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Executive Summary 
Long-term, regional travel demand models are essential tools used by planning 
organizations for resource management, project scheduling, and impact studies.  In most 
cases, these tools are developed at a macroscopic level, including only the most basic 
information about the road networks’ geometry and traffic parameters. The development 
of the Green Line light rail corridor between the two Twin Cities downtown areas 
represented a modeling challenge for the Twin Cities Regional Planning Model (RPM) due 
to complicated road geometries and traffic controls. To explore this issue and a potentially 
better alternative analysis methodology as well as perform a before-after study, a different 
modeling approach based on traffic simulation and Dynamic Traffic Assignment (DTA) was 
developed and is presented in this report. Toward that end, a large-scale simulation was 
constructed to capture localized, high-resolution data and incorporate accurate transit and 
signal information while maintaining a wide, regional scope sufficient to capture long-
distance travel and dynamic rerouting. 

Large-scale traffic simulation is by itself a very new capability allowed by recent 
advancements in traffic modeling as well as computer hardware and software. To that 
extent, very few examples of large-scale simulation are available and there are even fewer 
attempts to integrate DTA traffic simulation with a travel demand model. Even more, in this 
project a new approach for traffic simulation is utilized by using a simultaneous operation 
of two modeling resolutions, a microscopic level model for the core network around the 
two LRT Transitways and a mesoscopic level model for the rest of the metropolitan area. 
This Hybrid traffic simulation scheme provides for great detail in the project area without 
compromising route selection for trips originating and destined outside of it. The 
challenges were many for the implementation of this very new methodology and tool. Some 
of the challenges involved the development of the network geometry while maintaining a 
link to the RPM, the calibration of this large model, the designing of efficient experiments 
that minimize overall project duration and effort, and novel ways of visualizing the 
produced results since traditional approaches are not applicable to such a large network. 

This report describes the complete development of the hybrid model.  As a primer, 
descriptions of similar projects are given along with broad background on varieties of 
simulation, culminating with the Aimsun hybrid simulation.  The implementation of the 
geometric, traffic control, and vehicle demand components of the hybrid network is then 
described, including details regarding the two alternative models: one for the existing 
Green Line along University Ave., and one for the no-build alternative.  Alongside the 
construction of the Aimsun model, interconnections to the Regional Planning Model in 
Cube Voyager were maintained. 

Throughout the development of the Aimsun hybrid model, calibration and validation 
efforts were undertaken to ensure the hybrid model would both align with the RPM and 
also produce representative results according to real network data.  Calibration within this 
framework refers to adjustments made to network or vehicle parameters, which aimed to 
correct irregularities within simulated behavior. Calibration/Validation took place in steps, 
starting with the macroscopic level where an agreement with the RPM was established.  
This step was necessary since the hybrid and RPM models are designed over different 
software platforms each with its own abstractions and network coding ways. Four main 



 
 

issues were identified and corrected as part of the macroscopic calibration process: self-
centroid trips, unusual centroid configurations, volume-delay functions, and High 
Occupancy Vehicle behavior. The second step involved the calibration of the core 
microscopic parts of the model. This step ensured that reasonable traffic patterns were 
formed in the simulated arterials and freeways and ensured the correct operation of the 
700+ traffic signals including LRT preemption and priority rules.  Once the subarea 
networks were integrated into the larger regional hybrid model, manual calibration 
techniques became unusable due to the immense breadth of the network and the 
significant time cost to perform each iteration of simulation. As such, alternative calibration 
strategies were developed.  These ‘blanket calibration’ techniques involved adjusting 
parameters for larger blocks of the network simultaneously, either by region or by 
targeting a particular subset of the network (e.g., all roads of a certain type, all nodes, etc.). 
The validation of the hybrid model was based on intersection turning counts provided by 
the cities of Minneapolis and St. Paul in various formats and from varying time periods and 
loop detector counts on freeway sections provided by MnDOT. During this process the 
research team had to also deal with numerous bugs still present in the software. 

Both project objectives were accomplished although the original plan and methodology had 
to be modified to accommodate the aforementioned challenges. The integration with the 
RPM Mode Choice step was accomplished and showed that it is feasible to upgrade the 
traditional static traffic assignment step with a Dynamic User Equilibrium based hybrid 
traffic simulation one. Although further improvements relating to the overall process are 
still needed, this proof-of-concept ensures that an integration with the new activity-based 
RPM is possible and potentially even more efficient and accurate. 

The comparison of the Green Line corridor with and without the LRT has produced 
credible results confirming that although the reduction in capacity of University Ave, does 
affect neighboring streets, the larger effect is absorbed by I-94 with only a marginal 
increase in travel times and reductions in speed. It is important to note that the model 
indicated the existence of instabilities on major intersections of the corridor where the 
selected traffic control plans play a big role in the system’s efficiency. Indicative results are 
presented both for the morning peak period (6:45 -7:30 AM) as well as the afternoon peak 
(3:00 to 4:00 PM), while a full result set for both peak periods is also available. 

The report concludes with a collection of lessons learned involving the development, 
calibration, and management of a large simulation model highlighting the challenges and 
suggesting an optimal course of action for future projects.
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1. Introduction 
Long-term, regional travel demand models are essential tools used by planning 
organizations for resource management, project scheduling, and impact studies.  In most 
cases these tools are developed at a macroscopic level, including only the most basic 
information about the road networks’ geometry and traffic patterns.  In Minneapolis-Saint 
Paul, Minnesota such a model was developed and is maintained by the Metropolitan 
Council. The development of the Green Line light rail corridor between the two downtown 
areas represented a modeling challenge due to complicated road geometries and traffic 
controls.  The Regional Planning Model (RPM) may not be sufficient for analyzing the 
impact and operations of a new transit line on one of the most central links of the network.  
To explore this issue and perform a before-after study, a different modeling approach 
based on traffic simulation and Dynamic Traffic Assignment (DTA) was developed and is 
presented in this report.   

Macroscopic regional models such as the RPM lack several key elements needed for close 
examination of infrastructure and systems such as the Green Line light rail.  Localized 
geometric effects are not captured by low-resolution models, causing errors in speed 
estimation, delay, etc.  Traffic controls are often absent or simplified; impacts from 
actuated signals, coordinated signal corridors, or preemption/priority strategies are lost.  
Static traffic assignment models also fail to capture the dynamic nature of traffic, such as 
allowing vehicles on congested routes to reroute. Thus, a gap exists between current 
regional macroscopic models and their ability to model fine details and active traffic 
management (ATM) or advanced transportation demand management (ATDM) systems. 

To address this gap, a large-scale simulation was constructed to capture localized, high-
resolution data and incorporate accurate transit and signal information while maintaining 
a wide, regional scope sufficient to capture long distance travel and dynamic rerouting.  
Simulation models incorporating large regions allow more realistic route selection, 
especially for vehicles traversing congested areas.  By focusing on a small sub-network 
consisting of only the corridor of interest, vehicles are trapped onto only a few paths which 
may become severely congested.  Expanding the model to include surrounding parallel 
routes frees vehicles to bypass congestion appropriately. 

Similarly, a significant extent of the transit network is required to adequately capture 
movements through and around major corridors.  In this case, trips which include the 
Green Line light rail transit (LRT) corridor are surrounded by other modes; riders must 
reach the light rail and, ultimately, their destination by other methods.  Numerous bus lines 
act as collectors for the Green Line, feeding riders into the railway from outlying urban and 
suburban areas.  To capture such multimodal trips, wide swaths of the metropolitan area 
must be included in modeling efforts. 

The resolution of the model is a significant problem for such a simulation effort.  High-
resolution modeling is necessary throughout the corridor of interest; only microscopic 
models incorporate traffic control with sufficient detail to accurately describe the 
interaction between light rail vehicles and the road network.  However, simulating large 
regions at a microscopic level quickly becomes computationally prohibitive and difficult to 
construct and maintain.  To counter this, mesoscopic simulation techniques have been 
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developed which sacrifice some detail but are capable of simulating larger areas efficiently.  
Part of this sacrifice includes traffic control which is vital to modeling the light rail corridor. 

The approach in this project was to develop a hybrid model, incorporating components of 
both microscopic and mesoscopic modeling to achieve both the high resolution required 
along the light rail corridor and the wide scope necessary for accurate route and mode 
choice.  A core region, including the Green and Blue Line light rail corridors and both 
Minneapolis and Saint Paul downtown districts, was implemented at a microscopic 
resolution, with the remainder of the metropolitan region modeled at a mesoscopic level.  
By operating both levels in conjunction, sufficient detail and control were maintained in the 
corridor of interest while still retaining a wide scope to capture alternative routes for 
vehicles avoiding congested areas. 

The hybrid model was linked to the original RPM to allow for mode shift between 
iterations, completing the feedback loop for the model.  Speed data for every link in the 
network were returned to the RPM to inform a new travel demand and mode choice.  By 
introducing this connection, traffic behavior within the Green Line corridor can make an 
impact on travel decisions and transit use throughout the network and more appropriately 
reflect reality. 

This report describes the complete development of the hybrid model.  As a primer, 
descriptions of similar projects are given along with broad background on varieties of 
simulation, culminating with Aimsun hybrid simulation.  The implementation of the 
geometric, traffic control, and vehicle demand components of the hybrid network is then 
described, including details regarding the two alternative models: one for the existing 
Green Line along University Avenue, and one for the no-build alternative.  Alongside the 
construction of the Aimsun model, interconnections to the Regional Planning Model in 
Cube Voyager are outlined. 

As the model was developed, calibration and validation efforts were also undertaken to 
ensure proper fitting of the Aimsun hybrid model to both the Regional Planning Model and 
real data (in the form of loop detector and turning count data).  These efforts were made at 
multiple stages, including at all resolutions from macroscopic to microscopic.  Within the 
integrated hybrid model, calibration and validation became significantly more difficult due 
to the size and scope of the task, as well as multiple issues related to Aimsun’s specific 
implementation of hybrid modeling.  Methods for overcoming these barriers conclude the 
discussion of calibration. 

With the hybrid model completed and calibrated, the results are presented in Chapter 5. 
They relate to both the integration with Voyager and refinement of mode choice within the 
RPM, as well as the impact of the Green Line on University Avenue and the microscopic 
subareas of the hybrid model. 

The final chapter of this report includes significant details and commentary regarding the 
successes and difficulties of this project.  Many important lessons were gleaned through 
overcoming barriers to achieving such an ambitious simulation scope.  These include 
methodologies related to implementing and calibrating such models, alongside information 
related to handling and effectively visualizing such large and complex data sets. 
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2. Background 
A few other attempts have been made at large-scale and hybrid simulation for major 
metropolitan regions across the world.  A macroscopic-microscopic iterative solution was 
developed for the Des Moines, Iowa region relying on a small microscopic model for peak-
time speed estimation to improve macroscopic demand modeling (1).  The mesoscopic 
model DynusT has been employed by several teams working to improve regional planning 
models, notably for Seattle, Washington (2) and Sacramento, California (3).  In each case, 
the formerly macroscopic tools used by the cities were interfaced with a mesoscopic model 
to provide additional modeling accuracy. 

Similar to the approach describe within this paper, Burghout and Wahlstedt (4) targeted a 
small portion of Stockholm, Sweden and examined the redistribution effects from new 
signal control plans within a dense, bus-priority arterial corridor by integrating VISSIM’s 
microscopic modeling capabilities with MEZZO, an event-based mesoscopic model.  VISSIM 
was also paired with Synchro and San Francisco, California’s regional travel demand model 
CHAMP (5) to develop a long-term planning framework for analyzing bus rapid transit 
(BRT) and multimodal transportation scenarios. 

Finally, the New York City Department of Transportation developed a large-scale 
mesoscopic-microscopic simulation model of Manhattan and surrounding arterials.  Using 
the framework of the existing regional travel demand model, successive layers of 
mesoscopic and microscopic models were implemented on the Aimsun platform (6). 

2.1 Modeling Strategies 
Four modeling approaches are encountered throughout the methodology presented in this 
report: macroscopic, mesoscopic, microscopic, and hybrid.  Some basic knowledge of each 
is necessary for understanding the challenges encountered while constructing the Twin 
Cities Metro Hybrid Simulation Model.  

2.1.1 MACROSCOPIC MODELING 

Covering the broadest scope at the lowest resolution is macroscopic simulation.  The 
Regional Planning Model which forms the base of this process is a macroscopic tool, 
including only major roadways and intersections (referred to as links and nodes, 
respectively) in a “stick network”.  Social and economic data are utilized with demand 
generation and mode choice models to create trip origin/destination tables which are used 
for static traffic assignment (STA).  The parameters of importance are link speed, capacity, 
and assigned traffic volume; vehicles are not individually modeled but are instead 
aggregated into link demand. 

2.1.2 MICROSCOPIC MODELING 

Microscopic models are high-resolution with great detail in terms of geometry and control.  
Car following, lane changing, and other driving behavior models are used within a fixed-
time-step framework as vehicles propagate through the network making decisions which 
cumulatively produce traffic patterns.  Vehicle behavior is governed by parameters such as 
reaction time, acceleration and deceleration rates, gap acceptance, and so forth.  Accurate 
geometry and signal timing affects queuing at intersections and congestion buildup 
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2.1.3 MESOSCOPIC MODELING 
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Figure 1. Hybrid modeling to locate alternative paths. 

Within the focus area (microscopic simulation), the primary path between the origin and 
destination develops congestion.  If only the microscopic region is considered, no 
alternative is available and vehicles must wait through the congestion with large delays.  
However, if the mesoscopic region is also included, vehicles moving from origin “i" to 
destination “j” can select alternate routes which do not utilize the affected links.  In this 
way, a more accurate representation of driver decision making can be modeled and the 
high level of detail is maintained within the corridor of interest, but computing needs are 
dramatically reduced (compared to simulating the entire region microscopically). 

While the mesoscopic regions are, as noted above, modeled using an event based approach, 
the microscopic region uses a fixed time interval to ‘step’ through the entire simulation 
period.  To merge these two disparate approaches, a single simulation clock is used to 
synchronize events between the two portions of the model.  All vehicles also maintain state 
parameters relevant for both the microscopic and mesoscopic regions, allowing vehicles to 
freely move back and forth between the two and use the appropriate car-following, lane-
changing, and path selection models. 
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split into. At each one of these slices new shortest paths are calculated. The DTA model 
however also allows a user defined percentage of vehicles to reroute at each one of these 
cycles. This allows vehicles that may have been caught in congestion a chance to find a new 
path given the network conditions.  
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Figure 2. High-resolution core regions of the hybrid simulation covering the Blue Line (A) and Green Line (B); inset, the full extent of the Regional 

Planning Model network with the expanded region highlighted.



 

All existing roadway sections were also checked against these aerial photos to ensure 
geometric correctness.  Once all the roads were imported or created, road types and speed 
limits were assigned to each section. 

As described previously the two regions in Figure 2 were enhanced to include all arterials, 
most collectors, as well as some side streets, and appropriate intersection curvature.  The 
total number of links within each area approximately doubled, with a significant increase in 
number of intersections. Figure 3 shows the original and improved Blue Line regions. 
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who use street shoulders, parking areas, or bus stops to move past through-movement 
drivers when possible. 

Alongside improvements to the road network, the light rail lines were integrated into the 
hybrid model’s geometry.  Two versions were developed: one representing the 2009 pre-
Green Line network state, the other representing the 2015 post-Green Line state.  As the 
Green Line is entirely encapsulated within the microscopic portion of the model, the outer 
regions imported from the RPM remained unaltered. 

Implementing geometry was a significant startup cost in terms of hours of labor.  Since 
generally only one individual could work on the model at a time, development occurred 
over the course of several years, with roughly a year and half of full time effort required for 
complete implementation and improvement. Table 1 summarizes link and node statistics 
describing the scope of the network. 

Table 1. General network geometry information. 

 
Links: Count Length (Lane-Miles) Length (Lane-Kilometers) 

 
Freeway Network 4570 4121 6633 

 
Arterial Network 14780 12156 19564 

 
Total 19350 16278 26196 

     

 
Nodes:       

 
Intersection Nodes 8403 Centroid Nodes 1632  

     The final Aimsun microscopic Blue Line (Hiawatha) network (Figure 4) encompasses the 
Blue (Hiawatha LRT) line, downtown Minneapolis, and the southern portion of Minneapolis 
lying east of I-35W while north of Hwy 62. The Green Line (Formally the Central Corridor 
LRT) Aimsun network (Figure 5) includes portions of Minneapolis and St. Paul east of the 
Mississippi River that interact with the Green (CCLRT) line, including Washington Avenue, 
University Avenue, and downtown St. Paul.  
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Figure 4. Blue Line (Hiawatha LRT) high-resolution model. 
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Figure 5. Green Line (CCLRT) high-resolution model. 
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Merging the two microscopic networks together, which were separated by the Mississippi 
River, primarily involved stitching river and highway crossings together. Stitching the 
combined microscopic network with the Voyager macroscopic model involved stitching 
thousands of links together. A cutout version of a direct import from Voyager is used as the 
base network, in which all sections that were present in the Aimsun microscopic network 
were manually removed from the Voyager import to aid the stitching process. In cases of 
uncertainty, roads were not removed out of caution and were compared directly to the 
microscopic network after importation. Figure 6 shows a partial view of the Voyager 
network with the two micro networks stitched in. 

 
Figure 6. Twin Cities Metropolitan hybrid simulation model (partial picture). 

An issue that arose during the stitching process was how to reconnect the thousands of 
centroid connectors to links in there corresponding Traffic Analysis Zone. While this could 
have been done manually it was a tedious and time consuming process that would take 
several days to complete. Consideration was also given to the fact that if this process would 
have to be done again a more stream lined approach would be needed. There for a script 
was designed to connect the centroids to the ends of links that were not connected to a 
node based on their name. By giving all sections that needed to be connect a specific 
formatted name corresponding to the centroid that need to be connected a script could 
easily attach the thousands of links in seconds. This process took only half the time and 
minimized errors that would have been otherwise caused by the manual linking. The script 
can be found in the appendix. 

A full network check, using the microscopic network checker in Aimsun, was run with 
demand matrices in order to locate unstitched link ends. After Aimsun completed locating 
the unstitched links, these were fixed manually. The microscopic simulation network 
checker found several hundred errors related to low turning speeds and other geometric 
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Table 2. List of intersections converted from 4-way to T-intersection pairs. 

Arthur Ave SE  Beacon Ave  N Oxford St 

30th Ave SE  N Wheeler St  N Milton St 

Emerald St SE  N Pierce St  N Avon St 

Curfew St 

Carleton St 

 

 

N Simpson St 

N Albert St 

 

 

St Albans St N 

N Kent St 

Montgomery St 

Lynnhurst Ave 

Crossing for Episcopal Homes parking, 
just west of Fairview Avenue 

 

 

 

N Syndicate St 

N Dunlap St 

 

 

 

 

Arundel St 

N Farrington St 

Galtier St 
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Figure 7. Region near Snelling Avenue and University Avenue - Pre-LRT 

 

 
Figure 8. Region near Snelling Avenue and University Avenue - Post-LRT 
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3.2 Signal Control Implementation 
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plan. A detailed explanation of the steps taken to implement the controls was included in 
the deliverable for Task 3 and therefore is not covered in this report.  

 
Figure 9. Master Control Plan timetable. 
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Table 3. Control statistics including Before/After Green line. 

 Control Type:  

COUNT BY REGION 

Blue Line Green Line Before Reprogrammed for Green Line 

Fixed 318 96 26 

Semi-Actuated 92 114 25 

Fully Actuated 13 8 4 

LRT Preemption 8 - 8 

LRT Priority - - 29 

 
 
 
 
 
  

The plans implemented were produced by a consulting firm for the corridor and were the 
best possible place to start from. During the final months of the project (after the opening 
of the Green Line) it was found through field observations and discussions with local city 
engineers that the original timings have been significantly altered to meet operational 
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percentages to match the shape of the curve through visual inspection. The percentages 
were consistently checked to ensure that the total demand over the entire original demand 
interval did not exceed 100%.  Since the overall all demand in the time period stays the 
same it was found that this method created more realistic results than the other default 
arrival patterns available in Aimsun (such as Exponential, Uniform or Normal). This 
process is illustrated by Table 4, which shows the demand volumes and adjustment factors, 
and Figure 10, which shows the entrance rates per 15-minute interval for the original and 
adjusted demand curves for the periods covering morning peak (periods 6 through 10). 
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Table 4. Demand adjustment factors used to smooth vehicle entrances. 

 
 

 

Adjusted Demand 

Original Demand 

Period 6 Period 7 Period 8 Period 9 Period 10 

Figure 10. Original and smoothed demand for the morning periods. 
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3.4 Integration with Voyager 
A main objective of the project was to integrate the hybrid simulation traffic assignment 
results with Voyager’s 4-step travel demand modeling process. Specifically, the approach to 
this integration will be to form a loop between the Aimsun and Voyager models.  Starting 
with the Voyager full travel demand modeling process, a first set of O/D matrices are 
produced and imported into the Aimsun hybrid simulation model to support a dynamic 
traffic assignment process.  This DTA simulation produces link travel times and average 
speeds for the whole network. These travel times are then imported back into Voyager’s 
Mode Choice modules to produce a new set of demands (i.e. O/D matrices).  The process is 
then repeated until the O/D matrices produced between two steps are sufficiently similar. 

Figure 11 shows the two different loops. The first loop (Step A) is the current 4-step model 
in use by the Metropolitan Council in the RPM. The second loop (step B) describes the loop 
performed between the Aimsun-based hybrid model and the Voyager-based RPM. 

 
Figure 11. Flow diagram for Voyager-Aimsun loop. 

Before the loop could proceed, a linkage had to be made to pass information between the 
two simulation environments. Since Voyager is based on a “stick” network, each Voyager 
link can be uniquely identified using either a link ID or the origin and destination nodes (in 
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this case, node refers to simple intersection locations and not centroid nodes).  However, 
between different versions of the RPM each link is reassigned unique link ID values.  Only 
the origin-destination node IDs remain fixed (although changes to the network that add or 
remove nodes do obviously necessitate some local alterations).  Between the two model 
versions of interest for this investigation (the 2009 and 2015 RPM models), no node 
changes were made which would impact the region of interest (minor node changes were 
at the outskirts of the mesoscopic region). 

Within Aimsun similar issues were encountered. Like Voyager, every link has an ID and, in 
most cases, numerous attributes imported from Voyager. As described in earlier sections, 
when the microscopic portions of the network were improved, for reasons of accuracy and 
realism, many additional links were introduced, while most of the Voyager links in the 
Blue/Green Line regions were broken into smaller sections to better match real world 
geometry and incorporate additional minor intersections. These new and adjusted links 
within Aimsun lack information tying them to the Voyager network.  To complete the 
connection back to Voyager, this information was redeveloped.  However, since the Aimsun 
model includes more roadways than the RPM (and potentially multiple sections 
corresponding to one RPM link) and because each model includes tens of thousands of 
links an automated method of generating link mapping tables was created using ArcMap.  

Within ArcMap, the Spatial Join tool along with some careful assumptions allow for this 
mapping to take place.  From Aimsun, both the RPM macroscopic network links and the 
Aimsun microscopic network sections were exported to GIS.  The Aimsun export function 
created two files of interest for each network, “section.shp” and “sectionGeo.shp”, each of 
which was added to ArcMap.  The section.shp file contains information regarding section 
properties as defined within Aimsun (such as ID, speed, capacity, etc.) while the 
sectionGeo.shp file contains information regarding the geometric layout of sections 
(coordinates of vertices, lane configurations, etc.).  To clearly differentiate between the 
RPM links and Aimsun links, the shape files were renamed (Figure 12). 

 
Figure 12. GIS layers involved in Aimsun – Voyager integration. 
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Once both networks were within ArcMap, the Spatial Join tool was used to find overlapping 
links.  Because the Aimsun model contains many shorter segments that each belong to the 
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the “from” and “to” ends of each section.  Using an Excel script, these coordinates were 
compared for each section and a general bearing was calculated. 

 

 

 
Figure 13. Section geometry parameters used in Aimsun. 

From the Spatial Join tool, a database was created which contained all possible partner 
sections for each Aimsun link.  These were then narrowed to those with matching bearings 
(within 5°) and the best matches available were kept.  The remaining links without good 
matches were examined manually. 
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macro set. These Mesoscopic paths were then to be used as an input to the Hybrid model. 
The thought for using the mesoscopic paths in the hybrid model was to account for the so 
called historical paths of the day to day users who were unlikely to radically shift their 
route in order to avoid congestion. These paths were to be used by 60% of the vehicles in 
the network. The other 40% would be split in half and would start pick a path when they 
entered the network based on its conditions and would then stick to it for the remaining 
time. The remaining half would also pick a path based on the network conditions but would 
be able to reroute or chose a new path every 7.5 minutes. 

This method was to be conducted for the 8 demand intervals, seen in Table 5 along with 
run statistics, and the aggregated average speed of each link from each interval would be 
read into the mode choice model. The mode choice model would then produce origin 
destination (OD) matrices for the Aimsun models to be run again. This loop was to be done 
until no relevant change in demand could be seen.   

Unfortunately due to the computational requirements and simulation time need for each 
loop this was found to be infeasible in the constraints of this project. Therefore the loop 
was shortened so that only one simulation was run in Aimsun and only two different file 
transfers had to occur. The solution and the way we avoided inaccuracies in the model 
results, was to run a Hybrid Dynamic User Equilibrium (DUE) for each demand interval. 
Since the Hybrid DUE was run directly and only the statistics of the sections need to be 
saved in order to produce relevant speeds and all other outputs could be turned off to save 
computational time and memory requirements. This produce a simple loop as seen in 
Figure 14 which only required some manual intermediate steps involving Access to clean 
and write the data into a form that Voyager could use. The process though can be 
completely streamlined to require no manual intervention. 

 
Figure 14. Flow diagram for passing data between Aimsun and Voyager. 
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Table 5. Simulation time and vehicle demand for iterating through mode choice. 

Duration 

Demand Interval Time Seconds Hours Vehicle Demand 

7 6:45 – 7:30 25,983 7.2 773,514 

8 7:30 – 8:30 74,078 20.6 781,017 

9 8:30 – 9:30 31,844 8.9 568,583 

10 9:30 – 10:30 23,883 6.6 438,598 

11 10:30 – 11:30 45,436 12.6 518,001 

12 11:30 – 12:30 34,566 9.6 592,584 

13 12:30 – 13:30 38,498 10.7 550,895 

14 13:30 – 14:30 10,934 3.0 394,901 

3.6 Before and After Green Line Scenarios 
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Demand Interval

Green Line Network 
RAM (GB) Iterations Run Time (hr) RAM (GB) Iterations Run Time (hr) 

6 6:00-6:45 17.5 4 1.6 24.2 5 1.7 

7 6:45-7:30 49.5 13 4.3 55.5 14 7.1 

8 7:30-8:30 116.6 24 20.5 88.7 19 14.0 

15 14:30-15:30 65.1 13 8.8 70.1 13 9.9 

16 15:30-16:30 125.1 25 19.1 85.1 16 14.9 

17 16:30-17:30 118.0 25 21.9 148.1 25 22.5 

18 17:30-18:00 38.0 16 7.2 40.2 14 9.2 
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These were the initial runs that were used to compare the two models. It was found later 
that a slightly different approach to the simulation showed more realistic results for the 
peak period. Therefore a new set of simulations focused on getting the best peak period 
results for demand 8 and demand 17. The simulations that were used were a combination 
of multiple demand intervals which required significantly more RAM and increased run 
times but resulted in fewer simulations to run (4 total vs 14). These runs are summarized 
in Table 7. 

Table 7. Computational and time requirements for Green Line before-after 3-period simulations. 

Demand Intervals 

Pre Green Line Network Green Line Network 
RAM (GB) Iterations Run Time (hr) RAM (GB) Iterations Run Time (hr) 

6, 7, 8 6:00-8:30 291 27 92.2 261 26 86.1 

16, 17, 18 15:30-18:00 356 27 114.14 331 25 78.7 
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Table 8. List of road types and corresponding Volume-Delay Functions. 

# Type VDF  Aimsun Syntax for VDFs 

1 Metered 
freeway 

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167) 

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

2 Unmetered 
freeway 

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167) 

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

3 Metered 
Local Ramp 

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167) 

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

4 Unmetered 
Local Ramp 

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167) 

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

5  Divided 
Arterial  

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

6  Undivided 
Arterial  

T0*(2+SQRT(25*(1-
(V/C))^2 +1.266)-
5*(1-(V/C))-1.125)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(25*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.266)-5*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.125)  

7  Collector  
T0*(2+SQRT(36*(1-
(V/C))^2 +1.210)-
6*(1-(V/C))-1.100)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(36*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.210)-6*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.100)  

8  HOV Lane  
T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

9  Centroid 
Connector  T0  LinkLength(S)/LinkSpeed(S)  

10  HOV Dummy  
T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

11  C/D Road  
T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

13  
Metered 
System 
Ramp  

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

14  
Unmetered 
System 
Ramp  

T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

15  Expressway  
T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 

18  HOV Bypass  
T0*(2+SQRT(16*(1-
(V/C))^2 +1.361)-
4*(1-(V/C))-1.167)  

(LinkLength(S)/LinkSpeed(S))*(2+SQRT(16*(1-
((LinkVolume(S)+LinkAddVolume(S))/LinkCapacity(S)))^2+1.361)-4*(1-
((LinkVolume(S) +LinkAddVolume(S))/LinkCapacity(S)))-1.167) 
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A) After step 1 

 
Figure 15. Predicted vs observed values pl

B)
ot f

 A
or

f
 th

ter s
e ma

tep
cro m

 4 
odel (University sub-network 7:30-8:30). 

Table 9. Relative difference between two models (7:30-8:30). 

Percent of Sections 

Maximum Relative Difference (percent) 

Green Line Blue Line 

After step 1 After step 4 After step 1 After step 4 

75% 63 14.3 75 19.6 

50% 31 6.5 39 8.3 

25% 10 2.1 15 3.1 
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Figure 16. Graphical user interface for a Dynamic Scenario in Aimsun. 

The second menu, the Dynamic Experiment seen in Figure 17, contained the more refined 
inputs such as the parameters of the stopping criteria, micro simulation subareas, global 

parameters, and active Policies (forced turnings, time sensitive lane/movement closures, 
etc.) 

 
Figure 17. Graphical user interface for a Dynamic Experiment in Aimsun. 

behavior and reaction time parameters, arrival pattern, Dynamic Traffic Assignment 
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4.3.3 DISTANCE ZONES 
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share a ramp (blue shaded region).  A dedicated slip ramp connects I-35E and Highway 52 
and is the correct route for vehicles to take (green shaded region).  Aimsun incorrectly 
directed vehicles toward I-94, across several lanes of traffic, and onto the I-94/Highway 52 
ramp (red shaded region). 

 
Figure 18. Problematic connections between I-94, I-35E, and Highway 52. 

To remedy this incorrect route selection pattern, a forced turning was created which 
guides any vehicles entering the shared ramp space onto the correct slip ramp if their 
destination links include Highway 52.  This forced turning mirrors the real-world lane 
indications (shown in Figure 19) which direct traffic to the appropriate routes.  Figure 20 
shows the Force Turning dialogue for this case. 

 
Figure 19. Real world signs guiding drivers in route selection. 

Ramp from I-35E Southbound 
to I-94 Eastbound and  
Highway 52 Southbound 

Ramp to Highway 52 

Crossover area along I-94 Eastbound 



38 
 

 
Figure 20. Forced turning dialog menu in Aimsun. 

Additional routes demonstrated similar issues, including the interaction of I-35E and I-94. 
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4.3.5 LINK VOLUMES AND LINK TRAVEL TIMES 
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Figure 21. Locations of Minneapolis turning count data. 

 

 
Figure 22. Locations of St. Paul turning count data. 



 

With the data prepared for each intersection, each turning movement was matched with its 
corresponding turning ID in Aimsun. This involved manually locating each intersection 
containing data and copying the turning ID for each existing turning movement to the 
corresponding turning count in the spreadsheet, as demonstrated in Figure 23 and Figure 
24. For turning movements that did not exist (i.e., in the case of a one-way road), the output 
file contained all zeroes, therefore an ID of -100 was given to indicate that it was an invalid 
turning movement and would be excluded from the final consolidated data.  

 
Figure 23. Accessing intersection turning IDs in Aimsun. 

 
Figure 24. Sample of spreadsheet for matching real data to turning IDs. 

Another macro in Visual Basic was written to consolidate the data into a format that 
Aimsun is able to read and subsequently use as real data.  The consolidated data included 
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than the freeway detectors. The turning counts were found to vary greatly over both the 
years taken along with the time of year. Therefore they were used mostly to find 
intersections that had very contrasting counts to see if there were issues with the 
particular nodes that those counts belong too. 

It was found that the overall convergence of the model got closer to freeway detector 
counts as the model approached the peak periods. Figure 25, Figure 26, and Figure 27 
below show that as the model approaches Demand 8 (7:30-8:30) the model is getting 
closer to convergence and a “give/take” balance between having too many vehicles and not 
having enough. When the model had fewer vehicles it was found that they used more 
arterials then the highway detectors would suggest. 

 

 
Figure 25. Demand 6 highway detector convergence. 
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Figure 26. Demand 7 highway detector convergence. 

 
Figure 27. Demand 8 highway detector convergence. 
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Figure 28. Mesoscopic triangular fundamental diagram. 

This process was confounded by the way in which nodes treat vehicles in Aimsun’s 
mesoscopic simulator.  Each node acts as an event server, processing a queue of vehicles 
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to merge on the freeway. If this vehicle could not find a gap then it would come to a stop at 
the end of the ramp and vehicles would cue up behind them as seen in Figure 29. 

 
Figure 29. On ramp queue formation. 
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available output statistics from Aimsun can be seen in Table 10 below. These were o
r
u
e
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 th

u
e 
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at the end of each simulation run at 5 minute intervals. 
Table 10: Aimsun Hybrid Section Database Outputs 

Name Type Description 
did              integer    Replication or Average identifier 
oid              integer    Section identifier 
eid              char       Section External ID 
sid              integer    Vehicle type (from 0 for all vehicles, to number of vehicles) 
ent              integer    Time interval, from 1 to N, where N is the number of time intervals, and 0 

with the aggregation of all the intervals 
flow             double     Mean flow (veh/h) 
count            Integer    Vehicle counts (veh) 
ttime            double     Mean Travel Time (seconds) 
dtime            double     Mean Delay Time (seconds) 
speed            double     Mean speed (km/h) 
spdh             double     Harmonic mean speed (km/h) 
flow_capacity    Double     Mean flow / section capacity 
density          double     Density (veh/km) 
qmean            double     Mean queue length by lane (veh) 
qmax             double     Maximum queue length (veh) 
qvmean           double     Mean virtual queue (veh) 
qvmax            double     Maximum virtual queue (veh) 
travel           double     Total number of km travelled in the section travel time double Total travel 

time experienced in the section (seconds) 
lane_changes     double     Number of lane changes / Number of veh 
stime            double     Mean Stop Time (seconds) 
fuelc            double     Total liters of fuel consumed in the section 
nstops           double     Number of stops per vehicle  
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associating the different data sets is shown in Figure 30. 
Table 11. Performance measurements extracted from database outputs 

Measurement Type Statistic Query 

Absolute Difference 
(After – Before) 

Speed AbsD_Speed: ([After_678.speed]-[Before_678.speed]) 

Flow AbsD_Flow: [After_678.flow]-[Before_678.flow] 

Density AbsD_Density: ([After_678.density]-[Before_678.density]) 

Travel Time AbsD_ttime: ([After_678.ttime]-[Before_678.ttime]) 

Percent Change 

((After – Before) 
/Before * 100) 

Speed PerD_Speed: (([After_678.speed]-
[Before_678.speed])/[Before_678.speed])*100 

Flow PerD_Flow: 
IIf([Before_678.flow]=0,[After_678.flow]*100,(([After_678.flow]-
[Before_678.flow])/[Before_678.flow])*100) 

Density PerD_Density: (([After_678.density]-
[Before_678.density])/[Before_678.density])*100 

Travel Time PerD_ttime: (([After_678.ttime]-
[Before_678.ttime])/[Before_678.ttime])*100 
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Figure 30. Access association structure. 
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Figure 31. Change in Speed from before and after of hybrid model (Microscopic Region shaded). 

Figure 32 presents a view of the level of congestion, as expressed by critical density around 
45 veh/mile, during the Morning peak. As can be seen there are few changes after the 
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Figure 32. Change in density by link for demand AM Peak (6:45 - 7:30 AM). 
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Figure 33. Congestion changes along I-94: AM peak (6:45 - 7:30 AM). 
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Figure 34. Percent (%) Changes in Flow and Density without and with the Green Line LRT during AM Peak (6:45 - 7:30 AM). 
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Figure 35. Percent (%) Changes in speed without and with the Green Line LRT during AM Peak (6:45 - 7:30 AM).
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The results indicated above are similar to those observed during the afternoon periods. As 
can be seen in Figure 36 and Figure 37 the congestion of alternative routes around 
University Ave increased. I-94 absorbed most of the extra traffic and became more 
congested as a result. The PM peak period also varied slightly from the AM peak in the fact 
that many of the neighboring roads directly adjacent to University Ave became more 
congested. The PM results also varied greatly along the section of University Ave between 
Lexington Parkway and Dale Street. After the Green Line was implemented, University 
Avenue sections had density’s less than the critical density of 45 veh/mile during AM peak, 
while in the PM they were heavily utilized with sections having 70+ veh/mile.  

The effects of these density increases can be seen more clearly in Figure 38. The figure 
shows areas that increased in density and flow after the Green Line implementation in red. 
It is notable that I-94 increased in congestion and consequently had a reduced flow due to 
that increase. The same effect is also seen on the majority of the University corridor 
between the Minneapolis and St. Paul downtown cores. It should also be noted that due to 
the closure of Washington Ave through the University of Minnesota Campus traffic had to 
be rerouted and is seen as increased density near 35W along 4th Street and University Ave. 

In conjunction with these changes in density and flow, shifts in speed were observed.  From 
the increased demand, Interstate 94 experienced decreases in speed across the majority of 
its length (see Figure 39 below).  Red links in the figure represent significantly slower 
speeds, while green links are higher speeds after the Green Line is implemented. Although 
there appears to be changes all over the network many of these “cancel” each other out due 
to the nature of the simulation attempting to find the most optimal solution. In other words 
there is a visible balance between green and red links further away from the study area. 
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Figure 36. Change in density by link for PM Peak (3:00 - 4:00 PM). 
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Figure 37. Congestion changes along I-94: PM peak (3:00 - 4:00 PM). 
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Figure 38. Percent (%) Changes in Flow and Density without and with the Green Line LRT during PM Peak (3:00 - 4:00 PM). 
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Figure 39. Percent (%) Changes in speed without and with the Green Line LRT during PM Peak (3:00 - 4:00 PM).
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While the results above are representative, they are samples from the entire set of 
simulations completed for this task.  To aggregate the results somewhat, the travel times 
for the entire University Avenue corridor were determined, on average, for each period 
within both the Before and After models.  Table 12 below shows the travel times for 
eastbound and westbound traffic along University Avenue between Huron Boulevard in 
Minneapolis and Robert Street in Saint Paul and Figure 40 shows the boundaries of the 
corridor used. 
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Figure 40. Path used for vehicle travel time estimation. 

Table 12. Travel times between Huron Boulevard and Robert Street. 

  
Eastbound Westbound 

Interval Time Before After Before After 

6 6:00 - 6:45 676 (s) 1043 (s) 376 (s) 1093 (s) 

7 6:45 - 7:30 699 (s) 1125 (s) 272 (s) 1379 (s) 

8 7:30 - 8:30 728 (s) 1138 (s) 754 (s) 1342 (s) 

15 2:30 - 3:30 744 (s) 1110 (s) 424 (s) 1330 (s) 

16 3:30 - 4:30 749 (s) 1237 (s) 278 (s) 1301 (s) 

17 4:30 - 5:30 908 (s) 1389 (s) 808 (s) 1557 (s) 

18 5:30 - 6:00 819 (s) 1457 (s) 480 (s) 1842 (s) 

  

As seen in the table, travel times increased along University Avenue in the after model.  
Closer examinations of these travel times show that the signals along University Avenue 
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Table 13: Green Line Average Travel Times for Completed Trips by Period 

Interval Time Eastbound Westbound 

6 6:00 - 6:45 3858 (s) 64.3 (min) 3443 (s) 57.4 (min) 

7 6:45 - 7:30 3775 (s) 62.9 (min) 3913 (s) 65.2 (min) 

8 7:30 - 8:30 4049 (s) 67.5 (min) 4299 (s) 71.6 (min) 

15 2:30 - 3:30 2965 (s) 49.4 (min) 3135 (s) 52.2 (min) 

16 3:30 - 4:30 3034 (s) 50.6 (min) 3174 (s) 52.9 (min) 

17 4:30 - 5:30 2939 (s) 49.0 (min) 3147 (s) 52.4 (min) 

18 5:30 - 6:00 2568 (s) 42.8 (min) 3145 (s) 52.4 (min) 
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Table 14: Summary of mode shift by iteration 

PEAK PERIOD (6:00 AM - 8:30 AM)   OFF PEAK (8:30 AM - 2:30 PM) 

  RPM 
Original 

(Trips) 
∆ Loop 

0-2 
 Loop 

2-3 
 Loop 

3-4 
 Loop 

0-4 
  

RPM 
Original 

(Trips) 
 Loop 

0-2 
 Loop 

2-3 
 Loop 

3-4 
 Loop 

0-4     

541,746 -287 180 -10 -117 Pedestrian 493,916 -261 42 1 -218 

173,453 -797 498 -18 -317 Bicycle 145,999 -731 71 -3 -663 

3,523,018 20,497 -1279 47 19265 

SOV 

(1 Occ.) 3,253,911 1,187 -97 2 1092 

834,676 10,024 -138 45 9931 (2 Occ.) 951,951 471 -31 1 441 

1,750,852 18,158 47 92 18297 (3 Occ.) 2,055,451 719 -32 -1 686 

36,278 -15,769 -226 -38 -16033 
HOV 

(2 Occ.) 249 -249 0 0 -249 

56,695 -24,516 -490 -82 -25088 (3 Occ.) 452 -446 0 0 -446 

82,491 -1,752 374 -3 -1381 
Local 

Bus 

Walk 26,217 -345 24 -2 -323 

11,249 -412 96 -3 -319 PNR 2,711 -53 4 0 -49 

5,466 -172 36 0 -136 KNR 550 -10 1 0 -9 

42,232 -2,119 402 -15 -1732 
Express 

Bus 

Walk 2,277 -63 6 0 -57 

14,758 -1,222 261 0 -961 PNR 782 -25 3 0 -22 

4,156 -261 49 -2 -214 KNR 76 -2 0 0 -2 

13,448 -1,073 153 -11 -931 
Light 
Rail* 

Walk 3,801 -180 11 0 -169 

1,866 -204 26 -3 -181 PNR 187 -12 1 0 -11 

935 -97 13 -1 -85 KNR 62 -5 0 0 -5 

        

* Blue and Green Lines both included 
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major highways and arterials have increased now that the vehicles from 6:00am – 7:30am 
are more accurately represented.  

  

 
Figure 41. Density comparison of multiple period simulation vs single period simulation1 

1 Sections with density’s less the 25 vehicles/km/ln were omitted from the results 
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Table 15: Computation Requirements of Hybrid Model 

Demand Interval 

Pre Green Line Network Green Line Network 
RAM (GB) Iterations Run Time (hr) RAM (GB) Iterations Run Time (hr) 

6 6:00-6:45 17.5 4 1.6 24.2 5 1.7 

7 6:45-7:30 49.5 13 4.3 55.5 14 7.1 

8 7:30-8:30 116.6 24 20.5 88.7 19 14.0 

15 14:30-15:30 65.1 13 8.8 70.1 13 9.9 

16 15:30-16:30 125.1 25 19.1 85.1 16 14.9 

17 16:30-17:30 118.0 25 21.9 148.1 25 22.5 

18 17:30-18:00 38.0 16 7.2 40.2 14 9.2 

        

Multi-Demand       

6-8 6:00-8:30 291 27 92.2 261 26 86.1 

16-18 15:30-18:00 356 27 114.14 331 25 78.7 
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Figure 42. Results fabrication example for inner metro region 
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Appendix A 



A-1 

Centroid Connector Script 
centroidType = model.getType( "GKCentroid" ) 
centroidList = model.getCatalog().getUsedSubTypesFromType(centroidType) 
centroidKeys = centroidList[0].keys() 
centroidDict = {} 
 
for intID in centroidKeys: 
 centroidObj = model.getCatalog().find( intID ) 
 extID = int(str(centroidObj.getExternalId())) 
 centroidDict.update({extID:intID}) 
 
sectionType = model.getType( "GKSection" ) 
sectionList = model.getCatalog().getUsedSubTypesFromType( sectionType ) 
sectionIDs = sectionList[0].keys() 
 
for sectionID in sectionIDs: 
 sectionObj = model.getCatalog().find( sectionID ) 
 sectionName = str(sectionObj.getName()) 
 if sectionName[0:10] == "Centroid #": 
  numEnd = sectionName.find(",") 
  centroidID = int(str(sectionName[10:numEnd])) 
  if centroidID > 100:  # leave out microsimulation edge (fake) centroids 
   for extID, intID in centroidDict.items(): 
    if extID == centroidID: 
     centroidObj = model.getCatalog().find(intID) 
 
   origin = sectionObj.getOrigin() 
   connector = GKSystem.getSystem().newObject( "GKCenConnection", model ) 
   if origin is None: # connect from centroid 
    connector.setConnectionObject( sectionObj ) 
    connector.setConnectionType( GKCenConnection.eTo ) 
   else: # connect to centroid 
    connector.setConnectionObject( sectionObj ) 
    connector.setConnectionType( GKCenConnection.eFrom ) 
 
   cenConf = centroidObj.getCentroidConfiguration() 
   cenConf.activate() 
   centroidObj.addConnection( connector ) 
 
print "Done!" 
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