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EXECUTIVE SUMMARY 

Developing efficient and robust traffic operational strategies that can directly be implemented 
into the existing working environment is of critical importance in improving the efficiency and 
the effectiveness of freeway management.   This research produced several important tools that 
are essential in achieving such an efficient freeway operations.  First, a computer-based off-line 
process was developed to automatically estimate a set of traffic measures for a given freeway 
corridor for selected time periods using the historical data collected from the field detectors.  
Secondly, a prototype on-line process was developed to calculate and graphically present 
selected traffic measures in real time to assist the traffic operators in identifying abnormal flow 
patterns.  Third, an integrated simulation system was developed by combining IRIS, the freeway 
traffic control system developed by MnDOT, and the Vissim microscopic simulation software, 
so that new operational strategies can be directly coded into IRIS and evaluated under the 
realistic simulation environment. The resulting IRIS-in-Loop Simulation System (ILSS) makes it 
possible to develop the operational strategies that can directly work under the current freeway 
operational environment.  In this research, the ILSS was applied to assess the performance of 
two new operational strategies that were also developed in this study: Variable Advisory Speed 
Limit Control and Density-based Adaptive Metering Strategies. The new variable advisory speed 
limit control strategy is designed to mitigate the shock waves propagated from downstream 
bottlenecks by gradually reducing the speed levels of the incoming traffic flows. The algorithm 
first identifies the locations of the bottlenecks and the VSL control zones by examining the flow 
deceleration rates between two detector stations in a given corridor. The advisory speed limits 
for each control zone are calculated with a constant deceleration rate, which has been determined 
to result in minimum increases in travel times. The preliminary evaluation results with 
microscopic simulation indicate that the proposed VSL system could significantly reduce the 
sudden deceleration rates of the traffic flows reacting to fixed or moving bottlenecks, while the 
increases in travel times can be kept relatively small.  The variable speed limit control strategy 
has been implemented at the I-35W corridor in July 2010 and the detailed analysis of the field 
data will be conducted in a subsequent phase of this research. Finally, an adaptive ramp metering 
strategy based on traffic density was developed and evaluated with ILSS. The new algorithm 
identifies bottlenecks for a given corridor every 30 seconds and determines the metering rates for 
each entrance ramp with the estimated mainline ‘segment density’. Further, the ramp wait time 
restriction is explicitly incorporated into the metering rate calculation.   The new algorithm was 
evaluated with ILSS using two freeway corridors as the sample test sections.  The simulation 
analysis with ILSS indicates that the new algorithm can significantly reduce the amount of 
congestion, compared to the existing metering method, while handling similar level of traffic 
flows.  Future research needs include the field testing of the proposed ramp metering strategy, 
enhancement of the variable speed limit control algorithm to manage different weather 
conditions, and development of predictive control strategies for proactive traffic management.  



1 

1 INTRODUCTION 

1.1 Background and Research Objectives 

Developing efficient and robust traffic operational strategies that can directly be implemented 
into the existing working environment is of critical importance in improving the effectiveness of 
freeway management.   Currently the freeway network in the Twin Cites is being managed with 
the Intelligent Road Information System (IRIS), a computerized operating system developed by 
the Minnesota Department of Transportation (MnDOT) to operate field devices such as ramp 
meters, variable message signs and loop detectors (MnDOT, 2008).  This research develops a 
comprehensive support tool for IRIS by integrating it with a microscopic traffic simulator, so 
that the IRIS-based freeway operational strategies can be emulated and refined in the simulated 
environment prior to field implementation.  The resulting IRIS-in-Loop Simulation system 
(ILSS) will be applied to develop new freeway operational strategies, including variable speed 
limit control and density-based adaptive ramp metering algorithms.  Further, a computerized 
off/on-line process will be developed to estimate a set of the traffic performance measures for 
given corridors during selected periods.  The resulting off-line performance measures will be 
used to support different levels of decision making process at MnDOT in planning and 
operations of the freeway network, including the continuous refinements ramp metering, incident 
management and travel time information systems, while the on-line measures for traffic 
conditions can be used for expanding the driver information system.  Finally new operational 
strategies for freeway corridors will be developed and evaluated with ILSS.  First, a variable 
speed limit control strategy will be developed to mitigate the rapid propagation of shock waves, 
so that the possibility of rear-end collision can be reduced.   Also, an alternative ramp metering 
algorithm will be developed to address the issues with the current capacity-based zone control 
approach (Kwon, et. al., 2005, Kwon, et. al, 2001).   The new metering algorithm will also be 
tested with ILSS using real freeway corridors. 

1.2 Report Organization 

Chapter 2 develops an integrated simulation environment by combining IRIS and a microscopic 
simulator through a data conversion module.  In Chapter 3, an off-line process is developed to 
automatically estimate a set of traffic performance measures for selected freeway sections for a 
given time period.  Computer software is also developed to automate the process.   Chapter 4 
summarizes the on-line estimation process for a selected set of traffic measures that can be used 
to support real-time operations.  In Chapter 5, a microscopic simulation software is used to 
model a section of freeway, which is used as the test section to evaluate the performance of the 
new freeway operational strategies to be developed in the subsequent chapters.  In Chapter 6, a 
new variable speed limit control strategy is developed and tested in a simulation environment.   
An alternative ramp metering strategy based on traffic density measures is also developed and 
tested in Chapter 7.  Finally Chapter 8 summarizes the findings of this research and identifies 
further research needs. 
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2 DEVELOPMENT OF THE IRIS-IN-LOOP SIMULATION SYSTEM 

2.1 Structure of IRIS-in-Loop Simulation System 

The key component of the IRIS-in-Loop Simulation system (ILSS) is the Interface for IRIS and 
Microscopic Simulator (IIMS), whose main function includes the conversion of the data, 
controlling the traffic simulator operations, and managing data transactions between IRIS and the 
traffic simulator, Vissim (PTV, 2011).  Figure 2.1 shows the main components of the IIMS, i.e., 
VISSIM Controller, Data Manager and Communicator, developed in this task.   The data flow 
among these main components is also illustrated in Figure 2.2.  As shown in those figures, IRIS 
and the traffic simulator, Vissim, is continuously interacting through time with IIMS, which 
converts the simulated detector data to the format required by IRIS and also translates the control 
solutions from IRIS, e.g., metering rates, to the form suitable for Vissim.  IIMS also manages the 
time-sensitive data exchange and synchronization process between IRIS and Vissim, so that the 
IRIS-based traffic operations can be simulated as if it’s done in real environment.   Further, as 
illustrated in the Figure 2.1, IIMS can interact with TICAS, Traffic Information and Condition 
Analysis System, also developed in the separate task in this research. 

 

Figure 2.1. Internal Structure of IRIS-in-Loop Simulation System  
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Figure 2.2. Data Flow among Main Components in IIMS 

Main User Interface for IRIS-in-Loop Simulation System 

Figure 2.3 shows the main user interface of IRIS-in-Loop Simulation (ILS) system.  The user 
interface consists of the function buttons, log viewer and controller editor.  The operational 
function of each button is as follows:  

- Start server : start ILS Communicator that sends and receives packets with IRIS 
- Load controller config file : load the configuration file that has the data structure 

information about 170 controllers, ramp meters and detectors 
- Load VISSIM file : select a VISSIM case file to simulate 
- Run VISSIM : start simulation 

 
The Controller Editor enables user construct the structures of 170 controllers, ramp meters and 
traffic detectors  into ILS  with the exactly same configurations as in a given freeway corridor.    
For example, one 170 controller in ILS can be connected to 2 ramp meters and 24 detectors, 
same as in the 170 controller in the field.  
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Figure 2.3. Main User Interface of IRIS-in-Loop Simulation System 

2.2 Communicator  

Communicator (CM) manages the communication process between IRIS and the other modules 
in the interface, i.e., Data Manager and Vissim Controller.  It follows the current MnDOT 
protocol, which defines the communication process between IRIS and the 170 controllers in the 
field.  When CM receives a request from IRIS, it creates a ‘response’ object and sends it to IRIS 
with the requested traffic information.   Figure 2.4 shows the major modules within the 
Communicator and its internal data flow process.    The main functions of those modules in the 
Commuicator are: 

a. MnDOT : This module parses raw packets and makes ‘Responser’ according to request. 
b. Comm : This module receives ‘request’ and extracts ‘request buffer’ from packet to send 

it to MnDOT. 
c. Responser : This module gets occupancy and scan data from the Data Manager and  

sends ramp meter data to the Data Manager. It also sends traffic data to IRIS. 

 

log viewer 

function buttons controller editor 
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Figure 2.4. Data Flow Process of Communicator 

Communication Sequence 

Figure 2.5 shows the communication sequence between the CM and other Components in IIMS.   
IRIS has a comm_link interface to communicate with the 170 controllers that manage the ramp 
meters and the detectors in the field.  CM uses the same comm_link interface to communicate 
with IRIS.   When CM creates a server socket and the comm_link of IRIS is activated, IRIS 
connects to CM and starts to send requests.   There are two types of request, GET and SET.  If 
CM receives a GET request from IRIS, it gets data from the Data Manager (DM) and sends it to 
IRIS.   For a SET request, CM requests DM to set and update its devices. 

 

Figure 2.5. Communication Sequence from/to Communicator 
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Figure 2.6 shows a communication example between IRIS and the Interface.   Once 
communication between IRIS and IIMS starts, all the request/response messages are printed out 
in the main window of the user interface to show the current status of the IRIS-in-Loop 
simulation.  

 

Figure 2.6. Communication Example with IRIS 

Figures 2.7 and 2.8 are the Comm Links management interface of IRIS client.   The gray color of 
the Status fields in Figure 2.7 indicates they are currently not activated.  Figure 2.8 shows the 
activated status of the comm_link and controllers after connecting to the IIMS communicator. 
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inactivate
d

inactivated 

Figure 2.7. IRIS Client before Connecting to IIMS 

 

 activated 

 activated 

Figure 2.8. IRIS Client after Connecting to IIMS 

Figures 2.9 and 2.10 illustrate the example IRIS Client screens showing available and 
unavailable ramp meters. After IRIS is connected to IIMS communicator, the status of some 
ramp meters registered in comm links would be changed from unavailable to available. 
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Figure 2.9. Example IRIS Client Screen Showing Available Ramp Meters  

 

Figure 2.10. Example IRIS Client Screen Showing Unavailable Ramp Meters  

Data Structure of Communicator 

This Section describes the data structure of the Communicator module developed in this study. 

 

available ramp meters 

unavailable ramp meters 
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Comm Interface 

Comm interface is for communication abstraction. 

Method Member 
Boolean doResponse(byte[] buffer, OuputStream 
s) 

 

 

Communicator Class 

Communicator class is actual server thread class.  

Method Member 
void run() 
void closeCummunicator() 

Socket clientSocket 
OutputStream os 
InputStream is 
byte[] buffer 
Comm comm 

MnDOT Class 

MnDOT class implements Comm interface and MnDOT protocol 

Method Member 
Boolean doResponse(byte[] buffer, 
OutputStream os) 
void printReqPacket(byte[] buf) 
int getMemoryAddress(byte[] buf) 
int getDrop(byte[] buf) 
int getLength(byte[] buf) 
int getStat(byte[] buf) 
int getChecksum(byte[] buf) 
byte checkSum(byte[] buf) 
byte get170ControllerDropCat(byte[] req) 

ResponsorDispatcher responserDispatcher 
int runInterval; 

Address Class 

This class has address information of packets in MnDOT protocol. 
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Member Member 
int FLASH = 0 
int MANUAL = 1 
int CENTRAL = 2 
int TOD = 3 
int FLASH_RATE = 0 
int CENTRAL_RATE = 1 
int TOD_RATE = 2 
int FORCED_FLASH = 7 
int OK = 0 
int BAD_MESSAGE = 1 
int BAD_POLL_CHECKSUM = 2 
int DOWNLOAD_REQUEST = 3 
int WRITE_PROTECT = 4 
int MESSAGE_SIZE = 5 
int NO_DATA = 6 
int NO_RAM = 7 
int DOWNLOAD_REQUEST_4 = 8  
int DEVICE_1_PIN = 2 
int METER_2_PIN = 3 
int SPECIAL_FUNCTION_OUTPUT_PIN = 19 
int FIRST_DETECTOR_PIN = 39 
int DETECTOR_INPUTS = 24 
int ALARM_PIN = 70 
int  SECONDS_PER_SAMPLE = 30 
int  SECONDS_PER_HOUR = 3600 
int  SAMPLES_PER_DAY = 86400 / 
SECONDS_PER_SAMPLE 
int  SAMPLES_PER_HOUR = 
SAMPLES_PER_DAY / 24 
int  FEET_PER_MILE = 5280 
int  MAX_VOLUME = 37 
int  MAX_SCANS = 1800 
int  MAX_OCCUPANCY = 100 
float DENSITY_THRESHOLD = 1.2f 
float MAX_SPEED = 100.0f 
float DEFAULT_FIELD_LENGTH = 22.0f 
byte MISSING_DATA = -1 
String UNKNOWN = "???" 

int SHUT_UP = 0 
int LEVEL_1_RESTART = 1 
int SYNCHRONIZE_CLOCK = 2 
int QUERY_RECORD_COUNT = 3 
int SEND_NEXT_RECORD = 4 
int DELETE_OLDEST_RECORD = 5 
int WRITE_MEMORY = 6 
int READ_MEMORY = 7 
int OFF_DROP_CAT = 0 
int OFF_LENGTH = 1 
int OFF_PAYLOAD = 2 
int CABINET_TYPE = 0x00FE 
int DATA_BUFFER_5_MINUTE = 0x0300 
int DATA_BUFFER_30_SECOND = 0x034B 
int QUEUE_BITMAP = 0x0129 
int COMM_FAIL = 0x012C 
int SPECIAL_FUNCTION_OUTPUTS = 0x012F 
int WATCHDOG_BITS = 0x0E 
int DETECTOR_RESET = 2 
int METER_1_TIMING_TABLE = 0x0140 
int METER_2_TIMING_TABLE = 0x0180 
int OFF_RED_TIME = 0x08 
int OFF_PM_TIMING_TABLE = 0x1B 
int ALARM_INPUTS = 0x5005 
int PROM_VERSION = 0xFFF6 
int RAMP_METER_DATA = 0x010C 
int OFF_STATUS = 0 
int OFF_CURRENT_RATE = 1 
int OFF_GREEN_COUNT_30 = 2 
int OFF_REMOTE_RATE = 3 
int OFF_POLICE_PANEL = 4 
int OFF_GREEN_COUNT_5 = 5 
int OFF_METER_1 = 0 
int OFF_METER_2 = 6 
int OFF_GREEN_METER_1 = 72 
int OFF_GREEN_METER_2 = 73 

Request Class 

Request class is for request from IRIS. BinnedDataReqest, Level1Request, MemoryRequest, 
ShutUpRequst and SynchronizeReqest classes are extended classes of Request class. 
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Method Member 
void setBaseParameter(byte[] buffer) 
int getControlId() 
int getRequestType() 
int getMessageLength() 
int getCheckSum() 
int getMemoryAddress(byte[] buf) 
int getDrop(byte[] buf) 
int getLength(byte[] buf) 
int getStat(byte[] buf) 
int getChecksum(byte[] buf) 
byte checkSum(byte[] buf) 
byte get170ControllerDropCat(byte[] req) 

int drop 
int cat 
int msgLength 
int checkSum 

Responsor Class 

Responsor class is high level class for response. ReadMemory, WriteMemory, ShutUp, 
QueryRecordCount, DeleteOldestRecord , SynchronizeClock and SendNextclasses are extended 
classes of Responsor class. 

Method Member 
abstract void doResponse(byte[] buffer, 
OutputStream os) 
void printResPacket(byte[] buf, int type) 

DataCollector dataCollector 

ResponsorDispatcher Class 

This class returns a specific instance of responsor class according to request type. 

Method Member 
Responsor getResponsor(int cat) Responsor rspList[] 

Implementation of MnDOT Protocol  

This section explains the current MDOT communication protocol used in developing the 
Communicator module. 

Memory request (from IRIS) 

GET request (6 bytes) 

Drop: drop number assigned to each controller. (Actually drop bit means controller number; you 
can see drop number for each controller in IRIS. One comm. Link has several controllers. ) 

Cat: Category bit means message type. There are 8 message types. (SHUT_UP, 
LEVEL_1_RESTART, SYNCHRONIZE_CLOCK, QUERY_RECORD_COUNT, 
SEND_NEXT_RECORD, DELETE_OLDEST_RECORD, WRITE_MEMORY, 
READ_MEMORY) READ_MEMORY will be selected. 
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Message length: payload length. For example in this packet below, Message length will be 3 
because there are Address MSB, Address MLB and Payload length except check sum.  

Address MSB: Each field controller save diverse data such as 30 second data and 5 minutes data 
in specific memory address. Memory addresses are defined in Address class (Address.java). We 
can recognize requirement of request packet through this address. Address should be combined 
with Address MLB. 

Address MLB: MLB of Address. 

Payload length: Payload length when response. If the request packet is for 30 second data 
request, 72 byte of volume and scan data should be responded. 

Check sum: check sum for this 6 bytes packet. 

Drop(5bit)/ 
Cat(3bit) 

Message 
length(1byte) 

Address 
MSB(1byte) 

Address 
MLB(1byte) 

Payload 
length 
(1byte) 

Checksum 
(1byte) 

SET request (3 bytes) 

All parameters are the same with GET request just except Cat and Payload bits. Cat will be 
WRITE_MEMORY. The size of Payload will be changed by Address. 

Drop(5bit)/ 
Cat(3bit) 

Message 
length(1byte) 

Address 
MSB(1byte) 

Address 
MLB(1byte) 

Payload  
(~ byte) 
 

Checksum 
(1byte) 

Memory response (to IRIS) 

Response to ‘Get’ request 

Drop: Drop bit should be set by the same drop bit value of the request. 

Stat: Stat bit means controller’s status. There are several status values for a controller (OK, 
BAD_MESSAGE, BAD_POLL_CHECKSUM, DOWNLOAD_REQUEST, 
DOWNLOAD_REQUEST_4, WRITE_PROTECT, MESSAGE_SIZE, NO_DATA, NO_RAM). 

Drop(5bit) / 
Stat(3bit) 

Payload Length 
(1byte) 

Payload 
(~ bytes) 

Checksum 
(1byte) 

Response to Set request(3 bytes) 

Drop(5bit) / Stat(3bit) Payload Length (1byte) Checksum (1byte) 
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Binned Data Request 

GET request (3 bytes) 

Cat: Category bit will be SEND_NEXT_RECORD. 

Drop(5bit)/Cat(3bit) Message length(1byte) 
= 0 Checksum(1byte) 

SET request (3 bytes) 

Cat : Category bit will be DELETE_OLDEST_RECORD. 

Drop(5bit)/Cat(3bit) Message 
length(1byte) = 0 Checksum(1byte) 

Binned Data Response  

: Same as Memory Request response. 

Drop(5bit) / 
Stat(3bit) 

Payload Length 
(1byte) 

Payload (~ 
bytes) Checksum (1byte) 

Traffic Data for IRIS 

Volume and Scan 

30sec volume and occupancy data are used in the ILS.  If CM receives GET request that includes 
drop number of controller, CM creates a responder which has volume and scan data of the 
detectors from the corresponding controller.   The volume data is an integer array of 30sec 
volume from the detectors.  The scan data is also an integer array of 30sec scan values ranging 
from 0 to 1800. 

Ramp Rate 

Ramp rate data are saved in terms of the red time interval in 1/10 seconds. If a ramp meter in a 
170 controller consists of 2 meters, the ramp rate needs to be converted into the red times for 
each meter.    

2.3 Data Manager 

Data Manager (DM) manages the data structure of the devices in IRIS and Visism.  Specifically 
it collects the raw scan data from all the detectors in the Vissim simulator and provides the traffic 
information such as speed, flow rate and density, to IRIS via the Communicator.  Figure 2.11 
shows the data flow diagram within the Data Manager module.   The functions of the individual 
modules are: 
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a. DataCollector : This module makes data structure to manage data for all devices. It also 
relays ramp meter rates to the Vissim controller, and converts the scan data into speed, 
flow and density following the MnDOT protocol. 

b. Controller170 : This module manages ramp meter and detector objects. DataCollector can 
have multiple Controller170s. 

c. Rampmeter : This represents ‘ramp meter’ in the field and has ramp meter status, rate, 
green count.  

d. Detector: This object stores speed, flow and density data from the detectors. 

 

Figure 2.11. Data Flow Diagram of Data Manager 

Data Manager Sequence 

Data Manager needs to have the comprehensive data structure necessary for simulation. Before 
simulation starts, the device structure consisted with Controller170, Ramp meters and Detectors 
should be created by the controller editor.  The Data Manager loads the data structure 
information created in the previous step from the hard disk and constructs internal data structures. 
All the data structures in the Data Manager are updated by the Vissim Controller every 30 
seconds.   Further, the Data Manager provides traffic data to the Communicator upon request.  
Figure 2.12 shows the operational sequence of the Data Manager interacting with other modules. 
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Figure 2.12. Data Manager Sequence Diagram  

Data Structure of the Major Classes in Data Manager 

Station Class 

Station class has a detector list and the information for VISSIM to represent real roads.  

Method Member 
double[] getStationSpeed() int id 
double[] getStationDensity() int easting 
double[] getStationFlow() int northing 
String[] getTimeLine() int speedLimit, Vector<Detector> detectors 

Controller170 Class 

Controller170 class is a replacement of the 170 controller to emulate the MnDOT protocol. It 
consists of 2 ramp meters and 24 detectors. 
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Method Member 
void setRampRate(int pin, byte rate) int drop 
double[] getVolume(int detectorId) Vector<RampMeter> rampMeters 
double[] getScan(int detectorId) Vector<Detector> detectors 
Device getDevice(int pin)  

RampMeter Class 

RampMeter class belongs to Controller170 class and is managed by Data Manager. It’s set by 
IRIS and synchronized with VISSIM. 

Method Member 
void setRampRate(byte rate) int pin 
byte getRampRate() int id 
byte getRampStatus() byte rampStatus 
byte getCount() byte currentRate 
byte getPolicePanel() byte greenCount30Sec, byte policePanel 

Detector Class 

Detector class belongs to Controller170 and Station class. This class saves the volume and speed 
data provided by VISSIM and transforms data to other forms that are sent to IRIS by the 
MnDOT protocol. 

Method Member 
TrafficData getTrafficData() int pin 
double[] getVolume() int id 
double[] getScan() String name, String Type, int fieldLength 
 TrafficData trafficData 

TrafficData Class 

All traffic data is saved to this class and transformed to proper type by Detector class as 
requested. 

Method Member 
void calculateTraffic() int fieldLength 
void setData(int row, int col, int value) int interval 
double[][] getData() float confidence 
double getData(int row, int col) double[][] data 

2.4 VISSIM Controller 

VISSIM Controller (VC), which has been developed with the COM interface, controls VISSIM 
simulator,  manages device structures of VISSM and synchronizes device data in the Data 
Manager.  The operational sequence of VC is as follows: 
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• Execute 1 step of VISSIM 
• Set control configuration to VISSIM 
• Get data from the detectors in VISSIM 

 
Figure 2.13 shows the data flow process within the Vissim controller whose internal modules 
include: 

• Executor : This is the core module that controls the VISSIM simulation process and reads 
data from VISSIM.  

• VDetector : This module represents the detectors in VISSIM. It stores volume and speed data 
on a  temporary basis. 

• VRunner : This is for executing some functions of external components and transferring data. 

Figure 2.14 shows the operational sequence of the VISSIM controller.  First VC initializes the 
COM interface and the data structure of the Data Manager according to the user input. VC 
continuously collects volume and speed data from all the detectors in VISSIM, which runs 
simulation continuously.   VC processes the raw simulated data and generates flow, speed and 
density information.  The processed data are used to update the devices in the Data Manager.   If 
the Communicator receives a SET request with, e.g., ramp meter rates, from IRIS, the 
Communicator sets the metering rate data to VC through the Data Manager. 

 

Figure 2.13. Data Flow Diagram of VISSIM Controller 
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Figure 2.14. Operational Sequence of VISSIM Controller 

Data Structure of VISSIM Controller 

VISSIMController Class 

VISSIMController class runs VISSIM simulator one step at a time using the COM interface.  

  



19 

Method Member 
void init() 
void executeVRunner() 
void addVRunner(VRunner runner) 
double[][] getSpeedHistory() 
double[][] getDensityHistory() 
int[][] getFlowHistory() 
int[][] getVolumeHistory() 
int getSimResolution() 
int getTotalCount() 
int getSimStep() 
int getSimTotalStep() 
int[] getDetectorIDs() 
float getCurrentTime() 
void setSimPeriod(int simPeriod) 
void setSimResolution(int simResolution) 
void setVissimCaseFile(String vissimCaseFile) 
void setDataCollectInterval(int 
dataCollectInterval) 
void setTravelTimeInterval(int 
travelTimeInterval) 

IVissim vis 
ISimulation sim 
INet net 
IDetectors dets 
ISignalControllers scs 
ISignalController det_sc 
IDetector[] det 
ITravelTimes tts 
ITravelTime[] tt 
IDesiredSpeedDecisions dsds 
IDesiredSpeedDecision[] dsd 
VDetector[] vd 
int[][] flowHistory 
int[][] volumeHistory 
double[][] speedHistory 
double[][] densityHistory 
double[][] TravelTimeHistory 
String[] travelTimeNames 
int[] detectorIDs 
int[] travelTimeIDs 

VRunner Class 

VRunner class is an abstract class, which VISSIMController class executes VRunner instance 
after getting data from VISSIM. 

Method Member 
abstract void run() 
int getRunInterval() 
void setRunInterval() 
void setVissimController() 

VISSIMController vissimController 
int runInterval 
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3 DEVELOPMENT OF AN OFF-LINE ESTIMATION PROCESS FOR 
FREEWAY TRAFFIC CONDITIONS 

3.1 Structure of Traffic Information and Condition Analysis System (TICAS) 

In this task, a comprehensive freeway Traffic Information and Condition Analysis System 
(TICAS) is developed to support the needs of the traffic operators in terms of quantifying and 
assessing the traffic performance of the freeway corridors in Minnesota with the historical 
detector data continuously being archived at the Traffic Management Center. Figure 3.1 shows 
the simplified structure and data flow process of TICAS developed in this study.   As shown in 
this figure, the main data source for TICAS consists of the infrastructure-based traffic flow 
detectors, e.g., loops or radars, which provide traffic flow rate, speed and density data at fixed 
locations every 30 seconds.   The archived traffic data, stored at the data server at the Traffic 
Management Center, is accessed by TICAS through internet each time user defines the data 
needs.  The traffic data are combined and linked to the specific geometry data of each freeway 
corridor to develop corridor-based traffic information, such as travel times and vehicle miles 
traveled, etc.   These measures are of critical importance in assessing the congestion levels and 
evaluating the effectiveness of traffic control strategies.  The main format of the output files from 
the current version of TICAS is the spreadsheet file, which can be directly opened by Excel.  
Further, the contour plots for the basic flow parameters, such as speed, density and flow rates, 
can be directly created by TICAS, which also provides users the capability to adjust contour plot 
intervals. 
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Figure 3.1. Simplified Structure of TICAS  

Spreadsheet Output Files 

Figure 3.2 shows the current TICAS user interface specifically developed for traffic system 
operators, who can select a set of traffic performance measures and desirable output formats, i.e., 
spreadsheet or graphics, for single or multiple dates/time periods/corridors.   An example speed 
contour plot generated by TICAS is illustrated in Figure 3.3. 

 

Output Processing Module 

Contour Plot Graphic Files 
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Figure 3.2. User Interface of TICAS 

 

Figure 3.3. Example Speed Contour Plot Generated by TICAS 
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3.2 Traffic Condition Measures in TICAS 

The following list includes the traffic condition measures available in the current version of 
TICAS, which discretizes a given freeway into 0.1 mile individual segments and estimates those 
measures for each time interval, specified by user, for each segment.  Figure 3.4 illustrates the 
current scheme of the space discretization in TICAS, which estimates the basic flow parameters, 
i.e., flow rate, speed and density, of each 0.1 mile segment using the measured detector data from 
pre-specified locations.  

Vehicle Miles Traveled (VMT)  

  => density * segment length (= 0.1 mile) * speed * time interval  

  => flow rate * time interval * segment length =0.1 mile) 

Vehicle Hours Traveled (VHT) 

 => density * segment length (=0.1) * time interval 

 => VMT / speed 

Delayed Vehicle Hours (DVH) 

 DVH => (Actual Travel Time – Free flow travel Time) * flow rate * time interval 

           => VMT/speed – VMT/free flow speed  

Lost VMT for congestion (LVMT):   If density > critical density 

     LVMT => (capacity * number of lanes – Total flow rate) * time interval * segment length 
(=0.1 mile)     

     Else, LVMT = 0  

Congested Miles (CM)  

: Sum of segments that have experienced ‘Congestion’ at least once during a given time period   

   => ‘Congested Time’ Not Reflected. 

           If speed < threshold speed, CM = 0.1, Else CM = 0 

Congested Mile Hours (CMH) 

     If speed < threshold speed, then  CMH = 0.1 * time interval,  Else  CMH = 0 

Speed Variations (SV) 

    Average, variance, Maximum, Minimum, Difference = Maximum speed – Minimum speed 
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Travel Time = from 1st Upstream station to Last station on Mainline, every 30 seconds 

 

                                                                                                                                           Field 
Detector 

Figure 3.4. Current Space Discretization and Flow Parameter Estimation Scheme in 
TICAS 

3.3 Data Structure of TICAS 

The main modules of TICAS consist of the following classes: 

• The User Interface Module: TIMS Class, RunDialog Class 
• Traffic Data Collecting Module : Running Class. 
• Geographic Data Reading Module: GetDetectorList Class, DetectorData Class, 

LoadRoad Class, DBread Class. 
• Traffic Data Reading Module: ReadFiles Class, Read1File Class, ReadData Class. 

Calculation Module:  MakeFile Class. 
• Output File Making Module : OneData Class, OneDatalane Class, DensityOneData, 

FlowOneData, SpeedOneData, TTOneData, VOneData, DensityOneDatalane, 
FlowOneDataLane, SpeedOneDataLane. 

• Contour Plot Module: ContourPlotRunner Class, ContourLibrary.jar library.  
• TIMS-Geo:  

 The function of TIMS-Geo project is to get the proper geographic data from the IRIS 
Database. All the information that TIMS-Geo gets are stored in the object of DBread 
Class. Then the project will save the entire object in the hard disk so that the TIMS 
project can use this information to calculate the output data.    This project needs to be 
run each time the IRIS updates its geographic database, so that the latest geographic data 
can be used in TICAS.   

Figure 3.5 shows the data flow process among the major modules in TICAS, whose main data 
structure is explained in this section.   

TIMS Class 

This class is the main class of the whole software.  It implements the user interface and passing 
the parameters which user select to the core code of TIMS, i.e., the Parameter Class.    The main 
objects in this class are described below. 
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NameSpace 

edu.umn.natsrl.TIMS.panel : The main panel that contain all the layout of the program. 

edu.umn.natsrl.TIMS.TimePanel: left upper panel in the program. 

edu.umn.natsrl.TIMS.OutputPanel: Middle panel in the program. 

edu.umn.natsrl.TIMS.AreaPanel: left lower panel in the program. 

edu.umn.natsrl.TIMS.PlotPanel: right panel in the program. 

edu.umn.natsrl.TIMS.pam: This is the object from class paracheck(). The function is to pass the 
available date in the network to the DateSelection class so that the DateSelection class can use 
this information to check which date is available in the Calendar function.  

edu.umn.natsrl.TIMS.cv: float[] cv object store the information of the Contour intervals. The cv 
is the value of each Contour intervals. 

edu.umn.natsrl.TIMS.ncv: int ncv object stores the number of Contour intervals. 

edu.umn.natsrl.TIMS.color: Color[] color object stores the color of each Contour intervals. 

edu.umn.natsrl.TIMS.calendar: calendar is the object of DateSelection Class. 
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*1 : There are many classes which related to each other. The Parent classes are OneData Class 
and    
       OneDatalane Class. Each of the two Parent Classes has some child Classes.  
     : The arrow point to the child Class.  

Figure 3.5. Data Flow Process in TICAS 
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The main objects in the TIMS.java class are as follows. All the layout functions are implemented 
inside these five Panel objects.  

edu.umn.natsrl.TIMS.time: time is the object from Time class. It will store the start time and end 
time.  
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edu.umn.natsrl.TIMS.datelist: datelist is the object from DateList class. It will store the dates that 
the user want to make analysis from.  

edu.umn.natsrl.TIMS.flag: flag stores the information of what user select in the layout. 

edu.umn.natsrl.TIMS.RoadFile: RoadFile is the File object. It stores the Road Files that the user 
wants to analyze. 

edu.umn.natsrl.TIMS.RoadName: The string name of the Road File. 

edu.umn.natsrl.TIMS.StartSt: The Starting street that the user selects. 

edu.umn.natsrl.TIMS.EndSt: The End street that the user selects. 

Parameters Class 

This class stores the important values that will be used throughout the whole TIMS project.  
Because of this, the information inside the Parameters Class is static. The data stored in this class 
can be directly accessed by other classes.   

RunDialog Class 

The main function of this Class is to show the user a dialog window. Then the RunDialog will 
call the Running Class.  

Running Class 

This Class is one of the core functions in the TIMS Project. The main function of this Class is to 
get the needed information from the Traffic Data and Geographic Data. And then send the data 
to the MakeFile Class whose job is to use the Traffic Data and Geographic Data to do the 
analysis.  

    NameSpace 

edu.umn.natsrl.Running.AllDetect: Vector<DetectorData> AllDetect is the object array 
of DetectorData Class. This object stores the information of the Geographic Data of the 
Detectors which will be used to do the analysis.  

edu.umn.natsrl.Running.AllDATA: Vector<ReadData> AllDATA is the object array of 
ReadData Class. This object stores the information of the Traffic Data 

GetDetectorList Class 

This Class is the main class of the Geographic Data Reading Module. This Class will get the 
whole Data of a road from the Geo Database which is created by the TIMS-Geo Project. Then 
select the Data that will be used by the calculation module of TIMS. After finishing these tasks, 
send the object array which contains all the Geo information to the Running Class.  
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NameSpace :edu.umn.natsrl.GetDetectorList.AllDetect: Vector<DetectorData> 
AllDetect is the object array of DetectorData Class. This object stores the information of 
the Geographic Data of the Detectors which are in the range from the Start Street to End 
Street.  

edu.umn.natsrl.GetDetectorList.alldetector: Vector<DBread> alldetector is the object 
array of DBread Class. This object stores the Geographic Data of the whole specified 
road. 

LoadRoad Class 

The function of the LoadRoad Class is to read all detectors data of a selected road from the disk. 
The detectors data is stored in the disk as the object file. The object that stored is the 
Vector<DBread> Class object.  

DBread Class 

The object array of this class stores the information of the geographic data of detectors. One 
important thing in the TIMS software is to make sure that the edu.umn.natsrl.geodb.DBread of 
the TIMS project is exactly the same with the edu.umn.natsrl.geodb.DBread of the TIMS-Geo 
project. The reachild is that the LoadRoad Class of TIMS project will try to read the saved object 
of DBread class. And the saved object is from the DBread Class in TIMS-Geo project. Thus, if 
the two DBread class is not exactly same, the LoadRoad Class cannot read the data properly. 

DetectorData Class 

The object of the DetectorData will store the geographic data of detectors from selected road and 
from selected starting point to end point.  

ReadFiles Class (child class of Read1File Class) 

The function of this class is to read the traffic data from either the Internet or Local disk. The 
parent class of ReadFiles is Read1File Class.  

NameSpace 

edu.umn.natsrl.ReadFiles.fulldata: Vector<ReadData> fulldata is the object array of ReadData 
Class. The function of this object is to store the traffic data information. 

Read1File Class 

The function of this class is to read the .v30 and .c30 files (which are the volume and occupancy 
files).  

NameSpace 

edu.umn.natsrl.Read1File.getNet (int DID): The function is to get the traffic data of the detector 
which Detector ID is “DID”.  
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edu.umn.natsrl.Read1File.read_data: ReadData read_data object stores the traffic data of the 
detector which Detector ID is “DID”.  

Constants Class 

This Class stores the constant value that will be used in the TIMS. The information inside 
include the ID of each output and constant value of road parameters. 

ReadData Class 

The function of the ReadData Class is to store the traffic data extracted from either the internet 
or local disk. The other module in the TIMS will use the object of the ReadData Class to store 
the information of traffic data.  

NameSpace 

edu.umn.natsrl.ReadData.Calculate(): This function is to calculate the speed from the density and 
flow. In the Read1File Class, the flow and density traffic data will be read from the database 
directly. Then, the Read1File Class will call this function to get the speed value.  

DateSelection Class 

The function of the DateSelection Class is to build a Calendar interface for the user to choose the 
date. The DateSelection Class will call to the DateChecker Class to see if the traffic data is 
available for a specific day or not.  

MakeFile Class 

This Class is the main Class for the Calculation Module. It gets the traffic data and the 
geographic data from the Running Class. First, the MakeFile Class will use the traffic data and 
geographic data to calculate 7 basic output data. The output data will be stored in the object of 
OneData and OneDatalane’s child Class. Then, depending on what the user choose in the 
interface, the MakeFile will calculate the required output data based on the 7 basic output data.  

The Class that is used for storing the output data include: OneData Class, OneDatalane Class, 
DensityOneData, FlowOneData, SpeedOneData, TTOneData, VOneData, DensityOneDatalane, 
FlowOneDataLane, SpeedOneDataLane. All the objects of these Classes will be used to store the 
calculated data.  The calculation process to produce one basic output data is as follows:    

  Density = this.Initialize(AllData, Constants.Density,false); 

This command is used to get the Density basic output data. The process to calculate and store the 
Density data is as follow: 

• The Initialize(Vector<ReadData> Data, int flag, boolean isAFlow) function will construct 
the object array of OneData Class in order to store output data. Each object of the array 
will store one day data. Then it will construct other parameters which will be used in 
calculation. 
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• It will use the geographic data (stored in the object array of DetectorData) passed by 
Running Class to calculate the number of Rows and Columns.  

• It will get the traffic data from the detector data (stored in the object array of ReadData). 
Then use the geographic data to know which detectors are in the same station. After that, 
the function will calculate the average density and store all the data to the object array of 
DensityOneData which is the child Class of OneData.    
 

After all the output data that the user want calculated and stored, the MakeFile Class will call to 
the function inside the OneData related Class to make the output files.  

OneData Class and OneDatalane Class and relatives 

The function of OneData Class is to store the output data and then make the .csv or .xls files 
based on the output data. First, the MakeFile Class will call OneData class to store the calculated 
data. Then, MakeFile will call the OneData to make proper output files.  

ContourPlotRunner Class 

The function of ContourPlotRunner Class is to call the ContourPlot Library and pass the needed 
data and parameters to the ContourPlot drawing function inside the ContourPlot Library. There 
are many crucial parameters to the Plot.  

edu.umn.natsrl.ContourPlotRunner.power: The int power indicates how smooth the ContourPlot 
will be. The smaller the value is, the more smooth the plot will have. However, the bigger the 
value is, the more accurate the plot will be. 

Other parameters inside this Class are so important to the ContourPlot drawing function. So I 
recommend that do not try to change other parameters such as 
du.umn.natsrl.ContourPlotRunner.numX.  

ContourLibrary.jar 

This library is developed from JfreeChart Library, whose contour drawing functions are 
modified in this study. The most important classes of the Contour Module are: 
org.jfree.chart.contour.ContourPlotgood.java ,  org.jfree.chart.plot.ContourPlot.java , 
org.jfree.chart.axis.NumberAxis.java and org.jfree.chart.axis.ValueAxis. 

The function of the ContourPlot.java is to connect all other functions. 

The function of the ContourPlotgood is to draw the contour plot. 
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4 DEVELOPMENT OF AN ON-LINE ESTIMATION PROCESS FOR 
FREEWAY TRAFFIC CONDITIONS 

4.1 Data Structure and Operational Sequence of On-Line Process 

In this chapter, an on-line process to estimate the current traffic conditions on selected freeway 
corridors is developed and incorporated into TICAS.  The on-line function is to assist the traffic 
operators in managing freeway traffic flows by providing graphical means to observe the traffic 
conditions in real time.  Current on-line graphical functions include speed, flow rate/volume, and 
two-dimensional flow-density plots.  Figure 4.1 shows the simplified data flow process for the 
on-line function that interacts with both IRIS and TICAS to obtain real-time traffic data and 
geometry information for selected freeway corridors by user. 

 

Figure 4.1. Simplified Data Flow Process for the On-line Estimation Function 

Operation Sequence 

Figure 4.2 shows the operation sequence of the Real-Time-Graph (RTG) module.   When a user 
executes RTG in TICAS, it makes the instance of RTG and sets some information of a given 
corridor. After a user selects a freeway section to show a real-time graphical information of 
traffic conditions, RTG gets ‘station.xml’ file from the IRIS server and parse to useful 
information to plot every 30 seconds.  Meanwhile, IRIS also updates ‘station.xml’ file that has 
the up to date traffic information such as volume, occupancy, flow and speed.  If RTG fails to get 
the xml file, it retries after 2 seconds for data consistency.  Once RTG retrieves xml data, it 
parses xml data, constructs data structure for data management and develops the graphs with the 
traffic parameters as requested by the user. 

Data Structure 

StationNode Class 

StationNode class represents a data of one station in a specific time of xml traffic data. 

Method Member 
float getVolume() String id 
String getId() float occupancy 
int getSpeed() float volume 
float getOccupancy() int speed 
int getFlow() int flow 
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Figure 4.2. RTG Operational Sequence Diagram 

StationDataSet Class 

StationDataSet has station node list of one station according to timeline for data management. 

Method Member 
void addData(StationNode node) String stationId 
String getStationId() Vector<StationNode> stationData 
float getVolume()  
float[] getAllVolume() 
float getOccupancy() 
float[] getAllOccupancy() 
float getFlow() 
float[] getAllFlow () 
float getSpeed() 
float[] getAllSpeed () 
float getDate() 
float[] getAllDate () 
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StationDataReader Class 

StationDataReader class reads and manages station traffic data. 

Method Member 
boolean collectData() int DATA_READ_INTERVAL 
void ready() int DATA_READ_RETRY_DELAY 
void addData(String stationId, StationNode station) DataLoader sdr 
void addStationId(String stationId) Vector<StationDataSet> dataList 
float getVolume(String stationId)  
float[] getAllVolume(String stationId) 
float getOccupancy(String stationId) 
float[] getAllOccupancy(String stationId) 
float getFlow(String stationId) 
float[] getAllFlow (String stationId) 
float getSpeed(String stationId) 
float[] getAllSpeed (String stationId) 
float getDate(String stationId) 
float[] getAllDate (String stationId) 

 

DataLoader Class 

DataLoader class reads xml data from IRIS. 

Method Member 
StationNode getStationData(Document doc, String 
stationId) 

Date lastDate 

Document xmlLoad ()  
Date getLastDate()  

LiveGraph Class (abstract class) 

LiveGraph class is the highest level of graph class to plot traffic data. 
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Method Member 
JGraphPanel getGraphPanel() Graph graph 
void addStation(StationNode station) Hashtable<String, XYDataSeries> 

dataList 
void addData(StationNode station) int yMax 
void createChart(StationNode station) int yMin 
void addLegend(LinePlot plot, StationNode station) String title 
void addHint(LinePlot plot) 
LinePlot createPlot(StationNode station) 
abstract void addValue(XYDataSeries ds, StationNode 
station) 
abstract int getXSeriesType() 
abstract int getYSeriesType() 
abstract String getTitle() 
abstract String getXLegend() 
abstract String getYLegend() 
abstract String getHintTemplate() 

 

LiveTimelineGraph Class (abstract class) 

LiveTimelineGraph is abstract class implementing LiveGraph to plot time-based data. 

Method Member 
void addValue(XYDataSeries ds, StationNode station) String dataType 
String getTitle()  
String getXLegend()  
String getYLegend()  
String getHintTemplate()  
int getXSeriesType()  
int getYSeriesType()  
abstract float getData(StationNode station)  

LiveXYGraph Class (abstract class) 

LiveXYGraph is abstract class implementing LiveGraph to plot data. 

Method Member 
void addValue(XYDataSeries ds, StationNode station) String dataType 
String getTitle()  
String getXLegend()  
String getYLegend()  
String getHintTemplate()  
int getXSeriesType()  
int getYSeriesType()  
abstract float getXData(StationNode station)  
abstract float getYData(StationNode station)  
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SpeedGraph, FlowGraph, Density, Volume Class 

These are classes extending LiveTimelineGraph class. And each class implements ‘getData’ 
method of LiveTimelineGraph class to return corresponding data. 

Method Member 
float getData(StationNode station)  

QKGraph Class 

QKGraph class is a class extending LiveXYGraph class. And each class implements ‘getXData’ 
and ‘getYData’ method of LiveXYGraph class to return density and flow data. 

Method Member 
float getXData(StationNode station)  
float getYData(StationNode station)  

4.2 Example On-Line Graphs for Selected Traffic Parameters 

The following example graphs show the screen captures of the graphical representations of the 
traffic variations up to the current time at the selected detector stations.  

 

Figure 4.3. Real-time Graph for Speed Variations through Time 
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Figure 4.4. Real-time Graph for Flow Rate Variations through Time 

 

 

Figure 4.5. Real-time Graph for Density Variations through Time 
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Figure 4.6. Real-time Graph for Volume Variations through Time 

 

Figure 4.7. Real-time Graph for Flow-Density Relationships through Time 
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5 MICROSCOPIC MODELING A FREEWAY CORRIDOR FOR 
EXAMPLE APPLICATION OF ILSS WITH FREEWAY OPERATIONAL 
STRATEGIES 

5.1 Sample Freeway Corridor 

In this chapter, a 9.9 mile section of the I-35W NB corridor from Station 911 to Station 47 is 
modeled with Visism as the first application corridor for the IRIS-in-Loop simulation system, 
which will be tested in the later stage of this research.   Figure 5.1 shows the schematic diagram 
of the sample corridor, where a significant amount of congestion happens in the morning peak 
hours.  Further, this section is equipped with the lane control signals that can also display the 
variable speed limits.  Figure 5.2 shows the geometry of the sample corridor coded into Vissim.  

 

 

 

Figure 5.1. Schematic Diagram of the I-35W NB Corridor 
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Figure 5.2. Sample I-35W Corridor Modeled in Vissim 

5.2 Modeling and Calibration of Vissim for Sample Freeway Corridor  

First the VISSIM model was calibrated with the real traffic data collected from the I-35W 
freeway section during weekday morning peak periods.  In particular, the parameters affecting 
the desired speed distribution, the merging and lane changing behavior of the drivers were 
adjusted to produce the simulation results as close to the observed traffic behavior as possible.  
Figure 4-3 shows the comparison results between the actual data, collected from the detector 
stations from one typical week day in the sample corridor, and the estimated values with the 
calibrated Vissim model at the same detector locations for every 5 minute interval from 5:30 a.m. 
until 8:30 a.m.   As shown in these comparison graphs, the estimation results with Vissim closely 
follow the detector data patterns indicating the validity of the calibrated model in reflecting the 
actual behavior of the traffic flows in the sample corridor. 
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Figure 5.3. Flow Rate Comparison Results 
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Figure 5.4. Speed Comparison Results 
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6 DEVELOPMENT AND EVALUATION OF VARIABLE SPEED 
LIMIT CONTROL STRATEGY 

6.1 Overview of the Variable Speed Limit Control Approach 

The Variable Speed Limit (VSL) control algorithm developed in this study tries to mitigate the 
shock waves propagated from downstream bottlenecks by gradually reducing the speed levels of 
the incoming traffic flows.  Figure 6.1 illustrates a simplified structure of the VSL approach in 
determining advisory speed limits.  Let B be the downstream bottleneck point where a shock 
wave starts to propagate backward at the speed of Sw at t=0.  Further, a vehicle departs from the 
point A at t=0 and meets the shock wave at C after time t.  If we assume uA and uB remain same 
until the vehicle reaches the point B, the travel time of the vehicle from A to B, Tw, can be 
expressed as follows: 

Tw = Sw* t / uB + (Lc-Sw*t)/uA = [Lc (uB+Sw)]/[uB*(uA+Sw)],                               

         where, t = Lc/(uA+Sw),  Lc = distance between A and B 

Suppose the speed of a vehicle can be reduced from uA to uB with a constant deceleration rate ad, 
then the travel time between A and B, Ta, is 

         Ta = 2*Lc/(uA+uB) = (uA-uB)/ad                                                                  

          where, ad =(uA
2-uB

2)/(2*Lc) 

If the value of Lc, the speed control zone length, can be predetermined as an operational policy 
parameter, then the constant deceleration rate ad that can make Tw = Ta can be derived as a 
function of uA and Sw, i..e,  

                         ad =  [uB (uA-uB)(uA+Sw)]/[Lc*(uB+Sw)],      where, uA > uB  

 

 

 

 

 

 

 

Figure 6.1. A Simplified Structure of Speed Reduction Approach 
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Figure 6.2 shows the variations of ad with respect to the different speed levels of upstream flows 
and the shock waves when the speed control section length, Lc, is fixed at 1.5 miles.  As noted in 
this figure the deceleration rates show relatively small variations for different speed levels of 
incoming traffic flows and the shock waves, indicating the possibility of adopting a constant 
deceleration rate in determining the VSL values for a given control zone and free flow speed.  In 
the current VSL algorithm, a constant deceleration rate is used to determine the advisory speed 
limit values for each control zone, whose maximum length is set to 1.5 miles.  Figure 6.3 shows 
the major steps of the current VSL algorithm, which first identifies the VSL starting locations for 
a given corridor by examining the traffic condition of each detector station, i.e., current speed 
level and deceleration patterns of incoming flows. Once the VSL starting locations are identified, 
the speed zone boundary is determined for each VSL starting point and the advisory speed limit 
values are calculated for each VSL sign in a control zone.  The above process is repeated every 
30 seconds. 

  

Figure 6.2. Variations of Deceleration Rates with Respect to the Speeds of Upstream Flows 
and Shockwaves 
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Figure 6.3. Variable Speed Limit Control Process 
 

Collect Traffic Data (speed, density) from 
all the detector stations (every 30 seconds) 

Determine Advisory speed limits of each VSL 
sign in a control zone using a fixed deceleration 
rate and the distance between each sign and VSL 
starting station. 

Estimate deceleration/acceleration rate, a, 
of each flow between two detector stations 
using speed levels and distance, L, i.e.,   
a = (u1

2-u2
2)/(2*L) 

Identify VSL starting stations and the boundary 
of each speed control zone, i.e.,  the detector 
stations upstream of each VSL starting station, 
using pre-determined thresholds 

Detector station 
VSL sign 

          

6.2 Identification of VSL Starting Locations  

Accurate and timely determination of the VSL starting locations is an essential element for an 
effective mitigation of shock waves.  In the current Minnesota VSL approach, a mainline 
detector station, i, on a given freeway can become a VSL starting station depending on its current 
speed level, ui,t, and the deceleration rate, ai,t, of the flow coming into the station, i.e.,  

    ai,t = (ui+1,t
2 – ui,t

2)/(2*L) 

where, ui,t and ui+1,t = speed levels at time t for downstream and upstream detector station, 

            L = distance between two stations. 

To determine appropriate threshold values in determining VSL starting conditions, the traffic 
conditions just prior to crash incidents on the I-35W corridor were examined in this study.  
Figure 6.4 shows the flow deceleration rates and downstream station speed levels for a total of 
20 incidents occurred in the I-35W VSL corridor during a 3 month period from September 2009 
until December 2009.  It needs to be noted that the I-35W corridor currently has a static speed 
limit of 65 mile/hr.  As shown in Figure 4, 55% of crashes during this period happened when the 
downstream station speed was below 55 mile/hr and the deceleration rate below -1500 mile/hr2 
(0.42 mile/hr/sec).  Based on these results, it is determined that a detector station i becomes a 
VSL starting point when the following conditions are satisfied: 

    ui,t  < 55 mile/hr  and  ai,t,t-1, t-2 <= -1500 mile/hr2 

The second condition, requiring the deceleration rates below the threshold for 3 consecutive time 
intervals, is to prevent the system instability because of random fluctuations in traffic flows.   
However, to respond to the rapidly propagating congestion, any station upstream and immediate 



45 

downstream of the previous VSL starting point can become a starting station if the deceleration 
rate threshold is satisfied for one time interval, i.e., station j upstream of the previous starting 
station at t-1becomes a VSL starting point at t when 

 uj,t < 55  mile/hr and aj,t <= -1500 mile/hr2   if uk,t >= 55 mile/hr and ak,t > -1500 mile/hr2,   

where k denotes all the stations between previous starting station and j. 

  

Figure 6.4. Deceleration/Acceleration Rates of the Flows Prior to Incidents on I-35W 
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6.3 Determination of Speed Control Zones and Advisory Speed Limits 

Once a VSL starting station is identified, the next step is to determine a speed control zone where 
the advisory speed limits are posted to mitigate the shock waves propagating from the 
downstream starting station.  The current VSL algorithm determines a control zone boundary by 
using the estimated flow deceleration rates between the starting station and each upstream 
detector station.   Figure 6.5 shows the current zone structure for a starting station, i.   I.e., the 
speed control zone for the station i includes all the upstream stations satisfying the following 
condition: 

              ai,j, t <= azone_threshold 

where, ai,j,t = (uj,t
2-ui,t

2)/(2*Lij),   Lij = distance between station i and j 

After the speed control zone is determined for a starting station i, the advisory speed limit values 
for all the VSL signs are calculated as follows:    

               Sj,t = (ui,t
2 – 2*a_VSL_threshold*Li,Sj)1/2    

 where,   Sj,t = VSL for sign j in the control zone with the starting station i, 

prior to incidents (mile/hr) 
u1,t u2,t 

at = (u1
2-u2

2)/(2*L) S
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               Li,Sj = distance between starting station i and VSL sign j 

In the current algorithm implemented for the I-35W corridor, -1000 mile/hr2 (0.28 mile/hr/sec) is 
used for both azone_threshold and a_VSL_threshold. 

u 

Figure 6.5. Speed Control Zone and VSL Determination 

6.4 Assessment of VSL Control Strategy with Microscopic Simulation   

Next, an external module that emulates the VSL algorithm was developed with the COM 
interface and the proposed VSL system was simulated with the average weekday morning traffic 
demand for the sample I-35W northbound corridor.  To assess the performance of the VSL 
system, the deceleration rates between two detector stations in the corridor were estimated every 
30 seconds using the simulated detector data and the maximum deceleration value for each 30 
second interval was identified.  The maximum deceleration rates for each 30 second interval 
were averaged for the entire simulation period, resulting in average maximum deceleration rate 
for a simulation case.   Further, the travel time from the upstream boundary to downstream end 
was also estimated for every 30 second interval and averaged for the whole simulation period.   
Both non-VSL and VSL cases were simulated with 10 random seeds and their results were 
compared.  Table 6.1 includes the average maximum deceleration rates and travel time values 
during the same time periods during which the VSL control was activated.  For this simulation 
analysis, it was assumed that 50% of the drivers in the corridor would comply with the variable 
advisory speed limits.  As shown in Table 1, the VSL algorithm has resulted in 15-48% reduction 
of the average maximum deceleration rate compared to the non-VSL cases, while the travel time 
increases ranged from 3-15%.    Table 6.2 shows the simulation results involving an incident, 
which was modeled as a temporary bus stop in the center lane near the 494 freeway interchange 
for a 17 minute period starting at the 77th minute of the simulation.  In both cases, the VSL 
algorithm has shown similar patterns in terms of reducing the maximum deceleration rates with 
the relatively small increases in travel times.    
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Table 6.1. VSL Evaluation Results with Normal Traffic Flows (for a 3-hour Peak Period) 

Random 
Seed 

Avg Max Deceleration (mile/hr2) Travel Time (min) 
Non-VSL VSL % Non-VSL VSL % 

11 -3756.0 -2782.9 -25.9 13.2 14.3 8.1 
12 -3392.3 -2855.1 -15.8 12.7 13.8 8.2 
13 -3300.8 -2816.0 -14.7 12.4 13.1 6.1 
14 -3294.1 -2676.6 -18.7 13.2 13.5 2.2 
15 -4611.8 -2760.2 -40.1 12.7 14.3 12.3 
16 -4447.8 -2871.9 -35.4 12.7 13.8 8.4 
17 -4383.0 -2678.3 -38.9 14.1 15.2 7.8 
18 -3912.6 -2827.7 -27.7 13.6 15.1 11.0 
19 -5265.2 -2702.6 -48.7 13.4 15.4 14.9 
20 -4064.7 -2747.5 -32.4 14.2 14.7 2.9 

Table 6.2. VSL Evaluation Results with an Incident (for a 3-hour Peak Period) 

Random 
Seed 

Avg Max Deceleration (mile/hr2) Travel Time (min) 
Non-VSL VSL % Non-VSL VSL % 

11 -4049.7 -2986.1 -26.3 15.2 17.0 12.1 
12 -3695.7 -2885.3 -21.9 15.4 16.3 5.9 
13 -3563.7 -3013.2 -15.4 14.1 15.7 11.2 
14 -3659.9 -2796.8 -23.6 14.9 15.8 6.2 
15 -4677.1 -2759.6 -41.0 14.6 15.7 7.8 
16 -4600.5 -2906.6 -36.8 14.5 15.7 8.5 
17 -4875.3 -2981.3 -38.8 15.8 16.8 6.1 
18 -4392.6 -3031.7 -31.0 16.5 17.7 7.3 
19 -5109.7 -2804.7 -45.1 14.9 17.2 14.9 
20 -4658.7 -2975.9 -36.1 15.6 17.1 10.0 
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7 DEVELOPMENT AND TESTING OF NEW RAMP METERING 
ALGORITHM 

7.1 Overview of New Ramp Metering Strategy  

In this task, a new ramp metering strategy is developed and tested with a microscopic simulation 
model.  The new algorithm is designed to specifically address the issues with the conventional 
‘capacity-based’ ramp metering methods, e.g., the difficulties in estimating bottleneck capacity 
values that are affected by various factors, including weather and traffic conditions.  Further, the 
inherent fixed zone-structures associated with the capacity-based metering may not be able to 
deal with the dynamically changing freeway conditions with time-variant bottlenecks, such as 
incidents.   The new strategy developed in this study is based on a ‘segment density’ and adopts 
an implicit coordination approach in determining the rates of each meter to manage the flows at 
bottlenecks.   Further, the bottlenecks in a given corridor are identified in real time with the 
estimates of traffic density at each detector station and a metering zone is determined for each 
bottleneck every 30 seconds.    The metering rate of each entrance ramp within a zone is 
calculated with the density of a ‘mainline segment’, which is dynamically assigned to each meter 
in real time depending on the location of the controlling bottleneck.   A feedback control rule is 
also developed to determine the rate of each meter as a function of the difference between the 
current mainline segment density and its desired target value.  In particular, to reflect the wait 
time and maximum queue length restrictions at each entrance ramp, the minimum metering rates 
are explicitly calculated for each entrance ramp in real time with the current traffic/ramp 
conditions and incorporated into the dynamic feedback control rule.  The framework of the new 
process is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Collect Density Data for Each Detector Station 

Identify Bottlenecks and Metering Zone for Each Bottleneck 

Determine Minimum/Maximum Rates for Each Meter 

Estimate Segment Density for Each Meter 

Specify Metering Parameters, e.g., Target Density, 

 
 
 
 
 

Figure 7.1. New Metering Process 

Determine Rate for Each Meter 
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The above process is repeated every 30 seconds during the ramp metering period.  The rest of 
this report summarizes the detailed procedure of each step. 

7.2 Identification of Bottlenecks 

Density 

 
                       
Kthreshold 
 
 
                   
Direction 
   
     St 1     2                  

 

                                                                                                                                              

                                                                                                                           Traffic 

   3    4    5     6      7       8     9   10   11  12  13   14   15   16   17   18    19   20   21           

Figure 7.2. An Example Identification of Bottlenecks 

The bottleneck identification procedure developed in this research aims to find the ‘active and 
dominant’ bottlenecks for a given corridor in real time by using the traffic density estimates for 
each detector station and the speed acceleration values between two consecutive stations.  The 
procedure consists of two steps:  

Step 1: Identification of the preliminary bottlenecks 

First, using the 30-second density estimates from all the mainline detector stations for a given 
corridor, any station i that satisfies the following conditions are selected as the preliminary 
bottlenecks (PB). 

  Ki,t >= Kthresthold  and satisfying any of the following three conditions: 
      Ki,t > Ki,t-1  > Ki,t-2  i.e., the density of station i has been continuously increasing from t-2, 
      Or, Ki,t , Ki,t-1  , Ki,t-2  >= Kthreshold  i.e., continuously above the threshold value during last two 
intervals, 
      Or, Station i was a bottleneck at t-1. 

Step 2: Identification of Dominant Bottlenecks for Metering 

At this step, each preliminary bottleneck station identified at Step 1 is examined in terms of its 
relationship with the immediate upstream/downstream stations and the stations satisfying the 
following conditions becomes the dominant bottlenecks (DB), which would be the main targets 
of the metering operation.    

1) The first downstream preliminary bottleneck (PB) automatically becomes a DB. 
2) From the first PB station j,  

    Up to two upstream stations, j-1, j-2, 
       Station j-i becomes a DB if Kj-i > Kj and Aj-i,j-i-1,t >= Athreshold 
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     where, Aj-i,j-i-1,t = speed acceleration between station j-i and j-1-1 during the interval t, 
                  Athreshold = acceleration threshold. 
   From 3rd upstream station, j-3, 
       Station j-3 becomes a DB if Aj-3,j-2,t >= Athreshold 
Else go to the next upstream PB. 

The above process is to identify the location of the controlling bottleneck from the stations with 
similar level of congestion.   Multiple dominant bottlenecks can be identified in a given corridor 
at a same time interval.   

7.3 Determination of Metering Rates for Entrance Ramps Controlled by Each 
Bottleneck 

Once the main bottlenecks are identified for a given corridor, the metering rates of all the meters 
between two consecutive bottlenecks are determined such a way that the traffic density level at 
the downstream bottleneck can be as close to the desired value as possible.  In this research, a 
traffic-responsive metering approach with an implicit coordination scheme is developed.  The 
new approach first determines a metering zone for each dominant bottleneck identified from the 
previous step and calculates the rates of each meter within the metering zone using the traffic 
density of the ‘mainline segment’ associated with each meter in relation to the dominant 
bottleneck.      Figure 7.3 illustrates the configuration of the ‘density segments’ of the ramp 
meters that are associated with the downstream bottleneck Station i.        

 

 

 

 

 

Si’ Si-1 

Si-
Si-
 

Mj Mi- Mi’ 

St j St i-1 St i-St i-k 

St i  Mi-2 Mi-k 

Figure 7.3. “Density Segment” Configuration for Each Meter between Two Dominant 
Bottlenecks 

As indicated in the figure, the density segment for a meter i-k is defined as the mainline section 
between the station i-k and the dominant bottleneck station i.  Finally the rate of the meter i-k for 
a time interval t, Ri-k,t, is calculated as follows: 

Ri-k,t+1 = Ri-k,t + Ri-k,t (αi-k,t – 1) 

In the above equation, αi-k,t is the on-line adjustment factor for the meter i-k and tries to 
determine the metering rate for the next time interval such a way that the new rate can make the 
traffic density of a given mainline segment  be closer to the desired value.    Specifically it is 
determined through time as a function of the current and desired traffic density values within its 
minimum and maximum boundaries, i.e.,  
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    [Ri-k,min,t/Ri-k,t] <=  αi-k,t = [Ri-k,max,t/Ri-k,t] 

where,  

      Ri-k,min, t = Minimum rate for the meter i-k for time t, 

      Ri-k, max,t  = Maximum rate for the meter i-k for time t. 

      Let  Ki-k,t = Average traffic density for the segment between the bottleneck Station i and the 
Station i-k  

                         during  time interval t, 

       Ki-k,d = Desired traffic density for the segment between the station i and i-k, 

Figure 7.3.2 shows the process to determine αi-k,t   as a function of the difference between the 
desired and current values of a given segment.  In Figure 7.3.2, the segment density, Ki-k,t, is 
calculated as an weighted average of all the station densities between station i and i-k, i.e.,  

              Ki-k,t = Σ [(ki-j,t i/3) + (ki-j,t + ki-j+1,t)/6 + (ki-j+1,t / 3)]*Li-j,i-j+1 /Li-k,i         

   where, Li-k,i = Distance between stations i-k and i. 

The above procedure tries to improve the mainline segment density by implicitly coordinating 
the multiple ramps affected by a same bottleneck, while the current restrictions on maximum 
wait time limit are explicitly incorporated into the metering rate calculation process.   
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If Ri-k,min,t/Ri-k,t <= 1.0,   

  

 

 

 

 
 
    If Ki-k,t < Ki-k,d   :      αi-k,t  = [(Ki-k,d- Ki-k,t)/Ki-k,d] (Ri-k,max,t/Ri-k,t – 1.0) + 1.0 
                    Else  :     αi-k,t  = 1- [(Ki-k,d- Ki-k,t)/(Ki-k,d –Kjam)][1 - (Ri-k,min,t/Ri-k,t)] 
                
 
When  Ri-k,min,t/Ri-k,t > 1.0, αi-k,t has the following relationship and calculated as follows: 
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   If Ki-k,t < Ki-k,d  :   αi-k,t  = [(Ki-k,d- Ki-k,t)/Ki-k,d] (Ri-k,max,t/Ri-k,t – Ri-k,min,t/Ri-k,t) + Ri-k,min,t/Ri-k,t 
                     Else :   αi-k,t  =  Ri-k,min,t/Ri-k,t 
 

Figure 7.4. Functional Relationship and Calculation Procedure of αi-k,t 
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Determination of Minimum and Maximum Metering Rates: Ri-k,min,t and Ri-k,max,t 

The maximum metering rate for a given ramp i-k is governed by the shortest red time interval 
determined by the traffic engineer within the limitations of the controller hardware.   I.e.,  

Ri-k,max,t = 3600/[Min_Red + (G+Y)] =3600/(Min_Red + 2) 

The minimum metering rate for each ramp is determined by considering the projected waiting 
time.   The waiting time at each ramp can be estimated with a simple queuing diagram with the 
cumulative volumes entering and exiting a given ramp: 

Case 1:  Estimated Current Wait Time >= Maximum Allowed Wait Time 

Figure 7.5 shows the process to estimate the current wait time in the queuing diagram with the 
cumulative volumes entering and exiting a given ramp.   As indicated in this figure, the wait time 
for the current and next time interval, Wt and Wt+1, can be estimated as the lengths of the 
horizontal lines in the queuing diagram.   If Wt > Wmax, maximum allowed wait time, then the 
minimum metering rate that can satisfy the maximum estimated wait time restriction can be 
determined as follows: 

 Ri-k,min,t (veh/hr) = [I(t-β) – Ot]*120 

where, It and Ot = cumulative 30-second volumes entering and exiting a ramp. 

            β = Wmax * 2 – 1:  

         ( e.g. β  = 7, if max waiting time is 4min and the data collection interval is 30 
seconds ) 

 

 

 

 
Cumulative # of Vehs 
exiting Ramp, Ot  

Wt+1 

Wt Rmin,t+1 

 

 

Figure 7.5. Queuing Diagram for Estimating the Minimum Metering Rate 

Case 2:  Estimated Current Wait Time < Maximum Allowed Wait Time 

In this case, the minimum rate can be set as the allowable minimum rate considering the 
maximum red time set for each meter. 

         Ri-k,min,t = 3600 /(Max_Red + G + Y) = 3600 / (Max_Red + 2 ) 

t       t+1     

# of Vehicles 
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             where Max_Red = maximum red time limit set in the controller. 

Metering Rates for Special Case 

   

 
St j 

 Mj 

St i-

Figure 7.6. Special Cases 

Mi- Mi  

St i-1 St i-
St i  

Mi-2 

k 

Mi-k 

Meter located right after a bottleneck, e.g., Mj 

The rate for the meter located right after a bottleneck station, e.g., Mj, is determined with the 
density of the bottleneck station, e.g., j, as shown in the above figure, using the same procedure 
described above.     

Meters with no controlling bottleneck e.g., Mi – Mi-k 

In this case, the rate of each meter is determined with the density of the station associated with 
each meter by using the same procedure. This requires each meter needs to have one associated 
mainline detector station. 

Meter Turn-On and Off Process 

Meter Turn-On Process 

In the new metering algorithm, the metering can start after a dominant bottleneck is identified.  
However, the metering start time of each meter can vary depending on the mainline segment 
density and the amount of the merging flow rate for a given entrance ramp.   Specifically, after a 
first dominant bottleneck is identified, any meter within the metering zone of the bottleneck can 
start metering when one the following two conditions is met:    

1) Meter j starts if qj,t ≥ (β * Rj,t) for n time intervals after a bottleneck is identified. 
   Where, t = the time when a bottleneck is identified, 
                qj,t = measured merging flow rate from the ramp j during t interval, 
                Rj,t = calculated metering rate with the mainline segment density, 
                   β = adjustment factor. 
   In the current prototype algorithm, n=3 and β = 0.8 are used for the first time start. 
   (n = 10 for ‘re-starting’ after stopped.) 
 

2) Meter j starts if Kj,t ≥ Kthreshold_start for m intervals after a bottleneck is identified. 
    Where, Kj = mainline segment density associated with Meter j, 
                 Kthreshold_start = Segment Density Threshold for Meter Turn On. 
     In the current prototype algorithm, m = 1, and Kthreshold_start = 25 veh/mile are used. 
     (m=10 for ‘re-starting’ after stopped.) 
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Meter Turn-Off Process 

Case 1: Meters downstream of the last bottleneck, i.e., no further downstream bottleneck 

For a meter downstream of the last bottleneck, if all of the following 3 conditions are satisfied 
for n time intervals: (the metering rate, Ri,t, for the ramp i is calculated with the local segment 
density). 

1) qi,t ≤ Ri,t,        2)   Ki,t ≤ Kd          3) No new bottleneck downstream of the ramp i 

 Current prototype algorithm:  n = 5 minutes. 

Case 2: For the ramps upstream of a bottleneck : when only one bottleneck is left. 

The turn-off process is activated for the ramps located upstream of the last bottlenck when the 
average density of the entire segment upstream of the last bottleneck continuously decreases or 
does not increase for the last n time intervals, i.e,. 

        Kt ≤   ≤  ≤  ≤  Kt-n, and only one bottleneck is left, 

     where Kt-i = 15 min moving average of the weighted average density for the segment 
between the last bottleneck and the most upstream station in a given corridor at t-i time interval.    

The turn-off process consists of two steps: 

Step 1: Change the bottleneck threshold density:   i.e, for a station to become a preliminary 
bottleneck, the station density needs to be greater than Kthreshold_after for n previous intervals.  
Currently Kthreshold_after = 32 veh/mile, and n=2 minutes are used. 

Step 2: Check each ramp upstream of the bottleneck: the ramp i upstream of the bottleneck can 
stop metering if the following two conditions are met: 

1) qi,t ≤ Ri,t  and  2) Ki,t, Ki,t-1, ----- Ki,t-n ≤  Kd 
 
where, qi,t = measured merging flow rate of ramp i, at t, 
            Ri,t = caculated metering rate for ramp i at t, 
            Ki,t-k = Segment density for ramp i at t-k, 
             Kd = desired density 
               Currently n=5 minutes, and Kd = 0.8 * critical density 
 

Metering restart condtion  

The new algorithm allows for a meter j to restart metering under the following conditions: 

 Kj,t ≥ Kthreshold_after  and qj,t  ≥  (β * Rj,t)  for n time intervals.    Currently n=5 minutes, and β = 0.8. 

The above condition is more restrictive than the requirements in the initial turn-on process to 
avoid unncessary metering from the random fluctuations in the traffic flow. 
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7.4 Incorporation of the New Algorithm into IRIS 

The new algorithm developed in this chapter is coded with the Java language and incorporated 
into the current version of IRIS.   Figure 7.7 shows the interrelationship of the main classes, 
whose functionalities are as follows (The detailed procedure to incoporate the new module into 
IRIS is described in Appendix).    

KbasedAdaptive PlanState 
: Main algorithm class – operates the metering algorithm at ‘processInterval()’ for a corridor. 
CorridorHelper 
: Inner class – manages corridor structures, e.g., station and entrance lists, and calculates segment 
density between two stations. 
BottleneckFinder 
: Inner class – identifies bottleneck stations. 
StationState 
: Inner class – gets station traffic data, identifies stations associated with each meter and manages 
the states of each station including bottleneck history. 
EntranceState 
: Inner class – calculates minimum rates of all the meters, operates turn-on/off process, manages 
the states of all the entrances including metering rate, demand and traffic flow history. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. Main Classes and Overall Structure of the New Metering Module in IRIS 
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7.5 Evaluation of the New Algorithm using IRIS-in-Loop Simulation System 

The metering algorithm developed in this research is evaluated with the IRIS-in-Loop simulation 
system, which has been equipped with the new metering module as described in the previous 
section.  Two real freeway sections from the I-35W NB (S71 -> S34) and the 169 SB (S750 -> 
S469) are used as the sample freeways.  Figure 7.8 & 2 show those freeway sections modeled in 
this study with Vissim.   For I-35W NB section, an average weekday 5-min flow rates collected 
in 2008 from the detector stations on the mainline and ramps were used as the demand data.  For 
the 169 SB section, the data from April 7, 2011, were used.  For both sections, a morning peak 
period from 6:00-9:00 a.m. was selected as the evaluation period.  For each demand set, different 
random seeds were tried with lower/higher demand patterns to see the effectiveness of the 
proposed algorithm under the various traffic conditions.   Further, for each demand set, no-
metering and the current IRIS metering algorithms were also simulated using the IRIS-in-Loop 
simulation system.   The rest of this section summarizes the performance of the proposed 
algorithm compared with those from the no-metering and current IRIS algorithm. 

 

Figure 7.8. I-35W NB in Vissim  
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Figure 7.9. 169 SB in Vissim 

Simulation Results of the New Algorithm on I-35W NB 

Table 7.1 summarizes the simulation results of the 3 cases with the different random seeds, i.e., 
no-metering, current IRIS metering and the new proposed algorithm, using the I-35W NB test 
section under the following conditions: 

Normal Demand (weekday average 6:00-9:00 a.m.) 
Desired Density = 32 veh/miles,  (80 % of Critical Density = 40 veh/mile) 
Maximum Ramp Wait Time = 4 min. (normal ramp), 2 min (freeway to freeway ramp) 
Jam Density = 160 veh/mile 
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Table 7.1. Summary Simulation Results with I-35W NB Test Section 

  No  
Metering 

Current 
Metering 

Proposed  
Algorithm 

Vehicle Miles Traveled       
Radom Seed 12 87835.2 87582.0 87608.0 
Radom Seed 13 87608.7 87535.9 87731.6 
Radom Seed 14 87322.9 87376.7 87373.4 
Radom Seed 15 88217.0 87991.2 87900.4 
Delayed Vehicle Hours        
Radom Seed 12 294.2 238.6 209.6 
Radom Seed 13 238.9 218.3 197.4 
Radom Seed 14 264.4 233.8 210.2 
Radom Seed 15 309.6 276.2 209.6 
Lost Vehicle Miles 
Traveled 

      

Radom Seed 12 3928.0 2892.8 3026.3 
Radom Seed 13 3305.4 2995.5 2734.8 
Radom Seed 14 3430.4 3144.7 2997.9 
Radom Seed 15 4195.9 3563.6 2770.0 
Average Travel Time 
(min) 

      

Radom Seed 12 9.9 9.5 9.2 
Radom Seed 13 9.4 9.3 9.1 
Radom Seed 14 9.6 9.4 9.2 
Radom Seed 15 9.9 9.7 9.2 

 

As indicated in the above table, the new proposed algorithm resulted in significant reduction of 
the congestion, i.e., in terms of the delayed vehicle hours and lost vehicle miles traveled,  
compared to the no-metering and the current metering method options, while maintaining the 
compatible values of the vehicle miles traveled for each simulation case.  The examination of the 
speed contours also indicates that the new algorithm delayed the onset of the congestion and 
reduced the spill-back at the major bottleneck in the test section.  The speed contours for each 
simulation case are included in the Appendix.    

Simulation Results of the New Algorithm on 169 SB 

Table 7.2 summarizes the simulation results of the 3 cases with the different random seeds, i.e., 
no-metering, current IRIS metering and the new proposed algorithm, using the 169 SB test 
section under the same conditions as the I-35W test section: 

Normal Demand (weekday average 6:00-9:00 a.m.) 
Desired Density = 32 veh/miles,  (80 % of Critical Density = 40 veh/mile) 
Maximum Ramp Wait Time = 4 min. (normal ramp), 2 min (freeway to freeway ramp) 
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Jam Density = 160 veh/mile 

Table 7.2. Summary Simulation Results with 169 SB Test Section 

  No 
Metering 

Current 
Metering 

Proposed 
Algorithm 

Vehicle Miles Traveled    
Radom Seed 10 131024.2 130478.6 130534.9 
Radom Seed 11 131184.3 130858.1 130433.2 
Radom Seed 12 131679.0 131372.4 131942.9 
Radom Seed 13 131780.1 131930.3 132115.5 
Delayed Vehicle Hours     
Radom Seed 10 256.7 199.0 170.8 
Radom Seed 11 272.1 217.1 202.9 
Radom Seed 12 316.0 287.6 229.1 
Radom Seed 13 263.5 277.4 219.1 
Lost Vehicle Miles 
Traveled 

   

Radom Seed 10 3497.6 2775.5 2529.6 
Radom Seed 11 3980.8 3093.4 2704.1 
Radom Seed 12 4570.9 4434.3 3431.0 
Radom Seed 13 3749.9 3903.3 3099.3 
Average Travel Time (min)    
Radom Seed 10 19.0 18.5 18.3 
Radom Seed 11 19.0 18.7 18.5 
Radom Seed 12 19.5 19.2 18.8 
Radom Seed 13 19.0 19.2 18.7 
 

As indicated in the above table, the proposed algorithm showed significant reduction of the 
delayed vehicle hours and lost vehicle miles traveled because of congestion, while maintaining 
similar or slightly higher values of the total vehicle miles traveled than the current metering 
method.   The speed contours also show that, compared to the current metering method, the 
proposed metering scheme resulted in the reduced congestion level throughout the test corridor, 
which includes multiple bottlenecks because of the relatively short ramp-to-ramp distances.  The 
speed contours of the 169 SB test cases are also included in the Appendix.   
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8 CONCLUSIONS 

This research produced several important tools that are essential in managing and operating 
freeway corridors.  First, an off-line process and a computer program were developed to 
automatically estimate the performance of a given freeway corridor for selected time periods 
using the data collected from the existing detectors on the field. Further, a set of traffic measures 
were developed and incorporated into the software, called TICAS (Traffic Information and 
Condition Analysis System), whose built-in contour module provides a graphical overview of the 
traffic parameter variation process through time and space. Using the contour module, the 
location of bottlenecks and their effects can be easily identified for a given corridor during the 
selected time periods.  Secondly, an on-line process was developed to estimate the selected 
performance measures using the current day traffic data in real time. The on-line process was 
designed to assist traffic operators in monitoring the current day traffic trends and identifying 
any abnormal patterns.    

Third, an integrated simulation system was developed by combining IRIS, the freeway traffic 
control system developed by MnDOT, and the Vissim microscopic simulation software, so that 
new operational strategies can be directly coded into IRIS and evaluated under the simulated 
environment. The resulting IRIS-in-Loop Simulation System (ILSS) makes it possible to develop 
realistic operational strategies that can directly work under the current freeway operational 
environment. The ILSS was applied to assess two new operational strategies developed in this 
study: Variable Advisory Speed Limit Control and Density-based Adaptive Metering Strategies. 
The new variable advisory speed limit control strategy is designed to mitigate the shock waves 
propagated from downstream bottlenecks by gradually reducing the speed levels of the incoming 
traffic flows. The algorithm first identifies the locations of the bottlenecks and the VSL control 
zones by examining the flow deceleration rates between two detector stations in a given corridor.  
The advisory speed limits for each control zone are calculated with a constant deceleration rate, 
which has been determined to result in minimum increases in travel times. The relatively simple 
procedures of the proposed VSL approach, which determines bottleneck locations and advisory 
speed limit values with the data from the existing loop detectors, can be easily transferrable to 
most operational environments.  The preliminary evaluation results with microscopic simulation 
indicate that the proposed VSL system could significantly reduce the sudden deceleration rates 
of the traffic flows reacting to fixed or moving bottlenecks, while the increases in travel times 
can be kept relatively small.  The variable speed limit control strategy has been implemented at 
the I-35W corridor in July 2010 and the detailed analysis of the field data will be conducted in a 
subsequent phase of this research.      

Finally, an alternative ramp metering algorithm was developed and evaluated with ILSS.  The 
new algorithm identifies bottlenecks for a given corridor every 30 seconds and determines the 
metering rates for each entrance ramp with the estimated mainline ‘segment density’. Further, 
the ramp wait time restriction is explicitly incorporated into the metering rate calculation.   The 
new algorithm was simulated with ILSS using two real corridors, I-35W NB and 169 SB, and its 
performance was compared with those from the current IRIS metering control and No-metering 
cases.  The simulation results indicate substantial improvements over the existing control method 
in terms of reducing congestion, such as delayed vehicle hours and lost vehicle miles traveled, 
while achieving the similar levels of vehicle miles traveled.    
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Future research needs include the field testing of the proposed ramp metering strategy on a 
selected corridor.  Further, the variable speed limit control algorithm can be enhanced to reflect 
different weather conditions and also to reduce the bottleneck identification time. The 
development of the on-line prediction capability for the traffic flow parameters by extending the 
current on/off-line estimation process is also recommended as the major step toward proactive 
traffic management.  
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APPENDIX A. PROCESS TO INCORPORATE NEW METERING 
ALGORITHM INTO IRIS 

 



A-1 

Step 1: Add ‘KbasedAdaptivePlanState.java’ to ‘us.mn.state.dot.tms.server’ package 

Step 2: Edit ‘us.mn.state.dot.tms.server.SampleQuery30SecJob’ 

 

Step 3: Add timing plan type to ‘iris.timing_plan_type’ table on DB 

 

Step 4: Add timing plan type to ‘us.mn.state.dot.tms.TimingPlanType’ 

 

Step 5: Add routine for creating timing plan and looking up method to 

‘us.mn.state.dot.tms.server.TimingPlanImpl’ 

 



 

APPENDIX B. SPEED CONTOURS FROM SIMULATION RESULTS
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169 SB (Random Seed = 10) 
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