum specific grav-
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ity of mix that has no air voids. This is obtained by performthe Rice Test (AASHTO T209-05)
on a loose-mix sample. The test requires measurements afdks of dry (heated) loose mix in
air (A), in water (B), and its saturated surface dry weight(The max SpG is calculated as

Max SpG = A-(C—B)
Mn/DOTs then determines the relative density of each cotkeasatio of the bulk SpG of that core
sample and the max SpG. The average of core densities foladshreated as that lot’s relative
density.

Yet another method for testing pavement density uses aaruddnsity gauge WSDOT (2008).
This gauge records how gamma radiation interacts with teetreins in the pavement to deter-
mine the pavement density. The key advantages of this metrethat it is non-destructive, it
gives results in about five minutes, and the entire proceclmebe performed at the worksite. The
disadvantages to this method are that the use of nucleaitylgasiges requires a special license
because of the radiation hazard and that it requires aalicdiibration, as well as periodic recal-
ibration, to ensure that its readings are correctly coedeirito pavement density values. Usually,
each calibration exercise may require up to ten core sanples tested. In addition, the nuclear
density gauge may add additional noise to the density rgadifhe effect of additional noise will
be addressed in Section 3.4.4.

Irrespective of the method used, a key question facing D@jept engineers is how to deter-
mine the number of density observations that should be méxdan any given situation. Too many
observations are expensive. Too many cores can also corgardine integrity of the pavement
and increase contractors’ effort of filling the holes lefhlval after coring. Thus, additional testing
requirements would be factored into the contractors’ bikigker bid prices. Too few observations
may lead to errors in pay factor determination and uncegauement quality.

3.4.3 Relevant Literature

Hughes (1989) describes the effect of compaction on paveguatity. This article concludes that
good compaction effort is necessary to achieve high pavemelity. This report also describes
many factors that influence the amount of compaction effeeded to achieve quality pavement
density, such as base temperature, moisture in the basipwaytemperature, and lift thickness.

Lenth (2001) describes the importance of adequate sanzgle sihe author states that “sample
size is important for economic reasons: an under-sized/stad be a waste of resources for not
having the capability to produce useful results, while aaresized one uses more resources than
are necessary.” The article lists several methods for aéténg sample size including specifying
a confidence interval and a Bayesian approach, both of wihechsed in the procedure described
in this report.

Rilett (1998) explores the use of end product (paved roael)ifpation. This is consistent with
the approach used by Mn/DOT that allows the contractor fseeth choosing how to compact
the roads using a subset of standard engineering practideagas the end product meets certain
specifications. This article also seeks to determine am@bsampling strategy for density testing.
One difference between Rilett (1998) and our researchislibdormer is concerned with a percent
within limits specification for density whereas our procexlaonsiders each lot separately. Rilett
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(1998) first estimates the variance of density values,osdyom historical data, and then argues
that the sample size;, can be determined by considering a confidence interval eratierage
density, e.gz + 1.96 x - is the 95% confidence interval. The sample size is choserhies

a desired precision in the size of the confidence intervatohtrast, our approach for sample size
determination is a Bayesian approach that depends on thespeseified reliability measures.

McCabe et al. (1999) also utilizes the precision of the canfoe interval to determine sample
size. This article suggests that agencies may incorpoeatance (in addition to mean) to their
end product specifications. While our procedure does noaagfekcification for variance, it does
reward contractors who are more consistent and thus prewadencentive to contractors to have
a lower variance. Another benefit gained from our methodpleghat it takes into account both
historical data and sample observations from the currenéegt.

Buttlar and Hausman (2000) describe a computer simulatiogram that calculates the risk
to the agency and to the contractor of using a particular §aghmethod, measurement method,
spec limits, and pay scales. Similar to our procedure, tlee inputs the mean density and stan-
dard deviation of the density. The user also inputs the st@hdeviation of the testing method,
number of samples to be taken, the sampling procedure, delispits, the pay factor schedule,
and any cap on pay factors. The program, ILLISIM, then cal@d the risk to the contractor (un-
derpayment) and the risk to the agency (overpayment). Takeajthis program is to help the user
determine the optimal value for the inputs. In contrast \hik paper, our research mainly focuses
on determining the number of samples to be tested. In addigioen reliability criteria specified
by the user, our procedure gives a specific method for deténgthe sample size.

Chouband et al. (1999) compare the use of nuclear densityegao core sampling. Our pro-
cedure can be adapted for use with a nuclear density gatigeygh this may add some additional
variability to the density test results. Chouband et al9@)%how that core sampling is a more
reliable method of sampling. In addition, the article canlds that nuclear density gauges should
be used with caution and after careful calibration. Rome luhnow (2002) compare nonnu-
clear density gauges to nuclear density gauges and conttlatieuclear density gauges are more
reliable than nonnuclear gauges.

3.4.4 Methodology
Inputs

Our procedure assumes that density observations are ngdisatibuted with parameteygsando,
wherey, the mean density, is unknown ané, the variance, is estimated from historical data and
denoted by2. To analyze what distributions fit the data, we took data fooma project and tried to
fit it to several known distributions. The normal distrilmrtivas among several distributions that
fit the data. Others in the literature have also assumed #vatpent density is normally distributed
(see Rilett 1998).

Our procedure further assumesis normally distributed, with meany,,, and varianceg?
(similar assumption was also made in Rilett 1998). Agaie gbtimate of? is denoted by?. The
parametergm;,, s;) are estimates of the distribution pfafter thek-th sample results have been
observed. In this notatior, = 0 corresponds to the state of knowledge before sampling begin

In reality the true mean is just a number and not a randomblaridhe reason for assigning a
prior distribution tog and developing a procedure for updating the parameterssoflitribution
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after each sample observation, is to incorporate both ibeipformation and the sample informa-
tion to estimate its most likely value. In addition to comgaidnal simplicity, another reason for
using a normal distribution is that it has two parameters ¢ha be modified independently. For
example, if the user is less confident in the initial estinwdtthe mean of, then a larger? can
be chosen to reflect this lack of confidence. The initial estés of the density varianeé, mean
of the mean densitys,, and variance of the mean densityare the inputs for this procedure.

Assuming that both the density and the mean density are tlgrdistributed greatly simplifies
the Bayesian updating process because the normal digbnlstself-conjugate. This means that
if the prior distribution is normal then the posterior distition will also be normal. After each
observation, the Bayesian updating method updates thegisibution using a combination of
new data and prior information. The result is the posteristridbution (Carlin and Louis 2000).
The posterior distribution obtained after theh sample becomes the prior before ket 1)-th
sample.

There are various ways to estimat& m,, ando?, some of which are described next. For
example, the parametef may be estimated by the sample variance of density valuasshmilar
past projects because sample variance is an unbiased testwh@opulation variance. To over-
come any objection to this estimation, each contractopsii® may be based on their individual
past performance. In the event that there is not enough dagadarticular contractor, an industry
average may be used. The parametemay be estimated ag€/2 because in the current testing
protocol, two samples are taken per lot. However, in situnastiwhere a Mn/DOT engineer prefers
to use a more conservative approach, we recommend sefting® as the default relationship.

In addition, one may nominally set, = 0.925 because this is the center of the 100% pay
factor bin and provides a neutral starting disposition tasdhe contractor’s quality. In fact, while
mg IS @ necessary input for this procedure, its value can beechaxbitrarily and thus setting it at
the neutral value of .925 provides an unbiased prior. Anamagtion of this is presented later in
this section, after additional notation has been introduteaddition to these inputs, the user must
specify two reliability metrics — a cutoff ratip, and a cutoff numbel. Smaller values of and
b imply stricter reliability requirements. Details on howdboose reliability metrics are presented
in Section 3.4.5.

Updating

After s?, my, s3, and the reliability criteria are entered, the proceduneloanly generates a sample
core density value from a normal distribution, with a knowsan and variance, in order to simulate
sample data. Given the initial estimageof o2, definel, = o%/s2. Then, after obtaining thkth
sample, using a Bayesian approach we obtain the followingiga distributional parameters of
the unknown mean density (see Clemen and Reilly 2001 foilsleta

_l0m0+(x1++xk)

= 3.1
i lo+ k S
and ,
2 g
Ay (3-2)
Consistent with the notation introduced above, we alsé,setl, + k.
Let (a—,b_x), -- -, (ac, bs) denote the bins. Note that bins are chosen suchbthata,
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is a constant that is independentjofSpecifically in our proceduré; — a; = .005. Then using
the updated prior distribution, the procedure determihedikelihood of the mean density lying
in each bin and the ratio of the likelihood that the mean dgigis in each bin to the maximum
likelihood among all bins. Specifically, the probabilityatithe mean density,, lies in bini: after

k samples is

Pla; < p < b)) = (b — my)/si) — P((a; — )/ s1) (3.3)
The ratio associated with thith bin is
o Pla; <p<b) Db —my)/sk) — P((a; —my)/sk) (3.4)

max; P(a; < <b;)  max;[®((b; —my)/sk) — P((a; — my)/s1)]

Let ¢* andr* denote the cutoff number and the cutoff ratio which are thialy#ity criteria for this
procedure. Our procedure continues to generate samplaciatimately terminates when there
are no more than* bins for which the above ratio is greater than

Effect of my

In order to show that a change in the valueraf does not significantly affect the outcome of the
procedure, consider two runs of the procedure which gemaanple observations from normal
distributions with the same mean and variance but each rsia l#fferent assumed value fo.

In particular, the first run assumesg, and the second run assumeg+ d, for somey > 0. Assume
both runs generate data from the exact same sample denlsigs\feom a normal distribution, say
xp ~ N(us,0?). Also, assume that both runs have the same estimateg, farhich implies that
both runs assume the same valué,of

After each sample is generated, the estimated distributidhe mean density, is updated
and denoted by Ny, s?) and N¢n'y, s'3), for the first and second run respectively. The area
under these normal curves and within the ranges of a certajmdpresents the likelihood that the
true mean lies in that particular bin. Becausg- «,) is a constant independent pfandk, in
each iteration (that is, after an additional sample is okesBrof the two runs, the bin containing
the center of the normal curve will also have the most areawutige curve. Moreover, in each
iteration of the two runs, the center of the normal curve balleithem,;, or m’;, because this is the
current best estimate of the mean.ofin the event thatn,, lies on the edge of two bins, the two
bins will have an equal likelihood for containing the trueanéecause the normal distribution is
symmetrical about the mean and bin size remains constanth&bin(s) most likely to contain
the true mean density also contain(s). In the first run, let the most likely bin be denoted by
By, which representsi,, b;,) and similarly in the second run the most likely bin is aB@ which
representsd,, b.,).

Equation 3.2 shows clearly that asincreasess? will decrease. This implies that as more
samples are observed, the estimated distribution of tleentrean ., will be less spread out and
more concentrated around,,. Becauses; decreases ik, the denominator in Equatioh4 will
increase ink. However, for a particular bina(, b;), the likelihood thatu lies in that bin (the
numerator in Equation.4) depends both om;, ands;. This implies that the likelihood may
increase or decrease as we observe more samplesn®y increase or decrease over time.

Also, equatior8.2 shows that, for a giveh, s? = s'% because both runs of the procedure begin
with the same values far? andl,. Thus, termination of the procedure is determined entiogly
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the current estimate ofi,. From Equation 3.1 we see that if the two runs of the procedure drew
the same set of sample data and for a gikvethe difference betweem, andm/;, will always be
ﬁ. This is because

, lomo +le lo(mo —|—6) +EIL’Z
Y Py o+ k
loo
lo+k
o

1+ &/l

(3.5)

This difference quickly goes to zero Asncreases.

Number of Simulations

Since the data used in this procedure was randomly generated, each simulation of this procedure
can result in a different recommended number of samples. Therefore the procedure is repeatedly
simulated. The number of simulations, say must be large enough to overcome the variation
between simulations. Hy, ns, ..., n,, is a series of the sample sizes from simulations . . ., m,

thenn = ", n;/m is the recommended sample size.

We use a two-step procedure to determine m. The first step performs 1000 simulations to de-
termines? = %" (n; — 7)?/999, an estimate of the variance of recommended sample sizes.
Next, we choose a humbet that limits the size of the confidence intervalr‘oto a user speci-
fied limit. For example, the half length of a 95% confidence interval e . If the user
wants this quantity to be at mosi1 x 7, then we can obtain the minimum valuemfby solv-
ing “1%5" 0.01 x 7, which givesm = (43222 If m is larger than 1000, then we perform
additionalm — 1000 simulations and the average of the recommended sample sizes from the to-
tal m simulations is the recommended sample sizem lis less than 1000, then the average of
recommended sample sizes from the original 1000 simulations is the recommended sample size.

Recall that the simulation randomly generates sample data from a normal distribution with a
known mean and variance. The variance used to generate the sample data is tffe paientire
procedure is repeated for several values of the megnranging from .88 to .96 in increments of
.005. To be conservative, the maximum recommended samples size from each of these repetitions

is the final recommended sample size.

Implementation

Knowing the recommended sample size, the contractor takes the appropriate number of samples
and obtains test results. The test data is entered into a separate program that uses Bayesian updating
to determine which bin is most likely to contain the true mean density. If a potential user were
implementing a method of density testing that requires the sample size to be predetermined, as is
the case when core samples are observed, this procedure would be run offline and in advance. In
contrast, if the user were implementing a non-destructive method that can test pavement density
quickly in the field, then a dynamic variation of this procedure could be used. For example, if

29



a nuclear density gauge were being used then the contramitit enter density observations as
they are observed. The updating procedure would be the sanhesaribed above. The contractor
would continue taking samples until the number of bins forohtihe ratio of likelihoods is above
a certain threshold, based on the specified performanceungeds this variation, the number of
samples taken for each lot is not necessarily equal to theote@ number of tests.

Devises used to test pavement density in the field may addetodhation in test readings
because such test devices are usually less accurate tisate tdisting of cores. In such cases,
the variation of the testing devise should be ascertainetaking pairs of density readings and
core samples from the same locations. Then, the differeatieden the variation of the density
readings and the variation of the core sample test resultisdvixe the added variation, sa¥, due
to the testing devise. Finally, this variation would be atittethe initial estimate of the variance
(based on historical data) to find a total variangg,, = s* + s3, which will be the input for
density variance in the procedure.

Generally cores taken from the mat are evaluated apart skttaken from the longitudinal
joint. Current Mn/DOT protocol requires contractors tolease the longitudinal joint density on
20% of the lots each day, with a minimum of 1 lot designated smgitudinal joint density lot.
Currently, in a longitudinal joint density lot, the conttactakes 2 longitudinal joint samples on
each side of the lane that is being paved. Since the longilighint has a relatively small area
compared to the area of the mat, taking too many samples veoatgppromise the integrity of the
longitudinal joint. For these reasons, our procedure mapeappropriate to the longitudinal joint
unless a non-destructive test is being used.

3.4.5 Analysis and Results

The procedure was analyzed to determine if it improved tloeiracy of I/D payments. To do so
a random mean was generated. Then, based on this mean, raadpies were generated from a
triangular distribution, which provided a good fit with d&tam one historical project. To simulate
the current procedure two samples were generated to senoet lot. To simulate the proposed
procedure, a performance measure of one bin remaining abouoff ratio of 0.7 was used and
this performance measure required 13 samples per lot. Ebrleg the generated samples were
averaged to estimate the mean density. Finally, the payiesed on the estimate of the mean
density were compared with payments based on the true meeitydevhich had been used to
generate the samples.

This procedure was simulatéd500 times and the relative frequency of under- and overpay-
ments were recorded. Lots where the payment based on theagsti mean density was higher
than the payment based on the true mean density counted aegapment. Conversely, lots
where the payment based on the true mean was higher thanytirepabased on the estimated
mean density counted as an underpayment. The results fi@uthent procedure are displayed
in Figure 3.6 and the results from the proposed procedurdigptayed in Figure 3.7. All values
on the horizontal axis correspond to under- or overpaymeittén $100 of that value. For exam-
ple, payments between -$100 and $100 were considered seamcare displayed above the 0 in
Figures 3.6 and 3.7.

In Figure 3.6 accurate payment was given 47.0% of the timee atlerage overpayment was
$109.60, and the average underpayment is $287.33. In figdracgurate payment was given
70.6% of the time, the average overpayment was $44.50, aml/frage underpayment is $90.74.
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Under- and Overpayments

Figure 3.6: Relative frequency of over- and underpaymemtieuthe current procedure.

According to this, using the proposed procedure increaseadrate payments by over 20% as well
as significantly reduced under- and overpayments.

To help the user understand how to choose a performance reedsile 3.7 displays the
required sample size and incremental benefit per test fiowaperformance measures. The in-
cremental benefit per test is the increase in accuracy ofgqgrs that the agency would realize
for each additional sample observation. To determine theemental benefit, an analysis was
performed which randomly generated density samples fromramal distribution with a known
mean. The number of density samples generated was based waribus required sample sizes,
which are recorded in Table 3.7. Then the under or overpaymas calculated by comparing the
payment based on the mean density of the generated sampiesgayment based on the known
mean used to generate these samples. Finally, this wasasedul500 times so that an average
under- or overpayment for our procedure could be estimdtedddition, to simulate Mn/DOT’s
current procedure the expected under- or overpayment loadgdn the first two samples was also
calculated. This was calculated as follows:

C -2

Incremental Benefit per Test

where for each performance measure A was the expected wrdrrerpayment from Mn/DOT'’s
procedure, B was the expected under-or overpayment frorprogedure, and C was the required
sample size based on our procedure.

As long as the expected benefit per test is greater than theeotest, then choosing that per-
formance measure would be beneficial to the agency. Moredwveosing the strictest performance
measure that still has a greater expected benefit per testtisa per test will give the agency the
most benefit.
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Under- and Overpayments

Figure 3.7: Relative frequency of over- and underpaymemtieuthe proposed procedure.

Table 3.7: Economic impact of higher pay factor reliability

r=20.5 r=20.6 r=20.7 r=20.8 r=20.9
Sample | Extra Sample | Extra Sample | Extra Sample | Extra Sample | Extra
Size Benefit Size Benefit Size Benefit Size Benefit Size Benefit
b=1| 37 $4.99 || 25 $7.04 || 16 $11.92|| 10 $21.45| 5 $40.40
b=2| 14 $13.11| 10 $21.45|| 7 $28.68| 4 $33.33| 2 $0.00
b=3|6 $34.90|| 5 $40.40| 3 $47.74| 2 $0.00 | 1 $188.2}f

3.5 Conclusions

Materials testing activities are important steps in pavaenstruction process because they help
improve quality. This chapter describes a procedure foerdahing the number of samples that
should be taken to meet user-specified reliability critemraaddition to the reliability measures,
several inputs based on past data are entered prior to timenprocedure. These inputs deter-
mine the prior distribution of the mean density, which resgrgs current knowledge about the true
mean density. Then the procedure generates random deasipless. After each sample the prior
distribution is updated. Next, using the updated priorridistion, the procedure determines the
likelihood of the mean density lying in each of many equakdibins. Lastly, the procedure finds
the ratio of the likelihood that the mean density lies in elichto the maximum likelihood among
all bins. The procedure terminates when the number of bing/fach the ratio of likelihoods is
above a cutoff ratio is equal to or less than a cutoff numbleis procedure is repeatedly simulated
to find the expected required sample size.

After analysis of the current procedure and the one desthbee, it was determined that using
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the sample size suggested by the procedure described baleden more accurate 1/D payments
than using the current sample size of two. One simulatioreased accuracy from 47.0%, under
the current method, to 70.6%, under the suggested method.

For smaller values aof?, our procedure results in smaller recommended sample sizether
words, contractors with consistent performance are resehib@cause they are required to do fewer
tests. In addition, contractors are still encouraged téoper high quality work because of the pay
factor schedule. So implementing our procedure will enagarcontractors to perform consistently
high quality work.
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Chapter 4

Updating Estimated Variance

4.1 Introduction

Mn/DOT’s current testing protocol rewards a contractordohieving high mean lot density. It
does not consider variability in density observations asasure of pavement quality. In reality,
density variation also determines pavement quality. Ooppsed procedure (described in Chapter
3) requires more samples to be tested when a contractorgygfi@. pavement relative density)
is more variable. This gives the contractor an incentiveethuce variance.

Supposer? denotes the variance of density observations that is useéetémmine the number
of required samples for a particular contractor. Beforel@anpenting our proposed procedure,
Mn/DOT needs to address three issues:

1. How to calculate an initial estimate of when the new protocol is first implemented or
when a new contractor wins the bid to do the work? [Note, “nawndur terminology means
that Mn/DOT does not have data on this contractor’s perfocadrom past projects.]

2. How to determine for each contractorsif has changed during the course of a project or
between projects?

3. How to update the estimate of if a change is detected in step 2?

In this chapter, we develop and report a methodology foryaagrout each of the three steps. But
first, we analyze the correlation between the mean and \@iahdensity samples from thirteen
projects. For each project, the mean and variance werelasdufor each day of the project. Then
a correlation analysis was performed. The results are shiowable4.1. The purpose of this
analysis is to demonstrate that a contractor can achievern@an density even as its day-to-day
performance varies significantly.
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Table 4.1: Correlation analysis.

Project SP| Number| p-value| Correlation
of Days Coefficient
0206-116 21 0.174 -0.308
0402-05 10 0.930 0.017
0405-12 18 0.272 -0.273
0413-30 18 0.927 0.023
0415-18 5 0.089 0.820
0506-10 11 0.505 0.226
0603-11 8 0.301 -0.419
0710-29 20 0.000 -0.725
1013-80 8 0.530 -0.263
1805-71 16 0.755 0.085
4009-14 11 0.206 -0.501
8055-19 14 0.730 -0.101
8611-18 12 0.330 -0.308

Only one out of the thirteen projects, SP 0710-29, had afsgnit correlation between mean
and variance of daily pavement densities (hevalue < 0.05). This implies that generally the
mean and variance of a project are not correlated. The atiorlcoefficient across the thirteen
projects is more often negative, suggesting that highemnaeasity is weakly associated with
lower variance, but this effect is not statistically sigraint. A possible inference from this analysis
is that a change in reward structure is needed to incentooméractors to place greater effort on
improving the consistency of their compaction effort.

In the remainder of this section, we set up a framework farkimg about the three questions
posed above. This differs from the presentation in Chapbecause we now allow the possibility
thato? may change over time. We define an update epoch to be a momentrvel information
is available to potentially consider the question whetlner tariance of pavement density has
changed. From a practical viewpoint, update epochs wakanio more frequently than once each
day after that day’s cores are tested and their results bugated. However, our formulation is
general and allows an arbitrary definition of an update epoch

Because we allow both the true varianceand its estimate to change at each update epoch,
we index both these quantities by the epoch intlex 0,---. Let o?(t) ando?,(¢) denote the
population and mean lot density variances at update epot¥e uses?(¢) ands? (¢) to denote
their estimates. In the implementation of our approach, wWewerk primarily with s?(¢) and
s? (t) becauser?(t), o2,(t) cannot be ascertained. In this terminology, the initialaraces are
denoted by?(0), o2, (0) and their estimates by?(0) ands?,(0).

In general, we expect the relationship betwegit) ands? (¢) to be independent d@f That is,
at the start of each new cycle of samples, we will have sonaiveluncertainty about the mean
lot density, which will be captured by?, (). We expect this to be a known function f(t). It
is reasonable to expect that the assumed functional redtip will remain unchanged because
s? (t) captures the variance of mean density of a subgroup, givepalgtion variance of*(t).
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Put differently, updating primarily affectg(¢). We obtains? (¢) from a hypothesized relationship
betweens?(t) ands? (¢). In situations where a Mn/DOT engineer does not have a sfrdaiion
about what relationship to use, we recommend setting) = s*(¢) as the default relationship.

Figure4.1 displays a timeline for the updating procedure. At updatechp, there is some
estimate of the varianc&(¢) which is based on a sample sizergf — 1). This estimate of the
variance is used as an input to the procedure described ipt€ta which determines the sample
size for lots observed between thand (¢ + 1)-th update epochs. Sa,(t) total samples are
observed between theand (¢ + 1)-th update epochs and these samples have a varianéé pf
Then at thgt + 1)-th update epoch, a new estimate of the variance is founddwsie of the two
methodologies described in this chaptéf); + 1), which is based on a sample sizendf). Then,
this estimate of the variance is used to determine sampdaizots observed between the+ 1)
and(t + 2)-th update epochs, according to the procedure describelaptér 3.

$2(t) based on n(t-1) §2(t + 1) based on n(t)

| s*(t) based on n(t)

t t+1

Figure 4.1: Updating timeline.

The Bayesian updating procedure describes the process ioh wie refine our estimate of
s2,(t) for each lot by taking more samples. In particular, startiith s>, ,(t) = s2,(t), the new
estimates?, . (t) after takingk samples is

2 _ s°(t)
m,k(t) - m7

S

(4.1)

wherely(t) = s%(t)/s2 (t) is the equivalent number of initial samples correspondmthe as-
sumed functional relationship betwegtit) ands? (¢). We caution the readers not to be confused
by the two levels of updating — one that updatég) at each update epochand the other that
updates:? (¢) by taking the required number of samples from each lot beistgt between update
epochg and(t + 1). Chapter 3 concerned the latter, whereas Chapter 4 (thigef)@oncerns the
former.

We describe two methodologies for updatiigt). The first methodology is based on applying
a hypothesis testing procedure at each update epoch to dhbekvariance has changed. This
methodology is appropriate in situations where the vagascgenerally stable but periodically
jumps to another value. An advantage of this procedure tdttban be quite sensitive to changes
in the variance. Conversely, a disadvantage is that it mapgs?(¢) too frequently, leading to
unnecessary fluctuations in sample size.

The second methodology uses a smoothing approach to upeatealtie ofs?(¢) using current
and historical data. This methodology is appropriate inatibns where the variance changes
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frequently but by a small amount each time. An advantageisfitocedure is that it avoids large
swings in values of?(¢). A disadvantage is that it always lags the observed chamge¥1),
which can make it relatively unresponsive.

We provide both methodologies because Mn/DOT project esggg1can best decide which
methodology will work best in particular situations. We @port an extensive comparative analy-
sis of both methodologies to help project engineers in tak.t

4.2 Methodology

To illustrate how the variance of density values changes tme, we analyzed data from nine
projects. For each project, the data was clustered intopgrofi 4 days. For example, clusters
consisted of days 1-4, days 5-8, and days 9-12. Groups of gwlase chosen because generally
a day had 4 lots with 2 samples per lot, which gives an appratersample size of 32 for each
group. This is just enough to carry out meaningful compassaf changes across groups.

We performed a hypothesis test, known as the Bartlett'sfaséach project. The null hypoth-
esis for this test was that all groups have equal variancgshenalternative hypothesis was that at
least one of the groups has a different variance. The resullese tests are shown in Talle.
The significant (less than 0.0pjvalues are shown in bold font.

Table 4.2: Bartlett hypothesis test results.

Project SP| p-value| Number Number Number

of Groups| of Adjacent| of F-tests

Groups | that failed
0206-116| 0.556 5 4 0
0402-05 | 0.016 3 2 0
1413-30 | 0.864 5 4 0
0506-10 | 0.184 4 3 1
0710-29 | 0.016 5 4 2
1805-71 | 0.044 4 3 1
4009-14 | 0.013 2 1 1
8055-19 | 0.941 4 3 0
8611-18 | 0.387 6 5 0

In addition, for each project, a hypothesis test was perdorver all pairs of adjacent groups.
This hypothesis test was an F-test with the null hypothesisgathat the two groups have the same
variance and the alternative hypothesis being that the twoaps have different variances. For
example, if a project had 4 groupings, there were 3 hypathesis with the following three null
hypothesess?(1) = 02(2), 0(2) = 0?(3), ando?(3) = o%(4). Table4.2 also displays, for each
project, the total number of groups, the number of adjacemigs, and the number of F-tests that
failed (had significanp-values). In the terminology introduced in the previougisec each group
represents a potential update epoch. For each project,segkitted the variance of each group
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and a 95% confidence interval on the variance. These resalghawn in Figureg.2(a) through
4.3(c).

Table4.2 shows that in four out of nine projects, at least one groupahsignificantly different
variance than the others. Table also displays that five out of nine projects had zero rejected
F-tests, three out of nine projects had one rejected Fdest,one out of nine projects had two
rejected F-tests. This means that most projects had no ehiangriance from one group to the
next, a few projects had one change between adjacent ggsj@ind one project had two changes.
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Figure 4.2: Confidence intervals.

38



0.0010

0.0009

0.0008
0.0007
0.0006

0.0008

0.0006

Variance of i 0.0005
imi Variance of -
i Upper Limit imi
Density Samples PP Density Samples 0.0004 Upper Limit
0.0004 .
Lower Limit |
0.0003

0.0002 ' Variance 0.0002 | | %
0.0001 ! |
0.0000 T ! 0.0000

1 2 1 2 3 4

ariance

Grouping Number Grouping Number

(a) Project 4009-14. (b) Project Project 8055-19.

0.0010

0.0008

0.0006
Variance of

Density Samples

0.0004 ‘ ‘ ‘

0.0002 | | |

0.0000

Grouping Number

(c) Project 8611-18.

Figure 4.3: Confidence intervals — continued.

From Figurest.2(a) throughd.3(c), it appears that the variance changes smoothly and does not
jump much. This is particularly noticeable for projects 621016, 0413-30, 8055-19, and 8611-18,
which are shown in Figures2(a), 4.2(c), and4.3(b), respectively. The graph for project 0710-29,
Figure4.2(e), seems to have jumps between the 2nd and 3rd and the 3rd agrbdthings. Also,
project 1805-71, Figurd.2(f), might have a jump between the 3rd and 4th groupings. These
are visually the most noticeable jumps. Overall, it is nosgble to say conclusively whether
the changes in variance occur gradually or via a jump procéssrefore, in what follows, both
procedures are presented and the choice of which methodtagplement is left to the user.

For both methods described below, the initial estim&fé) is obtained from the most recent
2-3 years of data from projects involving the same or simmiat. We propose to update this initial
estimate each year on a rolling basis to allow for changidgstry standard of performance.

4.2.1 Hypothesis-Test-Based Updates

We propose performing a hypothesis test at each update épdetermine whether the variance of
the most recent data?(¢), is significantly different from the most recent estimatehef variance.

The latter is denoted by?(¢). If n(t) (the number of samples that have been observed between the
t and the(t+ 1)-th update epoch) is very small, then a test of hypothesiddvmat be able to detect

a change even when a change has actually occurred. Theliéfelienportant to define the update
epoch carefully. We propose that update epochs occur datlye( number of samples observed
each day is at least 30) or over the minimum number of dayscti@hin just over 30 samples. A
more precise argument can be constructed to determine pne@ate update interval. However,
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this argument cannot be operationalized because it regthiezuser to specify certain costs that
cannot be estimated from available data.

There are two possible results of the hypothesis test —rdhlenull hypothesis is not rejected,
or it is rejected. In each instance, the proposed updatiagepiure will find a slightly different
estimate of the variancé?(t + 1), that will be used to determine sample size for lots takirgel
between thgt + 1) and the(¢ + 2)-th update epoch. A failed hypothesis test implies that the
variance of observed density values since the most recelst@@poch is significantly different
from the most recent estimate of the varian&gt). In this case, we drop historical data and set
§%(t + 1) = s*(t), which is the current best estimate of variance and is basedsample of size
n(t).

In contrast, if the null hypothesis is not rejected, we méilihe new information in conjunction
with the historical information. Specifically, i (¢) were the previous best estimate of variance of
densities and this estimate were based on a sample siZeé-ofl ), we would computé?(t + 1) =
"(t)szggizg’;j)§2(t) as the updated estimate of variance anciégt = [n(t) + n(t — 1)] as the size
of the sampfe on which this estimate is based.

Regardless of how the updated estimate is obtained, thet{ew 1) is used to determine the
required sample sizes for lots completed betweeritthel) and the(t + 2)-th update epoch.

4.2.2 Smoothing-Approach-Based Updates

Rather than attempting to detect changes that have alreamyred in the data, this procedure
attempts to predict future changes based on past behawioa typical smoothing procedure,
we have both the forecast of the unknown quantity and itzeglvalue at each update epoch.
We denote the forecast of variance for peridoly 5?(¢) and the actual observed variance by the
previously introduced notatios?(¢). The procedure is initialized by settiig(1) = s*(0). For
update epoch > 1, we perform the following operation.

(t+1) = as’(t) + (1 —a)s*(t) (4.2)

wherea is a smoothing constant chosen by the user.

Supposel;(t) is the observed density from thie¢h sample in period andd(t) = average
density for that period. Then, using the data observed iclepave obtain an estimate of variance
at the end of period as follows:

n() g\ TJ(04))2
Sz(t) — Zi:l (dl(t) d<t))

n(t) —1

4.3)

Ideally, it is desirable to weight®(t) values differently for each because we do not expect the
number of samples taken to be invariant between two conseaigdate epochs. However, weight-
ing of s%(t) values introduces significant complexity and is not likelyhave much of an impact
on the quality of this procedure becausealues are chosen optimally and periodically updated,
as explained next

We obtain the best by applying smoothing procedure to a set of data that we lealtraining
sample. At each update epoch, we keep track @f ands?(¢). This allows us to calculate the sum
of squares of errors_" _, [s(t) — §2(t)]?, wheret in this expression is the number of observations
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in the training sample. We then choose a valuer dhat minimizes this sum. Note that the sum
of squares of errors is one measure of the accuraéy(of to the actual variance?(¢). There are
other criteria that could be used to measure accuracy arfat&ndhe bestv with respect to those
criteria.

4.3 Comparative Analysis

In this section, we compare and contrast the two methodegodjiscussed above. This section is
divided into three parts. We describe the experimentalsétst, followed by the key performance
metrics we calculated to compare the two methodologies fiaatly, we present the results. A
discussion of the implications of these results and ourt®ate presented in the next section.

4.3.1 Experimental Setup

A full evaluation of the two procedures required the abitdyadjust the number of samples taken
each day according to the previous day’s test results. Sirsterical data contained at most 2
samples per lot, historical data could not be used to tespmoedures. Because of this, we
simulated density observations in the experiments desgtiiiothis section.

Historical projects typically lasted between 10 and 30 day$ most days had 4 lots. On the
basis of this observation, in the experiments we condu@adh scenario was simulated for 20
days and each day had 4 lots. Also, in each scenario thengt&etiue of true process variance was
02(0) = 0.0003. The number of samples were determined according to a temgeff ratio of .6
and a cutoff number of 2 (see Chapter 3 for details on chodbiege performance measures).

The two methodologies described in the previous sectiome amalyzed under three different
scenarios. The first scenario represented a situation inhathie true process variance changed
randomly each day from the base-case valué.003 during the course of the project. In the
second scenario, the variance also changed randomly, bup @n down change could last for
up to three consecutive days. The third scenario containedigial period of instability after
which the variance stabilized, representing contracefftts to gain control over the production
process. Unstable values at the start of a project are a corannoirrence in historical data because
contractors try to vary mix composition and production @sses to realize higher density. Each
scenario was simulated three times using a different Initiue for s?(0) each time — the correct
value of .0003 and two incorrect values which were .0002 8664. In each case, we assumed
thats?(0) was based on an initial sample of siz@) = 100.

Under each scenario, data was randomly generated to repsesity samples. Consider,
for example the case when the initial estimate of the vadasfovas .0003. We used the static
program from Chapter 3 to find that 8 samples should be takelopeso each scenario began by
generating data samples for 4 lots with 8 samples each (eofod2 samples) for day 1. In each
scenario, the density samples were generated from a norstidbdtion with a mean .925 and the
specified variance for that particular day and scenario.adtite first scenario, the variance values
were either a big or small jump from .0003, where a small jus¥p%-20% above or below .0003
and a big jump is 20% to 50% above or below .0003. The seconthsoehad the same type of
jumps, except that big jumps could remain for up to 3 days. ddiikde third scenario, the first 5
days of the project consisted of big jumps from .0003 and @ditsough 20 consist of small jumps
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from .0003. The specified values for the variance can be fauiidble4.3. For example, the first
day of the third scenario generates 32 random samples fraymaah distribution with mean .925
and variance .000412412.

Once the samples were generated, the hypothesis testimgaoéngy found the value of the
test statistic/ = 3%(¢)/s%(t), wheres?(t) was the variance used to determine sample size for day
t and ands*(t) was the observed variance on dayThen, the critical pointsf,, 2 ,—1)() and
Ji—a/2.n-1)n0), Were found, where: = 0.05 was the significance level(t — 1) was the sample
size used to find?(t) andn(t) was the sample size used to fistdt).

If we observed thaf > f,/2n¢—1)n@) OF f < fi—a/2.n—1).n@) then the null hypothesis was re-
jected andi?(¢ +1) was set equal te?(¢). Otherwise, the hypothesis test was deemed inconclusive
and we updateé?(t + 1) as follows:s?(t + 1) = "0 DS andn(t) = [n(t) + n(t — 1)),
The new value of(¢ + 1) was then used to determine the sample size for the next dag e
static program developed in Chapter 3. This process wasnceat throughout the 20 simulated
days in each scenatrio.

The smoothing methodology required an extra step in whichused a training sample to
determine optimak. For each scenario, we used a unique training sample of 1y&) alawhich
the variance values were randomly generated in the samm®ffagtat the variance values were
generated for the analysis. The training sample for eachasiceresulted in a unique optimal
value for alpha. For the first scenario,= 0, for the second scenario = 0.14634, and for the
third scenariope = 0.00053.

However, the agency will not always be confident that thelalbbg training sample was an
accurate representation of the project on which the smiogtimethodology is implemented. So,
rather than using a training sample to determine the optualale ofa, some literature suggests
a nominal value ofyr = .10 can be used when the process is somewhat stable (not tobleqria
(Silver et al., 1998). In addition, the performance of theosthing procedure is normally quite
insensitive to the chosen value ®f Due to this, the smoothing methodology was simulated three
times for each scenario with = .10 and the initial value o&?(0) = .0003, .0002, and .0004.
Analyses that used the customized training samples tordeteix will be referred to as Ideal
Smoothing and the analysis using the nominal value ef .10 will be referred to as Nominal
Smoothing.

After the o values were found, the analysis could be performed. To begimple density val-
ues were randomly generated from a normal distribution withean .925 and the corresponding
variance for each day and scenario. Once the samples wezeateh, the smoothing methodology
estimated the variance for daydenoted bys?(¢). Then the smoothing procedure was applied in
order to estimate the variance used in the next epoch. Thething procedure is as follows:

F(t+1)=as’(t)+ (1 —a)s*(t) (4.4)

The value ofs?(¢ + 1) was then used to determine the sample size for each lot onetttetest
epoch. This procedure was repeated for each day for eactcaasrio.

4.3.2 Performance Metrics

The simulation results were analyzed in terms of three kefopeance metrics to test the effec-
tiveness of each procedure. The first metric calculated ithyggotion of Type | and Type Il errors.
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A Type | error would occur if it was deemed that the variance significantly changed when it
actually had not changed and a Type Il error would occur ifasweemed that the variance had
not significantly changed when it actually had. This analgsinsidered a change to be significant
if the variance changed by more than 15% from one day to thie(nete that this level of signifi-
cance could be set to another percentage). Fabldisplays the variance used on each day in each
scenario as well as an indicator of whether the variance aartecplar day is significantly differ-
ent than the previous day. This performance metric is rekewaly for the hypothesis-test-based
updating method.

The second metric measured the difference between the mahk@mples that were obtained
on a particular day (based on the estimate of the varianakjrenideal number of samples that
should have been obtained that day (based on the actuahe@)iaNote that each day had 4 lots.
So this metric equaled the average absolute differencetimband the ideal number of samples
per lot over the 20 days multiplied by four. A metric such ais 1B also called mean absolute
deviation (MAD) in statistics and operations researclditigre.

Table 4.3: Specified variance values and an indicator of hdrethat variance is significantly
different (> 15%) than the previous day’s variance in each scenario.

Day Variance Jumps Variance Jumps for up to 3 Days Initial Chatter in Variance

Variance Change Variance Change Variance Change

1 0.000232764 | change 0.000224222 | change 0.000412412 | change

2 0.00027594 | change 0.000184061 | change 0.000429679 | no change

3 0.000346777 | change 0.000268627 | change 0.000226105 | change

4 0.000396462 | no change 0.000316477 | change 0.000212513 | no change

5 0.0002468 change 0.000320343 | no change 0.000412803 | change

6 0.000280703 | no change 0.000353463 | no change 0.000268127 | change

7 0.000356188 | change 0.000246757 | change 0.000326252 | change

8 0.000166403 | change 0.000240402 | change 0.000335311 | no change

9 0.000359444 | change 0.000262746 | no change 0.000279845 | change

10 || 0.000320562 | no change 0.000266211 | no change 0.000348596 | change

11 | 0.000356113 | no change 0.00035386 | change 0.000335519 | no change

12 || 0.000328325 | no change 0.000265233 | change 0.000345423 | no change

13 || 0.000270069 | change 0.000284182 | no change 0.000337954 | no change

14 | 0.000270707 | no change 0.000405208 | change 0.000274099 | change

15 || 0.000221313 | change 0.000450505 | no change 0.000340227 | change

16 | 0.000201703 | no change 0.000320809 | change 0.000333308 | no change

17 || 0.000331298 | change 0.000267149 | change 0.000318237 | change

18 || 0.000338313 | no change 0.000207188 | change 0.000356318 | change

19 || 0.000248293 | change 0.000229312 | no change 0.000344064 | no change

20 || 0.000352914 | change 0.00017083 | change 0.000357063 | no change

Finally, the third metric measured the economic impact aigieach updating methodology.
For each method, on any given day we might take either too fewoomany samples per lot rela-
tive to the ideal number. The latter can only be known in a &tan exercise such as the one we
constructed. If too many samples were taken, this resuttédth an extra cost and an extra bene-
fit. Clearly, the extra cost would come from performing mdrart the ideal number of tests. The
benefit would come from increased accuracy in Incentive aisthBentive payment calculations.
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Similarly, if fewer samples were taken, then this would diswe two opposing effects. In this
case, the cost would be caused by the decreased accuracemie and Disincentive payment
calculations, whereas the benefit would be smaller testisg ¢

4.3.3 Results

The proportion of Type | and Type Il errors for hypothesistiteg-based updating procedure are
shown in Table 4.4 below. Recall a Type | error would occurifas deemed that the variance had
significantly changed when it actually had not changed angp& Tl error would occur if it was
deemed that the variance had not significantly changed wlaetually had. Also, recall that here
a change in variance is deemed significant if only the vadai@anged by more than 15% from
one day to the next (note that this level of significance ctxeldet to another percentage).

Table 4.4: Proportion of type | and type Il errors in each scienwith s*(0) = .0003.

Initial Value of s%(0) Scenario Proportion of| Proportion of
Type | Errors Type Il Errors

Variance Jumps i 5
.0003 Variance Jumps for Up to 3 Days.05 5
Initial Chatter in Variance A 5
Variance Jumps 0 5

.0002 Variance Jumps for Up to 3 Days.1 .65
Initial Chatter in Variance 0 3

Variance Jumps 0 45
.0004 Variance Jumps for Up to 3 Days0 5
Initial Chatter in Variance 0 5

Clearly, Table 4.4 shows that the proportion of Type | ermgas at mostl in our simulations
which confirms that the proposed procedure is biased towatdgiing against Type | errors. This
is exactly as one would expect. However, protecting agdiyst | errors can result in an increased
frequency of Type Il errors, which we see in this analysi€eil errors are more likely when the
change in variance is relatively small, as is the case indbrssimulations. Using an incorrect
estimate ofo?(0) that errs on the side of being larger produces better outspagone would
expect.

Similarly, Table4.5 shows calculations of mean absolute deviation for eacheswerA smaller
value for the MAD is desirable and this implies greater aacyrof updating protocol. Consider
the hypothesis testing and ideal smoothing methodologésens?(0) = .0003, the hypothesis
testing methodology has a smaller MAD in one scenario andlbad smoothing methodology has
smaller values in the other two scenarios. Wk&0) = .0002, the hypothesis testing methodology
has a smaller MAD in two scenarios and the ideal smoothindgpaugtiogy has a smaller MAD in
one scenario. Whest(0) = .0004, the hypothesis testing methodology has a smaller MAD in one
scenario and the two methodologies have the same MAD in thaireng scenarios. So, while
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neither methodology clearly dominates, the hypothestsigamethodology appears to be slightly

more accurate.

Table 4.5: Mean absolute deviation per day for each sceméttios®(0) = .0003.
Initial Value | Scenario Hypothesis Ideal Smoothing Combination
for s%(0) Testing Methodology Smoothing

Methodology Methodology

Variance Jumps | 2.45 1.35 1.35
.0003 Variance Jumps 1.55 1.75 1.45

for Up to 3 Days

Initial Chatter in| 1.7 15 15

Variance

Variance Jumps | 1.75 2.45 2.45
.0002 Variance Jumps 2.2 1.7 2.15

for Up to 3 Days

Initial Chatter in| 2 3.1 3.1

Variance

Variance Jumps | 2.15 2.65 2.5
.0004 Variance Jumps 2.1 2.1 3.15

for Up to 3 Days

Initial Chatter in| 2.0 2.0 2.05

Variance

Also, Table4.5 shows that when the ideal smoothing methodology is used thb M signifi-
cantly higher wher?(0) = .0002 and.0004 than whens?(0) = .0003 in two of the three scenarios.
In addition, when the combination smoothing methodologysisd the MAD is significantly higher
whens?(0) = .0002 and.0004 than whens?*(0) = .0003 in all three scenarios. Because of this,
we can conclude that having the wrong initial estimate?®f) results in an increased MAD and
underscores the importance of having accurate initiafregés.

Tables4.6, 4.7, and4.8 display the cost and benefit for performing too many testsaRéhat
each simulation has 20 days with 4 lots each. Tablgst.7, and4.8 show for each simulation, how
many days took too many tests, the total number of extratiestsvere taken during the course of
the simulation, the average number of extra tests over alB38, and the average number of extra
tests over just the days that had extra tests. These extsaatesconsidered a cost. In addition,
Tablest.6, 4.7, and4.8 record the total savings from taking the additional tesis average savings
over all 20 days, and the average savings over just the day#ibk extra tests.
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Table 4.6: Economic impact of performing too many tests wité¢f) = .0003.

| Scenario [A][B] C | D | E | F ] G |

Variance Jumps 10| 104 | 1.3 | 2.6 | $1,429.39| $71.47 $142.94
Hypothesis Test{ Variance Jumps fof] 11 | 84 | 1.05| 1.91 | $1,214.24] $60.71 $110.39
ing Up to 3 Days

Initial Chatter in|| 4 | 64 | 0.8 4 $886.03 | $44.30 $221.51

Variance

Variance Jumps 6 | 40 | 0.5 | 1.67| $759.89 | $37.99 $126.65
Ideal Smoothing | Variance Jumps forl 6 | 56 | 0.7 | 2.33| $981.63 | $49.08 $163.61

Up to 3 Days

Initial Chatter in|| 2 | 16 | 0.2 2 $295.62 | $14.78 $147.81

Variance

Variance Jumps 6 | 40 | 0.5 | 1.67| $905.36 | $45.27 $129.34
Nominal Variance Jumps fofl 8 | 56 | 0.7 | 1.75| $1,022.73| $51.14 $127.84
Smoothing Up to 3 Days

Initial Chatter in|| 3 | 32 | 0.4 | 2.67| $556.70 | $27.84 $185.57

Variance

[A: number of occurrences, B: total number of extra testgwerage number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too ntesig, E: total savings, F: average savings per
day for all days, G: average savings per day for days with tanynests.]

Table 4.7: Economic impact of performing too many tests wit¢a) = .0002.

| Scenario [A[B] C | D | E | F ] G |
Variance Jumps 7 | 64 | 0.8 | 2.29]| $1,330.73| $66.54 $147.86
Hypothesis Test{ Variance Jumps foff 12 | 120 | 1.5 | 2.5 | $1,710.13] $85.51 $142.51
ing Up to 3 Days
Initial Chatter in|| 10| 96 | 1.2 | 2.4 | $1,223.37| $61.17 $122.34
Variance
Variance Jumps 1| 4 |[005]| 1 $78.76 | $3.94 $78.76
Ideal Smoothing | Variance Jumps forl 4 | 32 | 0.4 2 $646.73 | $32.34 $161.68
Up to 3 Days
Initial Chatter in|| O 0 0 0 $0.00 $0.00 $0.00
Variance
Variance Jumps 4 | 32| 04 2 $568.22 | $28.41 $142.06
Nominal Variance Jumps fof| 7 | 56 | 0.7 2 | $1,008.78| $50.44 $144.11
Smoothing Up to 3 Days
Initial Chatter in|| O 0 0 0 $0.00 $0.00 $0.00
Variance

[A: number of occurrences, B: total number of extra testgverage number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too ntesig, E: total savings, F: average savings per
day for all days, G: average savings per day for days with tanyntests.]
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Table 4.8: Economic impact of performing too many tests wté¢f) = .0004.

| Scenario [A][B] C | D | E | F ] G |

Variance Jumps 8 | 72| 9 | 225]| $1,163.26] $58.16 $145.41
Hypothesis Test{ Variance Jumps fofl 6 | 76 | 0.95| 3.17 | $1,194.97| $59.75 $199.16
ing Up to 3 Days

Initial Chatter in|| 1 | 20 | 0.05| 5 $295.74 | $14.79 $295.74

Variance

Variance Jumps 20 | 212 | 2.65| 2.65| $3,031.92| $151.60| $151.60
Ideal Smoothing | Variance Jumps foifl 9 | 104| 1.3 | 2.89| $1,736.62] $86.83 $192.96

Up to 3 Days

Initial Chatter in|l 17 | 156 | 1.95| 2.29 | $2,176.80| $108.84| $128.05

Variance

Variance Jumps 10| 108 | 1.35| 2.7 | $1,620.88| $81.04 $162.09
Nominal Variance Jumps fof| 16 | 148 | 1.85| 2.31 | $2,349.40| $117.47| $146.84
Smoothing Up to 3 Days

Initial Chatter in|| 9 | 76 | 0.95| 2.11| $1,080.18| $54.01 $120.02

Variance

[A: number of occurrences, B: total number of extra testgwerage number of extra tests per lot for all days,
D: average number of extra tests per lot for days with too ntestg, E: total savings, F: average savings per
day for all days, G: average savings per day for days with tanynests.]

Table 4.9: Economic impact of performing too few tests wk&i) = .0003.

| Scenario [A] B[] C ]| D | E | F ] G |

Variance Jumps 7 | 92 | 1.15| 3.29| $1,982.14| $99.11 $220.24
Hypothesis Test{ Variance Jumps foff 5 | 40 | 0.5 2 $528.12 | $26.41 $105.62
ing Up to 3 Days

Initial Chatter in|| 7 | 72 | 0.9 | 257 | $1,358.69| $67.93 $169.84

Variance

Variance Jumps 10| 68 | 0.85| 1.70| $1,102.04| $55.10 | $110.20
Ideal Smoothing | Variance Jumps foff 10 | 84 | 1.05| 2.1 | $1,381.37| $276.27| $138.14

Up to 3 Days

Initial Chatter in| 15| 104 | 1.3 | 1.73| $1,888.89| $94.44 $125.93

Variance

Variance Jumps 10| 68 | 0.85| 1.70| $1,025.16| $51.26 | $102.52
Nominal Variance Jumps folfl 7 | 56 | 0.7 2 $782.33 | $39.12 $111.76
Smoothing Up to 3 Days

Initial Chatter in| 10| 76 | 0.95| 1.9 | $1,193.24| $59.66 $119.32

Variance

[A: number of occurrences, B: total number fewer tests, @rage number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too fests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too fewstgst
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Table 4.10: Economic impact of performing too few tests wk&fn) = .0002.

Variance Jumps 9| 64| 0.8 1.78] $981.64 | $49.08 | $109.07
Hypothesis Test{ Variance Jumps fofl 5 | 56 | 0.7 | 2.8 | $1,064.03] $53.20 | $177.34
ing Up to 3 Days

Initial Chatter in|| 6 | 64 | 0.8 | 2.67| $1,346.14| $67.31 $224.36

Variance

Variance Jumps 17 | 192 | 2.4 | 2.82| $3,846.40| $192.32| $226.26
Ideal Smoothing | Variance Jumps forl 10 | 100 | 1.25| 2.5 | $2,015.53] $100.78] $201.55

Up to 3 Days

Initial Chatter in| 18| 248 | 3.1 | 3.44| $4,952.03| $247.60| $275.11

Variance

Variance Jumps 13| 116| 1.45| 2.23 | $2,048.03| $102.40| $157.54
Nominal Variance Jumps fofl 7 | 72 | 0.9 | 2.57| $1,258.04| $62.90 | $179.72
Smoothing Up to 3 Days

Initial  Chatter in| 17 | 164 | 2.05| 2.41| $2,925.48| $146.27| $172.09

Variance

[A: number of occurrences, B: total number fewer tests, @rage number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too fests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too fewstgst

Table 4.11: Economic impact of performing too few tests wk&n) = .0004.

Variance Jumps 11| 108 | 1.35| 2.45| $1,889.12| $94.46 | $171.74
Hypothesis Test{ Variance Jumps foffl 5 | 56 | 0.7 | 2.8 | $1,850.19] $92.51 $185.02
ing Up to 3 Days

Initial Chatter in| 16 | 140| 1.75| 2.19| $2,511.41| $125.57| $139.52

Variance

Variance Jumps 0| O 0 0 $0.00 $0.00 $0.00
Ideal Smoothing | Variance Jumps fofl 7 | 64 .8 | 229 $1,042.47] $52.12 $148.92

Up to 3 Days

Initial Chatter in| 1 4 005 1 $39.38 $1.97 $39.38

Variance

Variance Jumps 51 20 ]025] 1 $247.57 | $12.38 $49.51
Nominal Variance Jumps folfl 4 | 24 | 0.3 | 1.5 | $330.86 | $16.54 $82.71
Smoothing Up to 3 Days

Initial Chatter in| 3 | 12 | 0.15| 1 $196.00 | $9.80 $65.33

Variance

[A: number of occurrences, B: total number fewer tests, @rage number of fewer tests per lot for all days,
D: average number of fewer tests per lot for days with too fests, E: total cost, F: average cost per day
for all days, G: average cost per day for days with too fewstgst

Similarly, Tablest.9, 4.10, and4.11 display the cost and benefit for performing too few tests.
Tables4.9, 4.10, and4.11 show for each simulation, how many days took too few testsiatal
number of fewer tests that were taken during the course ddithalation, the average number of
fewer tests over all 20 days, and the average number of fests déver just the days that had fewer
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tests. These fewer tests are considered a savings. Inadditble Tabled.9, 4.10, and4.11
record the total cost from taking fewer tests, the averagemeer all 20 days, and the average cost
over just the days that took fewer tests.

For calculating economic impact of incorrect I/D paymeiitg/as necessary to carry out sim-
ulations with the true mean density and the best estimatemsity that was obtained from using
either the ideal number of tests or the number of tests thatipdate procedure recommended.
Consider for example, the situation when the updating mhoeeleads to too few tests. In each
simulation when this happened, lots where the payment b@aséue estimated mean density was
higher than the payment based on the true mean density cbasi@n overpayment. Conversely,
lots where the payment based on the true mean was highehthgayment based on the estimated
mean density counted as an underpayment. This procedurginwakated 1,500 times and the av-
erage absolute error for all 1,500 simulations (either aar-aar underpayment) was found. Lastly,
the difference between average absolute error in paymestdoon the proposed procedure and
the ideal number of samples was found. This is the cost ofgatkio few samples in one lot. This
number was multiplied by 4 to represent the cost of takingémosamples for that day. A similar
procedure was repeated to find the benefit from taking morettteideal number of samples.

Tables4.6, 4.7, and4.8 show the economic impact of simulations that performed t@myn
tests. Whens?(0) = .0002 and.0003, the hypothesis-test-based updates tended to take estsa te
more frequently, take a greater number of extra tests, anel dhigher average number of extra
tests over all days than the smoothing methodology. In Exidithe average number of extra tests
over days that had extra tests were also higher wh&n = .0002, .0003, and.0004. Tables4.9,
4.10, and4.11 display the economic impact of simulations that perfornwal few tests. These
results correspond to times when our procedure recommeatied) fewer tests than should have
been observed based on the true variance of a particularfdagimulation. Here, the smoothing
methodology seems to take fewer tests more frequently dsaséhke more fewer tests than the
hypothesis testing methodology whet{0) = .0002 and.0003.

4.4 Conclusions

Neither method dominates the other. This is not surprisimgabse each method is designed to
perform better in different situations. Figuréd(a), 4.4(b), and4.4(c) show the Total benefit for
each scenario and methodology wheif0) = .0003, .0002 and .0004. Figures5(a), 4.5(b),
and4.5(c) show the Total benefit for each scenario and methodology whgn = .0003, .0002
and .0004. In our simulations, there is a higher total bef@&fithe hypothesis test methodology
than the smoothing methodology whet{0) = .0003 and .0002 than whes?(0) = .0004. Also,
the total cost for the hypothesis testing methodology islothian the total cost for the smoothing
methodology when?(0) = .0002 and higher wher?(0) = .0004. So, in general, it seems that if
the estimate fok?(0) is low, then the hypothesis test methodology is better im$eof economic
impact. In contrast, it seems that if the estimatesfgf) is high, then the smoothing methodology
is better in terms of economic impact.
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Figure 4.5: Total cost with different values f(0).
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Chapter 5

Conclusions

This report describes a procedure to determine how manylsampould be taken to achieve a
user-specified level of accuracy in identifying mean lotsign Inputs to this procedure include
reliability measures (called the cutoff ratio and cutoffmaer) and several estimates based on past
data, which represent the current knowledge about the tre@nndensity. Then the procedure
randomly generates sample density values and updatesithedjgtribution based on this new
sample data. Using the updated prior distribution, the gulace determines the likelihood of the
mean density lying in each of several ranges of density gahi@ are equal in length. Lastly, the
procedure finds the ratio of the likelihood that the mean ifigties in each bin to the maximum
likelihood among all bins. Termination of sampling occutsan the number of bins for which the
ratio of likelihoods is above a cutoff ratio is equal to ordélsan a cutoff number. This procedure
is repeatedly simulated to determine the recommended sasizg.

Analysis of the current sampling procedure and the one werithesin this report determined
that using the sample size recommended by our procedurka@sumore accurate incentive and
disincentive payments than using the current sample siz@af In a simulated scenario based
on representative data, accuracy increased from 47.0% timeleurrent sampling procedure, to
70.6% under the recommended procedure.

In addition, in our procedure, smaller estimates of theararg,s?, result in smaller recom-
mended sample sizes. Put differently, contractors whoderpgance is more consistent are re-
warded because they are required to test fewer samples.oMarehe pay factor schedule still
encourages contractors to perform quality work. Becaud®isf our procedure will encourage
contractors to perform both consistent and high qualitykwor

As mentioned aboves? is a measure of the consistency of a contractor's compaefiont.
Because? is a key input to our procedure, we developed a method famesitig it. Furthermore,
since a contractors level of consistency may change ovex, time also developed methods for
updating the estimate af if a change is detected. Due to the nature of changes in theneay;
two methods were developed - one based on hypothesis tesithgne cased on smoothing.

A comparative analysis of the two methods revealed thaheernethod dominates the other.
This is not surprising because each method is designed torpebetter in different situations.
Moreover, both methodologies result in fairly accurateeimose and disincentive payments. Fig-
ures 4.5(a) to 4.5(c) show that the total cost in inaccurateritive and disincentive payments was
at most $5000 for a project lasting 20 days. Assuming a bickpof $40 per ton and production
guantity of 2000 tons per day, a project lasting 20 days woakt $1.6 million. So inaccuracy of
$5000 is relatively low as a fraction of total project costofdover, even when an inaccurate esti-
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mate ofs? is used, the two methodologies still result in fairly act¢armcentive and disincentive
payments. In summary, implementation of the procedureeptes in Chapter 3 after choosing
rational reliability measures, and estimating and updgditire variance according to methods pre-
sented in Chapter 4, will together result in more accuratentive and disincentive payments.
This approach will also help achieve the original intentsitituting I/D schemes by strengthening
the coupling between contractor performance and its resljpedalties.
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Appendix A
Background — HMA Mixing Process & Tests



Hot Mix Asphalt Mixing Process

Over 90% of roads are paved with HMA (Hot Mix Asphalt) becaiise long lasting, cost
effective, and recyclable. Asphalt is the same as Blackbojcames from Petroleum Oil but
it should not be confused with Coal Tar which comes from cAaphalt comes from refined
crude oil and Asphalt Cement, abbreviated as AC, is a typepiialt) that is used in Hot
Mix Asphalt (HMA). To make HMA, crushed stone, gravel, anthdare mixed with AC
that performs as a glue to hold the aggregates together. This mpaved while hot which
is why it is called Hot Mix Asphalt. The compaction temperatdepends on both the air
temperature and mat thickness and can range fron22@5F. HMA is designed to increase
fuel efficiency of automobiles and reduce traffic build up aehr on roads due to traffic.
Reclaimed Asphalt Pavement (RAP) can be reused in futuik mogtures, which reduces
landfill space and is just as effective as roads paved only matv materials.

The properties of the asphalt cement and the aggregate msenhix are important factors
that determine how well the pavement will perform. The praps of asphalt cement are
found using one of three procedures: penetration and utgarading systems, Superpave
performance grading (pg) system, and temperature-vigcolsaracteristics. The viscosity
grading system measures the viscosity of the AC at 140 dedi@lerenheit. The Superpave
performance grading system tests the performance of thenABei climate in which the
mix will be paved. The temperature-viscosity method meashpw the viscosity in the AC
changes as the temperature changes.

The most important property of aggregate is surface textecause this determines its fric-
tional resistance. Greater friction increases ruttingstaace. The surface texture is mea-
sured in terms of the coarse aggregate angularity (CAA) aredaiggregate angularity (FAA)
tests (see description below). Another important qualityhe aggregate is particle size dis-
tribution, also known as gradation.

Two types of facilities make HMA, called batch and drum fiigis. The key difference be-
tween the two is that batch facilities make mixes in batchwbgreas drum facilities produce
mix in a continuous fashion.

The following mixing procedures are common to both typesaofiities:

— The aggregates are stored in stock piles
— Front end loaders fill a series of bins with aggregate

— Adjustable openings at the bottom of these bins allow agdesm fall onto a conveyor
belt at varying rates which are monitored by computer andbsaadjusted by plant
employees. In addition, plant employees also control whighregates are added to
the mix, how much of each aggregate is added, the speed obtiveyor belt, how
much oil is added to the mix later, and the temperature of the r@omputerized
monitoring allows precise amount of each ingredient to bedus create the HMA
ensuring consistency with the Mix Design Report (MDR) ane pnoduction of the
right quantity needed for the project.



— From the conveyor belt, the aggregate is moved to a dryeravdiggregate mix mois-
ture is removed by heating the mix in a long cylindrical drum

— A burner is located at one end of the dryer, where the aggeegatbles in hot air and
becomes dry and heated

e Batch facilities make mixes in batches

— From the dryer, the aggregate is transported in an elevatbetmixing tower
— The hot aggregate is separated by size and placed intoatiffereigh buckets

— From the weigh bucket, the aggregate is transported to angbiicket which mixes
the aggregate and asphalt cement together until the mirgyr@perly coated

— From the mixer, the mix is either loaded directly into trucksstored in a holding silo
until needed

e Drum facilities make mixes in a continuous stream

— In Drum facilities the drying occurs at the beginning of adarylindrical drum.

— After drying, the mix passes to the other end of the drum whieeeasphalt and RAP
(if needed) are added.

— The mix cannot be placed directly into the trucks becauseikés made continuously.
So the mix is stored in a silo from where trucks pick up the nsixaeded.

e The holding silo stores and keeps the mix heated until itdkgd up. The truck driver drives
the truck under the silo and a plant employee loads the truthk thve desired weight of

HMA.

e Trucks should not have to travel too far between the plantla@gaving site because other-
wise the mix may cool too much in transit and no longer be ahtessary paving temper-
ature.

Purpose of Tests

e Maximum Specific Gravity — Max specific gravity is the ratiotbé mass of loose material
to the mass of water with the same volume as the material atfteagame temperature.
This test measures the volume of the mix without any air volde max specific gravity of
HMA depends on the ingredients used in making the mix. Thalteef this test are used in
calculating air voids (Pa).

e Bulk Specific Gravity — Bulk specific gravity is the ratio ofetimass of compacted material
to the mass of water with the same volume as the material ghd aame temperature. Bulk
specific gravity is used in calculating air voids of compdcamples.

e Asphalt Content (AC) — Asphalt content of HMA has a direceeffon the overall life and
performance of the pavement. Pavement that has too muchlasplnstable and pavement
with too little asphalt is not durable.
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e Gradation — Gradation testing determines the percentagggregate that falls within cer-
tain ranges of size and whether these percentages meetetiicgtions. There are three
different gradation tests one for material that does nas gas# 4 (4.75 mm) sieve, one for
material that passes the #4 sieve but not the #20Q.(@p and one for material that passes
through the #200 sieve. The last test verifies whether therpawt will be susceptible to
frost and/or permeability.

e \0ids in Mineral Aggregate (VMA) — This test verifies whethibere is a sufficient amount
space between the aggregate so that the asphalt can adggoatethe aggregate. Roads
that do not have enough asphalt coating the aggregate tdredéss durable.

e Adjusted Asphalt Film Thickness (Adjusted AFT) — This tessimilar to the VMA test but
recently has been deemed more accurate. This calculatai® between effective asphalt
volume and aggregate surface area.

e Air Voids — This is the percentage of the mix that is made upiopackets. Pavement that
has high air voids is susceptible to stripping, prematuiidaiion, premature deterioration,
and rutting. On the other hand, pavement that has low airsvisigdusceptible to bleeding
and shear flow.

e Fines/Effective Asphalt Content (AC) — This is a ratio betwwéhe percentage of aggregate
that passes the #200 (7/n) sieve and the effective asphalt content.

e Superpave consensus properties

— Coarse Aggregate Angularity (CAA) — This test measures #regntage of coarse
aggregate that is angular (not round). Coarse aggregatgisgate that does not pass
the #4 (4.75 mm) sieve. Mixes with sufficiently angular aggte will have increased
internal friction and be resistant to rutting.

— Fine Aggregate Angularity (FAA) — This test has the same psepas the CAA test
except it is performed on aggregate that does pass throegiitfd.75 mm) sieve.

— Flat and Elongated Particles — This test determines theeptrge of aggregate that
have flat surfaces because aggregate with flat faces can amackreak during con-
struction.

— Clay Content — This test measures how much clay is in the mixte¥\tauses clay to
expand and so too much clay in the mix will lead to poor roadityua

Testing Procedures
e Take sample (about 6000 grams) out of oven once it reache23®@degrees Fahrenheit
¢ Blend the mix by hand

e For the Marshall design, quarter the mix for three Marshalcsmens and one rice specimen



— Load the three Marshall quarters with an equal weight (lgi€ab inches tall and 1200-
12259 of mix) into three Marshall molds that were also heatedven to 275 10
degrees Fahrenheit

— Rice sample is 2000-2050 grams

— Place rice sample in a larger pan and spread it out so thatithis mo larger than the
largest aggregate or as small as of an inch

— Re-blend the leftover material and take an extraction sami2000-2100g which will
be used for the % Asphalt Cement and Gradation tests
e For the gyratory design (which require larger samples)ddithe mix in half

— Load two Gyratory specimens that are each 4800 g and 115mm hB8ight. Also
include a thermometer in the bucket to indicate when the gaxihes compaction tem-
perature (based on pg grade of the sample).

— Replace the specimens in the oven.

— Re-blend the leftover material

— Take out 2000-2050g for rice test (same as above)
— Take out 2000-2100g for extraction (same as above)

e Gyratory Compaction

— Remove thermometer once the mix reaches compaction tetupera
— Place paper at the bottom of mold

— Place mix in mold in one pour so as not to cause segregation

— Place top paper and top plate on top of mix

— Place mold in machine, set the machine for the desired nuaflggrrations and angle.
Push start.

— A ram places pressure on the mix from above while the machpimes she mold and
tilts the mold at a desired angle.

— If needed, leave material to set and cool for a few minutes
— Extract sample, remove top plate, top paper, and bottonrpape
— Set sample in front of fan to cool completely

e Marshall Compaction

— Once mix is at compaction temperature remove from oven andve thermometer
— Set all three molds on machine

— Turn machine on and spade the material 15 times on the oufi€ide the middle, and
then bring the material to a cone

— Turn the machine off
— Put paper on the top of each sample
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— Load hammers, which have been heated on a hot plate (200628a$ Fahrenheit),
on machine and engage safety counter-weight

— Set the machine to the required number of hammer blows fdeted by mix type)
and turn machine on

— The hammers each give a certain number of blows to the migdertiie mold while the
molds spin

— Make sure all hammers had the exact same number of blows

— Turn samples over, remove any mix that might have been |l@okaontate hammers,
and repeat the same number of blows in the same manner orhiresate

— Remove hammers and replace on hot plate

— Remove samples, remove paper from both sides of sample,thel&st side pounded
on each sample with the sample number

— Set samples in front of fan to cool to room temperature
e Maximum Specific Gravity (Rice) Test
— Chop up mix for rice test so that it is smaller than its largegiregate or smaller than

1/4 inch

— Transfer all of the mix into a calibrated container alonghwatscreen that allows the
water to flow freely through the mix

— Weigh the sample in air. The scale used in weighing the sangbleuld be sufficiently
accurate so that the max SpG can be calculated to four deplatas.

— Fill the container withr7 4+ 1.8 degree Fahrenheit water at least a half inch higher than
the mix

— Make sure there are no floating particles. If there are someddinnot be knocked
down by hand, use up to 15 drops of aerosol OT. Aerosol OT istingeagent that
solubilizes, emulsifies, and reduces interfacial tension.

— Place sample in rice apparatus, put top on to seal appatatnsyacuum on until the
sample reaches a vacuum of 30mm of mercury pressure, antutimeon vibrator and
set timer for 15 minutes

— After 15 minutes turn off vibrator, slowly remove vacuunm@ve sample from appa-
ratus, and check for floating particles, knocking them dowvith finger or using any
remaining drops of aerosol OT (recall that the maximum is rbps).

— Carefully place sample on scaleiii + 1.8 degree Fahrenheit water bath
— Set timer for 10 minutes

— After 10 minutes, weigh sample and remove sample from scale

— The max SpG is calculated by:

|\/|aX SpG — m
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where:

A = weight of dry sample in air in grams

B = weight of container in water in grams

C = weight of container and sample in water in grams

e Bulk Specific Gravity

— Marshall specimens

x Bulk all three samples at once

« The test requires a scale that reads to 1/10g, a water bdtis tva+ 1.8 degrees
Fahrenheit, timer for 3-5 minutes, and a damp towel

x Weigh each dry sample in air

x Place samples in water bath for 3-5 minutes, turn off batthecetis no motion,
and weigh each sample under water

x Take less than 15 seconds to roll the samples on the damp temabves excess
water) and weigh each saturated sample in air. This is tfacsaturated dry
weight (SSD).

— Gyratory specimens

x Only bulk one sample at a time

«x Measure dry weight in air

x Place sample in water bath for 3-5 minutes and weigh sampiaiar

x In less than 15 seconds, take sample out, roll on damp towelweigh surface
saturated weight

— The bulk Specific Gravity calculation is:

A
Bulk SPG =

where:

A = weight in grams of the specimen in air
B = weigh in grams, surface saturated dry
C = weight in grams, in water

— The bulk SpG should be recorded to the nearest 0.001 grams.
e Asphalt Content (%AC)
— Wear a face shield, gloves, long sleeve jacket or long steemad apron that are all
appropriate for high temperatures
— Preheat the ignition oven t00 °F
— Weigh the container and lid to the nearest 0.1 gragv@atF or more.

— Pour sample tray and spread it out with a hot spatula. Retayrtd preheat oven until
it reaches a constant mass. Constant mass is achieved véhelnahge in mass of the
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sample and tray does not exceed 0.01% of the original maseatecimen. For ex-
ample, in step 2 check if:

W1l-—-W2

g X 100 < .01% x original mass

If this is not true, repeat until in Step 3:

W2 -W3

3 X 100 < .01% x original mass

Keep repeating until the change in mass is less than 0.01%eairiginal mass. After
constant mass is achieved, weigh the tray and material togheest 0.1 gram. This is
the initial weight of the specimen.

— Place the tray in the ignition oven (recall that it islao0 °F).

— After the burn cycle is complete, remove the tray from thexv&ing safety equipment.
Place the sample in an oven heated3t0 °F. Once the specimen reach&d) °F,
record the weight. The return the tray to the ignition ov&i0( °F) for an additional
15 minutes to ensure constant mass has been achieved. thobmsass has not been
achieved, repeat this step until it is achieved

— Finally, once the tray and sample have achieved constand atasr above300 °F,
weigh the sample and tray together to the nearest 0.1 gram.

— Deduct tray and lid weight from all measurements.
— AC is calculated as:

%AC :wxm()—cf

s

where:

W, = the total weight of aggregate remaining after ignition
W, = the total weight of the HMA sample prior to ignition
C'y = calibration factor, percent by weight of HMA sample

— C'; depends both on the asphalt calibration factor and the gggreorrection factor.
— %AC should be recorded to the nearest 0.01%

e Gradation

— The sieves used in this test are 1.06 in. (26.5 mm), 3/4 in.0(r¥n), 1/2 in. (12.5
mm), 3/8 in. (9.5 mm), #4 (4.75 mm), #8 (2.36 mm), # 16 (1.18 m¥8P (600 M),
#50 (300pm), #100 (15Q:m), and #200 (7m).

— Fine and Coarse Aggregate

x For fine aggregate, this test is performed on aggregate fisaep the #4 sieve but
not the #200 sieve. For coarse aggregate, this test is petbon aggregate that
does not pass the #4 sieve.
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Weigh the sample to the nearest 0.1g. This measurementeuilsbd to calculate
the percentage in each sieve as well as to check for any |dstiada

Nest the sieves in ascending order with the smallest sielediottom. Load the
aggregate into the top of the nested sieves, taking car® mvetrload the sieves.

Place nested sieves in a shaking mechanism

After sieving, remove each tray and record each correspgneeight to the near-
est 0.1g, taking care to remove all material from each tregjuding any material
stuck to the sides or in the sieve openings.

The total weight of the aggregate in each sieve should bemiti3% of the orig-

inal weight (i.e., no more than 0.3% should be lost in thiingsprocess).

— Finer than #200 sieve aggregate

*

*

Take a sample of mix (entire mix, not just mix that passes #t##sieve). Dry the
sample to a constant weight. Weigh the sample to the neadegt@m, this is the
dry weight.

Place the sample into a large container and cover the mlatgtiewater (if nec-
essary, add wetting agent).

Agitate the container so that particles finer than the #28@esare suspended in
the water

Pour the water (not the mix) through a #200 (75gm) sieve.

Add more water to the container and re-pour through the #20@ sintil the water
is clear. Any aggregate remaining in the #200 sieve shoulcelydaced in the
original container.

Place the aggregate remaining in the container into a trdyhaat in an oven,
on an electric skillet, or over an open flame until the sampéxihes a constant
weight. Record this as the new dry weight.

The calculation for percentage passing the #200 sieve is

finer than #200 sieve= x 100

where:

B = Original dry weight of sample in grams

C = Dry weight of sample after washing and drying to constagigt in grams
The percentage passing the #200 sieve should be recordeel nearest 0.1%.

¢ \ids in Mineral Aggregate (VMA)

— This test measures the percentage of this mix that is not oyad&air voids or effective

AC

— VMA is calculated by:

Ps x Gmb

VMA =100 —
00 Gsb

where:
Ps = Aggregate content, percent by total mass of mixture
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Gsb = bulk specific gravity of total aggregate
Gmb = bulk specific gravity of compacted mixture

e Adjusted AFT
— This test is similar to the test for VMA and will eventuallyplace the VMA test be-

cause it is more accurate

— The purpose of this test is to calculate the surface areaeohtjyregate so that an
estimate can be found for the amount of asphalt coating theeggte

— First calculate the aggregate surface area (SA) by:

Sa =2+ 0.02a + 0.04b + 0.08c + 0.14d + 0.30e 4 0.60 f 4 1.60g

where: a, b, c, d, e, f, g are the percentage of aggregatengassough the #4, #8,
#16, #30, #50, #100, and #200 sieves, respectively. Thepege passing through the
#200 sieve should be rounded to the nearest 0.1% and the thstriearest 1%. Recall
that sieve #4 is 4.75 mm, #8 is 2.36 mm, #16 is 1.18 mm, #30 is®00#50 is 300
pm, #100 is 15Qum, and #200 is 7xm.

— Next AFT is calculated by:

Pbe x 4870

AFT = 100 % Ps x 54

where:

Pbe = Effective asphalt content as a percent of the totalur@x870 = Constant Con-
version Factor

Ps = Percent Aggregate in Mixture/100 or equivaleﬁ@%#

Pb = Percent Total Asphalt Cement in Mixture

SA = Calculated Aggregate Surface Area in SF/Ib.

— Finally, Adjusted AFT is calculated by:

Adjusted AFT = AFT + 0.06 x (SA — 28)
e Air Voids
— A ratio of how many air voids are present in the mix
— Air voids are calculated as:

o A
Air Voids = 100(1 — E)
where:
A = bulk specific gravity
B = maximum specific gravity



e Fines / Effective AC

— This test is a ratio of the percentage of aggregate that palsee#200 (75:m) sieve
divided by the effective AC

— The fines/effective AC is determined by:

A
fines/effective AC= ——
ines/effective e

where:
A = percentage of aggregate passing the #200 sieve
Pbe = effective asphalt

Pba x Ps
Pbe =Pb — 100
Pb = percent asphalt in mix
Pba = percent absorbed asphalt
Ps = percent stone in mix (100-%AC)
Gse — Gsb
Pba =100 x m x Gb

Gse = effective specific gravity of the aggregate
Gsb = bulk specific gravity of the aggregate
Gb = specific gravity of the asphalt

100 — Pb
Gse = o0 7%
Gmm Gb

Gmm = max gravity (rice test) of the mix
Pb = percent asphalt in mix

e Superpave — Superior Performing Asphalt Pavement. Folgermus properties are critical
for testing the quality of Superpave

— Coarse Aggregate Angularity (CAA)

«x Ensures a high degree of aggregate internal friction arishgutesistance

x It is defined as the percent by weight of particles retainedhen#4 (4.75 mm)
sieve with one or more fractured faces

x The procedure to determine the percentage varies from tstatate but usually
involves manually counting the stones and visually deteimgiwhether they have
been crushed adequately

x Crushed particles are preferred because they will intkenath each other
— Fine Aggregate Angularity (FAA)
« This also ensures a high degree of aggregate internabfmietnd rutting resistance

x It is defined as the percent of air voids present when the ggtgs that do pass
the #4 (4.75 mm) sieve are loosely packed in a container
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x The sample of fine aggregate is blended and weighed and piotioeadfunnel and
held in place. Then the mixture is allowed to flow into a cytiodl container of
known volume. The cylinder is then weighed to determine theunt of air voids.

x The calculation is: (V-W/Gsb)/V x 100% where V is the knownuroe of the

cylinder, W is the weight of the aggregate, and Gsb is the faggregate bulk
specific gravity. Superpave requirements for FAA are 40-45%

— Flat and Elongated Particles

x Flat surfaced aggregate is undesirable because it can analckreak during con-
struction

x This test is performed on materials retained on the #4 (415 sieve

x A proportional caliper device is used to measure the dinoerdiratio of a sample
of aggregate. The ratio of the longest dimension to the sebdimension should
not exceed 5:1, otherwise the aggregate is considered flatmdfe than 10%
of the aggregate should have more than a 5:1 ratio. If a mig, flie aggregate
content would need to be adjusted

— Clay Content
x Water causes clay to expand. So this test is used to limitrtiauat of clay in the
mix because in excessive amounts clay can harm the qualihegfavement.
x Mix any sand present in the MDR with a sample of aggregatephsses the #4
(4.75 mm) sieve in order to keep the clay content in proportoothe MDR

x Place the mix in a graduated cylinder. Agitate the cylindatilihe ingredients
settle

x Measure the clay and sedimented sand. Then the height oatitkis divided by
the height of the clay and sand (the sand settles to the battmhthe clay settles
in the middle) and then that quotient is multiplied by 100eThay content has a
maximum of 40-50%.
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