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EXECUTIVE SUMMARY

 Approximately one fourth of the fatalities on rural roads are caused by some form of loss 

of control in which the vehicle leaves the lane.  Most such incidents are due to driver fatigue, 

drowsiness and inattention.  Our long term goal is to be able to sense when loss of driver control 

is imminent and then have the control system actively intervene by keeping the vehicle in its lane 

until it is safe to steer the vehicle over to the side of the road and bring it to a stop.  Our near 

term goals are to demonstrate technologies which assist the driver with safe lanekeeping.  This 

document describes the control subsystems including the sensing and control of steering, throttle 

and brakes, and their experimental validation on a full-size truck tractor. 

 We use a Differential Global Positioning System (DGPS) to sense position and velocity 

since it appears that this method offers adequate precision with a low enough infrastructure cost 

to make the system practical in most rural settings.  A basic set of lateral and longitudinal control 

algorithms are developed and implemented on a standard PC compatible computer.  Experiments 

performed with a full sized (class 8) truck tractor are documented.  These experiments were 

performed at the Minnesota Road Research Project (Mn/ROAD) test track, a pavement testing 

facility run by the Minnesota Department of Transportation (Mn/DOT). 

 The longitudinal (throttle and brake) controller is somewhat limited in performance due 

to the fact that we currently are not sensing which gear the transmission is in.  Nonetheless, it is 

shown that a proportional-derivative (PD) control algorithm with the addition of a feedforward 

term is able to maintain speed within one or two miles per hour of the commanded velocity.  



This is quite adequate for the intended purpose of automatically driving the vehicle long enough 

so that it can be brought to a stop at a safe place on the shoulder. 

 A number of lateral (steering) control algorithms were implemented and tested.  The 

lateral position error is calculated based on the difference between the current DGPS sensed 

position of the truck and the lane centerline determined from a previously acquired map 

database.  We examined both look down algorithms (which use no preview of the road ahead) 

and a pursuit algorithm.  To both algorithms we added a damping term which feeds back the 

position of the steering wheel.  The lookdown lateral controller did not do well in entering sharp 

curves.  The pursuit algorithm that we examined uses successive DGPS position readings to 

calculate the heading of the truck.  By using the heading calculated in this manner, along with 

the lateral position, and the position of a point on the desired path ahead of the truck, an angle 

was computed that steered the front wheels toward the point on the path ahead.  The addition of 

the damping term based on steering wheel position eliminated a tendency towards instability at 

higher speeds.  This controller performed well over a large range of speeds on straight sections 

and while negotiating curves, but was limited to 50 mph due to test track constraints. 

 The steering algorithms that we examined did not use a rate gyro to sense the yaw rate of 

the vehicle.  In this report, we intentionally avoided the use of a rate gyro in order to determine 

the achievable performance with a lower cost suite of sensors.  It may become necessary to use a 

gyro to help stabilize the steering controller in the future when our experiments reach speeds in 

excess of 50 mph. 

 Two applications were developed.  The first was a virtual rumble strip that gives the 

driver haptic feedback through the steering wheel when the vehicle leaves the lane.  The virtual 

rumble strip vibrates the steering wheel in a manner similar to that caused by the real rumble 



strips installed on the shoulder of some highways, but no attempt is made to steer the vehicle.  A 

virtual rumble strip, which does not require physical modification to the pavement, can be 

incorporated while driving on undivided highways to keep drivers from drifting into oncoming 

traffic. 

 The second application monitors the steering performance of the human driver and 

actively intervenes if the system senses a prolonged period of erratic driving.  A confidence 

factor is proposed for triggering intervention.  The system then activates the automatic lateral 

and longitudinal controllers which keep the vehicle in its lane until it is steered over to a safe 

area on the shoulder of the road and parked. 
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CHAPTER 1

Introduction

1.1 Objectives—The SAFETRUCK Program 

 The research described in this study involves the lateral (steering) and longitudinal 

(throttle and braking) control of a full size truck tractor.  The primary position sensor we use is a 

Differential Global Positioning System (DGPS) receiver.  The motivation for this work is the 

fact that, according to the National Highway Traffic Safety Administration’s Fatality Analysis 

Reporting System, one fourth of all 1997 fatalities in the United States were the result of single 

vehicle run-off-the-road crashes where the driver has either fallen asleep or lost control for some 

other reason.  Our current work and the topic of this report is to demonstrate that real time DGPS 

can be used successfully in a control system to keep a vehicle in its lane and, if necessary, pull it 

over to the shoulder of the road and bring it to a safe stop.  The problem of sensing when exactly 

the driver has lost the ability to safely drive is beyond the scope of this report.  We are not 

proposing to drive a vehicle autonomously if the driver is capable and alert, but rather to add a 

backup system that would operate in cases where the driver has for some reason become 

impaired and is unable to control the vehicle.  We are also concurrently involved in collision 

avoidance research using a concept called the Virtual Bumper [Schiller 97].  The controllers we 

develop in this report are also used to execute commands generated by the Virtual Bumper. 

 There are a number of institutions doing research in the area of autonomous vehicle 

control.  These researchers have used position sensors ranging from computer vision systems to 
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magnetic nails embedded in the pavement.  None of these sensing systems, however, are well 

suited for deployment in Minnesota. Magnetic nails are expensive to install in the pavement and 

may create road maintenance problems when exposed to repeated freeze-thaw cycles.  Computer 

vision systems would not be able to operate when visibility is obscured by snow.  We believe 

that DGPS provides an accurate sensing technology, unaffected by poor visibility, that can be 

implemented with a relatively low infrastructure cost and is therefore one of the most promising 

positioning sensing systems for intelligent transportation systems. 

 In the work described here, we assume the truck is alone on the road.  Other related 

research on radar and DGPS communication presently underway in our group would address the 

issue of collision avoidance with other vehicles on the road. 

 The goal for the work described in this paper has been to develop a basic control system 

using a minimal cost suite of sensors and the simplest control algorithms possible.  This system 

will then be used as the foundation for further research and will be enhanced as experimentation 

with SAFETRUCK continues. 

1.2 Report Outline 

 This introductory chapter concludes with an overview of the facilities used to perform 

experiments: the Minnesota Road Research Project (Mn/ROAD) test roads, the Navistar truck 

tractor used as a test vehicle, and the DGPS receiver used as a position sensor.  Chapter two 

deals with control of longitudinal velocity, starting out with an analysis of some complications 

associated with using successive DGPS position measurements to calculate speed, and 

continuing through the development of throttle and brake control algorithms.  Chapter three 
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covers the implementation of several of steering control algorithms.  Chapter four describes the 

hardware and software used in the experiments.  Finally, chapter five discusses two possible 

applications of the sensing and control technology developed in the earlier chapters. 

1.3 Minnesota Road Research Project 

 The experiments described herein were performed at the Mn/ROAD test road facilities of 

the Minnesota Department of Transportation (Mn/DOT) in Otsego, Minnesota.  Operated by the 

Office of Minnesota Road Research, this facility, which opened in 1994, is a pavement testing 

facility with two separate test roadways.  One of these is a 3.5 mile long section of freeway 

parallel to I-94 that regularly carries all northbound I-94 traffic.  The other roadway is a 2.6 mile 

long loop called the Low Volume Road that is not open to the public and is therefore a location 

for the experiments with a computer controlled truck. 

 The Low Volume Road, shown in Figure 1.1, is a two-lane road consisting of two parallel 

straightaways.  Each straightaway consists of several 500 ft long segments constructed with 

different types and thicknesses of asphalt, concrete, and gravel.  The straightaways are connected 

with loops consisting of an 82 degree curve in one direction and a 262 degree curve in the other 

direction. The radius of all curves is 275 ft at the centerline.  These curves are fairly sharp and 

are atypical of most rural roads.  The abrupt changes in curvature at the points labeled a, b, c, d, e 

and f in Figure 1.1 present a significant challenge for the lateral control algorithm. 
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Figure 1.1: Layout of the Low Volume Road test track at the Minnesota Road Research Center. 

1.4 International Navistar 9400 Experimental Testbed 

The vehicle we are experimenting with is a full sized (class 8) truck tractor designed to 

pull a semitrailer hauling freight over long distances. It is manufactured by the Navistar 

International Transportation Company in Fort Wayne, Indiana.  We will refer to this vehicle as 

SAFETRUCK.  It is a conventional truck tractor layout with one steering axle in front and two 

tandem load carrying axles with dual wheels in the rear.  A fifth wheel hitch is positioned over 

the tandem axles and is used to connect the tractor to a semitrailer. 

 The truck is powered by a Caterpillar 3406B six cylinder, 400 hp diesel engine controlled 

by Caterpillar’s Programmable Electronic Engine Control (PEEC) system.  The PEEC system 

uses a five volt 600 Hz pulse width modulated signal to control throttle position. 

 The transmission is the one component on our test vehicle that would not normally be 

seen on a typical over-the-road truck.  In order to reduce the complexity of our control 

mechanisms, we specified a six speed Allison Heavy Duty automatic transmission instead of the 

more typical 13 speed manual transmission most class 8 trucks use.   

 We have modified the electrical system of the Navistar rig to accommodate the extra 

power requirements of our experiments.  The stock 12 volt alternator has been replaced with a 
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much larger 28 volt unit.  This higher voltage is used to power an inverter that furnishes 120 

volts AC and a voltage splitter that supplies the 12 volts used to charge the stock truck batteries 

and to power the normal electrical functions of the truck.  A separate set of two 12 volt batteries 

connected serially supplies the inverter when the engine is not turning the alternator.  This setup 

provides a range of AC and DC voltages with which to power our experiments. 

1.5 Differential GPS 

The Global Positioning System (GPS) consists of 24 earth orbiting satellites and a set of 

monitoring and control stations on the ground.  The satellites orbit at an altitude of 10,898 

nautical miles circling the earth approximately once every 12 hours [Novatel 95].  At any given 

time, there are between 6 and 12 satellites above the horizon at any point on the earth’s surface.  

Each satellite broadcasts a stream of data that includes the precise time that the signal left the 

satellite.  A receiving station on the ground can calculate the distance to a satellite by processing 

the signal from that satellite.  If the distance to several satellites is known, then the position of 

the receiver can be calculated, since the position of the satellites are known.  For a variety of 

reasons (timing errors, propagation delays in the ionosphere, the deliberate dithering of the 

signals by the military referred to as selective availability, etc.) the accuracy of this calculation 

(called a single point fix) is limited.  Errors on the order of fifty meters are typical for a single 

point fix. 

 To obtain the much greater accuracy needed to control the position of a vehicle on a road 

requires the sophisticated implementation of a simple idea.  That simple idea is to add another 

ground based receiving station (the monitor station) at a known location in the same general area 

as the receiver at the location being determined (the roving station).  The monitor station 

compares the location it calculates from the satellite signals with its known location and 
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determines the difference between them.  This position error or differential correction is then 

transmitted to the roving station to correct the position that it is calculating based on the same 

satellite signals.  Using a differential correction based on analyzing the phase of the GPS carrier 

frequencies, (usually referred to as carrier phase correction), the currently used Novatel RT-20 

DGPS is typically capable of dynamically tracking the location of the Navistar truck tractor to 

well within 20 cm [Bodor et al. 97].  In order to achieve this level of accuracy a Real Time 

Kinematic (RTK) method is used.  More on this subject can be found in [Novatel 95]. 
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CHAPTER 2

Longitudinal Control 

2.1 Overview

This chapter describes the control of throttle and braking systems on the SAFETRUCK 

experimental testbed.  There are two goals we wish to accomplish here.  First of all we need to be 

able to regulate velocity when the SAFETRUCK has assumed automatic control and is in the 

process of “searching” for a safe place to park and when it subsequently pulls over to the side of 

the road and stops.  We expect that a digital map on board the vehicle would identify such safe 

areas for pulling off the road.  The second objective is to develop low level hardware and software 

that will be used in the future by the higher level software of the Virtual Bumper.  In both cases 

the quantity directly controlled by the system we describe here will be the longitudinal velocity, 

not the longitudinal position, of the truck. 

2.2 Literature Review

Over the last 30 years or so there has been an extensive amount of research published on 

the lateral and longitudinal control of vehicles, but the quality of the information reported is 

sometimes less than what one might hope for.  Shladover [Shladover 95] presents an excellent 

overview of the literature over these years (up to 1995) and also gives this caveat: 

“There is a serious paucity of real vehicle test data reported in the literature.  Most 
papers have been based on analyses and computer simulations, without 
experimental verification.  This is in large part because of the serious investment of 
time and resources needed to implement AVCS experimentally, but nevertheless it 
significantly limits the usefulness of much of the literature.  Even the papers that 
include some experimental results tend to be rather vague about quantitative 
values, and rely more heavily on plots of test results that give the reader only a 
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qualitative sense of what has been accomplished.  This makes it difficult to assess 
the true value of the reported results or to compare the results achieved by different 
researchers.  Because of proprietary concerns, most of the existing experimental 
data have not even been reported publicly.”

 There are two additional reasons why a large part the longitudinal control literature is not 

pertinent to the work reported in this paper. 

 First, we do not currently have the ability to sense any of the internal states of the engine 

and transmission that would enable us to utilize an analytical longitudinal model of the Navistar’s 

dynamics.  In the future, we hope to upgrade and then gain access to the vehicle data bus, which 

should at least let the control computer determine which gear the transmission is in.  This 

information along with the sensing of manifold pressure, etc. will enable us to design a more 

sophisticated throttle controller. 

 Second, most of the recent work done in the field of longitudinal vehicle control 

concentrates on the difficult problem of maintaining stability in a platoon of several vehicles 

traveling at high speed with very small intervehicle spacing.  Since the focus of this paper is on 

controlling the speed of a single vehicle, we have a much simpler problem to solve.  Concurrent 

work on the virtual bumper concept here at the University of Minnesota deals with the interaction 

of several vehicles and will be reported separately. 

 In the early 1970’s [Garrard and Kornhauser 73] designed a longitudinal controller for an 

automated transit system.  They used a first order lag to approximate the power unit (engine and 

brakes) of a transit vehicle and then optimized the control law that provided input to that power 

unit by minimizing a quadratic performance index.  They used headway error, velocity error, 

acceleration error and rate of change of propulsive force as the system states that were minimized 

in the optimization.  After the control law had been calculated, they then assumed that the 
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measurement of acceleration error and of rate of change of propulsive force would be difficult to 

measure so they designed an observer to estimate these quantities from measurements of position 

and velocity errors.  Their simulations showed that the controller they designed would 

satisfactorily control the vehicle during merging maneuvers, emergency stops, and normal 

mainline operation. 

 [Hedrick et al. 91] describe a nonlinear throttle and brake controller designed using a 

multiple surface sliding control method.  In simulations of a two- car platoon, the controller kept 

the spacing error to within 4 cm.  Simulations of a four-car platoon revealed that the spacing error 

was amplified toward the rear of the platoon.  This problem was remedied by communicating the 

lead car’s velocity to the rest of the platoon and using it as a feedforward term in their controllers.  

This strategy resulted in attenuation of the spacing errors rather than amplification.  In [Rajamani 

et al. 98] a high level sliding surface controller similar to the one above was augmented with a low 

level controller designed using feedback linearization techniques.  This low level controller 

utilized an experimentally derived map that used manifold pressure and engine speed to predict 

the engine torque for a given throttle setting.  The resulting controller was successfully used at the 

National Automated Highway Systems Consortium demonstration in San Diego in August of 

1997, where it controlled a platoon of eight passenger cars performing maneuvers typical of those 

required on an automated highway system. 

 [Fancher et al. 93] used typical tractor-semitrailer parameters to simulate a proportional-

integral (PI) throttle controller maintaining headway.  No brake control was attempted.  The 

simulation showed that the PI controller performed adequately for gross vehicle weights from 

30,000 lb to 80,000 lb. 
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 [Xu and Ioannou 94] designed an adaptive throttle controller to compensate for changes in 

the load carried by a passenger car.  They used a simple first order model for the longitudinal 

dynamics (assuming that the car was in a “fixed gear state”) to design the controller.  Experiments 

were performed on an actual vehicle and the results showed almost no steady state error. 

 More recently, researchers at UCLA have investigated the problems associated with 

controlling heavy vehicles that have delays in their brake actuation systems.  Due to the long 

distance the pneumatic control signal has to travel to get to the valve that controls the rear brakes 

on a semitrailer, there is a pure time delay of about 200 milliseconds followed by a roughly first 

order lag with a rise time of about 300 milliseconds [UMTRI 1997].  In [Yanakiev and 

Kanellakopoulos 96] the UCLA group present an adaptive proportional-integral-quadratic (PIQ) 

control law.  They attempt to control the headway in a platoon of trucks in which they stabilize the 

platoon by using a variable time headway and a variable separation error gain in the calculation of 

the error that their PIQ controller tries to minimize.  They define this error as the sum of the 

relative velocity between the leading and following vehicle and a design constant (the separation 

error gain) times the separation error.  In order to accommodate the actuation lag in the air brake 

system they present an adaptive backstepping controller in [Yanakiev and Kanellakopoulos 97a].

The backstepping controller is able to successfully control the platoon using smaller headways 

that the original PIQ controller.  They further enhanced their controller in [Yanakiev and 

Kanellakopoulos 97] by adding a first order linear model, to approximate the vehicle dynamics, 

which functions as a predictor of the errors in velocity and intervehicle spacing.  Simulations 

showed that the controller with the predictor allowed smaller headways and gave smoother control 

during normal driving, but was less robust during extreme maneuvers. 
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 In [Rajamani et al. 97] the problem of overall system reliability is addressed.  A diagnostic 

system is designed that uses a set of nonlinear observers to identify faults in the sensors and 

actuators used in a longitudinal control system.  Combinations of sensor readings and observer 

estimates are processed and it is shown that any individual faulty component can be identified. 

2.3 Sensing speed with GPS 

A sensor in any real time control system must meet at least three criteria.  First, it must be 

accurate enough to give the control algorithms a good estimate of the error between where the 

system is and where it has been commanded to go.  Second, the output of the sensor must come at 

a fast enough rate so that the state of the system does not change too much between samples.  

Third, there should not be too much internal delay (latency) between the time the sensor measures 

the system and the time that it reports that information to the controller.  In this section we will 

evaluate how well DGPS fulfills these three requirements. 

 Most real time GPS systems have the internal ability to calculate speed.  The Novatel RT-

20 system we are using, for instance, has two different output logs that include velocity and 

heading.  Unfortunately these logs do not also include position and for the lateral controller 

described in the next chapter a reliable, periodic and accurate position signal is of paramount 

importance.  For this reason we use Novatel’s P20A log which, according to the manufacturer, 

gives the best available position computed by the receiver.  We then take the distance between 

two successive DGPS readings and divide by the time between the readings to compute the 

velocity of the truck.  The static and dynamic performance of the RT-20 system has been 

documented in earlier work we have done [Bodor et al. 97] and [Bajakar et al. 97], however there 
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are two aspects of this DGPS signal that were not covered in that work that are important to 

consider before we use the signal to control a vehicle. 

 The first, and most important from the standpoint of calculating velocity, is the length of 

the time period between DGPS readings.  Since we are using this time period to calculate velocity 

we need to make sure that it correlates properly with the position measurements.  The Novatel 

RT-20 is rated by the manufacturer as being able to provide data at 5 Hz.  As Figure 2.1 shows, 

however, the period between successive readings arriving at the serial port of the control computer 

from the DGPS receiver is not always close to 0.2 second when the receiver has been initialized to 

provide data at this rate.  To make sure this variability was the result of latencies in the DGPS 

system not the control computer, another computer was programmed to send out a simulated 

DGPS string at a regular rate and the timing test shown in Figure 2.1 was repeated.  With all the 

control tasks running on the control computer the largest difference in period measured was 

approximately one millisecond as opposed to over fifty milliseconds using the real DGPS signal.  

There is clearly a variable latency in the RT-20 signal when it is running in continuous mode. 
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Figure 2.1:  Variable time interval between “5Hz” RT-20 position signals for 200 consecutive 
samples. 

 The string of data from the DGPS receiver has, in addition to the position measurements, a 

time stamp that increases in increments of exactly 0.20 seconds if no readings have been lost.  At 

sample 95 in the Figure 2.1 there has been a long enough delay in calculating a position that one 

entire reading has been skipped.  The DGPS time stamp will increase by 0.40 seconds increment 

in this situation. 

 In any case, this internal time stamp correlates with the time that the DGPS unit calculates 

its position.  It is the difference between these internal time stamps that should be used to 

calculate velocity, not the difference between the time that successive positions actually arrive 

over the serial port from the RT-20 system. 
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 The second property of the RT-20 signal we need to keep in mind concerns the “age” of 

the differential correction.  The Novatel RT-20 system computes a differential correction in real 

time at a rate of about once every two seconds.  This can be seen in Figure 2.2 where the 

correction typically ages for 8 or so samples before resetting.  As the correction ages the 

positional accuracy is diminished.  This results in a fairly regular pattern of noise in the signal at 

the same rate that the correction is updated.  This roughly 0.5 Hz error pattern in the DGPS signal 

must be considered in the design of any digital filters used in the system. 

2.4 Throttle Control 

2.4.1  Nonlinearities in Throttle Response 

In spite of some significant nonlinearities in the response of the truck to changes in throttle 

position, the throttle turns out to require the least complicated algorithm of all the subsystems we 

are investigating here.  The nonlinearities arise from the fact that the Caterpillar 3406B PEEC 

engine in the International Navistor 9400 has some internal control algorithms of its own, and are 

due to the coupling between these internal engine control algorithms and the Allison automatic 

transmission.  Figure 2.3 graphs the steady state speed attained at a range of throttle settings on a 

level road without a trailer attached.  The bottom line on the graph (marked with x’s) shows the 

steady state velocity attained as the throttle is increased.  The speed increases linearly from about 

4mph at idle (0%) to 10 mph at a throttle setting of 40%.  At the 40% position the transmission 

will automatically shift into second gear creating a slightly greater load on the engine.  The PEEC 

engine responds by increasing its torque output even though the external control signal applied is 

constant at 40%. 
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Figure 2.2:  The effect of the age of the differential correction on positional accuracy.  The 
varying amount of time it takes to calculate a differential correction is due to various real world 
disturbances such as multipath signal reception.  As the correction ages, the accuracy of the 
position fix is reduced. 

This acceleration is represented on the graph as a vertical line from 10 mph to 52 mph at a throttle 

setting of 40%.  From this point the throttle was reduced and the points along the top line in 

Figure 2.3 (marked with small o’s) were recorded as the truck slowed down.  The throttle 

remained at a constant value until the truck achieved a steady state velocity for each data point.  

Although the test track was not long enough to record the complete cycle in one test run, the 

results would be the same if it was long enough.  

 The difference in velocity for identical throttle settings is partly a result of a reduction in 

friction in the engine and transmission when the transmission is in a higher gear at a given speed.  

In this test the truck tractor was not pulling a trailer so this internal friction consumed a large 

fraction of the total power required to keep the vehicle moving.  We would expect less difference 
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when the truck is pulling a loaded trailer, but that experiment will have to wait for a test on a road 

long enough to accelerate to test speeds with a heavy load. 

Figure 2.3: Terminal velocity reached at various throttle positions. 

 In spite of this large nonlinearity a slightly modified proportional-derivative (PD) control 

algorithm with one feedforward term does an adequate job of tracking velocity commands.  The 

modification involves the derivative term which we compute from the change in velocity of the 

truck from one sampling period to the next, not the change in the velocity error between two 

samples as is typical for a PD controller.  This minor modification eliminates a quick burst of 

throttle when there is a step increase in the velocity command.  We discuss the feedforward term 

in the next section.  The throttle control loop runs at the same speed as the DGPS system, 

nominally 5 Hz, but with the same variability in timing as shown in Figure 2.1.  No ill effects 

have been observed associated with this slightly irregular control loop timing.  We have also 
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placed a maximum limit on throttle position of 50% since most of our experiments are done 

without a trailer attached and half throttle is more than enough. 

2.4.2  Throttle Feedforward Term 

A feedforward term can be used if we know in advance that a change in a command to a 

control system will require a corresponding change in the control system’s output and we have 

some idea of the relationship between the change in the command and the required change in the 

output.  In the case of our throttle controller we know that, in the absence of other disturbances, a 

higher velocity command will require a higher throttle setting.  What we need is a function 

relating velocity to throttle position and that is just what we have in Figure 2.3.  If we switch the 

X and Y axes around and assume that the transmission is already in the appropriate gear for the 

desired velocity then the set of data points represented with o’s on the graph suggest a function 

that will map velocity commands to throttle position.  Figure 2.4 shows a third order curve fitted 

to these points.  The equation for this curve is

y = 0.000870x3 - 0.076619x2 + 2.585309x - 9.569971 

where y is the throttle command (percent of full throttle) and x is the desired velocity in miles per 

hour.  Although no data has been taken at more than 40% throttle (the test track is not long 

enough to come to a steady state speed between curves), the curve does intersect the 100% throttle 

position close to the actual top speed of the Navistar.  It is therefore likely to be a good fit for the 

entire range of throttle travel. 
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Figure 2.4:  Throttle required to maintain a range of forward speeds.  This is the same data  
as Figure 2.3 with the axes reversed.  The curved line through the right most data points
is a third order curve fit that provides us with a throttle feedforward term. 

2.5 Brake Control 

The air brakes installed on modern heavy duty trucks are sophisticated and complex 

pneumatic systems that reliably convert air pressure into the mechanical force required to quickly 

decelerate many tons of rolling machinery.  Although the details of an air brake system are many 

and varied, the basic idea is that the brake pedal sends out a pneumatic signal to a valve positioned 

close to the brake actuator.  This valve meters air pressure from a supply tank that is also in close 

proximity to the actuator.  The pressure from the supply tank pushes a piston in the actuator that 

either turns a cam or pushes a wedge that forces the brake shoes into contact with the brake 

drums.  With this arrangement only a relatively small volume of air has to flow all the way from 

the valve at the brake pedal to the valve near the actuator when the brakes are applied.  Since the 
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much larger volume of air needed to move the piston in the actuator is stored close to the actuator, 

the brakes can respond much faster than they otherwise would.  There still is, however, a 

noticeable delay between the time the pedal is pushed and the brake shoes are activated.  Typical 

delays are on the order of three tenths of a second for brakes on the tractor, and six tenths of a 

second for the more distant brakes on the trailer [UMTRI 1997]. 

 In order to actuate the brake system automatically without interfering with its manual 

operation we have added a linear actuator that pulls a cable attached to the back of the brake 

pedal.  The linear actuator consists of an electric motor driving an acme threaded screw.  A timing 

belt connects the motor to the screw.  Although this setup avoids having to modify the internals of 

the factory brake system (and incurring the attendant liability), it has the disadvantage of 

introducing a large amount of stiction into the system that makes precise positioning of the brake 

pedal difficult.  We experimented with several methods of overcoming this stiction, including 

adding dither to the control signal, sending a voltage spike when the actuator was stuck in a 

position away from the commanded position, and using feedforward term to compensate for the 

progressive resistance of the brake pedal return spring.  In the end, the most successful approach 

was a combination of these along with an outer control loop that sends step commands to an inner 

PD loop that does the positioning.  The outer loop is, like the throttle controller, synchronized 

with incoming DGPS position data at a nominal 5 Hz.  This outer loop compares the velocity 

command with the velocity computed from DGPS position data and, based on the difference 

between them, picks a brake position command out of a small table.  This position command is 

sent to the inner brake control loop.  The inner loop is a normal PD loop where the derivative term 

is a gain multiplied by the error between commanded and actual brake position.  Since the outer 

loop sends a position command that changes in fairly large discrete steps, the derivative term 
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generates a voltage spike at each new commanded position that helps “kick” the actuator into 

motion.

 The linear actuator controlling the brakes is a relatively fast acting mechanism compared 

to the other parts of the system and it therefore requires a faster control loop.  Our experience with 

this actuator has shown that there are stability problems at control rates under 10 Hz.  The brake 

actuator system becomes stable at about 15 Hz with useful controller gains, and little further 

improvement in performance is noted at rates above 20 Hz.  We therefore chose an inner control 

loop running at 30 Hz to make sure that the sampling rate does not limit the gains with which we 

can experiment. 

2.6 Longitudinal Control Results 

Figure 2.5 shows a block diagram of the combined throttle and brake controller.  In order 

to assure that the brake and the throttle are not both on at the same time the lookup table in the 

outer brake control loop will not activate the brakes until the velocity command is at least 5mph 

less than the sensed speed of the vehicle.  Another nonlinearity that the lookup table must 

accommodate is the fact that the transmission and torque converter create quite a strong forward 

force when the velocity is close to zero and the transmission has shifted into first gear.  Since we 

currently can not directly control the transmission, the brake position must be increased beyond 

that required to slow the truck from higher speeds in order to bring the truck to a complete stop. 
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Figure 2.5:  Block diagram of the longitudinal control system 

 The velocity command originates from a higher level task such as the Virtual Bumper or 

possibly from a speed limit in the map database that also contains the location of the lane data 

used by the lateral controller. Figure 2.6 shows the response of the system to a velocity trajectory 

input from the keyboard of the control computer.  The top graph shows the actual speed of the 

truck following changes in the velocity command.  The middle graph shows how the throttle 

controller responded with throttle position commands sent to the engine.  The bottom graph shows 

the outer brake loop sending abrupt commands to the brake actuator and the position to which the 

actuator moved.  Note that the brake actuator moves only a small distance between the position 

where the brakes are barely on and the position where maximum braking occurs.  This data set 

also shows some dither added to the brake command when the velocity command is zero at the 

beginning and end of the experimental run. 
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Figure 2.6:  These three graphs show the throttle and brake controllers following a commanded  
trajectory 

2.7 Conclusions 

We have shown that it is possible to control the longitudinal velocity of a heavy vehicle 

using DGPS as the primary velocity sensor.  Although a more complete set of sensors would be 

required for the more accurate positioning required to maintain the small headways involved in 
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platooning, our current implementation will be adequate to automatically drive the truck to a safe 

parking spot and pull over and stop.  In concurrent experiments we have used this controller to 

accept velocity commands from the virtual bumper and it appears to be adequate for that task as 

well.
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CHAPTER 3

Lateral Control 

3.1  Overview 

 In this chapter we will discuss control of the steering system.  Once again we stress that the 

objective of the work done in this report was to use a low cost suite of sensors.  There is therefore, 

no attempt to incorporate a yaw rate gyro into the system.  After a brief review of related work 

done by other researchers in the field we will examine the results of four fairly simple steering 

control algorithms.  The first of these is a PD control loop acting on the lateral deviation of the 

vehicle from its commanded position in the lane.  We refer to this as a lookdown controller since it 

does not use any information about the direction of the road ahead, just the information that a driver 

would acquire by “looking” straight down at the road beneath the current position of the vehicle.

We will see that a pure look-down PD algorithm will keep the truck within the lane boundaries at 

low speeds, but there is a lateral oscillation that diverges as the forward velocity is increased.  The 

second controller will use an additional damping term to reduce the lateral oscillation and allows 

the truck to maintain its lane position at higher speeds on straight roads.  Entering a sharp curve, 

however, creates a disturbance that this look-down controller cannot handle.  The third controller 

we investigate is the so called Pursuit algorithm where the vehicle is continually steered towards a 

point on the desired path ahead without explicit regard for its current position in the lane.  We then 

combine the best features of the look-down and pursuit controllers into a hybrid approach.  Finally, 
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we will discuss the inner control loop that uses steering position commands generated by the above 

algorithms to actually move the steering wheel. 

3.2 Literature Review 

 Lateral control of automobiles has been a topic of research since the late 1950’s when 

General Motors and RCA experimented with a vehicle for what they called the “Electronic 

Highway” [Zworykin and Flory 58].  In the 1960’s and 70’s a substantial amount of work was done 

at Ohio State University where [Fenton et al. 76] documented a wire guided passenger vehicle 

controlled by an analog computer that accurately maintained lateral position at speeds of up to 80 

mph.  As is the case for longitudinal control, [Shladover 95] gives a comprehensive overview of the 

research done prior to 1995. 

 Most of the current work in automated highway vehicle control is being done by Partners 

for Advanced Transit and Highways in California(PATH).  PATH researchers at Berkeley have 

been controlling vehicles using magnetic plugs in the pavement sensed by magnetometers on the 

front (and sometimes also on the rear) of passenger cars.  [Peng and Tomizuka 90] describes their 

use of frequency-shaped linear quadratic (FSLQ) control theory with the addition of a feedforward 

term.  The FSQL feedback loop design method explicitly includes the ride quality as a performance 

index.  In this paper they use a simple feedforward calculation that does not include preview of the 

road curvature ahead.  They estimate the cornering stiffness at the front and rear axles using a 

simple lateral model and a least squares algorithm with yaw rate data from a gyro and lateral 

acceleration data from an accelerometer. 

 In [Peng and Tomizuka 93] they add preview of the road ahead by combining the curvature 

of the approaching road with the superelevation of the lane to form an “effective curvature” and 

solve the linear quadratic control problem that minimizes the effect that the disturbance from the 
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effective curvature creates.  Most of the results in this paper are presented as simulations, but they 

do mention that experiments show that the vehicle can not track the lane without preview. 

 In [Pham et al. 94] more PATH supported work at Berkeley combined the lateral and 

longitudinal control of vehicles using a nonlinear method called surface shaping.  Their simulations 

showed good tracking performance with the claim that minimal tuning of the control parameters 

was required. 

 Look-down reference controllers without preview are analyzed in [Guldner et al. 96].  This 

paper gives an excellent overview of the lateral control problem.  They conclude that a look down 

controller will not be able to control a vehicle at highway speeds.  In a subsequent paper 

[Patwardhan et al. 97] some of the same authors reiterate the limitations of lookdown controllers at 

higher speeds and propose a virtual drag link controller that is essentially the same idea as the 

pursuit algorithm we use at the University of Minnesota [Morellas et al. 97]. 

 In simulations of the lateral control of a wire guided commuter bus, [Ackermann and Sienel 

90] proposed sensing the yaw rate of the bus with a gyro and feeding it back to the controller.

Their analysis showed that the resulting control system was more robust to changes in mass and 

velocity than the fixed gain controller they started with.  Our experiments with the SAFETRUCK 

have also demonstrated the stabilizing effect of yaw rate feedback from a gyro [Morellas et al. 97].  

Ackermann also assisted in the design of a sliding mode lateral controller in [Guldner et al. 94].  In 

[Ackermann et al. 95] he compared the nonlinear sliding mode controller to a linear controller 

designed using what they call a Parameter Space Approach.  Their simulations showed that the 

nonlinear controller did a slightly better job of maintaining lateral position, but had more of a 

tendency to oscillate the steering wheel. 
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 Most of the published work on vehicle lateral control makes use of the single track (bicycle) 

model of a four wheel vehicle developed in [Riekert and Schunck 40].  Recently we added one 

more axle to the rear of the bicycle model to represent the second drive axle of a tandem axle truck, 

and then attempted to verify experimentally that this three wheeled single track model had a 

steering angle to yaw rate response similar to our International Navistor 9400 [Alexander et al. 97].

The results were not encouraging and for that reason the controllers that are presented in this paper 

have been developed experimentally rather than analytically.  One reason why we were not 

successful in matching the single track model to the experimental data is that we assumed that the 

compliance in the steering linkage from the steering wheel to the steered tires was negligible due to 

the obvious stiffness of the large links in the system.  In [UMTRI 1997] it is reported that “despite 

the relatively large stiffnesses, the small angular deviations they permit may be quite significant 

with respect to vehicle directional response.”  We also used a fairly large steering input in those 

experiments (about 5.5 degrees at the front tires) and in [Roos et al. 97] they found that “The 

measurements have shown that a vehicle’s response to a small steering angle input depends on the 

test conditions and that it differs from the vehicle’s response to medium steering wheel angle 

inputs.”  Small steering inputs are, of course, what we use to maintain our position in the lane, so a 

model based on the response to small inputs might be more useful for lane keeping controller 

design.  At this point we have no reason to disagree with [Guldner et al. 96] in their assessment that 

the Riekert—Schunck model is sufficient for normal steering using small steering angles as long as 

this angle is sensed at the front wheels, not at the steering wheel. 
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3.3  A Simple Look Down Controller 

3.3.1  A Basic PD Controller 

 One of the simplest possible lateral control algorithms is a standard PD control law acting 

on the error between the actual and the commanded lateral position in the lane.  Since we are using 

DGPS as our sole position sensor we have to deal with a lag that is on the order of 0.2 seconds in 

the feedback portion of our control loop.  To keep the system stable with that lag, we need to have a 

controller with a fairly high damping ratio or in other words a relatively large derivative gain with 

respect to the proportional gain. Figures 3.1 and 3.2 graph the results of two different test runs with 

respective derivative gains of 1.0 and 2.0 radians per lateral ft per sec combined with a proportional 

gain of 0.4 radians per foot of lateral deviation.  In both cases the system goes unstable when the 

forward velocity is increased to 20 mph.  The test run with the larger derivative gain has smaller 

oscillations at 10 mph and 15 mph, but diverges faster at 20 mph.  This tendency to lose stability at 

higher speeds is a result of the vehicle being more sensitive to steering input as speed increases (a 

given steering angle gives a faster lateral response).  It is evident in Figure 3.2 that the derivative 

component contains a significant amount of noise at a gain of 2.0.  In fact if we increase either the 

proportional or the derivative gains much beyond these values the system will be unstable even at 

10 and 15 mph.  Lower gains result in larger oscillations.  This is a good demonstration of the 

tradeoff between sensitivity and complementary sensitivity and it means that we have reached a 

limit as to how fast we can drive with a simple PD controller acting only on the somewhat noisy 

lateral position information from our RT-20 DGPS system. 
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Figure 3.1:  Lane keeping performance using a simple PD control law with a proportional gain 
of 0.4 steering wheel radians per foot of lateral deviation and a derivative gain of 1.0 steering 
wheel radians per foot/sec of lateral velocity.  The top line on the graph is the forward velocity 
of the truck in mph.  The middle set of data is the output of the proportional and derivative 
components in the controller.  The bottom line on the graph is the lateral position of the truck in 
the lane.  With this set of controller gains there was a fairly constant oscillation to about one 
foot either side of the centerline of the lane until a speed of 20mph was reached.  At that speed 
the oscillations increased slightly for about 400ft then quickly diverged. 
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Figure 3.2:  Same as Figure 3.1 except the derivative gain has been increased to 2.0 radians per 
ft/sec.  The oscillations have been damped a little, particularly at 10 mph, but they diverge faster 
when the speed is increased to 20 mph.  Note that the derivative components in the middle set of 
data is now dominated by noise spikes.  If the derivative gain is increased any further these noise 
spikes destabilize the system even at lower speeds. 

3.3.2  An Additional Damping Term 

 There is one simple enhancement we can make to the look-down PD controller without 

adding any additional sensors to our system that further damps oscillations yet is not affected by 

noise from the DGPS.  Like the brake control system described earlier, the steering system requires 

an inner control loop.  This inner loop is closed on the position of the steering wheel which is 

sensed by a relatively noise-free potentiometer mounted on the steering column.  Since the position 

of the steering wheel correlates with the curvature of the path the truck is following, and the 

curvature of the path at a given speed is proportional to the lateral acceleration of the truck towards 
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the center of the arc of that curved path, we can correlate steering position to the lateral acceleration 

of the truck across the road, as long as lateral deviations from the center of the lane remain small. 

 Having suggested that the steering wheel position is related to the lateral acceleration of the 

vehicle with respect to the lane, we can now attempt to use it as another damping term in addition 

to the derivative component in our PD controller.  We will call it a DD term since lateral 

acceleration is the second derivative of lateral position.  Like the D (first derivative) component 

that is used to attenuate the lateral velocity of the vehicle, the DD component will be used to 

attenuate the lateral acceleration. 

 Figures 3.3, 3.4 and 3.5 show the results that we obtain from test runs using the DD 

component in addition to the P and D components. 
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Figure 3.3:  Low speed lane keeping performance using the PD-DD controller.Note that at 
10mph the oscillations are larger than those of the PD controllers above, but they become 
smaller as the velocity increases.  At slow speeds the truck responds slowly to steering input, 
but at higher speeds the truck is a faster, more sensitive system so the extra damping improves 
performance.  
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Figure 3.4:  Medium speed lane keeping performance using the PD-DD controller.  The 
oscillations are reduced as the speed increases.  There is no tendency to destabilize as forward 
speed increases. 
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Figure 3.5:  High speed lane keeping performance using the PD-DD controller.  This graph 
shows that a lookdown controller is capable of steering a truck at highway speeds. 

 We should note that the correlation we are using between steering wheel position and path 

curvature is based only on the obvious kinematics of the vehicle.  At higher speeds, the kinetics of 

the system become relatively more important with respect to the kinematics and we have to be 

more concerned with the effects of slip angle at the tires, compliance in the steering system, and 

other dynamic effects that are less important at lower speeds.  Backlash in the steering system also 

becomes more significant as forward velocity increases since it limits the accuracy with which the 

sensed steering wheel position correlates with the position of the steered wheels on the front axle.  

As our research moves from the test track to the highway, it is possible that the DD component will 
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have to be calculated using a yaw rate gyro and a speed signal instead of the steering position 

sensor.

 Although the performance of our PD-DD controller is acceptable on straight roads, its 

performance entering curves is disappointing.  The abrupt changes in curvature on the Mn/ROAD 

test track consistently sent this version of our steering controller into significant oscillations that no 

amount of tuning would mitigate.  To enable the truck to enter curves smoothly, we need to look 

ahead of the truck to get a preview of what is coming.  A lateral control algorithm that does this is 

discussed in the next section. 

3.4  The Pursuit Algorithm—A Look-Ahead Controller 

 The principle of the pursuit algorithm is very simple: find a point on the desired path a 

certain distance ahead of the vehicle and turn the front wheels to point in that direction.  Figure 3.6 

illustrates the geometry of the pursuit algorithm.  The pursuit algorithm is closely related to a PD 

control algorithm, but it has the advantage of smoothing out step changes in road curvature. 

Figure 3.6:  The Geometry of the pursuit Algorithm.  The idea is very simple, just point the front 
wheels at the pursuit point which lies on the desired path ahead of the truck. 
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 The pursuit algorithm, like the PD algorithm described at the beginning of this chapter, will 

keep the truck within its lane at slow to medium speeds, but there is always a significant oscillation 

and that oscillation will tend to diverge at higher speeds.  Figure 3.7 shows the results of steering 

with the pursuit algorithm on a straight road at a forward velocity of 20 mph.  Two different look 

ahead distances were used in this example. Shortening the look ahead distance corresponds closely 

to increasing the proportional gain in a PD controller.  In Figure 3.7 we see that shortening the look 

ahead distance from 100 ft to 75 ft has the same destabilizing effect as raising the proportional gain 

too much in the lookdown PD controller. 

Figure 3.7:  Lane keeping performance of the pure pursuit algorithm at two different look ahead 
distances on a straight roadway. 
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 We now have one control law—the pursuit algorithm, that will allow the truck to enter and 

exit curves gracefully, and another control law; the PD-DD algorithm, that does a good job of 

steering the truck on straight sections of road.  In the next section, we will combine the two 

together to create a controller that has the best qualities of both. 

3.5  Combining Elements of the Pursuit and Look-down Algorithms 

 To build a hybrid controller from the pursuit and the PD-DD algorithms, we simply replace 

the proportional component in our PD-DD control law with the Pursuit angle calculation.  Figure 

3.8 shows the results of a test run on a straight road using a look ahead distance of 75 ft along with 

derivative and second derivative gains similar to those used in the PD-DD controller above.  This 

algorithm controls the truck as well as the PD-DD algorithm on straightaways.  We will now look 

at some of the complications involved in negotiating curves. 
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Figure 3.8:  Lane keeping performance of the pursuit algorithm on a straight road with derivative 
and 2nd derivative components included. 

3.6 Offtracking and Offsetting Corrections 

 One complication that results from using a controller that aims at a point on the desired path 

at some distance in front of the truck is that the actual path the truck follows will be to the inside of 

the desired path on curves.  This is the same problem the driver of a long bus faces while 

negotiating a tight corner.  The rear tires of the bus always point at the front tires and therefore 

travel in an arc inside of the arc made by the front tires.  This phenomena is called offtracking and 

in this section, we will show geometrically how to correct for it and move the truck back out to the 

center of its lane. 
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 Another complication we address here is that currently our map database contains points on 

the centerline of the road.  To keep the truck in the center of its lane we need to compensate not 

only for the offtracking caused by pointing at the pursuit point ahead, but also for the offset to get 

from the centerline of the road to the middle of our (usually) 12 ft wide lane.  The geometry of this 

situation is illustrated in Figure 3.9.  In order to follow the desired path the front wheels, 

represented in the diagram as one wheel at point a, must aim along the tangent to the path which is 

the line from a to c.  The pursuit point is labeled p so the angle returned by the pursuit algorithm 

will be the sum of a and f and we need to subtract f  to get back to the correct steering angle a.

To calculate f,  we can use two successive applications of the cosine law, first on triangle abp to 

find the distance ap, then on the triangle acp to find f.

Figure 3.9:  Offtracking and lane offset correction.  In order to stay in the middle of the desired 

lane of travel the pursuit angle must be reduced by angle f. O is the offset from the centerline 
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of the road to the middle of the lane.  S is the look ahead distance measured along the 
centerline. 

The results of these calculations are that 
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After incorporating the calculation of f into the hybrid controller and using it to correct for the lane 

offset and pursuit offtracking we finally have a lateral control algorithm that will steer the truck 

around the entire test track.  On a straight road the results are similar to Figure 3.8 since there is no 

offtracking to correct for on a straight road.  Performance of this algorithm negotiating curves is 

depicted in Figure 3.10.  Note the locations of points a, b and c from the map in Figure 1.1.  These 

points mark the places that the curvature of the track changes abruptly. 
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Figure 3.10:  This diagram shows the results of using our hybrid controller, including pursuit 
offtracking corrections, to negotiate the S shaped curve and loop at one end of the MnRoad test 
track at a speed of 22 mph.  The line labeled left curve and right curve represents the curvature 
of the track.  Points a, b and c are locations of abrupt changes in curvature and are also shown 
on the map of the MnRoad track in Figure 1.1.  Although there are still slight perturbations at 
the locations where the curvature changes, the truck stays well within the lane at all times. 

3.7 Inner Steering Control Loop 

 Up to this point, we have used several control laws to compute a position which moves the 

steering wheel.  We now consider the steering control subsystem that takes the steering position 

command as its input and computes a voltage to send to the steering motor that is located on the 

steering column.  We refer to this part of the control system as the inner loop because it is a 

separate control loop running at a faster rate than the outer loop that we have described in the 

previous sections. 
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This inner loop consists of another PD control algorithm acting on the error between the 

position command from the outer steering control loop and the actual position sensed by a 

potentiometer on the steering column.  Typical proportional gains are in the area of 1.5 volts per 

radian and typical derivative gains are about 1.5 volts per radian per second.  A slightly lower 

proportional gain (1.3 volts per radian) will smooth out the path the truck follows down the 

straightaway, and a slightly higher proportional gain (1.7 volts per radian) will keep the truck closer 

to the center of the lane on the curved sections. 

After the inner loop has calculated a voltage using the PD algorithm it filters out any large 

jerks that were ultimately caused by noise in the DGPS system.  Finally the inner loop limits the 

absolute value of the output voltage to be less than 1.3 volts.  This assures that the human driver 

will always be able to overpower the automatic system.  Figure 3.11 shows a block diagram of the 

entire lateral control system. 

Figure 3.11:  Block diagram of the lateral control system. 
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3.8 Conclusions 

 We have shown that through the use of fairly simple steering control algorithms, we can use 

DGPS position signals to keep a vehicle in its lane while traveling at speeds up to 50 mph.  The 

length of the Mn/ROAD test track limited the distance we could travel at higher speeds so more 

experimentation is in order before we can claim to have a system robust enough for general use at 

highway speeds.  At this point, we see no reason why the control algorithms described above will 

not work at higher speeds, but it is likely that some gain scheduling will be required to lower the 

controller response as the speeds increase.  It is also possible that the extra stability that a yaw rate 

gyro can provide at higher speeds will offset the extra cost and complexity that it entails.  In the 

near future, we plan to add an inertial measurement unit to the system that will include both rate 

gyros and accelerometers along with a Kalman filter.  This system should significantly increase the 

performance of the SAFETRUCK’s lateral control system. 
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CHAPTER 4 

Computer Hardware and Software 

4.1 Laptop PC and Parallel Port I/O System 

 The hardware setup developed to support the experiments described in this thesis has been 

designed to use a generic PC as the control computer.  No additional I/O cards are necessary, all 

communication with external sensors are handled through the standard serial and parallel ports.

The DGPS position signal is received directly through the serial port and all other sensing and 

control signals are handled by a National Instruments DAQ-PAD 1200 I/O device connected to the 

parallel port. 

 Currently we are using a Dell Inspiron laptop computer.  The model we use has a 266 MHz 

Intel Pentium processor, 80 MB of ram memory and a 4GB hard disk drive.  The performance of 

this machine is more than adequate for the control tasks involved in the SAFETRUCK research we 

are doing.  We typically find that we use less than 10% of the available processor time when the 

truck is being automatically controlled and most of that time is spent printing information to the 

screen.  In the future, we intend to add a more sophisticated graphical user interface and we assume 

that that will use up most of the remaining computing power we have available on this machine.  

Figure 4.1 shows a basic schematic diagram of the hardware used in this system. 
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Figure 4.1:  Schematic diagram of the PC based control system used in the experiments.  A more 
detailed wiring diagram would also show kill switches for the throttle, brake and steering 
subsystems. 

 The National Instruments (Austin, Texas) DAQ-PAD 1200 is an analog and digital I/O unit 

that communicates to a host computer through a standard bi-directional parallel port.  There are 8 

analog to digital converter inputs with 12 bit resolution, two 12 bit digital to analog outputs, 24 

lines of TTL compatible digital I/O, and three 16 bit counter timers.  National Instruments provides 

a programming library and the necessary drivers to access the DAQ-PAD. 

4.2 Real Time Operating System 

 For the majority of the experiments we have described here we used a real time 

multitasking operating system named RT Kernel version 4.5 from On Time Informatik GmbH in 
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Hamburg, Germany.  RT Kernel 4.5 is supplied as a set of 16 bit programming libraries for MS-

DOS based C compilers from either Borland or Microsoft.  The main() function of a C program 

using RT Kernel loads the real time kernel as part of its initialization process.  From that time on, 

the program has access to a fairly complete set of real time multitasking tools including functions to 

manage tasks, semaphores, mailboxes, message passing, interrupts and a selection of scheduling 

options.  RT Kernel programs compile to a single .exe file that will run on most PC compatible 

computers.    

Included with RT Kernel are several modules containing source code for high resolution 

timing, serial communication, the Novell IPX networking protocol and other miscellaneous 

services.  The timing module, for instance, has the important ability to reset the DOS system 

interrupt to a programmer specified value between 0.5Hz and 8000 Hz.  We set this interrupt rate to 

30 Hz and use it to run our control loops at a constant rate. 

 Although RT Kernel has the ability to do preemptive multitasking, we use it in a 

cooperative multitasking mode.  This makes it easier to use non-reentrant DOS system calls and 

other third party programming libraries (such as the National Instruments data acquisition libraries) 

that have not been designed to be used in a multitasking environment.  The slightly higher interrupt 

latency that we get using cooperative rather than preemptive scheduling is not a significant factor in 

our implementation. 

4.3 The Map Database 

 The position of the Mn/ROAD test track is currently represented in this system as simple 

list of points spaced 25 ft apart along the centerline of the 2-lane road.  For each point, we include 

the latitude and longitude to the same eight decimal place accuracy that the Novatel RT-20 system 
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provides, and the curvature of the track at that location.  There are a total of 551 of these map 

points around the 2.6 mile track. 

 Although the survey data for the Mn/ROAD track is furnished in the Wright County 

coordinate system, which is based on the number of feet north and east of a certain point in the 

county, we chose to do all of the mapping and calculating for the work detailed in this paper using 

latitude and longitude directly.  This saves the processing time that would otherwise be needed to 

convert the degrees of latitude and longitude furnished by the DGPS system into county 

coordinates, and it also leaves us with a more general navigation system that will work anywhere in 

the world. 

 The 25 ft spacing was chosen as a trade off between processing speed and accuracy.  When 

the points are closer together, there are more of them to search through when we are looking for the 

closest one in our navigation algorithm, but when the points are farther apart, the straight line 

segments between them do a poorer job of representing curves.  The decision to use 25 ft was made 

during initial testing which was done using a 20 MHz 80386 based computer.  With the newer, 

faster computer we are now using, it is likely that a smaller distance between map points would be 

closer to the optimum.  Other additions to the map that we are currently working on include local 

speed limits and the position of signs and guardrails along the side of the road. 

 Eventually we hope to make use of higher accuracy map databases, which we are 

developing.  When they become available, we will need software to access that data real time.  

Work is in progress to address this issue. 
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4.4 Software Modules and Control System Tasks 

 The software for this system is written in C and split into six modules that each contain the 

tasks and supporting functions for a certain portion of the SAFETRUCK controller. These six 

modules are: 

Drive.c  This module contains the main() function that initializes the system, spawns the other 

 tasks and monitors the keyboard. 

RecvGPS.c  Contains the serial port interface that receives data from the GPS system, and the task 

 that parses that data into the latitude, longitude, etc. 

Navigate.c  Takes the position information parsed above and finds the location and velocity of the 

 truck with respect to the map database. 

Steer.c  Uses the location and velocity to calculate steering position and the voltage to send to the 

 steering amplifier. 

Throttle.c  Computes the duty cycle for the PWM throttle control signal based on the difference 

 between commanded and actual velocity. 

Brake.c  Controls the position of the brake actuator based on the difference between commanded 

 and actual velocity. 

 Figure 4.2 illustrates the flow of data through the system.  In the following sections we will 

examine each of these modules in more detail. 
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Figure 4.2:  Data moves through the various tasks from the top of this 

4.4.1  Module Drive.c 

 The Drive module contains the code that initializes all the other tasks, declares global 

variables, sets up mailboxes for intertask communication, monitors the keyboard for operator 
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commands, and generates velocity and lateral position commands when it is time to execute a pull 

over and stop maneuver. The Drive module contains four functions: 

main()

 This function is the standard main() function common to all C programs.  The first action it 

takes is to initialize RT Kernel by replacing DOS interrupt vectors, initializing some internal data 

structures, setting RT Kernel’s clock to 0, and performing some other low level operations to 

convert DOS into a real-time operating system.  After that the other RT Kernel modules are 

installed. These modules include an interrupt driven serial port driver, a high resolution timer, a 

windowing system that lets separate tasks share the screen, and a keyboard driver that releases the 

processor to other tasks when it is waiting for a key press. Next, the main function resets the system 

interrupt rate to 30Hz from the 18.2Hz that is standard for PC’s. 30 Hz has been found to be an 

acceptable rate for our control loops.  Six mailboxes are then initialized to carry messages between 

various tasks and a semaphore is created to protect calls to the DOS file system when logging data 

to disk.  The ten tasks that perform the various control and data handling operations are started next 

and a range of priorities are assigned to them.  The main task then enters a loop during which it 

monitors the keyboard for commands from the keyboard.  These commands include: 

F1:   Change operating mode to Manual.

F2:   Change operating mode to Virtual Bumper.

F3:   Change operating mode to Automatic.

l:   Turn on data logging to disk. 

o:   Turn off data logging to disk. 

Up arrow:  Increase the forward velocity command. 
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Down arrow: Decrease the forward velocity command. 

Right/Left arrow: Adjust the offset of the steering potentiometer. 

Space bar:  Terminate the program in an orderly manner. 

 Once the space bar is hit, the main function sets a global flag to broadcast to the other tasks 

that it is time to cleanup and shutdown. 

CPULoad()

 This is a low priority task that returns an approximate measure of the amount of processor 

time the entire program is using. 

open_logfile()

 When triggered by the l key this function opens a disk file named log.dat and enters the date 

and time on the first line.  This file can then be used by any other tasks to store arbitrary data for 

later analysis.  Entering an o at the keyboard stops data logging and closes the file. 

pull_over_and_stop()

 This is a function that is called by the main task when the system has determined that it is 

time to pull over and stop.  A description of how the system might decide to pull over and stop is 

given in the next chapter.  Once that decision has been made this function monitors the forward 

velocity and lateral position of the vehicle and generates commands to slowly move the truck to the 

side of the road and stop. 
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4.4.2  Module RecvGPS.c 

Receiver()

 After initializing the serial port this task receives characters from the GPS unit.  When it 

receives the ‘$’ character that marks the start of the RT-20 data string it starts putting characters 

into an array.  When the newline character that marks the end of the data string arrives, this task 

adds a string terminator (a null character) to the end of the array and sends it via a mailbox to the 

ParseGPS task. 

ParseGPS()

 This task receives the GPS data string from the Receiver task, breaks it into its component 

data values, then fills a data structure with the following information: 

¶ GPS time 

¶ Age of the differential correction 

¶ Latitude 

¶ Longitude

¶ Number of satellites being received  

¶ RT-20 solution status

¶ Fix status (single point or differential) 

send_GPS_init() 

 This function is called from main() to: 

1. set up the RT-20 receiver to accept information from the differential radio over the RT-20’s 

com1 port.   
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2. Send the P20A log out the RT-20’s com2 port to the control computer at a continuous rate 

of 5Hz. 

verify_gps()

 ParseGPS() uses this function to make sure that the latitude and longitude it received are 

within a reasonable distance of the Mn/ROAD facility.  If not, there has likely been an error in the 

serial port transmission and the bad data is not passed on to the rest of the program. 

4.4.3  Module Navigate.c 

Navigate()

 This is the task that uses the latitude and longitude received from the DGPS system to find 

the position of the truck with respect to the map database.  It is sometimes referred to as the 

Navigator.  After reading the map from disk into main memory, Navigate() waits for the first gps 

data structure to arrive from ParseGPS().  It then calls the function find_init_index() which 

searches the map data to find the map index that is closest to the truck.  After that Navigate() enters 

a loop that is synchronized with the arrival of new GPS data.  In this loop, the precise location of 

the truck with respect to the map is calculated along with the rest of the information required by the 

nav data structure: 

¶ GPS time 

¶ Lateral position with respect to the road 

¶ Longitudinal position along the track 

¶ Curvature of the road in front of the truck 

¶ Pursuit angle 

¶ Speed in mph 
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 The position of the truck is calculated by analyzing the triangle created by the current 

DGPS reading and the map points ahead of and behind the closest map point (the current map 

index) to the truck.  The curvature is a field in the map database associated with each map index.  

The program returns a weighted average of the curvature in front of the truck out to a distance 

equal to the look ahead distance to the pursuit point.  This averaging eliminates abrupt changes that 

would otherwise cause significant oscillations in the steering controller. 

 The pursuit angle is calculated by subtracting the vehicle’s heading from the bearing to the 

pursuit point.  The heading is the angle that a line makes from a previous position to the current 

position and the bearing is the angle from the current position to the pursuit point on the desired 

path ahead.  Since heading is calculated from the position of two DGPS readings, there is a 

tendency to introduce noise if the truck is driving slowly and two successive positions are too close 

together.  A small lateral error in one or both positions can then create a large error in heading 

calculation.  To minimize this problem, we keep a bounded buffer of recent latitude and longitude 

readings and search back through them until we find one that is at least ten feet behind the current 

location and use that one to compute the heading angle. 

 The speed in mph is calculated from the distance between successive gps position readings 

and then put through a low pass filter to remove noise.  Care must be taken so that this filter does 

not create a phase lag long enough to destabilize the longitudinal control algorithms. 

4.4.4.  Module Steer.c 

 The steer module contains the tasks that form the inner and the outer steering control loops, 

a function that computes a feedforward term for the outer control loop, and a task that implements 

the Virtual Rumble Strip. 
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Steer()

 This task runs in a loop that is synchronized with the reception of new DGPS data from the 

Navigator.  It receives a copy of the nav data structure that contains current position with respect to 

the track, local curvature, and forward speed.  Three control terms and a correction to the pursuit 

angle from Navigator are calculated here.  All terms are in units of radians of steering wheel 

position. The proportional term is a gain (usually between 0.25 and 0.5 radians per ft) multiplied by 

the lateral deviation from the commanded position. The derivative term is a gain (usually about 0.8 

radians per ft per sec of lateral velocity) multiplied by the difference between two successive lateral 

positions and then divided by the difference in time between them.  The second derivative term is a 

gain (typically between 1.0 and 2.0) multiplied by the difference between the current steering wheel 

position and the position calculated by the feedforward function described below.  These terms are 

all combined with the pursuit angle and then limited to a total magnitude that depends on how fast 

the truck is driving: the faster the forward velocity the smaller the permitted steering angle.  The 

resulting angle is put into a mailbox for receipt by the inner steering control loop. 

Steer_inner_loop()

 This task receives a steering position command from the Steer() task above, compares it to 

the actual position of the steering wheel and generates a voltage that controls the steering motor.  It 

runs in a 30Hz feedback loop that reads a voltage from a potentiometer on the steering column to 

sense steering wheel position, converts that voltage to a position in radians, and then subtracts that 

position from the commanded position to get the steering position error.  The voltage that is to be 

sent to the steering amplifier is computed from this error by a normal PD control law then the 

voltage is limited in two ways.  First, the rate of change is limited to filter out spikes arising from 

GPS noise and step changes in commanded position.  Second, the absolute magnitude of the 
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voltage is limited to make sure that the steering motor never creates enough torque to overpower 

the human at the wheel.  When the global shutdown flag is set, the control loop terminates and the 

output voltage is set to zero before the task ends. 

ff_steer_pos() 

 This is a function that returns the steering position that would be required to negotiate a 

curve of a given radius in the absence of other disturbances.  The target curvature (the reciprocal of 

radius) is passed in as a parameter and an intermediate result is calculated using the basic kinematic 

formula d = WB/r where WB is the wheelbase of the vehicle, r is the radius of the curve and d is the 

angle of the steered wheels on the front axle. d is then multiplied by a steering ratio of 21.5 to get a 

steering wheel angle and this number is then modified by some experimentally determined 

constants that fit the conditions we operate in at the Mn/ROAD test track.  The result is then passed 

back to the calling function. 

 Note that we have not attempted to wholly compensate for any number of real world 

complications such as backlash and compliance in the steering system, the slip angle of the tires, or 

the nonlinearities involved with the nonconstant velocity effect of the U-joints on the steering 

column.  A better analysis of the steering feedforward calculation is probably the most significant 

thing that we could do to improve the performance of the lateral controller on the SAFETRUCK. 

Vrumble()

 This task implements the Virtual Rumble strip and is the simplest of all the tasks in the 

system.  It gets the lateral position of the truck from the Navigate() task and, if the truck is not in its 

lane and the operator has set the mode to Vrumble, then a 15Hz square wave is sent to the steering 

motor.
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4.4.5  Module Throttle.c 

 This task compares the velocity command with the velocity sensed by the GPS receiver, 

calculates a throttle position, then sends a command to the National Instruments DAQ-PAD 1200.  

This command results in an eight bit integer that is converted into a PWM signal by the Domino 

microcontroller in the control box (The Domino is an 8052 based microcontroller manufactured by 

Micromint, Inc., Vernon, CT).  The throttle task is synchronized with the navigate task and 

therefore runs at the same rate (roughly 5 Hz) as the DGPS system.  The control law is a simple PD 

algorithm.  Provision has also been made for an integral term with anti-windup correction, but it 

has not turned out to be very useful on the Mn/ROAD test track where space restrictions limit the 

distance that we can attempt to maintain a constant speed.  An integral gain large enough to have an 

effect over the short distances we are dealing with tends to make the longitudinal control system 

significantly less stable. 

 After the throttle position is computed using the PD algorithm combined with the 

feedforward function described in section 2.4.2, it is sent through a filter that limits the rate of 

throttle increase to 10% per second and limits the maximum throttle output to approximately 50% 

of full throttle.  This filter eliminates uncomfortably quick reactions to abrupt changes in velocity 

commands and keeps the power output at a manageable level when we are not pulling a loaded 

trailer (even with the 50% limit the engine will easily overpower the parking brakes on the tractor.) 

At startup, the throttle task initializes the National Instruments DAQ-PAD 1200 to use one 

of its digital I/O ports to send the control byte to the Domino.  The Domino has been programmed 

to send out a 600 Hz square wave on one of its I/O pins while it waits for and reads the control byte 

on eight other I/O pins.  The control byte is converted to an on and off duration that sets the duty 
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cycle of the square wave.  The square wave is then sent from the Domino to a CMOS buffer and 

finally to the engine controller on the truck. 

4.4.6  Module Brake.c 

 This module contains the two tasks Brake() and Brake_inner_loop(), that control the air 

brake system on the Navistar. 

Brake() 

 This is the upper level brake control task that receives vehicle speed from the navigator, 

compares it with the current velocity command and computes a brake position command that is 

then sent to the lower brake control loop.  This task, like the throttle task, is synchronized with the 

navigate task and therefore runs at the same rate (roughly 5 Hz) as the DGPS system. 

 As we mentioned in section 2.5, the brake actuator has too much stiction to be accurately 

controlled with a normal PD algorithm.  The most successful method we have found to overcome 

this stiction is to send position commands to the inner loop that change in fairly large steps.  The 

derivative term in the inner loop will generate a voltage spike when it receives a step change in the 

commanded position and that spike will help kick the actuator into motion.  We use a small look—

up table that approximates a proportional controller to generate the step commands.  After 

determining the brake actuator position that just barely starts to engage the brakes we add to that 

position an amount that is based on the error between commanded and actual velocity.  There are 

increasing position command entries in the table for errors of from 3 mph to 20 mph.  The brake 

position commands are shown in table 4.1.  If the error is less than 3 mph, the brake actuator moves 

the brake pedal to the released position.  This gap of 3 mph at the low end of the error range is 
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necessary (due to lags in the total response time of the system) to keep the longitudinal control 

system from occasionally applying both throttle and brakes at the same time. 

Error (mph) Brake Pos. Cmd. 

20 52.0% 

10 46.0% 

7.5 44.5% 

5.0 41.5% 

3.0 40.0% 

Table 4.1:  Brake position commands used to slow the truck for different velocity errors. This table 
is used when the velocity command is greater than zero. 

 If the velocity command is 0 mph and the actual speed is below 8 mph, we may need to 

have the brakes applied even if the error is less than the 3 mph mentioned above.  At these low 

speeds we have to contend with the large forward force generated by the engine and torque 

converter in first gear.  This force increases the closer the actual velocity of the truck is to 0 mph.  

We deal with this situation with another look—up table that inverts the response of a normal 

proportional controller by increasing the commanded position for smaller velocity errors when the 

command is 0mph and the actual speed of the truck is below 8mph.  The brake positions used to 

stop the truck from low speeds are shown in table 4.2. 

Velocity (mph) Brake Pos. Cmd. 

8 55% 

4 60% 

2.5 65% 

Table 4.2:  Brake position commands used to stop the truck (velocity command is 0).  The position 
has to be increased as the velocity gets closer to 0 mph to overcome the increased torque generated 
by the engine and transmission. 
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 After passing the velocity error through the two look-up tables described above we then 

limit the rate of change of the commanded actuator position in an attempt to keep the actuator from 

releasing too fast.  If the actuator releases too fast from the full on position it can overshoot the 

brake-off position, hit the end of its travel and jam in that position. 

Brake_inner_loop()

 This task receives the brake position command from the brake task described above (the 

outer loop), compares it with the current position of the actuator, computes a new control voltage 

and sends the proper command out the parallel port to the National Instruments DAQ-PAD 1200.  

It runs in a loop at a constant 30 Hz rate.  After checking the inner brake mailbox for a new position 

command (it uses the last position sent if there is no new command), this task verifies that the 

position command is between the maximum and the minimum allowed actuator position.  If the 

command is for some reason beyond one of these limits, then the command is reset to be at the 

corresponding limit.  The control voltage is calculated using a normal PD algorithm and the result 

is sent to the DAQ-PAD 1200 which sends the voltage to the brake servo amplifier. 

 When the main() task broadcasts a shutdown command to the system, the outer brake 

control loop will send a command to the inner loop to position the brake actuator in the off 

position.  The inner loop will keep running for several iterations after the shutdown command is 

received to give the actuator time to move to the off position.  The brake control voltage is then set 

to 0 volts before the inner loop task terminates. 
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CHAPTER 5 

The Virtual Rumble Strip and Active Intervention 

5.1  Virtual Rumble Strips 

 In section 4.4.4, we described a software task that implements the Virtual Rumble Strip.  

The idea here is not to steer the vehicle automatically, but to use the steering motor to shake the 

steering wheel when the vehicle is drifting out of its proper position in the lane in the same manner 

that a real rumble strip embedded in the shoulder of the road does.  One advantage to using a virtual 

implementation is that it is also possible to warn the driver when the vehicle is crossing the road 

centerline, a location that a real rumble strip cannot be placed in.  In figure 5.1, we see the result of 

an experiment where the truck is intentionally driven out of the lane in both directions.  When the 

lateral deviation from the center of the lane exceeds two feet, the Virtual Bumper task sends a 15Hz 

square wave to the steering motor causing the steering wheel to oscillate.  This serves notice to the 

driver that the vehicle is not following the road. 

 In the current version of the software, there is no attempt to automatically steer the truck 

back into the center of the lane, but implementing that feature would be straightforward.  Another 

useful future enhancement would be to project a point out in front of the truck in the direction of 

travel and to use the position of that point to trigger the Virtual Rumble Strip.  This would give the 

driver a lane departure warning slightly in advance of actually leaving the lane (equivalent to a 

warning based on Time—to—Lane—Crossing (TLC), a term often discussed with respect to driver 

warning and monitoring systems.) 
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Figure 5.1:  Virtual Rumble Strip responding to a lane departure to either side of the lane. 

5.2  Virtual Rumble Strips 

 One of the initial objectives of the SAFETRUCK program was to monitor the performance 

of a driver in an unobtrusive manner and, if it becomes apparent that he or she is not in control of 

the truck then the control system would take over and pull the truck over to the side of the road and 

stop at the next safe parking place.  Deciding whether or not a driver is alert and competently in 

control of the vehicle is a difficult problem that will require a significant amount of human factors 

research before a reasonably accurate and reliable method is developed.  One possible method, and 

one that we will pursue here, is the result of recent work done in this field by MacInnis Engineering 

Associates Ltd. in British Columbia, Canada [Siegmund et al. 96].  In a controlled environment on 

a test track they recorded the pattern of steering wheel movement for seventeen sleep deprived 

drivers, some of whom actually fell asleep at the wheel.  They found a significant increase in both 
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the amplitude and speed of steering wheel movement in the minutes before the driver loses 

consciousness.  We will describe here a qualitative demonstration of this method that will trigger 

the control system to pull over and stop when the steering input becomes too uneven. 

 In order to accomplish this task we need to sense the slowly increasing tendency of the 

driver to make slightly larger and faster steering corrections while at the same time ignoring the 

occasional quick steering inputs that are a part of normal driving.  To do this we will send the 

absolute value of the steering wheel position, sensed at a rate of 30 Hz, through a low pass filter 

with a low enough cut-off frequency so that fast but infrequent steering motions are more or less 

ignored.  A phase plot of steering position data for a test run where the truck was steered normally 

for the first part of the run, and erratically for the second part is shown in Figure 5.2.  The larger 

“orbit” of the erratic steering is what we are trying to sense.  Normal straight line driving is shown 

in the plot as the denser area in the center.  The smaller lobes on either side of the large central area 

are the result of steering normally through a curves to the left and right. 

 In order compute a number that represents the confidence that the system has in the driver, 

we first determine experimentally what the output of the filter is during normal driving.  We then 

subtract that value (that represents normal steering wheel movements) from the output of the filter 

and then subtract that result from a number representing 100% confidence in the driver’s alertness.

The higher the output from the filter the lower the confidence our system has in the driver.  At 

some low level of confidence, the system takes over and parks the vehicle.  The top graph in Figure 

5.3 shows the confidence going down as the steering input becomes erratic and Figure 5.4 shows 

the response of the truck after it loses enough confidence in the driver to pull over and stop. 

 For the purposes of this demonstration we have chosen some rather arbitrary values for the 

filter coefficient and the confidence value that triggers the pull over and stop maneuver.  Much 
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more research needs to be done on the human factors involved before we can design a system for 

general use in the real world.  In other Canadian research on drowsy driving [Wylie et al. 96] it was 

found that the steering input required for routine lane keeping varied considerably with traffic and 

road conditions.  We should also note that we are not advocating that the vehicle ever be allowed to 

overrule the control inputs of the driver.  Even if the system we described has lost confidence in the 

driver, he or she ought to always be able to override the system and drive normally. 

Figure 5.2:  Phase plot of steering wheel velocity vs. position for normal driving and for the less 
smooth response that we will use to simulate a driver falling asleep.  Lobes at either side are from 
cornering in opposite directions. 
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Figure 5.3:  The confidence filter response as the truck moves down the straightaway and 
around the curves in the loop.  The truck is being steered normally from 0 to 40 seconds at 
which time the steering becomes erratic.  At 90 seconds the steering action returns to normal.  
At 100 seconds the truck enters a curve to the right and at about 120 seconds makes a quick 
transition to a curve to the left.  The confidence factor drops during the erratic steering, but 
stays high during while the truck is being steered normally. 
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Figure 5.4:  SAFETRUCK responding to a loss of confidence in the performance of the driver.  
After the confidence factor drops to 0.1 in the top graph, the pull-over-and-stop maneuver is 
triggered and the truck slows down, pulls over to the shoulder and stops as shown in the bottom 
graph.
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5.3 Conclusions 

 We have demonstrated that it is possible to control a vehicle laterally and longitudinally 

using DGPS as the only sensor of vehicle position.  Two preliminary applications that used this 

technology were developed to demonstrate the utility of our research in helping to prevent run off 

the road accidents.  At this point, we see no reason why the controllers we have implemented will 

not work at highway speeds, but all the experiments we have done to date have been on a test track 

at lower speeds.  Work is in progress to deal with the problem of loss of satellite lock when passing 

under bridges.  This will require an inertial measurement unit using a rate gyro and accelerometers 

to guide the truck until DGPS lock is reacquired.  The SAFETRUCK therefore, is still a work in 

progress.
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