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Executive Summary 

 

An enduring characteristic of life on the surface of Planet Earth is that we often 

find ourselves separated from where we want or need to be. A requirement for an 

economically and socially healthy urban region is thus an ability to move people and 

goods in a timely manner. In much of the developed world this is achieved by the public 

provision of the infrastructure on which travel occurs, and an ongoing subject of 

concern, and of occasional contentious debate, is how to accomplish this in a efficient 

yet effective manner. In particular, one oft-stated claim is that "we can't build our way 

out congestion", which is usually taken to mean that in a future world where most travel 

is by personal auto, the amount of additional highway capacity needed to support this 

travel at publicly acceptable speeds is so large as to be prohibitive. Yet at the same time 

there is often a reluctance to aggressively deploy and use alternative transportation 

technologies and this, coupled with an expectation on the part of the public that 

transportation agencies are duty bound to provide whatever additional infrastructure is 

needed to support convenient, unrestricted travel, may mean that "building our way out 

of congestion" becomes the default transportation policy. If this expectation is 

unrealistic, it would be useful to find that out sooner, rather than later. 

The objective of this project was to determine, for the Twin Cities, what a 

plausible "building our way out of congestion" policy would look like. More 

specifically, we sought to find a capacity expansion policy for the Twin Cities' freeway 

system that satisfied three conditions. First, the expansion should support more or less 



 

 

unrestricted travel during the peak periods. This requirement was defined quantitatively 

to mean that all freeway sections should operate at level of service C or better, so that 

traffic speeds would approximately equal free-flow speeds. Second, the policy should 

account for travelers' responses to the new facilities. This was accomplished by requiring 

that level of service C be achieved for the flows resulting from an equilibrium 

assignment of travel demand. Finally, the policy should in some sense be minimal, in 

that no lesser policy satisfied the first two conditions. One can always propose clearly 

unrealistic policies (such as 10 lanes in all directions, on all freeway sections) that could 

satisfy future travel demand, but only if the minimal acceptable policies are unattainable 

can it be said that we cannot build our way out of congestion. This was accomplished by 

seeking a set of capacity expansions that minimized a measure of the land needed for the 

new facilities, subject to satisfaction of the first two requirements. 

The expansion policy satisfying these three conditions can be found by solving a 

variant of a non-linear optimization problem called a continuous network design 

problem. Such problems tend to be notoriously difficult to solve for road networks of 

realistic size, but by exploiting the structure of this variant it was possible to find a 

straightforward solution algorithm. After verifying, for a number of example problems, 

that this algorithm produced solutions similar to those produced by the nonlinear 

optimization code MINOS, we applied the algorithm to the road network model used by 

the Metropolitan Council for transportation planning. With around 1,100 zones, 7,400 

nodes, and 20,000 links, this was much larger than could be solved using MINOS (or 

any other available optimization code). Taking as input the predicted morning and 



 

 

afternoon peak period origin-destination matrices prepared by the Metropolitan Council 

for the year 2020, our algorithm was used to solve for a set of expansions to the Twin 

Cities freeway network that, at equilibrium, guaranteed approximately free-flow speeds 

on all freeway sections. We found that this would require approximately 1,150 lane-

miles of new capacity, representing a 70% expansion of the existing freeway system. 
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CHAPTER ONE 

INTRODUCTION 

 

What would it take to build our way out of congestion in the Twin Cities? The 

answer to this question has two components: first a procedure must be selected to solve a 

large-scale Network Design Problem (NDP), and second this procedure must be 

implemented to solve the Twin Cities NDP, producing a minimal set of highway 

capacity expansions that accommodate future travel demand and guarantee mobility. The 

successful implementation of a procedure to solve such a large-scale (though realistically 

sized) example is shown in this project, which demonstrates that it is possible to solve 

much bigger problems than have previously appeared in the NDP literature. 

Additionally, the implementation of this procedure produces a solution to the Twin 

Cities NDP, which contributes to the discussions concerning the extent to which new 

highway construction can accommodate the expected growth in travel demand over the 

next twenty years. 

The impetus behind this project is the debate concerning how to deal with 

congestion. Many metropolitan areas of the US are suffering varying degrees of traffic 

congestion, and few people need convincing that it is one of the top concerns in the Twin 

Cities, which was recently ranked as the fifteenth most congested city in the US (Texas 

Transportation Institute 2001). A poll of Twin Cities residents (Metro State University 

2000) puts traffic congestion as the chief metro problem and reviews of the local media 

also highlight its importance in the local psyche. Recent headlines from the Twin Cities' 
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Star Tribune newspaper include: 'There's no question: We're big on congestion' 

(5/8/2001), 'Finding a way out of our traffic jam' (2/11/2001), 'Traffic congestion mounts 

in Twin Cities' (2/11/2001). 

  Traffic congestion in the Twin Cities is expected to worsen as forecasted travel 

demand grows with projected increases in population, housing and jobs. According to 

Metropolitan Council forecasts, the Twin Cities region is expected to gain approximately 

616,000 people, 319,000 households and 312,000 jobs between the years 2000 and 2025. 

Additionally, the amount of vehicle miles traveled is expected to increase faster than the 

population--38% compared to 25% (MetCouncil 2000).  

Numerous solutions have been proposed to reduce urban highway congestion, 

and remedies can be separated into supply- and demand-side strategies. Supply-side 

measures are aimed at increasing capacity of the system, and encompass solutions such 

as road building and ramp metering. Demand-side schemes are intended to reduce car 

demand; examples include pricing, travel substitution by telecommuting, and land use 

and zoning policies.  

The Metropolitan Council's Transport Policy Plan (TPP) states that it wants to 

"keep the region mobile and livable by enhancing economic competitiveness, 

community and neighborhood livability, mobility options and improving the 

environment" (MetCouncil 2000). Recognizing fiscal and social realities, they propose 

measures that include a significantly improved transit system, travel demand 

management and very limited amounts of highway capacity additions. In a similar vein, 

the Minnesota Department of Transportation's (Mn/DOT) Transportation Systems Plan 
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(TSP) has three stated objectives: supporting transit advantages, removing bottlenecks, 

and improving corridor connections between economic centers (Mn/DOT 2000). 

Mn/DOT's support for transit in the TSP, and the limited provisions for capacity 

expansion, seems to indicate the growing importance of multi-modal alternatives, which 

provide complementary services to the highway system, moving away from their 

traditional focus on roads. 

 An active area of debate, however, concerns how effective these multi-modal 

strategies can hope to be. In Road Work (Small et al. 1989), it is argued that while these 

policies produce important benefits, and have significant value in improving urban 

living, none of them will eliminate, or even substantially reduce, congestion. Arguments 

supporting pricing are presented, but there has been a marked reluctance by decision 

makers to adopt such policies, as noted by Moore and Thorsnes (1994). 

 Although it is generally agreed that we cannot rely solely on highway capacity 

expansion to meet transportation needs, the travelling public are seemingly not opposed 

to capacity expansions so long as associated costs--such as land taken, community 

severance, air and noise pollution--are borne by others. Individuals seem to prefer 

system improvements to actual changes in lifestyle. The poll that cited traffic congestion 

as the Twin Cities’ top concern also named building more roads as the first choice 

among respondents for reducing traffic congestion (Metro State University 2000).  

Transportation policy therefore runs the risk of being undermined by these 

competing interests. If local interests are strong enough, then 'building our way out of 

congestion' may become de facto policy. Thus, it is proposed that the debate could 
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benefit from an approach that takes a wider look at the capabilities and limitations of 

adopting a 'build-only' approach to meeting our transportation needs. To delineate a 

vision of life under a 'build-only' policy, a solution to a NDP for the expected travel 

demands at a point in the future is found. This solution identifies a minimal set of 

capacity expansions that provide relatively uncongested travel on the Twin Cities limited 

access freeway system, while accounting for traveler reaction to these expansions.  

 The NDP is a simplified, abstract version of a challenge often faced by the 

agencies responsible for managing a network of roads and highways--how to choose 

improvements or additions to the network, in a manner that makes efficient use of 

resources, in order to achieve some stated objective, such as reducing traffic congestion. 

The major ideas from the NDP literature are reviewed in Chapter Two, which includes 

issues about how to model traffic assignment and account for user responses to capacity 

expansion. Chapter Three describes the mathematical formulation of the NDP to solve 

'what it would take to build our way out of congestion'. The initial solution procedure 

chosen is outlined in Chapter Four. The large-scale size of the Twin Cities NDP meant 

that the computational effort required by this method was too large to be handled by 

generally available computational resources. A modified procedure is then described and 

this was implemented to successfully solve the large-scale Twin Cities NDP. Appendix 

A contains a proof that this algorithm identifies candidate solutions. 

 The optimal transportation supply was determined for the AM and PM peak 

period in the year 2020, and these results are presented in Chapter Five. The main result 

is that it would take an additional 1,844 lane-kilometers (1,146 lane-miles) on the 
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existing limited access road system of 2,588 lane-kilometers (1,608 lane-miles) to 'build 

our way out of congestion' in 2020. Chapter Six then draws together the main 

conclusions of this project and its contribution to the field--which are the numerical 

answer to the question, 'what would it take to build our way out of congestion in the 

Twin Cities?' and the result that this work demonstrates that it is possible to solve such 

large-scale NDP's. This is followed by some further ideas for future research.  
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CHAPTER TWO 

THE NETWORK DESIGN PROBLEM REVIEWED 

 

In order to determine what it would take to 'build our way out of congestion' in 

the Twin Cities, it is necessary to determine how best to expand the network, in a 

manner which makes efficient use of resources, in order to achieve the stated goal of 

reducing congestion. The NDP encompasses a class of optimization problems which 

models this process and a substantial body of research explores the various different 

formulations this problem can take, along with associated solution procedures. To 

determine the most appropriate formulation to solve the Twin Cities NDP, relevant 

major ideas are presented and discussed here. Issues that arise include: how to increase 

capacity, determining optimal supply, modeling user responses, demand issues, and 

reviewing available solution procedures. Due to the intrinsic complexities of these 

various issues, the NDP is recognized as one of the most difficult problems to solve in 

transport (Yang and Bell 1998). Finally, the size of the Twin Cities network is compared 

to networks for which NDP solutions have appeared in the literature. Solutions that have 

been published are limited to standard test problems, rather than larger, more realistic 

examples.  
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A General Description of the Network Design Problem 

The 'Network Design Problem' is a class of related optimization problems, which 

describe abstract, simplified versions of a challenge often faced by agencies responsible 

for managing a network of roads and highways--how to choose improvements or 

additions to the network, in a manner that makes efficient use of resources, in order to 

achieve some stated objective, such as reducing traffic congestion or air pollution. An 

agency often encounters this problem when faced with anticipated increases in travel 

demand that exceed existing network capacity. The problem of identifying a minimal 

transportation structure under a 'build-only' policy in the Twin Cities can be formulated 

as a NDP. The purpose of the Twin Cities NDP is to choose a minimal set of 

improvements to the network in order to reduce traffic congestion.  

 

The NDP Bi-level Framework 

The Network Design Problem concerns the design of an optimal amount of 

transportation supply for a given transportation system. This is achieved by modeling the 

supply-side decisions that are made by the operator of the transportation system, 

typically a public authority, and is undertaken in order to achieve some objective, such 

as the reduction of traffic congestion. Congestion occurs when the level of travel 

demand approaches the available capacity of a facility and travel times increase well 

above the average under low demand conditions (Ortuzar and Willumsen 1994). 

However unlike the network supply, travel demand is not directly under the influence of 

the decision maker--it is decided by individual trip makers.  
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 Interaction therefore exists between the supply and demand sides, such that as 

sections of the network are improved, users will respond to these changes by adjusting 

their own travel behavior. This process can be described as a bi-level programming 

problem, with the upper level being a supply problem and the lower level being a 

demand problem. The agency responsible for the network is the leader, attempting to 

take into account how the users follow. If the leader has prior knowledge of the 

responses of the followers, this is known in game theory as a ‘Stackelberg Game’. The 

upper level model that describes the decisions that the agency makes concerning the 

optimal network supply is prescriptive--what should they do to best achieve their 

objectives. The lower level model is descriptive, it characterizes what travelers would do 

if they were pursuing some rational objective (Oppenheim 1995). 

  

Upper Level Problem 

Continuous and Discrete System Improvements 

Adding capacity to a transportation network can be achieved in two ways--either 

through enhancements of the existing network, or by the addition of new parts to it. This 

distinction poses the NDP in either a continuous or discrete form. The continuous 

version, as described by Bell and Iida (1997), takes as given the topology of the network, 

and is concerned with modifying parameters of the network, for example, increasing link 

capacity. The discrete version concerns changes to the actual topology of the network--

the addition or removal of links. In mature urban areas, such as the Twin Cities, the 

roadway network is now essentially fixed in its topology. There is little opportunity to 
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build entirely new roads and transportation planning policy, where it deals with the 

expansion of the network, deals with the continuous form--increasing the capacity of 

existing roads, rather than building new ones. Therefore, the continuous form of the 

NDP is relevant to this problem. 

 

Determining the Optimal Transportation Supply 

One can imagine that in practice a highway agency faced with anticipated 

increases in travel demands and a given network may decide to specify several different 

sets of capacity improvements which accommodate these increased demands, and then 

analyze each of these proposed solutions separately. Although all of these proposals may 

be feasible solutions to the problem, it is conceivable that, in addition, there are many 

more alternative possible solutions. Fiscal and social responsibilities make it preferable 

that the solution uses the minimal amount of resources that satisfy the stated objectives. 

A suitable procedure to achieve this would be to use travel demand forecasts for a future 

year, assign traffic and then analyze the system performance to determine what set of 

capacity expansions will relieve congestion. A mathematical problem to solve this would 

minimize an objective, such as the amount of capacity expansions, subject to satisfying 

specified volume to capacity (V/C) ratios, associated with a given level of service (LOS) 

requirement.  

Unfortunately, capacity improvements that are optimal under existing conditions 

can become sub-optimal once travelers respond to them, and it is possible that 

congestion can become worse on the expanded network. This is illustrated by Braess' 
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Paradox, whereby the addition or enhancement of facilities in a congested network 

without taking into account the reaction of users may actually increase network-wide 

congestion (Friesz 1985). Therefore it is essential to account for travelers' responses and 

methods of doing this are discussed in the next section.  

 

Lower Level Problem 

User Equilibrium 

The lower level problem models how travelers respond to system changes. To 

account for how the link volumes will change in response to capacity increases, it is 

necessary to introduce a descriptive model of the way in which network travelers select 

their routes from origin to destination, and how these route choices determine the link 

volumes. The process of choosing routes should reflect rational decision-making 

behavior by trip-makers.  

The common assumption in network design is that, when left to their own 

devices, travelers independently search for the lowest-cost route from origin to 

destination. A descriptive model of this individually rational behavior would require that 

each traveler pursue their own interests individually (or selfishly) without regard to the 

interests of others. The assumption of individualistic rationality in traffic assignment 

produces what is known as Wardrop's Equilibrium, where the search for these minimum 

paths terminates when, at user equilibrium, no traveler can decrease his or her travel 

costs by unilaterally switching to another route (Bell and Iida 1997).  
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Equilibrium conditions, by definition, imply that a state has been reached in the 

distribution of travel activity (demand and supply) in which no further changes, on the 

part of either individual travelers or travel suppliers are expected, provided that the 

prevailing conditions do not change. A criticism of the equilibrium model is that a point 

in time where the above conditions are satisfied is unlikely to occur in the real world. 

Although alternative models, such as the disequilibrium formulation (Oppenheim 1995), 

have been studied, the equilibrium concept remains the dominant assumption, largely 

because it leads to tractable formulations and the rationale seems plausible, at least for 

situations where the decision making rate of travelers is much higher than the rate at 

which network changes occurs.  

 

Stochastic and Deterministic User Equilibrium 

In network design, two forms of stating the user equilibrium conditions are 

encountered: deterministic user equilibrium (DUE) and stochastic user equilibrium 

(SUE). DUE assumes that all travelers have perfect information regarding travel time 

and perceive costs identically, so all trips are made on minimum cost routes. SUE 

relaxes the assumption of perfect information, so that costs are perceived differently by 

different travelers, leading to a spread of responses, with trips being assigned to routes 

proportionally and low cost routes receiving a greater proportion of trips (Bell and Iida 

1997).  

While it is realistic to expect travelers to prefer least cost paths, it is unlikely that 

travelers possess perfect information about the comparative time costs of routes, so the 



 

12 

SUE assumptions, which relax the assumption of perfect information, seem closer to 

reality than DUE. Although most of the original NDP work adopted DUE assumptions, 

this has changed since certain tractability advantages associated with the SUE were 

identified (Davis 1994). Recent work has adopted SUE (Yang and Bell 1998, Huang and 

Bell 1999) because of these advantages, as does the NDP formulated for this research. 

  

Travel Demand 

The lower side of the bi-level problem deals with the users of the network, the 

demand-side. Traditionally, the NDP takes travel demand as a fixed input, so that the 

travel choice is restricted to route choice (assignment). An alternative formulation 

(Huang and Bell 1999) solves for the case where demand is given by a function and the 

equilibrium demands and their distributions are obtained by solving an elastic-demand 

user equilibrium model. For SUE assumptions, the demand is constructed between an 

origin-destination (O-D) pair as a continuous and decreasing function of the expected, 

perceived cost between that O-D pair. This is realistic as travel times do play an 

important role in determining trip decisions. Another alternative to using a fixed O-D set 

is to apply a model that provides trip distribution in addition to assignment. The 

distribution model would provide origin and destination demand pairs based on travel 

costs.  

While both these alternative formulations present plausible models of travel 

behavior, the time scale on which these decisions are made is much longer-term than the 

assignment problem, which is a daily choice. Work trips are assumed to constitute the 
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majority of AM and PM peak hour trips, which are usually those of concern in designing 

optimal supply for a network. Where to live and work are long-term decisions made over 

periods of perhaps years, as opposed to traffic assignment, which is based on the daily 

route choice. A commonly held assumption is that for short periods of time (weeks to 

months), the number of people deciding to travel to a work destination is fixed. 

Similarly, the decision of where to live is usually made on a much longer time scale than 

route choice. An assumption used in modeling to account for these differences between 

decision variables and the time scales on which they are made, is that O-D choices are 

exogenous to the analysis of trip assignment and therefore a fixed O-D matrix can be 

used (Ben-Akiva and Lerman 1985, p. 326).  

 The effects of elastic demand may be significant and closer consideration would 

be desirable. However, as no solutions to large-scale problems have previously appeared 

in the literature, it is reasonable to find a procedure that can solve the inelastic problem 

first, before looking at building more sophisticated systems incorporating elastic 

demand. It should be borne in mind though that the elastic demand assumption is likely 

to mean that reducing congestion may induce more trips. Over a longer period of time 

than that of the forecast year studied here, additional trips may be generated, so the 

requisite capacity expansion to reduce congestion would be even larger. 
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Solution Algorithms 

Various approaches to solving the network design problem have been formulated 

and a brief recap of the evolution of NDP research will provide a framework for the 

assumptions employed in formulating and solving the Twin Cities NDP. 

 An early heuristic called the Iterative Optimization Assignment algorithm (IOA) 

was employed by Steenbrink (1974). This procedure iteratively solves the system 

optimal network design problem with fixed link flows and the user equilibrium route 

choice problem with fixed network parameters. This heuristic algorithm has the 

advantage of computational efficiency, but has been shown to converge to solutions 

quite different from the optimal equilibrium network design (LeBlanc 1975). This is due 

to the fact that the IOA gives an exact solution for a Cournot-Nash game, since the 

solution of one problem only takes into account the solution of the other from the 

previous iteration, rather than for the more appropriate, Stackelberg game (Bell and Iida 

1997). 

 Abdulaal and LeBlanc (1979) sought the optimal design parameters directly by 

using the Hooke-Jeeves pattern search method and using DUE assumptions. 

Unfortunately, the function relating the DUE to the capacity increases is non-

differentiable (Abdulaal and LeBlanc 1979), which means that search algorithms that do 

not require derivatives of the cost function must be employed to solve the NDP. This in 

turn means that numerous DUE assignments must be performed at each iteration of the 

search routine, resulting in algorithms that are computationally demanding. 
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 Other heuristic algorithms with reduced computational burden have been 

proposed for finding an approximate solution to the NDP, but none of them can be 

guaranteed to converge to the global or even a local optimum. Yang and Bell (2001) 

review a number of solution algorithms including Tan's DUE problem, which is 

expressed by a set of non-linear and non-convex, but differentiable, constraints in terms 

of path flows, and Marcotte's transference of the NDP into a single level equivalent 

differentiable optimization problem. However the number of constraints required is very 

large, and therefore computationally burdensome.  

 Suwansrikul et al. (1987) developed a heuristic method, equilibrium decomposed 

optimization (EDO) that appears to find nearly optimal solutions. In this algorithm, the 

direction of the search for the optimal design of each link being considered for 

improvement is guided by re-evaluating the reaction of the network users to the design 

changes.  

Friesz et al. (1992) applied simulated annealing (SA) to solve the NDP and 

obtained some encouraging results. However although the algorithm is potentially 

globally convergent, this is achieved at the expense of extensive numerical computations 

and numerous searches. 

If one switches from a DUE to a stochastic user equilibrium approach to describe 

the route selection behavior of travelers, the continuous NDP can be posed as a tractable, 

albeit large-scale, differentiable non-linear programming problem (Davis 1994). Thus, 

standard non-linear programming algorithms, such as sequential quadratic programming, 

can be used to solve the resultant non-linear program. Therefore by using the stochastic 
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user equilibrium approach in traffic assignment it may be able to represent the real 

situation more closely, and by switching to SUE assignment many of the technical 

difficulties that arise using DUE constraints can be avoided. Due to these numerical 

issues, SUE is the assignment model adopted for the formulation of the NDP is used in 

this project.  

 

The Large-Scale NDP 

 To date the largest NDP solution presented in the literature is the 76 link, 24 zone 

'Sioux Falls' planning network, which was originally described by LeBlanc (1975) and 

subsequently used by numerous authors, including Suwansirikul et al. (1987), Friesz et 

al. (1992) and Davis (1994). Other networks of interest, such as the Twin Cities, are 

generally of a much larger scale than the 'Sioux Falls' example. The Twin Cities 

planning network used in this project has 20,380 links, and 7,397 nodes. Comparing the 

size of the 'Sioux Falls' problem to that of the Twin Cities, demonstrates the magnitude 

of the dimensional disparity between the computational experiments presented in the 

literature and a realistically sized problem. This difference is important because a finding 

has been that as the size of a problem increased, large-scale applications have proved too 

computationally expensive to be solved with available solution methods. An algorithm 

to solve a large-scale NDP could provide a useful planning tool, capable of handling real 

world complexity, whereas to date NDP’s have remained mostly in the realm of 

academic interest. 
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CHAPTER THREE 

FORMULATION OF THE TWIN CITIES  

NETWORK DESIGN PROBLEM 

 

In this chapter the NDP is formulated as an optimization problem that will solve 

the research problem by finding the minimal set of capacity expansions that guarantee a 

specified LOS to travelers while taking the users’ responses into account. To build an 

optimization problem, an objective function and appropriate constraints must be chosen. 

Nomenclature to describe the network in an abstract manner is discussed, and then used 

to describe how the NDP has been traditionally posed. Some modifications to the 

traditional formulation are then proposed to transform it into a form that can solve the 

research question posed. How, and why, this proposed NDP formulation differs from the 

traditional one is also discussed. 

 

Network Nomenclature 

The NDP models a simplified, abstract version of an agency's decision-making 

process of how to expand the road network. To construct an abstract version of the road 

network of interest some nomenclature must be introduced. The region's roadway system 

can be represented as a network consisting of a set of points, or nodes, connected by 

directed links. Of this set of nodes, a sub-set acts as origins and destinations for travel 

demand, and such nodes are commonly called centroids. The total travel demand 
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between each O-D pair is specified for some planning interval (such as the AM period 

hour), and quantified in the form of an O-D matrix. As discussed in the previous chapter, 

this work will focus on solving a system in which this O-D matrix is known a priori.  

The road network consists of n links in the network, indexed k = 1,…,n. 

Associated with each of these links are three quantities: xk denoting the volume of traffic 

on link k, yk denoting the proposed expansion of k's capacity and zk denoting the current 

capacity of link k. Thus the capacity after expansion of link k will be the sum of yk and 

zk. The O-D pairs in the network are indexed by j = 1,…,m and dj is the demand between 

O-D pair j during the planning interval. 

 

Formulation of the NDP 

In order to model how an agency adopting a 'build only' policy would go about 

the deciding which roads to expand, some modifications were made to the traditional 

NDP. Previous authors (for example Friesz et al. 1992, Davis 1994) have posed the 

continuous network design problem as the minimization of an objective function 

(usually the travel and construction costs), subject to flows being a user equilibrium flow 

pattern. However it will be argued that a slightly different problem formulation models 

the decision making process of an agency more realistically.  
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The Traditional NDP Objective Function and Constraints 

To understand how the modified Twin Cities NDP differs from its predecessor, 

the traditional NDP objective function and constraints are described. The traditional 

NDP minimizes a system cost function 

 

( ) ( )[ ]∑ α++
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n

1k
kkkkkkk ygyz,xtx           (3.1) 

 

where the first component gives the travel time costs and the second term the 

construction costs. Each link is assumed to have a known construction cost function, 

gk(yk), which gives the cost of increasing link k's capacity by yk.. The scaling coefficient 

α converts units of construction cost into units of daily travel cost and tk is the time 

taken to traverse link k.  

The travel time, tk, on a road increases as the flow increases on a road because of 

traffic congestion. To account for this the travel time is generally taken to be a non-

linear function of the total traffic flow on the road. The functional form used for travel 

costs is the Bureau of Public Roads (BPR) function 
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where 0
kt is the free-flow travel time on link k and bk is a coefficient scaling the rate at 

which congestion increases the costs (Abdulaal and LeBlanc 1979). 
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The objective function (equation 3.1) is subject to two constraints: firstly, that yk 

is greater than, or equal to, zero, and secondly, that xk is a user equilibrium flow pattern. 

In Chapter Two the continuous version of the NDP was deemed appropriate, so the 

number of network links is fixed and the capacity expansion is denoted by an expansion 

variable associated with candidate links. The first of these constraints requires that the 

capacity expansion is greater than, or equal to, zero. This means that the link is either 

expanded by adding capacity, or that it remains as is. The case where capacity is 

removed, that is where the value is negative, is not considered in this model. The other 

constraint is that xk, the flow on each link k, constitutes the user equilibrium flow 

pattern--this model is more complex to describe and is where much of the computational 

work is expended. The second constraint is necessary, because, unlike the capacity 

increases, the link volumes are not directly under the influence of the decision maker. To 

model this it is assumed that drivers will seek the lowest-cost route from their origin to 

destination, and that the point at which no traveler can decrease his or her travel costs by 

switching to another route produces an equilibrium assignment of traffic to the network.  

 

The Stochastic User Equilibrium Conditions 

Given a set of O-D trip rates, dj, the SUE conditions are characterized by the 

solutions to the set of nonlinear equations 
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where qjk denotes the probability that a trip between O-D pair j uses link k, with the 

functional form  

 

∑ δ= jrjrkrjk pq                 (3.4) 

where  

jpair  D-Obetween r path on  liesk link  if 1,
otherwise  0,{jrkδ        (3.5) 

and an explicit function of route choice probabilities can be found using logit route 

choice  
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where θ is a parameter which is determined by the variance of the route cost perception 

errors and tjr is the cost of traversing path r between O-D pair j, and assuming that the 

path cost is simply the sum of the corresponding links costs, then 
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Re-posing the NDP Objective Function 

A major criticism of the traditional NDP formulation is the way in which the 

objective function (equation 3.1) comprises weighted components of daily costs of travel 

time and long-term construction costs. The inclusion of the construction costs with the 
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travel time in the objective function in this way requires assigning a monetary value to 

the travel time of users of the network to compare the trade-off between the construction 

costs and travel time.  

LeBlanc (1975) noted the difficulties in assigning a defensible value to the 

monetary equivalence of travel time and discussed methods of separating out the 

objective function components. This is often achieved through the inclusion of 

construction costs as a budget constraint, thus formulating the optimal amount of 

capacity expansion as the set whose user optimal flows have the least total vehicle-hours 

of travel. To overcome these difficulties, an alternative form is proposed that removes 

the travel costs from the objective function, and instead imposes a level of service 

constraint, which has the additional advantage that it guarantees a specified level of 

mobility. 

 

Guaranteeing Mobility by introducing a LOS constraint 

In Chapter Five, the LOS for solutions found via the traditional formulation are 

calculated. These values show that for the often used 'Sioux Falls' network, V/C as high 

as 3.70 occurs at the optimal solution, when the objective function is as stated in 

equation 3.1. V/C is used as an indication of LOS, and values higher than 1.0 indicate 

congested conditions. It seems unlikely an agency could secure funding without assuring 

some acceptable LOS, since when the public is pressing for highway expansion they are 

doing so in order to improve their own travel speeds, and are much less concerned with 

the total system costs. Also, the question more commonly asked by planning agencies 



 

23 

would seem to be 'how can we satisfy the traveling public through some efficient 

allocation of resources?'. To account for these issues, a LOS constraint was imposed. In 

the Highway Capacity Manual (HCM), the LOS criteria for basic freeway sections are 

based on V/C ratios, so that as the volume approaches capacity, the associated speeds 

decline (Roess et al. 1998). V/C ratios are found by taking the link flow (volume), and 

dividing it by the total capacity of that link. The LOS constraint is of the form 
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          (3.8) 

where kc~  is the specified V/C ratio associated with a given LOS. Rearranging to place 

the independent variables on one side and the fixed quantities on the other, gives a linear 

equation  

 

kkkkk zc~yc~x ≤−          (3.9) 

 

An Alternate Objective Function 

Removing the travel time costs from the objective function (equation 3.1) leaves 

the construction costs. These costs are usually dealt with in the NDP literature by the 

following theoretical quadratic formulation (e.g. Abdulaal and LeBlanc 1979, Davis 

1994) 

 

2
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Abdulaal and LeBlanc (1979) explored a number of construction cost 

formulations, including this quadratic form in order to examine how the solution 

responds under different cost formulations, such as concave versus convex. These cost 

formulations have no realistic basis and a literature search revealed a dearth of reliable 

construction cost functions.  

Reconsidering the purpose of this research, which was to determine 'what it 

would take to build our way out of congestion', suggested an alternative objective 

function--to minimize land taken. That is  

 

  min(∑
k

kk yl )                            (3.11) 

where lk is the length of link k, and yk is the capacity expansion for link k. This is 

appropriate because one of the primary concerns associated with highway expansion by 

agencies and the public seems to be the taking of land for highway construction. The 

new objective function (equation 3.11) is subject to the same two constraints as the 

traditional formulation, which were 
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and the additional LOS constraint  

 

  kkkkk zc~yc~x ≤−        (3.14) 

 

This alternative formulation was also attractive because it produces a linear 

objective function, which makes for simpler computations. Additionally, if an analyst 

wished to provide some function for construction cost, post-processing could be used to 

make this calculation. 

 

Summary 

In this chapter the research question is formulated as a mathematical optimization 

problem to find the minimal set of capacity expansions which guarantee a specified LOS 

to travelers and which takes into account user response. Although this formulation now 

has a linear objective function, it remains a large-scale, non-linear programming problem 

for which a suitable solution procedure must be selected, this process is explored in 

Chapter Four. 
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CHAPTER FOUR 

SELECTION OF A SOLUTION PROCEDURE FOR THE  

LARGE-SCALE NETWORK DESIGN PROBLEM  

 

The NDP formulation posed in Chapter Three determines what it would take for 

the Twin Cities to accommodate future travel demand solely through highway capacity 

expansion. A procedure to solve a large-scale sized NDP must now be selected. There 

are a number of standard techniques for solving non-linear programming problems and 

several of these proved successful on test problems. The MINOS optimization software 

was selected from these for large-scale implementation. When the Twin Cities problem 

was investigated, however, its size meant that the computational effort required was too 

large to be handled by available computer resources. An alternative procedure, based on 

modifications to the Method of Successive Averages (MSA), was then developed and 

used to solve the Twin Cities NDP. 

 

Initial Selection of an NDP Solution Procedure 

Davis (1994) posed a differentiable and tractable version of the NDP, which 

meant that standard algorithms for solving non-linear programs could be, and were, 

employed to produce results for various NDP computational tests. The computation of 

the minimum of a differentiable objective function, subject to a set of differentiable 

constraints, is a problem for which numerous solution algorithms are available. 

Candidate methods initially considered to solve this nonlinear problem included 
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simulated annealing and the two methods previously used by Davis (1994), sequential 

quadratic programming (SQP) and the reduced-gradient algorithm. Simulated annealing 

was rejected after a literature review revealed that a large number of function evaluations 

would be required, which would be computationally prohibitive for this large problem. 

SQP was used to solve the standard numerical test network, 'Sioux Falls', with ten links 

being candidates for expansion. MINOS (Murtagh and Saunders 1988), which uses 

reduced-gradient algorithms, was then considered because of its success in various fields 

solving large non-linear optimization problems. MINOS was successful in solving the 

'Sioux Falls' test problem, and was computationally much quicker than SQP. It was then 

used to solve the larger 'Waseca' network problem, with 126 links as candidates for 

expansion. MINOS was therefore selected to tackle the Twin Cities problem. 

 

Implementation of Solution Procedure with MINOS 

For each trial solution in a MINOS implementation, the objective and constraint 

functions must be evaluated, along with their derivatives. Whenever possible, in 

optimization problems, computer code evaluating gradients of the non-linear objective 

function and non-linear constraints should be provided. For the NDP, the gradient for 

construction cost is straightforward. For the non-linear constraints, Davis (1994) 

provided the first tractable gradient for the stochastic user-equilibrium constraints using 

Van Vliet's (1981) modification to the Dial Assignment algorithm. The Dial Assignment 

is a method of stochastic network loading, the algorithm used to implement the 

procedure is commonly known as STOCH (Sheffi 1985, pp. 286-297). 
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 Using MINOS as the solution procedure, the process of solving the NDP begins 

with inputs that model the supply and demand sides of the system. The supply-side (the 

network) consists of connectivity information (from-nodes and to-nodes of links), and 

the associated link properties such as link length, capacity and free-flow speed. The 

demand side is given by an origin-destination matrix. The shortest-paths are then 

calculated based on current travel times. Initially these are based free-flow speeds, but in 

later iterations are based on congested travel times (equation 3.2) to account for the 

reduction in speeds as flow increases on a link. Once the shortest-paths are identified, 

the nodes are indexed according to the travel costs, and the traffic is assigned, using 

Dial's method. An equilibrium assignment is then found using the MSA (Sheffi 1985, 

pp. 324-331) without any capacity expansion, in order to provide the optimizer with a 

reasonable starting point. The next step is to start the optimization procedure. During the 

optimization, the constraint function values (equilibrium flows, non-negativity and LOS) 

and their derivatives are calculated, as are those for the objective function and its 

derivatives, in order to determine the search direction. For the constraint equilibrium 

values and derivatives to be calculated, full shortest path, indexing and assignment sub-

routines must be performed. This constitutes the largest component of the computational 

time at each major iteration. The optimization algorithm terminates when the objective 

cannot be reduced by more than a user-defined tolerance, and all of the constraints are 

satisfied. The algorithm will also terminate with a sub-optimal, but feasible, solution 

after a user-defined maximum number of iterations, or if no new search direction can be 

found to improve the solution. Global optimality of the solution cannot be guaranteed by 
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most gradient-based algorithms, but is strongly indicated if the same solution is found 

having started at a number of initial conditions. 

 While MINOS successfully solved the NDP for test problems ranging from 7 to 

184 links, a successful implementation for the Twin Cities problem with 20,380 links 

was not accomplished with this method. The size of the constraint Jacobian matrix that 

MINOS requires depends on the following parameters: the number of variables--flow on 

each link plus expansion of capacity on candidates--by the non-linear constraints--that is, 

each link. The Twin Cities network has 20,380 links, and the candidate set considered 

included 1,317 links (which constituted the metered and unmetered freeway system). So 

the size of the Jacobian was 21,697 by 20,380--a dense matrix consisting of over 400 

million elements. One of the advantages of MINOS is that if the sparsity pattern of the 

Jacobian can be identified a priori, it can be exploited to reduce the memory space 

utilized and the element updating required. Unfortunately, the dense matrix approach 

had to be used, as the sparsity pattern of the Jacobian could not be predicted.  

The large, dense Jacobian meant that the problem size was greater than could be 

accommodated in the memory available on most personal computers, so the problem 

could not be compiled and run. Use of supercomputing resources enabled the problem to 

be compiled and to run, but after twenty-four hours, the program had not completed an 

iteration, and so this approach was abandoned.  

 Various alternate methods were investigated which attempted to circumvent the 

problem with the large Jacobian. A modified procedure, capable of solving the same 

problem, was proposed and proved successful. This procedure uses the MSA and does 
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not require any derivative information. This considerably simplified the computational 

requirements, and enabled a solution to the Twin Cities problem to be determined. 

 

The Modified MSA Solution Procedure 

 The modified MSA procedure solves the same formulation as that used above 

with MINOS as implementation tool, which was the formulation derived in Chapter 

Three. That is 

 

min(∑
k

kk yl )             (4.1) 

 

subject to the following constraints 
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To understand the modified solution procedure, the decomposition steps that transform 

this problem are now presented. Suppose for the time being that the link flows, xk, are 

given. Rearranging the objective function (equation 4.1), the sum of the minimum for 

each link can be taken instead 
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and rearranging the level of service constraints  
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The problem is now reduced to a set of one-dimensional linear programs that 

have the solution 
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The equilibrium constraint (equations 4.2) depends on the demand between 

origins and destinations and the probability that a trip between a given origin and 

destination pair uses a certain route (equation 3.4). The route choice probability uses the 

logit form (equation 3.6), and depends upon the link cost functions (equation 3.2). So the 

equilibrium constraints depend on xk and yk only via the link cost functions.  

Substituting the values from (4.8) into the link cost functions (equation 3.2) gives 

two alternative forms depending on the value. When yk is zero the function depends only 

on the variable link flow 
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However when the link is congested, and yk is greater than zero, then yk equals 

k

k

c~
x  - kz , so the link cost functions simplify to a constant, as shown  
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It can be demonstrated that these are necessary conditions for a solution of the 

NDP posed (see Appendix A for proof), and computational tests have shown that the 

solutions arrived at by both the MINOS non-linear programming approach and this 

modified procedure are the same. 

The step-by-step procedure for implementing this modified algorithm is follows. 
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MSA algorithm with link expansion modification step 

Step 0: Initialization. Perform a stochastic network loading based on a set of initial 

travel times ( 0
kt ), generating a set of link flows ( n

kx ). Set counter n to 1. 

Step 1: For each link k, set 









−= k

k

n
kn

k z
c~
x,0maxy  

Step 2: Update travel times for each link based on current link flows and capacity, 

( )n
kk

n
k

n
k yz,xt + , then finding minimum paths via the Moore-Pape shortest 

path algorithm (Sheffi 1985, pp. 122-129 and Netlib 2000), ranking the 

nodes according to increasing cost. 

Step 3: Perform a stochastic network loading assignment procedure based on the 

current set of link travel times ( ( )n
kk

n
k

n
k yz,xt + ), yielding the auxiliary link 

flow pattern ( n*
kx ), using Dial's Algorithm. 

Step 4: Find the new flow pattern by setting 
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n
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k
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kn

k
1n

k
−

+=+  

Step 5: If converged then stop. If not increment counter n and go back to step 1. 

 

This procedure was then used to solve the Twin Cities Network Design Problem 

on a personal computer--results are presented in the Chapter Five.  
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CHAPTER FIVE 

TWIN CITIES OPTIMAL TRANSPORTATION SUPPLY 

 

An optimal transportation supply for a network can be determined by the solution 

to a Network Design Problem. To date, no algorithm has been successfully demonstrated 

to solve a large-scale NDP. In Chapter Four a solution procedure was selected to 

implement, and this chapter provides the numerical evidence that this algorithm is 

capable of solving large-scale NDP's.  

Before attempting to solve a computationally expensive problem, such as the 

Twin Cities NDP, it is wise to test a procedure on smaller numerical examples. This 

procedure is tested on two previously presented networks (Davis 1994), and two 

additional, larger, more realistically, sized networks. The comparative size of the four 

networks used to test this algorithm are shown in Table 5.1. 

 

Table 5.1 Comparison of Network Examples 

Network Name LITTLE SIOUX FALLS WASECA TWIN CITIES 

Number of 
Nodes 6 24 69 7,393 

Number of 
Links 7 76 184 20,380 

No. of Candidates 
for Expansion 7 10 136 1,317 
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 The following numerical experiments review the different problems investigated 

in this project. Initially, the 'Little' and 'Sioux Falls' problems are examined, in order to 

demonstrate the limitations of the traditional NDP formulation, as compared to the 

approach advocated here, in which the LOS is explicitly considered as a constraint, and 

the objective function is posed simply in terms of the land requirements. Next, the larger 

'Waseca' problem is investigated using the constrained LOS approach. This problem is 

somewhat larger when compared to the traditionally investigated networks, and so 

provides an excellent testing ground for the comparison of the different modeling 

approaches and optimization algorithms described in this work. The results of this 

comparative exercise are presented in this chapter--in particular, the full MINOS 

solution which requires all derivatives is compared to the simpler MSA approach in 

order to illustrate that the latter approach provides acceptable results, while requiring 

much less solution space, making it a good algorithm to investigate much larger 

problems. Finally, the 'Twin Cities' problem and solution are presented, demonstrating 

that the methods developed here are able to provide a solution to the largest system yet 

investigated with NDP. 

The inputs required to solve this formulation of the NDP are models of the 

demand- and supply-sides of the system, that is a network representing the roads and 

highways and a set of trip demands between origin and destination nodes. These inputs 

were then fed into a computer program developed (see Appendix B for code) to 

implement the iterative NDP solution procedure, as described in Chapter Four. 
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Numerical Experiments 

Link characteristics and demand matrices for large networks comprise lengthy 

data tables, and as such, the network data is referenced at appropriate points rather than 

repeated here. The exception is the 'Little' network data, given in Tables 5.2 and 5.3, 

which is provided to give an example of the input parameters required. 

  

'Little' Network 

The first experiment was on the seven link and six node 'Little' network, shown 

in Figure 5.1. The demand matrix is given in Table 5.2 and the link characteristics for 

this network are shown in Table 5.3--these are from Davis (1994). The solution to the 

NDP is calculated using the selected modified MSA procedure and these results are 

presented in Table 5.3, along with the V/C associated with Davis' (1994) solution. This 

latter solution was found using a standard formulation, in which a weighted sum of user 

and construction costs was minimized (see equation 3.1). 

 The level of service constraint used for this test is a volume to capacity ratio of 

1.0. This means that with the given demand, all these candidate links operate at level of 

service volume to capacity ratios of 1.0 or better.  

 

Table 5.2 'Little' O-D Matrix 

O-D Pair Travel Demand 
1-5 500 
1-6 400 
2-5 400 
2-6 600 



 

37 

 

Figure 5.1 'Little' Network 

 

Table 5.3 'Little' Link Parameters and Results (θ = 1.0, V/C = 1.0) 

Link (k) 
Free-flow 

travel time 
(t0) 

Capacity 
(zk) 

Capacity 
expansion 

(yk) 

Desired 
V/C 
ratio 

Calculated V/C (θ = 
1.0, Davis 1994) 

1 1.0 200 14.35 1.0 1.95 

2 0.25 300 385.65 1.0 1.58 

3 0.25 700 728.42 1.0 2.15 

4 0.25 300 385.65 1.0 1.77 

5 0.25 300 442.78 1.0 1.76 

6 0.25 300 442.78 1.0 1.95 

7 1.0 200 57.22 1.0 2.15 
 

2 3 
L3 

4 

1 

6 

5 

L1 

L7 

L2 

L5 

L4 

L6 
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It is contended that the adoption of a level of service constraint provides a more 

useful solution than merely minimizing the costs for travel and construction. The final 

column in Table 5.3 shows the volume to capacity ratios for Davis' (1994) 'Little' 

solution. The optimal set of capacity expansions under the traditional NDP formulation 

given in Davis (1994) all have volume to capacity ratios of greater than 1.0, which 

means that the demand for the link is greater than its capacity. This is an example of a 

highway expansion program that will be seen by the public as obsolete immediately after 

its completion. Although it may be 'optimal' to minimize construction and system costs, 

it might not be a politically feasible solution. Political influence and local feelings 

usually push for highway agencies to expand road capacity to reduce congestion--the 

level of service constraint guarantees those mobility levels. 

 

'Sioux Falls' Network 

Traditionally the 'Sioux Falls' network, as shown in Figure 5.2, is used as the 

'realistically' sized network to test algorithms. The link characteristics and demands for 

this network are from Suwansirikul et al. (1987). Note that for this network, the 

characteristics are identical for the directional link going from node A to node B and in 

the reverse direction. In planning networks representing realistic complexity, this is not 

always the case. 
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Figure 5.2 'Sioux Falls' Network 
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Table 5.4 'Sioux Falls' Results (θ=10, V/C = 1.0) 

Candidate 
Links 

Capacity 
Expansions 

Desired 
V/C ratio 

Calculated V/C 
(θ=10, Davis 1994) 

16 13.94 1.0 3.70 

19 12.261 1.0 3.50 

17 2.3895 1.0 1.44 

20 5.8215 1.0 1.76 

25 8.669 1.0 1.62 

26 10.105 1.0 1.73 

29 17.785 1.0 3.57 

48 17.335 1.0 3.55 

39 11.29 1.0 2.23 

74 18.095 1.0 2.44 
 

Table 5.4 shows the results found by implementing the modified MSA procedure 

selected and implemented for the 'Sioux Falls' network. These results are compared to 

the level of service associated with Davis' (1994) solution to the traditional NDP. As for 

the 'Little' network, this shows LOS much worse than would be acceptable for most 

forecast planning purposes. 

 

'Waseca' Network 

The more complex 'Waseca' network is shown in Figure 5.3. With 184 links, the 

'Waseca' network is significantly larger than the 76 link 'Sioux Falls' example. The 

Waseca network has been used as a teaching example network for NDP heuristic 

methods in Transportation Engineering classes at the University of Minnesota. A fixed 

O-D table was calculated, with contrived socioeconomic data to predict trip generation, 
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which was then distributed, using a gravity model. Apart from the link lengths, other 

associated data, such as free-flow speed, was assumed. See Appendix C for the network 

data used. The dispersion parameter θ is set at 0.2, following Leurent's (1995) work on 

case studies in the Paris metropolitan area. This means that if one route is shorter by five 

minutes than a second, then approximately three out of four drivers will choose the first 

road. 

 Most of the computational experiments were carried out on this network. As 

discussed in Chapter Four, the procedure employing the MINOS software successfully 

solved the 'Waseca' NDP, but not the Twin Cities problem. Two results are presented for 

this network, in Table 5.5, one is the solution calculated using MINOS' optimization 

routine and the other is the solution found using the modified MSA procedure. The 

specified LOS was 1.0. 
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Figure 5.3 'Waseca' Network 
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Table 5.5 'Waseca' Capacity Expansion Results (θ = 0.2, V/C =1.0) 

Link 
Expansion 
(NLP with 
MINOS) 

Expansion 
(Davis' 

modified MSA 
procedure) 

Link 
Expansion 
(NLP with 
MINOS) 

Expansion 
(Davis' 

modified MSA 
procedure) 

23 183 183 124 172 172 

24 437 437 125 469 469 

57 183 183 126 515 515 

69 41 41 129 496 496 

93 243 243 130 783 783 

96 825 825 134 782 782 

98 303 303 135 527 527 

100 1458 1458 142 327 327 

101 88 88 143 317 317 

104 545 545 165 26 26 

117 225 225 167 302 302 

118 334 334 170 348 348 

122 491 491 178 527 527 

123 398 398 179 437 437 
 

'Twin Cities' Network 

The detailed planning network used for the Twin Cities was supplied by the 

Metropolitan Council. While the network was originally developed in 1990, it has been 

subsequently updated and corrected. The forecasted travel demand was also supplied by 

the Metropolitan Council, in the form of the 2020 vehicle demand O-D matrices for both 

AM and PM peak hours. Additional data was available from the same source that 

forecast 2020 vehicle and transit-person trips. The research question was to find a lower 

bound on the extent to which physical expansion of highway capacity could be used to 
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accommodate future growth. So using vehicle-trips was a more conservative estimate of 

2020 forecast trips than taking the combined forecast vehicle and transit person trips. 

 The 'candidate' set of roads considered for expansion in the Twin Cities network 

was confined to the limited access roadways. This means that while traffic is assigned to 

all roads, only the limited access roads were constrained to provide the designated level 

of service and considered for expansion. The limited access roads were adopted as the 

candidate set because this project's client was Mn/DOT's Traffic Management Center 

(TMC). Other assumptions made in the model are that the traveling public's desired 

speed on the limited access roads is about 60 mph. Again the dispersion parameter θ was 

taken as 0.2, as in Leurent (1995). The LOS constraint was specified at 'C', and the 

maximum volume to capacity ratio for this LOS is 0.63 (Roess et al 1998). This level of 

service was chosen as it is still possible to travel at about the free-flow speed. At LOS C, 

"speeds are at or near free-flow speed, but freedom to maneuver is noticeably restricted. 

Lane changes require more care and vigilance by the driver…When minor incidents 

occur, local deterioration in service will be substantial. Queues may be expected to form 

behind any significant blockage" (Garber and Hoel 1999).  

 Before presenting the solution to the research question, 'what would it take to 

build our way out of congestion', the 'do-nothing' alternative is shown, that is the 

congested system speeds when there is no highway capacity expansion. With the fixed 

O-D matrix, a stochastic assignment was carried out until user equilibrium was reached. 

Using the Highway Capacity Manual (HCM) flow-speed curves (Roess et al 1998), the 

level of service was then determined for each link. To do this, the equilibrium link flow 
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is determined for each link, denoted by xk, and the capacity for that link under the do-

nothing alternative is given by zk. The volume to capacity ratio for each link is then 

calculated by dividing the flow, xk, by the capacity, zk. The LOS for this candidate set of 

roads is shown in Figure 5.4, the AM peak hour, and Figure 5.5, the PM peak hour, for 

the Twin Cities in the forecast year 2020. These figures indicate that significant portions 

of the system will be operating at worse than LOS C. Table 5.6 shows the number of 

kilometers operating at each LOS. Significant points to note from this table are that 

during the PM peak hour, approximately half the system operates at LOS C or worse, 

and during the AM peak hour more than a third operates at LOS C or worse. 

 
Table 5.6 Levels of Service Under 'Do-Nothing' Alternative (limited access roads) 

LOS AM 
km % AM lane-

km % PM 
km % PM lane-

km % 

A 301 29 780 30 82 8 216 8 

B 217 21 536 20.7 196 19 512 20 

C 159 15 406 15.7 171 16.6 424 16 

D 130 13 328 12.7 183 17.8 488 19 

E-F 227 22 538 20.8 401 38.8 948 37 

Total 1034 100 2588 100 1033 100 2588 100 
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Figure 5.4 Year 2020 'Do-nothing' Twin Cities AM Peak Hour Speeds 

LOS Speeds
LOS F  (0 - 51 mph)
LOS E (51 - 58 mph)

LOS D  (58 - 60 mph)

LOS C  ( 60 + mph)
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Figure 5.5 Year 2020 'Do-nothing' Twin Cities PM Peak Hour Speeds 

LOS Speeds
LOS F  (0 - 51 mph)
LOS E (51 - 58 mph)

LOS D  (58 - 60 mph)

LOS C  ( 60 + 
mph) 
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Using the procedure outlined in Chapter Four, the minimal set of capacity 

expansions that satisfied the constraints were determined. To support that this is an 

optimum, the procedure was restarted from a number of different initial conditions. This 

is a commonly used technique in optimization and was been used in other NDP 

literature, for example Friesz's (1985), who defined stability as: "A network equilibrium 

will be stable if convergence of the flow pattern to equilibrium from arbitrary initial 

conditions is guaranteed". The initial start point used adopted zero links flows and 

expansions. Taking the link flows and doubling the link expansions from the first result 

was another start point. Finally, link expansions between 0 to 1000 were randomly 

generated, then holding these constant the equilibrium link flows were found and these 

constituted the next starting point.  

The capacity expansion results were found for both the AM and PM peak hours, 

as shown in Figures 5.6 and 5.7 respectively. These figures display the required 

expansion for the Twin Cities freeway system as a scaled theme map, the thicker lines 

indicate higher amounts of capacity expansion. Expansion shown is directional, so that 

the centerline of a freeway is a thin black line, with the directional expansion displayed 

on either side. The interesting points to note are the directionality of the expansion. 

Figure 5.6 shows the morning peak hour and therefore much of the expansion is in the 

direction moving towards the Twin Cities, Figure 5.7 for the PM peak shows the reverse 

case.  
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Figure 5.6 Year 2020 Twin Cities AM Capacity Expansion (θ = 0.2, V/C =0.63) 

Link Expansions (vph)
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Figure 5.7 Year 2020 Twin Cities PM Capacity Expansion (θ = 0.2, V/C =0.63) 

Link Expansions (vph)
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Figure 5.8 Year 2020 Twin Cities AM and PM Capacity Expansion  

Link Expansions (vph) 
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The calculated set of capacity expansions is a continuous variable in units of 

vehicles per hour. For the candidate set, the expansions were then converted into 

equivalent numbers of additional lanes, using the existing capacities and number of 

lanes. Table 5.7 shows the amount of expansion required in lane-mileage and the number 

of kilometers in the system that would be affected by expansion. The four rows shown in 

this table indicate the range of lane values depending on methods used to convert the 

continuous expansion variable into lanes. This is done based on the capacity of the 

existing lanes, so it is possible that a resulting calculation could be, for example, one and 

a half lanes. The first row shows calculated values, which is the direct conversion, the 

second row is rounded to the nearest integer, the third row is chopped to the integer 

below and the fourth row is increased to the next largest integer. The table shows first 

the results calculated using the AM peak hour demand, then the PM peak hour demand 

and finally the maximum capacity expansion calculated for each link forms the solution 

which satisfies both AM and PM demands.  

 

Table 5.7 Twin Cities Capacity Expansion 

 
AM 
Lane 
km 

AM 
km 

PM 
Lane 
km 

PM 
km 

AM/PM 
Lane 
km 

AM/PM 
km 

Calculated 819 518 1387 761 1844 879 

Round 811 - 1390 - 1852  

Floor 591 - 1025 - 1427 - 

Ceiling 1107 - 1786 - 2306 - 
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To gain an appreciation for the numbers of lanes required, these calculations 

were grouped into the number of lane expansion amounts, along with the sum of the 

associated mileage of each of these groups, as shown in Table 5.8. The network shows a 

substantial amount of kilometers of lane expansion. In total 879 kilometers (546 miles) 

of the freeway system, out of 1,033 kilometers (642 miles), would be subject to 

expansion. An additional 1,844 lane-kilometers (1,146 lane-miles) would be added to the 

2,588 lane-kilometers (1,608 lane-miles) of limited access roads in the base network. 

 

Table 5.8 Twin Cities Lane Groups of Capacity Expansion. 

Lane 
Groups AM km PM km AM/PM 

km 
> 0 - 1  201 252 199 

> 1 - 2 147 227 265 

> 2 - 3 106 127 204.5 

> 3 - 4 32 92 117 

> 4 - 6 29 59 87.5 

> 6 - 8 3 3 5 

> 8 - 10 0 1 1 

> 10        0 0 0 

Total 518 761 879 
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CHAPTER SIX 

CONCLUSIONS  

 

The impetus behind this project was to provide a numerical answer to the 

question--'what would it take to build our way out of congestion?'. This research 

question is important because answering it requires the selection and implementation of 

a procedure to solve a large-scale NDP. Solving large-scale, realistically sized, NDP's 

had remained an unsolved challenge due to the computational complexities involved. 

Additionally the solution to the Twin Cities NDP that identifies the minimal set of 

capacity expansions to accommodate future travel at acceptable mobility levels would 

provide analytical data to guide the debate concerning the provision of highway 

capacity. 

 The identification of a procedure capable of solving a large scale NDP was 

described in Chapter Four. This novel procedure re-poses the NDP as one of minimizing 

total lane-miles of capacity expansion, subject to LOS and equilibrium constraints. It 

then uses a modification of the MSA algorithm to solve the NDP. Although the 

convergence of this method may be slow, it has several advantages. Firstly, given certain 

conditions, it is guaranteed to converge and secondly it is a relatively simple algorithm 

to program compared to many other minimization algorithms. Although the MSA is not 

considered to be numerically efficient (Ortuzar and Willumsen 1994), it is the only 

procedure that has been successfully implemented to solve a problem of this size--the 
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speed of an algorithm is a relative measure, so since there is currently no viable 

competitor, this is perhaps an unfair criticism. 

 The modified NDP procedure was then implemented to find a solution to the 

Twin Cities NDP, the results of which are presented in Chapter Five. As previously 

discussed, the largest 'realistic' NDP solved and presented in the literature to date has 

been the 'Sioux Falls' planning network. At only 76 links, this is far smaller than the 

Twin Cities network, which has 20,380 links, and is at the very lower limit of size in 

terms of practical application. In the work presented here, solutions were found for AM 

and PM peak hours for the Twin Cities forecast 2020 travel demands. The sum of the 

maximums of all the links for both peak periods provides an indication of the expansions 

required to 'build our way out of congestion', and this amounted to an additional 1,844 

lane-kilometers (1,146 lane-miles) of capacity expansion. Currently the limited access 

highway system in the Twin Cities is 2,588 lane-kilometer (1,608 lane-miles), so this 

expansion represents approximately a seventy percent increase.  

 The numerical solution to this problem isn't expected to quell debate about the 

relative merits of highway capacity expansions, but provide additional evidence to guide 

debate towards realistic expectations regarding the provision of highway capacity. The 

techniques developed here can also be applied to similar large problems, and so used to 

investigate and compare more realistic solutions to the increased travel demands.  

  In summary, the contributions of new knowledge that this research project makes 

are: 
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1. Selection and demonstrated successful implementation of a procedure to solve to 

large-scale NDP--largest known. 

2. Numerical answer to what it would take to build our way out of congestion, thereby 

adding to this debate. 

 

Future Research 

Two important sub-models were employed in the implementation of this 

procedure, the shortest-path and assignment routines. This research implemented some 

of the most commonly used routines, the Pape-Moore shortest-path and the Dial 

Assignment. Alternative routines could be implemented to compare solution times with 

this method, such as Bell's (1995) matrix-inversion assignment and Zhan and Noon's 

(1998) work on shortest-path routines for real road networks.  

This research selected as its candidate set for expansion the limited access 

highway system of the Twin Cities. Investigation of alternative candidate sets would be 

of interest, perhaps next considering arterials in addition. Similarly this research solved 

this problem for level of service 'C', which was argued to be a conservative threshold 

congestion. Solution for different levels of service and candidate sets would help test the 

sensitivity of these solutions to the various scenarios. 

 Congestion is a major area of concern for many metropolitan areas, and therefore 

using this procedure to solve NDP's for other cities might help guide their debates. 

 The solution procedure selected and implemented is a new algorithm and its 

proof of necessity, in that the set of solutions found by the algorithm contains the set of 
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Kuhn-Tucker points, is given in Appendix A. However, this is a somewhat weak result, 

and while numerical tests support that this procedure gives good results a stronger proof 

would be preferred.  

 Network Design Problems have been recognized by many scholars as inherently 

complex and difficult problems to solve. The development of an efficient algorithm 

capable of handling realistic networks has remained a significant and important 

challenge for researchers. Under a very specific NDP formulation, this research project 

has demonstrated the solution to a large-scale NDP. This large-scale NDP solution also 

represents a significant contribution to the regional Twin Cities debate concerning the 

capabilities and limitations of 'building our way out of congestion'. 
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APPENDIX A 
NDP MODIFIED MSA PROOF  
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NDP*: 

minimize 
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=
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subject to  

( ) 0zC~yxyC~
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yz
yx

i
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i =≤
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 0y ≤−
r     i.e. m1,....,i               0yi =≥  

where  

}c~{diagC~ i=  and the candidate set is indexed i=1,…,m 

and the functions xk( yr ) are defined implicitly 

( ) n1,..., k      0y,xqdx j
k

j
jk ==∑−

rr  

We want to show:  

If y  is a local solution to NDP*, then for all i = 1,…,m either  

yi = 0 or i
i

i
i z

c~
)y(xy −=  

Suppose y  is a local solution to NDP*. Then y  satisfies KKT conditions, and by 

Theorem 4.2.15 (Nonlinear Programming, Bazaraa, Sherali and Shetty 1993, p. 153), 

this is equivalent to y  being a solution to the approximating linear program: 

minimize 

( )yylyl TT −+
rr

 

 

 

 

subject to 



 

65 

( ) ( )[ ][ ] 0yyc~yJzc~yxyc~ x

rrrr
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This can be simplified as 

minimize 

yl T
r

 

subject to  
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0y ≥r  

Introducing the slack variable wr , we can then write this in a "standard" form 

LP*: 

minimize 

yl T
r

 

subject to 

 ( )[ ] ( ) ( )yxyyJzc~wIyc~yJ xx
rrrr

−+=+−  

  0y ≥
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  0w ≥
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The extreme points of the polyhedral region: 
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w
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r
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



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Can be expressed, by re-arranging the order of the elements of yr  and wr  in a form 
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i.e. 

( )
0z
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yxy i

i

i
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contains the set of KKT point, which contains the set of local solutions. 
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APPENDIX B 

COMPUTER CODE 
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*************************************************************** 
*****            START OF MAIN PROGRAM                       **** 
*************************************************************** 
 

PROGRAM            MAIN 
 
C THIS PROGRAM IMPLEMENTS THE SOLUTION PROCEDURE TO SOLVE A 
C NETWORK DESIGN PROBLEM OF THE TYPE: 
C  MIN ( LINK EXPANSIONS ) 
C  SUBJECT TO: 
C     -LINK FLOWS SATISFYING EQUILIBRIUM AT SOLUTION 
C     -POSITIVE LINK EXPANSIONS 
C     -VOLUME TO CAPACITY RATIO IS LESS THAN/EQUAL TO 
C        SOME SPECIFIED LEVEL OF SERVICE (FROM HCM) 
C THE SOLUTION IS BASED ON DAVIS (2001)MODIFIED 
C METHOD OF SUCCESSIVE AVERAGES PROCEDURE. 
 

IMPLICIT           DOUBLE PRECISION (A-H,O-Z) 
 
C LIMIT IS A PARAMETER USED TO SIZE ARRAYS, IT IS BASED ON 
C THE MAXIMUM EXPECTED NUMBER OF LINKS IN THE NETWORK. 
 

INTEGER LIMIT 
PARAMETER (LIMIT=21000) 

 
C NPOSSLST IS A LIST OF CANDIDATES FOR EXPANSION. 
 

LOGICAL NPOSSLST(LIMIT) 
 
C THE COMMON BLOCKS ARE USED TO PASS VARIABLE VALUES THAT 
C ARE COMMON TO A NUMBER OF SUBROUTINES. 
 
C NNODE IS THE NUMBER OF NODES IN THE NETWORK. 
C NUMORG IS THE NUMBER OF CENTROIDS IN THE NETWORK. 
C NEXT IS THE 
C NPRED 
C NTONODE - A LINK IS IDENTIFIED FROM THE START NODE AND 
C  ITS END NODE, THIS IS ITS END NODE. 
C NFMNODE IS THE START NODE OF A LINK. 
C XGUESS IS THE CURRENT LINK FLOW. 
 

COMMON /KSINPUT1/ NNODE, NUMORG, 
        & NEXT(7400), NPRED(7400), 
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        & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
        & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)     
                   
C D(X,Y) IS THE ORIGIN - DESTINATION DEMAND ARRAY. 
C NLINK IS THE NUMBER OF LINKS IN THE NETWORK. 
 

COMMON /KSINPUT2/ ABI(7400),  
        & D(1200,7400),NLINK, NPOINT(7400) 
 
C THETA IS A PARAMETER WHICH SCALES THE PERCEIVED TRAVEL TIMES 
 

COMMON /KSINPUT2A/ THETA 
COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  

 
C NUMB IDENTIFIES WHICH NDP IS BEING SOLVED. 
C NAME IS THE NAME OF THE NDP BEING SOLVED. 
 

COMMON /KSINPUT4/ NUMB, NAME      
 
C SUBROUTINE MOOREPAPE READS IN DATA, SETS VARIABLES 
C AND SETS UP INITIAL FEASIBLE SOLUTION TO START OPTIMIZER. 
 

CALL MOOREPAPE 
 
C SUBROUTINE MSA CARRIES OUT MODIFIED METHOD OF  
C SUCCESSIVE AVERAGES TO FIND EQUILIBRIUM NDP SOLUTION. 
 

CALL MSA 
 
*     --------------------------------------------------------- 

 
STOP 
END 
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*************************************************************** 
*****           START OF MOOREPAPE SUBROUTINE            **** 
*************************************************************** 
 

SUBROUTINE  MOOREPAPE 
 
C THIS READS FROM ALL THE INPUT FILES, AND SETS UP 
C INITIAL PROBLEM BEFORE IT GETS PASSED TO THE 
C OPTIMIZER. 
     

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 

INTEGER LIMIT,  LIM3 
PARAMETER (LIMIT=21000,LIM3=8000) 

 
LOGICAL NPOSSLST(LIMIT) 
INTEGER IT(LIM3), 

       & LISTY(LIMIT), DEMAND, LKS(10), TYPES 
 

CHARACTER NAME*20 
 

DOUBLE PRECISION XT(LIMIT), ZERO, DIFF, 
       & ERRMAX, ERRCRIT, DA(LIMIT), FIT, LOS 
 

COMMON /KSINPUT1/ NNODE, NUMORG, 
       & NEXT(7400), NPRED(7400), 
       & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
       & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)                       
 

COMMON /KSINPUT2/ ABI(7400),  
        & D(1200,7400),NLINK, NPOINT(7400) 

COMMON /KSINPUT2A/ THETA 
COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
COMMON /KSINPUT4/ NUMB, NAME      

 
C OD CONTAINS THE ORIGIN-DESTINATION DEMAND MATRIX 
 

OPEN (UNIT=1,FILE='OD',STATUS='OLD') 
 
C NET CONTAINS ALL THE NETWORK PARAMETERS OF THE LINKS       
 

OPEN (UNIT=2,FILE='NET',STATUS='OLD') 
 
 



 

73 

C OUT IS OPENED AS AN OUTPUT FILE TO KEEP TRACK OF 
C  THE ERROR AT EACH ITERATION. 
 

OPEN (UNIT=3,FILE='OUT',STATUS='UNKNOWN') 
 

THETA = 2.0D-01 
ZERO  = 0.0D+0 

 
C *** READ IN NON-ZERO DEMAND VALUES, 
C *** 'DEMAND' IS THE NO. OF PEOPLE WANTING TO TRAVEL FROM A->B. 
 

READ (1,*) DEMAND 
DO 40 I=1,DEMAND     
  READ(1,*) J,K,D(J,K) 

 40  CONTINUE 
 
C *** INPUT TITLE OF PROBLEM TO BE SOLVED, 
C ***   THIS SETS WHICH PARAMETERS ARE TO BE READ. 
                                                               

READ(2,*) NUMB 
READ(2,*) NAME      

 
C *** INPUT OF THE NUMBER OF NODES NNODE 
                                                                        
 1   READ(2,*) NUMORG,NNODE,NLINK 
 
 
C *** INPUT OF THE NETWORK                                                                                                            
C *** READ START AND END NODES FOR LINKS & 
C *** READ IN DATA ASSOC W LINK CHARACTERISTICS. 
C        CLINK-1=FFS TVL TIME (HRS) 
C        CLINK-2=0.15 (BPR COEFF) 
C        CLINK-3=CAPACITY 
C        CLINK-4=BPR TVL TIME  
C        SLINK-1=FFS (MPH) 
C        SLINK-2='FUNCTIONAL CLASS' 
C        SLINK-3=AREA TYPE 
C        SLINK-4=#-LANES 
C        GLINK-1=LINK LENGTH (MI) 
C        GLINK-2=LOS 
 

NPOSS=0 
READ(2,*) TYPES,(LKS(L),L=1,TYPES) 
READ(2,*) LOS 
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       DO 4 I=1,NLINK 
 
C *** FOR PROBLEMS 1 OR 2 DATA INPUT IS SLIGHTLY DIFFERENT 
 
           IF (NUMB.EQ.1) THEN 

    READ(2,*) NFMNODE(I),NTONODE(I),CLINK(I,3), 
        &    CLINK(I,1) 
               DO 33 L=1,TYPES 
        IF (CLINK(I,1).GE.LKS(L)) THEN 
          NPOSS=NPOSS+1 
          LISTY(NPOSS)=I 
          GLINK(I,2) = LOS 
        ENDIF 
 33       CONTINUE 
  ENDIF 
         IF (NUMB.EQ.4) THEN 
             READ(2,*) NFMNODE(I),NTONODE(I),CLINK(I,3), 
        &    CLINK(I,1), SLINK(I,2) 
             DO 34 L=1,TYPES 
        IF (SLINK(I,2).EQ.LKS(L)) THEN 
          NPOSS=NPOSS+1 
          LISTY(NPOSS)=I 
          GLINK(I,2) = LOS 
        ENDIF 
 34        CONTINUE 

ENDIF 
         IF (NUMB.EQ.2) THEN 
             READ(2,*) NFMNODE(I),NTONODE(I),CLINK(I,3), 
         &  GLINK(I,1), SLINK(I,1) 
              DO 31 L=1,TYPES 
       IF (SLINK(I,1).EQ.LKS(L)) THEN 
         NPOSS=NPOSS+1 
         LISTY(NPOSS)=I 
         GLINK(I,2) = LOS 
       ENDIF 
 31     CONTINUE 

ENDIF 
 
C *** FOR PROBLEMS 3(TC) DATA INPUT IS DIFFERENT 
 

IF (NUMB.EQ.3) THEN 
             READ(2,*) NFMNODE(I),NTONODE(I), 
        &   SLINK(I,2), GLINK(I,1),SLINK(I,1), 
        &   SLINK(I,3),SLINK(I,4), CLINK(I,3) 
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  DO 32 L=1,TYPES 
        IF (SLINK(I,2).EQ.LKS(L)) THEN 
          NPOSS=NPOSS+1 
          LISTY(NPOSS)=I 
        GLINK(I,2) = LOS 
        ENDIF 
 32          CONTINUE 

ENDIF 
 
C *** USE SLINK(K,2) FOR ASS GRP OR AREA TYPE FOR VC LOS. 
 

CLINK(I,2)=1.5D-01 
IF (NUMB.EQ.2.OR.NUMB.EQ.3) THEN         
  IF (CLINK(I,3).EQ.0.0D+0) CLINK(I,3)=2.4D+03 
  IF (SLINK(I,1).EQ.0.0D+0) SLINK(I,1)=1.5D+01 

 
C *** CONVERT TIME TO MINUTES.       
 

  CLINK(I,1)=6.0D+01*(GLINK(I,1)/SLINK(I,1))  
ENDIF 

 4  CONTINUE 
 
C IF LINK CAN BE EXPANDED THEN TRUE.  
    

DO 35 K=1,NPOSS 
  NPOSSLST(LISTY(K))=.TRUE. 

 35  CONTINUE     
 
C *** FILL NPOINT WITH THE START OF NEW NODE NOS.    
 

K=0 
J=1 
DO 44 I=1,NLINK 

  
 45     IF (NFMNODE(I).EQ.J) THEN 
              K=K+1          
              IT(J)=K 

ELSE 
              K=0 
              J=J+1 
              IT(J)=K             
              GOTO 45 

ENDIF   
 44   CONTINUE 
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J=0 
DO 46 I=1,NNODE 
  J=J+IT(I) 
  NEXT(I)=J       

 46   CONTINUE 
 
C ** FILL NPOINT WITH THE START OF NEW NODE NOS.    
 

NPOINT(1)=1 
DO 47 I=2,NNODE 
  NPOINT(I)=NPOINT(I-1)+IT(I-1) 

 47 CONTINUE  
 

DO 93 K=1,NLINK 
  XGUESS(K) = ZERO 
  CLINK(K,4)=CLINK(K,1) 

 93   CONTINUE 
 
C *** DONE WITH MOOREPAPE SUBROUTINE 
 

RETURN 
END 
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*************************************************************** 
****                   START OF SHPTHL SUBROUTINE            **** 
***************************************************************       
 

SUBROUTINE SHPTHL(J0) 
 
C THIS IS A MODIFIED VERSION OF THE PAPE ALGORITHM FROM NETLIB. 
C  THE TRAVEL TIMES FOR PATHS CONNECTING O-D PAIRS 
C  NEEDS TO BE DETERMINED TO ASSIGN TRIPS. SEE SHEFFI (P122) FOR  
C  A FULLER DESCRIPTION OF SHORTEST PATH ALGORITHMS. 
 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 

INTEGER LIM3 
PARAMETER (LIM3=8000) 
INTEGER NJ(LIM3), J0 
DOUBLE PRECISION INF,MJI,MJK 
DATA INF /9999999/ 

 
COMMON /KSINPUT1/ NNODE, NUMORG, 

        & NEXT(7400), NPRED(7400), 
        & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
        & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)                       
 
        COMMON /KSINPUT2/ ABI(7400),  
        & D(1200,7400),NLINK, NPOINT(7400) 
 
C  SHPTHL CALCULATES THE SHORTEST PATH LENGTHS (MJ) FROM A  
C SPECIFIC NODE (J0) TO ALL OTHER (N-1) NODES IN A NETWORK  
C (FLIST,DFLIST,KF). 
C     PREDECESSOR NODES ARE STORED IN WJ. 
C     NTONODE   : FORWARD INDEX LIST 
C     CLINK(K,1) : DISTANCE LIST 
C     NEXT           : POINTER LIST FOR FLIST AND DFLIST 
C     NNODE        : NUMBER OF NODES 
C     CAB             : ARRAY OF SHORTEST PATH LENGTHS 
C     J                    : INITIAL NODE, FIRST NODE OF SHORTEST PATH 
C     NPRED        : ARRAY OF PREDECESSORS FOR SHORTEST PATH  
C    CONSTRUCTION 
C     NJ          : DOUBLE ENDED QUEUE FOR NODE DISCUSSION 
C     INF         : A LARGE NUMBER 
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DO 1 I=1,NNODE 
  ABI(I)=INF 
  NPRED(I)=0 

   NJ(I)=0 
 1    CONTINUE   

ABI(J0)=0.0D+0 
  
C     I     : INDEX FOR NODE DISCUSSION, NODE UNDER DISCUSSION 
C     NT    : POINTER TO THE END OF DEQUE NJ 
C     MJI   : LOCAL VARIABLE OF MJ(I) 
C     KFI   : LOCAL VARIABLE OF KF(I) 
C     KFI1  : LOCAL VARIABLE OF KF(I)+1 
C     IR    : INDEX FOR ARRAY DISCUSSION 
C     K     : SUCCESSOR OF NODE I 
C     MJK   : LOCAL VARIABLE OF MJ(K) 
C     NJI   : LOCAL VARIABLE OF NJ(I), THE NEXT NODE OF NJ TO BE TAKEN 
C             UNDER DISCUSSION 
 

NJ(J0)=INF 
I=J0 
NT=J0 

 
C     OUTER LOOP 
C     DISCUSSION OF NODES I 
 
 2 KFI=NEXT(I) 

MJI=ABI(I) 
IF (I.EQ.1) THEN 
  KFI1=1 
ELSE 

           KFI1=NEXT(I-1)+1 
ENDIF 

 
C *** INNER  LOOP 
C *** DISCUSSION OF SUCCESSORS K 
 

IF (KFI1.GT.KFI) GO TO 6 
DO 5 IR=KFI1,KFI 
  K=NTONODE(IR) 
  MJK=MJI+CLINK(IR,1) 

 
C *** NO DECREASE OF SHORTEST DISTANCES 
 

IF (MJK.GE.ABI(K)) GO TO 5 
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C *** DECREASE OF SHORTEST DISTANCES 
 

ABI(K)=MJK 
 
C *** PREDECESSOR I OF NODE K 
 

NPRED(K)=I 
 
C *** NODE K ALREADY IN THE DEQUE NJ ? 
 

IF (NJ(K))  4,3,5 
 
C *** NODE K ADDED AT THE END OF THE DEQUE NJ 
 
 3 NJ(NT)=K 
           NT=K 
           NJ(K)=INF 
           GO TO 5 
 
C *** NODE K ADDED AT THE BEGINNING OF THE DEQUE NJ 
 
 4      NJ(K)=NJ(I) 
           NJ(I)=K 
           IF (NT.EQ.I) NT = K 
 5  CONTINUE 
 
C *** NODE I TAKEN FROM THE BEGINNING OF THE DEQUE NJ 
 
 6  NJI=NJ(I) 
       NJ(I)=-NJI 
       I=NJI 
       IF (I.LT.INF) GOTO 2 
       

RETURN 
       END 
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*************************************************************** 
*****            START OF INDEXX SUBROUTINE          **** 
*************************************************************** 
 

SUBROUTINE INDEXX 
 
C THIS IS FROM P331 C.U.P. NUMERICAL RECIPES 
 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
INTEGER M,NSTACK,LIM3 
PARAMETER (M=7,NSTACK=50, LIM3=8000) 

 
C INDEXES AN ARRAY ABI(1:NNODE), I.E., OUTPUTS THE ARRAY  
C NIPE(1:NNODE) SUCH THAT ABI(NIPE(J)) IS IN ASCENDING ORDER FOR  
C J = 1; 2; : : : ; NNODE. THE INPUT QUANTITIES NNODE AND ABI  
C ARE NOT CHANGED. 
 

INTEGER I,INDXT,IR,ITEMP,J,JSTACK,K,L, 
           & ISTACK(NSTACK) 
 
       COMMON /KSINPUT1/ NNODE, NUMORG, 
           & NEXT(7400), NPRED(7400), 
           & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
           & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)                       
 
         COMMON /KSINPUT2/ ABI(7400),  
          & D(1200,7400),NLINK, NPOINT(7400) 
 

DO 11 J=1,NNODE 
  NIPE(J)=J 

 11    CONTINUE 
JSTACK=0 
L=1 
IR=NNODE 

 1  IF(IR-L.LT.M)THEN 
   DO 13 J=L+1,IR 
     INDXT=NIPE(J) 
     A=ABI(INDXT) 
     DO 12 I=J-1,L,-1 
       IF(ABI(NIPE(I)).LE.A) GOTO 2 
       NIPE(I+1)=NIPE(I) 
 12        CONTINUE 

     I=L-1 
 2          NIPE(I+1)=INDXT 
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 13   CONTINUE 
   IF(JSTACK.EQ.0)RETURN 
      IR=ISTACK(JSTACK) 
      L=ISTACK(JSTACK-1) 
      JSTACK=JSTACK-2 
   ELSE 

  K=(L+IR)/2 
   ITEMP=NIPE(K) 
   NIPE(K)=NIPE(L+1) 
   NIPE(L+1)=ITEMP 
   IF(ABI(NIPE(L)).GT.ABI(NIPE(IR))) THEN 

    ITEMP=NIPE(L) 
     NIPE(L)=NIPE(IR) 
     NIPE(IR)=ITEMP 

  ENDIF 
   IF(ABI(NIPE(L+1)).GT.ABI(NIPE(IR))) THEN 

    ITEMP=NIPE(L+1) 
     NIPE(L+1)=NIPE(IR) 
     NIPE(IR)=ITEMP 
   ENDIF 
   IF(ABI(NIPE(L)).GT.ABI(NIPE(L+1))) THEN 
     ITEMP=NIPE(L) 
     NIPE(L)=NIPE(L+1) 
     NIPE(L+1)=ITEMP 
   ENDIF 

  I=L+1 
   J=IR 
   INDXT=NIPE(L+1) 
   A=ABI(INDXT) 
 3     CONTINUE 

I=I+1 
IF(ABI(NIPE(I)).LT.A) GOTO 3 

 4     CONTINUE 
J=J-1 
IF(ABI(NIPE(J)).GT.A) GOTO 4 
IF(J.LT.I) GOTO 5 
ITEMP=NIPE(I) 
NIPE(I)=NIPE(J) 
NIPE(J)=ITEMP 
GOTO 3 

 5   NIPE(L+1)=NIPE(J) 
NIPE(J)=INDXT 
JSTACK=JSTACK+2 
IF(JSTACK.GT.NSTACK)PAUSE 'NSTACK TOO SMALL IN INDEXX' 
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 IF(IR-I+1.GE.J-L)THEN 
   ISTACK(JSTACK)=IR  
   ISTACK(JSTACK-1)=I 
   IR=J-1 
 ELSE 
   ISTACK(JSTACK)=J-1 
   ISTACK(JSTACK-1)=L 
   L=I 
 ENDIF 

ENDIF 
GOTO 1 

 
RETURN 
END  
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*************************************************************** 
*****            START OF STOCHO SUBROUTINE                 **** 
*************************************************************** 
 
C *** THIS SUBROUTINE SOLVES A DIAL ASSIGNMENT. 
 

SUBROUTINE STOCHO(JX,X)   
       
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
INTEGER LIMIT, LIM2, LIM3 
PARAMETER (LIMIT=21000, LIM2=1200, LIM3=8000) 
DATA INF /9999999/ 

       INTEGER BEGIN, JX 
       LOGICAL NPOSSLST(LIMIT) 
       
       DOUBLE PRECISION LK(LIMIT),  
           & W(LIMIT), SUM1(LIMIT), 
           & X(LIMIT), XSUM(LIMIT), ZERO, TEMP 
 
       DOUBLE PRECISION P(LIM2,LIMIT), W1(LIM2,LIM2),  
          & SUMJD(LIM2), WJTD(LIM2,LIMIT), WJD(LIMIT), 
          & WOTI(LIMIT), WITJ(LIMIT) 
      
       COMMON /KSINPUT1/ NNODE, NUMORG, 
           & NEXT(7400), NPRED(7400), 
           & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
           & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)                       
 
         COMMON /KSINPUT2/ ABI(7400),  
           & D(1200,7400),NLINK, NPOINT(7400) 
       COMMON /KSINPUT2A/ THETA 
       COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
      
       ZERO   = 0.0D+00 
 
C *** PRELIMINARIES FOR SETTING UP SHEFFI VERSION OF 
C *** SINGLE PASS OF DIAL ASSIGNMENT. 
 
       K = 1 
       BEGIN = 1 
       DO 70 I = 1,NNODE 
           DO 69 J = BEGIN,NEXT(I) 
               IF (ABI(I).LE.ABI(NTONODE(J))) THEN 
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      LK(K) = EXP(THETA*(ABI(NTONODE(J))-ABI(I)-CLINK(J,4))) 
                ELSE 
                  LK(K) = ZERO 
                ENDIF 
                  K = K + 1 
 69      CONTINUE 
           BEGIN = NEXT(I) + 1 
 70 CONTINUE 
          
C *******FIND LINK WEIGHTS - MODIFIED FORWARD PASS************** 
 

DO 77 I=1,NLINK 
   W(I)=ZERO 

  X(I)=ZERO 
 77 CONTINUE 

DO 78 I=1,NNODE 
   SUM1(I)=ZERO 
   XSUM(I)=ZERO  
 78 CONTINUE 
 SUM1(JX)=1.0D+0 

DO 90 K=2,NNODE       
  I=NIPE(K) 

         
C ****** COMPUTE SUM(I) = SUM OF W(M,I)** 
C ****** FIND LINKS GOING INTO I, ADD WTS.** 
 

  DO 80 L=1,NLINK 
    IF (NTONODE(L) .EQ. I) THEN 
      W(L)=LK(L)*SUM1(NFMNODE(L)) 

         SUM1(I) = SUM1(I) + W(L) 
    ENDIF 

 80       CONTINUE 
 90   CONTINUE 
  
C  CALCULATE LINK VOLUMES - MODIFIED BACKWARD PASS 
C CONSIDER NODES IN DESCENDING ORDER OF DIST. FROM ORIGIN, JX 
 

TEMP=ZERO 
DO 110 K=0,(NNODE-2)  

 
C ******* J = NODE NO.** 
 

  J=NIPE(NNODE - K) 
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C ******* L = LINK NO. 
 

  IF (SUM1(J).NE.ZERO) THEN 
    TEMP=D(JX,J) + XSUM(J) 

       IF (TEMP.NE.ZERO) THEN 
                   DO 105 L=1,NLINK 
          IF ( NTONODE(L) .EQ. J. AND. 
        &      W(L).NE.ZERO ) THEN 

X(L)= ( TEMP ) * ( W(L)/SUM1(J) ) 
  XSUM(NFMNODE(L))=XSUM(NFMNODE(L))+X(L) 
          ENDIF 
 105       CONTINUE 

  ENDIF 
ENDIF  

 110  CONTINUE 
 

RETURN 
END 
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*************************************************************** 
*****            START OF MSA SUBROUTINE                      **** 
*************************************************************** 
 

SUBROUTINE  MSA 
 
C IN THIS SUBROUTINE THE MODIFIED MSA 
C IS IMPLEMENTED TO DETERMINE THE EQUILIBRIUM SOLUTION. 
       

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 

INTEGER LIMIT,  LIM3 
PARAMETER (LIMIT=21000,LIM3=8000) 

 
LOGICAL NPOSSLST(LIMIT) 

 
INTEGER ITNUM, MAXMSA 

 
DOUBLE PRECISION ZERO, DIFF, 

        & ERRMAX, ERRCRIT, FIT, YGUESS(LIMIT),  
        & DA(LIMIT),XT(LIMIT),CONST(LIMIT) 
 

COMMON /KSINPUT1/ NNODE, NUMORG, 
        & NEXT(7400), NPRED(7400), 
        & NTONODE(20400),NFMNODE(20400),XGUESS(20400), 
        & GLINK(20400,2),SLINK(20400,4), CLINK(20400,6),NIPE(7400)                       
 

COMMON /KSINPUT2/ ABI(7400),  
        & D(1200,7400),NLINK, NPOINT(7400) 
       COMMON /KSINPUT2A/ THETA 
       COMMON /KSINPUT3/ IDERIV,  NPOSS, NPOSSLST  
       COMMON /KSINPUT4/ NUMB, NAME      
 
      ZERO    = 0.0D+0 
       MAXMSA  = 32000 
       ERRCRIT = 1.0D-01 
 
C THE RESULTS FILE IS AN INPUT/OUTPUT FILE USED TO RECORD 
C THE CURRENT ITERATION SOLUTION AND IF THE PROGRAM HAS TO 
C BE INTERRUPTED THEN THIS ALSO SERVES AS THE INPUT FILE 
C TO RESTART THE PROGRAM FROM THAT POINT. 
 
       OPEN (UNIT=50,FILE='RESULTS',STATUS='OLD') 
       READ(50,*) ITNUM, ERRMAX 
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       DO 111 K=1,NLINK 
           READ(50,*) XGUESS(K), YGUESS(K) 
 111   CONTINUE 
       CLOSE(50) 
 
C THE INPUT FILES FOR THE DIFFERENT NDPS WERE SET UP SLIGHTLY 
C DIFFERENTLY, SO THE PROGRAM DETERMINES WHICH PROBLEM IT IS 
C AND SETS UP THE PARAMETERS ACCORDINGLY 
 
C PROBLEM 2 IS WASECA. 
 

IF (NUMB.EQ.2) THEN 
  DO 22 K=1,NLINK 
    IF (NPOSSLST(K)) THEN 
      CONST(K)= ((( 1 / CLINK (K,2) )* 

         &      ( (SLINK(K,1)/GLINK(K,2)) - 1 ) )**(2.5D-01)) 
    ENDIF 

 22       CONTINUE 
       ENDIF 
 
C PROBLEM 1 IS LITTLE, AND 3 IS THE TWIN CITIES 
 

IF (NUMB.NE.2) THEN 
   DO 23 K=1,NLINK 
                IF (NPOSSLST(K)) THEN 

       CONST(K)= GLINK(K,2) 
                ENDIF 
 23     CONTINUE 

ENDIF 
 
C THIS IS THE BEGINING OF THE METHOD OF SUCCESSIVE AVERAGES 
C ITERATIVE PROCESS. THIS RUNS EITHER UNTIL THE ERROR IS LESS  
C THAN THE TOLERANCE SPECIFIED, OR UNTIL A PRESET MAXIMUM NO. 
C OF ITERATIONS IS REACHED. 
 

ITNUM=0 
 100   IF (ITNUM.LT.MAXMSA) THEN  
           ITNUM=ITNUM+1  
 
C THIS UPDATES THE EXPANSION VARIABLE FOR EACH LINK, IF THE 
C LINK IS A CANDIDATE AND THE V/C RATIO IS GREATER THAN 
C LOS CONSTRAINT, THEN THE LINK IS EXPANDED, OTHERWISE 
C IT IS LEFT ALONE. 
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         DO 5 K=1,NLINK 
             IF(NPOSSLST(K))THEN              
                TEMP=(XGUESS(K)/CONST(K))-CLINK(K,3) 
                YGUESS(K)=MAX(ZERO,TEMP) 
              ENDIF 
 5 CONTINUE            
 
C NOW THE TRAVEL TIME IS ADJUSTED TO ACCOUNT FOR CURRENT 
C TRAFFIC ASSIGNMENT. 
 

DO 110 K=1,NLINK 
  CAP = CLINK(K,3) 
  IF(NPOSSLST(K))THEN 
    CAP = CAP + YGUESS(K) 
  ENDIF 
  VC = (XGUESS(K)/CAP) 
  IF(NPOSSLST(K))THEN 
    IF (YGUESS(K).GT.ZERO) THEN 
      CLINK(K,4)=CLINK(K,1)* 

        &   (1.0D+0+1.5D-01*CONST(K)**4.0D+0) 
    ELSE 

                  CLINK(K,4)=CLINK(K,1)* 
         & (1.0D+0+1.5D-01*(VC)**4.0D+0) 
                ENDIF 
             ELSE 
      CLINK(K,4)=CLINK(K,1)* 
          & (1.0D+0+1.5D-01*(VC)**4.0D+0) 

  ENDIF 
  DA(K)=ZERO 
  XT(K)=ZERO 

 110 CONTINUE 
 
C USING THE CURRENT CONGESTED TVL TIMES, NEW SHORTEST PATHS 
C ARE CALCULATED AND A NEW TRAFFIC ASSIGNMENT CARRIED OUT, 
C THIS GIVES THE AUXILIARY LINK FLOW PATTERN. 
 
  DO 120 J=1,NUMORG 

  CALL SHPTHL(J)       
  CALL INDEXX 
  CALL STOCHO(J,XT) 
  DO 115 K = 1, NLINK 

 115     DA(K) = DA(K) + XT(K) 
 120      CONTINUE 

  ERRMAX = ZERO 
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   FIT = FLOAT(ITNUM) 
 
C THE NEW FLOW IS THEN FOUND (THIS IS THE 'MOVE' DIRECTION), 
 
 

  DO 130 K = 1, NLINK 
     DIFF = DA(K) - XGUESS(K) 
     ERRMAX = DMAX1(ERRMAX,DABS(DIFF)) 
     XGUESS(K) = XGUESS(K) + DIFF/FIT 
 130   CONTINUE 
   
C WRITE TO OUT FILE TO KEEP A RECORD OF CONVERGENCE. 
 

  WRITE(3,*) 'ITNUM = ', ITNUM, ', ERRMAX = ', ERRMAX 
 
C KEEPING TRACK OF CURRENT RESULT EACH ITERATION. 

  OPEN (UNIT=4,FILE='RESULTS',STATUS='UNKNOWN') 
  WRITE(4,*) ITNUM, ERRMAX 
  DO 12 K=1,NLINK 
    WRITE(4,'(2E20.10)')XGUESS(K),YGUESS(K) 

 12       CONTINUE 
  CLOSE (4) 

 
C IF CONVERGENCE IS ATTAINED THEN WE'RE DONE, OTHERWISE WE 
C GO BACK AND DO ANOTHER ITERATION. 
C *** ERRMAX IS CURRENT SOL'NS DIFF IN ASSIGNMENT FROM PREVIOUS, 
C *** ERRCRIT IS DESIRED CONVERGENCE TOLERANCE. 
 

  IF (ERRMAX.GT.ERRCRIT) GOTO 100 
 

ENDIF 
C IF CONVERGENCE IS REACHED, WRITE FINAL RESULTS TO OUT. 
         

WRITE(3,*) ITNUM, ERRMAX       
          DO 11 K=1,NLINK 
             CAP=CLINK(K,3) 
              ID=0 
              IF (SLINK(I,1).EQ.1.OR.SLINK(I,1).EQ.2) THEN 
                ID=1 
              ENDIF 
              IF(NPOSSLST(K))THEN 
                CAP=CAP+YGUESS(K) 
              ENDIF 
              VC = (XGUESS(K)/CAP)          
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              WRITE(3,'(3E14.5)')XGUESS(K),YGUESS(K), CLINK(K,4) 
 11     CONTINUE     
     
C *** DONE WITH MSA SUBROUTINE 
  

RETURN 
END 
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APPENDIX C  
NETWORK DATA 
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Table C-1 "Waseca" Link Parameters 

Link      A - B Capacity Link Length Free-flow 
speed 

Link     
A - B Capacity Link 

Length 
Free-flow 

speed 
01 - 48 2400 0.23 15 39 - 26 1200 0.74 40 
01 - 54 2400 0.22 15 39 - 38 1200 0.32 40 
01 - 57 2400 0.28 15 40 - 38 1200 0.62 40 
02 - 31 2400 0.33 15 40 - 41 1200 0.24 40 
02 - 32 2400 0.18 15 40 - 45 1200 0.11 40 
02 - 33 2400 0.23 15 40 - 47 1200 0.75 40 
02 - 54 2400 0.25 15 41 - 09 2400 0.21 15 
03 - 55 2400 0.12 15 41 - 40 1200 0.24 40 
03 - 56 2400 0.09 15 41 - 42 1200 0.51 40 
03 - 69 2400 0.13 15 41 - 44 1200 0.85 40 
04 - 47 2400 0.23 15 42 - 10 2400 0.08 15 
04 - 48 2400 0.23 15 42 - 41 1200 0.51 40 
05 - 51 2400 0.23 15 42 - 43 1200 0.27 40 
05 - 58 2400 0.57 15 43 - 42 1200 0.27 40 
05 - 59 2400 0.41 15 43 - 44 1200 0.37 40 
06 - 21 2400 0.10 15 44 - 11 1200 1.68 40 
07 - 27 2400 0.12 15 44 - 41 1200 0.85 40 
07 - 36 2400 0.28 15 44 - 43 1200 0.37 40 
08 - 46 2400 0.70 15 45 - 40 1200 0.11 40 
08 - 51 2400 0.26 15 45 - 46 1200 0.38 40 
09 - 41 2400 0.21 15 46 - 08 2400 0.70 15 
10 - 42 2400 0.08 15 46 - 45 1200 0.38 40 
11 - 44 1200 1.68 40 46 - 50 1200 0.67 40 
12 - 67 1200 0.86 40 47 - 04 2400 0.23 15 
13 - 63 1200 1.30 40 47 - 40 1200 0.75 40 
14 - 18 1200 0.88 40 47 - 49 1200 0.23 40 
15 - 25 1200 0.29 40 47 - 56 1200 0.17 40 
16 - 39 2400 1.00 15 48 - 01 2400 0.23 15 
17 - 66 2400 1.52 15 48 - 04 2400 0.23 15 
18 - 14 1200 0.88 40 48 - 49 1200 0.22 40 
18 - 19 1200 0.40 40 48 - 50 1200 0.22 40 
19 - 18 1200 0.40 40 49 - 47 1200 0.23 40 
19 - 20 1200 0.06 40 49 - 48 1200 0.22 40 
19 - 24 1200 0.47 40 49 - 54 1200 0.27 40 
20 - 19 1200 0.06 40 49 - 55 1200 0.16 40 
20 - 21 1200 0.08 40 50 - 46 1200 0.67 40 
20 - 22 1200 0.47 40 50 - 48 1200 0.22 40 
21 - 06 2400 0.10 15 50 - 51 1200 0.60 40 
21 - 20 1200 0.08 40 50 - 52 1200 0.12 40 
21 - 34 1200 0.37 40 51 - 05 2400 0.23 15 
22 - 20 1200 0.47 40 51 - 08 2400 0.26 15 
22 - 23 1200 0.09 40 51 - 50 1200 0.60 40 
22 - 68 1200 0.06 40 51 - 67 1200 0.60 40 
23 - 22 1200 0.09 40 52 - 50 1200 0.12 40 
23 - 24 1200 0.04 40 52 - 53 1200 0.10 40 
23 - 26 1200 0.28 40 53 - 52 1200 0.10 40 
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24 - 19 1200 0.47 40 53 - 58 1200 0.39 40 
24 - 23 1200 0.04 40 54 - 01 2400 0.22 15 
25 - 15 1200 0.29 40 54 - 02 2400 0.25 15 
25 - 26 1200 0.09 40 54 - 49 1200 0.27 40 
26 - 23 1200 0.28 40 54 - 62 1200 0.25 40 
26 - 25 1200 0.09 40 55 - 03 2400 0.12 15 
26 - 27 1200 0.17 40 55 - 31 1200 0.15 40 
26 - 39 1200 0.74 40 55 - 49 1200 0.16 40 
27 - 07 2400 0.12 15 56 - 03 2400 0.09 15 
27 - 26 1200 0.17 40 56 - 35 1200 0.11 40 
27 - 28 1200 0.09 40 56 - 47 1200 0.17 40 
28 - 27 1200 0.09 40 57 - 01 2400 0.28 15 
28 - 29 1200 0.18 40 57 - 58 1200 0.35 40 
28 - 35 1200 0.26 40 57 - 62 1200 0.18 40 
29 - 28 1200 0.18 40 58 - 05 2400 0.57 15 
29 - 30 1200 0.12 40 58 - 53 1200 0.39 40 
29 - 68 1200 0.24 40 58 - 57 1200 0.35 40 
30 - 29 1200 0.12 40 58 - 60 1200 0.21 40 
30 - 31 1200 0.12 40 59 - 05 2400 0.41 15 
30 - 32 1200 0.32 40 59 - 60 1200 0.52 40 
31 - 02 2400 0.33 15 59 - 61 1200 0.50 40 
31 - 30 1200 0.12 40 60 - 58 1200 0.21 40 
31 - 55 1200 0.15 40 60 - 59 1200 0.52 40 
31 - 69 1200 0.10 40 61 - 59 1200 0.50 40 
32 - 02 2400 0.18 15 61 - 66 1200 0.79 40 
32 - 30 1200 0.32 40 62 - 33 1200 0.22 40 
32 - 34 1200 0.23 40 62 - 54 1200 0.25 40 
33 - 02 2400 0.23 15 62 - 57 1200 0.18 40 
33 - 34 1200 0.19 40 62 - 64 1200 0.93 40 
33 - 62 1200 0.22 40 63 - 13 1200 1.30 40 
34 - 21 1200 0.37 40 63 - 64 1200 0.15 40 
34 - 32 1200 0.23 40 64 - 62 1200 0.93 40 
34 - 33 1200 0.19 40 64 - 63 1200 0.15 40 
35 - 28 1200 0.26 40 64 - 65 1200 0.44 40 
35 - 37 1200 0.35 40 65 - 64 1200 0.44 40 
35 - 56 1200 0.11 40 65 - 66 1200 0.49 40 
35 - 69 1200 0.07 40 66 - 17 2400 1.52 15 
36 - 07 2400 0.28 15 66 - 61 1200 0.79 40 
36 - 37 1200 0.20 40 66 - 65 1200 0.49 40 
36 - 38 1200 0.36 40 67 - 12 1200 0.86 40 
37 - 35 1200 0.35 40 67 - 51 1200 0.6 40 
37 - 36 1200 0.20 40 68 - 22 1200 0.06 40 
38 - 36 1200 0.36 40 68 - 29 1200 0.24 40 
38 - 39 1200 0.32 40 69 - 03 2400 0.13 15 
38 - 40 1200 0.62 40 69 - 31 1200 0.10 40 
39 - 16 2400 1.00 15 69 - 35 1200 0.07 40 
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Table C-2 "Waseca" Travel Demand Matrix 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 59 47 20 15 15 17 55 67 26 72 84 24 49 59 19 133 58 
2 48 47 17 12 11 17 56 54 24 67 77 98 41 60 18 138 50 
3 32 27 4 5 7 15 51 48 22 69 80 81 21 42 1 151 3 
4 20 16 2 4 5 9 27 30 15 42 46 52 13 24 3 80 7 
5 18 15 6 4 7 5 22 37 10 32 37 64 13 20 4 59 14 
6 12 10 8 5 3 2 10 8 3 5 7 19 15 16 12 10 30 
7 45 45 31 18 17 13 66 50 22 60 70 100 48 61 40 130 76 
8 57 46 31 22 26 12 51 83 24 65 75 181 53 53 31 102 86 
9 19 17 13 8 7 4 19 22 15 35 42 44 21 19 14 46 38 

10 54 46 43 26 22 7 51 55 33 113 116 114 60 50 46 100 110
11 61 56 48 30 24 10 60 65 39 121 261 137 70 60 50 126 128
12 115 89 50 37 50 28 114 199 54 150 173 601 96 110 47 255 139
13 56 50 14 11 13 24 64 71 31 89 104 122 109 73 12 172 61 
14 52 52 25 17 15 22 68 56 23 65 74 106 56 141 34 159 80 
15 31 30 3 4 6 20 64 48 24 71 81 79 19 55 0 204 0 
16 86 87 91 49 37 8 90 70 34 76 92 166 109 107 129 203 226
17 96 82 6 12 24 51 124 141 61 182 208 230 98 132 0 368 0 

 
 
 
 
 
 

 


