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Executive Summary 

In the past, measuring transit performance was very difficult and collecting the data necessary to 
evaluate transit systems was very costly. From the service planning perspective, a large number 
of employees were initially needed to obtain a small amount of data. Agencies often had to make 
strategic decisions regarding the amount of money to budget for data collection to support 
internal decision making, and many agencies chose to direct their funds toward other issues, such 
as providing more service, rather than data collection.  Recently, as a result of the widespread 
implementation of intelligent transportation systems (ITS) and advanced public transit system 
technologies (APTS), data collection is no longer a limiting factor. Instead, there is concern 
relating to how we can meaningfully analyze the data these technologies make available and use 
it to create information relevant for service planning and control.  

Metro Transit, the local transit authority in Minneapolis-St. Paul, MN, has implemented an 
APTS, which they have been testing since 1999. Metro Transit utilizes the data obtained from 
the APTS for live transit operations through its transit management center to identify early and 
delayed buses and apply some strategic decisions in the field to address such problems. Metro 
Transit also archives this information for future research that can help in improving its operations 
and planning process.  This research utilizes this archived ITS data to introduce and explore 
various research methodologies that can help Metro Transit in improving service reliability, 
schedule adherence, and on time performance along Route 17. This research introduces a 
methodology on how various performance measures and indicators can be obtained from the 
archived ITS data.  The methodology includes multiple approaches to displaying ITS data within 
a GIS environment to allow visual identification of problem areas along routes.   The 
methodology also uses statistical models generated at the time point segment and bus route level 
of analysis to demonstrate ways of identifying reliability issues and causalities of such problems. 
The generated models have shown that schedule revisions are needed to Route 17 in terms of 
running time. Meanwhile, it is clear that headways were sustained over the course of the study. 
To conduct this analysis, Metro Transit agreed on directing APC equipped buses to serve this 
route. It is recommended that equipping the entire Metro Transit fleet with APC should be 
considered since generating similar research without having sufficient APC information is not 
possible. Finally, it is clear from the analysis that many scheduled stops along this route are 
underutilized and revisions in stop spacing, accompanied by careful consolidations are 
recommended. 
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Chapter 1:  Introduction 

The widespread implementation of automatic vehicle location (AVL) and automatic passenger 
counters (APC) in the transit industry has opened new venues in transit operations and system 
monitoring. Metro Transit, the local transit authority in the Twin Cities region, has been testing 
various intelligent transportation systems (ITS) since 1999. Metro Transit fully implemented an 
AVL system and archiving system and partially implemented an APC system in 2005. This 
research documents the first hand experience of using these systems to analyze the performance 
of a problematic bus route (Route 17) in the Metro Transit system. Route 17 is a cross-town 
route serving two western suburbs, Hopkins and St. Louis Park, as well as the southern, 
downtown, and northeast sections of Minneapolis. Figure 1 is a map showing Route 17.   

 

Figure 1:  Route 17 

We use the archived AVL and APC data from buses running on Route 17 between September 20 
and December 1, 2006 to conduct a microscopic analysis to understand reasons for performance 
and reliability problems along this route being raised by the Metro Transit personnel. The 
research team generated a series of running time, schedule adherence and reliability models at 
both the time point segment and route level of analysis to help in understanding the factors 
causing the reliability and performance decline along this route, especially during the PM peak.  
These models were also used to generate a methodology that Metro Transit can use in the future 
when analyzing other bus routes.  
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This work expands upon previous research on transit performance by taking a new approach to 
understanding the problem of service reliability.  While previous studies have primarily relied 
upon presentation of summary statistics to identify changes in performance, this research utilizes 
more detailed statistical analysis to understand the reasons for decline in service reliability.  The 
statistical models presented in this report examine the impact of multiple route characteristics 
such as length, number of stops served, and passenger activity on bus travel time and schedule 
adherence.  The models also explore the relationship between variation in these characteristics 
and variation in travel time.  This approach is preferable to that taken by earlier studies because it 
allows transit planners to identify the impact of specific characteristics on a route’s overall 
performance. Modeling variation in bus activity and performance will also assist planners and 
managers to develop specific strategies to improve service reliability, which Furth and Muller 
(2006) suggest may be a more efficient and cost-effective way to improve rider satisfaction than 
increasing service frequency.   

This report is composed of four parts.  Chapter 2 contains a comprehensive review of the 
literature on transit performance monitoring and the effects of transit service reliability on transit 
demand.  This chapter also includes definitions of the terms used throughout this report and 
presents several case studies of how other agencies have utilized archived ITS data to monitor 
and improve transit operations and performance.  Chapter 3 describes the methodology, data, and 
statistical analysis methods used to analyze the archived ITS data obtained for Route 17.  This 
methodology includes an explanation of how the research team identified the appropriate 
statistical models for use in measuring running time and service reliability along the studied 
route.  Chapter 4 presents several visualizations of the archived Route 17 data and includes the 
results of the statistical models developed for this route. Finally, Chapter 5 summarizes the 
findings of this study and makes several recommendations on how these findings can be used to 
improve the performance of Route 17 specifically and on how the methodology developed in this 
study can be applied to other routes by Metro Transit or by other agencies to improve transit 
operations and performance.   
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Chapter 2:  Background 

ITS Overview and Case Studies 

Over the past decade, the Twin Cities and many other metropolitan areas have experienced 
population growth, large increases in traffic congestion, and changes in household size and 
distribution of employment.  These changes have created many challenges for public transit 
agencies, which must develop long- and short-term strategies to adapt to changing conditions and 
provide reliable transit service at a reasonable cost to both the agency and users.  Until recently, 
it was very difficult and costly to collect the necessary data to measure transit performance.  A 
large number of employees were needed to obtain a small amount of data and transit agencies 
often had to make strategic decisions regarding whether to spend available dollars to expand 
services or for data collection to support internal decision making. Fortunately, the recent 
implementation of ITS and advanced public transit systems (APTS) means that data collection is 
no longer an issue.  AVL systems use GPS to record the location of buses at various locations 
along the trip and APCs record the number of passengers boarding and alighting at each stop.  
This technology provides transit planners with an abundance amount of data that can be used for 
a variety of applications such as service planning and control and determining transit 
performance and level-of-service (LOS) measures.  
 

Transit agencies around the world and especially in the United States have started to implement 
various ITS technologies to assist them in managing their systems. As of 2000, at least 88 transit 
agencies in the United States had operational AVL systems in place, and an additional 142 
agencies were planning to implement AVL systems.  At the same time, 339 transit agencies also 
used automated transit information systems or had plans for such systems (Schweiger 2003; 
Crout 2006). Although the data collected by these systems is fairly similar, the ways and extents 
to which it has been used vary greatly from agency to agency.  According to TCRP Synthesis 66, 
despite the availability of ITS data the majority of transit agencies continue to rely largely on 
professional judgment and “rules of thumb” to drive forecasting and other decision-making 
processes (Boyle 2006).  On the other hand, several transit agencies have tested the usefulness of 
ITS data in a variety of applications and utilize the data extensively. 

In Portland, Oregon, ITS technologies were first implemented in 1997 and have been extensively 
evaluated from an empirical research standpoint since implementation.  The research has focused 
mainly on bus dispatch system (BDS) evaluation, system performance, APC accuracy, TSP 
implementation, and many other related topics (Strathman, Dueker et al. 1999; Strathman, 
Dueker et al. 2000; Strathman, Kimpel et al. 2001; Kimpel, Strathman et al. 2002; Strathman 
2002; Strathman, Dueker et al. 2002; Kimpel, Strathman et al. 2003; Crout 2006).  In 1997, the 
Ann Arbor Transportation Authority (AATA) also implemented an advanced operating system.  
Analysis of data collected by this system has helped the AATA to increase schedule adherence 
for departures from transfer points and increase system performance (Hammerle, Haynes et al. 
2005).  Similarly, in the late nineties the Chicago Transit Authority began installing and 
operating AVL and APC devices on select buses as part of CTA’s automated vehicle 
annunciation system (AVAS).  With the data collected by this system CTA has confirmed that 
peak demand and operating times match, evaluated schedule adherence, calculated quality-of-
service measures related to on-time performance (i.e. headway regularity), and identified where 
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and why bus bunching occurs and its impact on passengers (Hammerle, Haynes et al. 2005).  
CTA has more recently begun testing novel applications of its ITS data such as using archived 
screen messages from the CAD-AVL system to analyze the response times of dispatchers in the 
control room (Golani 2007).  Milwaukee County Transit (MCT) has also used ITS data to 
improve communications with operators; providing point by point navigation for novice and 
paratransit operators.   In addition to improving communications, MCT was able to reduce the 
number of off-schedule buses by 40% after the systems enabled them to spot chronic bottlenecks 
causing delays (Carter 2002). 

ITS data has also been used in several cities to develop and test real-time passenger information 
systems.  London’s Countdown system, which began operation in early 1990, is the most well 
known of these systems, and similar systems have now been deployed and studied in Portland, 
OR; Denver, CO; Seattle, WA; Toronto, Ontario; and other areas (Smith, Atkins et al. 1995; 
Schweiger 2003; Shalaby and Farhan 2004; Tang and Thankuriah 2006; Crout 2007).  These 
systems assist operators in proactively addressing scheduling issues and improve passenger 
satisfaction by providing them with accurate travel information.  These systems have not been 
shown to create a significant increase in transit demand/ridership, however.  

Metro Transit currently archives a vast amount of ITS data about the characteristics of the 
existing transit system.  However, despite such rich data collection efforts, analysis of this data 
has not been fully explored.  This research represents a comprehensive review of the literature of 
transit reliability measures and running time modeling.  It examines how ITS data has been used 
to evaluate and improve bus transit reliability in other regions and presents methods that may be 
useful for the analysis of ITS data in the Twin Cities region. 
 

Transit Service Reliability 

As illustrated by the previous examples, one of the primary uses of ITS data is to determine 
transit service reliability and measure the impact of policy, scheduling, and technology changes 
on specific routes’ level of reliability.  However, transit service reliability has been defined in a 
variety of ways.  Turnquist and Blume (1980) define transit service reliability as “the ability of 
the transit system to adhere to schedule or maintain regular headways and a consistent travel 
time.”  In other words, reliability can be defined as the variability in the system performance 
measure over a period of time.  Abkowitz (1978) provides a broader definition of transit service 
reliability.  He defines transit service reliability as the invariability of transit service attributes 
that affects the decisions of both the users and the operators.  Strathman et al. (1999) and Kimpel 
(2001) relate reliability mostly to schedule adherence, keeping schedule related delays (on time 
performance (OTP), running time delay, running time variation, and headway delay variation) to 
a minimum, which agrees with Levinson (1991) and Turnquist (1981).  In theory, an increase in 
transit service reliability should lead to an increase in service productivity, given accurate 
schedules.  Increase in service reliability has also been linked to increases in transit demand for 
particular routes.  For example, a preliminary model developed for urban buses operated by the 
MTDB in San Diego found that service reliability-related variables overwhelmed demographic 
and economic variables in predicting ridership (Boyle 2006).   
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There are differences between reliability measured by agencies, however, and reliability as 
experienced by passengers. There is wide agreement in the literature regarding the definition of 
reliability to passengers.  A reliable service for a passenger is one that: 1) can be easily accessed 
by passengers at both origin and destination, 2) arrives predictably, resulting in short waiting 
time, 3) has a short running time, and 4) has low variance in running time.  This means that any 
change in these factors will be identified as a decline or improvement in reliability from a 
passenger perspective.   

Transit reliability for passengers is strongly associated with transit accessibility, which is the 
suitability of a system to move people from their origins to their destinations with reasonable 
costs such as those based on time or distance (Koenig 1980; Murray and Wu 2003). Decline in 
service reliability subsequently translates into increased cost for transit users.  According to 
Furth and Muller (2006; 2007), user cost has three components: 1) excess waiting time, 2) 
potential or budgeted travel time, and 3) mean riding time.  Accordingly, passengers value 
minimization and consistency in travel times.  Unreliable service results in additional travel and 
waiting time for passengers (Welding 1957; Turnquist 1978; Bowman and Turnquist 1981; 
Wilson, Nelson et al. 1992; Strathman, Kimpel et al. 2003).  For long headway service routes 
reliability plays an even more important role, because passengers’ perceived costs of using 
transit are determined by the extreme values of their experience.  In an study of service reliability 
and passenger waiting time, Furth et al. (2006) found that passengers on routes with long 
headways base their budgeted travel times on the 95th percentile of arrival times for a particular 
route.  Thus, even routes that have only occasional reliability issues are perceived as having a 
much higher cost to passengers.  As a result, service reliability improvements can reduce 
passengers’ perceived cost of using transit as much as more expensive adjustments such as large 
reductions in headway.   

Excessive service unreliability can lead to loss of passengers using the service - especially choice 
riders - while improvements in reliability can lead to attraction of more passengers.  Despite 
some differences, it is clear that an overlap exists in the understanding of transit service 
reliability by agencies and passengers.  The key difference in the definition of reliability 
according to passengers and agencies is running time.  Passengers consider running time a 
reliability measure, while agencies consider it an efficiency measure.  This gap is gradually being 
bridged however, as transit agencies and academics increasingly acknowledge the link between 
running time scheduling, service reliability, and subsequent changes in user cost and demand. 

Running Time 

Running time is the amount of time it takes a bus to travel along its route. Abkowitz and 
Engelstein (1984) found that mean running time is affected by route length, passenger activity, 
and number of signalized intersections.  Most researchers agree on the basic factors affecting bus 
running times (Abkowitz and Engelstein 1983; Guenthner and Sinha 1983; Levinson 1983; 
Abkowitz and Tozzi 1987; Strathman, Dueker et al. 2000).  Table 1 contains a summary of 
factors affecting running times. 
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Table 1:  Determinants of Bus Running Time 

Variables Description 

Distance Segment length 

Intersections Number of signalized intersections 

Bus stops Number of bus stops 

Boarding Number of passenger boardings  

Alighting Number of passenger alightings  

Time Time period  

Driver Driver experience 

Period of service How long the driver has been on service in the study 

period 

Departure delay Observed departure time minus scheduled  

Stop delay time Time lost in stops based on bus configuration (low floor 

etc.) 

Headway Scheduled headway 

Headway Delay Observed headway relative to scheduled 

Nonrecurring events  Lift usage, bridge opening etc. 

Direction Inbound or outbound service 

Weather Weather related conditions 

 

Since buses travel with regular traffic, they are affected by the overall dynamics of the 
transportation system, where changes occur on both regular (i.e. peak hour traffic congestion) 
and random (i.e. road construction, accidents, special events) bases.  These changes influence the 
amount of time it takes a bus to travel from one stop to another and its ability to adhere to a 
schedule.  Operating a transit service according to schedule helps in gaining the trust of 
passengers, insures that the system operates efficiently, and is an important measure of transit 
service reliability.  It is important to understand schedule adherence from the perspective of bus 
running time, since the amount of schedule delay at a given stop is simply the amount of running 
time delay up to that point.  Transit agencies face a hard challenge since the amount of delay 
caused by the transportation system cannot be controlled for through strategic changes in service. 
As a result, a large number of service hours at many transit agencies represents non-revenue 
service in the form of 1)layover or 2) recovery time which is needed to account for stochastic 
disturbances (Strathman, Dueker et al. 2002).   
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Optimizing running time is a challenge for all transit agencies, because changes in running time 
have strong and often conflicting effects on service reliability and total travel time; two main 
components of user cost.  If the primary goal of an agency is to increase service reliability and 
on-time-performance, they will insert more slack time between stops along a route, increasing 
total running time.  This increases the probability that the bus will arrive at stops early and, with 
bus holding at timepoints, increases the likelihood of on-time departure; thus, increasing service 
reliability and theoretically lowering user cost.  Unfortunately, this strategy also lowers operating 
speed and increases riding time, which increases both user and operating costs (Furth 2006).  An 
alternative strategy is to keep running time to a minimum.  This strategy helps agencies to realize 
savings in recovery time and layover time, but can lead to decreases in reliability and subsequent 
increases in user cost.   

The general guideline for establishing optimal running times that is suggested by the Transit 
Capacity and Quality of Service Manual (TCQSM) and is supported by several transit planning 
software packages is to set running time between timepoints equal to the mean observed running 
time (Kittelson & Associates 2003; Furth 2006).  Researchers at the Delft University of 
Technology in the Netherlands have developed software known as TriTAPT, which uses a semi-
automated analysis of “homogenous periods” to examine the feasibility of current running times 
and to suggest optimal running times and running time periods (Furth 2006).  The software also 
allows users to evaluate scheduled running times for different periods of the day using Muller’s 
“passing moments” method.  This method is most commonly used in the Netherlands, and is, 
“designed to achieve a high level of reliability and to create an incentive for operators to comply 
with timepoints by setting route running time at 85-percentile uncontrolled running time 
(essentially, mean plus one standard deviation), and using 85-percentile completion times as a 
basis for determining segment-level running time schedules” (Muller and Furth 2000; Furth, 
Hemily et al. 2003; Furth 2006). 

Regardless of what method is used, ITS can play an important role in simplifying the problem of 
optimizing running times.  One of the benefits of networked AVL equipped buses is that they 
enable transit operators to identify schedule/headway deviations as soon as they occur so that 
control strategies such as bus holding and expressing can be immediately implemented.  
According to Furth (2006), “AVL systems can help operators keep to schedule by displaying 
schedule deviation in real time, by triggering conditional priority at traffic signals, by providing 
management with a record of operators who habitually depart early, and by providing the archive 
of operations data needed to create well-tuned schedules.”  In addition, several more recent real-
time and “user-interactive” running time models have integrated archived and real-time AVL and 
APC data from specific routes in order to proactively control for regular and random variations 
in the transportation system when calculating bus running and arrival times, but these methods 
have not yet been tested on a large scale (Shalaby and Farhan 2004; Jeong and Rilett 2005). 
 

Variance in Running Time 

One indicator of deterioration in transit service reliability that can be identified by performance 
measures is the increase in variance in running time relative to the mean.  This variation 
represents unpredictable service from the standpoint of passengers, since it increases waiting 
time and in-vehicle time.  Running time models are fairly common in the transit literature, while 
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running time variation models tend to be rare.  Abkowitz and Engelstein (1984) compared the 
effects of average running time on the standard deviation of running time.  They used mean 
average running time as a proxy for route characteristics in order to understand how much 
variance is imposed by the route itself.   

Variations in running time associated with signalized intersections are being partially addressed 
by transit signal priority (TSP), which is a strategy mentioned in several studies that focused on 
transit service reliability and running time (Sterman and Schofer 1976; Levinson 1983).  The 
most recent of these studies examined trip-level data collected from TriMet’s Bus Dispatch 
System and found that TSP’s impact on a variety of transit performance measures, including 
running time and OTP, are not consistent across routes and time periods, nor are they consistent 
across various performance measures.  The authors believe that benefits of TSP will accrue only 
as the result of extensive evaluation and adjustment after initial deployment and that an ongoing 
performance monitoring and adjustment program should be implemented to maximize TSP 
benefits. 

Dwell time and passenger activity variables, such as boarding and alighting rates also contribute 
to running time variance (Guenthner and Sinha 1983; Levinson 1983; Guenthner and Hamat 
1988; Strathman, Dueker et al. 2000; Rodriguez and Ardila 2002; McKnight, Levinson et al. 
2003; Bertini and El-Geneidy 2004; Dueker, Kimpel et al. 2004).  Agencies try to minimize 
these delays by consolidating bus stops, promoting smart-card based fare media, back door only 
policies for alightings, front door only policies for boardings, low floor buses, and requiring fare 
payment at the ends of trips.  Headway adherence may also reduce run time delay created by 
passenger clustering and overloading (Shalaby and Farhan 2004). However, according to 
previous research, the amount of time associated with each passenger declines with the increase 
in passenger activity (Dueker, Kimpel et al. 2004).  Overall, reductions in dwell, boarding, and 
alighting time can lead to changes in mean running time and running time variation.  Reductions 
in mean running time are equally important as reductions in the variation in running time, since 
average running time affects not only system attractiveness, but the overall costs of providing 
service as well. 

Demand and Reliability 

There are two general types of people who ride transit.  The first are captive riders who do not 
have other modes to choose from except transit.  The second type is people who have access to 
alternative modes for their activities but they choose transit because it is either convenient, cost 
efficient, or for other reasons. The factors affecting passengers’ decision to use transit versus 
other modes are affected by several costs including monetary costs (fares), the cost of travel 
time, cost of access and egress time, effort, and finally the cost of passenger discomfort.  The 
Transit Capacity and Quality of Service Manual (TCQSM) provide a comprehensive approach to 
understanding the transit trip decision making processes, which includes several transit 
availability factors.  These factors addresses the spatial and temporal availability of service at 
both ends of the trip (origins and destinations) (Kittelson & Associates 2003).  The presence or 
absence of transit service near origin and destination is found by Murray (2001) to be a major 
factor in choosing transit as a mode for travel. 

Transit demand is also related to the number of potential users along a route (e.g. place of 
residence, place of work, and various transit amenities such as park and ride or transfer).  
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Levinson (1985) developed a model to forecast ridership along bus transit routes.  His model is 
based on the following variables: passenger activity, population; employment, travel time, and 
demand elasticity factors. Levinson estimates bus ridership as a function of car ownership and 
walking distance to bus stops.  Some scholars relate ridership to access, the more accessible the 
bus stops are the higher the usage (Hsiao, Lu et al. 1997; Polzin, Pendyala et al. 2002).  This 
might not always be the case since ridership depends on additional variables such as service 
variability and /or socio-demographic information.  The variability and frequency of service 
represents two additional basic factors that affect demand at a stop.   

Several studies have contradictory outputs regarding the elasticity of demand for transit.  Some 
studies indicate that average running time increases passenger demand more than other variables 
(Lago, Mayworm et al. 1981; Rodriguez and Ardila 2002), however this is based on the 
understanding that most of transit users are captive riders.  Other studies indicate that passengers 
are more sensitive to out of vehicle time (Kemp 1973; Pushkarev and Zupan 1977; Lago and 
Mayworm 1981; Mohring, Schroeter et al. 1987). Two comprehensive studies regarding the 
elasticity of demand with respect to fare change found that demand for transit service is inelastic 
when it comes to changes in price (Goodwin 1992; Oum, Waters II et al. 1992).  The value 
associated to time is usually higher than the fare.  Mohring et al. (1987) found the value 
associated with in vehicle time is around half the equivalent of an hourly wage, while wait time 
is valued at 2-3 times that of in vehicle time.  Domencich, Kraft, and Valette (1968) estimate the 
elasticities of demand for public transit in relation to all aspects of time and cost.  They found 
that passenger demand will decrease by 3.9% for a 10% increase in travel time, while demand 
will decrease by 7% for each 10% increase in access, egress, and waiting time.  These findings 
were reported and validated later by Kraft and Domencich (1972) and O'Sullivan (2000).   

Conlon, Foote, O'Malley, and Stuart (2001) conducted a study to measure passenger satisfaction 
after implementation of major changes along a bus route in the Chicago area.  The implemented 
changes led to a decrease in service variation along the studied route.  Passengers were satisfied 
with the service in the areas of running time, waiting time, route dependability, and OTP.  It is 
important to note that wait time is directly related to the size of the amount of headway variation 
(Hounsell and McLeod 1998).  Variation in running time and headway is considered a reliability 
measure for both passengers and operators.  Another recent study used a service quality index to 
quantify passenger satisfaction with bus service in New South Wales, Australia.  This study 
concludes that running time and fare are the greatest source of dissatisfaction, while frequency of 
service and seating availability had the largest positive impact on passenger satisfaction.  The 
study indicates that access time to bus stops when combined with the frequency of service are 
important aspects of reliable service from a passenger perspective (Hensher, Stopher et al. 2003).  

Improving Transit Reliability and Performance 

Several researchers have outlined methods for improving transit service reliability, including but 
not limited to: 1) implementing changes in driver behavior (through training), 2) better matches 
of schedules to actual service, 3) implementing control actions such as bus holding at time 
points, 4) implementing TSP, 5) modifying route design (route length, bus stop consolidation, 
and relocation), and 6) implementing real-time operation controls and passenger information 
systems.  Since the implementation of APTS, monitoring the transit system and testing which of 
these policies can lead to an increase in reliability is achievable through various performance 
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measures that can be generated from the archived ITS data.  For example, driver behavior can be 
dealt with through performance monitoring, by providing feedback information to training, and 
through field supervision.   

Enabling field supervisors to take make effective control actions can also improve reliability.  A 
headway-based control such as bus holding at time points is one strategy for increasing transit 
service reliability by decreasing passenger wait time (Abkowitz and Tozzi 1987).  The 
effectiveness of this policy depends on the nature of passenger activity along routes and route 
configurations, however.  Headway control should be implemented on routes with passengers 
boarding near the beginning and alightings anywhere from the middle to the end of routes.  The 
savings will be minor or even nonexistent if the passenger patterns are different from what was 
mentioned above (Abkowitz and Tozzi 1986). 

Modifications in route design have been recommended by various researchers as means to 
improve reliability.  One example of this approach is to design shorter routes with fewer stops to 
decrease overall route complexity (Abkowitz and Engelstein 1984; Strathman and Hopper 1993).  
However, it should be noted that this approach might lead to an increase in total trip time for 
some passengers, since they might need to transfer more with shorter routes.  Most previous 
researchers use simulation to demonstrate the effects of bus stop consolidation on service 
reliability (Furth and Rahbee 2000; Saka 2001).  These studies predicted improvements in 
service reliability and savings in running time following bus stop consolidation. 

Recently, Furth et al.  (2003) have reviewed the potentials of utilizing such ITS data and outlined 
future research in this area. Nine agencies were selected by Furth et al. to demonstrate best 
practices in implementing ITS technologies.  Metro Transit was one of the selected agencies. 
Metro Transit’s system was implemented in 1999 and tested through 2002 under a project named 
Orion. The Orion system was upgraded recently to a fully functional archiving system that 
enables archiving Advanced Vehicle Location (AVL) data. In addition to the AVL, the archiving 
system records passenger, fare box, and lift activities.  Metro Transit’s current AVL system 
offers a unique opportunity for analysis and developing performance standards since it depends 
mainly on the radio system where bus AVL information is being sent every 60 seconds 
compared to other stop base systems.  Such information enables the conduction of microscopic 
analysis and better understanding of the externalities that affects bus service throughout the trip, 
accordingly, improvements in reliability can be recommended through the analysis of such 
information.   

The transit performance measures and running time models developed by other agencies 
mentioned above should be used as models by Metro Transit to maximize usage of available ITS 
data and to improve service reliability.  According to these studies, performance measures that 
can be derived from this data that will likely have the greatest impact on service reliability for 
Metro Transit passengers and operators are: decreasing running time and headway variation, 
increasing OTP, and evaluating route design and service timing.  These measures can assist 
Metro Transit to reduce wait time, which passengers value more than other aspects of transit 
trips, and to increase service reliability, which will attract additional choice transit riders and 
improve efficiency in overall operations. 
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Chapter 3:  Data and Research Methods 

Several transit routes in the Twin Cities have faced decline in ridership and reliability-related 
problems. An initial meeting was held between the research team and Metro Transit personnel in 
the  spring of 2006. The main agenda in this meeting was to identify a route of special interest to 
Metro Transit from a performance standpoint to be analyzed by the research team. Route 17 is 
one of the major routes identified by Metro Transit personnel as a route with reliability and 
schedule adherence issues that can be used as a prototype to develop a methodology for 
analyzing other routes facing similar problems. In this Chapter we discuss issues related to the 
data collected, the unit of analysis, and the research methodology used. 

Data  

Route 17 is a cross-town route serving two western suburbs, Hopkins and St. Louis Park, as well 
as the southern, downtown, and northeast sections of Minneapolis. It is important to note that 
Route 17 operates along one of the most highly congested corridors in the Twin Cities region 
(Hennepin Avenue and Lake Street), which makes it an interesting route for conducting travel 
time and reliability analysis. Since not all of the Metro Transit bus fleet is equipped with APCs, 
Metro Transit’s service and planning department agreed to direct the maximum possible number 
of APC equipped buses to serve Route 17 during the period between September 20, 2006 and 
December 1, 2006. During this period of time no major weather issues were present (i.e., snow 
storms) that might have an effect on travel time and schedule adherence.  

This data collection process lead to a sample of over 658,000 stop level observations. 
Unfortunately, utilizing the raw data obtained from the Metro Transit data archiving system 
directly in an analysis is not possible. Various problems were identified after carefully observing 
the data. For example, duplicate records exist in the data. The duplication is present when an 
unscheduled stop occurs right before or after a scheduled stop. When this occurs the system 
records both stops as the same regular scheduled stop and assigns the same arrival and departure 
time to both stops, however, the passenger activity variables (boardings, alightings, passenger 
load) and odometer readings for both records differ.  

After removing duplicate records, 650,938 stop level observations remained in the sample. Of 
these records, only 150,635 stop level observations (23%) were associated with APC equipped 
buses that served Route 17 during the study period. Only weekday observations and data 
obtained from APC equipped buses were used in this analysis. Table 2 shows a sample of the 
stop level data obtained from the Metro Transit data archiving system. The stop level data 
includes information related to when the bus arrived at a stop, when it left the stop, number of 
passengers on board, and several other variables. Since schedules are written to time points, 
schedule adherence is measured only at time points. Interpolation between time points is not 
present in the Metro transit data set. Appendix 1 includes a detailed description for each field in 
the stop level data. Appendix 2 includes a list of variables generated by the research team at the 
time point level of analysis and the data preparation and cleaning process used for this study.  
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Table 2:  Sample of AVL data 

Date Direction Driver Experience Vehicle Block Number Bus Stop 
9/20/2006 WEST BD 5 0518 347960 7 ST NE & CENTRAL AV NE 
9/20/2006 WEST BD 5 0518 347960 CENTRAL AV NE & HENNEPIN AV E 
9/20/2006 WEST BD 5 0518 347960 CENTRAL AV & 4 ST SE / UNIVERSITY AV 
9/20/2006 WEST BD 5 0518 347960 CENTRAL AV & 2 ST SE 
9/20/2006 WEST BD 5 0518 347960 2 AV S & 1 ST / 2 ST S 
9/20/2006 WEST BD 5 0518 347960 2 AV S & 2 ST S 
9/20/2006 WEST BD 5 0518 347960 2 AV S & WASHINGTON AV S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 3 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 4 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 5 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 6 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 7 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 8 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 8 ST / 9 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 9 ST / 10 ST S 
9/20/2006 WEST BD 5 0518 347960 NICOLLET MALL & 11 ST S 

 

The 150,635 stop level observations included in this analysis represent data obtained from 2,174 
trips during peak and off peak periods traveling in both east and westbound directions. 
Surprisingly, these trips represent 28 different trip patterns distributed all over the day. A trip 
pattern is identified as having the same first and last stop, running during the same period of 
time, in the same direction, and serving the same number of stops. Figure 2 shows the starting 
and ending stops of these different patterns.   
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Figure 2:  Route 17 trip patterns 

Due to the variance in the data caused by the large number of trip patterns and the differences 
among them this analysis is divided into two main sections, analysis at the route level for a 
sample of two specific trip patterns and analysis at the time point segment level. A time point 
segment is identified as the segment between two consecutive time points.  Figure 3 shows the 
differences between the various levels of analysis. 
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Figure 3:  Levels of analysis 

The data at the time point segment level of analysis were obtained from various patterns and 
combined based on the number of stops being served between each two time points. The source 
data were cleaned and then aggregated to the trip pattern level by summarizing over all of the 
days in the study period. Summarizing the data under this unit of analysis enabled the generation 
of a reliable sample (N = 21,257) to be used in a statistical analysis, while controlling for the 
variations introduced by the differences in patterns. It is important to note that the time point 
sections between the 36th & Alabama stop and the Lake St. & France Ave. stop (served by 
Route 17F buses) were excluded from the time point section analysis due to sample size issues 
associated with trips serving this section. Accordingly, 34 different time point segments are used 
in the analysis as shown in Figure 4.  

Start time End time point Time point Time point 

Route 

Time point segment Time point segment Time point segment 
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Figure 4:  Route 17 study sections 

Since Route 17 has 28 different patterns, conducting a generalized route level analysis without 
controlling for the differences among these patterns would impose a measurement error.  It is 
also important to note that these patterns should be treated as 49 different patterns based on the 
peak and off-peak classification. Accordingly, analysis at the route level was directed mainly 
towards specific patterns during the course of the day. The analysis at the route level will enable 
the generation of different performance measures highlighting major problems related to 
scheduling and performance. 

After cleaning and compiling the Route 17 data for analysis at both the time point segment and 
trip pattern levels, the research team also generated a series of variables showing variation in 
passenger activity, travel time, and other characteristics at the time point segment and trip pattern 
levels. This calculation was made possible because of the long period of time for which the 
Route 17 data was collected. The headway deviation, travel time deviation and coefficient of 
variation of running time (standard deviation divided by the mean) are used as measures of 
reliability. The coefficient of variation was calculated based on the time of day along each trip-
segment. For example, data obtained from the trip departing at 8:00 from stop A along segment 
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X in day one is combined with data obtained from the same location and the same time from day 
two and so on. To ensure robustness of the generated models several sample sizes were tested 
related to how many days should be included to derive the coefficient of variation. A sample size 
threshold of 30-trip observations was found to be the point when the model retains its robustness.  
   

Research methodology 
 
The objective of this research is to analyze and understand the performance of Route 17 and 
generate a methodology that can be replicated by Metro Transit personnel when analyzing routes 
with similar problems. Two units of analysis are being used, as discussed earlier.  The first 
section of the analysis is conducted at the trip pattern level of analysis to demonstrate a 
methodology for analyzing running time and scheduling issues. The analysis is limited to 
specific patterns due to the complexity of the route. The second unit of analysis, which is used in 
the detailed statistical analysis, is the time point-segment (e.g., passenger activity per trip per 
segment).  A time point segment is identified as the section of a trip between two consecutive 
time points. The specifications of the regression models are as follows: 

 
Running time = f {AM, PM, West-bound, Number of physical stops, Number of actual 

stops, Boardings, Boardings squared, Alightings, Alightings squared,  Lift 
usage, Driver’s experience, Schedule delay at start, Headway delay at start, 
Passenger load, Segment location along the pattern, Segment length}                          
(1) 

 
Running time deviation = f {AM, PM, West-bound, Number of physical stops, Number 

of actual stops, Boardings, Alightings, Lift usage, Driver’s experience, Schedule 
delay at start, Headway delay at start, Passenger load, Segment location along 
the pattern, Segment length}       (2) 

 
Headway deviation = f {AM, PM, West-bound, Number of physical stops, Number of 

actual stops, Boardings, Alightings, Lift usage, Driver’s experience, Schedule 
delay at start, Headway delay at start, Passenger load, Segment location along 
the pattern, Segment length}                                                                                                            
(3) 

 
Coefficient of variation (CV) of running time = f {AM, PM, West-bound, Number of 

physical stops, CV number of actual stops, CV boardings, CV alightings, CV lift 
usage, CV driver’s experience, CV schedule delay at start, CV headway delay at 
start,  CV Passenger load, segment location along the pattern, Segment length} 
                                 (4) 

 
A detailed description of each variable used in the models is presented in Table 3. The first 
model is used to assess the quality of the data being used in the research and compare it to 
previous research being developed in the transit industry. The covariates in the regressions 
represent the most theoretically relevant variables included in empirical studies of the 
determinants of running time and service reliability.  Running time is expected to increase with 
the number of possible stops in a segment, number of actual stops, lift usage and passenger 
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activity, and decrease for morning and evening peak trips relative to off peak trips. The square 
terms that are associated with the passenger activity variables are expected to have a negative 
effect on running time. Headway deviation and schedule delay measured at the beginning of the 
time point segment could be either positively or negatively related to running time. If delay is 
chronic and persistent it is likely to have a positive effect on running time. Alternatively, if delay 
is circumstantial and operators utilize recovery opportunities, delay could be inversely related to 
running time.  

 
For the travel time deviation and schedule deviation models, it is hypothesized that the same 
relationship exists with the independent variables, yet headway delay at the beginning is 
expected to be more crucial in these model. These models can also be used to assess to what 
extent schedules are well designed to accommodate the various operating conditions along the 
route. If several variables are statistically significant with a high magnitude then schedules need 
to be revised. If the magnitude is small, yet statistical significance still exists, then such a route 
has an efficient schedule and monitoring in the future is recommended. Likewise, it is 
hypothesized that variations in running time will be similarly related to variations in the same set 
of variables that were specified in the running time model. Driver experience variables are added 
to account for the variability in the performance of drivers. It is expected that drivers’ experience 
would have a negative effect on running time and reliability measures. A dummy variable for the 
direction is included in the models to control for directional variations (going to or from 
downtown). Finally two dummy variables representing the morning peak and evening peak are 
included to measure the differences between the operating environment among these time 
periods relative the off-peak time period.  
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Table 3:  Variable description 

Variable Description 
Running time The travel time between two consecutive time points 

Running time deviation 
Actual running time divided by the scheduled running 
time 

Headway deviation end 
Actual headway measured at the end of the segment 
divided by scheduled headway at the end of the segment 

CV running time 
The coefficient of variation of running time between two 
consecutive time points 

Distance 
The distance between two consecutive time points 
composing the segment of analysis 

Number of scheduled stops 
The number of scheduled stops between two consecutive 
time points 

West-bound 
A dummy variable that equals one if the bus direction is 
West-bound 

Order of first stop 
The order of the first stop in the segment relative to the 
pattern that this stop is affiliated to 

AM peak 
A dummy variable that equals one if the observed trip 
started during the morning peak period 

PM peak 
A dummy variable that equals one if the observed trip 
started during the evening peak period 

Number of actual stops 
The number of actual stops being made by the bus along 
the studied segment 

Boardings 
The number of passengers boarding the bus along the 
studied segment 

Boardings square 
The number of passengers boarding the bus along the 
studied segment squared 

Alightings 
The number of passengers alighting the bus along the 
studied segment 

Alightings square 
The number of passengers alighting the bus along the 
studied segment squared 

Lift use 
The number of times the lift was used along the studied 
segment 

Average Passenger load 
The average number of passengers onboard the bus during 
the trip 

Delay at first stop 
The delay relative to the schedule measured at the first 
time point along the studied segment 

Headway delay at first stop 
The headway delay relative to the schedule measured at 
the first time point along the studied segment 

Driver experience 
The experience of the driver who is operating the bus in 
years  

CV Number of actual stops 
The coefficient of variation of the number of actual stops 
being made by the bus along the studied segment 

CV Boardings 
The coefficient of variation of the number of passengers 
alighting the bus along the studied segment 

CV Alightings 
The coefficient of variation of the number of passengers 
alighting the bus along the studied segment 

CV Lift use 
The coefficient of variation of the number of times the lift 
was used along the studied segment 

CV passenger load The coefficient of variation of the average number of 
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passengers onboard the bus during the trip 

CV Delay at first stop 

The coefficient of variation of the delay relative to the 
schedule measured at the first time point along the studied 
segment 

CV Headway delay at first stop 

The coefficient of variation of the headway delay relative 
to the schedule measured at the first time point along the 
studied segment 

CV Driver experience 
The coefficient of variation of the experience of the driver 
who is operating the bus in years 
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Chapter 4:  Analysis 

Basic Running Time Analysis 

Following a methodology developed by Strathman et al. (2002), a route level analysis can be 
conducted to measure the effectiveness of the schedule in accommodating recovery time. 
Scheduled running time along any transit route consists of two main components. The first is 
actual running time and the second is the layover/ recovery time. The scheduled running time is 
usually set to be equal to the mean or median value of the running time, while the recovery time 
is set as the difference between the selected benchmark (mean or median running time) and the 
running time associated to the 95th percentile in the frequency distribution of running time. Using 
trip level data an analysis can be conducted to compare the actual running time for the entire 
route to the scheduled running time to identify current scheduling problems. Figure 5 shows a 
sample of two patterns being selected from Route 17 for the detailed route analysis.  

 

Figure 5:  Sample Trip Patterns 

The first pattern starts from downtown Minneapolis going west to the suburbs during the PM 
peak, while the second pattern is coming from the suburbs during the morning peak going east to 
end in downtown Minneapolis. The selected AM peak (East-bound) pattern consists of 75 
scheduled stops. On average the bus serving this pattern only stopped at 38 stops during the 
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morning peaks, serving an average of 57 passengers per trip. These numbers indicate that each 
time the bus serving this pattern stops during the AM peak (East-bound) it serves approximately 
1.5 passengers. On the other hand, the selected PM peak (West-bound) pattern consists of 77 
scheduled stops. On average the bus serving this pattern during the evening peak period made 35 
actual stops, serving an average of 45 passengers. These numbers indicate that each time the bus 
serving this pattern stops during the PM peak (West-bound) it serves around 1.2 passengers. 

Figures 6 and 7 show the running time distributions for the selected Route 17 trip patterns during 
the AM peak (East-bound) and the PM peak (West-bound). For the 121 AM (East-bound) trips 
running time ranged from 42 to 66 minutes with a median value of 51.7 minutes. The median 
observed running time is 3.6 minutes (7%) longer than the mean scheduled running time of 48 
minutes. This 7% difference in the morning peak requires careful revision in the scheduled 
running time. In addition, the amount of recovery/layover time incorporated into the schedule for 
this trip pattern requires revision.  The observed 95th percentile running time for the selected AM 
peak (East-bound) trip pattern was 60 minutes, meaning that this pattern requires an average of 
51.7 minutes of travel time and at least 9 minutes of layover and recovery time. Currently the 
average actual layover time for this AM peak (East-bound) pattern is 2.5 minutes. A total of 6.5 
minutes of difference exists between the actual and recommended layovers. This indicates that at 
the end of this route drivers do not have enough recovery time and schedules need to be revised. 
Maintaining a schedule with less recovery and layover time than what is recommended means 
that the bus might be starting new trips already delayed.  

 

 

Figure 6:  Route 17 run time distribution sample: AM East-bound. 

42 – 66 Min TT 
51.7 Min median TT 
48 Min. Scheduled TT 
60 Min. 95 percentile 
9 Min recovery time 
2.5 Min actual layover 
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Figure 7:  Route 17 run time distribution sample: PM West-bound. 

The selected PM peak (West-bound) pattern observed in Figure 7 included 66 trips with running 
times ranging from 49 to 83 minutes with a median value of 57 minutes. Similar to the first 
selected pattern, the median observed running time for this pattern is 3.8 minutes (7%) longer 
than the mean scheduled running time of 53 minutes. The observed 95th percentile running time 
is 69 minutes, meaning that this trip pattern (PM peak West-bound) requires an average of 57 
minutes of travel time and at least 13 minutes of layover and recovery time. Currently there is no 
layover time for this PM peak (West-bound) pattern. Comparing the AM (East-bound) to the PM 
(West-bound) situation, more adjustments are needed for the selected PM peak (West-bound) 
trip schedules.  

Statistical analysis 

The second analysis that the research team conducted using the Route 17 data is a detailed 
statistical analysis of the time point segment data.  Table 4 includes a list of summary statistics of 
all variables used in this analysis. Actual running times range between 21 to 8869 seconds. This 
large range is due to the variance in the lengths of time point sections and several other factors 
that will appear in the regression model. Running time deviation, which is the actual running 
time divided by the scheduled running time ranged from 0.18 to 18.48 with a mean value of 1.07. 
This means that on average actual running time is around 7% longer than the scheduled running 
time. On the other hand, headway deviation, the actual headway at the last stop divided by the 
scheduled headway at the last stop, ranged from 0.01 to 2.24 with a mean value of 1.00 meaning 
that on average there is no deviation from headway along the route. Combining the running time 
deviation and the headway deviation together we notice that a scheduling problem exists along 
the studied route. On average buses are delayed yet the headway is maintained as scheduled. The 
variation from the mean in running time ranged between 8% and 57%.  

49 – 83 Min TT 
57 Min. median TT 
53 Min. scheduled TT 
69 Min. 95 percentile 
13 Min. recovery time 
 Zero Min. actual 
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Table 4:  Descriptive statistics 

  Units Minimum Maximum Mean Std. Deviation 
Running Time Seconds 21.00 8869.00 312.90 178.83 
Running Time Deviation Percentage 0.18 18.48 1.07 0.42 
Headway Deviation at last stop Percentage 0.01 2.24 1.00 0.11 
CV Running Time Percentage 0.08 0.57 0.18 0.07 
Distance Km 0.27 3.90 1.50 0.96 
Number of scheduled stops Stops 1.00 20.00 6.47 4.60 
West-bound Dummy 0.00 1.00 0.49 0.50 
Order of first stop Dummy 1.00 99.00 40.09 24.21 
AM peak Dummy 0.00 1.00 0.15 0.35 
PM peak Dummy 0.00 1.00 0.23 0.42 
Number of actual stops Number 0.00 17.00 2.18 1.98 
Boardings Passengers 0.00 62.00 3.93 5.45 
Boardings square  0.00 3844.00 45.10 142.66 
Alightings Passengers 0.00 51.00 3.82 5.14 
Alightings square  0.00 2601.00 40.99 121.07 
Lift use Count 0.00 3.00 0.04 0.21 
Average passenger load Passengers 0.05 76.00 15.03 10.98 
Delay at first stop Seconds -1671.00 8101.00 -124.63 160.83 
Headway delay at first stop Seconds -1275.00 8215.00 -2.96 200.42 
Driver experience Seconds 0.00 30.00 7.02 7.17 
CV number of actual stops Percentage 0.20 4.00 0.65 0.51 
CV boardings Percentage 0.32 2.82 0.99 0.50 
CV alightings Percentage 0.30 3.38 0.98 0.56 
CV lift use Percentage 0.00 5.92 2.63 2.36 
CV average passenger load Percentage 0.25 0.91 0.48 0.15 
CV delay at first stop Percentage -9.29 -0.41 -1.03 0.92 
CV headway delay at first stop Percentage -151.22 176.98 0.80 33.35 
CV driver experience Percentage 0.44 2.08 0.86 0.41 

 

Table 5 includes the output of the regression models developed for the study.  

Note that t-statistics are indicated between parenthesis below each coefficient and statistically 
significant variables are in bold. 
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Table 5:  Regression model results 

 Variable 
Running 

Time 
Running Time 

deviation 
Headway 
deviation 

CV Running 
Time 

(Constant) 102.601 
(33.59) 

1.072 
(102.91) 

0.996 
(454.82) 

0.059 
(1.61) 

Distance 68.507 
(31.56) 

-0.066 
(-8.62) 

0.003 
(2.06) 

-0.033 
(2.27) 

Number of scheduled stops 5.019 
(10.61) 

0.009 
(5.49) 

-0.001 
(-4.25) 

0.002 
(0.52) 

West-bound -0.281 
(-0.16) 

0.025 
(4.25) 

0.000 
(0.36) 

0.044 
(2.80) 

Order of first stop 0.173 
(4.45) 

0.001 
(6.71) 

0.000 
(3.00) 

0.001 
(2.79) 

AM peak -17.267 
(-7.27) 

-0.006 
(-0.67) 

0.001 
(0.56) 

0.155 
(3.77) 

PM peak 37.73 
(18.46) 

0.055 
(7.68) 

-0.011 
(-7.28) 

0.022 
(1.56) 

Number of actual stops 11.269 
(17.02) 

0.010 
(4.29) 

0.001 
(2.46) -- 

Boardings 13.485 
(40.23) 

0.004 
(6.82) 

0.001 
(5.80) -- 

Boardings square -0.142 
(-12.52) -- -- -- 

Alightings 6.599 
(16.64) 

0.002 
(2.23) 

0.000 
(2.27) -- 

Alightings square -0.043 
(-2.90) -- -- -- 

Lift use 67.252 
(17.32) 

0.241 
(17.62) 

0.039 
(13.50) -- 

Average passenger load -0.34 
(-4.31) 

0.000 
(-0.99) 

0.000 
(3.71) -- 

Delay at first stop 0.21 
(31.15) 

0.001 
(21.40) 

0.000 
(3.38) -- 

Headway delay at first stop 0.028 
(5.27) 

0.000 
(1.35) 

0.000 
(-96.68) -- 

Driver experience -0.340 
(-3.05) 

-0.001 
(-1.57) 

0.000 
(-2.65) -- 

CV number of actual stops -- -- -- 0.051 
(2.97) 

CV boardings -- -- -- -0.020 
(-1.18) 

CV alightings -- -- -- 0.026 
(1.47) 

CV lift use -- -- -- 0.003 
(0.97) 

CV average passenger load -- -- -- 0.114 
(1.86) 

CV delay at first stop -- -- -- -0.034 
(-5.02) 

CV headway delay at first stop -- -- -- 0.000 
(-0.29) 

CV driver experience -- -- -- -0.056 
(-2.43) 

R2 0.59 0.07 0.44 0.52 
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N 21,275 21,275 21,275 97 
* t-statistics reported in parenthesis  ** Bold indicates statistical significance 
 

 
The running time model has an R-square of 0.59 with almost all variables having a statistically 
significant effect on running time except for the direction variable. In addition, all variables in 
the model follow the transit operation theory in terms of direction and statistical significance. For 
example, the distance measured between two consecutive time points is found to be statistically 
significant with a positive effect on running time. Running time increases by 68 seconds for 
every kilometer a bus must travel between time points. This can be translated as showing that 
buses travel at a speed of 32 miles/hour when all of the other variables in the equation are held at 
their mean values. For each scheduled stop, 5 seconds is added to travel time. The 5 seconds are 
added no matter if a stop is made or not. On average, 6 scheduled stops exist along each time 
point segment, whereas only 3 stops are actually made on average. This means that at each time 
point segment an average of 15 seconds are spent at stops where no passenger activity is 
occurring.  This represents approximately 4% of the average travel time along the studied time 
point segments. The order of the starting time point in the segment along its pattern adds 0.17 
seconds to the running time. For example, if we have a pattern with 80 scheduled bus stops, the 
running time along the first two time points should be faster by 13 seconds compared to the 
running time along the time point segment that starts with stop number 77 in the trip sequence, 
when keeping all variables at their mean values. Morning peak service is found to be faster than 
off-peak by 17 seconds. On the other hand, evening peak service is slower than off-peak by 37 
seconds. This indicates a difference of 64 seconds in running time between the morning peak and 
the evening peak.  
 
For each actual stop being made along a time point segment 11 seconds is added to the running 
time. Each passenger boarding the bus adds 13 seconds to the running time while each alighting 
passengers adds 6.5 seconds. These three numbers are slightly higher than the regular numbers 
reported in previous research. This is due to the absence of a dwell time variable in the Metro 
Transit data. Accordingly, the time associated to acceleration, deceleration, door opening and 
door closing is included in the actual stops, boardings and alightings variables. The squared 
terms for boardings and alightings indicate that the time associated with passenger boarding and 
alighting decreases with each additional passenger.  For example, the first passenger boarding 
the bus at a stop takes 13 seconds to board, while the second passenger boarding the bus will 
take slightly less time (because they have gotten their fare ready while the first passenger was 
boarding, etc.). Using the lift during a trip adds 67 seconds, while keeping all other variables at 
their mean values.  
 
The average passenger load on the bus decreases the travel time by 0.34 seconds. If the bus is 
delayed at the first stop running time is expected to increase by 0.21 seconds for each second of 
delay, while the headway delay at the first stop adds 0.028 seconds of running time for each 
second of delay. Finally, drivers’ experience has a statistical significant negative effect on 
running time with a value of 0.34 for each year of experience while keeping all other variables at 
their mean values. 
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The running time deviation model had an R square of 0.07. Due to the large sample size and the 
variance in running times and lengths of the different time point segments this model is 
acceptable to be reported. Also, the low R square value is not an issue of concern since we are 
mainly interested in understanding the causes of deviation from running time along the studied 
route. In the remaining section of the interpretation of the models we will mainly concentrate on 
interpreting the statistically significant variables that have higher magnitude and/or policy 
relevance. For each scheduled stop running time is expected to deviate from schedule by 0.9%. 
On average there are 6 scheduled stops per time point segment meaning that a deviation of 5.4% 
is expected, which can be translated to 16 seconds of delay per trip per segment. The distance 
traveled along the studied segment is found to have a statistically significant negative effect on 
running time deviation. For each kilometer traveled along the segment running time deviation is 
expected to decline by 6%. Running time deviation during the pm peak is found to be 5% more 
than the off-peak period. This indicates that pm peak running time is usually behind schedule. 
For each actual stop being made along the studied segment running time deviation is expected to 
increase by 1%. Each boarding adds 0.4% to running time deviation, while each alighting adds 
0.2%. Each lift activity along the studied segment adds 24% to running time variation. Finally 
for each second of delay at the first stop in the time point segment, running time deviation is 
expected to increase by 0.1%. This means that if a time point segment has a scheduled running 
time of 310 seconds and the bus arrived 20 seconds delayed at the first stop, running time is 
expected to deviate from schedule by 30 seconds at the end of the segment adding 10 more 
seconds of delay compared to the beginning of the segment.  
 
The headway deviation model had an R-square of 0.44. The majority of the studied variables 
were found to have a statistically significant effect on headway deviation. In this model, lift 
activity has by far the strongest effect, increasing headway deviation by 3%. This model in 
general indicates that headway is well sustained along the studied route, which indicates 
consistency in the amount of delay along the consecutive trips. The buses are delayed in terms of 
running time yet they are maintaining the scheduled headways. 
 
Finally, the coefficient of variation of running time model has an R-square of 0.52. Distance 
traveled along each time point segment is found to have a statistically significant negative effect 
on running time variation. Accordingly, designing routes with longer distances between time 
points is recommended to decrease the variability in running time. The variability in running 
time is larger for buses traveling westbound (going away from downtown) relative to those 
traveling eastbound (going towards downtown). Morning peak buses experience higher levels of 
variability in running time compared to buses running during the off peak time period. A 1% 
increase in the variability of the number of actual stops being made leads to a 5% increase in the 
variability of the running time between time points, while keeping all other variables at their 
mean values. The variance in the passenger load adds 11% in the variability of the running time. 
On the other hand, the variance in the delay at the beginning of the segment is found to have a 
statistically significant negative effect on running time variation. Also a 1% variation in drivers’ 
experience leads to 5% decline in the running time coefficient of variation. 
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Chapter 5:  Conclusions and Recommendations 

The analysis introduced in this paper highlights several issues related to Route 17 in specific and 
to transit operations in general. In this research paper we discussed methods for analyzing a 
transit route at two levels of analysis, the trip-pattern level and time point segment levels. 
Statistical analysis was conducted mainly at the time point segment level, while calculations 
based on observed running times were derived at the trip-pattern level. Currently, Route 17 is 
served by 28 different patterns of bus service, which makes service evaluation at the route or trip 
pattern level difficult. As a result, it is recommended that the number of patterns serving this 
route should be reduced. Our examination of two select trip patterns shows that in additional to 
changes in the number of patterns serving Route 17, scheduling changes may be necessary at the 
route level.  The scheduled running times for both the AM peak (East-bound) and PM peak 
(West-bound) trip patterns examined in this paper were shown to be 7% shorter than the median 
observed running times and had insufficient layover/recovery time scheduled after their last 
stops.  It is recommended that recovery time be increased.  

It was also clear that only 50% of the scheduled stops were utilized in both analyses. A revision 
to the number of scheduled stops and a reevaluation of spacing between stops can lead to 
substantial savings in running time and running time deviations. Each scheduled stop adds 0.9% 
to the schedule deviation, and when translated to seconds per trip segment this equals 
approximately 3 seconds of additional running time. Bus stop consolidation is one of the policies 
that are recommended since not all stops are utilized, as was made clear from the route and the 
time point segment analyses. Stop consolidation is one of the policies that when done carefully 
has proven to have a substantial effect on running time and running time variation with minor 
effects on demand. 

The running time model generated for this paper using time point segment data adds confidence 
and reliability to the data being used. The running time model followed the theory discussed 
earlier in the literature review section. For example, running time is longer at the end of the 
pattern even though the distance traveled might be the same. Also, delay at the beginning of the 
segment increases running time and the amount of delay at the end of the segment, which was 
reflected in the running time deviation model.  

In addition to the scheduling problems at the route level addressed above, Route 17 is facing 
several schedule problems at the time point segment level that require revision, especially during 
the pm peak. According to this analysis, the running times assigned to segments along this route 
are not sufficient and revisions to the schedules for this route are a must. The models presented 
in this paper show that running time, running time deviation and headway deviation are affected 
by almost all the same variables. Accordingly, schedulers should consider all the variables being 
introduced in this study when writing schedules, which will be a difficult task.   

In addition to adjusting running and recovery times, one method of addressing some schedule 
problems may be assigning more experienced bus drivers to Route 17 shifts. Drivers experience 
seems to have an effect on running time, headway deviation and running time variation. 
Although this is not a strategy that is possible through the current route assignment policies at 
Metro Transit, it is recommended that experienced drivers be assigned to Route 17 in the future.   
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Finally, in order to conduct this analysis Metro Transit agreed on directing APC equipped buses 
to serve this route. It is recommended that equipping the entire or a high percentage of the Metro 
Transit bus fleet with APC is to be considered since generating similar research without having 
sufficient APC information is not possible. This research documented a first hand-experience of 
dealing with archived ITS data at Metro Transit. Although some problems did exist in the data 
the study shows a great potential for the future usage of such data in generating reliable analyses. 
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Appendix A:  Field Definitions Raw Data 
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Date - Date of Event 

Route Number - The bus route 

Direction - This is the Trip direction, not the actual necessarily the actual direction the bus is 
facing. 

Driver Experience - this is the driver's experience in years, rounded up to the next year for 
partial years. 

Vehicle - This is the vehicle number doing the route.  This field may occasionally be 
unpopulated. 

Block Number - This is the block ID number given by SMARTCoM 

Trip Number - This is the sequential trip number within a block 

Bus Stop - This is the name of the bus stop or time point. 

Block Stop Order - This is a sequential number showing which stop number within a trip. 

 Departure Time - The time the bus departed the stop.  Departure Time is only recorded if 
there was a passenger count.  This is different from Actual Departure Time, which records 
departure from a time Point. 

Latitude - This is the SMARTCoM Latitude measurement.  To get actual latitude, divide by 
10,000,000. 

Longitude - This is the SMARTCoM Longitude measurement.  To get actual Longitude, divide 
by 10,000,000. 

Odometer - This is the distance the bus has traveled since start up in hundredths of a mile.  A 
bus odometer will reset if the bus is turned off for 40 or more minutes. 

Time Table - This is the schedule version in use.  Only important if the data spans over a 
schedule change. 

Pattern - This is the ID for the particular route this trip is taking.  There may be many patterns 
for any given route. 

Boarding - The number of passengers that boarded at this stop.   

Alighting - The number of passengers that alighted at this stop. 

Passenger Load - The current number of passengers on the bus. 
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Scheduled Time - The time, in seconds after midnight, that the bus was supposed to depart.  
Only available at time points 

Adherence - The adherence, in seconds, of the bus.  A negative number is late, and a positive 
number is early.  Only available at time points. 

Actual Arrival Time -  The time, in seconds after midnight, that the bus arrived at the time 
point.  Only available at time points. 

Actual Departure Time - The time, in seconds after midnight, that the bus Departed the time 
point.  Only available at time points. 

Dwell - The time, in seconds, that the bus stayed at the time point.  Only available at time points. 

Lift Cycled? - Whether the lift was cycled at the stop.  A null field indicates false, a number 
indicates true. 

Layover? - Whether this stop is a layover or not.  This does not indicate Terminals, only 
layovers where a bus turns around and goes the other direction on the same route. 

Bus Type - The bus type.  List manufacturer, model, and whether bus is Coach, Low Floor, or 
Articulated. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix B:  Time Segment Travel Time Methodology 



 B-1

In GIS… 

 
1. Created a Route 17 shapefile in ArcGIS using TLG roads and broke this line into sections 

based on the locations of timepoints (did this separately for east and westbound 
timepoints because their locations differ). 
 

2. Gave each section a number ID and begin stop and end stop fields containing the names 
of the timepoints at the beginning and end of the section. 

 
3. Used Hawth’s tools to calculate the length of each section (network distance from each 

timepoint to the next timepoint). 
 

4. Used Hawth’s tools to snap the bus stops (excluding timepoints) shapefile to the route 17 
shapefile and spatially joined the stops to the route sections to get a count of the number 
of stops between each set of timepoints (again, did this separately for east and westbound 
sections and stops) 

 
 

In Access… 
 
 

5. Import all route 17 data, save as “route17_ORIGINAL” 
 

6. Created a unique ID for each bus run by concatenating the pattern, direction, run number, 
trip number, and date fields for each record 

 
7. Replace records with duplicate UniqueID, Bus Stop, and Scheduled Time values with 

single record with max odometer value, sum of boarding and alighting values, max of 
passenger load if boarding > alighting or min of passenger load if alighting>boarding 

 
8. Created a crosstab of bus patterns and stops, showing the stop order number of each stop 

for each pattern.   
 
Example: 
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9. Queried the crosstab for patterns that serve all of the stops along a section.  (For example, 
section 1 starts at the Lake Street stop, ends at the Cambridge stop, and has 6 stops in 
between timepoints, so I queried the crosstab for all patterns where the stop order number 
for the Cambridge stop equals the stop order number for the Lake Street stop plus 7.) 
 

10. Created a series of queries that select the data for each stop along the section (for patterns 
that serve every stop along that section).  These queries also calculate a dummy variable 
for whether or not the bus actually stopped at the station based on whether or not the 
departure time field is null.  

 
11. Joined these queries based on the unique ID I created so that I have a table with a row for 

each bus run with information about each of the stops it did/could make along the section. 
 

12. Created a final data table for each section that includes the following fields: 
 

UniqueID: The unique ID created to identify each bus run 
 
Date: 
 
Direction:  (same for all records in a table) 
 
SectionID: The ID for the timepoint to timepoint section (same for all records in a 
table) 
 
Sec_Length: Distance from the first timepoint to the second timepoint (same for 
all records in a table) 
 
Stops_Betw: # of stops between the first and second timepoint (same for all 
records in a table, doesn’t include either of the timepoints) 
 
ActualStop:  The # of stops the bus actually made between the first and second 
timepoint (based on whether or not there was a departure time) 
 
TotalBoarding:  The total number of boardings that occurred between the bus 
leaving the first timepoint and leaving the second timepoint 
 
TotalAlighting:  The total number of alightings that occurred between the bus 
leaving the first timepoint and leaving the second timepoint 
 
DriverExpe: This is the driver's experience in years, rounded up to the next year 
for partial years. 
 
Bus Type: The bus type.  List manufacturer, model, and whether bus is Coach, 
Low Floor, or Articulated. 
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BeginDelay:  The schedule adherence, in seconds, of the bus at the first 
timepoint.  A negative number is late, and a positive number is early.   
 
AvgLoad:  The average passenger load of the bus between the first regular stop 
and second timepoint.  Buses with an average passenger load of zero are removed 
from the table. 
 
TravelTime:  The travel time, in seconds, between leaving the first timepoint and 
leaving the second timepoint.  Records with negative travel times are removed 
from the table. 
 
FirstStopOrder:  The order of the first timepoint in the pattern’s stop sequence. 
 
AMPeak:  A dummy variable equal to 1 if the bus departed either timepoint 
between 6:00-9:00AM, MetroTransit’s morning peak period  
 
PMPeak:  A dummy variable equal to 1 if the bus departed either timepoint 
between 3:00-6:30 PM, MetroTransit’s evening peak period. 
 
OffPeak:  A dummy variable equal to 1 if the bus did not depart either timepoint 

during the AM or PM peak period.  

SchedStart: Scheduled departure time from the first timepoint 

ActualStart:  Actual departure time from the first timepoint 

SchedEnd:  Scheduled departure time from the second timepoint 

ActualEnd:  Actual departure time from the second timepoint 

Scheduled Headway first:  Scheduled headway measured at the beginning time 
point. 

Scheduled Headway end:  Scheduled headway measured at the ending time 
point. 
 
Actual Headway first:  Actual headway measured at the beginning time point. 
 
Actual Headway end:  Actual headway measured at the ending time point. 

 
 
Note that headways should be equal to zero when measured for the first trip in the day so the first 
trip in the day should be deleted from any analysis being done later.  
 
 
 
 



 

Appendix C:  Visualization of archived ITS data 
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