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Executive Summary

State agencies responsible for ADA-eligible paratransit services are increasingly under pres-
sure to contain costs and maximize service quality. Many do not themselves operate vehicles;
instead, they contract out the provision of services. The contractors are paid for each hour of
service. They are responsible for hiring crew, operating vehicles, forming routes, dispatching,
and maintaining the vehicles.

This report describes the outcome of a research project, supported by the Minnesota
Department of Transportation and the University of Minnesota’s Center for Transportation
Studies that used data from Metro Mobility (a Twin Cities based provider of paratransit
services) to identify opportunities for improving efficiency and service quality. The research
project also developed mathematical models and computer algorithms that can be used to
implement the outlined approaches. Although the analysis is based on Metro Mobility data,
it is possible to apply the underlying principles to a variety of other situations involving
ADA transportation in different parts of the state and the country.

The project develops two key ideas for improving efficiency. The first idea is to reoptimize
routes developed by Metro Mobility’s route-building software (a commercial product named
Trapeze) at the end of each day of booking operations to reduce the total time it takes to
serve booked trips. The second idea evaluates the selective use of non-dedicated vehicles and
service providers (e.g. taxi services) for lowering operational costs. Mathematical models
and computer algorithms are developed for each of these approaches. These are then tested
on actual operational data obtained from Metro Mobility.

The report shows that a conservative estimate of savings from reoptimization would be
5% of Metro Mobility’s operating costs. Additional savings from the use of taxi service would
be in the hundreds of dollars per day. The actual magnitude of these savings would depend
on the proportion of customers who agree to travel by taxi.



Chapter 1

Introduction

Planning for paratransit services in most counties and multi-county metropolitan areas of
the United States is driven by the requirements of the Americans with Disabilities Act
(ADA)–see http://www.ada.gov/pubs/ada.htm for a text of the ADA. There are, broadly
speaking, six factors to consider when planning delivery of such services. These are:

1. Service must be provided in a corridor that roughly matches the fixed-route transit
system, such as bus or rail, and extending three quarters of a mile on either side of the
fixed-route corridor.

2. Next-day service should be made available and reservations, up to 14 days in advance,
should be permitted.

3. Reservations must be taken all days when service is provided and reservation hours
must be comparable to service hours.

4. The fare charged should be no more than twice the fare paid by a person without
disability on a fixed-route system.

5. Prioritizing of trips, e.g. by trip purpose, is not permitted.

6. Matching paratransit service must be offered during the same days and hours as the
fixed-route system is in operation. Public entities are prohibited from limiting the
amount of paratransit services provided to ADA-eligible persons.

Some States and metropolitan areas go beyond the minimum ADA requirements. For
example, ADA requires paratransit service to be at a minimum a curb-to-curb service. How-
ever, a Minnesota state statute requires “first-door-through-first-door” service. This means,
for example, that if a customer’s pick up is from an apartment complex and drop off is
at a shopping mall, then the driver will pick the customer up from the main entrance of
the apartment complex and drop him/her off at the main entrance to the mall. Another
example is that ADA requires service in a three quarter mile corridor on either side of the
fixed-transit routes, whereas Minnesota statutes define service area as the political bound-
aries of the municipalities served by the fixed-route system (Metropolitan Council 2001).
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In short, both Federal and State legislation affect planning for paratransit services. Special
lift-equipped vehicles are used to make this service accessible to ADA-eligible users. Such
users are called certified users in this report. They constitute the pool of clients from which
demand originates. For planners in each county/metropolitan area, the size of this pool is
known, although it changes over time.

State agencies responsible for ADA-eligible paratransit services are increasingly under
pressure to contain costs and maximize service quality. Many agencies do not themselves
operate vehicles; instead, they contract out the provision of services. However, they do own
dedicated vehicles that are leased to contractors at a nominal cost. The contractors are
responsible for hiring crew, operating vehicles, forming routes, dispatching, and maintaining
the vehicles. In the Metropolitan Twin Cities area, they are paid on the basis of the number
of “revenue” hours. The number of revenue hours accrued on a given route is the amount of
time elapsed (in hours) from the first pick up to the last drop off of continuous operation of
the route. Total revenue hours that can be billed are capped in each two-week period.

The need to match hours of operation to fixed-route transit system hours, minimize ca-
pacity denials (interpreted by the Federal Transit Authority (FTA) to mean zero denials due
to capacity shortages), and maximize service quality measures as well as efficiency requires
careful attention to all aspects of capacity management. In addition to capacity denials,
different county and metropolitan governing bodies may use a variety of additional service
quality measures to determine if contractors are providing adequate service. In the Twin
Cities metropolitan area, important service quality metrics include the percent of on-time
pick-ups, missed trips, on-time drop-offs, acceptable ride times, and excessive ride times.

The primary focus of the research project, which forms the basis of this report, was to
analyze Metro Mobility data and to develop mathematical models and algorithms to improve
operational efficiencies. [Metro Mobility is responsible for providing ADA paratransit services
in the Twin Cities area. It reports to the Metropolitan Council.] Specifically, this report
contains answers to the following questions:

1. Is there a statistically significant pattern of operational performance that could uncover
sources of operational efficiency?

2. How do contractors respond to the different incentives and disincentives offered in
typical service contracts?

3. Is it possible to improve the efficiency of routes? If so, by how much?

4. Can state agencies reduce costs by using a mix of dedicated and non-dedicated vehi-
cles/services?

Whereas the first two questions above can be answered after analyzing historical data with
the help of standard statistical techniques, it is much harder to answer questions 3 and 4
because of a variety of complicating factors that make these problems difficult. We describe
the key factors in the next section.
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1.1 Complicating Factors

Many ADA paratransit service providers use commercial software to perform trip planning
and scheduling. Metro Mobility uses a software package called Trapeze — see http://www.

trapezegroup.com/solutions/pt_pt.php for details. Whereas such tools have helped im-
prove accountability and efficiency, a lot more can be accomplished by using advanced Op-
erations Research techniques. We will describe some of these methods later in this proposal.
But first, let us examine some factors that make the route planning problem non-trivial.

1. Dynamic trip scheduling: Clients need to be assigned to vehicles, and pick-up and drop-
off times need to be determined, without knowledge of requests from all clients who will
need services on any given day. Typically, clients are quoted a pick up time when they
call. This requires dynamic trip scheduling and route formation. Dynamic scheduling
problem is inherently more challenging and requires the use of either heuristic or rule-
based scheduling approaches, which inevitably results in suboptimal use of vehicle
capacity.

2. Variable demand: The demand for services is not stationary in time. Demand rate
changes by the hour of the day, by the day of the week, and by changing seasons. In
addition, demand during a particular hour of a particular weekday is random.

3. Variable capacity: The realized capacity of each dedicated vehicle depends significantly
on the decision processes that lead to the formation of vehicle routes and schedules.
Trip durations, which in turn determine the number of trips that each vehicle can
complete each day, also depend non-trivially on the chosen route, the time of day, and
the weather conditions.

Next, let us qualitatively examine some pros and cons of using dedicated and non-
dedicated vehicles. Dedicated vehicles provide ease of scheduling, complete control over
availability, and by and large, better service. The latter comes from the fact that drivers
of dedicated vehicles are specially trained to serve ADA clients. For example, in the Twin
Cities area, drivers usually pick up clients inside the outermost door of their pick-up spot,
drop off the client inside the first door of their destination, and usually help carry items such
as groceries. This is especially important during winter months and when the client is in a
wheelchair and does not have a personal care assistant. The major drawback of a strategy
of providing service with dedicated-only vehicles is the overall system cost and the lack of
agility in responding to changing demand patterns. In order to maintain service quality, a
sufficiently large number of vehicles must be placed in service to meet peak demand. This
creates excess capacity during low demand hours during which there is no alternate use for
the equipment/personnel.

In contrast, non-dedicated vehicles, e.g., vehicles operated by taxi service providers, vol-
unteers, and those used for multiple customer populations, can be used to take some of
the peak load off the dedicated system. Such vehicles can complement dedicated capacity
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while remaining available to serve other types of demand during non-peak hours. Thus, non-
dedicated vehicles can be an economical solution to the problems caused by the time varying
demand pattern. However, the availability of a sufficiently large number of non-dedicated
vehicles is not guaranteed because the demand from other sources may peak at the same
time when ADA demand peaks.

In what follows, we have summarized key issues that need to be resolved in order to
perform a cost-benefit analysis of the non-dedicated option. This list and the rest of this
report assumes that the source of non-dedicated vehicles are taxi service providers. The
assumption is consistent with the possible sources of such vehicles in the Twin Cities area
at this point in time. Our analysis can be adapted to suit different needs, e.g. when the
non-dedicated vehicles are multi-use county vehicles, or volunteer-driven vehicles.

1. Which clients should be offered an opportunity to travel by taxi? This requires finding
the customer whose removal from a dedicated route leads to the highest cost savings
overall.

2. What should the service provider do if the next customer in the list turns down an
offer to travel by taxi?

3. The demand for paratransit services usually peaks during the morning and after-
noon/evening rush hours. These are also the times during which demand is high for
taxi services. Given this reality, it is important to ask how many taxis (non-dedicated
vehicles) are likely to be needed to serve a given population of certified users?

In addition to the financial costs and benefits, there are a host of service quality related
factors that may affect a state agency’s decision to use taxi service. This report does not
address the quality issues, some of which are listed below. However, a service provider that
is considering using non-dedicated option should work with the providers of non-dedicated
vehicles to resolve such issues. It is reasonable to assume that the vast majority of these
issues can be resolved via negotiation.

1. Can the taxi service guarantee availability of a vehicle on return trips when the client
is dropped off in an area that is not usually served by the taxi service?

2. How can the taxi service ensure compliance with procedures for driver training, proper
maintenance of vehicles, and drug and alcohol testing?

3. In case of an accident, is there a transfer of risk from taxi service provider to the ADA
paratransit service provider when clients are transported in taxis? What would it cost
the state agency to obtain insurance against this risk?

Finally, some counties/metropolitan areas are considering same day service, which goes
beyond the ADA mandated level of service. [Note that at present only next-day service is
required by ADA policy.] Same-day service makes it difficult to plan for capacity usage. It
is therefore more likely to cause capacity shortages and overages. With very little advance
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notice, same day service providers need to develop decision processes to decide when to
insert a client’s pick-up/drop-off within an already scheduled route and when to start a new
route. This type of service is likely to benefit even more from the use of non-dedicated
transportation options. The approach outlined in this report can also help decision makers
choose the right mix of different service/equipment types for same-day service.

Readers should note that although we use Metro Mobility data to shine light on avenues
for improving operational efficiency, such analysis is applicable to paratransit operations in
metropolitan and rural areas across the country. For example, in the metropolitan areas,
non-dedicated services may be offered by taxis, whereas in rural areas, such services may be
offered by a team of volunteer drivers.

1.2 Organizational Details

The remainder of this report is organized as follows. Chapter 2 contains statistical analysis of
Metro Mobility data and answers questions 1 and 2 described earlier in this Chapter. Chapter
3 contains a reoptimization approach that can lead to more efficient route formation. Chapter
4 describes an algorithm to determine which customers should be offered taxi service and
conducts a cost-benefit analysis of the non-dedicated option as a function of the fraction of
customers who accept the offer to travel by taxi. A summary of our findings, possible future
directions for research, and concluding remarks can be found in Chapter 5.

Chapters 2, 3 and 4 are written in a manner that they can be read independently. That
is, each chapter has its own Introduction and Conclusion section. We do not present mathe-
matical models in the main body of the report. These are included in the Appendix. Finally,
copies of the computer programs used to perform the reported analysis can be obtained from
the Research Services Section of the Minnesota Department of Transportation.
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Chapter 2

Understanding Performance

For the purpose of analyzing Metro Mobility’s (MM) operational performance, we received
data from January 2001 through August 2005 pertaining to cancelations, no shows, and
overall productivity. We also obtained data on the booking behavior of customers and con-
tractor productivity for 2004 and 2005. Finally, we obtained financial data on bonuses and
damages for all of 2004 and from January–August of 2005. The purpose of the analysis pre-
sented in this Chapter was to identify patterns of performance that could lead to operational
improvements. We present results pertaining to each performance metric under a different
heading in the remainder of this Chapter.

Metro Mobility uses two contractors in the Twin Cities Metropolitan area. These are
Laidlaw and Transit Team. Each contractor is responsible for a particular region of the
metro area and is provided with MM vehicles that are purchased with the help of federal
grants. Contractors are paid a fixed rate for each hour of service provided.

2.1 Analysis of cancelations

We studied the variation in the percent of trips that were canceled by year and by month.
The results are shown in Figures 2.1 and 2.2 respectively. Yearly comparisons controlled for
variations from one month to another, whereas monthly comparisons controlled for variations
across years.

Upon performing a test of equality of mean percent cancelations, we found that the
cancelation rate was different in at least one year (p-value=0). In particular, percent mean
cancelations for 2005 were significantly smaller (p-value=0.05). There was no significant
difference in the month to month cancelations (p-value=0.951), although visually it appears
from Figure 2.2 that there was a drop in cancelations during the period from October 2004
through July 2005.

We investigated whether there was a correlation between demand volume and percent
cancelations. Our analysis revealed a weak positive correlation — the correlation coefficient
was 0.270 with a p-value of 0.044. Therefore, the correlation is statistically significant at a 5%
significance level. Although the true reason why there were proportionally fewer cancelations
when demand was lower remains unknown, one possible reason is as follows. When demand
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Figure 2.1: Yearly cancelation analysis

is high, customers need to book well in advance and more customers receive less than ideal
pick-up and drop-off time schedules. This leads to greater cancelations. From an operational
efficiency viewpoint, this is bad news because cancelations increase variability precisely when
it is important to manage capacity carefully.

2.2 Analysis of No Shows

Our analysis of percent no-shows followed the same approach that we used for analyzing
percent cancelations. Our results are summarized in Figures 2.3 and 2.4. Analysis of variance
showed that the percent no-shows were different in at least one year (p-value=0) and in
particular, no-show percent was lower in 2002 and 2005 (p-value=0.05). There was no
significant difference in month-to-month no-shows (p-value=0.499).

We also found a weak positive correlation between percent no-shows and demand. The
correlation coefficient was 0.281 with a p-value of 0.036. As in the previous section, the
true reason why percent no-shows were correlated with demand volume remains unknown.
However, the same reasons that resulted in greater cancelations are also likely to cause a
greater proportion of no shows.
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2.3 Analysis of Productivity

Metro Mobility measures productivity by the average number of passengers served per rev-
enue hour. We analyzed data for productivity comparisons by year and by month. These
results are summarized in Figures 2.5 and 2.6.

Analysis of variance revealed that whereas there was no statistically significant difference
in productivity from month to month, productivity was lower in 2005 (p-value=0.05). Be-
cause 2005 had lower demand, this observation led us to investigate whether productivity
changes could be explained, in part, by demand levels. Plots of the relationship between
productivity and demand are shown in Figures 2.7 and 2.8 for Laidlaw and Transit Team
data, respectively.

Both contractors’ productivity tracked demand. Upon performing a linear regression
analysis with demand as the independent variable and productivity as the dependent vari-
able, we discovered a statistically significant relationship, but with a small R square. This
led us to conclude that although there was a relationship between productivity and demand,
the relationship was likely not linear. We will return to this issue in a later section when we
discuss the implication of this relationship on contract parameter selection.
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2.4 Analysis of Capacity Denials

We studied the variability in capacity denials by the day of the week for each month, and
by the month for each weekday. The results of such comparisons are shown graphically in
Figures 2.9 and 2.10.

Analysis of variance in which we controlled for weekday variability showed that capacity
denials were significantly higher in April and lower in December. When classified by month
alone, there was no significant difference in capacity denials by month. However, when
controlling for day-of-week variability, capacity denials did vary by month as noted above.

2.5 Contract Design

The fact that contractor productivity was correlated with demand led us to further investi-
gate the appropriateness of incentives used in typical contracts. The main purpose of this
analysis was to check if contracts left open the possibility of moral hazard – situations where
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Figure 2.4: Monthly no-shows analysis

the contractor could benefit financially by deliberately choosing non-optimal actions.
For this purpose, we looked at Laidlaw’s data from 2004 and first 8 months of 2005. We

calculated the payments made to the contractor, including the damages for lower productiv-
ity, and compared it with what the contractor would have earned by maintaining a nominal
productivity of 1.6 passengers per revenue hour. The latter is the desired productivity level.
In each month that a contractor’s productivity dropped below 1.6, damages were assessed
according to the following rule. If the contractor productivity fell below 1.6 but remained
higher than 1.59, a penalty of 0.25% was applied to the total amount billed. This penalty was
changed to 0.5% for productivity in the range 1.58 and 1.59, and to 0.75% for productivity
below 1.58. Results of our computations are shown in Tables 2.1 and 2.2.
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The column “Nominal Hours” shows the number of hours for which the contractor would
have received payment if it maintained a productivity of 1.6. The differences in actual total
cost (amount paid) and total cost using nominal hours are the potential savings. The analysis
shows that the contractor received a greater payment, even after paying damages, than what
it would have received if it had maintained the desired productivity level of 1.6. Specifically,
in 2004, Laidlaw was paid about $50,000 more, and between January–August 2005 it was
paid about $145,000 more than what it would have received with a productivity of 1.6.

Productivity can be an issue in periods of low demand. During these times, the contractor
benefits by charging MM for a greater number of revenue hours at the expense of productivity.
Our analysis reveals a potential for improving contract parameter selection, e.g. one remedy
might be to calculate revenue hours assuming a productivity of 1.6 or the actual productivity,
whichever is higher. In this arrangement, the contractor should also receive a share of the
efficiency-related savings when its productivity exceeds 1.6.

2.6 Conclusions

In addition to the performance metrics reported above, the investigators also examined a
variety of service quality measures used by Metro Mobility. There were no specific patterns
identified. However, for sake of completeness, a copy of the MS Power-Point presentation
summarizing the results of this exercise is included in Appendix A. The key finding of this
Chapter are as follows.

1. Cancelations and no shows are affected by demand volume and tend to be propor-
tionally higher when demand volumes are higher. Thus, cancelations and no shows
increase variability in demand, leading to an inefficient use of capacity at a time when
demand is high and greater efficiency would be needed.

Contractors could adopt a variety of protocols during periods of high demand to mit-
igate the negative consequences of a higher proportion of cancelations and no shows,
e.g. they may maintain a waiting list of passengers whose requests were not be met
when they first called. When coupled with the reoptimization routine described in
Chapter 3, a waiting list would provide an opportunity to fill freed up capacity from
cancelations.

2. The contract terms offered to the contractors do not eliminate moral hazard. In par-
ticular, during low demand periods, the contractors can benefit financially from having
low productivity even after paying the damages.

This project did not study contract parameter optimization problem, but that would
be a fruitful area of future investigation.
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Chapter 3

Route Reoptimization

In this chapter, we answer the question “Is it possible to improve the efficiency of routes
without changing the procedures used to schedule trips and form routes?” Our approach
must also honor all ADA and state requirements for delivering service.

A high-level summary of our methodology is as follows. Starting with the routes generated
by Trapeze, we developed and tested a repeated reoptimization approach that improves upon
these routes. Trapeze is the software tool used by Metro Mobility (MM) to form routes based
on requests received from the ADA population in a dynamic fashion. Our approach ensures
that all planned pick-up and drop-off times fall within the ADA and MM norms. That is,
each customer is still picked up and dropped off within the allowable time window from
the pick-up and drop-off times originally scheduled by Trapeze. However, we use a rigorous
mathematical approach to resequence stops along each route, and to move/swap passengers
from one route to another. This leads to more efficient routes and reduces the total number
of hours needed to serve all customers.

Numerical tests show that the reoptimization procedure can result in savings of between
5-10% in planned operating costs. Putting this in the context of MM’s annual operating cost
of $19.5 million in 2004, this would mean potential annual saving between $0.975 million
to $1.95 million at the 2004 level of expenditure. As fuel and labor costs continue to rise,
these savings are likely to be even greater in the future. We recommend that the proposed
reoptimization approach be used at the end of each day of bookings. This will open up
more room in the partially scheduled routes each day to accommodate certain requests on
subsequent days that would have been denied otherwise.

The remainder of this chapter is organized as follows. We begin by describing the data
we received from MM in Section 3.1. Section 3.2 gives the sequence of steps that constitute
our reoptimization routine for improving operational efficiency. This routine relies on two
mathematical models. Technical details of the mathematical models can be found in Ap-
pendix B. We discuss the relevant literature dealing with similar problems in Appendix C.
In Section 3.3, we present numerical results that provide evidence of the savings that can
be achieved using the reoptimization routine. Finally, in Section 3.4, we describe what is
necessary to integrate this approach into Metro Mobility’s current operations, and provide
a summary of our findings and recommendations.
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3.1 Data Description

We obtained historical trip data for one day of operations for each service provider from
Metro Mobility. The data come in two Microsoft (MS) Access databases. The first database
contained the trip data for each passenger served on that day. The categories of data we
received are shown in Table 3.1. The second database contained the distances between every
location to every other location visited on that day. To protect passenger privacy, we were
not given the distance between the depot to any other location. We also did not know the
exact location of any pick-up or drop-off stop.

Table 3.1: Data Fields

Fields Input
SCHEDATE The date that the trip took place
RUNNUM Route numbers
STATUS Status of each request: performed, no-show, cancel
SUBTYPEABBR Request type: DEM and REG. DEM is demand and REG

is subscription
O Pick up (PU) or drop-off (DO)
BOOKINGID A unique number that identifies the trip
ADDRESSID A unique number that identified the location
DISTANCE Distance between PU and DO
TRAVELTIME Time traveled between PU and DO
CREATETIME Time when the request was created
CREATEDATE Date when the request was created
REQUESTTIME Time requested by passenger for a pick up
SCHETIME Pick up time communicated to the passenger by service provider
APPTIME Time specified by passenger for a drop off
ACTUALARRIVETIME Time that the provider claims its vehicle arrived at the location
SPACETYPE Mobility need of the passenger: AM = Ambulatory,

WH = Wheelchair, LF = Lift, SC = Scooter
MAPPAGE Map page of where the stop is located

(page # and grid coordinate in Kings’ 2005 street atlas)
CITY The city where the stop is located
PROVIDERNAME The name of the provider that completed the trip

The data from Laidlaw pertained to its operations on June 1, 2005. It contained 103
routes serving a total of 1009 passengers. The number of passengers in each route varied
from 3 to 20, with 60% of the routes having at most 10 passengers. The shortest route lasted
1 hour and 47 minutes with 3 passengers, the longest route lasted 12 hours and 4 minutes
with 19 passengers, and 65% of the routes were completed in less than 8 hours. About 60% of
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the routes started between 4:00 and 9:00 in the morning, 15% started between 9:01 a.m. and
1:00 p.m. in the afternoon, 20% started between 1:01 and 4:00 in the afternoon, and the rest
between 4:01 and 6:30 in the afternoon. The break down for the end times were as follows:
15% between 8:00 a.m. and 12:00 p.m., 35% between 12:01 and 4:00 in the afternoon, 35%
between 4:01 and 8:00 in the evening, and the rest after 8:00 p.m.

The Transit Team data pertained to its operations on May 9, 2007. It contained 110
routes serving a total of 1534 passengers. The number of passengers in each route varied
from 2 to 26, with 65% of the routes having at most 15 passengers. The shortest route
lasted 51 minutes with 2 passengers, the longest route lasted 11 hours and 42 minutes with
15 passengers, and 65% of the routes were completed in less than 11 hours. About 80% of
the routes started between 4:00 and 9:00 in the morning, 5% started between 9:01 a.m. and
1:00 p.m., and 15% started between 1:01 and 5:00 in the afternoon. The break down for the
end times were as follows: 10% between 8:00 a.m. and 12:00 p.m., 65% between 12:01 and
4:00 in the afternoon, and 25% between 4:01 PM and 11:59 PM.

We were also given several contractor-independent parameters that are determined either
by Metro Mobility and or by the ADA requirements. The load and unload times for each
passenger type is described in Table 3.2. Passengers may not be in the vehicle for longer
than s1 = 90 minutes. Each passenger must be picked up within s2 = 30 minutes of their
scheduled pick up time and dropped of no earlier than s3 = 45 minutes before their scheduled
appointment time, if one is specified. A feasible route must not drop off a passenger after
his/her appointment time. The capacity of each vehicle is cv = 7 passengers. In the computer
implementation of our reoptimizaton algorithm, parameters s1, s2, s3 and cv are part of the
input data file so that in different applications of this approach, these parameters can be set
to their appropriate values without having to change the computer program. Only the data
file needs to be changed.

Table 3.2: Passenger type factors

Passenger Type Load Time (minutes) Unload Time (minutes)
AM (Ambulatory) 2 1
WH (Wheelchair) 5 4

LF (Lift) 2 1
SC (Scooter) 5 4

We converted the pairwise distances given to us by Metro Mobility into travel times.
This step was required only to protect passenger’s private information. Metro Mobility
computed vehicle speed by multiplying the nominal speed of 25 mph by two adjustment
factors, one for distance and one for time of day. The time factor accounted for slower
speeds during rush hours. The time-of-day conversion factors we used are shown in Table
3.3. The distance factor accounted for increased speed as longer distances are traveled. The
distance conversion factors we used are shown in Table 3.4. Because our model required
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travel times to be estimated before the arrival times at nodes are known, we used the time
window during which each location could be visited to determine the time factor for travel
to and from that location. If the time window overlapped two time segments shown in Table
3.3, then the lower factor was used. For instance, if a location could be visited anytime
between 6:15-6:45, then a factor of 80% was used. We also added load and unload times to
the travel times; see Table 3.2.

Table 3.3: Time factors

Time Factor MPH
0:00 – < 6:30 100% 25
6:30 – < 9:30 80% 20
9:30 – < 15:00 100% 25
15:00 – < 18:30 80% 20
18:30 – < 28:00 100% 25

Table 3.4: Distance factors

Distance Factor
1 – < 4 90%
4 – < 6 95%
6 – < 8 100%
8 – < 10 110%
10 – < 12 120%
12 – < 14 135%
14 – < 16 150%
16 – < 30 160%
30 – < 100 175%

3.2 Reoptimization Routine

MM uses Trapeze to generate routes dynamically as service requests arrive. We worked on
the problem of reoptimizing routes generated by Trapeze. We also used the Trapeze solution
as a benchmark to compute cost savings that can come from using our approach. A graphical
sketch of our approach can be found in Figure 3.1. This approach employs four computer
programs: MS Access, MS Excel, ILOG-OPL Studio (an optimization modeling and solution
software), and Matlab. The first five steps in our approach are called First-Pass Analysis,
whereas steps six to eight are called Second-Pass Analysis. The difference is that in the first
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five steps, we focus on one route at a time, whereas in the remaining steps we optimize pairs
of routes by moving/swapping customers between routes. The steps in our routine are as
follows.

Step 1: Export data from MS Access to Excel.

Step 2: Generate OPL Studio data files using Matlab.
We wrote Matlab code (available on the attached disk) to read data from the Excel file
and write data files in the format required by OPL Studio. The conversion of travel
distances to travel times is also performed by this Matlab code. One data file was
generated for each individual route.

Step 3: Check the feasibility of the Trapeze solutions.
Routes with infeasible Trapeze solutions were removed from our test set. From Laidlaw
data we found that 18 out of the 103 Trapeze routes were infeasible, i.e. at least one
MM or ADA-mandated constraint was violated by these routes. Our method could
find a feasible solution in 7 of these instances. However, because our formulation of
the routes met all constraints, they were typically more expensive (took more time to
complete) than the solution recorded by Trapeze. We did not include infeasible routes
in our analysis.

Within Transit Team data, 17 out of 110 routes had missing data, 16 were infeasible
(both Trapeze and re-optimization), and 11 routes are too large to solve by OPL (out
of memory). This left 66 routes in our analysis.

Step 4: Solve the Stage-1 model for each individual route.
For each individual route, we solved the Stage-1 model (see Appendix B.1 for details)
to find the node sequence that minimizes travel time. The Stage-1 model was solved
using OPL Studio and the data files generated in Step 2. OPL Studio output was also
stored in a solution file for each route. To limit computational burden, a maximum
run time of 3 hours was enforced for solving the Stage-1 model for each route.

Step 5: Solve the Stage-2 model for each individual route.
A second Matlab code was written to read the solution files from Step 4 and solve
the Stage-2 model (see Appendix B.2 for details). The final solution was output from
Matlab in a table format.

If a route reached the 3-hour time limit in Stage-1 without finding a feasible solution, or
if after 3 hours, the Trapeze solution had shorter total time than the best OPL solution,
then the Trapeze solution was kept as the best solution. Otherwise, the solution from
the Stage-2 model was kept as the best solution for that route.

Step 6: Choose pairs of routes to reoptimize.
For additional gains, we allowed passengers to be reshuffled from their originally sched-
uled routes. We restricted passenger moves to pairs of routes. We tested several criteria
for choosing pairs of routes. These criteria included the amount of idle time within
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Figure 3.1: Summary of optimization procedure
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each route, the start and end times of each route, and the map page numbers visited
by each route. There are many more criteria that could be tried. Our goal here was
to provide a proof of concept.

For each pair of routes we considered, we used the Matlab code from Step 2 to generate
new data files.

Step 7: Solve the Stage-1 models for pairs of routes.
For each pair of routes A and B chosen in Step 6, we started with the best solutions
found in Step 5. Note, this is not necessary for our approach to work. One may start
with any feasible solution. We solved the Stage-1 model several times after performing
several move/swap operations. First, we attempted to swap each pair of passengers
from route A and route B and solved the Stage-1 model for the resulting passenger sets.
Then we tried moving each passenger from route A to route B, and solved the Stage-
1 model for route A with that passenger removed, and route B with that passenger
inserted. The same is done for moving passengers from route B to route A. Every time
a swap or insertion/deletion leads to a feasible solution for both routes A and B, OPL
records the solution into the solution file.

Step 8: Solve the Stage-2 models for pairs of routes.
The Matlab code, described in Step 5, was run on each feasible solution output from
Step 7. The solution that had the shortest total time for the sum of routes A and B
was kept as the best solution for that pair.

3.3 Numerical Results

In this section we present the numerical results we obtained using the reoptimization routine
presented in Section 3.2. This section is divided into two parts. In the first part, we calculate
the reduction in total route times that can be achieved by reoptimizing individual routes
generated by Trapeze. In the second part, we calculate the amount of additional reductions
can be achieved by allowing passengers to be moved to different routes.

3.3.1 First-Pass: Reoptimizing Individual Routes

As described in the previous section, we can apply the Stage-1 and Stage-2 models to find
the sequence of locations and corresponding arrival times to reduce travel and idle times
for each route (Steps 4-5 of the reoptimization routine). We applied this routine to a test
set of 85 Laidlaw routes and 66 Transit Team routes. A summary of the results is given in
Tables 3.5 – 3.10. The routes in Tables 3.5–3.7 correspond to Laidlaw data and Tables 3.8–
3.10 correspond to Transit Team data. Specifically, Table 3.5 contains of 2 to 12 passenger
routes (5 to 25 nodes), Table 3.6 has 13 to 16 passenger routes (27 to 33 nodes), and Table 3.7
has 17 to 21 passenger routes (35 to 43 nodes) for Transit Team. Similarly, Table 3.8 contains
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of 3 to 7 passenger routes (7 to 15 nodes), Table 3.9 has 8 to 10 passenger routes (17 to 21
nodes), and Table 3.10 has 11 to 16 passenger routes (23 to 33 nodes) for Laidlaw.

The tables include the following columns of data: Number of Passengers for each route,
the Travel Time required to visit the nodes in the original Trapeze solution and the reopti-
mized solution, the Total Time for both solutions (travel time plus idle time), the % Total

Time Improvement of the reoptimized solution versus the original Trapeze solution, and
the Computation Time required to obtain the reoptimized solution. The percent total time
improvement is calculated as follows:

% Total Time Improvement =
Trapeze Total Time − OPL Total Time

Trapeze Total Time
× 100%

Next, we describe how the reoptimization procedure changed an example route from
Laidlaw and an example route from Transit Team. Table 3.11 shows the node sequence
and arrival times for Laidlaw’s Route 554 for both the original Trapeze solution and the
reoptimized solution. The reoptimized solution has travel time 23 minutes less than the
original solution, and the total time is reduced by 44 minutes. The reduction in total
time is due to the reoptimized route beginning 30 minutes later and finishing 14 minutes
earlier than the original route, picking up the first passenger 30 minutes after their originally
scheduled pickup time and dropping off the last customer 14 minutes earlier. The travel
time reduction comes from resequencing six nodes in the middle of the route, shown in bold,
while still meeting all time window requirements.

Similarly, Table 3.12 shows the node sequence and arrival times for Transit Team’s Route
702 for both the original Trapeze solution and the reoptimized solution. The reoptimized
solution reduces both travel time and total time by 19 minutes. The reduction in time is
due to the reoptimized route beginning 23 minutes later and finishing 4 minutes later than
the original route, picking up the first passenger 23 minutes after their originally scheduled
pickup time and dropping off the last customer 4 minutes later. Resequencing eight nodes
in the middle of the route, shown in bold, also contributes the time reduction.

The percent reduction in total revenue hours is slightly smaller for Transit Team as
compared to Laidlaw. This can be explained by observing differences in the initial routes
generated by Trapeze for the two service providers – see Figure 3.2. The route sizes are
considerably larger for Transit Team. Since the gains from reoptimization come from the
ability to move the last drop off in a route, the number of opportunities are reduced when
there are fewer routes (and therefore fewer last drop offs that could be moved). Moreover,
with longer routes, one needs to find proportionally greater total savings in time to realize a
similar percent savings. Data suggest that this is not the case, i.e., larger routes do not offer
proportionally greater savings from reoptimizing pick ups and drop offs. This is illustrated
in Figure 3.3 in which we show the percent improvement (reduction) in the time to complete
the route as a function of route size for the two service providers.

We also analyzed, for several ranges of percent improvement, what portion of the routes
achieved an improvement in that range. Figure 3.4 illustrates this analysis. The highest
relative frequency is in the range of 4%-6% improvement.
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Figure 3.2: Sizes of Trapeze Routes for Laidlaw and Transit Team

3.3.2 Second-Pass: Reoptimizing Pairs of Routes

We next present numerical results from reoptimizing two routes at a time, as described in
Steps 6-8 of the reoptimization routine. In this preliminary study, we tested 21 pairs of
Laidlaw routes. These pairs were chosen as representatives of several classes of selection
criteria. The criteria and the route pairs are shown in Table 3.14.

The numerical results of these tests are shown in Table 3.15. All travel times and total
times are summed over both routes in each pair. The percent improvement shown is the
improvement over the reoptimized solution in the previous section. The highest improvement
was 14.69% with 16 passengers and the lowest was 0%, which indicates that the nodes
sequence found by OPL do not improve the total time. The average improvement from
re-solving all 21 pairs of routes was 5.64%. The improvements obtained do not appear to be
strongly correlated to the selection criteria used to choose each pair. We observed that the
greatest improvements came from inserting the last passenger of one route into the other
route in the pair, which allowed the first route to finish earlier, often without extending
the time of the second route. Tests were not performed to check if moving more than one
passenger from one route to another would improve efficiency even more, but this could be
done in future studies.

The results of a limited number of experiments with Second-Pass algorithm over Transit
Team data are shown in the Table 3.16. We could not perform a more detailed analysis
since Transit Team has many large routes (with 15 or more passengers per route) and their
reoptimization in pairs takes too much computer time. In fact, we were not able to solve
problems involving two routes at a time for a number of pairs that we tried with Transit
Team data. Consequently, we selected routes that were relatively small and could not fully
evaluate the performance of the Second-Pass algorithm. However, the limited results do
show that the Second Pass can further reduce total revenue hours.
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Figure 3.3: Percent Improvement as a Function of Route Size

Figure 3.5 presents the relative frequency of the percent improvement of the pairs reopti-
mized with our routine. Figure 3.6 shows the total percent improvement when reoptimizing
the two routes of each pair individually, represented by the bottom bar, and the additional
improvement obtained by reoptimizing the pair together, represented by the top bar. The
horizontal axis category labels are the route-pair labels in Table 3.15.

3.4 Conclusions

The Transit Team’s data contained 110 routes (scheduled on May 9, 2007) and Laidlaw’s
data contained 103 routes (scheduled on June 1,2005). Of these, we used 85 Laidlaw and 66
Transit-Team routes for the comparison because the other routes either had missing data or
the Trapeze solution was not feasible with respect to one or more constraints. Upon applying
the First-Pass algorithm to these routes we realized a total reduction in revenue hours of
30 hours (6.5%) for Laidlaw and 25.4 hours (5.0%) for Transit Team. This translates to a
saving of about 21 minutes per route for Laidlaw and 23 minutes per route for Transit Team.
The results, reported in Table 3.13 show that First-Pass reoptimization can also increase
productivity (the number of customers served per hour). For Laidlaw, the productivity
increases from 1.39 customers per hour to 1.47 customers per hour. For Transit Team, it
increases from 1.6 customers per hour to 1.68 customers per hour.

Second pass analysis, i.e. reoptimizing two routes at a time can improve efficiency by an
additional 5%. However, this step is computationally demanding and requires experimenta-
tion to find the best pairs of routes to analyze. The size of problem is too large to evaluate
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Figure 3.4: Relative frequency of percent total time improvement

all pairs of routes. In contrast, the first-pass analysis can be carried out overnight, that is,
during a period when the trip reservation system is shut down.

Key findings of this Chapter are as follows.

1. It is possible to provide the same level of service at a lower cost. The estimated savings
are of the order of 5-10% of annual operating costs, or $975,000-$1,950,000 annually at
the 2004 level of expenditures. Of this, it is realistic to expect that MM can achieve a
5% level of savings by employing only the single-route reoptimization procedure.

2. When our reoptimization routine is applied repeatedly at the end of each day, it will
lead to more efficient trip schedules. This will allow MM to schedule more customer
requests, some of which may have been denied with Trapeze’s original schedule. Thus,
reoptimization can also improve service level.

Our computer codes (available on a computer disk) provide proof-of-concept that reop-
timization can provide significant savings and better customer service. They also serve as
prototypes for commercial-grade software that can be integrated into Metro Mobility’s cur-
rent system. We created our codes with a modular structure so that the data management
and application of routines can be automated by a programmer with knowledge of Metro
Mobility’s current system. If Metro Mobility decides to implement a reoptimization routine,
it will need to automate the following three steps: (1) export passenger data and current
route/trip information to data files readable by OPL Studio (or another optimization solver),
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Figure 3.5: Relative frequency of percent total time improvement for reoptimizing 2 routes
at a time

or write OPL Studio code to directly read data from system databases; (2) import the re-
optimized solution back into Trapeze; and (3) build capability to change certain parameters
manually in the reoptimization routine. Examples of the latter include the maximum com-
putation time allowed after which an effort to reoptimize a particular route is terminated,
and the criterion for selecting which two routes should be paired to realize savings from
insertion and swapping of customers.
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Table 3.5: Reoptimizing individual routes with 2 to 12 passengers (Transit Team)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

2 1:12 1:12 1:21 1:12 11.11 0.0
4 1:53 1:53 2:59 2:29 16.76 0.0
5 2:55 2:31 4:00 3:30 12.50 0.0
8 4:50 4:25 5:56 5:26 8.43 0.3
8 4:24 4:10 5:57 5:44 3.64 1.0
9 5:17 5:17 6:32 6:03 7.40 3.8
10 6:44 6:25 8:25 8:06 3.76 0.5
10 5:54 5:54 6:24 6:18 1.56 0.4
10 4:50 4:07 7:35 4:51 36.04 58.2
10 5:53 5:19 9:06 8:42 4.40 0.7
10 5:03 4:48 6:35 6:06 7.34 13.4
11 7:09 6:27 7:40 7:24 3.48 0.3
11 4:16 4:01 4:44 4:27 5.99 12.8
11 7:03 7:03 7:47 7:40 1.50 1.0
11 7:00 6:53 8:28 7:58 5.91 0.5
12 6:22 6:03 6:22 6:03 4.97 143.4
12 6:21 5:54 8:05 7:53 2.47 1.0
12 6:47 6:15 9:11 8:41 5.44 0.8
12 6:40 6:11 8:18 7:58 4.02 0.4
12 7:33 6:37 7:33 6:59 7.51 5.4
12 6:25 6:22 8:29 7:59 5.89 2.8
12 7:03 6:49 8:52 8:25 5.08 3.0
12 6:59 7:10 8:35 8:19 3.11 48.8
12 5:34 5:35 6:41 6:22 4.74 32.9
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Table 3.6: Reoptimizing individual routes with 13 to 16 passengers (Transit Team)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

13 5:43 5:37 8:50 8:47 0.57 189.1
13 7:28 7:03 10:15 10:00 2.44 1.7
13 7:21 6:27 9:16 8:50 4.68 9.6
13 7:15 7:09 8:08 7:38 6.15 7315.4
13 7:42 7:23 8:56 8:42 2.61 1.4
13 6:52 6:52 9:06 8:36 5.49 4.8
13 6:03 5:55 9:02 8:42 3.69 0.6
13 8:02 7:42 10:09 10:07 0.33 4.2
13 6:45 6:26 7:24 7:17 1.58 406.8
14 7:01 6:54 9:07 8:44 4.20 3.3
14 6:41 6:26 9:01 8:38 4.25 2.4
14 6:20 6:13 7:27 7:15 2.68 72.1
14 7:32 7:09 9:37 9:22 2.60 22.8
14 6:35 6:15 9:07 8:45 4.02 3.8
15 6:31 6:03 7:11 6:48 5.34 17973.0
15 8:14 7:35 9:40 9:11 5.00 12.6
15 8:16 7:57 10:05 10:02 0.50 402.0
15 7:28 7:04 8:33 8:21 2.34 2291.4
15 6:34 6:14 9:03 8:30 6.08 713.5
15 7:23 6:42 9:30 8:52 6.67 5.3
15 8:01 7:32 10:31 10:12 3.01 13.6
15 6:44 6:13 8:19 7:55 4.81 208.5
15 6:42 6:09 7:54 7:44 2.11 8.0
16 9:29 9:02 10:16 9:39 6.01 393.9
16 7:49 7:25 9:27 9:13 2.47 269.8
16 6:33 5:45 9:19 8:55 4.29 3.0
16 8:51 8:34 9:09 9:02 1.28 18.0
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Table 3.7: Reoptimizing individual routes with 17 to 21 passengers (Transit Team)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

17 8:10 7:44 9:49 9:10 6.62 2031.7
17 8:35 7:50 9:23 8:44 6.93 2449.2
17 7:27 7:22 9:35 9:11 4.17 442.6
17 7:42 7:03 10:04 9:33 5.13 257.6
17 9:17 8:51 10:33 10:02 4.90 172.5
18 8:11 7:54 9:58 9:39 3.18 4284.2
18 7:01 6:24 9:49 9:25 4.07 10800.0
18 9:09 9:02 10:16 9:52 3.90 110.6
18 8:20 8:12 10:18 9:50 4.53 18.3
18 9:52 9:15 10:23 10:18 0.80 742.9
18 8:49 8:24 9:17 9:03 2.51 10800.0
19 9:20 8:33 10:39 10:32 1.10 437.9
19 8:20 6:46 10:25 10:02 3.68 10374.1
21 9:49 9:36 10:24 10:14 1.60 10800.0
21 6:32 6:16 8:07 7:39 5.75 10800.0
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Table 3.8: Reoptimizing individual routes with 3 to 7 passengers (Laidlaw)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

3 2:20 2:20 2:20 2:20 0.00 0.0
3 1:28 1:28 1:39 1:28 11.11 0.0
3 1:40 1:37 2:56 2:34 12.50 0.0
3 1:01 1:01 2:47 2:17 17.96 0.0
4 2:05 1:53 3:04 2:34 16.30 0.0
4 2:08 1:30 2:11 1:53 13.74 0.0
4 2:31 2:31 2:37 2:31 3.82 0.0
4 1:42 1:41 2:04 1:41 18.55 0.1
4 3:06 2:40 3:40 3:08 14.55 0.0
4 1:56 1:54 2:39 2:14 15.72 0.0
5 2:27 2:27 3:01 2:33 15.47 0.0
5 2:36 2:32 3:08 2:50 9.57 0.1
5 2:39 2:19 3:06 2:36 16.13 0.0
5 2:56 2:51 5:12 5:12 0.00 0.0
5 2:40 2:30 2:49 2:30 11.24 0.0
5 2:06 2:38 2:17 2:17 0.00 0.5
5 2:18 2:00 2:18 2:18 0.00 0.1
5 2:13 1:53 4:42 4:38 1.42 0.0
6 2:06 2:32 3:22 2:44 18.81 32.3
6 3:49 3:48 5:41 5:17 7.04 0.1
6 2:49 2:44 2:50 2:44 3.53 0.5
6 2:34 2:34 2:51 2:34 9.94 0.1
6 2:37 2:29 3:35 3:15 9.30 0.1
7 3:47 3:32 3:47 3:32 6.61 0.4
7 4:33 4:29 7:50 7:24 5.53 0.1
7 3:05 2:46 5:40 5:10 8.82 0.3
7 3:24 3:13 7:31 7:01 6.65 0.0
7 2:38 2:36 3:26 2:58 13.59 0.2
7 2:40 2:40 2:52 2:40 6.98 0.8
7 3:03 2:48 3:09 2:48 11.11 0.3
7 4:22 4:12 6:56 6:26 7.21 0.1
7 3:18 3:18 3:18 3:18 0.00 0.9
7 3:58 3:56 7:48 7:28 4.27 0.1

35



Table 3.9: Reoptimizing individual routes with 8 to 10 passengers (Laidlaw)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

8 3:10 3:01 3:13 3:11 1.04 0.5
8 4:34 4:02 7:19 7:08 2.51 0.1
8 4:55 4:42 7:28 7:20 1.79 0.1
8 3:48 3:35 7:23 6:53 6.77 0.0
8 4:38 4:31 7:26 6:56 6.73 0.1
8 4:20 4:20 7:35 7:07 6.15 0.1
8 4:52 4:32 6:49 6:21 6.85 0.0
8 4:50 4:25 8:58 8:30 5.20 0.1
8 3:25 3:19 6:00 5:30 8.33 0.2
8 3:39 3:18 6:36 6:08 7.07 0.1
9 4:24 4:11 7:05 6:47 4.24 0.3
9 4:59 4:51 7:16 7:07 2.06 1.9
9 4:55 4:44 7:36 7:18 3.95 0.2
9 5:16 4:15 9:02 8:31 5.72 0.1
9 5:31 4:52 6:46 6:30 3.94 0.2
9 3:42 3:19 4:07 3:23 17.81 0.9
9 5:43 5:02 8:20 7:50 6.00 0.1
10 5:09 5:06 6:42 6:12 7.46 0.7
10 5:05 4:31 7:31 7:06 5.54 0.7
10 4:20 4:10 5:40 5:10 8.82 0.4
10 5:17 5:02 8:06 7:45 4.32 0.5
10 5:57 4:56 7:43 7:22 4.54 0.2
10 3:58 3:38 7:57 6:45 15.09 0.4
10 5:58 5:28 6:30 6:30 0.00 0.5
10 4:07 3:45 6:51 6:27 5.84 3.2
10 5:44 5:42 8:03 7:46 3.52 0.2
10 5:49 5:53 10:10 9:58 1.97 0.4
10 4:47 4:22 6:24 5:53 8.07 4.8
10 4:51 4:47 7:17 6:47 6.86 0.1
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Table 3.10: Reoptimizing individual routes with 11 to 16 passengers (Laidlaw)

Travel Time Total Time
Number of Trapeze Reoptimized Trapeze Reoptimized % Total Time Computation
Passengers Solution Solution Solution Solution Improvement Time (seconds)

11 4:44 4:29 7:44 7:13 6.68 0.8
11 5:32 5:32 9:55 9:25 5.04 0.6
11 4:49 4:43 7:07 6:37 7.03 2.9
11 6:04 6:01 7:36 7:20 3.51 0.4
11 5:47 5:40 7:29 7:10 4.23 6.5
12 5:43 5:21 9:36 9:11 4.34 5.6
12 6:15 5:46 8:20 7:53 5.40 2.6
12 6:02 5:20 7:50 7:22 5.96 12.0
12 6:01 5:32 9:12 8:43 5.25 1.3
12 6:51 6:36 9:44 9:29 2.57 0.8
13 7:35 7:33 9:00 8:51 1.67 0.7
13 5:32 5:30 8:03 8:03 0.00 43.4
13 6:29 6:20 10:01 9:47 2.33 1.6
13 6:17 6:06 6:35 6:17 4.56 6.1
13 5:24 5:14 9:29 9:01 4.92 31.9
13 4:39 4:41 7:24 7:06 4.05 10.9
13 7:13 7:16 9:17 9:15 0.36 3.1
14 7:09 6:38 9:07 9:02 0.91 1.2
14 7:19 6:57 9:36 9:09 4.69 14.0
14 7:10 7:05 10:12 9:46 4.25 0.9
15 7:56 7:13 8:45 8:15 5.71 6.9
15 6:08 5:54 7:07 6:50 3.98 7.6
16 6:08 5:48 8:15 7:58 3.43 74.4
16 9:55 9:15 11:06 10:45 3.15 62.6
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Table 3.11: Route 554 with 9 passengers (Laidlaw)

Trapeze Solution Reoptimized Solution
Node Arrival Time Node Arrival Time
Nodes Arrival Times Nodes Arrival Times

17 14:00 17 14:30
18 14:07 18 14:37
16 14:45 16 14:50
13 15:08 13 15:13
11 15:19 11 15:24
12 15:24 12 15:30
1 15:48 1 15:54
3 16:07 3 16:13
4 16:11 4 16:17
5 16:11 5 16:17
8 16:32 7 16:31
7 16:49 9 16:40
9 16:58 10 16:52
10 17:09 8 17:01
6 17:27 6 17:13
2 17:30 2 17:16
14 17:58 14 17:44
15 18:07 15 17:53

Total Time 4:07 3:23
Total Travel Time 3:42 3:19
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Table 3.12: Route 702 with 12 passengers (Transit Team)

Trapeze Solution Reoptimized Solution
Node Arrival Time Node Arrival Time
Nodes Arrival Times Nodes Arrival Times

9 5:25 9 5:48
15 5:56 17 6:15
13 6:01 13 6:30
22 6:25 15 6:38
17 6:35 21 6:50
21 6:51 18 7:01
18 7:02 20 7:05
20 7:06 24 7:24
24 7:25 19 7:38
19 7:39 22 7:52
16 8:15 16 8:22
10 8:34 10 8:41
7 8:54 7 9:01
4 9:02 4 9:09
2 9:13 2 9:20
3 9:20 3 9:26
8 9:34 8 9:41
14 9:57 14 10:04
1 10:24 1 10:31
6 10:51 5 10:54
5 10:56 6 11:07
11 11:15 11 11:20
12 11:25 12 11:30
23 11:47 23 11:51

Total Time 6:22 6:03
Total Travel Time 6:22 6:03
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Table 3.13: Summary of Productivity Improvements from First-Pass Analysis

LaidLaw Transit Team

Date of data extract June 1, 2005 May 9,2007
Total number of routes 103 110
Number of routes compared 85 66
Original Total Time (hours) 539.5 559.0
Optimized Total Time (hours) 509.5 533.6
Time reduced (hours) 30.0 25.4
Average Time reduced per route (minutes) 21.1 23
Total number of customers 749 897
Average number of customers per route 8.8 13.6
Productivity - Trapeze Solution 1.39 1.60
Productivity - After reoptimization 1.47 1.68
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Table 3.14: Criteria for selecting route pairs

Route Pairs Criteria Legend
525 & 535 B, D A: both routes have more than 2.5 hours idle time
525 & 513 F B: both routes have less than 2.5 hours idle time
551 & 460 A, E C: one route has more than and one has less than 2.5 hours idle time
551 & 426 F D: one route’s end time is in the middle of the other route’s trip
400 & 691 C, D E: the routes’ start times differ by more than 3 hours
400 & 507 F F: the second route has maximum map page overlap with the first
400 & 406 F
408 & 513 A, D
408 & 403 F
412 & 430 C, E
412 & 530 F
533 & 443 C
533 & 502 F
450 & 690 A
450 & 412 F
517 & 406 B
517 & 532 F
403 & 559 B, E
403 & 560 F
500 & 540 B, D
500 & 530 F
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Table 3.15: Two Routes at a Time with 15 to 26 passengers (Laidlaw)

Total Original Reoptimized % Total Comp
Pair # of Travel Total Travel Total Time % Page Time
Label Routes Pass Time Time Time Time Impr. Overlap (Seconds)

1 525 & 535 16 9:30 13:03 9:44 11:08 14.69 20.00 108.45
2 525 & 513 15 8:03 13:48 7:43 12:07 12.20 54.55 101.72
3 551 & 460 18 9:06 16:59 8:27 16:17 4.12 25.00 131.33
4 551 & 426 20 10:44 17:05 10:03 14:46 13.56 55.56 206.37
5 400 & 691 18 9:31 14:42 9:35 13:17 9.64 46.15 156.12
6 400 & 507 25 11:00 13:02 - - 0.00 81.82 309.21
7 400 & 406 20 9:16 11:22 9:28 10:24 8.50 63.64 187.15
8 408 & 513 18 8:26 15:18 8:44 14:03 8.17 30.77 139.88
9 408 & 403 23 10:49 15:49 10:57 14:31 8.22 63.64 242.92
10 412 & 430 18 10:24 14:03 10:03 13:30 3.91 25.00 194.05
11 412 & 530 25 13.05 17:34 12:47 17:24 0.95 63.64 312.72
12 533 & 443 19 10:03 14:28 8:35 13:27 7.03 55.56 181.95
13 533 & 502 22 11:33 16:45 11:00 15:05 9.95 62.50 245.53
14 450 & 690 20 10:16 17:15 10:18 16:59 1.55 33.33 203.75
15 450 & 412 26 13:53 18:38 13:32 18:14 2.15 50.00 293.9
16 517 & 406 20 9:38 11:40 9:33 11:13 3.86 38.46 211.82
17 517 & 532 22 12:04 15:59 12:01 14:52 6.99 58.33 204.94
18 403 & 559 24 11:00 14:55 - - 0.00 53.85 319.35
19 403 & 560 24 11:25 15:49 - - 0.00 80.00 295.87
20 500 & 540 25 13:02 17:08 - - 0.00 15.38 336.94
21 500 & 530 24 11:18 16:36 11:07 16:06 3.01 40.00 313.39

Table 3.16: Two Routes at a Time with 18 to 21 passengers (Transit Team)

Total Original Reoptimized % Total Comp
Pair # of Travel Total Travel Total Time % Page Time
Label Routes Pass Time Time Time Time Impr. Overlap (Seconds)

1 722 & 768 18 10:49 13:30 11:01 12:40 6.17 33.15 103.37
2 722 & 772 20 12:18 14:22 12:18 13:43 4.52 28.35 141.72
3 722 & 729 21 12:51 15:28 13:14 15:05 2.48 26.42 201.31
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Chapter 4

The Non-Dedicated Option

Taxis are on average more expensive per passenger trip than dedicated vehicles. Still, using
taxis selectively for a few passengers can help lower costs. For example, suppose the last
pick up and drop off on a route adds one hour to the length of that route. This costs
approximately $42 according to the current payment schedule. However, if this customer’s
trip would cost approximately $20 by taxi, then it will be worthwhile to offer a taxi option to
the passenger who is scheduled last on the route and save $22 in case the passenger accepts
this offer. The main challenge for evaluating the benefit of using nondedicated vehicles is
therefore that of finding a way to identify which customers should be offered a taxi service and
develop realistic estimates of the cost savings that will result after accounting for passenger
preferences. In this Chapter, we focus on developing and testing an algorithm for choosing
which passengers should be offered taxi services and the cost impact of such decisions.

We used our algorithm for selecting candidate passengers for taxi service on reoptimized
routes of both providers (after First-Pass in Chapter 3) under different values of the propor-
tion of customers who agree to take the taxi service. Note, the taxi service is offered at no
additional cost to the passenger. The reason for offering taxi service is to reduce overall cost
to the system. It is not to be confused with premium taxi service which is a pilot program
being tested by MM to accommodate customers whose requests cannot be met. Premium
service costs more to the customers.

We found that Metro Mobility can realize further savings by selectively using taxi services.
Specifically, if half of the passengers who are offered a taxi service result in a successful
match, Laidlaw’s daily savings average $113.4 when taxis cannot handle wheelchairs, and
$170.7 when they can. Similar daily savings for Transit Team are $124.7 and $182.4. We also
computed the time of day when most of the taxi rides are needed and found that although
more taxis are used during rush hours, the total number is still quite small.

The algorithm for finding candidate passengers for nondedicated vehicles can be applied
just as easily to the solution generated by Trapeze. It is not necessary to perform the
reoptimization step described in Chapter 3. This algorithm is simple to use and computation
times are modest. Therefore, we recommend testing the use of nondedicated vehicles in a
pilot if the potential savings identified in this Chapter are deemed attractive. A pilot program
will provide critical data on (1) the proportion of passengers who accept an offer to travel by
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taxi, (2) the availability of taxis at the time needed, and (3) the availability of taxis that can
take passengers with special needs such as wheelchairs. Pilot should also monitor program
costs and benefits during the test period since possible increase in cost from administering
nondedicated vehicle services and possible fuel-cost savings from reduced miles driven by
dedicated vehicles are not included in our analysis for lack of appropriate data.

4.1 The Algorithm

Our approach has two steps. First, we develop a procedure for identifying the preferred
passenger who would be called and offered the option to travel by taxi. The choice of the next
preferred passenger may depend on the outcome of the offer made to the previous preferred
passenger. Then, we test this procedure in a computer simulation where the probability
that a passenger will accept the offer of riding in the taxi can be changed. The purpose of
this exercise is to develop realistic estimates of savings from using taxis and to identify the
number and time-of-day of the requests for taxi rides.

We start by developing a criterion to qualify routes from which customers are offered
taxi service. Qualified routes are those that take either between 4 and 6 hours to complete
or more than 8 hours. Routes that take less than 4 hours or between 6 and 8 hours are
not included in the analysis. The rationale for this choice is that due to union rules, it
appears that drivers need to be paid for at least 4 hours on any shift. Drivers who operate
dedicated vehicles for between 6 and 8 hours on any given day are assumed to receive credit
for a full 8-hour shift. The procedure for qualifying routes is not necessary to implement our
algorithm. Also, the thresholds we used were selected based on what we think best describes
the Metro Mobility situation. These thresholds can be changed easily.

After identifying qualified routes, we developed a heuristic approach that focuses only
on the last passengers in each qualified route and rank orders them on the basis of potential
savings. The ranking procedure works as follows. We simulate removing the last customers
one by one from each qualified route. After each removal, we rerun the second part of the
First-Pass algorithm of Task 2. This algorithm calculates the optimal pick up and drop off
times that meet all constraints and minimize the total time to complete the route. Then, we
calculate the net savings resulting from the removal of the customer by subtracting the taxi
cost from savings generated from reducing total time. At each decision epoch, the passenger
who results in maximum savings is called the preferred customer. Ties are broken arbitrarily.

We allow for the possibility that some customers may prefer to use dedicated services or
that a taxi may not be available at the time requested. In some other cases, passengers may
require extra care that cannot be provided by non-dedicated vehicle providers. For example,
customers who use lift (LF) or scooter (SC) generally cannot travel by taxi. These factors
are combined into a successful match probability that a preferred customer who is offered
the option to travel by taxi will result in the use of taxi service.

We discard those routes on which the savings from removing the last customer are smaller
than a prespecified cutoff. This cutoff was set to $10 in our experiments described in the
next section. However, the algorithm accommodates any reasonable value of the cutoff. The
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value of the cutoff reflects the cost of administering each taxi service request. A complete
schematic of the logic behind our algorithm is shown in Figure 4.1. If a customer turns down
the offer to travel by taxi, then the route to which the customer belongs is removed from the
list of qualified routes. If both the taxi provider and the customer accept the taxi option,
we remove the last customer from the route in question, treat the second last customer
as the last customer and recompute the savings from removing this customer according to
the procedure described above. The algorithm stops when the savings from the preferred
customer at a decision epoch fall below the cutoff or when there are no qualified routes,
whichever occurs first.

Put the last customer in each route 
in the candidates list

Remove any candidate that does 
not meet one or more preset 

requirements

Compute saving generated by 
each candidate on the list

Is the list empty?

Is the highest saving lower than the 
preset cutoff?

NO

STOP YES

Request Taxi service for the 
customer with the highest saving 

(called preferred customer )

NO
Does taxi or preferred customer 

refuse the service request ? 

Remove the route from the  list

YES

Remove preferred customer from 
the list and re-calculate total saving  

NO

YES

Put the next available customer on 
the list from the same route 

Figure 4.1: A Schematic of the Algorithm

4.2 Results From Computer Simulation Experiments

As mentioned earlier, some customers may not accept the option to travel by taxi even if it
does not cost them more to take the taxi option. Moreover, during rush hours, there might
not be enough taxis to provide the desired service. Therefore, we carried out computer
simulation experiments to evaluate the impact of using nondedicated services.

In these experiments, we started with routes generated by the First-Pass reoptimization
algorithm and selected only those routes that take between 4 and 6 hours to complete or
more than 8 hours. We assumed that the cost of a revenue hour is $42 and the cost of taxi
service is calculated as follows: taxi charges = distance × 1.05 × 1.9 + 2.5. This is the same
formula that is used by Metro Mobility for calculating premium taxi service charges. Figure
4.2 shows simulation results for Laidlaw when the probability that the offered taxi service
option is successful ranges from 0.1 to 1.0 in steps of 0.1. We use dark-shaded bars to indicate
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experiments in which we assumed that taxis cannot handle customers with wheelchairs (WC)
and light-shaded bar to indicate situations in which they can. The error bars indicate 95%
confidence intervals.

Figure 4.2: Simulation Results for Laidlaw

Simulation results for Transit Team are shown in the Figure 4.3. Here too, selective use
of nondedicated vehicles can save money. However, Metro Mobility will end up having more
customers from Transit Team service area being served by taxis. This is in part due to the
fact that Transit Team has longer routes, which often exceed 8 hours, and that Transit Team
has more customer trips.

The availability of taxis can also play a role in the success of using the nondedicated
services option. Figure 4.4 shows maximum taxi requirements that arise in simulation ex-
periments at different times of the day. Note that many more requests are made in the
period from 3 PM to 5 PM. Since this is the time when demand for taxis is usually high,
additional MM demand during this period could pose a problem. However, the number of
taxis required is relatively small, and appears to be quite manageable for a metropolitan
area of the size of the Twin Cities. In Figure 4.4, the taxi requirements are calculated after
assuming that every customer who is offered a taxi option accepts this offer. Thus, the
reported numbers are upper bounds on the number of taxis that would be required on a
typical day of operations.

Figure 4.5 shows the impact on productivity of performing reoptimization (first pass
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Figure 4.3: Simulation Results for Transit Team

only) and selectively using taxis. For Transit Team, the productivity increases from 1.60 to
1.68 after First-Pass and approaches 1.71 when non-dedicated services are factored in. For
Laidlaw, the productivity increases from 1.39 to 1.47 after First-Pass reoptimization and
approaches 1.5 when non-dedicated services are factored in. In other words, both route re-
optimization and use of nondedicated services can increase productivity and improve service
quality.

4.3 Conclusions

The use of nondedicated vehicles (in particular taxis) can result in average daily savings over
both contractors of $118.5 when taxis do not accept WC customers, and $176.6 when they
do, assuming 50% of the offers to travel by taxi result in a successful match. More taxis are
needed during 3-5 PM, but these requirements are not too large.
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Figure 4.4: Taxi Requirements

Figure 4.5: Productivity Comparison
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Chapter 5

Concluding Remarks

The remarks in this section both summarize our findings and present a set of recommenda-
tions that can help improve the efficiency of Metro Mobility’s operations. These remarks are
based on MM’s data and operational characteristics. However, other similar service providers
can benefit from using techniques described in this report after adjusting the analysis to suit
their particular environments.

In Chapter 2, we found a weak positive correlation between certain performance metrics,
e.g. percent cancelations and no shows, and demand. This underscores the difficult challenge
that a service provider faces when attempting to match capacity with demand because
greater cancelations and no shows decrease the efficiency of capacity utilization precisely
when capacity is tight. This Chapter also identifies potential moral hazard situations for
contractors. That is, the selection of contract parameters by Metro Mobility does not prevent
contractors from earning more by lowering productivity during low demand periods even after
paying damages.

In Chapter 3, we reported a reoptimization approach that can improve efficiency of route
formation by up to 5% when routes are studied one at a time and by an additional 5% when
pairs of routes are reoptimized. In the latter scheme, passengers can be moved (or swapped)
from one route to the other. This procedure does not require contractors to change their
current booking and route formation procedures. The reoptimization can be performed every
night when the trip booking process is shut down.

In Chapter 4, we developed an algorithm for selecting passengers who could be offered
a taxi service at no extra cost to them. Although taxis are in general more expensive
than dedicated vehicles, our algorithm identifies those passengers that can be served more
economically by taxis. The savings from the non-dedicated (taxi) depend on the proportion
of passengers who would accept this offer by the service provider. Using available data and
reasonable assumptions, we estimated the savings to Metro Mobility to be in hundreds of
dollars per day. The number of taxis needed during peak demand hours is quite manageable.
Use of non-dedicated option does not require the use of reoptimization routine and our
methodology is relatively easy to implement.

Main recommendations of this study are as follows.

1. Metro Mobility, and paratransit service providers in general, need to examine terms of
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contracts they offer and attempt to eliminate moral hazard.

2. We recommend that MM implement a reoptimization routine. This approach can
be implemented without changing the current operating environment. Although the
implementation requires additional programming work, the savings far outweigh the
potential costs of developing a functional system. Reoptimization can be repeated at
the end of each day of booking. It maintains the pick up and drop off times within
the ADA and MM prescribed time-windows of their originally scheduled values. Thus,
there is no need to contact the customers after running the reoptimization routine.

3. We recommend a pilot program to ascertain the proportion of passengers who accept
an offer to travel by taxi, availability of taxis at the time needed and ability of taxis to
carry passengers with different needs. We did not factor the increased administrative
burden of providing taxi service in our calculations. We also did not include additional
fuel-cost savings that may come from fewer miles traveled because of lack of reliable
data. A pilot should monitor program costs and benefits carefully to ascertain if the
savings match those observed in the computer simulation experiments.

Use of nondedicated services does not require making any change to the current trip
booking process. Our approach can be used starting with any existing routes’ schedule.
Therefore, it seems reasonable to test this option first if the magnitude of savings reported
here is deemed attractive.

In Chapter 3, our methodology takes the routes generated by Trapeze as given. There-
fore, its benefit comes primarily from improving the sequence of stops along a route and
from moving/swapping passengers from one route to another. Significant additional savings
may be possible from considering dynamic optimization algorithms for scheduling trips as
requests are received. Therefore, we recommend a critical evaluation of Trapeze software in
comparison to other commercially available products for dynamic route optimization. An
in-house Operations Research analyst can help in this task as well as develop MM-specific
refinements to the commercial software currently used.
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Appendix A

Service Quality Measures

This section contains a summary of the analysis of Metro Mobility data pertaining to service
quality measures. These results were presented to the Technical Advisory Panel for this
project.



1

Service Quality Measures of 
contractors from 2001-Sept 2005

1. Percent on-time pick-ups
2. Percent missed trips
3. Percent on-time drop-offs
4. Percent acceptable ride times

5. Percent excessive ride times

2

Service provider’s actual 
performance on February 2005

• Actual pick-up delay is calculated by 
subtracting the actual arrival time by the 
scheduled pick-up time

• Actual drop-off delay is calculated by 
subtracting the actual arrival time by the 
appointment time of the passengers

• Actual ride time delay is calculated by 
subtracting the actual arrival time of drop-
off by the actual arrival time of pick-up
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Percent on-time pick-ups
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Percent on-time pick up and 
demand correlation
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•Correlation coefficient is -0.157 with p-value of 0.243 for Laidlaw
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Transit Team
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•Correlation coefficient is -0.284 with p-value of 0.032 for Transit Team

•There is a difference of .968 between TT’s and Laidlaw’s mean on-time 
performance with p-value of zero 8

Service Quality Measure:

Percent missed trips
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•Correlation coefficient is 0.055 with p-value of 0.683
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Transit Team
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•Correlation coefficient is -0.400 with p-value of 0.002
•There is a difference of -0.26 between Transit Team’s and Laidlaw’s mean 
missed trips with p-value of zero
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Actual performance

Pick-up delay
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Laidlaw
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•The histogram represents actual pick-up delay in minutes performed by Laidlaw for 
the month of February 2005 with its relative frequency 
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Transit Team

TT pick-up
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•The histogram represents actual pick-up delay in minutes performed by Transit 
Team for the month of February 2005 with its relative frequency 16
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•Laidlaw and Transit Team are close. Neither dominates the other.

17

Cumulative Distribution Function of 
delays that are more than 60 minutes
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•Laidlaw has stochastically larger delays. Transit Team performs better.
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Service Quality Measure:

Percent on-time drop-offs
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Percent on-time drop-offs
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% on-time drop-offs and demand correlation
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•Correlation coefficient is 0.138 with p-value of 0.307  for Laidlaw
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Transit Team
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•Correlation coefficient is 0.684 with p-value of 0 for Transit Team

•There is a difference of -1.550 between TT’s and LL’s mean on time drop-offs with
p-value of 0.063
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Actual Performance
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It is hard to tell which provider performs better by dropping off their 
passengers in a timely fashion.
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Service Quality Measure:

Percent acceptable ride times
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Percent acceptable ride times 
and demand correlation

Laidlaw and Transit Team
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•Correlation coefficient is 0.230 with p-value of 0.086 for Laidlaw
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•Correlation coefficient is -0.170 with p-value of 0.206 for Transit Team

•There is a difference of 1.398% between TT’s and LL’s mean acceptable ride times
with p-value of zero 32

Service Quality Measure:

Ride times
more than 60 minutes

33

Laidlaw

LL ride times

P
e
r
c
e
n
t

120100806040200

8

7

6

5

4

3

2

1

0

Mean 29.10

StDev 17.12

N 20801

Histogram of LL ride times
Normal 

34

Transit Team

TT ride times

P
e
r
c
e
n
t

1821561301047852260

7

6

5

4

3

2

1

0

Mean 30.72

StDev 18.38

N 32189

Histogram of TT ride times
Normal 

35

Cumulative Distribution Function of ride 
times that are 60 minutes and longer
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•It is hard to see which provider has better performance in its ride time
•Looking at the histograms, mean delay of Laidlaw is smaller and Transit Team has
a few longer ride times
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Service Quality measure:

Percent excessive ride times
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Percent excessive ride times
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Percent excessive ride times 
and demand correlation

Laidlaw and Transit Team
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•Correlation coefficient is -0.195 with p-value of 0.145 40
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•Correlation coefficient is -0.350 with p-value of 0.008
•There is a difference of 0.315 between Transit Team’s and Laidlaw’s mean 
excessive ride times with p-value of zero 
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Actual Performance

Ride times more than 90 minutes
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time delays of 90 minutes and longer
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There is no clear stochastic dominance.
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Appendix B

Mathematical Models for Chapter 3



As described in Section 3.2, our approach solves the reoptimization problem in two stages.
In the first stage, we find the sequence of locations, or nodes, that each vehicle should visit
in order to minimize the total travel time required to serve all passengers. In the second
stage, we minimize the total service time (sum of travel time and vehicle idle time) using the
sequence of locations determined in the first stage.

We use this two stage process for two reasons. First, lower fuel costs are incurred when a
vehicle is idling versus when it is traveling, so reducing travel times is our primary objective.
Second, this two-stage approach reduces the computational time needed to find solutions,
which is necessary for the repeated application of the reoptimization approach. The two-
stage procedure is applied first to individual routes and then to pairs of routes as described
in Chapter 3.

B.1 Stage-1: Minimizing Travel Time

Let V be the set of dedicated vehicles such that for each vehicle v ∈ V , the maximum
passenger capacity cv is known. Let K be the set of passenger requests. For each passenger
request k ∈ K, there is an associated demand of size nk that needs to be transported from
an origin, or pick up, node ok to a destination, or drop off, node dk. The demand size nk

is greater than 1 when the passenger has a personal care attendant traveling with him/her.
Let N = 2K + 1 be the set of nodes that the vehicles must visit (origin and destination
nodes and the depot). The direct travel time from node i to node j is indicated by tij . This
travel time includes loading time at node i if node i is a pickup node and unloading time at
node j if node j is a drop-off node.

ADA and MM dictate several requirements with respect to when passengers are picked
up and dropped off. First, no passenger may be in a vehicle for more than s1 minutes.
Secondly, if passenger k was originally assigned a pick up time of ek, then that passenger
must be picked up between times ek and ek + s2, where s2 is the length of the allowable
pick up time window. Finally, if passenger k specified an appointment time lk by which
they must arrive at their destination, then that passenger must be dropped off at their
destination during the time window from lk − s3 to lk. We use variable names s1, s2 and s3

in our formulation because our approach can accommodate any value of these parameters.
Actual parameter values used in the numerical study can be found in Section 3.1.

We use the following notational conventions in our model. Note i = 0 is the depot.
Parameters o(i, k) [respectively d(i, k)] equal 1, if node i is a pick up node [resp. drop off
node] for passenger k, and 0 otherwise. M denotes a sufficiently large constant. It is used
in the formulation to enforce certain constraints. In the numerical experiments reported in
Section 3.3, M was set equal to 1,000.

We introduce one set of binary variables and two sets of continuous variables as decision
variables for this model. They are {xijv (i, j ∈ N, v ∈ V )}, {ai (i ∈ N)}, and {yi (i ∈ N)}.
Each xijv equals 1 if vehicle v travels directly from i to j and 0 otherwise. Similarly, ai

specifies the arrival time of a vehicle at node i and yi specifies the number of passengers in
a vehicle when it arrives at node i, before the vehicle picks up or drops off any passengers at
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that node. All vehicles start the shift at the depot, so a0 = 0, and there are no passengers
on board the vehicles at the depot, so y0 = 0.

The objective function, given below, minimizes the total travel time of all vehicles.

Minimize

V∑

v=1

N∑

j=0

N∑

i=0

xijvtij (1)

subject to the following constraints:

N∑

j=1

x0jv = 1 for each v ∈ V (2)

N∑

i=1

xi0v = 1 for each v ∈ V (3)

xiiv = 0 for each i ∈ N and v ∈ V (4)
V∑

v=1

N∑

j=0

xijv = 1 for i = 1, . . . , N (5)

V∑

v=1

N∑

j=0

xjiv = 1 for i = 1, . . . , N (6)

N∑

j=0

xijv =
N∑

l=0

xliv for i = 1, . . . , N, and v = 1, . . . , V (7)

N∑

i=1

xidkv =

N∑

j=1

xokjv for v = 1, . . . , V, and k = 1, ..., K. (8)

Constraint (2-3) ensure that the trip for each vehicle starts and ends at the depot. Constraint
(4) guarantees that the vehicle always leaves its current location. The requirement that each
node is visited exactly once is imposed by constraints (5)-(6). Constraint (7) ensures vehicle
flow balance; i.e., if a vehicle enters a node, then it must also exit that node. If the set V is
a singleton, i.e., there is only one vehicle, constraint (7) can be omitted, as it is implied by
(5)-(6). Constraint (8) ensures that the origin and destination of each passenger are served
by the same vehicle. In addition, we need the following constraints to compute arrival times
a(i) and vehicle passenger loads y(i).
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yi +

K∑

k=1

o(i, k)nk ≥ yj − M(1 −
V∑

v=1

xijv) for i = 1, . . . , N, j = 0, . . . , N,

when i is origin node (9)

yi +
K∑

k=1

o(i, k)nk ≤ yj + M(1 −
V∑

v=1

xijv) for i = 1, . . . , N, j = 0, . . . , N

when i is origin node (10)

yi −
K∑

k=1

d(i, k)nk ≥ yj − M(1 −
V∑

v=1

xijv) for i = 1, . . . , N, j = 0, . . . , N

when i is destination node (11)

yi −
K∑

k=1

d(i, k)nk ≤ yj + M(1 −
V∑

v=1

xijv) for i = 1, . . . , N, j = 0, . . . , N

when i is destination node (12)

yj ≤
V∑

v=1

N∑

i=1

xijvcv for j = 1, . . . , N. (13)

Constraints (9)–(12) ensure that the number of passengers are properly accounted for at the
origin and the destination nodes. These constraints are only enforced for node pairs (i, j)
when a vehicle travels directly from node i to node j (xij = 1).

If node i is a pickup node, then constraints (9)–(10) are included in the model. In this
case,

∑V
v=1 xijv = 1, since each pick up node is visited by exactly one vehicle as implied

in constraints (5)-(6). Therefore, the value of (1 − ∑V
v=1 xijv) is 0, and the right hand

sides of constraints (9) and (10) become yj. Now, constraints (9) and (10) together imply

yi +
∑K

k=1 o(i, k)nk = yj .
Similarly, when node i is a drop off node, constraints (11) and (12) are included in the

model and together imply that the number of passengers on board the vehicle when it arrives
at node j is the number on board when it arrived at the predecessor node i minus the number
of passengers dropped off at node i.

The requirement that the number of passengers in the vehicle at each node do not exceed
the capacity of the vehicle is guaranteed by constraint (13). Finally, we need the following
constraints to ensure all variables take values in the correct ranges.
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adk
≥ aok

for each k ∈ K (14)

adk
≤ aok

+ s1 for each k ∈ K (15)

ek ≤ aok
for each k ∈ K (16)

aok
≤ ek + s2 for each k ∈ K (17)

adk
≥ lk − s3 for each k ∈ K (18)

adk
≤ lk for k ∈ K (19)

ai + tij − M(1 −
V∑

v=1

xijv) ≤ aj for i = 1, . . . , N, and j = 1, . . . , N (20)

xijv ∈ {0, 1} for i, j ∈ N, and v ∈ V (21)

ai ≥ 0 for i ∈ N (22)

yi ≥ 0 for i ∈ N. (23)

Constraints (14) act as precedence constraints to ensure that each passenger’s origin is visited
before his destination. The requirement that the passenger can stay in the vehicle for no
more than s1 minutes is ensured by constraints (15). The pick up and drop off time window
constraints are ensured by constraints (16)–(19). Constraints (18) and (19) are enforced only
when a passenger specifies an appointment time (i.e. lk exists). Constraints (20) guarantee
that the arrival time is properly accounted for when a vehicle travels directly from node i to
node j.

B.2 Stage-2: Minimizing Total Time

The Stage-1 model finds the sequence of nodes for each vehicle that minimizes the total travel
time. In any operational plan, some vehicle idling may be necessary while the vehicle waits
for the scheduled earliest pick up time of its next passenger. However, because the objective
of the Stage-1 model does not consider idle time, its solution may include unnecessary idle
time. Therefore, we developed a Stage-2 model to find the arrival times that minimize idle
time (and, therefore, total time) for a given sequence of nodes.

This Stage-2 model is applied independently for each vehicle/route v. For a fixed vehicle
v, firstv and lastv denote the first and last nodes visited by that vehicle. Kv is the set of
passenger requests to be served by vehicle v, according to the Stage-1 solution. Iv is the set
of nodes to be visited by vehicle v. It includes the depot and the origins and destinations of
all passengers k ∈ Kv.

The Stage-2 model is:

Minimize alastv − afirstv
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subject to the constraints

ek ≤ aok
for each k ∈ Kv (24)

aok
≤ ek + s2 for each k ∈ Kv (25)

adk
≥ lk − s3 for each k ∈ Kv (26)

adk
≤ lk for k ∈ Kv (27)

ai + tij ≤ aj for i, j ∈ Iv such that xijv = 1 (28)

ai ≥ 0 for i ∈ Iv (29)

Note that constraints (24)–(29) are a subset of constraints (16)–(20) and (22) from the
Stage-1 model. However, in Stage-2, the x′

ijvs have been fixed by the Stage-1 solution, and
so the only decision variables are the arrival times ai.

By implementing this two stage process, we eliminate all unnecessary idle time while
keeping computational effort manageable. More importantly, we obtain a solution that
minimizes total travel time and subsequently the idle time. This approach makes sense from
a practical viewpoint since MM incurs different costs for travel and idle times. In fact, in
2004, fuel accounted for 8% of MM’s operational costs. It may be possible to construct
routes with shorter total times than the routes output from our models by eliminating the
two-stage process. However, the resulting model would be significantly more complex and
require excessive time to solve.

We developed these models so they can be used in several ways. The raw passenger
request data for a single day could be passed to the Stage-1 model, V would represent the
complete set of available vehicles. The model would then perform two tasks: assigning
passengers to vehicles and ordering the nodes visited by each vehicle. However, given the
size of the data (approximately 100 routes per provider and 1,000 passengers per day), that
approach is computationally intractable.

An alternative is to decompose the problem by using the assignments of passengers to
routes determined by Trapeze. The Stage-1 model can then be solved sequentially for each
route, or for small subsets of routes. Although some flexibility is lost by pre-assigning
passengers to routes, the gain in computational efficiency makes this a practical alternative.
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Appendix C

Literature Review



The Dial-a-Ride Problem (DARP) has been the focal point of demand-responsive para-
transit service research since it was first introduced. Wilson et al. (1971), Wilson and
Weissberg (1976), and Wilson and Colvin (1977) were among the first to study the DARP
with specific interest in developing real-time algorithms for paratransit systems. Due to high
operating costs, most of the dial-a-ride systems turned into reservation-based operations af-
ter the late 1970s. Research on DARP shifted to developing heuristic algorithms for solving
the static DARP. Cordeau and Laporte (2003) present a tabu search heuristic for the static
multi-vehicle DARP. Recent surveys on the DARP and, more generally, the vehicle rout-
ing and scheduling problems are presented by Bodin et al. (1983), Desrosiers et al. (1993),
and Savelsbergh and Sol (1995). Cordeau (2006) presents a branch-and-cut algorithm for the
DARP by introducing new valid inequalities, which can solve small to medium-size instances.
Another formulation of DARP is presented by Fu (2002) that incorporates time-dependent
and stochastic travel times.

MM’s problem can be viewed as the dynamic DARP. However, the focus of this project
was to improve upon the Trapeze solution by reoptimizing routes. Therefore it was appro-
priate for us to consider the static Vehicle Routing Problem with Time Windows (VRPTW)
and precedence constraints. Surveys of the VRPTW have been presented in Solomon and
Desrosiers (1988) and Desrochers and Soumis (1988).

The VRPTW can be formulated in different ways. The first is the Pickup and Delivery
Problem (PDP), where vehicles must transport loads from origins to destinations without
any transshipment at other locations. The paper by Savelsbergh and Sol (1995) presents
a survey of the PDP types, such as the Static PDP, the static 1-PDP with time windows,
etc., and solution methods found in the literature. A generalization of the PDP with time
windows is called the Handicapped persons’ Transportation Problem (HTP). Toth and Vigo
(1997) present a fast and effective parallel insertion heuristic algorithm for the HTP that
can determine good solutions for real-world problem instances. They also present a Tabu
thresholding procedure that can be used to improve the solution obtained by the insertion
algorithm.

The VRPTW can be formulated as a Traveling Salesman Problem (TSP), if there is no
origin or destination and no time windows or precedence constraint. Renaud et al. (1996)
propose a fast composite heuristic that consists of three phases: construction of an initial
tour, insertion of the remaining vertices, and the improvement procedure for the symmetric
TSP. A variation of TSP is the TSP with time windows (TSPTW). Gendreau et al. (1998)
present a generalized insertion heuristic for the TSPTW with the objective of minimizing
the travel times. The heuristic constructs a route by inserting a vertex in its neighborhood
(based on distance) while performing a local optimization of the tour. This method is known
as GENI, which is proposed by Gendreau et al. (1992). Desrosiers et al. (1988) propose a
Lagrangian relaxation method for solving the minimum fleet size multiple TSPTW, and this
proposed method is able to optimally solve practical school bus scheduling problems. The
next case is the pickup and delivery TSP (PDTSP). Renaud et al. (2000) present a proposed
heuristic for the PDTSP that is composed of two phases: a construction phase that includes
a local optimization and a deletion and re-insertion improvement phase.
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The VRPTW itself is NP-hard (see Derigs and Grabenbauer (1993) and Cordeau et al.
(2001)), which means that the time it takes to find an exact solution to the problem increases
exponentially as the size of the problem grows. That is why many researchers use a mathe-
matical approximation for small to medium instances, and heuristics for large instances.

The work by Desrochers et al. (1992) proposes an LP relaxation of the set partitioning
formulation of the VRPTW, which is then solved by column generation. The authors assume
a homogeneous fleet, but the fleet size is not fixed a priori. This algorithm has solved
problems with up to 100 customers from the Solomon data set (Solomon (1987)), including
some problems that other methods were not able to solve. Fisher et al. (1997) describe two
methods, which are able to solve problems of the same size to optimality.

The two methods proposed by Fisher et al. (1997) are Lagrangian relaxation or variable
splitting approach and a K-tree relaxation method. Their formulation is an extension of the
formulation given by Solomon (1987), which we use in developing our formulation. Kohl and
Madsen (1997) propose a similar method, which is based on a Lagrangian relaxation of the
constraint set that requires each customer to be serviced.

The work by Desrochers et al. (1992) is believed to be the best known algorithm for
solving the VRPTW, and it has solved problems with up to 100 customers. The papers
mentioned above find the set of routes to satisfy the transportation requests. However, in
our situation, we already have the set of routes, and we want to reoptimize these routes to
improve upon them. Thus, we decompose the VRPTW to reoptimize one vehicle/route at a
time.

For our second approach, we propose to reoptimize two routes at the same time, and since
we are dealing with much larger number of passengers, we decide to use heuristics to avoid
computational burden. Heuristics start with an initialization or construction phase followed
by the improvement phase. There are many papers that focused on solving VRPTWs with
heuristics, we present a brief review of this literature below.

The paper by Derigs and Grabenbauer (1993) is motivated by a real world application
of distribution planning for a bakery in Bayreuth, Germany. The authors implement a two-
phase heuristic procedure. The first phase is the tour construction phase, which focuses on
the problem of choosing customers to be added to the tour. The tour improvement phase
is done by exchanging the nodes, known as k-best-insert-algorithm. The node-exchange
procedure is done in two phases, deterministic exchange phase followed by a stochastic
exchange phase with each phase having a predetermined number of iterations.

The paper by Thangiah et al. (1993) proposes three heuristics: deadline sweep, push-
forward insertion, and genetic sectoring. The solutions obtained from these heuristics are
further improved using a local optimization procedure. The Deadline Sweep heuristic (DSH)
clusters customers and routes the vehicles within the clusters and is time oriented. The Push-
Forward Insertion heuristic (PFIH) is an insertion heuristic where customers are inserted
into a current route until one of the constraints is violated. The Genetic Sectoring Heuristic
(GSH) is a cluster-first-route-second heuristic that uses a Genetic Algorithm (GA) to cluster
the customers and uses cheapest insertion procedure to route the vehicles. When a solution
is obtained, a local post-optimization procedure is used to improve the solution by shifting
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and exchanging customers between the routes.
Cordeau et al. (2001) present two generalizations of VRPTW: the Periodic Vehicle Rout-

ing Problem with Time Windows (PVRPTW) and the Multi-Depot Vehicle Routing Problem
with Time Windows (MDVRPTW). The PVRPTW considers a planning horizon of t days
and each customer specifies a service frequency and a set of allowable combination of visit
days. The problem selects an allowable combination of visit days for each customer and
generates vehicle routes for each day of the planning horizon at the same time.

The MDVRPTW considers several depots at different locations instead of only one lo-
cation. The problem is to assign each customer to a depot and construct routes for each
depot simultaneously using VRPTW rules. Furthermore, MDVRPTW can be seen as a spe-
cial case of PVRPTW by associating depots with days of the planning horizon. The same
methodology can then be used for both problems provided that the distances and travel
times that vary day to day reflect the different locations of the depots. The algorithm that
they use is called the tabu search algorithm. It is a local search heuristic that explores the
solution space by moving at each iteration from the current solution s to the best solution
in its neighborhood N(s). The post optimization procedure used is the TSPTW heuristic
developed by Gendreau et al. (1998).

In our situation, we only perform the improvement phase. We do not need to construct
the route because we have the reoptimized routes from the first approach. In this approach,
we insert each passenger (pick up and drop off nodes of each passenger) of one route to
another route and vice versa, and we also allow exchange of passengers, one pair at a time.
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