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EXECUTIVE SUMMARY 

E.1 Introduction 

Recent natural or man-made disasters around the world have provided compelling evidence that 
transportation systems play a crucial role in emergency evacuation and have stressed the need for 
effective evacuation traffic management to maximize the utilization of the transportation system 
and to minimize fatalities and losses.  This research proposes a framework for real-time 
emergency evacuation management.  As a first step, a theoretical framework for adaptive system 
control is proposed, which involves control updating based on real-world traffic data.  Then, 
computation challenges are addressed by constructing a heuristic framework for real-time 
computations of evacuee routing strategies and intersection control via officer deployment. 

E.2 Model Reference Adaptive Control (MRAC) 

In contrast to well-studied evacuation planning practice, real-time traffic management for 
evacuation aims to dynamically guide (control) traffic flow under evacuation in such a way that a 
certain system objective (e.g. minimization of fatalities or property losses) could be achieved.  
The proposed framework is based on both dynamic network modeling techniques and adaptive 
control theory, by considering traffic networks under evacuation as dynamic systems.  First, a 
prescriptive dynamic traffic assignment model is applied to predict, in a short-term and rolling-
horizon manner, the desired traffic states based on a certain system optimal objective.  This 
model will serve as a reference point for the adaptive control.  Then, the adaptive control system 
integrates these desired states and the current prevailing traffic conditions collected via the 
sensing system to produce real-time traffic control schemes.  Finally, these traffic control 
schemes are implemented in the field to guide the real-world traffic flow toward the desired 
states.  Simulation studies provided in this research (Chapter 2) show that the proposed 
framework based on MRAC can significantly improve the performance of real-time evacuation 
traffic management. 

E.3 Heuristic Framework for Evacuee Routing Computations 

When responding to unanticipated emergency events, time is of the essence.  At an operational 
level, optimal routing may change as traffic dynamics evolve over the course of the evacuation 
process.  The ability to incorporate such changes, in real-time, may have a significant impact on 
reducing the time required to clear the disaster area and, hence, injury and fatality levels.  This 
introduces time constraints for computation of optimal routing strategies.  These computation 
time constraints are addressed by imposing computation time budgets as external constraints to 
determine dynamic system optimal routing.  A heuristic solution algorithm, HASTE (heuristic 
algorithm for staged traffic evacuation), is proposed as an on-line (post-incident) computation 



procedure along with a pre-incident calculations component.  The post-incident component, 
HASTE, is a dynamic assignment procedure, while the pre-incident component creates efficient 
sub-networks to simplify the online dynamic shortest path search operations.  A hypothetical 
evacuation scenario using a real-world network demonstrates the applicability of the proposed 
solution strategy (Chapter 3), which significantly enhances computational efficiency necessary 
for real-time evacuation management.  Under this scenario, the heuristic framework is capable of 
producing results in less than one minute, compared to traditional solution procedures using LP 
solvers that required nearly four hours. 

E.4 Officer Deployment Strategies 

A good evacuee routing strategy is crucial during emergency evacuations.  However, under 
emergency scenarios, signal timing plans optimized for regular traffic conditions could result in 
excessive delays.  To overcome these delays, officers are typically deployed to signalized 
intersections to improve traffic throughput.  But, particularly under a no-notice scenario, the 
number of officers that can be deployed is limited.  To incorporate intersection control, our task 
consists of (i) determining a traffic flow representation scheme for signalized intersections that 
captures signal timing changes, (ii) extending the routing model to include officer deployment 
strategies, and (iii) development of an efficient solution strategy capable of producing high-
quality solutions quickly, where a heuristic framework is developed for quick computation.  This 
is of paramount importance under no-notice evacuations. The heuristic scheme uses genetic 
algorithms to generate officer deployment solutions, while the HASTE is used to approximate 
solution fitness.  A numerical example demonstrates the quality of the heuristic framework 
compared to a solution using traditional techniques (Chapter 5).  Computation times using the 
heuristic framework are also shown to be significantly smaller than those obtained using 
traditional methods.  

E.5 Scenario Testing 

An accurate graph-theoretic representation of a one-mile radius network centered in downtown 
Minneapolis is developed (Chapter 4) with the necessary traffic flow parameters for evacuation 
modeling purposes.  Signal timing parameters based on the different settings used for different 
times of day are also integrated in the model.  Then, a hypothesized emergency evacuation 
scenario is designed to test the tools and algorithms developed in this research (Chapter 6).  The 
scenario involves evacuating vehicles in parking lots and parking ramps around the Hubert H. 
Humphrey Metrodome during the PM peak period.  An area of roughly 0.75 square miles 
surrounding the Metrodome is used.  Comparisons with all-or-nothing traffic assignment (all 
evacuees use the shortest path for their respective origins) are carried out with various officer 
budgets, illustrating the effectiveness of the proposed algorithms, both in terms of solution 
quality and solution efficiency (computation times).  Additionally, various traffic flow fidelity 
levels and various demand levels are compared. 



E.6 Publications 

The work carried out under this project produced one journal article (Liu et. al. 2007), in addition 
to two research papers that were presented at the Transportation Research Board Annual 
Meetings in 2007 and 2009: (Liu et. al. 2007) and (Jabari et. al. 2009), respectively.  The two 
papers are also included in Appendices A and B of this report.  Additionally, the heuristic 
framework developed for evacuee routing computations culminated in a Master of Science 
(M.S.) thesis by Xiaozheng (Sean) He (He 2007). 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction and Background 
Man-made or natural disasters, whether predictable or not, could result in severe losses both in 
terms of human life and property damage.  Emergency evacuation, a mass movement of people 
and their property from disaster-impacted areas to safer ones, has been studied and practiced for 
decades as one means of countermeasures to mitigate these calamitous consequences.  Existing 
evacuation research in transportation has been mostly focused on the planning stage, from 
various perspectives such as traffic management policies  (Theodoulou & Wolshon 2004), 
origin-destination (OD) trip estimation (Mei 2002; Murray-Tuite & Mahmassani 2003; Fu & 
Wilmot, 2004), and behavior analysis (Baker 1991; Helbing et. al. 2000; Fraser-Mitchell 2001).  
Moreover, due to the distinct features of different types of disasters, specific planning models 
have been developed for various evacuation scenarios, including nuclear power plant crises, 
hurricane, flooding, and fire.  For detailed discussions on evacuation modeling for planning, we 
refer to reviews by Southworth (1991); Urbina & Wolshon (2003); and Alsnih & Stopher (2003).  

While evacuation planning is important for emergency preparedness, it hardly gives good 
predictions of future evacuation scenarios due to the highly dynamic and uncertain features 
involved in such extreme events.  Therefore, effective real-time traffic management for 
emergency evacuation is crucial to maximize the utilization of the transportation system and thus 
minimize fatalities and losses.  Past experience has shown that ineffective traffic management 
under evacuation could result in severe traffic jams and life loss.  Hence, there is an urgent need 
for emergency management agencies to be able to manage evacuation traffic efficiently and 
effectively in real-time.  Interestingly, despite a long history of evacuation research in 
transportation, only a few studies have investigated real-time traffic management under 
emergency evacuation (Barret et. al. 2000).  However, these existing real-time models mainly 
rely on dynamic network modeling techniques, which may not be sufficient to capture the highly 
dynamic and uncertain characteristics of traffic flows under evacuation. 

1.1.1 Adaptive Control and Evacuation 

Evacuation traffic flows are highly dynamic.  The “time budget” for evacuation operations is 
usually several hours or a fraction of an hour.  Within this “time budget”, OD demands, evacuee 
behavior, and traffic flows could all change dramatically.  This dynamic nature is further 
exacerbated by evacuee panic, which is not easily predicted.  Furthermore, the effects of a major 
disaster are at best characterized as being probabilistic, and travel behavior is laden with 
uncertainty.  Many travelers do not necessarily have pre-planned destinations; and, even if they 
do, they do not necessarily choose the shortest routes.  In such a highly dynamic and uncertain 
situation, traditional traffic prediction approaches, whether static or dynamic, may not be able to 
accurately predict traffic flow patterns under evacuation.  As a result, one may only ascertain the 
current state of traffic.  Hence, effective real-time traffic management under evacuation is highly 
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dependent on the current traffic states and thus must be traffic adaptive.  This motivates the 
application of adaptive control theory (Astrom & Wittermark 1995) to study traffic management 
under evacuation.  The control based approach is actually more desirable since, compared to 
normal conditions, evacuation is usually a mandatory process and evacuees are more willing to 
follow guidance from officials (Fu & Wilmot 2004).   

1.1.2 Computation Challenges 

An efficient prescriptive dynamic traffic assignment model is critical for effective traffic 
management under emergency evacuation.  Although a number of dynamic traffic assignment 
models have been proposed in previous studies (Li et. al. 1999; Ziliaskopoulos 2000), it is almost 
impossible to apply them for real-time emergency traffic management due to high computational 
cost.  However, for emergency traffic management, particularly under no-notice evacuation, 
computational efficiency becomes essential while a reasonably detailed representation of traffic 
flow dynamics has to be maintained.  By assuming that all evacuees have only one destination 
(the safe area), a prescriptive model may be established as a many-to-one dynamic system 
optimal problem.  Here, a heuristic solution framework that can provide high-quality (near-
optimal) solutions quickly is needed.  The solution strategy should be able to provide evacuee 
routing strategies within seconds to only a few minutes for the results to be useful in a real-world 
evacuation process.  It should also be termination-friendly.  In other words, intermediate 
solutions should be useful, in contrast to traditional solution techniques. 

1.2 Problem Scope and Project Objectives 
In this research, the main aim is to strike a balance between the level of fidelity of traffic flow 
representation in modeling evacuation traffic flows and the computational complexities that 
come with it.  The emergency scenarios in question can be characterized as: (i) scenarios with 
spatial extents that are relatively small in scale (e.g., a one-mile diameter centered in a critical 
location, such as a central business district); and (ii) scenarios that are unanticipated in nature 
(i.e., no-notice emergency evacuations).  While pedestrian evacuation strategies could play an 
important role in such scenarios (Helbing et. al. 2000), this research will focus on vehicular 
traffic.  In particular, two issues will be addresses in the context of minimizing evacuee exposure 
to harm: (i) evacuee routing to safety in the evacuation road network, and (ii) officer deployment 
strategies that aim at improving network throughput.  The overall framework is illustrated in 
Figure 1.1 below. 
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Figure 1.1 Overall Emergency Evacuation Framework 

The small-scale nature of the evacuation scenarios brings with it little luxury in terms of 
abstracting traffic flow details; queue build-up, spill-over, and dissipation phenomena cannot be 
ignored, which brings about computational challenges.  This research will, thus, provide efficient 
solution algorithms that maintain a reasonable level of traffic flow details, which serve as crucial 
components of the overall framework for real-time emergency evacuation shown in Figure 1.1, 
enabling rapid on-line computation and updating as the evacuation process proceeds.  The 
following lists the project objectives and deliverables. 

1.2.1 Project Objectives 

1. To develop a theoretical framework for real-time adaptive evacuation traffic management. 
2. To develop a system optimal prescriptive reference model. 
3. To construct an efficient solution algorithm for the reference model. 
4. To prepare an accurate graph-theoretic representation of the downtown Minneapolis network. 
5. To develop an appropriate model-based traffic representation of signalized intersections. 
6. To model intersection control optimization via placement of limited numbers of police 

officers to guide traffic at critical network locations. 
7. To construct a solution technique to obtain officer deployment strategies. 

1.2.2 Project Deliverables: 

1. A decision support software tool for emergency evacuation traffic management.  In Figure 
1.1, this tool will constitute: (i) static input: a GIS based traffic network centered in 
downtown Minneapolis with an approximate diameter of two miles that serves as a prototype 
system for algorithm testing; (ii) models: a graphical user interface that enables users to 
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interface with the developed models for evacuee routing calculations and officer deployment 
and officer deployment strategies; and (iii) output: graphical displays in the tool window and 
file based outputs. 

2. A final report detailing the work carried out in this project, scenario testing results, a step-by-
step user guide for the software tool, and research papers published and presented at the 
Transportation Research Board Annual Meetings. 

3. Electronic input files for the scenarios tested in Chapter 6. 

1.3 Organization of the Report 
In Chapter 2, a general theoretical framework for adaptive control is presented.  The framework 
consists of three components: (i) a prescriptive short-term prediction model, (ii) a descriptive 
real-world model, and (iii) a model reference adaptive control component that uses output from 
the first two components to provide guidance in a real-time fashion.  The theoretical framework 
is tested using microscopic traffic simulation and shown to work well compared to a typical 
driver route choice scheme.   

Chapter 3 presents the evacuee routing model and solution strategy developed.  A heuristic 
framework is proposed to help with real-time computations and a discussion of the fidelity of 
traffic flow representation in the model is given.  Comparisons with traditional solution 
approaches are also presented.   

Chapter 4 resents the graph-theoretic network modeling paradigm adopted for the downtown 
Minneapolis network along with the main traffic flow attributes needed as input by the model.  
Chapter 5 develops the necessary components needed to model signalized intersections in the 
network and presents the officer deployment algorithm along with numerical computations 
aimed at illustrating the quality and solution efficiency of the proposed algorithms.  Finally, 
Chapter 6 presents scenario tests using the software tools developed in the project and Chapter 7 
concludes this report.   

Mathematical details of the algorithms are not included in the body of the report.  Instead, 
Appendices A, B, and C include the research papers produced in this work and cover, 
respectively, the mathematical details of the models presented in Chapters 2, 3, and 5. 
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CHAPTER 2: ADAPTIVE CONTROL FRAMEWORK FOR 
EVACUATION 

2.1 Introduction 
In this chapter, we present an integrated framework for real-time dynamic traffic management 
under emergency evacuation using model reference adaptive control (MRAC), as depicted in 
Figure 2.1.  To cope with the dynamic and uncertain nature of evacuation traffic, the proposed 
framework adopts the following traffic management paradigm: “observe, evaluate, control and 
advise, cyclically and frequently”, so that the dynamic nature of evacuation traffic can be 
captured and the unpredictable feature of the problem can be alleviated by means of adaptive 
control.  In the MRAC framework, the monitoring system measures real-world traffic conditions, 
the prescriptive model evaluates the current conditions and provides a reference point for desired 
traffic states (from a system objective point of view) to the feedback control system so that 
strategies can be generated to control and advise traffic towards the reference states and achieve 
certain system optimal objectives designated by the traffic management authorities.   

Prescriptive 
Reference Model 

Adjustment 
Mechanism

Controller Descriptive Micro-
Simulation  

(Real World) 

Traffic Monitoring 
System 

Online OD Estimation 

Historical 
Data  

Control Strategy Generator 

Dynamic OD 

System 
Objective  

Parameters 

Dynamic OD

 

Figure 2.1 Framework for Adaptive Control Based Real-Time Evacuation Traffic Management 

This chapter is meant to provide a qualitative description of MRAC.  For mathematical details, 
we refer to the full published paper (Liu et. al. 2007).  The three major components of MRAC 
are briefly presented in section 2.2, while a more detailed discussion of each of the three 
components is given in sections 2.3, 2.4, and 2.5.  A numerical example using micro-simulation 
is given in section 2.6 to compare MRAC to ordinary traffic and optimal routing.  Finally, 
conclusions and future research are presented in section 2.7. 
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2.2 Components of MRAC 
The proposed adaptive control procedure is carried out cyclically and frequently, in a rolling 
horizon fashion.  This framework is in contrast to traditional evacuation models which only 
include descriptive traffic assignment or simulation to test fixed evacuation plans (Moeller et. al. 
1981; Cova & Johnson 2003; and Yuan & Han 2004).  In particular, the MRAC framework 
comprises: 

1. The “prescriptive short-term prediction” model, i.e., reference model, to produce 
simultaneously the target or desired traffic states and perfect control to achieve such states.  
This reference model represents the desired response of traffic under evacuation, based on a 
system objective designated by the traffic management authorities.  Since under highly 
uncertain and panicky driver-behavior, only short-term traffic forecasting is treated as being 
reliable enough, but that is all that is needed for a closed-loop feedback control approach. 

2. The “descriptive real-world” model which will adopt the control strategy (instead of a fixed 
“plan”) for evacuation; by strategy what is meant is a real-time traffic assignment procedure 
that provides, cyclically and frequently, a set of routes and traffic control advisories based on 
feedback of most up-to-date observed traffic states.  We propose to use a microscopic traffic 
simulation model as a representation of “real-world” for the testing and evaluation of this 
framework. 

3. The design of the feedback control system is based on the difference between desired traffic 
states and the reference model and current prevailing traffic states.  For MRAC, the 
adaptation law searches for parameters such that the response of the plant (real-world traffic 
flow) under adaptive control matches that of the reference model, i.e., the objective of the 
adaptation is to get the tracking error to converge to zero. 

Although these three models are key components of the MRAC framework, dynamic OD 
estimation and resource allocation are also important issues.  Current state-of-the-art approaches 
for OD estimation under evacuation heavily depend on historical data and the behavior analysis 
of evacuees.  Usually, the estimation includes two steps (Mei 2002): the total evacuation demand 
estimation and the dynamic OD matrix generation.  The first step uses the so-called 
“participation rate” which is based on survey data from past evacuations (Wilmot & Mei 2003), 
while a loading curve is normally applied for the second step to generate dynamic OD data based 
on behavior analysis of past experience (Tweedie et. al. 1986; Lewis 1985).  In this chapter, we 
will adopt this two step procedure.  However, how to update the OD estimates online during the 
evacuation process based on prevailing traffic states is left for future research. 

Here, we will assume that traffic sensing and control devices can cover all locations “perfect 
sensing and control”.  When the number of devices, such as changeable message signs or traffic 
officers, is limited, then the logistical issues of where and how many devices should be deployed 
become paramount.  In fact, the manner in which these devices are deployed is part of the traffic 
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management strategy utilized, and should be included in the design of the control system.  This 
issue is studied in later chapters. 

2.3 The Prescriptive Short-Term Prediction Model 
In this section, we will depict the prescriptive short term prediction model which generates the 
desired traffic states, e.g. traffic inflows and splitting rates, based on the system objective given 
by the traffic management authorities.  As shown in Figure 2.2, the prescriptive model is a short-
term one and implemented in a rolling horizon manner (Peeta & Mahmassani 1995).  At the start 
of each horizon, the planned control strategies and dynamic OD demands are fixed temporarily 
using the latest estimated ones.  Then the system objective is used to derive the route choice 
condition from which the dynamic route flows can be computed.  These route flows are fed into 
the traffic flow model and the time-dependent in-link flows are finally generated.  During an 
evacuation, the primary goal is that of moving evacuees to safer areas rather than specific 
destinations.  Therefore, the “super zone” concept can be applied in which all the evacuation 
destination zones are connected to a single “super destination zone”. 

 

Route Choice 
Condition 

Traffic Flow Model 

System 
Objective 

Dynamic 
OD 

Planned 
Control 
Strtegies 

Converges? 

No 

Yes 

Control 
Strategy 

Generator 

 

Figure 2.2 Prescriptive DTA model 

The most distinctive feature of the prescriptive reference model from a network-wide perspective 
is that arc capacities can no longer be assumed fixed and known exogenously, but become 
endogenous, as they clearly depend on the amounts of green time assigned to the intersecting 
streets, and such amounts, in turn, depend on the intensity of the traffic flows using those streets.  
In the literature, attempts at integrating equilibrium traffic assignment and intersection control 
into a single modeling framework under the assumption of flow-responsive signal settings have 
resulted in a class of Combined Traffic Assignment and Control (CTAC) models. The work of 
(Allsop 1974) is commonly regarded as the pioneering contribution in this area and the reader is 
referred to (Meneguzzer 1997) for a more recent survey of studies on CTAC. 
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The prescriptive model is a special case of CTAC, but in a dynamic setting.  Under emergency 
evacuation, the prescriptive model aims to produce the target or desired traffic states and to seek 
the traffic control to achieve such states simultaneously.  In an extreme case, we can assume all 
intersections are controlled by traffic officers, and evacuees will follow their guidance.  Then the 
problem becomes that of finding intersection green time splitting rates that achieve a certain 
objective (e.g., to minimize the network clearance time), which can be modeled using non-linear 
programming techniques. 

2.4 The Descriptive “Real-World” Model 
The purpose of the descriptive “real-world” model is to describe, in a short-term fashion, the 
real-world dynamic traffic flow pattern under evacuation as accurately as possible.  Due to the 
complexity of modeling traffic flows under evacuation, various aspects of evacuation modeling 
have been proposed and studied such as OD estimation, behavior analysis, contra flow 
management (Jenkins 2000; Tuydes & Ziliaskopoulos 2006; Lim & Wolshon 2005), and traffic 
network modeling (Barret et. al. 2000; Chiu et. al. 2005).  Here, however, because of the highly 
unpredictable nature of evacuation traffic, we propose to use a microscopic traffic simulation 
model to implement the short-term traffic control strategy at the decision vertices based on the 
splitting rates.  In particular, we adopt one of the commercial microscopic simulation models, 
PARAMICS (PARAllel MICroscopic Simulation), as our evaluation tool.  PARAMICS is a 
scalable and high-performance microscopic traffic simulation package developed in Scotland 
(Smith et al. 1994). To implement the adaptive control strategies, the capabilities of PARAMICS 
have to be extended to enable its use.  Particularly, a route choice model is developed based on 
the splitting rate (generated by the controller) at each intersection.  This will be accomplished 
using the PARAMICS Application Programming Interface (API) library through which users 
could customize and extend many features of the underlying simulation model (Chu et. al. 2002). 

Ideally, if traffic officers can be deployed at each intersection to guide the traffic under 
evacuation, the proposed descriptive model will be straightforward – traffic flows diverge at each 
intersection according to the designated splitting rate.  This is the so-called “rigid control”.  Then 
using the micro-simulation model, the actual traffic states can be represented.  However, in 
reality, two issues invalidate such an ideal scenario.  First, besides “rigid” control, there are 
many other “soft” traffic controls such as traffic advisory radio and changeable message signs, 
etc.  We need to consider the compliance of evacuees towards these control strategies.  This is 
because soft controls cannot strictly divert the traffic (according to the desired splitting rate) and 
thus a certain compliance rate has to be imposed.  Therefore, issues related to driver compliance 
need to be investigated.  The second issue is due to resource limitations: it is possible that control 
devices can only cover a portion of the network intersections, rather than all of them.  This will 
raise a resource allocation problem (Ibaraki 1988); namely, under resource limitations, which 
device should be deployed at which intersection?  Detailed discussions regarding compliance and 
resource allocation are left for future research. 
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2.5 Model Reference Adaptive Control 
The MRAC system produces real-time traffic control strategies (particularly, the splitting rate at 
each intersection), based on the difference between the desired traffic states from the prescriptive 
reference model and prevailing traffic states from the descriptive “real-world” model.  For 
MRAC, the desired behavior of the system is specified by a reference model, and the parameters 
of the controller are adjusted based on the error, which is the difference between the outputs of 
the closed-loop system and the model.  Therefore, the system has an ordinary feedback loop 
composed of the plant and the controller and another feedback loop that changes the controller 
parameters (Slotine & Li 1991). 

In transportation, feedback control theories have already been applied in dynamic network 
modeling (Kachroo & Ozbay 1998 and 1999; Papageorgiou 1990; Hawas & Mahmassani 1995; 
Mammar et. al. 1996; Pavis & Papageorgiou 1999; Wang et. al. 2003).  However, due to the fact 
that traffic flow under evacuation is highly dynamic and uncertain, the parameters for designing 
the feedback controller may not be determined easily and have to be adjusted accordingly in a 
timely manner.  Therefore, in contrast to all previous studies, we explicitly introduce a 
prescriptive reference model, which represents the desired behavior of the system, to adjust the 
controller parameters dynamically and better guide traffic.  The objective of the adaptation is to 
make the tracking error converge to zero. 

As depicted in Figure 2.3, the two major components of an MRAC system are shown; namely, 
the ordinary feedback controller and the adjustment mechanism.  The feedback error, which is 
the difference between the output of the system (i.e. arc inflows or splitting rates from the 
descriptive “real-world” model) and the output of the reference model (i.e. arc inflows or 
splitting rates from the prescriptive model), can be used for changing the parameters.  The 
mechanism for adjusting the controller parameters for MRAC can be achieved in two ways: by 
using a gradient method (used here) or by applying the stability theory. 

 
Adjustment
Mechanism

Feedback 
Controller 

 

Descriptive 
Model 

Prescriptive 
Model Controller parameter θ  

System Objective 

 

Figure 2.3 MRAC Model for Generating Traffic Control Strategies 

For details regarding the inner-workings of the MRAC framework, we refer to (Liu et. al. 2007). 
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2.6 Numerical Example 
To test the performance of the proposed adaptive control based evacuation framework, an 
example network was built based on a portion of traffic network of the City of Logan, UT, for 
the purpose of flooding evacuation.  The micro-simulator we chose is the Paramics V5.  The 
network shown in Figure 2.4 is a well calibrated network coded in Paramics.   

 

Figure 2.4 The Logan Test Network 

The network has 71 vertices and 148 arcs with six origin zones on the right and one super 
destination zone on the left.  We assume the vehicles are safe once they arrive at the destination 
zone.  One-hour demands with a 10 minutes warm-up period are assigned to the network to 
represent the demand pattern during evacuation. 

To obtain the dynamic OD matrix, a two-step procedure is followed. First, the population 
distribution for the test area is obtained from the City of Logan.  Based on this data, the total 
evacuation demand for each origin zone is estimated.  Then, a departure curve is assumed in 
order to simulate the departure time choice of evacuees. 

For comparison purposes, we utilize three performance measures: (i) the total system travel time, 
(ii) the network clearance time, and (iii) the number of victim vehicles, in our simplified 
framework implementation.  The clearance time is the time for the last evacuee arrives to safety.  
The number of the victim vehicles represents the number of vehicles that are still present in the 
network after a certain time budget. 

The performances of three scenarios are computed and compared.  These scenarios include the 
dynamic system optimum (DSO), the MRAC control scheme, and stochastic route choice 
implemented in PARAMICS.  The DSO is the best possible performance we can obtain in real-
world evacuation.  The MRAC scheme is the evacuation scenario resulting from our proposed 
control strategy, while the stochastic route choice represents the actual evacuation without the 
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proposed MRAC control.  Figure 2.5 depicts a comparison of total travel time for the three 
scenarios.  It is obvious from the figure that at the very beginning of the evacuation, the results of 
the MRAC scheme are far from the DSO.  However, as the evacuation proceeds, the controller 
will guide the real-world evacuation process towards the DSO states; the MRAC and DSO 
curves get closer as illustrated in the figure.  We can also see from the figure that, without 
adaptive control, the stochastic route choice scenario will be far away from DSO states 
throughout the entire evacuation process. 
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Figure 2.5 Comparison of Total System Travel Time 

Table 2.1 further shows the clearance times and number of victim vehicles for each scenario.  
Note that the time budget for computing the number of victim vehicles is set to 65 minutes, the 
clearance time of the DSO.  It is obvious from this table that the proposed MRAC control 
scheme can generate shorter clearance times and less victim vehicles than traditional stochastic 
route choice.  These preliminary testing results demonstrate the benefits of applying the MRAC 
control scheme in actual traffic management under emergency evacuation. 

Table 2.1 Clearance Times and Victim Vehicles 

 DSO MRAC Stochastic 
Clearance Time (min) 65 84 92 

Victim Vehicles 0 630 917 
 

2.7 Concluding Remarks and Future Study 
In this chapter, a model reference adaptive control (MRAC) framework was proposed for real-
time traffic management under emergency evacuation, with a prediction model to generate 
desired traffic states to achieve optimized system objectives, a real-world traffic model to 
simulate actual evacuation traffic flows, and an adaptive control model to produce actual traffic 
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control schemes. In contrast to previous planning models, the proposed framework aims to 
operate in a real-time, dynamic, and feedback based fashion so that current prevailing traffic 
states can be utilized to more effectively guide traffic under evacuation.  Simulation studies 
showed that the proposed framework can significantly improve the performance of traffic 
management under evacuation. 

For future study, a number of research directions can be identified based on the current 
framework and our simplified implementation.  First, we assumed perfect and rigid control in the 
simplified framework.  However, in reality, soft control devices are widely deployed, e.g. VMS, 
HAR, etc.  The compliance rates of evacuees given these technologies remains a crucial and 
challenging question, particularly foe complicated traffic conditions under evacuation. 

Secondly, this framework assumes that the dynamic OD demand matrix is given and fixed 
during the entire evacuation process.  Due to highly dynamic features of evacuation, dynamic 
OD demands will very likely change as the evacuation process evolves.  With the traffic 
monitoring and sensing system in place for the proposed MRAC framework, prevailing traffic 
information, especially real-time traffic volumes, is expected to be available during the 
evacuation process.  Therefore, there is potential for dynamic updating of evacuation OD 
demands based on real-time traffic data. 

Last but not least, the proposed framework is a unified one which can be applied for all 
evacuation scenarios.  However, due to the distinctive characteristics of different types of 
evacuation, the proposed framework needs to be further tailored to better fit into various 
evacuation scenarios. 
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CHAPTER 3: EVACUEE ROUTING: MODEL AND SOLUTION 
STRATEGY 

3.1 Introduction 
Ground transportation systems play a central role during evacuation processes.  As responding to 
unanticipated (no-notice) events, such as terrorist attacks, directly involves human life, the 
ability to determine optimal routing strategies, in a timely fashion, is crucial.  Unlike predictable 
emergency scenarios like hurricanes, the size and nature of impact of no-notice events cannot be 
anticipated.  This dictates adopting measures of a responsive nature and with very little luxury in 
terms of time to develop routing and control strategies.  Additionally, explicitly considering 
queuing delays may significantly help reduce the time required to clear the disaster area; 
updating routing strategies in accordance with traffic flow characteristics during the evacuation 
process may be necessary.  This further emphasizes the importance of time constraints on 
carrying out calculations under such scenarios.  While several papers have formulated dynamic 
system optimized models for emergency evacuation (Li et. al. 1999; Ziliaskopoulos 2000; Shen 
et. al. 2007) and addressed planning aspects of emergency evacuation processes (Southworth 
1991; Urbina & Wolshon 2003), to the best of our knowledge, very little work in the literature 
addresses computational time constraints. 

Time constraints are indispensable from traffic routing models in evacuation management 
systems.  Because of the existence of time windows that dictate whether system controls could 
be successfully deployed, routing models should be capable of providing instructional solutions 
within that time window.  Here, the key question is: what types of strategies are needed when 
computation time constraints are explicitly introduced?  In theory, any dynamic traffic 
assignment (DTA) model could serve as a prescriptive routing module for real-time applications.  
In reality, only those models with the ability to process the reference traffic pattern within the 
designated time window can be applied within a rolling time horizon framework.  Thus, the 
importance of solution strategies for time constrained evacuation traffic routing models. 

  

 

Figure 3.1 Framework for Improving Computational Efficiency 
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Figure 3.1 illustrates two general directions for determining dynamic system optimized (DSO) 
routing strategies that address time constraints. The first direction considers the tradeoff between 
computational speed and the fidelity of traffic flow representation. Since accurate traffic flow 
characteristics need to be captured in evacuation models, excessive fidelity reduction is not 
recommended.  The second direction identifies potential computation time savings by means of 
improving solution procedures, where heuristics may be adopted in both online and offline 
processes. 

In this chapter, we propose a heuristic approach for determining dynamic system optimized 
(DSO) routing that addresses time constraints that come with no-notice evacuation scenarios.  
The heuristic consists of two components, a pre-incident computations component and a post-
incident computations component.  Pre-incident calculations can serve as an offline process that 
stores sub-networks for use after the event takes place and reduces shortest path search 
operations carried out by the post-incident component.  The post-incident component serves as 
an online process and determines routing strategies, which guarantees effective solutions within 
the time budget and allows for sufficient control deployment time.  Another direction that could 
be employed to improve computation complexity is to reduce the fidelity of traffic flow 
representation.   

The remainder of this chapter is organized as follows: section 3.2 describes the dynamic system 
optimum routing model used in this study.  Section 3.3 introduces the heuristic solution 
framework used to overcome computation complexities of the DSO; sections 3.4 and 3.5, 
respectively, discuss in further detail the pre-incident and post-incident computation components 
of the proposed framework.  Computation efficiency, solution quality, and other components of 
the proposed framework are illustrated by means of a numerical example in section 3.6.  We 
close this chapter with concluding remarks and some potential future research directions in 
section 3.7. 

3.2 DSO Model: Background and Description 
Because of the dynamic nature of evacuation routing problems and high demand levels on 
transportation infrastructure during evacuation, hence congestion, dynamic traffic assignment 
(DTA) models (Peeta & Ziliaskopoulos 2001) have found a niche in evacuation traffic 
management.  The mathematical model adopted in this research is based on formulations 
proposed in Li et al. (1999) and Ziliaskopoulos (2000) for single destination based DSO, which 
adopts the cell transmission model (CTM) for traffic flow representation (Daganzo 1994 and 
1995).  Their linear programming DSO models divide the network into three specific types of 
cells: ordinary cells with one upstream cell and one downstream cell; diverging cells, which 
connect one upstream cell with multiple downstream cells; and merging cells having multiple 
upstream cells and one downstream cell.  We refer to Appendix A for a detailed presentation of 
the mathematical model. 
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In addition to DSO based models, evacuation problems have been formulated using different 
approaches.  For example, Miller-Hooks and Patterson (2004) formulated evacuation traffic as a 
dynamic earliest arrival flow problem, and Mahmassani and Sbayti (2005) proposed a 
formulation for dynamic capacity reallocation for evacuation. 

Safe zones, to which evacuees are guided under evacuation operations, constitute any part of the 
network that lies outside of the disaster area.  The safe area can, thus, be modeled as a single 
virtual super destination zone (Chiu et al. 2005), which simplifies the DSO model to a many-to-
one problem as in Sheffi and Daganzo (1979).  With this simplification, the first-in-first-out 
(FIFO) discipline is simply dependent on the departure time (or arrival time) as proven by 
Kuwahara and Akamatsu (1993) and Akamatsu (2000).  Time-constrained optimization 
problems, optimization problems with computation time constraints, although popular in 
computer science literature (Wall et al. 1992; Mercer et al. 1994; Jones et al. 1996 and 1997; 
Nieh and Lam, 1997), have not received much attention in transportation literature for 
evacuation studies. 

The objective in the adopted formulation aims to minimize the total system travel time, which 
was modified to allow for assigning varying weights to different network origins (sources or 
evacuee concentration locations).  The body of the formulation includes flow conservation and 
flow restriction constraints imposed by the CTM.  We also imposed an exogenous computation 
time budget constraint to allow for incremental results to be provided in online applications. 

3.3 Heuristic Solution Methodology 

3.3.1 Online and Offline Computations 

Due to high computation costs that come with simplex based and interior point method based 
solutions, commercial LP solvers are undesirable.  For this reason, we developed a heuristic 
approach to approximate a system optimal routing strategy.  On one hand, we propose reasonable 
ways to reduce the problem size arising from the dynamic features of the time-constrained DSO 
model, so that the problem can be solved within the time budget.  On the other hand, noticing 
that there is infinite computation time available for evacuation planning before the event takes 
place, heuristics can utilize this unlimited time budget to do preparation calculations that reduce 
the online process computation burden.  Therefore, part of the computational cost in the DSO 
model can be transferred to some offline processes.  This heuristic framework is illustrated in 
Figure 3.2 
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Figure 3.2 Heuristic Solution Strategies in Evacuation Traffic Assignment 

3.3.2 The Length of the Discrete Time Interval and Traffic Fidelity 

For a more detailed traffic dynamics representation, a shorter discrete time interval length may 
be used.  This time interval length determines how often the traffic flow pattern is updated, the 
numbers of cells needed to represent the network flows, and the cell characteristics.  In other 
words, a shorter time interval length provides more detailed traffic information but divides the 
network into more cells, which in turn results in larger problem sizes. 

In addition to increasing the discrete time interval length, fidelity reduction may be achieved by 
combing multiple small cells into larger ones, i.e. adopting a variable-cell-length based CTM 
approach (Ziliaskopoulos & Lee 1997; Muñoz et al. 2004; Ishak et al. 2006; Liu et al., 2006). 

3.4 Pre-Incident Computations 
One of the major computational components of the proposed heuristic framework is the shortest 
path search.  Since the temporal dimension of the problem cannot be simplified, one approach to 
simplify the problem is by reducing the problem size spatially, or in other words to eliminate 
vertices (intersections) from the network that are not likely to be used by any of the shortest 
paths.  For evacuation scenarios where structures to be evacuated are near the boundary of the 
safe area, arcs located in remote parts of the evacuation network will most likely not be included 
in any of the evacuation routes although they will be examined as part of the shortest path search.  
Hence, eliminating such arcs from the network for those particular sources may have a 
significant impact on computational efficiency.  Here, the concept of an efficient sub-network 
may be utilized to improve computational efficiency.  Structures known to house events that 
attract large numbers of people, such as sporting stadiums, may be identified as locations where 
determining sub-networks offline may save computation time should evacuation scenarios arise. 
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An efficient sub-network is defined here as a network that: (i) only includes acyclic paths, (ii) 
includes vertices that either take flow farther away from the origin or closer to the super-sink, or 
both.  This gives rise to four different types of sub-networks that vary in size: a) origin-efficient 
sub-networks, which only include arcs that always take flow farther from the sources, but not 
necessarily closer to the super-sink; b) destination-efficient sub-networks, which only include 
arcs that bring flow closer to the super-sink, but not necessarily farther from the sources; c) 
origin-and-destination-efficient sub-networks, which only include arcs that both take flow farther 
from the sources and closer to the super-sink; and d) origin-or-destination-efficient sub-
networks, which include arcs that either take flow farther away from the origin or closer to the 
super-destination. 

The important distinction between these different types of sub-networks is their size; while 
origin-efficient and destination-efficient may result in equivalent sub-network sizes, origin-and-
destination-efficient sub-networks are much more restrictive in terms of arcs included; and 
origin-or-destination-efficient sub-networks are much less restrictive resulting in larger sub-
networks.  As traffic flow situations evolve in the network during the evacuation process, arcs 
that were considered inefficient may become efficient, resulting in new paths that could be used.  
This means that effective sub-networks, determined offline, may require updating online during 
the evacuation process.  Larger sub-networks require less online updating, if any, than smaller 
ones; here, a tradeoff arises between the type of sub-network used and computation complexity 
that may vary dramatically depending on network topology, demand levels, evacuation type, and 
so on.  Nonetheless, reducing the spatial dimension of the network may still have a significant 
impact on computation time. 

Determining the sub-network is a static procedure carried out using a simplified version of Dial’s 
assignment algorithm (Dial 1971; Sheffi 1985), where instead of computing “arc likelihoods” 
and probabilistic flows, we employ an arc flagging process.  At the end of the algorithm, arcs 
with flags = 0 are eliminated in the sub-network and arcs with flags = 1 are included.  We refer 
to Appendix A for algorithm details.  

3.5 Post-Incident Computations: HASTE 
To reduce system travel time, the basic idea is that through departure rate control, travelers will 
use the same facilities at different times to avoid delay.  We, thus, refer to this procedure as a 
heuristic algorithm for staged traffic evacuation (HASTE).  HASTE fully utilizes available arc 
capacity on shortest paths but attempts not to exceed it.  Therefore, arc capacities along dynamic 
shortest paths are updated for different evacuee groups at different times. 

To achieve near-system optimal states, HASTE employs the concept of store-and-forward 
proposed by Gazis (1974) and D’Ans & Gazis, (1976), to mimic the traffic dynamics under 
evacuation.  Maximizing the number of people evacuated at each time step has a close 
relationship with the dynamic maximum flow problem.  Liu et al. (2006) provided a rigorous 
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proof that shows that the CTM-based DSO problem formulation is equivalent to a dynamic 
maximum flow problem.  Because of this close relationship, the evacuation traffic assignment 
problem may be seen as one with the ultimate goal of fully utilizing available network capacities 
at each time interval represented by the store-and-forward movements.  When the evacuation 
traffic fully utilizes network bottleneck capacity, no available capacity for management can 
further improve traffic performance, based on current network topology.  Possible further 
improvement may only rely on the capacity expansion, e.g. contra-flow implementation 
(Theodoulou & Wolshon 2004; Tuydes & Ziliaskopoulos 2006). However, in dynamic 
evacuation traffic assignment, network bottlenecks change with time and are very difficult to 
capture.  One possible way to apply this idea is to consider the capacities of the arcs on the 
disaster-impacted area boundary, instead of the arcs of the network bottleneck.  Thus, HASTE 
may be classified as a greedy algorithm, which attempts to maximize capacity usage on the 
boundary arcs.  Each step, groups of evacuees that can utilize network bottleneck capacities are 
assigned.  Since the evacuation objective is to minimize the clearance time or minimize total 
system travel time, the evacuee groups need to be assigned to time-dependent shortest paths, 
such that they arrive at the destination (or the boundary arcs) as soon as possible.  Also, because 
we wish to maximize capacity usage on the boundary arcs, we may first assign evacuees closer 
to the boundary of the disaster-impacted area.  A similar approach, but with static capacity 
constraints, i.e. static bottlenecks, was proposed by Lu et al. (2005). 

Finally, due to the fact that traffic assignment is based on the CTM, HASTE needs to consider 
arc capacities and flow propagation dynamics.  Therefore, determining the numbers of evacuees 
assigned to dynamic shortest paths should satisfy flow conservation and flow restriction 
constraints.  The number of evacuees, departing as a group, represents the bottleneck of the 
dynamic shortest path, and part of the network bottleneck capacity as well.  This is done so that 
HASTE can mimic the system objective of maximizing the traffic throughput in the evacuation 
network. 

In summary, HASTE utilizes a greedy algorithm concept, considers the bottleneck flows on 
dynamic shortest paths, and assigns the evacuees in an order that depends on their distances from 
the boundary (or depending on demand level), to achieve the system objective of maximizing the 
number of evacuees arriving at each time interval.  If better arrival rates at the boundary arcs 
cannot be obtained at each time interval, the dynamic traffic assignment solution is optimal.  
Figure 3.3 summarizes HASTE.  A more detailed flow chart is provided in Appendix A. 
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Figure 3.3 Summary of HASTE Procedure 

3.6 Numerical Example 
To test HASTE, a hypothetical no-notice evacuation scenario is assumed in a 0.5-mile radius 
network in downtown Minneapolis, Minnesota; the network consists of 156 vertices and 376 
arcs.  Figure 3.4 is a map of downtown Minneapolis highlighting the disaster impacted area and 
Figure 3.5 is the skeleton arc-vertex network with centroids demands.  The evacuation scenario 
includes 17 origin zones with a total demand of 15,977 evacuees.  This data is based on the 
afternoon peak hour volumes extracted from the Twin Cities Metropolitan Council planning 
model for the year 2000. 
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Figure 3.5 Skeleton Network 

To illustrate reduction in network size, an origin-or-destination-efficient sub-network (least 
restrictive) for an origin located near the boundary of the network reduces the network size by 20 
vertices, i.e. to 151 vertices, and 168 arcs, to 208 arcs.  Considering the fact that HASTE runs a 
shortest path search for each group of evacuees, this reduction in network size can result in 
significant computation time savings.  This example is illustrated in Figure 3.6 below, where 
Figure 3.6(a) illustrates the original network which mostly consists of bi-directional arcs and 
Figure 3.6(b) illustrates the sub-network with the red circle representing the origin zone. 

             

             (a) The Original Network                               (b) The Efficient Sub-network 

Figure 3.6 Original and Efficient Sub-Networks for a Particular Origin 
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Before we apply the solution methods to the problem, we need a cell based representation of the 
network.  First, we provide three levels of traffic fidelities; the high level traffic fidelity with a 
three-second discrete time interval length; the medium level traffic fidelity with a six-second 
discrete time interval length; and the low level traffic fidelity with a 15-second discrete time 
interval length.  With high level traffic fidelity traffic flow propagation can be captured with 
little approximation error.  However, a low level traffic fidelity network results in distorted arc 
lengths because free flow arc travel times in urban areas may be smaller than 15-seconds for 
shorter downtown arcs. 

These three different levels of traffic fidelities generate different cell-based networks.  The high-
level-fidelity network results in a larger problem size but captures more traffic flow information 
in the network.  The problem sizes are presented by the numbers of constraints and variables in 
the DSO model.  These numbers are summarized for a one-hour evacuation time window in 
Table 3.1. 

Table 3.1 Problem Sizes by Traffic Fidelity Level 

 Cells (No.) Time intervals (No.) Variables (No.) Constraints (No.)
High Fidelity 894 1,200 9,252,801 2,932,401 

Medium Fidelity 803 600 4,526,401 1,866,201 
Low Fidelity 794 240 623,872 1,466,608 

All three fidelity levels result in very large problem sizes.  Hence, using traditional solution 
techniques is out of the question.   

For comparison purposes, both an LP solver solution (CPLEX provided in GAMS) and HASTE 
are implemented to generate the dynamic evacuation traffic assignment patterns.  The final 
solutions given by CPLEX and by HASTE are summarized in Table 3.2.  All computational 
implementations were conducted on a personal computer with a single 3 GHz Xeon Processor 
and 2 GB of RAM. 

Table 3.2 Comparing DSO Solutions, HASTE vs. CPLEX 

 

CPLEX Results HASTE Results 
Computation 

Time 
Clearance 

Time 
Computation 

Time 
Clearance 

Time 
High Fidelity -- -- 42 sec 46.95 min 

Medium Fidelity -- -- 17 sec 47 min 
Low Fidelity 14,149 sec 36.50 min 11 sec 48.25 min 

The dashed lines in Table 3.2 mean that a result could not be produced with the given processing 
power and physical memory used.  Figure 3.7 below shows the aggregate arrival rates at the 
super-sink from all zones in the network. 
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Figure 3.7 Evacuee Arrival Curves 

When examining the CPLEX result in Figure 3.7, we see that, for the most part, it maintains a 
consistent arrival rate.  This can be explained by the fact that there exists a network bottleneck 
capacity, as discussed above, and a system optimized solution fully utilizes this capacity so as to 
minimize the clearance time (or maximize the network throughput).  We also see that the 
heuristic solutions, despite different discrete time interval lengths, results in similar arrival rates 
over the evacuation process.  The figure also shows that HASTE also provides very close 
matches to the optimal solution for the majority of the evacuation process, but taper off towards 
the end.  The reason for this is that the greedy nature of the procedure does not consider marginal 
costs, but rather assigns all groups to dynamic shortest paths.  Despite the 32% difference 
between the heuristics and the optimal solution in total network clearance time, the computation 
time savings shown in Table 3.2 make HASTE an attractive alternative.  It takes nearly four 
hours for an LP solver solution for an evacuation time window of less than one hour, as opposed 
to less than one-minute for various network fidelity levels using HASTE. 
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3.7 Concluding Remarks and Future Research 
This chapter proposes solution strategies for solving time-constrained optimal routing problems 
for real-time no-notice emergency evacuation operations.  A time-constrained DSO model using 
a cell-based network representation was adopted.  The nature of no-notice evacuation scenarios 
dictates external computation time constraints that may have a significant impact on evacuation 
operations in real-world settings.  Due to the large size of the DSO linear program, commercial 
linear programming solvers do not serve as good because (1) LP solvers generally are not 
efficient for solving DSO problems, (2) they cannot provide reasonable results if they are 
arbitrarily terminated, and (3) LP solver solutions only provide arc/cell volumes, but not routes, 
which means that additional processing would yet be required in order to obtain results that are 
meaningful to decision makers. 

The proposed solution procedure consists of pre-incident and post-incident heuristics.  Pre-
incident computations include efficient sub-network determination to help reduce the size of the 
problem spatially.  This is particularly useful for real-world no-notice scenarios that include 
sizable evacuation networks.  The post-incident computations help determine evacuee departure 
rates, time schedules, and dynamic shortest paths that evacuees should use.  Although the 
proposed heuristic approach only provides close-to-optimum solutions to the DSO model, its 
high computational efficiency and termination-friendly feature make it outperform any 
commercial LP solver solutions.  Numerical examples validate this statement. 

The quality of the solutions produced by HASTE in this study was demonstrated by means of 
example.  A thorough study of the quality of solutions produced by HASTE, in terms of bounds 
and deviation from optimality as a function of problem dimensions, is left as future research.  
HASTE is primarily a routing algorithm; intersection control strategies using HASTE are 
developed in subsequent chapters, while signal timing optimization is left for future research. 
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CHAPTER 4: THE DOWNTOWN MINNEAPOLIS NETWORK 

4.1 Introduction 
For evacuation purposes, specifically no-notice evacuations over relatively small radii, it is 
crucial that the graph theoretic representation of the transportation network be accurate.  
Transportation network studies typically rely on readily-available representations used for metro-
wide planning purposes.  Metro-wide demand planning models employ a great deal of 
simplification, since a great deal of accuracy is not needed for static four-step planning 
procedures.  In this study, an accurate graph theoretic representation is developed for purposes of 
dynamic evacuation planning and operations analysis. 

Network geometric parameters were determined using the Lawrence Group (TLG) database, 
maintained by MetroGIS, a GIS database of the Twin Cities roadway network.  The Twin Cities 
Metropolitan Council planning demand model and the Highway Capacity Manual (HCM) were 
used as the primary data sources for aggregate level traffic flow parameters such as capacities, 
free-flow speeds, and jam densities.  The proposed models for vehicle evacuation rely on a 
mesoscopic level dynamic representation of traffic flow, which routes groups of vehicles as 
packets through the network over discrete time slices.  This level of representation allows for 
direct use of the traffic flow parameters, as opposed to a microscopic level representation 
(individual vehicles), which would require a thorough calibration procedure to reproduce the 
aggregate level traffic flow parameters.  Additionally, typical day-to-day demand and traffic 
volume patterns are not representative under emergency evacuation scenarios, and due to the 
adopted definition of safety in the network as being any part of the network outside of a 
particular radius, a thorough origin-destination matrix estimation process is not needed.  
Furthermore, in this project, it is desirable to allow for flexibility in the demand levels and 
locations in order to model varying emergency evacuation scenarios; for this purpose, the 
developed network model will allow for any point in the network to be defined as an origin or 
evacuee concentration point. 

This chapter highlights the development of a one-mile radius network model for downtown 
Minneapolis, its attributes, traffic flow parameters, signal timing parameters, and the conversion 
process to a cell transmission model based network for mesoscopic traffic flow representation.  
Section 4.2 of this report provides a brief introduction to graph theoretic representations of road 
networks defining the relevant concepts to this research.  Section 4.3 presents the detailed 
geometric attributes of the elements of the model and the data sources used to develop the model.  
Section 4.4 discusses the traffic flow parameters of the model and section 4.5 briefly discusses 
the signal timing parameters.  Section 4.6 presents the transformation of the graph theoretic 
model into a discrete cell transmission based network. 
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4.2 The Graph Theoretic Representation 
A graph G = (V, E) is a structure that is defined by two elements, a set of vertices V and a set of 
edges E, where vertices can be thought of as the corners of the graph, while edges are objects 
that connect pairs of nodes; see Figure 4.1 below for an example.  Note that the order in which a 
pair of vertices appears, to represent an edge, is not important; i.e., [v1, v2] and [v2, v1] refer to the 
same edge.  Graphs are used to model pair-wise relations between the different objects in the 
graph; e.g. the number of edges emanating from a particular vertex, the distance between two 
adjacent vertices (represented as the length of the connecting edge), and the shortest path from 
one vertex to another. 

The degree of a vertex v of graph G is the number of edges connected to v.  For example, in 
Figure 4.1, the degree of vertex v1 is 2, and the degree of vertex v2 is 3. 

 
Figure 4.1 Graph G = (V, E) 

A directed graph, or digraph, D = (V, A) is a graph with directions attached to its edges.  
Directed edges are typically referred to as arcs; here, the set of arcs is denoted by A.  An arc is 
represented by an ordered pair of vertices; i.e. (v1, v3) and (v3, v1) do not refer to the same arc.  
An example of a digraph is shown in Figure 4.2 below.  It is worth noting that vertices are 
sometimes referred to as nodes and arcs as links; the terminology is interchangeable in many 
references.  In a digraph, there are two types of degrees of a vertex v, in-degree and out-degree, 
which correspond to the number of arcs terminating in v and the number of arcs that emanate 
from v, respectively.  For example, the in-degree of vertex v1 in Figure 4.2 is 1 and its out-degree 
is 2; the in-degree of v4 is 2 and the out-degree is 0. 

e5 

e4 e2 

e1 

e2 

v1 v2 

v3 v4 

V = {v1, v2, v3, v4} 
 
E = { [v1, v2], [v1, v3], [v2, v3], [v2, v4], [v3, v4] } 
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Figure 4.2 Digraph D = (V, A) 

In a graph, a sequence of vertices connected by edges is a path.  The same applies to paths in 
digraphs, but with the arc directions considered.  Two examples of paths connecting vertex v1 to 
vertex v4 in the digraph in Figure 4.2 are (v1, v3, v4) and (v1, v2, v4); note that the order of the 
vertices (representing the direction of the arcs) is important in defining the paths.  Paths are 
important graph theoretic objects in transportation applications in general, and in vehicle 
evacuation in specific, where determining the shortest paths in the network is a crucial 
component of evacuee routing strategies. 

Transportation networks are amongst the most intuitive objects to represent as digraphs; the 
vertices typically represent the network junctions (e.g., traffic signals, unsignalized intersections, 
and ramp junctions), while the arcs represent the roads in the network.  Digraph representations 
are typically preferred to regular graph representations to account for combinations of one-way 
and two-way streets.  As discussed, paths in the graph theoretic representation are used to refer to 
routes in a transportation network.  In a transportation network, vertices with in-degree 0 are 
called sources and vertices with out-degree 0 are called sinks.  Sources represent the network 
origins, which hold the network demands, i.e., the evacuee concentrations in the network; in this 
project, this requirement is relaxed in the sense that any vertex may be converted to a source, 
regardless of its in-degree.  The sinks represent the network destinations, which constitute safety 
in the evacuation model.  For further information on network flow modeling and graph 
theoretical basics, see Ahuja, Magnanti, & Orlin (1993). 

4.3 Downtown Minneapolis Network: Geometric Attributes 
This section describes the one-mile radius network model centered in downtown Minneapolis, its 
attributes, and the source of information used to construct the model.  The geographic extent of 
the road network includes areas that cover half-mile radii centered in three important structures 
in downtown Minneapolis, the Hubert H. Humphrey Metrodome, the Minneapolis Convention 
Center, and the Target Center.  The three half-mile radii are encompassed within the one-mile 
downtown Minneapolis network. 

v1 v2 

v3 v4 

V = {v1, v2, v3, v4} 
 
E = { (v1, v2), (v1, v3), (v2, v4), (v3, v1), (v3, v2), (v3, v4) } 
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For an accurate representation of the network, a collection of 754 vertices and 1,565 directed 
arcs are used.  The geographic attributes of the vertices and the arcs of the network constitute a 
skeleton of the road network with additional data attached to them.  These attributes were 
primarily obtained using the Lawrence Group (TLG) database, maintained by MetroGIS, a GIS 
database of the Twin Cities roadway network.  The vertices represent all road junctions in the 
network, which include traffic signals, unsignalized intersections, and freeway junctions such as 
off-ramp entrances and on-ramp merge points.  The following is a description of the vertex 
attributes: 

ID: The vertex ID is simply a unique identifier (a number) that was established for each vertex in 
the network.  

2) DEMAND: This is an attribute that can be edited by users to create different evacuation 
scenarios.  If the demand is not zero, the vertex will be treated as a source in the network.  
In setting up different scenarios, this will be one of the important model attributes to be 
edited. 

3) STR1, STR2, STR3, and STR4:  These four attributes are names of the cross streets or 
freeways and ramps that intersect at the vertex.  Four cross street names were used 
because this was found to be the largest number of distinct street names meeting at a 
specific junction.  Where there are fewer cross street names, the last attributes are not 
used; e.g., with only two distinct cross street names, only STR1 and STR2 are used and a 
“-“ is used for both STR3 and STR4.   

4) X and Y:  These are the vertex coordinates (in meters) according to the Universal 
Transverse Mercator (UTM) coordinate system, zone 15 for the Twin Cities. 

5) DESC: This attribute describes the vertex junction type by use of the following symbols; 
‘S’ = signalized intersection, ‘U’ = unsignalized intersection, ‘O’ = ordinary vertex with 
out-degree 1 and in-degree 0 or 1, ‘F’ = freeway vertex, ‘OFF’ = off-ramp entrance, and 
‘ON’ = freeway/on-ramp merge point. 

6) Signal Attributes: These will be discussed in Chapter 5 of this report. 
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Figure 4.3 Layout of the Network 

The roadway objects in the TLG database are not directed.  Thus, the first step in building the 
directed arcs collection was to divide the two-way road objects into two one-way directed arcs.  
Additionally, some of the attributes necessary for the evacuation models were not available in 
the TLG, which were obtained from different sources.  Figure 4.3 is a layout of the network.  The 
following is a description of the arc attributes: 

1)  ID: The arc ID is a unique identifier that was established for each arc in the network. 

2) A: The ID of the vertex from which the arc emanates. 
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3) B: The ID of the vertex in which the arc terminates. 

4) LANES: The number of lanes, which was obtained from Google Street View for each arc 
in the model. 

5) LENGTH: The length of the arc (in meters). 

6) NAME: The street name. 

7) SPEED_LIM: The posted speed limit for the arc. 

4.4 Downtown Minneapolis Network: Traffic Flow Parameters 
The traffic flow parameters of the model are primary arc attributes used to determine flow 
restriction characteristics for each of the arcs in the network.  The cell transmission model 
(CTM) is used for traffic flow representation in the evacuation models, which uses the 
trapezoidal flow-density relationship depicted in Figure 4.4.  The CTM, developed by Professor 
Carlos Daganzo in (Daganzo 1994 and 1995) is a discrete time approximation scheme of the 
hydrodynamic traffic flow equations due to Lighthill & Whitham (1955) and Richards (1956), 
which are commonly referred to as the LWR equations. 
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Figure 4.4 The Trapezoidal Flow-Density Relationship 

The trapezoidal flow density relationship divides flow patterns on a roadway into three regimes 
represented by the three regions of the flow-density diagram.  The first region represents under-
saturated traffic flow conditions (free-flow and constant speed v); the second region represents 
saturation conditions (capacity qmax); and the third region represents over-saturated conditions 
that result in backward shockwaves with constant speed w (deterioration in flow rates due to 
congestion). 

Traffic flow characteristics for any arc in the network are determined by their flow-density 
relationships.  Due to the simplicity (linear nature) of the trapezoidal flow-density relationship, 
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knowledge of a few parameters determines the shape of the curve.  These arc-level traffic flow 
parameters are described as follows: 

1) FREE FLOW SPEED: The arc free flow speeds used in the model are the posted speed 
limits in miles per hour plus five miles per hour.  Given the free flow speed of the arc, the 
first region of the flow-density curve is simply a straight line from the origin with slope v, 
representing the free flow speed. 

 
2) LANE CAPACITY: Lane capacities vary by facility type.  Freeway arc lane capacities 

were obtained from the Twin Cities Metropolitan Council planning model (in vehicles 
per hour per lane).  Downtown arc lane capacities in the Metropolitan Council model are 
averaged over multiple signal timing cycles, an unnecessary simplification for the 
purposes of this project, since the underlying models are dynamic.  This means that 
traffic flow characteristics vary depending on the signal indication.  For this reason, the 
Metropolitan Council planning model arterial arc lane capacities were not used.  Instead, 
typical values for lane capacities based on Highway Capacity Manual (HCM) guidelines 
were used.  Arc capacity is simply the lane capacity of the arc multiplied by the number 
of lanes.  Once the arc capacity qmax is known, the second region of the flow-density 
curve is constructed by simply drawing a horizontal line that intersects the flow axis at 
qmax. 

 
3) JAM DENSITY: Two typical values were used for jam density in the model, one for 

freeway arcs (210 vehicles per mile per lane), and the other for arterial arcs (260 vehicles 
per mile per lane).  The arc jam density is simply the lane jam density multiplied by the 
number of lanes.  Given the jam density of the arc, the third region of the free-flow curve 
is constructed by drawing a line from the jam density point on the density axis with –w 
slope (a typical value of w = ½v was used) that intersects with the horizontal capacity 
line, or the free-flow speed line for cases of high free flow speed, resulting in a triangular 
flow-density curve. 

4.5 Downtown Minneapolis Network: Signal Timing Parameters 
The signal timing parameters were obtained from the city of Minneapolis for 217 traffic signals 
in the model.  The data was first geo-coded into the one-mile radius downtown Minneapolis 
model to properly associate the timing plans provided by the city of Minneapolis with the 
network vertices.  The next step was to determine the phasing plan based on the movements at 
each of the intersections and associate each turning movement in the model with an appropriate 
NEMA phase. 

The signalized intersections in the model all use fixed timing logic with splitting rates that vary 
by time of day.  Three splitting schemes are provided in the dataset, a morning peak period 
timing plan, and off-peak timing plan, and an afternoon peak period timing plan.  For each of the 
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timing plans, the cycle length and the splitting percentages are provided.  Traffic signal 
representation and traffic flow at signalized intersections for evacuation purposes will be 
discussed in Chapter 5. 

4.6 Discrete Representation of the Digraph as Cells 
The CTM can be thought of as a scheme in which network arcs are divided into cells.  Capacities 
and densities are then defined at the cell level in units of numbers of vehicles and not rates as in 
the flow-density relationships for the arcs.  As such, the capacity of cell i, Qi may be interpreted 
as the maximum number of vehicles that can flow into or out of a cell over a predefined discrete 
time interval length ∆t and cell density (maximum occupancy) Ni may be interpreted as the 
maximum number of vehicles that can be stored in the cell.  The length of cell i, li is the portion 
of the arc that can be traversed at free-flow speed; thus: 

li   = ∆t × v           (1) 

 Qi  = ∆t × qmax          (2) 

Ni   = li × kj            (3) 

Note that the cell-level parameters are the same for all cells that comprise a single arc.  The 
number of cells that an arc is divided into is equal to the length of the arc divided by the lengths 
of the cells that comprise it.  This transformation scheme is illustrated in Figure 4.5 below. 

 
Figure 4.5 Transforming Arcs into Cells 

arc 

L = arc length 
qmax = arc capacity 
kj = jam density 
v = free-flow speed 

1 2 3 

∆t = discrete time interval length 
(e.g. 5 seconds) 
 
Number of cells = L ÷ li 

cells 

li = cell length = ∆t × v 
Qi = cell capacity = ∆t × qmax 
Ni = cell max density = li × kj 
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It is worth noting that the discrete transformation scheme discussed here applies to within arc 
traffic flows.  Traffic flows in between arcs and particularly at traffic signal will be discussed in 
Chapter 5. 
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CHAPTER 5: SIGNALIZED INTERSECTION MODELING 

5.1 Introduction 
When faced with unanticipated emergency events, authorities need to make critical decisions to 
minimize evacuee exposure to harm.  Two such decisions involve: (i) evacuee routing strategies 
and (ii) intersection controls that involve, for example, officer deployment, signal timing, and/or 
road closure.  Evacuee routing was studied in Chapter 3 and fast computation was achieved by 
developing the heuristic algorithm for staged traffic evacuation (HASTE).  As central business 
districts are typically heavily controlled by traffic signals, intersection control and signal timing 
is a crucial component of rapid vehicle evacuation.  In this task, intersection control 
considerations are incorporated into the existing evacuation framework.  In addition to evacuee 
routing schedules, the evacuation model is extended to include determination of critical 
intersections to which officers may be deployed to improve throughput through the intersections, 
given a limited number of police officers (a resource budget). 

Additionally, responding to no-notice events is reactive in nature; thus, every minute counts, 
both in terms of network clearance times and computation times for evacuation strategies.  
Evacuee routing and officer deployment to critical network locations are two intertwined 
components of vehicle evacuation in the sense that, at optimality, different deployment strategies 
may be associated with different routing strategies.  Hence, the two components need to be 
solved for simultaneously and not sequentially.  Also, given the size of real-world no-notice 
evacuation problems, this work will emphasize computation techniques used to produce such 
strategies. 

Section 5.2 of this report presents the traffic flow representation strategy using the cell 
transmission model for signalized intersections.  Section 4.3 briefly discusses the mathematical 
model developed for combined vehicle routing and officer deployment to critical intersections.  
It also presents the solution technique employed for computing these strategies.  Finally, Section 
5.4 presents a numerical example and compares the proposed solution strategy to analytical 
solution strategies in terms of solution quality and computation times.  Finally, concluding 
remarks and potential future research directions are discussed in section 5.5. 

5.2 Traffic Flow Representation at Signalized Intersections 
In Chapter 4 of this report, the graph theoretic representation of a road network was presented in 
addition to the cell transmission model (CTM), which was used to represent traffic flow within 
network arcs.  A similar scheme for representing traffic flow at traffic signals is presented in this 
section of the report.  Figure 5.1 illustrates the graph theoretic representation of a single 
intersection in a network. 
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It is clear from the figure that the graph theoretic representation would need to be extended to 
account for varying signal timing plans and phasing schemes.  The first step in this modification 
is to extend the vertex/arc representation to include all possible movements at the intersection.  
This is done as follows: 

1) Divide the intersection vertex into multiple vertices, one separate end vertex for each 
inbound arc and one separate start vertex for each outbound arc.  For the example in 
Figure 5.2, the vertex would be divided into four vertices, two for the inbound arcs and 
two for the outbound arcs. 

2) Create new arcs connecting the new vertices.  These new arcs are short arcs that represent 
each of the movements at the intersection.  In Figure 5.1, there are four movements at the 
intersection.  A new arc for each movement is created. 

 
Figure 5.1 Graph Theoretic Representation of an Intersection 

This modification is illustrated in Figure 5.2 below, for the intersection in Figure 5.1. 

Intersection Movements Vertex/Arcs Representation 
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Figure 5.2 The Modified Intersection Representation 

The new arcs at the intersection are short arcs in the sense that they are each represented by a 
single cell in the CTM network.  The cells that are used to represent the short arcs will be 
referred to as gateway cells.  Figure 5.3 illustrates the CTM representation, including the 
gateway cells, for the intersection in Figures 5.1 and 5.2. 

 
Figure 5.3 Intersection Gateway Cells 

Gateway cells differ from other cells in the network in that they represent the turning movements 
at the intersection and their capacities change over time to capture signal indication changes at 
the intersection.  Determining their parameters involves minor changes to the computations used 
for other network cells.  Since a short arc is always translated into a single gateway cell, the 
length of the corresponding gateway cell i is not important.  The maximum occupancy of the cell 
Ni is determined from the arc from which it departs.  For the example in Figure 5.1, the 
eastbound left-turn movement uses a single lane; thus, Ni for the corresponding gateway cell is 

Regular Cell 

Gateway Cell 

Cell Connector 

Vertex/Arcs Representation Modified Representation 

New vertex 

New arc 



36 
 

simply the jam density (in vehicles per mile per lane) of the inbound arc multiplied by the length 
of its cells (l × ½ kj).  The gateway cell capacity, during a green indication, qi is computed as qi = 
∆t × sm, where sm is the saturation flow rate for the subject movement (typically 1,200 vehicles 
per hour per lane).  The gateway cell capacity during a red indication is 0 since no vehicles can 
flow through the cell during red.  Thus, the gateway cell capacity is a quantity that fluctuates 
between 0 and qi; with the signal timing plans known, the gateway cell capacity Qi

t ε {0, qi} is 
known over the evacuation time horizon (the superscript t denotes the discrete time interval in 
question). 

5.3 Model and Solution Technique 

5.3.1 Mathematical Model 

The mathematical formulation for combined vehicle routing and officer deployment for 
emergency evacuation is essentially an extension to the original mathematical formulation for 
dynamic system optimal traffic assignment presented in Chapter 3 and detailed in Appendix A.  
It considers improvements to the traffic flow by means of determining a predetermined number 
of critical network intersections b (for budget) to which police officers may be deployed to 
override the signal control and improve traffic throughput for effective vehicle evacuation.  For 
further details of the mathematical formulation, we refer to Appendix B. 

5.3.2 Deployment Strategies as Combinations 

Signalized intersections within a predetermined disaster impact area are the candidate 
intersections considered for officer deployment; the number of candidate intersections is denoted 
by n and the number of police officers available for deployment is denoted by b.  When b ≥ n 
(there are enough officers to deploy to each candidate intersection), the problem collapses to a 
simple routing problem and can be solved using HASTE as in Chapter 3.  The more difficult 
(and more likely) scenario is when b < n; i.e., not all candidate intersections can be covered by 
the available number of police officers.  In this case, the officer deployment strategy can be 
treated as one of many different combinations of b (or less) officers deployed to n candidate 
intersections; it is, thus, a combinatorial problem where the number of different possible 
combinations grows disproportionately as b and n get larger.  For example, if the number of 
candidate intersections is 4 (n = 4) and the number of officers available for deployment is 2 (b = 
2), then the number of possible combinations is 10.  The combinations are shown in Figure 5.4 
below. 
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Figure 5.4 Example of Officer Deployment Combinations 

The boxes in Figure 4 are the candidate intersections numbered 1 through 4; the symbol X 
indicates that an officer is deployed to that intersection.  Note that combinations with only one 
officer are also considered, since solutions that may involve the use of fewer officers than what 
is available should also be considered.  The total number of such combinations is then computed 
as the sum of the different combinations; e.g. the number of two-officer combinations + the 
number of one-officer combinations.  In general, the number of combinations can be computed 
as nCb (read “n choose b”) = n! ÷ (b!×(n – b)!).  For the two-officer combination in the above 
example, this is (4×3×2×1) ÷ ((2×2)×(2×2)) = 6; for the one-officer combinations, this is 
(4×3×2×1) ÷ ((1)×(3×2×1)) = 4, bringing the total number of combinations to 6 + 4 = 10.  More 
generally, this is computed as: 
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It is clear that the number of combinations grows very quickly as n and b get larger.  To see this, 
take an example that is slightly larger with n = 10 and b = 4; the number of combinations grows 
to 1,080; a more realistic problem size would be n = 20 and b = 10, for which the number of 
combinations grows to 2,771,330. 

The officer deployment problem can be stated as the problem of finding the best combination.  
The best combination is essentially the one, when coupled with its best corresponding evacuee 
routing strategy, results in the smallest disaster area clearance time.  Enumerating all possible 
combinations to determine the best cannot be done in a feasible amount of time.  In fact, 
intelligent search techniques that can guarantee finding the best combination without full 
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enumeration remain unknown.  However, meta-heuristic techniques are known to produce good 
solutions relatively fast, but without any guarantees of these solutions being the best of all 
possible combinations.  One of the more popular techniques is called Genetic Algorithms (GA), 
which is adopted in this work as a search technique for finding good officer deployment 
strategies. 

5.3.3 Simple Genetic Algorithms 

Genetic algorithms (GA) are heuristic search approaches that mimic survival of the fittest in 
natural systems.  In simple GA's, three operations are used for this purpose: (i) reproduction, (ii) 
crossover, and (iii) mutation.  First, a population of combinations (referred to as chromosomes) 
is generated, typically, at random.  The fitness (or quality) of these chromosomes is then assessed 
and the chromosomes are ranked.  A new population is then reproduced, at random, and 
depending on chromosome fitness.  The higher the fitness, the more likely the chromosome will 
be reproduced; the lower the fitness, the more likely the chromosome will not be reproduced. 
Thus, the fittest survive (and possibly multiply), while the least fit do not.  The reproduced 
chromosomes then mate by interchanging (crossing over) parts of two parent chromosomes to 
produce two new offspring chromosomes (a new population).  Mutation is a rare operation that 
ensures that the GA searches do not lock into local optima, where individual genes in a 
chromosome may change value, at random. 

To represent officer deployment strategies, chromosomes of length b are generated, where each 
gene assumes a value between 1 and n.  In other words, the value of the gene indicates a location 
that is to be chosen for officer deployment.  This is in contrast to a binary chromosome scheme 
with n genes each representing a candidate location as shown in Figure 5.4. Under the latter 
scheme, chromosome crossover and/or mutation are likely to produce infeasible chromosomes; 
the number of X's in this scheme must adhere to the budget b.  The former scheme, on the other 
hand, does not suffer this limitation.  This chromosome (combination) set-up is illustrated in 
Figure 5.5 for the same combinations in Figure 5.4, where the boxes (referred to as genes) 
represent the officers rather than the intersections and the numbers inside the boxes (gene values) 
refer to the intersections to which the officers are to be deployed. 

 

Two things in Figure 5.5 are worth noting: 

1) The number of combinations is larger than that for the binary scheme.  This may seem as 
a drawback, but in fact makes the search faster.  In this case the total number of 
combinations is computed as nb (e.g., 42 = 16). 

2) The single-officer combinations are not be interpreted as both officers are deployed to the 
same intersection, but as a duplicate. 
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Another advantage to this scheme is that only the gene values serve as chromosome traits. The 
locations of these values within the chromosome are not important.  This allows for good 
chromosome traits to be passed down to the offspring chromosomes more effectively through 
crossover, since it is the value in the gene and not the gene itself that constitutes a trait. 

 

Figure 5.5 All Possible Chromosomes for n = 4 and b = 2 

5.3.4 Chromosome Fitness and HASTE 

As discussed above, a good chromosome (combination) is one with higher fitness values.  The 
fitness is defined as the clearance time.  Each chromosome can be coded into the problem as an 
officer deployment strategy and the problem reduces to one that involves determining the best 
routing strategy possible.  For a quick solution to the problem, HASTE is used to determine 
chromosome fitness. 

5.4 Numerical Example 
To demonstrate the quality of the solution strategy, a hypothetical network was constructed with 
n = 10 candidate intersections and a budget of b = 4 police officers available for deployment.  A 
layout of the test network is shown in Figure 5.6.  The candidate intersections in the figure are 
represented as vertices 2, 3, 5, 6, 7, 8, 9, 10, 11, and 12. 
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Figure 5.6 Layout of the Test Network 
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The length of the discrete time interval (∆t) is three seconds.  The saturation flow rates used are 
1,200 vphpl (cell capacities = 2 veh/cell), jam density used is 235 veh/mi (cell occupancies = 8 
veh/cell and 4 veh/cell for gateway cells).  The signal timing plans used are based on 60 second 
cycle lengths (30 seconds for each approach). The signal timing settings allow for smooth 
progression at free-flow along both the north-south and east-west directions.  Total demand D is 
2,700 evacuees distributed amongst the network sources. 

The problem was first solved analytically using the GAMS/CPLEX mathematical program 
solver.  The time horizon selected to solve the problem was 55 minutes or 1,100 three-second 
discrete time intervals.  Prior to solving the problem, the evacuation time horizon is not known.  
Selection of a proper time horizon is important, as selection of too short a horizon would result in 
an infeasible solution and selection of too long a time horizon would result in increased problem 
size.  For this hypothetical problem, the number of continuous variables is 304,977 and the 
number of binary variables is 10.  The total number of constraints (not including variable type 
constraints) in the problem is 662,951. 

This is a relatively large problem, which will most likely be the case for real-world no-notice 
evacuation problems.  The problem was solved using the GAMS/CPLEX solver.  The time 
required to produce a feasible solution analytically was 1,104 minutes (18 hours and 24 minutes) 
within 1.07% of the lower bound relaxation; i.e., GAMS/CPLEX could not produce an optimal 
solution.  The clearance time provided by the analytical solution was 31 minutes and 15 seconds 
(or 625 three-second time intervals). 

The problem was then solved using the heuristic framework presented in section 5.3.  An 
evacuation time horizon is not required a priori.  An 80% crossover rate and a mutation rate of 
1% were employed; this means that, on average, 80% of the population will mate to produce 
offspring after reproduction and, on average, 1% of the genes in the new population will 
randomly change their value.  A population size of 20 chromosomes was used and 20 
generations were produced.  The CPU time required was five minutes and seven seconds, which 
is much smaller than the computation time required to solve the model analytically.  The 
clearance time provided by the heuristic solution was 33 minutes and 30 seconds (or 670 three-
second time intervals).  The difference in clearance time is only two minutes and 15 seconds.  
Figure 5.7 compares the cumulative arrivals at the super-sink over the evacuation time horizon 
for the analytical and the heuristic solutions. 
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Figure 5.7 Evacuee Arrival Rate to Safety 

The two solution techniques found different intersections for officer deployment.  The analytical 
solution suggests deploying officers to intersections 2, 3, 7, and 9 shown in Figure 5.6.  The 
heuristic solution suggests deploying officers to intersections 6, 7, 8, and 11.  The two solutions 
are very different.  Interestingly, the solution suggested by the heuristic is the better solution, and 
one that the analytical solver could not find.  The reason for better arrival rates provided by the 
analytical solution shown in Figure 5.7 is attributed to the optimality of the routing strategy 
produced given the deployment strategy it managed to find.  There is, thus, a tradeoff when 
choosing between the two solution frameworks for real-world size problems; on the one hand, 
the heuristic using GA is capable of quickly finding good solutions but at the cost of a sub-
optimal (but good) routing strategy.  On the other hand, it took over 18 hours to produce the 
analytical solution with a sub-optimal officer deployment strategy but an optimal evacuee 
routing strategy. 

5.5 Concluding Remarks 
This chapter introduced officer deployment strategies in addition to evacuee routing to improve 
network throughput under emergency evacuation.  A limited number of police officers was 
assumed and the problem was then described as one of determining the best subset of critical 
locations (signalized intersections) to deploy the officers to.  Considering the reactive nature of 
no-notice evacuations, computation times for such strategies were addressed by developing a 
heuristic framework, which was shown to provide comparable solution to that of an analytical 
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model, but considerably faster.  For officer deployment strategies, a genetic algorithm (GA) 
based approach was adopted and the heuristic algorithm for staged traffic evacuation (HASTE) 
was used to assess the fitness of the GA solutions. 

The effectiveness of GA in exploring the possible officer deployment strategies primarily stems 
from the simplicity of the discrete component of the analytical model being approximated.  The 
number of binary variables was kept at a minimum.  The computation speed of the heuristic 
framework is primarily due to the use of HASTE for solution fitness approximation.  Our future 
work will consider improvements to the meta-heuristics component GA, while also exploring the 
possibility of using other meta-heuristics such as ant colony optimization, which have been 
shown to be effective in network design problem contexts. 
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CHAPTER 6: SCENARIO TESTING 

6.1 Introduction and Scenario Description 
In this chapter, a hypothesized emergency evacuation scenario is developed to test the tools and 
algorithms developed in previous chapters.  The scenario involves evacuating vehicles in parking 
lots and parking ramps around the Hubert H. Humphrey Metrodome during the PM peak period.  
Parking facility capacities are used to determine demands in the network.  An area of roughly 
0.75 square miles surrounding the Metrodome is used, the boundary of which represents safety.  
The layout of the area and the locations of the parking facilities are shown in Figure 6.1 below.  
In the following sections, aggregate level performance measures are presented to illustrate and 
compare the algorithms developed in the previous chapters in terms of solution quality and 
solution efficiency. 

 

Figure 6.1 Scenario Area Layout and Demand Locations 
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The area of the study network was chosen to be large enough to accommodate the large vehicular 
demands that would typically arise during a sporting event.  The capacities of the surface lots, 
shown in light gray in Figure 6.1, were obtained by counting the total number of available spots 
in each of the lots from aerial photographs in Google Maps.  The total lot capacities were either 
obtained directly from the City of Minneapolis Parking Services website, or approximated based 
on number of levels and typical parking facility layout by floor area.  The remainder of this 
chapter is organized as follows: section 6.2 briefly presents scenario development using the 
software tool.  Evacuee routing strategies are discussed in section 6.3, while officer deployment 
strategies for the scenarios are presented in section 6.4.  Finally, conclusions and software usage 
recommendations are presented in section 6.5. 

6.2 Scenario Development 
Developing evacuation scenarios using the evacuation software tool is a three-step process: (i) 
area selection from the base-map; (ii) scenario network editing (e.g. removal of arcs and vertices 
and arc capacity adjustments); and (iii) source and sink definition by entering demands and 
selecting sink vertices, respectively.  Details of the process are included in Appendix C.  Figures 
6.2 and 6.3 below show the scenario network layout using the developed software tool 
highlighting the network sources and sinks, respectively. 

 

Figure 6.2 Network Source Vertices 
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Figure 6.3 Network Sink Vertices 

The 61 demand vertices in the network (shown in Figure 6.2) were selected based on proximity 
to parking facility exits.  To test the routing algorithm, HASTE, under various demand levels, ten 
copies of the scenario network were made with demands as percentages of the parking facility 
capacities, i.e., ranging from 10% of the capacities to 100% of the capacities with total capacity 
at 15,425 vehicles.  For testing purposes, 110% and 120% of capacity demand scenarios were 
also developed.  We note that the distribution of demands in the network is crucial in terms of 
accuracy of the algorithm, the realism of the scenario, and the computation times.  Concentrating 
very large demands in one vertex will result in excessively high computation times, due to 
limitations in the capacities of the outgoing arcs both in the model and in reality. 

6.3 Evacuee Routing 
In this section the routing algorithm, HASTE, is tested in terms of network clearance times 
(solution quality) and computation time (solution efficiency) for different demand levels and 
different discrete time interval lengths.  As discussed in Chapter 3, shorter discrete time interval 
lengths provide a more accurate traffic flow representation, but at the cost of higher computation 
times, which is a crucial consideration for no-notice evacuation computations. 
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6.3.1 Arrivals to Safety: Solution Quality 

The numbers of evacuees that arrive to safety over the course of the evacuation process (network 
clearance rates) is an important performance measure of the quality of routing solutions.  To 
illustrates the quality of a solution computed using HASTE, we fist compare the network 
clearance rates using HASTE to an all-or-nothing (AON) traffic assignment, i.e., where all 
evacuees use the shortest path to safety for each source.  This is shown in Figure 6.4 below for 
the 100% of capacity demand scenario. 

 

Figure 6.4 HASTE vs. AON Assignment 

Clearly, HASTE outperforms an AON assignment both in terms of evacuee arrival rates to safety 
and total network clearance time.  We note that the use of AON assignment as a basis for 
comparison was inspired by observed route choices made by evacuees in Texas and Louisiana 
during hurricanes Rita and Katrina.  It seems that evacuees have the tendency to all choose the 
shortest route away from the disaster area, which may result in high congestion levels and, 
consequently, lower network clearance times. 

Figure 6.5 shows the arrival rates of the evacuees to safety for different demand levels and Table 
6.1 lists the network clearance times.  It can be seen that HASTE tends to perform well during 
the congested parts of the evacuation process, where the steeper curves indicate larger arrival 
rates to safety.   
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The figure also illustrates the flattening of the arrival rate curves towards the end of the 
evacuation process, which is more pronounced for the lower demand cases.  This is due to the 
heuristic nature of HASTE, which approximates system optimal traffic assignment by means of 
utilizing available network capacity to the best degree possible; an efficient approach for high 
demands as illustrated by the steepness of the arrival rate curves for the higher demand scenarios.  
The drop in the arrival curves takes place after the majority of the evacuees have arrived to 
safety. 

 

Figure 6.5 Evacuee Arrivals to Safety 

Table 6.1 Network Clearance Times for Different Demand Levels 

Demand Level (% of Capacity) Network Clearance Time 
40% 52 min 15 sec 
60% 56 min 0 sec 
80% 71 min 30 sec 

100% 98 min 0 sec 
120% 102 min 15 sec 

 

6.3.2 Computation Times: Solution Efficiency 

The graph theoretic representation of the study network consists of 717 vertices and 1,072 
directed arcs, which are converted to 1,176 cells for 15 second discrete time interval lengths.  
This includes all turning movement vertices, arcs and cells in the network.  When including the 
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time dimension, the size of the problem becomes extremely large.  For instance, 285 time 
intervals were needed to clear the network for the 80% of capacity scenario.  This means that 
roughly 700,000 variables are needed to model the scenario and the ability to produce optimal 
routing strategies using standard techniques is not possible, at least within minutes.  The 
computation times of HASTE are shown in Figure 6.6.  All computations were carried out using 
a personal computer with a single 3.0 GHz Intel Xeon CPU and 2 GB of RAM.  Note that the 
computation times presented here only include algorithm running time.  The time required in 
converting the network from a GIS format to a graph theoretic data structure and a cellular 
network are not included in these figures. 

 

Figure 6.6 Computation Time Comparison 

It can be seen in Figure 6.6 that the computation times grow linearly with demand (all else held 
constant).  The average increase in computation time per 10% increase in demand (i.e., 1,543 
evacuees) was 1,496.17 milliseconds.  In other words, an average of less than one millisecond of 
additional computation time was needed per each additional evacuee.  The R2 value of 98.46% 
illustrates a strong linear trend in the computation time increase with demand.  It is also notable 
that the maximum computation time was less than 18 seconds, which is crucial for computing 
no-notice evacuation routing strategies. 



50 
 

6.3.3 Fidelity of Traffic Representation: Time Interval Lengths 

Different discrete time interval lengths result in different network sizes.  To illustrate the impact 
of different time interval lengths on solution quality and efficiency, the 100% of capacity 
scenario was computed using different time interval lengths.  Figure 6.7 below shows the 
network clearance rates produced using 2, 3, 5, 6, 10, and 15 second time interval lengths for the 
same evacuation scenario and Table 6.2 lists the network clearance times. 

 

Figure 6.7 Network Clearance Rates for Different Time Interval Lengths 

Table 6.2 Network Clearance Times for Different Time Interval Lengths 

Discrete Time Interval Length Network Clearance Time 
2 sec 56 min 0 sec 
3 sec 57 min 18 sec 
5 sec 60 min 35 sec 
6 sec 69 min 24 sec 

10 sec 77 min 40 sec 
15 sec 98 min 0 sec 

While the network clearance times in Table 6.2 may suggest substantial differences between the 
shorter time interval lengths, (e.g., two and three second interval lengths) and the longer time 
interval lengths, (e.g. 10 and 15 second interval lengths), the clearance curves in Figure 6.7 
illustrate meager differences.  These differences may be directly attributed to the higher 
flattening in the arrival curves towards the end of the evacuation process when using longer time 
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interval lengths, i.e., the arrival of the last evacuees in the network to safety.  This, in turn, could 
be attributed to the more granular representation of traffic flow with longer discrete time interval 
lengths.  Additionally, Figure 6.8 below illustrates that the gains in clearance time drop 
following a quadratic trend (R2 = 99.08%); it can thus be expected that using yet smaller discrete 
time interval lengths would bring about negligible improvement, if any, in network clearance 
times. 

 

Figure 6.8 Clearance Time Improvements with Smaller Time Intervals 

The discussion above focused mainly on comparing the effect of smaller discrete time interval 
lengths on solutions quality.  We now turn to the computation times required for the different 
discrete time interval lengths, which are shown in Figure 6.9 below. 
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Figure 6.9 Computation Time Increase with Smaller Time Intervals 

It can be seen in Figure 6.9 that computation times increase at an exponential rate with network 
size (as a result of decreasing the discrete time interval length).  This is in contrast to the linear 
increase in computation time that was observed with demand increases for the same network.  
Because HASTE iteratively computes shortest paths for evacuee routing, the increase in network 
size brings with it exponentially larger computation times.  However, despite this exponential 
trend, we see that the computation times remain reasonable, even for the 2 second case, which 
took less than two minutes to compute. 

6.4 Officer Deployment 
To determine the best locations (signalized intersections) for officer deployment, the proposed 
technique uses a genetic algorithm (GA) combined with HASTE for routing.  As such, these 
computations are not meant to be online computations, but rather offline, or for planning 
purposes.   

To put this into perspective, for GA choice of 10 generations and 10 chromosomes, HASTE 
would run 100 times; if a single run requires 20 seconds to complete, then the entire algorithm 
would require 2000 seconds to complete (33 minutes and 20 seconds).  However, officer 
deployment strategies determined offline may be used as input during online routing 
computations.  The routing strategies computed in the previous section all assume that no 
officers are deployed at any of the signalized intersections in the network and drivers are 
assumed to adhere to traffic control rules (i.e., they stop at red lights).  As evacuation traffic 
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patterns significantly differ from regular traffic patterns, signal timing parameters that are set in 
accordance with regular traffic become ineffective.  While the tools developed do not aim to 
compute optimal signal timing parameters under evacuation traffic conditions, the best locations 
to deploy police officers are computed.  The underlying assumption is that police officers will do 
the best job possible.  The purpose of this section is to illustrate the improvement in network 
clearance times when officers are deployed to network intersections.   

Figure 6.10 below illustrates convergence of the GA procedure over 40 generations (iterations) 
with 10 chromosomes for the 80% of capacity demand level, at time interval length of 15 
seconds, and a budget of 20 officers. Figure 6.11 illustrates graphically the locations determined 
by the algorithm.  

There are two things to note in Figure 6.10 below: (i) it took less than 10 generations (seven 
generations) to find an officer deployment strategy that could not be improved throughout the 
remaining generations; and (ii) the algorithm managed to find a strategy that results in a 
significant drop in network clearance time, from 71.5 minutes to 42 minutes.  Additionally, while 
a budget of 20 officers was provided, the best deployment strategy only requires 17 officers (one 
officer per intersection). 

 

Figure 6.10 Genetic Algorithm Convergence 
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Figure 6.11 Intersections Chosen for Officer Deployment 

To investigate the improvement in network clearance times by number of officers available for 
deployment, the 100% of capacity demand level scenario is used with 15 second time interval 
lengths.  The improvement in network clearance times is shown in Figure 6.12. 

 

Figure 6.12 Network Clearance Times by Officer Budget 
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In Figure 6.12, it can be seen that the savings in network clearance times deteriorate following an 
exponential trend as the number of officers deployed is increased approaching a full deployment 
(63 officers).  This may be attributed to the fact that major routes in the network provide most of 
the benefit in terms of clearance time, while other routes provide small incremental 
improvement. 

Finally, Table 6.3 below provides a comparison between AON assignment, a routing solution 
that involves no officer deployment, a solution with a 10-officer budget, and a solution with a 
20-officer budget.  All computations were carried out using 15 second time interval lengths and 
the 120% of capacity demand scenario. 

Table 6.3 Network Clearance Time Comparisons 

Traffic Assignment Scenario Network Clearance Time 
AON Assignment 248 minutes and 15 seconds 

HASTE (No Officers) 102 minutes and 15 seconds 
GA Optimized with 10 Officers 76 minutes and 30 seconds 
GA Optimized with 20 Officers 68 minutes and 0 seconds 

 

Note that under the 10-officer budget case only 9 officers are actually used; likewise only 18 
officers are used in the 20-officer budget case. Figure 6.13 shows the network clearance rates for 
the above traffic assignment scenarios. 

 

Figure 6.13 Arrival Rate Curves by Traffic Assignment Scenario 



56 
 

While meager differences are observed in Figure 6.13 between the no-officer assignment case 
and the 10-officer case (mostly at the very end of the evacuation process), we see an 
improvement with a 20-officer budget.  When compared to the AON assignment scenario, the 
10- and 20-officer budget cases and HASTE illustrate a substantial improvement. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

In this chapter, a real-world evacuation scenario was constructed and the algorithms developed in 
previous chapters were tested using the evacuation software tool.  It was illustrated that HASTE 
evacuee routing solutions provide substantial improvements in network clearance times when 
compared to AON assignment.  It was also shown that solution quality using HASTE improves 
as network congestion increases due to higher demands.  Computation times using HASTE were 
shown to increase gracefully with demand increases, following a linear trend, an important 
feature when considering online computation under no-notice evacuation.  Additionally, all 
routing computations were completed within two minutes, illustrating the efficiency of HASTE.  
Using GA, effective officer deployment strategies were found within less than 10 generations, 
allowing for offline scenario testing.  Based on the analysis presented in this chapter, we provide 
the following recommendations: 

• The distribution of network demands should be as close to reality as possible; placing 
excessively high demands at a single vertex will result in unrealistic solutions. 

• All boundary vertices in the network should be specified as sinks. 
• It is recommended that evacuation networks be designed and prepared offline and used 

online when necessary, although on-line scenario development could easily be carried out 
using the software tool within minutes. 

• When using shorter discrete time interval lengths for higher traffic flow fidelity, higher 
computation and memory costs are incurred.  For example, the two-second scenario required 
approximately 1.5 GB of memory alone (under the 100% of capacity demand scenario). 

• The recommended GA parameters for officer deployment computations are 10 generations, 
10 chromosomes, 80% crossover rate, and 1% mutation rate (software defaults) for off-line 
computations.  For smaller networks, on-line officer deployment strategy computations can 
also be completed within minutes.  Smaller numbers of generations, e.g. five generations 
instead of 10, are also capable of producing high-quality solutions for on-line computations. 

• It is recommended that officer deployment strategies be computed off-line for larger 
networks (half mile radii and greater); changing the demand levels has very small impact on 
the quality of the officer deployment solutions.  Note, however, that demand locations may 
have an impact on the officer deployment solutions. 

• When computing officer deployment strategies, it is recommended that 15-second discrete 
time interval lengths be used.  For higher fidelity routing, the results (i.e., best deployment 
strategy) may be read from the results and then used as input for higher fidelity routing 
computations. 
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ABSTRACT 

When responding to unanticipated emergency events, time is of the essence.  At an operational 
level, optimal routing may change as traffic dynamics evolve over the course of the evacuation 
process.  The ability to incorporate such changes, in a time-dependent manner, may have a 
significant impact on reducing the time required to clear disaster areas and, hence, injury and 
fatality levels.  Considering the reactive nature of no-notice emergency response operations, 
computational time of routing strategies is paramount.  This paper proposes a divide-and-
conquer based solution strategy, HASTE (heuristic algorithm for staged traffic evacuation), 
which employs a time-dependent traffic assignment procedure for computation of close-to-
optimal routing strategies based on the minimization of total system travel time.  In this paper, 
computation efficiency and solution quality are demonstrated for real-world problems and 
compared to traditional dynamic system optimal traffic assignment. 

Key Words: Emergency evacuation, heuristic solutions, computation complexity, dynamic 
system optimal assignment. 

 

1. INTRODUCTION 

Ground transportation systems play a central role during evacuation processes.  As responding to 
unanticipated (no-notice) events directly involves human life, the ability to determine optimal 
routing strategies in a timely fashion is crucial.  Unlike predictable emergency scenarios, the size 
and nature of impact of no-notice events cannot be anticipated.  This dictates adopting measures 
of a responsive nature and with very little luxury in terms of time to compute routing strategies.  
Additionally, updating routing strategies in accordance with traffic flow characteristics during 
the evacuation process may be necessary.  This illustrates (i) the need to treat routing under 
emergency evacuation as a dynamic process and (ii) the importance of computation time.   

No-notice events, particularly man-made disasters such as terrorist attacks, chemical spills, and 
unanticipated structural failures, are small-scale in nature, in the sense that they tend to cover 
relatively smaller geographic areas compared to hurricane, which may cover an entire region.  
The latter tend to be more planning oriented; see Southworth (1991) and Urbina and Wolshon 
(2003).  The former are more operational in nature as traffic queue formation and dissipation 
phenomena play a large role in the time it takes to clear the disaster areas.  Such evacuation 
problems have been formulated as dynamic system optimal (DSO) models to consider time 
dependent traffic flow dynamics.  Most notable of these models are the linear programs (LPs) 
proposed by Li et al (1999), Ziliaskopoulos (2000), and Chiu et al (2007), which adopt the cell 
transmission model (CTM) for traffic flow representation (see Daganzo (1994) and (1995)).  
Another distinctive feature of these models is that they use a single “super-sink” to represent safe 
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zone, which simplifies the problem dimensions to a many-to-one assignment problem and 
removes first-in-first-out restrictions.   

The DSO models are reasonable in the level of traffic flow realism they provide.  However, 
despite their simplicity (linearity and many-to-one assignment), computational time of such 
models is still prohibitively high with realistically sized small-scale emergency scenarios.  This 
is a severe restriction when dealing with no-notice events.  Additionally, optimal solutions to the 
DSO models produce time-dependent link/cell assignments that are difficult to translate into 
routing strategies that can be implemented by emergency response authorities.  It is noteworthy 
that very little work in the literature addresses these problems.  Lu et al (2005) develop a solution 
procedure that considers network capacity constraints, but not queue formation and propagation.  
While a routing strategy is provided by their solution, traffic flow realism becomes questionable 
when considering small-scale evacuations.   

In this paper, a heuristic solution framework is developed to address these problems.  The 
proposed framework is named HASTE for heuristic algorithm for staged traffic evacuation, 
which aims to generate close-to-optimal solutions to the DSO model with significantly reduced 
computation times.  The heuristic consists of two components: (i) a pre-incident (offline) 
component that stores sub-networks to reduce shortest-path search processes that are carried out 
on-line; and (ii) a post-incident component that employs a divide-and-conquer strategy to 
generate evacuee routing plans.  The post-incident component divides the evacuee population 
into a series of smaller groups and then solves the associated series of easier problems related to 
optimally routing the individual groups.  It is a heuristic approach in the sense that it attempts to 
approximate a CTM based DSO solution and is tailored to evacuation problems.  Another 
attractive feature of HASTE is that each step of the algorithm possesses a clear interpretation and 
intermediate termination of the algorithm still provides optimal or near-optimal routing strategies 
for a portion of the evacuee population. 

The remainder of this paper is organized as follows.  Section 2 briefly presents the DSO model 
adopted.  Section 3 presents the post-incident (online) component of HASTE and the 
computational complexity of the online component is presented in Section 4.  Section 5 presents 
the pre-incident (offline) component of HASTE.  In Section 6, solution quality and computation 
efficiency of HASTE are demonstrated by means of a hypothetical evacuation example for a 
real-world size problem.  Conclusions and future research are presented in Section 7. 
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2. LINEAR PROGRAMMING MODEL 

Because of the dynamic nature of evacuation routing problems and high demand levels on 
transportation infrastructure during evacuation, and hence, congestion, dynamic traffic 
assignment (DTA) models have found a niche in evacuation traffic management (for a review of 
DTA, we refer to Peeta & Ziliaskopoulos (2001)).  The mathematical model used in this 
framework was formulated as a linear program by Li et al. (1999) and Ziliaskopoulos (2000) for 
single destination based DSO, which adopts the cell transmission model (CTM) for traffic flow 
representation (for details on the CTM, see Daganzo (1994) and (1995)).  We include a brief 
formulation herein for completeness and refer to the original research articles for more details 

The terminology and notation used in this study is consistent with that used by Ziliaskopoulos 
(2000), where the term cell “connector” is used instead of the term “link” originally used by 
Daganzo.  The term “link” is used here to refer to a directed network arc typically connecting 
two intersections (or nodes).  According to the CTM, a link-node network can be transformed 
into a cell-connector network, denoted by G(C, E), with cell set C and connector set E.  There are 
three types of cells in the cell-connector network: ordinary cells with one predecessor and one 
successor, diverging cells with one predecessor and multiple successors, and merging cells with 
multiple predecessors and one successor.  The maximum number of vehicles Ni

t that cell i  can 
hold at time t is determined by cell length, number of lanes, and jam density.  The maximum 
number of vehicles that can flow into or out of cell i during interval t is denoted by Qi

t, which is 
determined by link capacity at time interval t.  We denote by xi

t the number of vehicles in cell i at 
time t, and by yij

t the number of vehicles moving from cell i to cell j during time interval t.   

Base on Ziliaskopoulos (2000), the single destination DSO has the formulation: 

min  
 Tt CCi

t
ii

s

x
\

   (1)

s.t. 
   1

1 1 1 0,t t t t
i i ki ij

j ik i

x x y y


  



      ,i C t T     (2)

     max , min , ,t t t t t t t
ij i i j j i jy x Q Q N x    , ,i j E t T     

(3)

 t
ij i

j t

y d  Ri C   (4)

 0
i ix   i C   (5)

 0, 0t t
i ijx y    , , ,i C i j E t T      (6)

The objective function represents the total system evacuation time of all vehicles; βi in the 
objective function assigns a waiting cost weight factor for cell i.  Because the time interval 
length is constant, it can be omitted from the objective function; minimizing the objective (1) is 
equivalent to minimizing the total evacuation cost for all cells over the evacuation time horizon T.  
Note that (1) represents the total waiting cost over the evacuation process weighted according to 
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cell importance.  The weights βi can be set based on the importance of different locations or 
numbers of evacuees at the origins.  For example, the weights could be higher for the origin 
zones close to the disaster location.  Constraints (2) represent the flow conservation constraints.  
Constraints (3) represent flow restriction, and Ziliaskopoulos (2000) provides detailed 
representation of flow restriction for different types of cells.  Constraint (4) represents source 
demands, where the summation of outflows over the evacuation time horizon T for origin cell i is 
equal to the total evacuation demand di, which is assumed to be known a priori.  Constraint (5) 
initializes the network and constraint (6) represents non-negativity conditions. 

3. HASTE: POST-INCIDENT COMPUTATIONS 

To reduce system travel time, the basic idea in HASTE is that through departure rate control, 
travelers will use the same facilities at different times to avoid delay.  HASTE fully utilizes 
available link capacity on shortest paths but attempts not to exceed it.  Therefore, link capacities 
along dynamic shortest paths are updated for different evacuee groups at different times.  
Maximizing the number of people evacuated at each time step has a close relationship with the 
dynamic maximum flow problem; see Liu et al (2006).  Because of this close relationship, the 
evacuation traffic assignment problem may be seen as one with the ultimate goal of fully 
utilizing available network capacities at each time interval.  The required input for HASTE and 
output from HASTE is summarized in Figure 1 below.   

Input: 
(1): ),( ECG : a graph G  with a set of cells C  and a set of cell connectors E  

Each cell Ci  at time Tt has three properties: 

Maximum_Cell_Occupancy, t
iN : non-negative 

Maximum_Cell_Capacity, t
iQ : non-negative 

Current_Cell_Occupancy, t
ix : non-negative 

Each cell connector Eji ),(  at time Tt  has three properties: 

Upstream_Cell_Index, i : non-negative 

Downstream_Cell_Index, j : non-negative 

Current_Flow, t
ijy : non-negative 

(2): R : set of origins, CCR   

(3): S : destination (“super sink”), CCS   

(4): id : set of demands on each origin cell RCi  

 

Output:  Evacuation plan 

(1): 
t

rF : vector of evacuee group sizes for origin r at time interval t 

(2): 
t

rP : vector of paths to which groups 
t

rF  are assigned 

 

Figure 1 HASTE Input and Output 
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Figure 2 summarizes the initialization step in HASTE.  Step (0.1) is a sorting procedure 
implemented to determine the order in which origins are processed; the ordered origin set is 
denoted by  ܴ.  Sorting criteria may vary from proximity to the boundary of the disaster zone, to 
origin demand, to proximity to the location of the disaster, or any combination of these criteria.  
The order ܴ may be maintained throughout the algorithm iterates or periodically changed.  The 
sorting strategy generally imposes different priority levels for different groups.  On the one hand, 
this allows for some flexibility in choosing which groups have higher priority to available 
network capacity; for example, evacuees departing from nodes where the disaster hit may be 
given higher priority.  On the other hand, the sorting strategy is somewhat arbitrary and is one 
reason why HASTE may produce sub-optimal results when compared to an optimal DSO 
assignment in terms of total system clearance time.  Step (0.2) in the algorithm simply initializes 
the network demands, available cell occupancies, and connector capacities. 

Initialization:                    (0)

Sort origins as set R̂ according to pre-determined criteria; (0.1) 

Initial demands and connector capacities: (0.2) 

assign initial cell occupancies Cix ii  ,0  ; 

set Available_Cell_Occupancy t
iNti ),( ; 

set Available_Connector_Capacity ),min(),,( t
j

t
i QQtji  ;  

 

Figure 2 HASTE Initialization 

The traffic assignment steps in HASTE are illustrated in Figure 3.  For each origin zone in the 
network with non-zero demand, the first step is a dynamic shortest path search to the super sink, 
denoted p.  Since only one origin is considered at a time and FIFO conditions are not restrictive 
in the many-to-one case, a simple generalization of Dijkstra’s algorithm (1959) with the same 
complexity can be used to solve the time dependent shortest path problem, as reported by 
Dreyfus (1969) and mentioned by Chabini (1998).  The number of evacuees using path p, 
denoted by fp, departing as a group is next computed as the bottleneck capacity (or minimum cell 
capacity) of the dynamic shortest path.  This is done so that the algorithm can mimic the system 
objective of maximizing the traffic throughput in the evacuation network.  The capacities along 
path p are then reserved by this group of evacuees and the demand at the origin is reduced by fp.  
The available capacity on each connector is restricted by the remaining occupancy of the 
downstream cells during the preceding time interval.  When all evacuees are assigned their 
departure times and evacuation routes, the algorithm terminates.  The evacuation time horizon T 
is self-determined in HASTE.  This is in contrast to a priori required time horizons to solve the 
DSO using LP techniques.  Furthermore, it is clear that only capacity and cell occupancy 
constraints restrict traffic from flowing into downstream cells; i.e., traffic holding is not allowed 
in HASTE. 
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Assignment Method (Evacuee Group Routing): 

while evacuees are still present in any origin, in an order of R̂ , do { (1) 

if  demand 0id , do { 

find the time-dependent shortest path  niiip ...,,,: 10  with:   (2) 

time schedule  nttt ...,,, 10 , such that 

Available_Cell_Occupancy: ),( kk tioccu >0 and 

Available_Connector_Capacity: ),,( 1 kkk tiicapa  >0;   

 

determine evacuee group size fp  

Bottleneck flow v = min( ),( kk tioccu , ),,( 1 kkk tiicapa  ,  nk ,...1,0 );  (3) 

group size = flow on path p,  fp = min( id ,v); (4) 

 

perform time dependent network loading  

for 1:0  nk  do { (5) 

Available_Cell_Occupancy: ),( kk tioccu = ),( kk tioccu - fp; (6) 

Available_Connector_Capacity: ),,( 1 kkk tiicapa  = ),,( 1 kkk tiicapa  - fp; (7) 

p
t
i

t
i fxx k

k

k

k
 ; (8) 

p
t

ii
t

ii fyy k

kk

k

kk


 11
; (9) 

} 

demand pii fdd  ; (10) 

} 

} 

 

  Figure 3 HASTE Network Updating and Assignment Procedure 

Under situations where the computation time, denoted ߬ in Figure 4 below, meets or exceeds an 
available budget κ, i.e. for small time budgets and/or larger problems, routing strategies 
determined by the algorithm at time κ can be extracted, which do not necessarily cover the entire 
evacuation population, but can be effectively used for current evacuation operations and the 
solution procedure may proceed to produce routing schedules for the remainder of the evacuee 
population.  This is in contrast to an intermediate analytical LP solution, which may differ 
substantially from the optimal solution.  A flow chart illustration of HASTE is shown in Figure 4 
without updating the sorted origin set. 
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Figure 4 HASTE Flow-Chart 
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4. POST-INCIDENT COMPUTATIONS: COMPLEXITY ANALYSIS 

In HASTE, the number of shortest path search operations in HASTE is the same as the number 
of evacuee groups, Ng, using the same shortest path and departing at the same time.  Each path 
carries at least one evacuee; in the worst case, each group only contains one evacuee and as a 
result, the number of iterations has an upper bound equal to the number of evacuees.  In other 
words, if we let M denote the total number of evacuees, then Ng = O(M) in the worst case. 

The computation costs for a single HASTE iteration consist of three main parts: (i) the time-
dependent shortest path search p (ii) a time dependent walk through p to determine evacuee 
group size, and (iii) a second time dependent walk to carry the evacuee group through p and 
update cell capacities and occupancies along p (assignment).  The time-dependent shortest path 
search is applied to the original link-based network G(N, L) instead of the cell based network 
G(C, E) as a computation simplification method, where cell capacities and occupancies 
determine link costs. 

Let k = |N|×|T| represent the number of nodes in a time expanded network, e = |L|×|T| the number 
of links in the time expanded network, and l = |C|×|T| represent the total number of cells in the 
time expanded network.  The computation cost of Dijkstra’s shortest path algorithm is ܱሺ݁  ݇ ·
log ݇ሻ as shown by Barbehenn (1998).  Evacuees are assigned to the cell-based network G(C, E); 
hence, the computational complexity of each of the two time dependent walks is O(l).  The 
computational complexity of a single iteration becomes ܱሺ݁  ݇ · log ݇  2݈ሻ and the overall 
complexity of HASTE is ܱሺሺ݁  ݇ · log ݇  2݈ሻܯሻ in the worst case.  On the other hand, solving 
the DSO problem, as presented in Section 2, generally takes much longer time. The popular 
algorithms used in commercial software to solve linear program are the Simplex method, the 
interior-point method, and the trust-region method.  The average complexity of the Simplex 
method is O((n-m)mn2) as reported by Dantzig and Thappa (1997).  However, for the worst case, 
the computational complexity of simplex method is known to be exponential.  To the best of our 
knowledge, the LP solution algorithm with the best polynomial computational complexity was 
proposed by Anstreicher (1999); it has a worst case complexity of O((n3/log n)L).   

As we will demonstrate in Section 6, the linear program can easily give rise to millions of 
variables and constraints due to its time-dependent nature.  Without considering the special 
structure of the evacuation problem, existing solution algorithms to the LP take a long time to 
manipulate the huge coefficient matrices typical to realistic problems.  Shen et. al. (2007)  
introduced a network simplex method for solving DSO evacuation problems.  With an implicit 
network representation inside the solution algorithm, their method outperforms standard LP 
algorithms.  However, the network simplex method requires the predetermined evacuation 
horizon T and a time-expanded network.  An arbitrary initial assignment in the network simplex 
method will result in a longer evacuation horizon T than necessary, and thus a huge problem size.  
Further, the network simplex method, as other standard LP algorithms, is not able to generate 
routing plans in its solutions.  In contrast, HASTE keeps the problem size relatively small, and 
results in faster computation.  It is able to provide routing plans even when it is interrupted due 



A-9 

 

to operational time budget, although the solution is an approximation of the optimum.  
Additionally, the post-incident (online) computation cost of HASTE can be further reduced by 
including a pre-incident (offline) processor, as introduced in the next section. 

 

5. HASTE: PRE-INCIDENT COMPUTATIONS 

Since one of the major computational components of heuristic is the shortest path search, and 
since the temporal dimension of the problem cannot be simplified, one approach to simplify the 
problem is by reducing the problem size spatially, or in other words to eliminate nodes from the 
network that are not likely to be used by any of the shortest paths.  For evacuation scenarios 
where structures to be evacuated are near the boundary of the safe area, links located in remote 
parts of the evacuation network will most likely not be included in any of the evacuation routes 
although they will be examined as part of the shortest path search.  Hence, eliminating such links 
from the network for those particular origin zones may have a significant impact on 
computational efficiency.  Therefore, the concept of an efficient sub-network is utilized to 
improve computational efficiency.   

An efficient sub-network is defined here as a network that: (i) only includes acyclic paths, (ii) 
includes nodes that either take flow farther away from the origin or closer to the super 
destination, or both.  This gives rise to four different types of sub-networks that vary in size: (a) 
origin-efficient sub-networks, which only include links that always take flow farther from the 
origin, but not necessarily closer to the super-destination; (b) destination-efficient sub-network, 
which only include links that bring flow closer to the super-destination, but not necessarily 
farther from the origin; (c) origin-and-destination-efficient sub-networks, which only include 
links that both take flow farther from the origin and closer to the super destination; and (d) 
origin-or-destination-efficient sub-networks, which include links that either take flow farther 
away from the origin or closer to the super-destination. 

The important distinction between these different types of sub-networks is their size; while 
origin-efficient and destination-efficient may result in equivalent sub-network sizes, origin-and-
destination-efficient sub-networks are much more restrictive in terms of links included; and 
origin-or-destination-efficient sub-networks are much less restrictive resulting in larger sub-
networks.  As traffic flow situations evolve in the network during the evacuation process, links 
that were considered inefficient may become efficient, resulting in new paths that could be used.  
This means that effective sub-networks, determined offline, may require updating online during 
the evacuation process.  Larger sub-networks require less online updating, if any, than smaller 
ones; here, a tradeoff arises between the type of sub-network used and computation complexity 
that may vary dramatically depending on network topology, demand levels, evacuation type, and 
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so on.  Nonetheless, reducing the spatial dimension of the network may still have a significant 
impact on computation time. 

Determining the sub-network is a static procedure carried out using a simplified version of Dial’s 
assignment algorithm (Dial (1971); Sheffi (1985)), where instead of computing “link likelihoods” 
and probabilistic flows, we employ a link flagging process.  At the end of the algorithm, links 
with flags = 0 are eliminated in the sub-network and links with flags = 1 are included. 

Step 0: Initialization 

For each node in the network, let: 

i.  r(i) denote the shortest path distance from the origin node to node i 

ii. s(i) denote the shortest path distance from node i to the super destination node 

iii. Ii denote the set of outbound links from node i 

iv. Fi denote the set of inbound links to node i   

 

Step 1: Preliminary Link Flags 

For each link connecting nodes i → j, determine the link flag A(i → j), where: 

 

For an origin-efficient sub-network, only the first condition ( r(i) < r(j) ) applies; only the second 
( s(i) > s(j) ) applies for a destination-efficient sub-network; using both conditions results in an 
origin-and-destination-efficient sub-network; and using either results in an origin-or-destination-
efficient sub-network. 

Step 2: Forward Pass 

After the initial link elimination process, certain links in the sub-network become isolated due to 
either elimination of all predecessor links or all successor links.  In this step, links in the sub-
network that do not have incoming links, i.e., cannot be traced back to the origin, are also 
eliminated.  For all nodes in the network in ascending order of r(i): 

 

A(i → j)  =  

A(i → j) if  i = origin node 

1   if  A(i → j) ∑ A(l → i) > 0  for all A(l → i) Ԗ Fi 

0  otherwise 

A(i → j)  =  
1  if  r(i) < r(j)   either/and/or   s(i) > s(j) 

0  otherwise 
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Step 3: Backward Pass 

In this step, links in the sub-network that do not have successor links, i.e., cannot reach the super 
destination, are also eliminated.  For all nodes in the network in ascending order of s(i): 

 

Figure 5 below illustrates the reduction in network size for a small hypothetical grid-network 
with origin node 1, destination node 9, and using origin-efficient paths. 

    

             (a) The Original Network                         (b) The Efficient Sub-network 
 

Figure 5 Origin-Efficient Sub-Network Example 

 

6. COMPUTATIONAL EXPERIMENTS 

To test HASTE, a hypothetical no-notice evacuation scenario is assumed in a 0.5-mile radius 
network in downtown Minneapolis, Minnesota; the network consists of 156 nodes and 376 links.  
Figure 6(a) is a map of downtown Minneapolis highlighting the disaster impacted area and 
Figure 6(b) is the skeleton link-node network with centroids demands.  The evacuation scenario 
includes 17 origin zones with a total demand of 15,977 evacuees.  This data is based on the 
afternoon peak hour volumes extracted from the Twin Cities Metropolitan Council planning 
model for the year 2000. 

A(i → j)  =  

A(i → j) if  i = super destination node 

1   if  A(i → j) ∑ A(j → m) > 0  for all A(j → m)   Ii 

0  otherwise 
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(a) 

 
(b) 

Figure 6 Hypothetical Disaster Impacted Area: (a) Map of Impact Area, (b) Skeleton Network 

To illustrate reduction in network size, an origin-or-destination-efficient sub-network (least 
restrictive) for an origin located near the boundary of the network reduces the network size by 20 
nodes, i.e. to 151 nodes, and 168 links, to 208 links.  Considering the fact that HASTE runs a 
shortest path search for each group of evacuees, this reduction in network size can result in 
significant computation time savings.  This example is illustrated in Figure 7 below, where 

1 mile
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Figure 7(a) illustrates the original network which mostly consists of bi-directional links and 
Figure 7(b) illustrates the sub-network with the red circle representing the origin zone. 

              

             (a) The Original Network                         (b) The Efficient Sub-network 
 

Figure 7 Efficient Sub-Network for a Real-World Example 
 

Before we apply the DSO model and solution methods to the problem, we need a cell based 
representation of the network.  First, we provide three levels of traffic fidelities; the high level 
traffic fidelity uses 3-second as a discrete time interval; the medium level traffic fidelity adopts 
6-second as a discrete time interval; and the low level traffic fidelity employs 15-second as a 
discrete time interval.  With high level traffic fidelity traffic flow propagation can be captured 
with little approximation error.  However, a low level traffic fidelity network results in distorted 
link lengths because free flow link travel times in urban areas may be smaller than 15-seconds 
for shorter downtown links.  

These three different levels of traffic fidelities generate different cell-based networks.  The high-
level-fidelity network results in a larger problem size but captures more traffic flow information 
in the network.  The problem sizes are presented by the numbers of constraints and variables in 
the DSO model (1)-(6).  These numbers are summarized for a 1-hour evacuation time window in 
Table 1. 

Table 1 Problem Size Indices 

 Cells (#) Time Intervals (#) Variables (#) Constraints (#) 
High Fidelity 894 1,200 9,252,801 2,932,401

Medium Fidelity 803 600 4,526,401 1,866,201 
Low Fidelity 794 240 623,872 1,466,608 



A-14 

 

Table 1 illustrates the difficulty of solving this evacuation problem.  All three fidelity levels 
result in problem sizes with millions of variables and constraints.  Hence, using LP solvers will 
most likely result in excessively high computation times.  This also exemplifies the importance 
of heuristics, such as HASTE, to overcome computational burdens.  For the purpose of this 
example, origin-or-destination-efficient sub-networks were determined for all 17 origin zones in 
the network. 

For comparison purposes, both an LP solver solution (CPLEX provided in GAMS) and HASTE 
are implemented, to generate the dynamic evacuation traffic assignment patterns.  The final 
solutions given by CPLEX and by HASTE are summarized in Table 2.  All computational 
implementations were conducted on a personal computer with a single 3 GHz Xeon Processor 
and 2 GB of RAM. 

Table 2 Dynamic System Optimal Solutions Given by CPLEX and HASTE 

Methods CPLEX Results HASTE Results 

Results 
Computation 

Time 
Clearance 

Time 
Objective 

Value 
Computation 

Time 
Clearance 

Time 
Objective 

Value 

High Fidelity -- -- -- 42 sec 46.95 min 16,936,371

Medium Fidelity -- -- -- 17 sec 47 min 17,791,134

Low Fidelity 14,149 sec 35.5 min 16,530,915 7.72 sec 48 min 18,751,817

The dashed lines in Table 2 denote that a result could not be produced with the given processing 
power and physical memory used.  The objective values in this table represent the total system 
travel times.  It is worth noting that larger problems (e.g., higher demands, larger radii, and high 
fidelity) couldn’t be solved using the same desktop computer for the optimal DSO solution.  
HASTE, on the other hand was tested on laptop computers with less processing power and only 
512MB of memory, but still managed to produce the same solutions shown above within similar 
time frames.  Figure 8 below shows the aggregate arrival rates at the super-destination zone from 
all zones in the network. 



A-15 

 

0 5 10 15 20 25 30 35 40 45 50 55 60
0

2000

4000

6000

8000

10000

12000

14000

16000

DSO Solution
HASTE: Low Fidelity
HASTE: High Fidelity
HASTE: Medium Fidelity

E
va

cu
ee

 A
rr

iv
al

 a
t S

up
er

-S
in

k

Time (minutes)

35%

DSO Assignment
Clearance Time:

35min 30sec

HASTE: Clearance
Time: 48min

 
Figure 8 Aggregated Arriving Rates Results 

When examining the CPLEX results in Figure 8, we see that, for the most part, it maintains a 
consistent arrival rate.  This can be explained by the fact that there exists a network bottleneck 
capacity, as discussed above, and a system optimized solution fully utilizes this capacity so as to 
minimize the clearance time (or maximize the network throughput).  We also see that the 
heuristic solutions, despite different discrete time interval lengths, results in similar arrival rates 
over the evacuation process.  The figure also shows that HASTE also provides very close 
matches to the optimal solution for the majority of the evacuation process, but taper off towards 
the end.  The reason for this is that the greedy nature of the procedure does not consider marginal 
costs, but rather assigns all groups to dynamic shortest paths.  Despite the 35% difference 
between the heuristics and the optimal solution in total network clearance time, the computation 
time savings shown in Table 2 make HASTE an attractive alternative.  It takes nearly 4-hours for 
an LP solver solution for an evacuation time window of less than 1-hour, as opposed to less than 
1-minute for various network fidelity levels using HASTE. 

The assignment order  ܴ , shown in Figure 4, impacts the solution quality of HASTE.  We 
mentioned two types of sorting strategies in Section 3: static sorting and dynamic sorting. Static 
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sorting strategy maintains a fixed order of origins throughout the algorithm iterates, while 
dynamic sorting strategy periodically changes the order of origins.  In previous tests, the static 
sorting strategy was applied.  For a comparison, we also applied a dynamic sorting strategy in 
HASTE, to solve the low fidelity evacuation problem. The dynamic sorting strategy applied here 
incrementally selects the origin with highest demand after each assignment step.  Solution 
qualities of HASTE using the two strategies are illustrated by Table 3 and Figure 9.  

Table 3 Performance Comparison between Different Sorting Strategies 

 
GAMS/CPLEX 

Solution  
HASTE: Sorting 

Strategy 1 (Static) 
HASTE: Sorting 

Strategy 2 (Dynamic)

Computation (CPU) Time 15,362 sec 7.72 sec 4.81 sec 

Network Clearance Time 35.5 min 48 min 39.75 min 

Objective Value (Veh*Sec) 16,530,915 18,751,817 17,360,174 
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Figure 9 Evacuee Arrival Rates for Differing Sorting Strategies 



A-17 

 

As demonstrated by Table 3, the second (dynamic) sorting strategy produced a solution that is 
within 5.0% of the optimal solution in terms of objective value (total system travel time) with a 
network clearance time that is only 4.75 minutes longer (or 13% higher).  The second sorting 
strategy also outperforms the first sorting strategy in terms of both solution quality and 
computation time.  The main reason for the difference in computation time is that the time 
horizon is smaller with the second solution strategy; thus fewer algorithm steps were required. 

 

7. CONCLUSIONS AND FUTURE RESEARCH 

This paper proposes solution strategies for solving time-constrained optimal routing problems for 
real-time no-notice emergency evacuation operations.  A time-constrained DSO model using a 
cell-based network representation is adopted.  The nature of no-notice evacuation scenarios 
dictates external computation time constraints that may have a significant impact on evacuation 
operation in real-world settings.  Due to the large size of the DSO linear program, commercial 
linear programming solvers do not serve as good alternatives for such scenarios because (1) LP 
solvers generally are not efficient for solving DSO problems, and (2) they cannot provide 
reasonable results if they are arbitrarily terminated.  

The proposed solution procedure, HASTE, consists of pre-incident and post-incident heuristics.  
Pre-incident computations include efficient sub-network determination to help reduce the size of 
the problem spatially.  This is particularly useful for real-world no-notice scenarios that include 
evacuation networks with a sizeable number of links and nodes.  The post-incident computations 
help determine evacuee departure rates, time schedules, and dynamic shortest paths that evacuees 
should use.  Although the proposed heuristic approach only provides close-to-optimum solutions 
to the DSO model, its high computational efficiency and termination-friendly feature make it 
outperform any commercial LP solver solutions and are more attractive to practical evacuation 
operations.  Numerical examples validate this statement. 

The quality of the solutions produced by HASTE in this study was demonstrated by means of 
example.  One aspect that impacts HASTE performance is the sorting strategy.  As demonstrated 
by the example, a good sorting strategy may improve the solution quality of HASTE without 
adding computation burden.  A thorough study of the quality of solutions produced by HASTE, 
in terms of bounds and deviation from optimality as a function of problem dimensions, is left as 
future research.  HASTE is primarily a routing algorithm with the underlying assumption that all 
signalized intersections and ramp meters are under full control and the best is being done in 
terms of signal timing settings.  As future research, the authors intend to extend the DSO to the 
case where only a subset of signalized intersections can be controlled.   
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APPENDIX: DSO FORMULATION 

The notation used in the DSO formulation: 

C  : all network cells : SRMDO CCCCC   

OC  : ordinary cells (cells with one predecessor and one successor) 

DC  : diverging cells (cells with one predecessor and multiple successors) 

MC  : merging cells (cells with multiple predecessors and one successor) 

RC  : source cells (cells without predecessors) 

SC  : sink cell (super sink) 

E  : cell connectors : SRMDO EEEEE   

OE  : ordinary cell connectors (connecting ordinary cells) 

DE  : diverging cell connectors (with a diverging cell head) 

ME  : merging cell connectors (with a merging cell tail) 

RE  : source connectors (connecting source cell) 

SE  : sink connectors (connecting sink cell) 

T  : set of discrete time intervals 
t
ix  : number of vehicles in cell i during time interval t 
t
ijy  : number of vehicles moving from cell i to cell j during time interval t 

t
iN  : maximum number of vehicles that can be held in cell i during time interval t 
t
iQ  : maximum number of vehicles that can flow into or out of cell i during interval t 

id  : total demand flow out of source cell i 
t
id  : demand flow out of source cell i during time interval t 
t
i  : the ratio of w/v for cell i during time interval t  

 i  : set of successor cells to cell i 

 i1  : set of predecessor cells to cell i 

i  : initial number of vehicles present in cell i at time 0 
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The problem formulation: 
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1. Introduction  

Ground transportation systems play a central role during evacuation processes. When faced with 
unanticipated emergency events, authorities need to make critical decisions to minimize evacuee exposure 
to harm. Two such decisions involve: (i) evacuee routing strategies and (ii) officer deployment to critical 
network locations. These decisions are made under conditions where limited resources are immediately 
available.  
 

Responding to no-notice events is reactive in nature; thus, every minute counts, both in terms of 
network clearance times and computation times for evacuation strategies. Evacuee routing and officer 
deployment to critical network locations are two intertwined components of vehicle evacuation in the 
sense that, at optimality, different deployment strategies may be associated with different routing 
strategies. Hence, the two components need to be solved for simultaneously and not sequentially.  
 

This research considers real-world no-notice evacuation problem sizes while emphasizing the 
importance of computation times to produce such strategies, as they are unanticipated in nature. To 
describe the problem, the cell transmission model (CTM) based dynamic system optimal (DSO) 
assignment model, developed by Ziliaskopoulos (2000), is extended to include critical location 
determination and optimized departure rates rather than a-priori known departure rates. A simplified 
representation of network intersections is adopted to reduce problem complexity and only fixed signal 
timing plans are considered. A heuristic solution approach for simultaneously determining dynamic 
routing solutions coupled with static officer deployment strategies is then developed, which is capable of 
producing high quality solutions.  
 

This paper is organized as follows. In section 2, the CTM-based traffic flow representation scheme is 
summarized. Section 3 re-iterates the relaxation scheme adopted in Ziliaskopoulos (2000), and problem 
initial conditions and treatment of network demands are introduced. The officer deployment constraints 
are then developed as an extension to the DSO in section 4. The heuristic solution strategy is presented in 
section 5. A numerical example highlighting the quality of the heuristic solution strategy is provided in 
section 6. Finally, a summary and conclusion is presented in section 7.  

2. Traffic Flow Representation  

The cell transmission model (CTM), developed by Professor Carlos Daganzo in Daganzo (1994; 1995), 
is a discrete time approximation of the hydrodynamic traffic flow equations due to Lighthill and Whitham 
(1955) and Richards (1956) (commonly referred to as the LWR equations). The CTM has received a great 
deal of attention in the literature and practice due to its simplicity and yet rich level of traffic flow repre-
sentation.  
 

The CTM can be thought of as a scheme in which network arcs are divided into cells. Capacities and 
occupancies are then defined at the cell level in units of numbers of vehicles and not rates. As such, cell 
capacity may be interpreted as the maximum number of vehicles that can flow into or out of the cell and 
occupancy as the maximum number of vehicles that can be stored in the cell. 

  
The primary contribution of the CTM to the model is in representing flow conservation at the cell level 

and flow restrictions between cells. The terminology and mathematical notation used in this paper is 
adopted from Ziliaskopoulos (2000) as described below.  

 

We use Qi
t, Ni

t, and xi
t to denote the capacity, maximum occupancy, and number of vehicles present in 
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cell i during time interval t, respectively. The set of network cells C = CO � CD � CM � CR � CS is the 
union of the mutually exclusive and exhaustive sets of ordinary, diverging, merging, source, and sink 
cells, respectively; while Γ

−
(i), Γ(i)

+ 
� C are sets of cells immediately upstream and downstream cell i. 

The set CS only contains the single super-sink cell; we will use the subscript s to denote the super-sink, 
which represents safety. The evacuation time horizon is the set of all discrete time intervals in the 
problem and is denoted by T.  

The flow between two adjacent cells i and j during time interval t � T, also interpreted as the flow on 
connector (i, j), is represented as yij

t. The set of network connectors E = EO � ED � EM � ER � ES is the 
union of the mutually exclusive and exhaustive sets of ordinary, diverging, merging, source, and sink 
connectors, respectively. An ordinary connector links two ordinary cells; a diverging connector links a 
diverging cell to an ordinary cell in the downstream; a merging connector links an ordinary cell to a 
merging cell downstream; a source connector links a source cell to an ordinary cell; a sink connector links 
an ordinary cell to the super sink cell. 

  
2.1. Flow Conservation  

For conservation of flow in cells, the difference between the number of vehicles present in cell i for two 
consecutive time intervals must be equal to the difference between the number of vehicles that entered 
cell i and the number of vehicles that left cell i during the earlier time interval. For k � Γ

−
(i) and j � Γ

+
(i), 

this is written as:  

 

 

 (1a) 

 

 

 (1b) 

 

 
 (1c) 

 

Equation (1a) applies to all intermediate cells in the network, while inflow and outflow do not apply to 
source and sink cells, as shown in equations (1b) and (1c), respectively.  

2.2. Flow Restriction  

Flow propagation in the CTM is restricted by the three regions of the underlying triangular flow-
density relationship (see Daganzo (1994) and Daganzo (1995)). The first region represents under-
saturated traffic flow conditions (free-flow), the second saturated conditions (capacity), and the third 
over-saturated conditions (deterioration in flow due to congestion). Under free-flow conditions, flow from 
cell i into cell j is restricted by the number of vehicles present in cell i during the time interval under 
consideration. Under saturated conditions, flow between cells i and j is restricted by their capacities. For 
oversaturated conditions, the number of vehicles that can flow into cell j is restricted by the available 
occupancy of cell j expressed by the difference Nj

t - xj
t multiplied by the backward wave propagation 

speed to free-flow speed ratio w/v denoted by δj
t. The flow restriction conditions are written as:  
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   (2a) 

   (2b) 

 

 

(2c) 

    

 

 

(2d) 

    

 
Programs (2) serve two purposes: (i) they state the CTM flow restriction conditions, and (ii) they 

ensure maximum throughput through network cells without traffic holding. (2a) and (2b) define flow 
restriction conditions for ordinary, source, and sink connectors, while programs (2c) and (2d) define flow 
restrictions without traffic holding in diverging and merging connectors, respectively.  

 

3. Adopted DSO Formulation  

3.1. Relaxation of Flow Restriction Conditions  

Flow restriction programs (2) are non-smooth. Here, we adopt the linear relaxation of the flow 
restriction programs shown in Ziliaskopoulos (2000) to simplify the model. The cost of this relaxation is 
that traffic holding will be allowed in the formulation. For an alternative re-formulation that explicitly 
ensures no traffic holding, we refer to Lo (1999a). The flow restriction conditions are restated as:  
 
   (3a) 

   (3b) 

   (3c) 

   (3d) 

 

 

 (3e) 

 

 

 (3f) 

 

 
 (3g) 
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 (3h) 

 
The flow restriction constraints do not include any explicit treatment of signal timing or prioritization at 

intersections. A solution to the DSO problem, with flow restriction stated as in constraints (3), may be 
interpreted as one with full control over the network; i.e., the best time-dependent prioritization scheme is 
implemented at all network intersections.  

3.2. Initial Conditions, Network Demands, and Variable Type Constraints  

The formulation in this paper does not assume knowledge of the time dependent departure rates from 
the origin cells; they are rather optimized in accordance with the system objective. For each source cell i 
� CR, the initial demand is denoted by . The total demand in the network is represented by 

. This assumes that network demands only consist of source cell demands and intermediate 
cells in the network are all empty at time 0. This is not very restrictive as additional source cells may be 
added to the network and intermediate cell occupancies may be transferred to these new sources. Thus, 
for all i � CR, we have ; and for all i � C\CR, we have  and no initial flow,  for all 
(i, j) � E. For all time intervals t � T, all cell occupancies are non-negative; i.e., , for all i � C. 
Likewise, for all t � T, connector flows are all non-negative: , for all (i, j) � E. Total flow into the 
super-sink over the entire evacuation horizon is D; this is stated as: .  
 

3.3. System Objective  

As presented in Ziliaskopoulos (2000), minimizing the system travel time can be represented by the 
sum of vehicles stored in all network cells excluding the super-sink over all time periods 

, since the length of individual time intervals is constant and may be omitted. We 
modify the objective by adding higher weights to vehicles stored in the source cells to penalize any 
holding in the origin cells. We denote these weights by βi, where i � CR. The weights are scalars greater 
than 1.0 that are provided a-priori and may be allowed to vary from one source to the next. The system 
objective becomes , which is to be minimized. 
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4. Officer Deployment  

In this section, we extend the DSO formulation above to include officer deployment strategies. 
Candidate officer locations considered are network intersections with conflicting movements. Here, we 
assume that officers will route vehicles through the intersection in the best manner possible. The primary 
question at hand is: under a DSO scheme and limited resources, which intersections should be chosen for 
officer deployment? To answer this question, we first describe the problem as one with n candidate 
intersections and a budget of b denoting the number of intersections that can be controlled, where b<n. 
We also treat this as a static deployment problem. In other words, officers are deployed to locations that 
they remain in throughout the evacuation process. This is not much of a drawback considering the short 
time horizons over which no-notice evacuation operations typically take place. 

  
The cellular representation of an intersection used here is determined by discretizing an arc-node 

representation in which every movement at the intersection is represented by a separate arc. This is 
illustrated in Figure 1, where movement arc lengths used are small enough to be represented by a single 
cell. The cells used to represent intersection movements are referred to as gateway cells. For a more 
detailed representation of intersection movements using the cell transmission model, we refer to Lee 
(1996). 
 

 
Figure 1: Gateway Cells 

 
To capture existing signal timing at the intersection, we allow capacities of gateway cells to fluctuate 

between 0, when the movement has a red indication, and an upper value denoted by qi when the 
movement has a green indication, where qi may be interpreted as saturation flow rate for the movement as 
in Lo (1999b); thus, for gateway cell i, the capacity is Qi

t�{0,qi}. Gateway cell maximum occupancies 
depend on intersection layouts.  

It is easy to see that various phasing schemes may be accommodated by modifying the time dependent 
capacities. While this gating approach only applies to protected movements, it may be generalized to 
permitted movements by allowing qi to also be time-dependent. However, to keep the formulation simple, 
we do not consider this case. We also assume fixed timing plans and ignore cycle lost times and yellow 
indications to simplify the formulation. 

  
We now have two sets of ordinary cells: gateway cells and non-gateway cells. We will simply treat 

gateway cells as a subset of ordinary cells. We denote the set of gateway cells by  � . We will also 
use the superscript l =1, ..., n to denote the candidate intersection to which cell i �  belongs. Thus, the 
set  may be partitioned into the disjoint sets { } such that , where each set belongs to a 
candidate intersection. We now introduce n binary variables  and l =1, ..., n, where  if 



 

B-7 
 

candidate intersection l is to be controlled, and  otherwise. Flow restriction for gateway cells will 
be treated in a different manner than for other ordinary cells. This will be reflected in the relaxed 
constraints (3b) and (3c). These constraints will now be modified to refer to non-gateway cells only:  

   (4a) 

   (4b) 

 For gateway cells, we first note that the set of intersections chosen for control is not time-dependent; i.e., 
the best set of intersections will be chosen for control throughout the entire evacuation process. 
Intersections not under full control should have capacities that fluctuate according to their ’s. 
Intersections that are under full control, on the other hand, have fixed capacities at the gateway cells 
equivalent to movement saturation flow rates (or their fixed qi’s). This is written as:  

   (5a) 

   (5b) 

To ensure that the budget b is not exceeded, we have:  

 

(6) 

Constraint (5a) restricts flow leaving gateway cells and (5b) restricts flow entering gateway cells. By 
setting  to 1 for some intersection l, capacities for all gateway cells belonging to intersection l are set to 
their upper values:  and for , existing signal timing restricts the flow: 

. This allows for splitting rates at the intersections to follow a system 
optimizes assignment only; i.e., delays incurred at intersections are only due to downstream capacity or 
flow restriction in general. 
 

We point out that this scheme is not intended to provide optimal signal timing plans, but only the 
locations of critical intersections. Situations where conflicting movements merge into a downstream cell 
during the same time interval are not explicitly prevented; we allow for this in order to maintain a simple 
program. This simplicity is most obvious when examining the total number of binary variables in the 
problem which is equivalent to the number of candidate intersections n, keeping the number of 
complicating variables to a minimum. This is in contrast to DSO approaches that aim to provide for signal 
timing plans, where the number of discrete variables is proportional to the number of intersections 
multiplied by the number of discrete time intervals in the problem. In a no-notice evacuation scenario, 
solving problems with such sizes becomes preventative. For a CTM-based simultaneous signal timing 
optimization and system optimized assignment model, we refer to Lo (2001) and to Lo et al. (2001) for 
the solution strategy. Other models were proposed by Lin and Wang (2004) and Beard and Ziliaskopoulos 
(2006). 
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5. Heuristic Solution Strategy  

The small number of binary variables in the problem allows for effective use of known meta-heuristic 
methods. In this paper, we adopt a simple genetic algorithm to search for officer deployment strategies. 
With a given officer deployment strategy, the ’s become constant and the problem is reduced to a linear 
program. Nonetheless, for real world problem sizes, solutions to these linear programs are 
computationally burdensome. Thus, for solution quality (or fitness), the heuristic algorithm for staged 
traffic evacuation (HASTE), developed by the authors, is used.  

5.1. The Simple Genetic Algorithm  

Genetic algorithms (GA) are heuristic search approaches that mimic survival of the fittest in natural 
systems. In simple GA’s, three operations are used for this purpose: (i) reproduction, (ii) crossover, and 
(iii) mutation. First, a population of solutions (chromosomes) is generated, typically, at random. The 
fitness of these chromosomes is then assessed and the chromosomes are ranked. A new population is then 
reproduced, at random, and depending on chromosome fitness. The higher the fitness, the more likely the 
chromosome will be reproduced; the lower the fitness, the more likely the chromosome will not be 
reproduced. Thus, the fittest survive (and possibly multiply), while the least fit do not. The reproduced 
chromosomes then mate by interchanging (crossing over) parts of two parent chromosomes to produce 
two new offspring chromosomes. Mutation is a rare operation that ensures that the GA searches do not 
lock into local optima, where individual genes in a chromosome may change value, at random. For a 
detailed presentation of GAs, we refer to Goldberg (1989). 

  
To represent officer deployment strategies, chromosomes of length b are generated, where each gene 

assumes a value between 1 and n (or 0 and n − 1). In other words, the value of the gene indicates a 
location that is to be chosen for officer deployment. This is in contrast to a binary chromosome scheme 
with n genes each representing a candidate location, where the genes assume vales of either 0 or 1. Under 
the latter scheme, chromosome crossover and/or mutation are likely to produce infeasible chromosomes; 
the number of 1’s in this scheme must adhere to the budget b. The former scheme, on the other hand, does 
not suffer this limitation. Solutions that involve a deployment strategy with a chosen number of locations 
smaller than b are also allowed. Such a situation may be represented by duplicate gene values. Another 
advantage to this scheme is that only the gene values serve as chromosome traits. The locations of these 
values within the chromosome are not important. This allows for good chromosome traits to be passed 
down to the offspring chromosomes more effectively through crossover, since it is the value in the gene 
and not the gene itself that constitutes a trait. 
 
5.2. HASTE  

HASTE (see He (2007) for details) is a fast solution technique used to approximate a CTM-based DSO 
assignment. Several numerical experiments with both hypothetical and real-world size problems were 
carried out by the authors, and revealed that HASTE is capable of producing high quality assignment 
solutions (compared to the DSO) in a matter of seconds or less. It is noteworthy that solutions produced 
by HASTE contain no vehicle holding and routing schedules are directly produced by the algorithm. 
Figure 2 is a flow chart of the HASTE solution process. The first step in the algorithm is a sorting 
scheme. On the one hand, this gives users flexibility in selecting which origins (or sources) are to be 
prioritized. On the other hand, the sorting scheme is typically arbitrary and may lead solutions produced 
by HASTE towards non-optimality in the DSO sense. 
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Figure 2: Flowchart of HASTE 

 
After sorting the sources in HASTE, each origin is processed according the chosen order. For each 

origin, three procedures are invoked: (i) a dynamic shortest path search, p. (ii) Computation of bottleneck 
flow along the shortest path v(p), which is done by carrying out a time dependent walk through the path 
and determining the minimum available capacity or available occupancy; the smallest of these values and 
the remaining demand in the origin is then used as the flow to be assigned, f(p), representing the evacuee 
group size. (iii) A time-dependent assignment of f(p) along p. When demand at a source is depleted, it is 
removed from the sorted set, and HASTE is terminated when the sorted set becomes empty.  
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6. Numerical Example  

To demonstrate the quality of the heuristic solution strategy, a hypothetical network was constructed 
with n = 10 candidate intersections and a budget of b = 4 police officers available for deployment. A 
layout of the test network is shown in Figure 3. The length of the discrete time interval is 3 seconds. The 
saturation flow rates used are 1,200 vphpl (cell capacities = 2 veh/cell), Jam density used is 235 veh/mi 
(cell occupancies = 8 veh/cell and 4 veh/cell for gateway cells). The signal timing plans used are based on 
60 second cycle lengths (30 seconds for each approach). The signal timing settings allow for smooth 
progression at free-flow along both the north-south and east-west directions. Total demand D is 2,700 
evacuees distributed amongst the network sources. The source weights βi used are 10 for all source cells. 
The 10 candidate intersections considered for officer deployment are illustrated with gateway cells in 
Figure 3. 
 

 
Figure 3: Network Layout 
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We first solve the problem using classical techniques. The time horizon |T| selected to solve the 

problem was 55 minutes or 1,100 3-second discrete time intervals. Prior to solving the problem, we have 
no knowledge of the evacuation time horizon. Selection of a proper time horizon is important, as selection 
of too short a horizon would result in an infeasible solution and selection of too long a time horizon 
would result in increased problem size. For this hypothetical problem, the number of continuous variables 
is 304,977 and the number of binary variables is 10. The total number of constraints (not including 
variable type constraints) in the problem is 662,951. This is a relatively large problem, which will most 
likely be the case for real-world no-notice evacuation problems. The problem was solved using the 
GAMS/CPLEX solver. The time required to produce a feasible solution analytically was 1,104 minutes 
(18 hours and 24 minutes) within 1.07% of the lower bound relaxation. The clearance time provided by 
the analytical solution was 31 minutes and 15 seconds (or 625 3-second time intervals). 

  
We then solve the problem using the heuristic framework. An evacuation time horizon is not required 

a-priori. An 80% crossover rate and a mutation rate of 1% were employed. One point cross-over was 
used. A population size of 20 chromosomes was used and 20 generations were produced. The CPU time 
required was 5 minutes and 7 seconds, which is much smaller than the computation time required to solve 
the problem using GAMS/CLPEX. The clearance time provided by the heuristic solution was 33 minutes 
and 30 seconds (or 670 3-second time intervals). The difference in clearance time is only 2 minutes and 
15 seconds. Figure 4 compares the cumulative arrivals at the super-sink over the evacuation time horizon 
for the GAMS/CPLEX and the heuristic solutions. 
 

 
Figure 4: Arrival Rate at Super-sink 
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7. Concluding Remarks  

This paper considered two types of decisions that authorities are faced with when responding to no-
notice emergency events; evacuee routing, and improving network throughput by deploying a limited 
number of police officers to critical network locations. A 0-1 mixed integer extension to the CTM-based 
DSO model was developed as a baseline model to solve for optimal routing and optimal officer 
deployment strategies. Considering the reactive nature of no-notice evacuations, computation times for 
such strategies were addressed by developing a heuristic solution framework, which was shown to 
provide a comparable solution to that of the analytical model, but considerably faster. For officer 
deployment strategies, a genetic algorithm (GA) based approach was adopted and the heuristic algorithm 
for staged traffic evacuation (HASTE) was used to assess the fitness of the GA solutions. 

 
The effectiveness of GA in exploring the possible officer deployment strategies primarily stems from 

the simplicity of the discrete component of the analytical model. The number of binary variables was kept 
at a minimum. The computation speed of the heuristic framework is primarily due to the use of HASTE 
for solution fitness approximation. Our future work will consider improvements to the meta-heuristic 
component GA, while also exploring the possibility of using other meta-heuristics such as ant colony 
optimization, which have shown to be effective in network design problem contexts.  
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1 Introduction 
This guide is meant to serve as a user’s manual for the evacuation software tool.  The 
organization of the guide reflects the step-by-step process that a user would follow from software 
installation, to producing an evacuation scenario, to viewing the results.  We also refer to 
Chapter 6 of the final project report for a more technical discussion of the software features. 

2 Installation 
1. Double-click “setup.exe”. 
2. Click “Next” on the welcome screen (see Figure 1) 

 

Figure 1 Installation Welcome Screen 

3. Select the installation directory by clicking the “Browse” button (see Figure 2).  The default 
Directory is: “C:\Program Files\University of Minnesota\No-notice Evacuation Tool\”.  In 
this guide, it will be assumed that the user selected the default directory. 

 

Figure 2 Installation Folder Screen 
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4. Click “Next” in the installation confirmation screen (Figure 3) to begin installation.  The 
installation screen will appear, showing installation progress (Figure 4). 

 

Figure 3 Confirm Installation Screen 

 

Figure 4 Installation Screen 

5. Click “Close” on the installation complete screen (Figure 5).  The installation process is 
complete.  The installation will place a short-cut named “Evacuation” on the user’s desktop 
and in the start menu under programs.  
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Figure 5 Installation Complete Screen 

The installation program also installs two GIS data layers in the installation directory in the 
“BackgroundMap” folder: (1) a “Links” layer that includes all road attributes in the downtown 
Minneapolis network and (2) a “Nodes” layer that includes all junction attributes including 
signal timing attributes for the AM peak period, the PM peak period, and the off-peak period.  
The folder also includes an intersection turning movements file, “Mvmnts.csv”.  These files 
include all of the necessary data for designing evacuation scenarios in downtown Minneapolis.  
These files should be left intact; scenario-specific modifications should only be made to 
scenario files (discussed later). 

Opening the Downtown Minneapolis Background Map 

1. Start the evacuation tool by either: (i) double-clicking the short-cut on the desktop, (ii) 
clicking the short-cut in the start menu, or (iii) double-clicking the executable in the 
installation directory.  The main window of the tool should appear. 

2. To open the background map, click “File” then “Open” (or use the short-cut in the toolbar).  
In the “Browse For Folder” dialog box, scroll to the installation directory (“C:\Program 
Files\University of Minnesota\No-notice Evacuation Tool” by default), select the 
“BackgroundMap” folder, and click “OK”.  This pulls up the downtown Minneapolis 
background map, shown in Figure 6. 
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Figure 6 Downtown Minneapolis Background Map 

3 Background Map Tools 
The “Tools” menu on the main window includes tools that allow users to quickly navigate 
through the background map.  The tools are: pan, zoom in, zoom out, and zoom to max extents, 
which can also be invoked via short-cuts on the toolbar. 

The “Feature Info” tools are used to display road (“Select Arc”) and intersection (“Select 
Vertex”) attributes by clicking on the desired tool and selecting the feature that user wishes to 
see the attributes for.   An example is shown in Figure 7.  Selecting an object (feature) in the map 
highlights the object selected; the “Clear Selection” tool removes all highlighting from the map. 
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Figure 7 Feature Selection 

4 Scenario Development 
1. Under the “HASTE” menu item, click “Select Area”.  The radius input box shown in Figure 

8 will appear.   
 

 

Figure 8 Selection of Disaster Area Radius 
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The “Radius” input box allows users to specify the extents of the disaster area in meters, feet, 
or miles (fractions are allowed).  For the purposes of this demonstration a radius of 500 
meters is entered. 

2. Click on the base map in the center of the disaster area.  The selected area with the specified 
radius (500 meters in this example) is highlighted.  If the user is not satisfied with the 
highlighted area as the disaster location, the “Clear Selection” tool may be used by clicking 
the “Clear Selection” item under the Tools menu or by clicking the toolbar item.  The 
highlighted area is shown in Figure 9. 
 

 

Figure 9 Disaster Area Highlighting 

 
3. To create an evacuation scenario based on the highlighted part of the network, under the 

“HASTE” menu, click “Create Scenario”.  The “Scenario Name” input box shown in Figure 
10 will appear.  Enter a name for the scenario.  For demonstration purposes, the scenario will 
be named “0906_Tutorial”.  
 

 

Figure 10 Scenario Name Input Box 

 
4. Click “Enter”.  The user will be prompted to select a location to create the scenario files.  

Select directory to save the scenario files to.  This will create a new folder, named 
“0906_Tutorial” in the directory selected by the user (e.g., “C:\Program Files\University of 
Minnesota\No-notice Evacuation Tool\Tutorial\0906_Tutorial”).  In this folder, the tool 
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creates two GIS layers, a links layer and a nodes layer with their names prefixed by the 
scenario name (i.e., 0906_Tutorial_Links and 0906_Tutorial_Nodes).  The two layers are 
displayed in the scenario set-up window, which appears after the files are created. 

5 Scenario Set-up 
Scenario set-up can be summarized by the following four steps: 

1. Trimming the network by deleting arcs and vertices. 
2. Modification of arc capacities and jam densities, if necessary. 
3. Entering demands (i.e., defining the network sources). 
4. Defining the network sinks. 

5.1 Delete Arc 
To delete a network arc from the scenario network, select “Delete Arc” under the “Edit 
Network” menu and select the arc to delete.  The same process is carried out for each arc to be 
deleted, where after each arc is deleted the user is asked to confirm deletion as shown in Figure 
11. 

 

Figure 11 Deleting an Arc 

After deleting some of the network arcs, vertices that are no longer attached to the remaining 
network (see Figure 12) should also be deleted.  This is done the same way it was done when 
deleting arcs using the “Delete Vertex” tool under the “Edit Network” menu. 

 

Figure 12 Unconnected Vertices 
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Note that upon confirming deletion of either an arc or a vertex, changes are immediately saved in 
the GIS link and node files for the scenario. 

5.2 Modifying Arc Attributes 
The tool also allows users to modify arc attributes to represent changes in the physical network; 
this is useful when dealing with partial link closures (e.g., lane drops) and to minimize the 
utilization of certain roads in the network as part of the evacuation strategy when full road 
closures represented by deleting an arc is not desired.  To modify arc attributes, click “Select 
Arc” under the “Feature Info” menu or click the grid icon on the toolbar.  The two arc attributes 
that can be modified for this purpose are the capacity and jam density of the arc (see Figure 13). 

 

Figure 13 Modifying Arc Attributes 

5.3 Entering Demands 
Network demands are the most crucial input in scenario set-up process.  Vertices with non-zero 
demands are considered evacuee concentration points in the network.  The distribution of 
demands in the network is crucial in terms of accuracy of the algorithms, the realism of the 
scenario, and the computation times.  Concentrating very large demands in one vertex will result 
in excessively high computation times, due to limitations in the capacities of the outgoing arcs 
both in the model and in reality. 

To enter demands, select the “Select Vertex” tool under the “Feature Info” menu or click the 
“Select Single Vertex” button on the toolbar.  Then click on the vertex on the map to view the 
vertex attributes and enter/modify demands.  For purposes of this demonstration, two vertices are 
selected and 500 vehicles are entered as demands.  This is illustrated in Figure 14. 
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Figure 14 Entering Demands 

5.4 Defining Network Sinks 
To define the network sinks, click “Select Sinks” under the “Edit Network” menu.  The tool will 
assume sink selection mode (Figure 15), which does not allow the user to use any of the network 
modification tools.  It is crucial that all boundary vertices are selected in order to have an 
accurate representation.  It is also crucial that only boundary vertices are selected.  Upon 
selecting each of the vertices, the vertex attributes box will appear which can be closed by 
clicking the close button (or the spacebar) and resuming selection.  Upon completing selection, 
the “Stop Adding Sinks” button (red X) can be clicked. 

 

Figure 15 Sink Selection Mode 
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To view the selected sinks, click on “Edit Network” -> “Sink List” -> “Highlight Sinks”.  The 
result is shown in Figure 16. 

 

Figure 16 Highlighting Selected Sinks 

Highlighting the selected sinks allows the user to check is whether enough sinks have been 
selected.  To add more sinks to the selection, simply click “Select Sinks” to go back to sink 
selection mode.  To modify the selection (i.e. remove sinks from the selection), click “Edit 
Network” -> “Sink List” -> “Clear List” and redo the selection. 

This concludes scenario set-up.  The scenario files are ready for the algorithms. 

6 Running the Evacuation Algorithms 

6.1 Creating the Evacuation Network 
1. Under the “HASTE” menu, select the “Create Evacuation Network” tool. 
2. The “Signal Timing Period” input box appears, prompting the user to select a signal timing 

period since different times of the day are associated with different signal timing plans.  For 
purposes of this demonstration, “PM Peak” option will be selected (Figure 17). 

3. Click OK in the “Signal Timing Period” input box after selecting the analysis period. 
4. Allow a few seconds for processing the user input.  The “Delta T” input box appears 

prompting the user to select an appropriate discrete time interval length for the algorithms 
(Figure 18).  For purposes of this demonstration, 10 seconds will be selected.  Click “OK”. 
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5. Allow a few seconds for processing.  When done a message box displaying the message 
“Done Converting Network” will appear (Figure 19).  Click “OK” to close the message. 

 

Figure 17 Signal Timing Period Input Box 

 

Figure 18 Discrete Time Interval Length “Delta T” 

 

Figure 19 Done Converting Network Message 

This completes the scenario set-up procedure.  After completing the scenario set-up procedure, 
the next step is to run the algorithms.  First, under the “HASTE” menu, click “Run HASTE”.  
This brings up the “Dynamic Assignment” window shown in Figure 20. 
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Figure 20 Dynamic Assignment Window 

6.2 Running the Algorithms for Evacuee Routing 
1. Under the “Routing” menu, click “Run Routing Algorithm” to run the routing algorithm 

HASTE assuming no officers are deployed to any of the network intersections. 
2. Wait for the algorithm to complete evacuee routing computations. 
3. When the computations are done, three things are displayed in the “Dynamic Assignment” 

window: (i) the algorithm start time and end time, (ii) the number of time steps needed to 
route all evacuees to safety (network clearance), and (iii) the network clearance time in 
minutes.  This is shown in Figure 21. 

 

Figure 21 Routing Results 
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Note that the start and end times displayed in the “Dynamic Assignment” window are the start 
and end times of the algorithm only.  There are additional preparatory computations that take 
place before running the algorithm, where the graph theoretic network structure is transformed 
into a network of cells. 

In addition to network clearance times, the tool also produces evacuee departure plans as text 
files in the scenario directory.  Text based results and graphical displays of results are discussed 
later. 

6.3 Manual Selection of Officer Deployment Locations 
The software tool also allows analysts to test their own officer deployment strategies.  For 
demonstration purposes, we will arbitrarily assign 5 officers to 5 randomly selected intersections 
in the network, as follows: 

1. Under the “Routing” menu, click “Select Intersections and Route”.  This will bring up the 
“Signal Selection” input box shown in Figure 22. 

2. Check the boxes in the “Signal Selection” input box to select the desired intersections. 
 

 

Figure 22 Signal Selection 

 
3. After selecting the desired intersections for officer deployment, click “Run Routing 

Algorithm”.  The clearance time results are displayed in the “Dynamic Assignment” (Figure 
23). 

There are two things to note in the routing examples: 

• The routing algorithm required less than 300 milliseconds to compute routing strategies in 
both cases (with and without officers). 

• The clearance time is slightly better with the 5 officers deployed randomly to five signalized 
intersections (22 minutes vs. 20.5 minutes in Figure 21 and Figure 23, respectively). 
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Figure 23 Routing Results with Five Officers 

6.4 Optimized Officer Deployment Strategies 
In the example above, five officers were deployed manually to five randomly selected locations 
in the network.  We will now turn to finding optimized officer deployment strategies using the 
evacuation software tool. 

1. In the “Dynamic Assignment” window, under the “Officer Deployment” menu, click “GA 
Parameters”.  This brings up the deployment algorithm parameter input box shown in Figure 
24. 

2. For officer deployment budget, enter 5 and use the defaults for all other parameters. 
 

 

Figure 24 Genetic Algorithm Parameters 

 
3. Click “Enter Parameters”. 
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4. Under the “Officer Deployment” menu, click “Run Algorithm”.  The “Dynamic Assignment” 
window goes to waiting mode while carrying out the calculations (Figure 25). 

 

Figure 25 Waiting Mode 

After calculations are completed, the algorithm start and end times and the best network 
clearance time are shown in the “Dynamic Assignment” window (Figure 26). 

 

Figure 26 Optimized Officer Deployment Strategy Results 

Note that to compute the officer deployment strategy more time was required.  However, the 
algorithm run time is still less than 30 seconds for this small scenario.  Also note the 
improvement in the network clearance time (14 minutes). 
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7 Results 

7.1 Graphical Display 
All routing and officer deployment results are saved in text files in the scenario directory.  Some 
of the results can be displayed graphically in the scenario window. 

1. Close the “Dynamic Assignment” window. 
2. On the scenario window, under the “Results” menu, click “View Selected Intersections”.  

The signalized intersection selected for officer deployment are highlighted on the map and a 
list of all network signalized intersections with the “CHOSEN” and “NOT CHOSEN” appear 
in the “List of Selected Intersections” window (Figure 27). 
 

 

Figure 27 List of Selected Intersections 

 
3. Close the “List of Selected Intersections” window. 
4. Click “Clear Selection” under the “Feature Info” window to clear the highlighting. 
5. Click “Route Sets” under the “Results” menu to graphically display the routes suggested by 

the routing algorithm for each network source.  The “Route Sets” window shown in Figure 
28 can now be used to view routes in the scenario window by selecting a route and clicking 
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“View Route”.  The “Route Sets” window displays the route sets under each of the network 
sources and displays the total number of evacuees assigned to each of the routes. 

6. Expand one of the routes by clicking on the + icon next to it.  This will list all roads 
comprising the route, numbered by their object identifiers in the links shapefile. 

 

Figure 28 Route Sets 

7.2 Text Files 
All routing an officer deployment results are also save in the “HASTE” folder in the scenario 
directory (“C:\Program Files\University of Minnesota\No-notice Evacuation 
Tool\Tutorial\0906_Tutorial\HASTE”).  This includes: 

• “Log.txt”: the results displayed in the “Dynamic Assignment” window. 
• “ShapesChosen.csv”: the shape id’s of the vertices chosen for officer deployment in the 

nodes shapefile. 
• “IntersectonsChosen.txt”: a list of signalized intersections in the scenario network indicating 

which intersections are chosen for officer deployment. 
• “Assignment.csv”: a time-space table listing all cell occupancies over the course of the 

evacuation process. 
• The “Routing” folder includes one sub-folder for each source in the scenario network with 

two files inside of each folder: 
 “FlowList.csv”: a departure schedule with the route index in the first column and the 

number of evacuees assigned to the routes in the second column. 
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 “Paths.csv”: a list of paths used by the source (one path per row).  The first column is 
the total number of evacuees assigned to the path and the other columns hold the 
shape id’s of the arcs that constitute the path. 
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