Minnesota

Department of
Transportation

Development of Freeway RESEARCH
Operational Strategies with SERVICES

IRIS-in-Loop Simulation Office of

Policy Analysis,
Research &
Innovation

Eil Kwon, Principal Investigator
Department of Civil Engineering
University of Minnesota Duluth

Northland Advanced Transportation Systems Research Laboratory
University of Minnesota Duluth

January 2012

Research Project
Final Report 2012-04

Hour Destination...Ouy

All agencies, departments, divisions and units that develop, use and/or purchase written materials
for distribution to the public must ensure that each document contain a statement indicating that
the information is available in alternative formats to individuals with disabilities upon request.
Include the following statement on each document that is distributed:

To request this document in an alternative format, call Bruce Lattu at 651-366-4718 or 1-800-
657-3774 (Greater Minnesota); 711 or 1-800-627-3529 (Minnesota Relay). You may also send
an e-mail to bruce.lattu@state.mn.us. (Please request at least one week in advance).

Technical Report Documentation Page

1. Report No. 2.
MN/RC 2012-04

3. Recipients Accession No.

4. Title and Subtitle

Development of Freeway Operational Strategies with IRIS-in-
Loop Simulation

5. Report Date
January 2012
6.

7. Author(s)
Eil Kwon and Chongmyung Park

8. Performing Organization Report No.

9. Performing Organization Name and Address

Department of Civil Engineering

Northland Advanced Transportation Systems Research
Laboratory

University of Minnesota Duluth

1405 University Drive

Duluth, MN 55812

10. Project/Task/Work Unit No.
CTS Project #2010020

11. Contract (C) or Grant (G) No.

(c) 89261 (wo) 169

12. Sponsoring Organization Name and Address
Minnesota Department of Transportation
Research Services Section

395 John Ireland Boulevard Mail Stop 330
St. Paul, Minnesota 55155

13. Type of Report and Period Covered
Final Report

14. Sponsoring Agency Code

15. Supplementary Notes
http://www.lrrb.org/pdf/201204.pdf

16. Abstract (Limit: 250 words)

This research produced several important tools that are essential in managing and operating freeway corridors.
First, a computer-based off-line process was developed to automatically estimate a set of traffic measures for a
given freeway corridor using the historical detector data. Secondly, a prototype on-line estimation procedure was
designed to calculate selected traffic measures in real time to assist operators in identifying abnormal traffic
patterns. Third, the IRIS-in-loop simulation system was developed by linking IRIS, the freeway control system
developed by MnDOT, to a microscopic simulation software through a data communication module, so that new
operational strategies can be directly coded into IRIS and evaluated under the realistic simulation environment.
Finally, two new freeway operational strategies, variable speed limit control and a density-based adaptive ramp
metering strategy, were developed and evaluated with the IRSI-in-Loop simulation system.

17. Document Analysis/Descriptors

Freeway traffic measures, Simulation, Freeway management
systems, Variable speed limit control, Speed control, Ramp
metering

18. Availability Statement

No restrictions. Document available from:
National Technical Information Services,
Alexandria, Virginia 22312

19. Security Class (this report)
Unclassified

20. Security Class (this page)
Unclassified

21. No. of Pages 22. Price

79

Development of Freeway Operational Strategies with IRIS-
In-Loop Simulation

Final Report

Prepared by:

Eil Kwon
Chongmyung Park

Department of Civil Engineering
Northland Advanced Transportation Systems Research Laboratory
University of Minnesota Duluth

January 2012

Published by:

Minnesota Department of Transportation
Research Services Section
395 John Ireland Boulevard, Mail Stop 330
St. Paul, Minnesota 55155

This report represents the results of research conducted by the authors and does not necessarily represent the views
or policies of the Minnesota Department of Transportation or the University of Minnesota Duluth. This report does
not contain a standard or specified technique.

The authors, the Minnesota Department of Transportation, and the University of Minnesota Duluth do not endorse
products or manufacturers. Any trade or manufacturers’ names that may appear herein do so solely because they are
considered essential to this report.

ACKNOWLEDGMENTS

This research was financially supported by the Minnesota Department of Transportation. The
authors greatly appreciate the technical guidance and data support from the engineers at the
Regional Transportation Management Center, in particular, Brian Kary, Doug Lau and Jesse
Larson. Also, the administrative support from Dan Warzala is very much appreciated.

TABLE OF CONTENTS

I INTRODUCTIONooitiiiiteiesettete ettt ettt sttt ettt e st ebessee bt enseeseesaeesesneens 1
1.1 Background and Research ObjeCtiVES.........coceevuiriirieriiniinieienieneee e 1
1.2 RepOrt OrganiZaAtiONc.eeeuieeiuieriieeiieniieeteeeteeteeseteeteesieeebeesaaeeseessaeenseessseenseesnseanseennns 1

2 DEVELOPMENT OF THE IRIS-IN-LOOP SIMULATION SYSTEMccccceviniinieiennnne 2
2.1 Structure of IRIS-in-Loop Simulation SyStem..........ccceceeveeiiiniininiinieienienieiceeeeeen 2
2.2 COMIMUINICATOTtiutteiteeiieteeite ettt et ettt et stt e bt eatesbe e beeatesbeebeeatesbeebesasesbeenbeentenbeensesaeens 4
20 T D Y 1 72 LY B T OO USRS 13
2.4 VISSIM CONIOLLETueiiiiiiiiiiieeiee ettt ettt ettt et e st e e seesaeeens 16

3 DEVELOPMENT OF AN OFF-LINE ESTIMATION PROCESS FOR FREEWAY

TRAFFIC CONDITIONS ...ttt ettt ettt et e st e b esbeeneeseeenseeneenseennas 20
3.1 Structure of Traffic Information and Condition Analysis System (TICAS).................. 20
3.2 Traffic Condition Measures in TICAS.......cccooiiiiiiiiiiieeeceeee e 23
3.3 Data Structure of TICASottt 24

4 DEVELOPMENT OF AN ON-LINE ESTIMATION PROCESS FOR FREEWAY

TRAFFIC CONDITIONS ...ttt sttt ettt ettt et e st e sbe et et e beennes 31
4.1 Data Structure and Operational Sequence of On-Line Process...........ccceevcveeeiieercrneenee. 31
4.2 Example On-Line Graphs for Selected Traffic Parameterscccccoceeverienvineniennene 35

5 MICROSCOPIC MODELING A FREEWAY CORRIDOR FOR EXAMPLE

APPLICATION OF ILSS WITH FREEWAY OPERATIONAL STRATEGIES. 38
5.1 Sample Freeway COrTidOrccoeeiiiiiieiiieeieeieeeiie ettt ete ettt sveebeesaeeseesnae e 38
5.2 Modeling and Calibration of Vissim for Sample Freeway Corridor............cccveevveeeneee. 39

6 DEVELOPMENT AND EVALUATION OF VARIABLE SPEED LIMIT CONTROL

STRATEGY ..ottt sttt sttt et s et et e en s e sb e e bt eneesseenbeeneesaeenaesneans 42
6.1 Overview of the Variable Speed Limit Control Approachcccceeeveevviiencieencneeennne. 42
6.2 Identification of VSL Starting LoCatioNSccceeevuiiriieiiieniieiieeieeieeeeeeiee e 44
6.3 Determination of Speed Control Zones and Advisory Speed Limits...........cccceeeveennnne 45
6.4 Assessment of VSL Control Strategy with Microscopic Simulation...........c.ccceeveeneee. 46

7 DEVELOPMENT AND TESTING OF NEW RAMP METERING ALGORITHM........... 48
7.1 Overview of New Ramp Metering Strat€gy.........cccueevveeeriieeniieeiieeeiee e 48
7.2 Identification of BOttIenecksccuiiiiiiiiiiiiiii e 49
7.3 Determination of Metering Rates for Entrance Ramps Controlled by Each Bottleneck 50
7.4 Incorporation of the New Algorithm into IRIS...........c.ccooiiiiiiiiiiiiiieeceee, 56
7.5 Evaluation of the New Algorithm using IRIS-in-Loop Simulation System.................. 57

8 CONCLUSIONS ...ttt sttt e re e e e e nae 61

REFERENCES ...ttt ettt et st e 63
APPENDIX A. PROCESS TO INCORPORATE NEW METERING ALGORITHM INTO IRIS
APPENDIX B. SPEED CONTOURS FROM SIMULATION RESULTS

LIST OF FIGURES

Figure 2.1. Internal Structure of IRIS-in-Loop Simulation System............cccceeeuverieriienienieenenne. 2
Figure 2.2. Data Flow among Main Components in IIMScccoiviiiiieiiieeeeceeeee e 3
Figure 2.3. Main User Interface of IRIS-in-Loop Simulation Systemcccceeeeviieniencirennenne. 4
Figure 2.4. Data Flow Process of COMMUNICALOTcccuveeriieeeiiiieniieenieeeeieeenveeeeaee e e evee e 5
Figure 2.5. Communication Sequence from/to COMMUNICALOTccueeeiieriieeieeniieeieeiie e 5
Figure 2.6. Communication Example with IRISc.cccoiiiiiiiiii e 6
Figure 2.7. IRIS Client before Connecting to IIMS...........ccoooiiiiiiiiiniieiiee e 7
Figure 2.8. IRIS Client after Connecting to IIMSccciiiiiiiiiie e 7
Figure 2.9. Example IRIS Client Screen Showing Available Ramp Meterscccocevvenieniennnee 8
Figure 2.10. Example IRIS Client Screen Showing Unavailable Ramp Metersccccceuveen.ee. 8
Figure 2.11. Data Flow Diagram of Data Managerccccecueveeriiriineenenieneeieseesecee e 14
Figure 2.12. Data Manager Sequence DIiagramc.ccccvveeeviiieeiiieniiieenieeesieeesveeesiveeeieeesvee e 15
Figure 2.13. Data Flow Diagram of VISSIM Controller..........cccceceriineineniinienienieneeieeieneenee 17
Figure 2.14. Operational Sequence of VISSIM Controller..........ccccoecvvieeiieeeiieiiiieecieeeiee e 18
Figure 3.1. Simplified Structure of TICAS........cooiiiiiee e 21
Figure 3.2. User Interface of TICASoooviiooiie ettt e e eaee e svee e 22
Figure 3.3. Example Speed Contour Plot Generated by TICAS..........ccooeviieiiiiiiiiiieieeeeee, 22
Figure 3.4. Current Space Discretization and Flow Parameter Estimation Scheme in TICAS 24
Figure 3.5. Data Flow Process in TICASccoiiiiiiie ettt 26
Figure 4.1. Simplified Data Flow Process for the On-line Estimation Function.......................... 31
Figure 4.2. RTG Operational Sequence Diagram.............cccoeveveeviierieeiiieniieiienieeniee e eiee e 32
Figure 4.3. Real-time Graph for Speed Variations through Timeccccceovveeviieiiieeiciieciee 35
Figure 4.4. Real-time Graph for Flow Rate Variations through Time........c.cccocceverveniininiennne. 36
Figure 4.5. Real-time Graph for Density Variations through Time.........c.ccccoceeviiiiiiieniieenien, 36
Figure 4.6. Real-time Graph for Volume Variations through Timecccecceveevenieniincnniennne. 37
Figure 4.7. Real-time Graph for Flow-Density Relationships through Time...........cc.ccccveenneenn. 37
Figure 5.1. Schematic Diagram of the [-35W NB Corridorccccvevieniieniieniieieeieeeeeieeneen 38
Figure 5.2. Sample [-35W Corridor Modeled in VISSIMccceevciiiiriiieriieeciee e 39
Figure 5.3. Flow Rate Comparison ReSUILScccieriiiiiiiiiiiiieicceee e 40
Figure 5.4. Speed Comparison RESUILScccuviiiiiiiiiiiiiiieciiece et 41
Figure 6.1. A Simplified Structure of Speed Reduction Approachcccceevvienienciienienieenen. 42
Figure 6.2. Variations of Deceleration Rates with Respect to the Speeds of Upstream Flows and
SROCKWAVES. ...ttt ettt e b et sb ettt e sbe e be st e saeenaesaeens 43
Figure 6.3. Variable Speed Limit Control PTOCESScccuveeiiiieiiiieiiiieciie et 44
Figure 6.4. Deceleration/Acceleration Rates of the Flows Prior to Incidents on [-35W 45
Figure 6.5. Speed Control Zone and VSL Determinationccceeeeuveerieeerieeenieeenieeseeesveeenns 46
Figure 7.1. NeW MEtering PrOCESS....cc.ueecuiiiiieiieiieetieeie ettt ettt ettt et e saeetaeseaeenbeessseeneees 48
Figure 7.2. An Example Identification of Bottlenecksccccoeevieeiiiieniiiiniiieeeeeeeeeeeee 49
Figure 7.3. “Density Segment” Configuration for Each Meter between Two Dominant
BOtIENECKS. .. ettt eeas 50
Figure 7.4. Functional Relationship and Calculation Procedure of i t.....cooverveereerueneenenienene 52
Figure 7.5. Queuing Diagram for Estimating the Minimum Metering Ratec.ccccoveeenenn. 53
Figure 7.6. SPECIal CaASESeeviruiiiiiiieiiiieeieeit ettt ettt ettt sttt et s 54

Figure 7.7. Main Classes and Overall Structure of the New Metering Module in IRIS............... 56

Figure 7.8. I-35W NB in Vissim
Figure 7.9. 169 SB in Vissim.....

LIST OF TABLES

Table 6.1. VSL Evaluation Results with Normal Traffic Flows (for a 3-hour Peak Period)........ 47
Table 6.2. VSL Evaluation Results with an Incident (for a 3-hour Peak Period)...........c............. 47
Table 7.1. Summary Simulation Results with [-35W NB Test Section.........c.cceccevveererrieneennennne. 59
Table 7.2. Summary Simulation Results with 169 SB Test Section

EXECUTIVE SUMMARY

Developing efficient and robust traffic operational strategies that can directly be implemented
into the existing working environment is of critical importance in improving the efficiency and
the effectiveness of freeway management. This research produced several important tools that
are essential in achieving such an efficient freeway operations. First, a computer-based off-line
process was developed to automatically estimate a set of traffic measures for a given freeway
corridor for selected time periods using the historical data collected from the field detectors.
Secondly, a prototype on-line process was developed to calculate and graphically present
selected traffic measures in real time to assist the traffic operators in identifying abnormal flow
patterns. Third, an integrated simulation system was developed by combining IRIS, the freeway
traffic control system developed by MnDOT, and the Vissim microscopic simulation software,
so that new operational strategies can be directly coded into IRIS and evaluated under the
realistic simulation environment. The resulting IRIS-in-Loop Simulation System (ILSS) makes it
possible to develop the operational strategies that can directly work under the current freeway
operational environment. In this research, the ILSS was applied to assess the performance of
two new operational strategies that were also developed in this study: Variable Advisory Speed
Limit Control and Density-based Adaptive Metering Strategies. The new variable advisory speed
limit control strategy is designed to mitigate the shock waves propagated from downstream
bottlenecks by gradually reducing the speed levels of the incoming traffic flows. The algorithm
first identifies the locations of the bottlenecks and the VSL control zones by examining the flow
deceleration rates between two detector stations in a given corridor. The advisory speed limits
for each control zone are calculated with a constant deceleration rate, which has been determined
to result in minimum increases in travel times. The preliminary evaluation results with
microscopic simulation indicate that the proposed VSL system could significantly reduce the
sudden deceleration rates of the traffic flows reacting to fixed or moving bottlenecks, while the
increases in travel times can be kept relatively small. The variable speed limit control strategy
has been implemented at the [-35W corridor in July 2010 and the detailed analysis of the field
data will be conducted in a subsequent phase of this research. Finally, an adaptive ramp metering
strategy based on traffic density was developed and evaluated with ILSS. The new algorithm
identifies bottlenecks for a given corridor every 30 seconds and determines the metering rates for
each entrance ramp with the estimated mainline ‘segment density’. Further, the ramp wait time
restriction is explicitly incorporated into the metering rate calculation. The new algorithm was
evaluated with ILSS using two freeway corridors as the sample test sections. The simulation
analysis with ILSS indicates that the new algorithm can significantly reduce the amount of
congestion, compared to the existing metering method, while handling similar level of traffic
flows. Future research needs include the field testing of the proposed ramp metering strategy,
enhancement of the variable speed limit control algorithm to manage different weather
conditions, and development of predictive control strategies for proactive traffic management.

1 INTRODUCTION

1.1 Background and Research Objectives

Developing efficient and robust traffic operational strategies that can directly be implemented
into the existing working environment is of critical importance in improving the effectiveness of
freeway management. Currently the freeway network in the Twin Cites is being managed with
the Intelligent Road Information System (IRIS), a computerized operating system developed by
the Minnesota Department of Transportation (MnDOT) to operate field devices such as ramp
meters, variable message signs and loop detectors (MnDOT, 2008). This research develops a
comprehensive support tool for IRIS by integrating it with a microscopic traffic simulator, so
that the IRIS-based freeway operational strategies can be emulated and refined in the simulated
environment prior to field implementation. The resulting IRIS-in-Loop Simulation system
(ILSS) will be applied to develop new freeway operational strategies, including variable speed
limit control and density-based adaptive ramp metering algorithms. Further, a computerized
off/on-line process will be developed to estimate a set of the traffic performance measures for
given corridors during selected periods. The resulting off-line performance measures will be
used to support different levels of decision making process at MnDOT in planning and
operations of the freeway network, including the continuous refinements ramp metering, incident
management and travel time information systems, while the on-line measures for traffic
conditions can be used for expanding the driver information system. Finally new operational
strategies for freeway corridors will be developed and evaluated with ILSS. First, a variable
speed limit control strategy will be developed to mitigate the rapid propagation of shock waves,
so that the possibility of rear-end collision can be reduced. Also, an alternative ramp metering
algorithm will be developed to address the issues with the current capacity-based zone control
approach (Kwon, et. al., 2005, Kwon, et. al, 2001). The new metering algorithm will also be
tested with ILSS using real freeway corridors.

1.2 Report Organization

Chapter 2 develops an integrated simulation environment by combining IRIS and a microscopic
simulator through a data conversion module. In Chapter 3, an off-line process is developed to
automatically estimate a set of traffic performance measures for selected freeway sections for a
given time period. Computer software is also developed to automate the process. Chapter 4
summarizes the on-line estimation process for a selected set of traffic measures that can be used
to support real-time operations. In Chapter 5, a microscopic simulation software is used to
model a section of freeway, which is used as the test section to evaluate the performance of the
new freeway operational strategies to be developed in the subsequent chapters. In Chapter 6, a
new variable speed limit control strategy is developed and tested in a simulation environment.
An alternative ramp metering strategy based on traffic density measures is also developed and
tested in Chapter 7. Finally Chapter 8 summarizes the findings of this research and identifies
further research needs.

2 DEVELOPMENT OF THE IRIS-IN-LOOP SIMULATION SYSTEM

2.1 Structure of IRIS-in-Loop Simulation System

The key component of the IRIS-in-Loop Simulation system (ILSS) is the Interface for IRIS and
Microscopic Simulator (IIMS), whose main function includes the conversion of the data,
controlling the traffic simulator operations, and managing data transactions between IRIS and the
traffic simulator, Vissim (PTV, 2011). Figure 2.1 shows the main components of the IIMS, i.e.,
VISSIM Controller, Data Manager and Communicator, developed in this task. The data flow
among these main components is also illustrated in Figure 2.2. As shown in those figures, IRIS
and the traffic simulator, Vissim, is continuously interacting through time with IIMS, which
converts the simulated detector data to the format required by IRIS and also translates the control
solutions from IRIS, e.g., metering rates, to the form suitable for Vissim. IIMS also manages the
time-sensitive data exchange and synchronization process between IRIS and Vissim, so that the
IRIS-based traffic operations can be simulated as if it’s done in real environment. Further, as
illustrated in the Figure 2.1, [IMS can interact with TICAS, Traffic Information and Condition
Analysis System, also developed in the separate task in this research.

IIMS Framework

VISSIM VISSIM Controller Communicator
e
Controller User Interface MnDOT
W [ranp fate 4'“4“:"[
Data Collector VISSIM Devices Request Dispatcher T\ |
data sync }1) j E N
invoke
TICAS Data Manager i i IRIS
traffic dafta B Response
/‘ I\ ReadMemory
Exporter Data Convertor N
\] l/ WriteMemory
triaffid dqte
Devices [SendNextRecord re| pzm
| Controller170 H Station |

Figure 2.1. Internal Structure of IRIS-in-Loop Simulation System

traffic data
of each detector

rampmeter rate
for each confroller

WYISSIM
Cantroller

calculatad
ramprmeter rate

205 traffic data

rampmeter rate

30s traffic data

requested rampmeter rate

Communicatar

Data
Manager

305 occupancy and scan data

Figure 2.2. Data Flow among Main Components in IIMS
Main User Interface for IRIS-in-Loop Simulation System

Figure 2.3 shows the main user interface of IRIS-in-Loop Simulation (ILS) system. The user
interface consists of the function buttons, log viewer and controller editor. The operational
function of each button is as follows:

- Start server : start ILS Communicator that sends and receives packets with IRIS

- Load controller config file : load the configuration file that has the data structure
information about 170 controllers, ramp meters and detectors

- Load VISSIM file : select a VISSIM case file to simulate

- Run VISSIM : start simulation

The Controller Editor enables user construct the structures of 170 controllers, ramp meters and
traffic detectors into ILS with the exactly same configurations as in a given freeway corridor.
For example, one 170 controller in ILS can be connected to 2 ramp meters and 24 detectors,
same as in the 170 controller in the field.

Interfal:e for IRIS and Microscopic Simulation Framework B Controller Manager X
File Tool Help Controllers
1 1/0 Devices Device List Update
1 ;
‘ 1, Start Server I Fin || W13 D
i d 2 Rampheter M100K25
3 Rampleter M100MzZE

o 39 Detectar BB17

2. Load Contraller Canfig File | T Doy o

41 Detectar 280

] 42 Detectar 581

. | lewer

3. Load YI55IM File | Og viewe 43 | Detector
44 Detectar
43 Detectar
4, Run YISSIM | 46 | Detector
47 Detector
48 Detectar
49 Detector

g datr&Herleditor
function buttons S beteo
52 Detectar
53 Detectar
54 Detectar
55 Detectar
56 Detectar
57 Detectar
58 Detector
59 Detectar
60 Detector
61 Detectar
62 Detectar

Add | Save | Import: |

Figure 2.3. Main User Interface of IRIS-in-Loop Simulation System

2.2 Communicator

Communicator (CM) manages the communication process between IRIS and the other modules
in the interface, i.e., Data Manager and Vissim Controller. It follows the current MnDOT
protocol, which defines the communication process between IRIS and the 170 controllers in the
field. When CM receives a request from IRIS, it creates a ‘response’ object and sends it to IRIS
with the requested traffic information. Figure 2.4 shows the major modules within the
Communicator and its internal data flow process. The main functions of those modules in the
Commuicator are:

a. MnDOT : This module parses raw packets and makes ‘Responser’ according to request.

b. Comm : This module receives ‘request’ and extracts ‘request buffer’ from packet to send
it to MnDOT.

c. Responser : This module gets occupancy and scan data from the Data Manager and
sends ramp meter data to the Data Manager. It also sends traffic data to IRIS.

ranwe packet

calculated rampmeter rate

dispatch

rejuested rampmeter rate 20s raffic data

Fesponsar

30s occupancy and scan data

Figure 2.4. Data Flow Process of Communicator
Communication Sequence

Figure 2.5 shows the communication sequence between the CM and other Components in IIMS.
IRIS has a comm_link interface to communicate with the 170 controllers that manage the ramp
meters and the detectors in the field. CM uses the same comm_link interface to communicate
with IRIS. When CM creates a server socket and the comm_link of IRIS is activated, IRIS
connects to CM and starts to send requests. There are two types of request, GET and SET. If
CM receives a GET request from IRIS, it gets data from the Data Manager (DM) and sends it to
IRIS. For a SET request, CM requests DM to set and update its devices.

VISSIM Controller | Data manager | | Communicator | IRIS

start

| 1: create server socket
2: activatecomm_link

3:connect

Loop ‘ 4 : data request

5 invoke responsor

Alt | M. 6: get data
[if et request]
- 2: response |
7 traffic data]: g
6: set data

[elde if set request]

7 : update device

=

&: update simulation

Figure 2.5. Communication Sequence from/to Communicator

Figure 2.6 shows a communication example between IRIS and the Interface. Once
communication between IRIS and I[IMS starts, all the request/response messages are printed out
in the main window of the user interface to show the current status of the IRIS-in-Loop
simulation.

Elnterface for IRIS and Microscopic Simulation Framework ol ¥

Fle Tool Help

TIM3 Framewatk Server Started
Accept Client (Wed Sep 29 13:33:04 CDT 2010:3acket|addr=/131,212.105.237 port=3411 2 localport=4000]) —
Requested|DROP:1 CAT:6 P_LENGTH:3 Payload:1 21 7 CHECKSUM:O
WriteMemaryResponsor]|WriteMemary|[RemoteRate]DROP: L STAT:O P_LENGTH:O[] CHECKSUM:B
RequestedDROP:2 CAT:6 P_LENGTH:3 Payload:1 207 CHECKSUM:O
2, Load Cortrollr Config Fle WriteMemoryResponsar]WriteMemory[RemoteRste]DROPSZ STAT:D P_LENGTH:O[] CHECKSUM:16
RequestedDROP:1 CAT:6 P_LENGTH:3 Payload:1 157 CHECKSUM:O
WriteMemaryResponsor]WriteMemary|[RemotaRate]DROP: L STAT:O P_LENGTH:O[] CHECKSUM:
RequestedDROP:1 CAT:7 P_LENGTH:3 Pavload:3 7372 CHECKSUM:O
3. Load YI5IM Fle ReadMemoryResponsar] [30s Data)OROP:L STAT:O P_LENGTH: 72[MOLUME:SSS57777330005044 101055553 5CAN:-10
RequestedDROP:1 CAT:7 P_LENGTH:3 Pavload:1 1212 CHECKSUM:O
ReadMemoryResponsar] [RampMeter Status]DROP:1 STAT:0 P_LENGTH:12[RAMPLOQQ000000000] CHECKSUM:
Requested|DROP:2 CAT:? P_LENGTH: 3 Payload:3 75 72 CHECKSUM:D

ReadMemoryResponsar] {305 DatalDROP:2 STAT.D P_LENATH:72[VOLUME:S 55577773 300050441010555555CAN:-10
4 Run VIZ5M Requested|DROP:2 CAT:7 P LENGTH:3 Paloadi1 1712 CHECKSUMD
ReadMemoryResponsor] [RampMeter Status]OROP:2 STAT:O P_LENGTH:12[RAMPLOQ0000000000] CHECKSUM:23
RequestedDROP:1 CAT:6 P_LENGTH:3 Payload:1 20 7 CHECKSUM:O
WriteMemaryResponsor]|WriteMemory|[RemoteRate DROP: L STAT:O P_LENGTH:O[] CHECKSUM:B
RequestedDROP:2 CAT:6 P_LENGTH:3 Payload:1 20 7 CHECKSUM:O
WriteMemaryResponsor]|WriteMemory|[RemoteRate]DROP:2 STAT:O P_LENGTH:O[] CHECKSUM L6
Requested|DROP:1 CAT:6 P_LENGTH:3 Payload:1 157 CHECKSUM:O
WriteMemaryResponsor]WriteMemary|[RemoteRate]DROP: L STAT:O P_LENGTH:O[] CHECKSUM:B
Requested|DROP:1 CAT:7 P_LENGTH:3 Payload:3 7372 CHECKSUM:O
ReadMemoryResponsar] [30z DatalOROP:L STAT:O P_LENGTH: 72[MOLUME:SSS577773300050441010555535CAN:-10
Requested|DROP:1 CAT:7 P_LENGTH:3 Pavload:1 12 12 CHECKSUM:O
ReadMemoryResponsar] [RampMeter Status]OROP: L STAT:O P_LENGTH:1Z[RAMPL:000000000000] CHECKSUM:4
RequestedDROP:2 CAT:7 P_LENGTH:3 Payload:3 7372 CHECKSUM:O
ReadMemoryResponsar] [30z DatalOROP:2 STAT:O P_LENGTH: 72[MOLUME:SS5577773300050441010555535CAN:-10
RequestedDROP:2 CAT:7 P_LENGTH:3 Pavload:1 1212 CHECKSUM:O
ReadMemoryResponsar] [RampMeter Status]OROR:2 STAT:O P_LENGTH:IZ[RAMPLOQ0000000000] CHECKSUM:23
RequestedDROP:1 CAT:6 P_LENGTH:3 Pavload:1 20 7 CHECKSUM:O
WriteMemaryResponsor]WriteMemary|[RemoteRate]DROP: L STAT:O P_LENGTH:O[] CHECKSUM:E
RequestedDROP:2 CAT:6 P_LENGTH:3 Pavload:1 20 7 CHECKSUM:O -lj

+

|.||.:...u........n.........1I'|.|..:...u........1I'n.......n....1nnnn.n ATAT.A R LERATILATT ALIEAKRLI S

L3

1. Stop Zerver

Figure 2.6. Communication Example with IRIS

Figures 2.7 and 2.8 are the Comm Links management interface of IRIS client. The gray color of
the Status fields in Figure 2.7 indicates they are currently not activated. Figure 2.8 shows the
activated status of the comm_link and controllers after connecting to the IIMS communicator.

/—[— p—
Stz] Comm Links :

All Links | Failed Controllers |

Comm Link Description URL Status FProtocol Timeout
commlink CommLink fram 1IMS 151.212.105.238:4000 +MnDOT 170 (5-hit} 750
Inactivate

Salacted Comm Link: conneact timed out Delate Camm Link

Controller Location Drop Active [Status Error Detail Version
cantrollerl Unknhown location 1 FAIL @ Wed Sep 29 14:05:15 EDT 2010
controllerz Unknawn location 2 n FAIL @ Wed Sep 29 14:05:16 EDT 2010
o
DMS stat 1 1
sta inactivated
Ao @ Al
JULo O Ul
Ao O S

Selected Controller: Delete Controller
L

Figure 2.7. IRIS Client before Connecting to IIMS

—
] comm Links

© [

AllLinks | Failed Controllers |

Comm Link Description URL Status Protocol Timeout
cammlink CommLink from M3 131.212.105.238:4000 +MnDOT 170 i5-hit) 750
activated

Salacted Comm Link: Connection resat Delaete Comm Link

Controller Location Drop | Active [Status Error Detail Version
cantrollerl Unknown location 1
controller? Unknown location 2z n
El
DMS status
&l 0 ® Ava .
activated

Lo O Use
JUL 0o O Sch

Salacted Controller: Delete Controller

Figure 2.8. IRIS Client after Connecting to IIMS

Figures 2.9 and 2.10 illustrate the example IRIS Client screens showing available and
unavailable ramp meters. After IRIS is connected to IIMS communicator, the status of some
ramp meters registered in comm links would be changed from unavailable to available.

[DMs [Incident [[Meter | LCS | Camera | Roadway |
Selected Ramp Meter

NHame Camera
Location
Operation
Release Rate Cycle Time
Metering) On) Off

Ramp Meter status: Available

.0 @ Available E) 22 O Locked @ 465) Inactive

E)O) Queue full . 6) Maintenance 469 Al
E)O) Queue exists . 0 O Failed
.0) Metering \\) 465) No controller
/

available ramp meters

Layers tegend [pensity ||

-

Figure 2.9. Example IRIS Client Screen Showing Available Ramp Meters

[DMS | Incident rMe‘j\er 'Lcs | camera | Roadway |

o=@ rome

Selectedltampliicte] Operate Ramp Meters

Name Camera
Location
Operation

Releasea Rate Cycle Time

Queue

Metering) On O Off

Ramp Meter status: Available

.0 ® available D 22 O Locked

@0) Queue full . 6 ' Maintenance
E)O) Queue exists . 0 O Failed

.0 ' Metering \\) 465 ' No controller

E) 465) Inactive
469 O All

unavailable ramp meters — |

TN

Figure 2.10. Example IRIS Client Screen Showing Unavailable Ramp Meters

Data Structure of Communicator

This Section describes the data structure of the Communicator module developed in this study.

Comm Interface

Comm interface is for communication abstraction.

Method Member

Boolean doResponse(byte[] buffer, OuputStream
s)

Communicator Class

Communicator class is actual server thread class.

Method Member

void run() Socket clientSocket

void closeCummunicator() OutputStream os
InputStream is
byte[] buffer

Comm comm

MnDOT Class

MnDOT class implements Comm interface and MnDOT protocol

Method Member
Boolean doResponse(byte[] buffer, ResponsorDispatcher responserDispatcher
OutputStream o0s) int runInterval;

void printReqPacket(byte[] buf)

int getMemoryAddress(byte[] buf)

int getDrop(byte[] buf)

int getLength(byte[] buf)

int getStat(byte[] buf)

int getChecksum(byte[] buf)

byte checkSum(byte[] buf)

byte getl 70ControllerDropCat(byte[] req)

Address Class

This class has address information of packets in MnDOT protocol.

Member Member

int FLASH =0 int SHUT UP =0

int MANUAL = 1 int LEVEL_1 RESTART = 1

int CENTRAL =2 int SYNCHRONIZE_CLOCK =2

int TOD =3 int QUERY_RECORD_ COUNT =3

int FLASH_RATE =0 int SEND_NEXT RECORD = 4

int CENTRAL_RATE =1 int DELETE_OLDEST RECORD =5

int TOD_RATE =2 int WRITE_ MEMORY = 6

int FORCED_FLASH =7 int READ_MEMORY =7

int OK = 0 int OFF_DROP_CAT =0

int BAD_MESSAGE = 1 int OFF LENGTH = 1

int BAD_POLL_CHECKSUM =2 int OFF PAYLOAD =2

int DOWNLOAD REQUEST =3 int CABINET_TYPE = 0x00FE

int WRITE_PROTECT =4 int DATA_BUFFER_5 MINUTE = 0x0300
int MESSAGE_SIZE = 5 int DATA_BUFFER_30_SECOND = 0x034B
int NO DATA =6 int QUEUE_BITMAP = 0x0129

int NO RAM =7 int COMM_FAIL = 0x012C

int DOWNLOAD REQUEST 4 =8 int SPECIAL_FUNCTION_OUTPUTS = 0x012F
int DEVICE_1_PIN =2 int WATCHDOG_BITS = 0x0E

int METER 2_PIN =3 int DETECTOR_RESET =2

int SPECIAL_FUNCTION_OUTPUT_PIN =19 int METER_1_TIMING_TABLE = 0x0140
int FIRST DETECTOR_PIN =39 int METER_2_TIMING_TABLE = 0x0180
int DETECTOR_INPUTS = 24 int OFF_RED_TIME = 0x08

int ALARM_PIN =70 int OFF_PM_TIMING TABLE = 0x1B

int SECONDS_PER_SAMPLE = 30 int ALARM_INPUTS = 0x5005

int SECONDS_PER_HOUR = 3600 int PROM_VERSION = 0xFFF6

int SAMPLES_PER_DAY = 86400 / int RAMP_METER DATA = 0x010C
SECONDS_PER_SAMPLE int OFF_STATUS =0

int SAMPLES_PER_HOUR = int OFF_CURRENT RATE=1
SAMPLES_PER DAY /24 int OFF_GREEN_COUNT 30 =2

int FEET_PER_MILE = 5280 int OFF_REMOTE_RATE =3

int MAX_VOLUME = 37 int OFF_POLICE_PANEL = 4

int MAX_SCANS = 1800 int OFF_GREEN_COUNT 5=35

int MAX_OCCUPANCY = 100 int OFF_METER_1 =0

float DENSITY_THRESHOLD = 1.2f int OFF_METER 2 =6

float MAX_SPEED = 100.0f int OFF_ GREEN METER 1 =72

float DEFAULT_FIELD LENGTH = 22.0f int OFF_ GREEN_METER 2 =73

byte MISSING_DATA =-1
String UNKNOWN = "222"

Request Class

Request class is for request from IRIS. BinnedDataReqest, Level 1 Request, MemoryRequest,
ShutUpRequst and SynchronizeReqest classes are extended classes of Request class.

10

Method Member

void setBaseParameter(byte[] buffer) int drop

int getControlld() int cat

int getRequestType() int msglLength
int getMessageL.ength() int checkSum
int getCheckSum()

int getMemoryAddress(byte[] buf)

int getDrop(byte[] buf)

int getLength(byte[] buf)

int getStat(byte[] buf)

int getChecksum(byte[] buf)

byte checkSum(byte[] buf)

byte get170ControllerDropCat(byte[] req)

Responsor Class

Responsor class is high level class for response. ReadMemory, WriteMemory, ShutUp,
QueryRecordCount, DeleteOldestRecord , SynchronizeClock and SendNextclasses are extended
classes of Responsor class.

Method Member

abstract void doResponse(byte[] buffer, DataCollector dataCollector
OutputStream os)
void printResPacket(byte[] buf, int type)

ResponsorDispatcher Class

This class returns a specific instance of responsor class according to request type.

Method Member

Responsor getResponsor(int cat) Responsor rspList[]

Implementation of MnDOT Protocol

This section explains the current MDOT communication protocol used in developing the
Communicator module.

Memory request (from IRIS)
GET request (6 bytes)

Drop: drop number assigned to each controller. (Actually drop bit means controller number; you
can see drop number for each controller in IRIS. One comm. Link has several controllers.)

Cat: Category bit means message type. There are 8 message types. (SHUT UP,
LEVEL 1 RESTART, SYNCHRONIZE CLOCK, QUERY_ RECORD_COUNT,
SEND NEXT RECORD, DELETE OLDEST RECORD, WRITE MEMORY,
READ MEMORY) READ _MEMORY will be selected.

11

Message length: payload length. For example in this packet below, Message length will be 3
because there are Address MSB, Address MLLB and Payload length except check sum.

Address MSB: Each field controller save diverse data such as 30 second data and 5 minutes data
in specific memory address. Memory addresses are defined in Address class (Address.java). We
can recognize requirement of request packet through this address. Address should be combined
with Address MLB.

Address MLB: MLB of Address.

Payload length: Payload length when response. If the request packet is for 30 second data
request, 72 byte of volume and scan data should be responded.

Check sum: check sum for this 6 bytes packet.

Drop(5bit)/ | Message Address Address Payload | Checksum
Cat(3bit) length(1byte) | MSB(1byte) | MLB(1byte) | length (1byte)
(1byte)

SET request (3 bytes)

All parameters are the same with GET request just except Cat and Payload bits. Cat will be
WRITE MEMORY. The size of Payload will be changed by Address.

Drop(5bit)/ | Message Address Address Payload | Checksum
Cat(3bit) length(1byte) | MSB(1byte) | MLB(1byte) | (~ byte) | (1byte)

Memory response (to IRIS)
Response to ‘Get’ request
Drop: Drop bit should be set by the same drop bit value of the request.

Stat: Stat bit means controller’s status. There are several status values for a controller (OK,
BAD MESSAGE, BAD POLL CHECKSUM, DOWNLOAD REQUEST,
DOWNLOAD REQUEST 4, WRITE PROTECT, MESSAGE SIZE, NO DATA, NO RAM).

Drop(5bit) / Payload Length Payload Checksum
Stat(3bit) (1byte) (~ bytes) (1byte)

Response to Set request(3 bytes)

Checksum (1byte)

Drop(5bit) / Stat(3bit) Payload Length (1byte)

12

Binned Data Request
GET request (3 bytes)

Cat: Category bit will be SEND NEXT RECORD.

Drop(Sbit)Cat(3bit) |~ o€ length(1byte) | opecksum(ibyte)
SET request (3 bytes)
Cat : Category bit will be DELETE_OLDEST RECORD.
. . Message
Drop(5bit)/Cat(3bit) length(1byte) = 0 Checksum(1byte)
Binned Data Response
: Same as Memory Request response.
Drop(5bit) / Payload Length Payload (~
Stat(3bit) (1byte) bytes) Checksum (1byte)

Traffic Data for IRIS
Volume and Scan

30sec volume and occupancy data are used in the ILS. If CM receives GET request that includes
drop number of controller, CM creates a responder which has volume and scan data of the
detectors from the corresponding controller. The volume data is an integer array of 30sec
volume from the detectors. The scan data is also an integer array of 30sec scan values ranging
from 0 to 1800.

Ramp Rate

Ramp rate data are saved in terms of the red time interval in 1/10 seconds. If a ramp meter in a
170 controller consists of 2 meters, the ramp rate needs to be converted into the red times for
each meter.

2.3 Data Manager

Data Manager (DM) manages the data structure of the devices in IRIS and Visism. Specifically
it collects the raw scan data from all the detectors in the Vissim simulator and provides the traffic
information such as speed, flow rate and density, to IRIS via the Communicator. Figure 2.11
shows the data flow diagram within the Data Manager module. The functions of the individual
modules are:

13

a. DataCollector : This module makes data structure to manage data for all devices. It also
relays ramp meter rates to the Vissim controller, and converts the scan data into speed,
flow and density following the MnDOT protocol.

b. Controller170 : This module manages ramp meter and detector objects. DataCollector can
have multiple Controller170s.

c. Rampmeter : This represents ‘ramp meter’ in the field and has ramp meter status, rate,
green count.

d. Detector: This object stores speed, flow and density data from the detectors.

Data
Collector
30s raffic dats
rampmeter rate
and traffic data
Confroller170

traffic data

Figure 2.11. Data Flow Diagram of Data Manager

rampmeter rate requested ramprmeter rate

30s occupancy and scan data

traffic data

traffic data
ramprmeter rate

Detector

Data Manager Sequence

Data Manager needs to have the comprehensive data structure necessary for simulation. Before
simulation starts, the device structure consisted with Controller170, Ramp meters and Detectors
should be created by the controller editor. The Data Manager loads the data structure

information created in the previous step from the hard disk and constructs internal data structures.
All the data structures in the Data Manager are updated by the Vissim Controller every 30
seconds. Further, the Data Manager provides traffic data to the Communicator upon request.
Figure 2.12 shows the operational sequence of the Data Manager interacting with other modules.

14

VISSIM Controller Data manager Communicator

start
1: edit controller information

2 : save structure to disk

—

start

1:load controller information

<
- 2: construct device structures
«— forfield and simulation
T
Loop 4 P 3: get data
4-1:run next 30s h
5: update devices data] 4-2 : traffic data

] 'II | 6 data update

Figure 2.12. Data Manager Sequence Diagram
Data Structure of the Major Classes in Data Manager
Station Class

Station class has a detector list and the information for VISSIM to represent real roads.

Method Member

double[] getStationSpeed() int id

double[] getStationDensity() int easting

double|[] getStationFlow() int northing

String[] getTimeLine() int speedLimit, Vector<Detector> detectors
Controller170 Class

Controller170 class is a replacement of the 170 controller to emulate the MnDOT protocol. It
consists of 2 ramp meters and 24 detectors.

15

Method Member

void setRampRate(int pin, byte rate) int drop
double[] getVolume(int detectorld) Vector<RampMeter> rampMeters
double[] getScan(int detectorld) Vector<Detector> detectors

Device getDevice(int pin)

RampMeter Class

RampMeter class belongs to Controller170 class and is managed by Data Manager. It’s set by
IRIS and synchronized with VISSIM.

Method Member

void setRampRate(byte rate) int pin

byte getRampRate() int id

byte getRampStatus() byte rampStatus

byte getCount() byte currentRate

byte getPolicePanel() byte greenCount30Sec, byte policePanel

Detector Class

Detector class belongs to Controller]1 70 and Station class. This class saves the volume and speed
data provided by VISSIM and transforms data to other forms that are sent to IRIS by the
MnDOT protocol.

Method Member

TrafficData getTrafficData() int pin

double[] getVolume() int id

double[] getScan() String name, String Type, int fieldLength

TrafficData trafficData

TrafficData Class

All traffic data is saved to this class and transformed to proper type by Detector class as
requested.

Method Member

void calculateTraffic() int fieldLength
void setData(int row, int col, int value) int interval
double[][] getData() float confidence
double getData(int row, int col) double[][] data

2.4 VISSIM Controller

VISSIM Controller (VC), which has been developed with the COM interface, controls VISSIM
simulator, manages device structures of VISSM and synchronizes device data in the Data
Manager. The operational sequence of VC is as follows:

16

Figure 2.13 shows the data flow process within the Vissim controller whose internal modules
include:

Figure 2.14 shows the operational sequence of the VISSIM controller. First VC initializes the
COM interface and the data structure of the Data Manager according to the user input. VC
continuously collects volume and speed data from all the detectors in VISSIM, which runs
simulation continuously. VC processes the raw simulated data and generates flow, speed and
density information. The processed data are used to update the devices in the Data Manager. If

Execute 1 step of VISSIM
Set control configuration to VISSIM
Get data from the detectors in VISSIM

Executor : This is the core module that controls the VISSIM simulation process and reads
data from VISSIM.
VDetector : This module represents the detectors in VISSIM. It stores volume and speed data
on a temporary basis.
VRunner : This is for executing some functions of external components and transferring data.

the Communicator receives a SET request with, e.g., ramp meter rates, from IRIS, the
Communicator sets the metering rate data to VC through the Data Manager.

rampmeter rate
for each controller

30s raffic data

volurne and speed

raffic data

of each detector requested rampmeter rate

volurne and speed
in each step

YWhetector

Figure 2.13. Data Flow Diagram of VISSIM Controller

17

VISSIM VISSIM Cantroller Datamanager Communicator

start
1:initialize
] 2 :initialize DM |
Loop | | 3:runone step
P 4: get all detector data
»f
5: speed, volume data
6: data calculation
7:update devices data |
Opt P 8:set data
[if set requdst]
10 : update simulation qJ 9: update device
IT !
11: set value |

Figure 2.14. Operational Sequence of VISSIM Controller
Data Structure of VISSIM Controller
VISSIMController Class

VISSIMController class runs VISSIM simulator one step at a time using the COM interface.

18

Method

Member

void init()

void execute VRunner()

void addVRunner(VRunner runner)
double[][] getSpeedHistory()
double[][] getDensityHistory()
int[][] getFlowHistory()

int[][] getVolumeHistory()

int getSimResolution()

int getTotalCount()

int getSimStep()

int getSimTotalStep()

int[] getDetectorIDs()

float getCurrentTime()

void setSimPeriod(int simPeriod)
void setSimResolution(int simResolution)

void setVissimCaseFile(String vissimCaseFile)

void setDataCollectInterval(int

IVissim vis

[Simulation sim

INet net

[Detectors dets
ISignalControllers scs
[SignalController det_sc
IDetector[] det

ITravelTimes tts
ITravelTime[] tt
IDesiredSpeedDecisions dsds
[DesiredSpeedDecision[] dsd
VDetector[] vd

int[][] flowHistory

int[][] volumeHistory
double[][] speedHistory
double[][] densityHistory
double[][] Travel TimeHistory

dataCollectInterval) String[] travel TimeNames
void setTravel Timelnterval(int int[] detectorIDs
travel Timelnterval) int[] travel TimelDs

VRunner Class

VRunner class is an abstract class, which VISSIMController class executes VRunner instance

after getting data from VISSIM.

Method Member
abstract void run() VISSIMController vissimController
int getRunlInterval() int runinterval

void setRunInterval()
void setVissimController()

19

3 DEVELOPMENT OF AN OFF-LINE ESTIMATION PROCESS FOR
FREEWAY TRAFFIC CONDITIONS

3.1 Structure of Traffic Information and Condition Analysis System (TICAS)

In this task, a comprehensive freeway Traffic Information and Condition Analysis System
(TICAS) is developed to support the needs of the traffic operators in terms of quantifying and
assessing the traffic performance of the freeway corridors in Minnesota with the historical
detector data continuously being archived at the Traffic Management Center. Figure 3.1 shows
the simplified structure and data flow process of TICAS developed in this study. As shown in
this figure, the main data source for TICAS consists of the infrastructure-based traffic flow
detectors, e.g., loops or radars, which provide traffic flow rate, speed and density data at fixed
locations every 30 seconds. The archived traffic data, stored at the data server at the Traffic
Management Center, is accessed by TICAS through internet each time user defines the data
needs. The traffic data are combined and linked to the specific geometry data of each freeway
corridor to develop corridor-based traffic information, such as travel times and vehicle miles
traveled, etc. These measures are of critical importance in assessing the congestion levels and
evaluating the effectiveness of traffic control strategies. The main format of the output files from
the current version of TICAS is the spreadsheet file, which can be directly opened by Excel.
Further, the contour plots for the basic flow parameters, such as speed, density and flow rates,
can be directly created by TICAS, which also provides users the capability to adjust contour plot
intervals.

20

Archived Traffic Data User Interface Module Freeway Geometry

Server (TMC) (Select Dates/Corridors/Measures) Data Server (TMC)
Traffic Data Traffic/Geometry Data Geographic Data
Reading Module | Processing Module < Reading Module
Traffic Performance Indices Traffic Flow Data Contour Plots
Calculation Module Extraction Module | Processing Module

l !

Output Processing Module

1 |

Spreadsheet Output Files Contour Plot Graphic Files

Figure 3.1. Simplified Structure of TICAS

Figure 3.2 shows the current TICAS user interface specifically developed for traffic system
operators, who can select a set of traffic performance measures and desirable output formats, i.e.,
spreadsheet or graphics, for single or multiple dates/time periods/corridors. An example speed
contour plot generated by TICAS is illustrated in Figure 3.3.

21

Minnesota Freeway Traffic Performance Analysis System =

File Help

rDates and Time
Traffic Data Folder

Ihttp'ffdata dot.state.mn.us:8080/trafdat

rOutput Selection

Station Data Individual Detector Data

Start (Cross St.)

End (Cross St.)

[77n_Avers70)

[75th_sus4c3)

Central Ave: Jas

Glesscn Lake FRd: 348

Carimon Plwy:

[

F et e

Fricig e el D

o Fa Ta:
Ehelard Pl
u.m as:

Gamnsrml B B

B e
Louisimnm s
Colorado sve:

e S

W e T 100

B N L

o et Bt

e A

Crarvesmochy Bilvel:

[

Lircmn Ao

a7

A

s

3az

R

LY.

EE
s

227

aaa

mz

a3zo

[|

¥ Speed ™ with Lane Canfig T Speet
<< | = lrerruarv. 200> | == Clear I~ Total Flaw ™ Without Lane Canfig I~ Flow
Dates Selection
™ Avg. Lane Flow I= Density
s ™M Tu W Th F s
™ Density
1 2
Corridor Traffic Condition Measure
2 4 = [7 8 9
™ Vehicle Miles Traveled (VMT) [~ Travel Time (TT)
10 11 12 13 1L 15 16
™ Last VMT far congestion (LVMT) [~ Caongested Miles {CM)
17 18 19 20 21 22 23
™ Delayed Vehicle Hours (DVH) ™ Congested Mile*Hours (CWH)
24 = 26 27 28 | 2 ™ Mainline and Ramp Flow Rates ™ Speed Variations (SV)
C ion T Speed 45 or Local Specific Value
Time Interval 5 Minutes - Default Lane Capacity 2200 or Local Specific Value
Critical Density 40 or | Local Specific Value
Start time 13 ¥ |:|00 hd
Max # of Allowable Missing Data |1
End time n > |:(00 =™
rFreeway Selection Output Folder
Freeway & Direction |U.S.159 5B =]

|1ents and Settings\eilkwon\Desktop\TIMS-Haijie\Output Browse

Run (Select Output Format) [~ With Simulation Result

el Cavim: Data Extraction/Corridor Measure |

I~ Excel format

Figure 3.2. User Interface of TICAS

1-294 WEB Speeds Tor 10/22/2002

rContour Plot Parameters

of Contour Intervals

1]

00 | —

|

200 || -—

300 | ——

1

4

=

0 =

=
o

500 || -—

I
T

MCLTTTTRATT L
113399939973

1

Make Contour Plot |

¥ with JPG Qutput
I~ with Data Output

B mph
5056 rEh
eSO Rl
A0-a5 rmEh
ALAD PR
Zo-3m el
=620 rEh

Figure 3.3. Example Speed Contour Plot Generated by TICAS

22

b

3.2 Traffic Condition Measures in TICAS

The following list includes the traffic condition measures available in the current version of
TICAS, which discretizes a given freeway into 0.1 mile individual segments and estimates those
measures for each time interval, specified by user, for each segment. Figure 3.4 illustrates the
current scheme of the space discretization in TICAS, which estimates the basic flow parameters,
i.e., flow rate, speed and density, of each 0.1 mile segment using the measured detector data from
pre-specified locations.

Vehicle Miles Traveled (VMT)
=> density * segment length (= 0.1 mile) * speed * time interval
=> flow rate * time interval * segment length =0.1 mile)
Vehicle Hours Traveled (VHT)
=> density * segment length (=0.1) * time interval
=>VMT / speed
Delayed Vehicle Hours (DVH)
DVH => (Actual Travel Time — Free flow travel Time) * flow rate * time interval
=> VMT/speed — VMT/free flow speed
Lost VMT for congestion (LVMT): If density > critical density

LVMT => (capacity * number of lanes — Total flow rate) * time interval * segment length
(=0.1 mile)

Else, LVMT =0
Congested Miles (CM)
: Sum of segments that have experienced ‘Congestion’ at least once during a given time period

=> ‘Congested Time’ Not Reflected.
If speed < threshold speed, CM = 0.1, Else CM =0

Congested Mile Hours (CMH)

If speed < threshold speed, then CMH = 0.1 * time interval, Else CMH =0
Speed Variations (SV)

Average, variance, Maximum, Minimum, Difference = Maximum speed — Minimum speed

23

Travel Time = from 1% Upstream station to Last station on Mainline, every 30 seconds

di1,Ki1,Uj 1 _ 0. Tmile di. K, U Cis1,Kis1, Uit
o= g,k,u i =
I > - » |
—q1—1—lk1—1—u1—1—- ol il | i . . .
ST k=(ki1+ki)2 g, K, U Muz(uru)2 i, Kiet, Ui
q=uk k=(k+k,.1)/2
q=u*k
B Field
Detector

Figure 3.4. Current Space Discretization and Flow Parameter Estimation Scheme in
TICAS

33 Data Structure of TICAS
The main modules of TICAS consist of the following classes:

e The User Interface Module: TIMS Class, RunDialog Class

e Traffic Data Collecting Module : Running Class.

e Geographic Data Reading Module: GetDetectorList Class, DetectorData Class,
LoadRoad Class, DBread Class.

e Traffic Data Reading Module: ReadFiles Class, Read1File Class, ReadData Class.
Calculation Module: MakeFile Class.

e Output File Making Module : OneData Class, OneDatalane Class, DensityOneData,
FlowOneData, SpeedOneData, TTOneData, VOneData, DensityOneDatalane,
FlowOneDataLane, SpeedOneDatalane.

e Contour Plot Module: ContourPlotRunner Class, ContourLibrary.jar library.

e TIMS-Geo:

The function of TIMS-Geo project is to get the proper geographic data from the IRIS
Database. All the information that TIMS-Geo gets are stored in the object of DBread
Class. Then the project will save the entire object in the hard disk so that the TIMS
project can use this information to calculate the output data. This project needs to be
run each time the IRIS updates its geographic database, so that the latest geographic data
can be used in TICAS.

Figure 3.5 shows the data flow process among the major modules in TICAS, whose main data
structure is explained in this section.

TIMS Class

This class is the main class of the whole software. It implements the user interface and passing
the parameters which user select to the core code of TIMS, i.e., the Parameter Class. The main
objects in this class are described below.

24

NameSpace

edu.umn.natsrl. TIMS.panel : The main panel that contain all the layout of the program.
edu.umn.natsrl. TIMS.TimePanel: left upper panel in the program.

edu.umn.natsrl. TIMS.OutputPanel: Middle panel in the program.

edu.umn.natsrl. TIMS.AreaPanel: left lower panel in the program.

edu.umn.natsrl. TIMS.PlotPanel: right panel in the program.

edu.umn.natsrl. TIMS.pam: This is the object from class paracheck(). The function is to pass the
available date in the network to the DateSelection class so that the DateSelection class can use
this information to check which date is available in the Calendar function.

edu.umn.natsrl. TIMS.cv: float[] cv object store the information of the Contour intervals. The cv
is the value of each Contour intervals.

edu.umn.natsrl. TIMS.ncv: int ncv object stores the number of Contour intervals.
edu.umn.natsrl. TIMS.color: Color[] color object stores the color of each Contour intervals.

edu.umn.natsrl. TIMS.calendar: calendar is the object of DateSelection Class.

25

DetectorData

Read from object
file of Dbread

v

DBread

|
|
|
| DBread
|
|
1
|

-

ReadData

MakeFile

*1

=X- . ReadFiles
ReadData h
ContourPlot
S ———
Runner

v
» LoadRoad

TIMS Parameters (static)
RunDialog DetectorData
|
[}
|
[}
|
v
GetDetectorList |«
\4
Running Read1F||e

J L

Traffic Database at
Traffic Management
Center

ContourLibrary.jar

*1 : There are many classes which related to each other. The Parent classes are OneData Class

and

OneDatalane Class. Each of the two Parent Classes has some child Classes.
ﬂ : The arrow point to the child Class.

The main objects in the TIMS.java class are as follows. All the layout functions are implemented

Figure 3.5. Data Flow Process in TICAS

inside these five Panel objects.

edu.umn.natsrl. TIMS.time: time is the object from Time class. It will store the start time and end

time.

26

edu.umn.natsrl. TIMS.datelist: datelist is the object from DateList class. It will store the dates that
the user want to make analysis from.

edu.umn.natsrl. TIMS.flag: flag stores the information of what user select in the layout.

edu.umn.natsrl. TIMS.RoadFile: RoadFile is the File object. It stores the Road Files that the user
wants to analyze.

edu.umn.natsrl. TIMS.RoadName: The string name of the Road File.
edu.umn.natsr]. TIMS.StartSt: The Starting street that the user selects.
edu.umn.natsrl. TIMS.EndSt: The End street that the user selects.
Parameters Class

This class stores the important values that will be used throughout the whole TIMS project.
Because of this, the information inside the Parameters Class is static. The data stored in this class
can be directly accessed by other classes.

RunDialog Class

The main function of this Class is to show the user a dialog window. Then the RunDialog will
call the Running Class.

Running Class

This Class is one of the core functions in the TIMS Project. The main function of this Class is to
get the needed information from the Traffic Data and Geographic Data. And then send the data
to the MakeFile Class whose job is to use the Traffic Data and Geographic Data to do the
analysis.

NameSpace

edu.umn.natsrl. Running.AllDetect: Vector<DetectorData> AllDetect is the object array
of DetectorData Class. This object stores the information of the Geographic Data of the
Detectors which will be used to do the analysis.

edu.umn.natsrl.Running. AIIDATA: Vector<ReadData> AIIDATA is the object array of
ReadData Class. This object stores the information of the Traffic Data

GetDetectorList Class

This Class is the main class of the Geographic Data Reading Module. This Class will get the
whole Data of a road from the Geo Database which is created by the TIMS-Geo Project. Then
select the Data that will be used by the calculation module of TIMS. After finishing these tasks,
send the object array which contains all the Geo information to the Running Class.

27

NameSpace :edu.umn.natsrl. GetDetectorList.AllDetect: Vector<DetectorData>
AllDetect is the object array of DetectorData Class. This object stores the information of
the Geographic Data of the Detectors which are in the range from the Start Street to End
Street.

edu.umn.natsrl.GetDetectorList.alldetector: Vector<DBread> alldetector is the object
array of DBread Class. This object stores the Geographic Data of the whole specified
road.

LoadRoad Class

The function of the LoadRoad Class is to read all detectors data of a selected road from the disk.
The detectors data is stored in the disk as the object file. The object that stored is the
Vector<DBread> Class object.

DBread Class

The object array of this class stores the information of the geographic data of detectors. One
important thing in the TIMS software is to make sure that the edu.umn.natsrl.geodb.DBread of
the TIMS project is exactly the same with the edu.umn.natsrl.geodb.DBread of the TIMS-Geo
project. The reachild is that the LoadRoad Class of TIMS project will try to read the saved object
of DBread class. And the saved object is from the DBread Class in TIMS-Geo project. Thus, if
the two DBread class is not exactly same, the LoadRoad Class cannot read the data properly.

DetectorData Class

The object of the DetectorData will store the geographic data of detectors from selected road and
from selected starting point to end point.

ReadFiles Class (child class of Read1File Class)

The function of this class is to read the traffic data from either the Internet or Local disk. The
parent class of ReadFiles is Read1File Class.

NameSpace

edu.umn.natsrl.ReadFiles.fulldata: Vector<ReadData> fulldata is the object array of ReadData
Class. The function of this object is to store the traffic data information.

Read1File Class

The function of this class is to read the .v30 and .c30 files (which are the volume and occupancy
files).

NameSpace

edu.umn.natsrl.Read1File.getNet (int DID): The function is to get the traffic data of the detector
which Detector ID is “DID”.

28

edu.umn.natsrl.Read1File.read data: ReadData read data object stores the traffic data of the
detector which Detector ID is “DID”.

Constants Class

This Class stores the constant value that will be used in the TIMS. The information inside
include the ID of each output and constant value of road parameters.

ReadData Class

The function of the ReadData Class is to store the traffic data extracted from either the internet
or local disk. The other module in the TIMS will use the object of the ReadData Class to store
the information of traffic data.

NameSpace

edu.umn.natsrl.ReadData.Calculate(): This function is to calculate the speed from the density and
flow. In the Read1File Class, the flow and density traffic data will be read from the database
directly. Then, the Read1File Class will call this function to get the speed value.

DateSelection Class

The function of the DateSelection Class is to build a Calendar interface for the user to choose the
date. The DateSelection Class will call to the DateChecker Class to see if the traffic data is
available for a specific day or not.

MakeFile Class

This Class is the main Class for the Calculation Module. It gets the traffic data and the
geographic data from the Running Class. First, the MakeFile Class will use the traffic data and
geographic data to calculate 7 basic output data. The output data will be stored in the object of
OneData and OneDatalane’s child Class. Then, depending on what the user choose in the
interface, the MakeFile will calculate the required output data based on the 7 basic output data.

The Class that is used for storing the output data include: OneData Class, OneDatalane Class,
DensityOneData, FlowOneData, SpeedOneData, TTOneData, VOneData, DensityOneDatalane,
FlowOneDatalLane, SpeedOneDatalLane. All the objects of these Classes will be used to store the
calculated data. The calculation process to produce one basic output data is as follows:

Density = this.Initialize(AllData, Constants.Density,false);

This command is used to get the Density basic output data. The process to calculate and store the
Density data is as follow:

e The Initialize(Vector<ReadData> Data, int flag, boolean isAFlow) function will construct
the object array of OneData Class in order to store output data. Each object of the array
will store one day data. Then it will construct other parameters which will be used in
calculation.

29

o It will use the geographic data (stored in the object array of DetectorData) passed by
Running Class to calculate the number of Rows and Columns.

o It will get the traffic data from the detector data (stored in the object array of ReadData).
Then use the geographic data to know which detectors are in the same station. After that,
the function will calculate the average density and store all the data to the object array of
DensityOneData which is the child Class of OneData.

After all the output data that the user want calculated and stored, the MakeFile Class will call to
the function inside the OneData related Class to make the output files.

OneData Class and OneDatalane Class and relatives

The function of OneData Class is to store the output data and then make the .csv or .xlIs files
based on the output data. First, the MakeFile Class will call OneData class to store the calculated
data. Then, MakeFile will call the OneData to make proper output files.

ContourPlotRunner Class

The function of ContourPlotRunner Class is to call the ContourPlot Library and pass the needed
data and parameters to the ContourPlot drawing function inside the ContourPlot Library. There
are many crucial parameters to the Plot.

edu.umn.natsrl.ContourPlotRunner.power: The int power indicates how smooth the ContourPlot
will be. The smaller the value is, the more smooth the plot will have. However, the bigger the
value is, the more accurate the plot will be.

Other parameters inside this Class are so important to the ContourPlot drawing function. So I
recommend that do not try to change other parameters such as
du.umn.natsrl. ContourPlotRunner.numX.

ContourLibrary.jar

This library is developed from JfreeChart Library, whose contour drawing functions are
modified in this study. The most important classes of the Contour Module are:
org.jfree.chart.contour.ContourPlotgood.java , org.jfree.chart.plot.ContourPlot.java ,
org.jfree.chart.axis.NumberAxis.java and org.jfree.chart.axis.ValueAxis.

The function of the ContourPlot.java is to connect all other functions.

The function of the ContourPlotgood is to draw the contour plot.

30

4 DEVELOPMENT OF AN ON-LINE ESTIMATION PROCESS FOR
FREEWAY TRAFFIC CONDITIONS

4.1 Data Structure and Operational Sequence of On-Line Process

In this chapter, an on-line process to estimate the current traffic conditions on selected freeway
corridors is developed and incorporated into TICAS. The on-line function is to assist the traffic
operators in managing freeway traffic flows by providing graphical means to observe the traffic
conditions in real time. Current on-line graphical functions include speed, flow rate/volume, and
two-dimensional flow-density plots. Figure 4.1 shows the simplified data flow process for the
on-line function that interacts with both IRIS and TICAS to obtain real-time traffic data and
geometry information for selected freeway corridors by user.

Real-Time

station Graph 30s data
information (station.xml)

Figure 4.1. Simplified Data Flow Process for the On-line Estimation Function
Operation Sequence

Figure 4.2 shows the operation sequence of the Real-Time-Graph (RTG) module. When a user
executes RTG in TICAS, it makes the instance of RTG and sets some information of a given
corridor. After a user selects a freeway section to show a real-time graphical information of
traffic conditions, RTG gets ‘station.xml’ file from the IRIS server and parse to useful
information to plot every 30 seconds. Meanwhile, IRIS also updates ‘station.xml’ file that has
the up to date traffic information such as volume, occupancy, flow and speed. If RTG fails to get
the xml file, it retries after 2 seconds for data consistency. Once RTG retrieves xml data, it
parses xml data, constructs data structure for data management and develops the graphs with the
traffic parameters as requested by the user.

Data Structure
StationNode Class

StationNode class represents a data of one station in a specific time of xml traffic data.

Method Member

float getVolume() String id

String getld() float occupancy
int getSpeed() float volume
float getOccupancy() int speed

int getFlow() int flow

31

TICAS | RTG |
start l
—p

1: makeinstance

2 : set road information -[

WebServer | | IRIS |

Loop:every 30s |

1
1
1
1
1
1
1
i
1
! 0: update traffic data]
1
fi
1
1
1

into ‘station.xml’

Loop:every 30s |

4 :request data file

| — U

Alt

7 xml data

5: read file

»
-
+

A 4

flsuccess to get data]

[

It Tt

8: parsing / convert data

6 file content

L 9: display
[glse if fail] L
?J 10: request again after 2s
|
| T
Figure 4.2. RTG Operational Sequence Diagram
StationDataSet Class

StationDataSet has station node list of one station according to timeline for data management.

Method

Member

void addData(StationNode node)
String getStationld()

float getVolume()

float[] getAllVolume()
float getOccupancy()
float[] getAllOccupancy()
float getFlow()

float[] getAllFlow ()

float getSpeed()

float[] getAllSpeed ()
float getDate()

float[] getAllDate ()

String stationld
Vector<StationNode> stationData

32

StationDataReader Class

StationDataReader class reads and manages station traffic data.

Method Member

boolean collectData() int DATA READ INTERVAL

void ready() int DATA_ READ RETRY DELAY
void addData(String stationld, StationNode station) Datal.oader sdr

void addStationld(String stationld) Vector<StationDataSet> dataList

float getVolume(String stationld)

float[] getAllVolume(String stationld)
float getOccupancy(String stationld)
float[] getAllOccupancy(String stationld)
float getFlow(String stationld)

float[] getAllFlow (String stationld)

float getSpeed(String stationld)

float[] getAllSpeed (String stationld)
float getDate(String stationld)

float[] getAllDate (String stationld)

Datal.oader Class

Datal.oader class reads xml data from IRIS.

Method Member
StationNode getStationData(Document doc, String Date lastDate
stationld)

Document xmlLoad ()

Date getLastDate()

LiveGraph Class (abstract class)

LiveGraph class is the highest level of graph class to plot traffic data.

33

Method Member

JGraphPanel getGraphPanel() Graph graph

void addStation(StationNode station) Hashtable<String, XYDataSeries>
dataList

void addData(StationNode station) int yMax

void createChart(StationNode station) int yMin

void addLegend(LinePlot plot, StationNode station) String title

void addHint(LinePlot plot)

LinePlot createPlot(StationNode station)

abstract void addValue(XYDataSeries ds, StationNode
station)

abstract int getXSeriesType()

abstract int getY SeriesType()

abstract String getTitle()

abstract String getXLegend()

abstract String getYLegend()

abstract String getHintTemplate()

LiveTimelineGraph Class (abstract class)

LiveTimelineGraph is abstract class implementing LiveGraph to plot time-based data.

Method Member

void addValue(XYDataSeries ds, StationNode station) String dataType
String getTitle()

String getXLegend()

String getYLegend()

String getHintTemplate()

int getXSeriesType()

int getY SeriesType()

abstract float getData(StationNode station)

LiveXYGraph Class (abstract class)

LiveXY Graph is abstract class implementing LiveGraph to plot data.

Method Member

void addValue(XYDataSeries ds, StationNode station) String dataType
String getTitle()

String getXLegend()

String getYLegend()

String getHintTemplate()

int getXSeriesType()

int getY SeriesType()

abstract float getXData(StationNode station)

abstract float getY Data(StationNode station)

34

SpeedGraph, FlowGraph, Density, Volume Class

These are classes extending LiveTimelineGraph class. And each class implements ‘getData’
method of LiveTimelineGraph class to return corresponding data.

Method Member

float getData(StationNode station)

QKGraph Class

2

QKGraph class is a class extending LiveXY Graph class. And each class implements ‘getXData
and ‘getYData’ method of LiveXY Graph class to return density and flow data.

Method Member

float getXData(StationNode station)
float getY Data(StationNode station)

4.2 Example On-Line Graphs for Selected Traffic Parameters

The following example graphs show the screen captures of the graphical representations of the
traffic variations up to the current time at the selected detector stations.

5
Freeway II_35 ord TS5 R LI Speed I Flowl Densit\,rl '\.-'Dlurnel Q—KI

S ICD_Rd_42(S?1j - Live Speed Graph

End |T.H.13(5333 =1

Stations

Stop

Figure 4.3. Real-time Graph for Speed Variations through Time

35

Freeway |1—35 and I-25W ME

Start ICD_Rd_42[S?1)

End

Stations

IT.H.13(533j

Co_Rd_42(571)

Skop

RealTime ¥iewer

Speed Flow | Densityl Uolumel Q-Kl

=000
2000
ZE00
2400
Zz0o0
2000
1800
1600
1400
1200
1000

T
I
1
I
1
I
I
|
T
I
1
I
1
I
I
1

Live Flow Graph

L L__L__l__L__1__L

Figure 4.4. Real-time Graph for Flow Rate Variations through Time

Real ne Wiewer

Fraoway

Start

Erd

[i-35 arnd -asw ne =1
[eo_rd_azis7an =1
| =1

Stop

Speed | Flow

a0

&0

o

&0

=0

=0

p=tal

Density | wvalume | 2ok |

Live Density Graph

=
== 1500
0 s7z —-_———
B = Bk =mc =]

Time

00015 003030 000308 00:A000 0040015 090030 09005 00k 00

0SS

Figure 4.5. Real-time Graph for Density Variations through Time

36

Real

=peed| Flow| Density wolume | gok|

Fraswag |1735 and I-2Sw ME =1
Start ICD_REI_42(S71:I = I Live Yolume Graph
End |-|—_H_13(533) vI 52 Melume |- - - b e s e e
. B e e e -= == S 500 |- - -
sisEdens Co_Rd_420SF1) PO SN S N N R S S _ E-s7z |
—m- S22
B e e s et L e e] o — i=E[=1= LN B
0O s3=2
e il R i e - -
=z
22
B i s e e e
01—
RLE
1z 1=
o
Skop
at--
at--

me Yiewer XI

09:20:15 00:E0:E0 00030498 004000 0040015 09:90:=0 00:90:as 0000 09:=1:15

Figure 4.6. Real-time Graph for Volume Variations through Time

Freeway II’SS I E——— ;I Speedl F|DWI Densityl Yolume Q-K I

start [co md_sz(sv1) e | Live K-Q Graph

End [t H.1zcsz2) =] |-

Z200
ZEO0
24900
Zz00
2000
1200
A1G00
1400
1200
1000

=00

S00

Elalul

200

Stations Co_Rd_4Z(S7F1)

Skop

£

F = 2 10 11 12 13 14 15 16 17 18 19 20 21 2F 23 24 25 =6 27 28 29 30

Figure 4.7. Real-time Graph for Flow-Density Relationships through Time

37

5 MICROSCOPIC MODELING A FREEWAY CORRIDOR FOR
EXAMPLE APPLICATION OF ILSS WITH FREEWAY OPERATIONAL
STRATEGIES

5.1 Sample Freeway Corridor

In this chapter, a 9.9 mile section of the I-35W NB corridor from Station 911 to Station 47 is
modeled with Visism as the first application corridor for the IRIS-in-Loop simulation system,
which will be tested in the later stage of this research. Figure 5.1 shows the schematic diagram
of the sample corridor, where a significant amount of congestion happens in the morning peak
hours. Further, this section is equipped with the lane control signals that can also display the
variable speed limits. Figure 5.2 shows the geometry of the sample corridor coded into Vissim.

2 [5t601 [35 Spe02
11 p71 §TO00;572 __fsi ________ s r:ef __________ C
:__E'___E'_____E'___EI_ _______ :ﬁ__ _____________ ﬂ’““““:::::__: ________________ d_ ______ a _______ ~
. NN TN A~ DY //_\T 7/\Y
Co Rd 42 Burnsville Pkwy 46th TH13 EB/_\TH 13 WB Cliff Rd 113t st
(77 f6 p7 381532 fre0s peo o
AR NI S \\//—\v e T
113t st _{109“ st ggthst 94th st goth sr \;;>
[543 s s N o aid
827 st 1-494 EB §7 RN
1-494 EB 1-494 WB

Figure 5.1. Schematic Diagram of the I-35W NB Corridor

38

Figure 5.2. Sample I-35W Corridor Modeled in Vissim
5.2 Modeling and Calibration of Vissim for Sample Freeway Corridor

First the VISSIM model was calibrated with the real traffic data collected from the I-35W
freeway section during weekday morning peak periods. In particular, the parameters affecting
the desired speed distribution, the merging and lane changing behavior of the drivers were
adjusted to produce the simulation results as close to the observed traffic behavior as possible.
Figure 4-3 shows the comparison results between the actual data, collected from the detector
stations from one typical week day in the sample corridor, and the estimated values with the
calibrated Vissim model at the same detector locations for every 5 minute interval from 5:30 a.m.
until 8:30 a.m. As shown in these comparison graphs, the estimation results with Vissim closely
follow the detector data patterns indicating the validity of the calibrated model in reflecting the
actual behavior of the traffic flows in the sample corridor.

39

5000
4000
3000

o
1000

000

4500
4000
3500
3000
2 2500
1500
1000
500

WV S8 AV 0Z:8
WV ST:8 A <ois
NV 50'8 3 .
< WV SS:L B NV 0S:L
= . B
B WV Sb:L E 3 WV S€:L
5| o | Wyses =
£l2 |wvse ~ _ NV 0Z:L
™M WV ST:L N AV S0:L
« Wy 0L & IV 059
c VY SS9 o .
.m AV S¥:9 &= AV S€:9
=) . ©
S WY S€9 b WY 0z:9
s WV SZ:9 :
AV ST:9 Wv 50:9
IV 509 IV 0S'S
IV SS'S AV S
WV St'S
WV 'S 8888 38
n O w1n O o un
o o o o o o < T n o -
o o o o o
o o o o o
B T moN
c
S
WV 028 = WY 0Z:8
S WY 50'8 £ WY 50'8
hma o | wvosy IV 05:L
3 2| wvees NV SEL
n _ _ WY 0z:L ~ Wy 0z:L
o :
) 1 WY SOl IV 50:L
[= .
15 Y 05i9 S IV 059
el) :
® I, ® IV SE9
b A 029) WV 0Z:9
. IV S0:9
IV 509
IV 0SS
IV 0S'S
NV SE'S
IV SE'S

Figure 5.3. Flow Rate Comparison Results
40

simul
ation

Station 33

90
80

WV SZ:8
AV ST:8
NV S0-8
WV SS:L
WV St:L
WV S€:L
WV S¢:L
WV ST:L
NV S0:L
NV SS9
IV St:9
NV S€:9
AV ST:9
AV ST:9
ANV S0:9
NV SS:§
WV St:§
NV S€:§

Strrrart

Station 72

ation

90
80
70

NV S8
AV ST:8
AV S0:8
AV SS:L
NV St:L
NV S€:L
WV S¢:L
AV ST:L
AV S0:L
IV §S:9
AV S¥:9
AV S€:9
AV ST:9
AV ST:9
AV S0:9
AV §S:S
AV S¥:S
AV S€:§

simulation
Hatton

e fie]d

Station 35

NV S¢:8
NV ST:8
AV S0:8
AV SS:L
NV S¥:L
NV S€:L
NV SZ:L
NV ST:L
ANV S0:L
AV SS9
AV Sst:9
NV S€:9
AV S¢:9
AV ST:9
AV S0:9
AV §5:S
AV S7:S
NV GE:S

field

e simulation

Station 32

AV ST:8
AV ST:8
AV S0-8
AV SS:L
WV st:L
AV S€:L
WV S¢:L
WV ST:L
AV S0:L
AV SS9
AV St:9
NV S€:9
IV S¢:9
AV ST:9
AV S0:9
AV SS:S
AV St:§
AV S€:§

Figure 5.4. Speed Comparison Results
41

6 DEVELOPMENT AND EVALUATION OF VARIABLE SPEED
LIMIT CONTROL STRATEGY

6.1 Overview of the Variable Speed Limit Control Approach

The Variable Speed Limit (VSL) control algorithm developed in this study tries to mitigate the
shock waves propagated from downstream bottlenecks by gradually reducing the speed levels of
the incoming traffic flows. Figure 6.1 illustrates a simplified structure of the VSL approach in
determining advisory speed limits. Let B be the downstream bottleneck point where a shock
wave starts to propagate backward at the speed of S, at t=0. Further, a vehicle departs from the
point A at t=0 and meets the shock wave at C after time t. If we assume us and ug remain same
until the vehicle reaches the point B, the travel time of the vehicle from A to B, Ty, can be
expressed as follows:

Tw=Sy* t/ ug + (Lc-Sy*t)/us = [Lc (up+Syw)]/[ug®(ua+Sw)],
where, t = Lo/(ua+Sy), L. = distance between A and B

Suppose the speed of a vehicle can be reduced from ua to ug with a constant deceleration rate agq,
then the travel time between A and B, T, is

Ta = 2*Lc/(uA+uB) = (uA-uB)/ad
where, ag =(us’-ug®)/(2*L.)

If the value of Lc, the speed control zone length, can be predetermined as an operational policy
parameter, then the constant deceleration rate a4 that can make T, = T, can be derived as a
function of us and Sy, i..e,

ag = [up (ua-up)(ua+Sy)]/[Lc*(upt+Sw)], where, ua > ug

th
66 St

1
1
9 _| |
11 i

Figure 6.1. A Simplified Structure of Speed Reduction Approach

42

Figure 6.2 shows the variations of aq with respect to the different speed levels of upstream flows
and the shock waves when the speed control section length, L, is fixed at 1.5 miles. As noted in
this figure the deceleration rates show relatively small variations for different speed levels of
incoming traffic flows and the shock waves, indicating the possibility of adopting a constant
deceleration rate in determining the VSL values for a given control zone and free flow speed. In
the current VSL algorithm, a constant deceleration rate is used to determine the advisory speed
limit values for each control zone, whose maximum length is set to 1.5 miles. Figure 6.3 shows
the major steps of the current VSL algorithm, which first identifies the VSL starting locations for
a given corridor by examining the traffic condition of each detector station, i.e., current speed
level and deceleration patterns of incoming flows. Once the VSL starting locations are identified,
the speed zone boundary is determined for each VSL starting point and the advisory speed limit
values are calculated for each VSL sign in a control zone. The above process is repeated every
30 seconds.

Variation of a, for Upstream Flow and Shock Wave Speed Levels

1600
:g 1400 — U=75
3 1200 +—— S U=70
s - o, ——U=65
< 1000 —
g —U:6O
g 800 |
‘g U=55
L 600 U=50
(%]
8 400

200
0 T T 1
0 5 10 15
Shock Wave Speed from Downstream (mile/hr)

Figure 6.2. Variations of Deceleration Rates with Respect to the Speeds of Upstream Flows
and Shockwaves

43

@ Detector station
O vsL sign

| i

Determine Advisory speed limits of each VSL
sign in a control zone using a fixed deceleration
rate and the distance between each sign and VSL
starting station.

Collect Traffic Data (speed, density) from
all the detector stations (every 30 seconds)

A 4

Estimate deceleration/acceleration rate, a, Identify VSL starting stations and the boundary
of each flow between two detector stations - of each speed control zone, i.e., the detector
using speed levels and distance, L, i.e., 7| stations upstream of each VSL starting station,
a=(u2-u?)/(2*L) using pre-determined thresholds

Figure 6.3. Variable Speed Limit Control Process
6.2 Identification of VSL Starting Locations

Accurate and timely determination of the VSL starting locations is an essential element for an
effective mitigation of shock waves. In the current Minnesota VSL approach, a mainline
detector station, 1, on a given freeway can become a VSL starting station depending on its current
speed level, ui, and the deceleration rate, a;;, of the flow coming into the station, i.e.,

2 2
it = (ui+l,t — Uit)/(2*L)
where, u;;and uiy; = speed levels at time t for downstream and upstream detector station,
L = distance between two stations.

To determine appropriate threshold values in determining VSL starting conditions, the traffic
conditions just prior to crash incidents on the [-35W corridor were examined in this study.
Figure 6.4 shows the flow deceleration rates and downstream station speed levels for a total of
20 incidents occurred in the I-35W VSL corridor during a 3 month period from September 2009
until December 2009. It needs to be noted that the I-35W corridor currently has a static speed
limit of 65 mile/hr. As shown in Figure 4, 55% of crashes during this period happened when the
downstream station speed was below 55 mile/hr and the deceleration rate below -1500 mile/hr”
(0.42 mile/hr/sec). Based on these results, it is determined that a detector station 1 becomes a
VSL starting point when the following conditions are satisfied:

Uiy <55 mile/hr and aj¢r1 12 <=-1500 mile/hr?

The second condition, requiring the deceleration rates below the threshold for 3 consecutive time
intervals, is to prevent the system instability because of random fluctuations in traffic flows.
However, to respond to the rapidly propagating congestion, any station upstream and immediate

44

downstream of the previous VSL starting point can become a starting station if the deceleration
rate threshold is satisfied for one time interval, i.e., station j upstream of the previous starting
station at t-1becomes a VSL starting point at t when

;< 55 mile/hr and aj; <= -1500 mile/hr” if u,,>= 55 mile/hr and a, ;> -1500 mile/hr?,

where k denotes all the stations between previous starting station and j.

Decceleration/Acceleration Rates of Flows between Two Detector

g 1000 . Stations prior to Incidents (September-December, 2009, I-35W)
]

< 500

2 0 o % ‘: .

S = -500 @ 2 2 ‘ 6 A 1o
2 = -1000

S o -1500 + - .

<E 2000 + I

c

o~ -2500 'S

© -3000 Q“

g 3500

S -4000

8 -500 "o

Speed levels of detector station, u, ,, downstream of crash location
prior to incidents (mile/hr)

&t N o Yit
k s >[a, = (u;%-u,?)/(2*L)

Figure 6.4. Deceleration/Acceleration Rates of the Flows Prior to Incidents on I-35W
6.3 Determination of Speed Control Zones and Advisory Speed Limits

Once a VSL starting station is identified, the next step is to determine a speed control zone where
the advisory speed limits are posted to mitigate the shock waves propagating from the
downstream starting station. The current VSL algorithm determines a control zone boundary by
using the estimated flow deceleration rates between the starting station and each upstream
detector station. Figure 6.5 shows the current zone structure for a starting station, i. L.e., the
speed control zone for the station i includes all the upstream stations satisfying the following
condition:

aij, t <= QAzone_threshold
2 2
where, a;j; = (uj;-ui;)/(2*L;), Lj; = distance between station 1 and j

After the speed control zone is determined for a starting station i, the advisory speed limit values
for all the VSL signs are calculated as follows:

_ 2 12
Sit= (Ui —2%a_vsL threshola™Lisj)

where, S;;= VSL for sign j in the control zone with the starting station 1,

45

Lisj= distance between starting station i and VSL sign j

In the current algorithm implemented for the I-35W corridor, -1000 mile/hr* (0.28 mile/hr/sec) is
used for both Azone_threshold and a_VSL_threshold-

4 u <«—— Traffic

@ Detector
O Station

Figure 6.5. Speed Control Zone and VSL Determination
6.4 Assessment of VSL Control Strategy with Microscopic Simulation

Next, an external module that emulates the VSL algorithm was developed with the COM
interface and the proposed VSL system was simulated with the average weekday morning traffic
demand for the sample I-35W northbound corridor. To assess the performance of the VSL
system, the deceleration rates between two detector stations in the corridor were estimated every
30 seconds using the simulated detector data and the maximum deceleration value for each 30
second interval was identified. The maximum deceleration rates for each 30 second interval
were averaged for the entire simulation period, resulting in average maximum deceleration rate
for a simulation case. Further, the travel time from the upstream boundary to downstream end
was also estimated for every 30 second interval and averaged for the whole simulation period.
Both non-VSL and VSL cases were simulated with 10 random seeds and their results were
compared. Table 6.1 includes the average maximum deceleration rates and travel time values
during the same time periods during which the VSL control was activated. For this simulation
analysis, it was assumed that 50% of the drivers in the corridor would comply with the variable
advisory speed limits. As shown in Table 1, the VSL algorithm has resulted in 15-48% reduction
of the average maximum deceleration rate compared to the non-VSL cases, while the travel time
increases ranged from 3-15%. Table 6.2 shows the simulation results involving an incident,
which was modeled as a temporary bus stop in the center lane near the 494 freeway interchange
for a 17 minute period starting at the 77" minute of the simulation. In both cases, the VSL
algorithm has shown similar patterns in terms of reducing the maximum deceleration rates with
the relatively small increases in travel times.

46

Table 6.1. VSL Evaluation Results with Normal Traffic Flows (for a 3-hour Peak Period)

Random Avg Max Deceleration (mile/hr”) Travel Time (min)

Seed Non-VSL | VSL % Non-VSL | VSL %
11 -3756.0 -2782.9 -25.9 13.2 14.3 8.1
12 -3392.3 -2855.1 -15.8 12.7 13.8 8.2
13 -3300.8 -2816.0 -14.7 12.4 13.1 6.1
14 -3294.1 -2676.6 -18.7 13.2 13.5 2.2
15 -4611.8 -2760.2 -40.1 12.7 14.3 12.3
16 -4447.8 -2871.9 -35.4 12.7 13.8 8.4
17 -4383.0 -2678.3 -38.9 14.1 15.2 7.8
18 -3912.6 -2827.7 -27.7 13.6 15.1 11.0
19 -5265.2 -2702.6 -48.7 13.4 15.4 14.9
20 -4064.7 -2747.5 -32.4 14.2 14.7 2.9

Table 6.2. VSL Evaluation Results with an Incident (for a 3-hour Peak Period)

Random Avg Max Deceleration (mile/hr”) Travel Time (min)

Seed Non-VSL | VSL % Non-VSL | VSL %
11 -4049.7 -2986.1 -26.3 15.2 17.0 12.1
12 -3695.7 -2885.3 -21.9 15.4 16.3 5.9
13 -3563.7 -3013.2 -15.4 14.1 15.7 11.2
14 -3659.9 -2796.8 -23.6 14.9 15.8 6.2
15 -4677.1 -2759.6 -41.0 14.6 15.7 7.8
16 -4600.5 -2906.6 -36.8 14.5 15.7 8.5
17 -4875.3 -2981.3 -38.8 15.8 16.8 6.1
18 -4392.6 -3031.7 -31.0 16.5 17.7 7.3
19 -5109.7 -2804.7 -45.1 14.9 17.2 14.9
20 -4658.7 -2975.9 -36.1 15.6 17.1 10.0

47

7 DEVELOPMENT AND TESTING OF NEW RAMP METERING
ALGORITHM

7.1 Overview of New Ramp Metering Strategy

In this task, a new ramp metering strategy is developed and tested with a microscopic simulation
model. The new algorithm is designed to specifically address the issues with the conventional
‘capacity-based’ ramp metering methods, e.g., the difficulties in estimating bottleneck capacity
values that are affected by various factors, including weather and traffic conditions. Further, the
inherent fixed zone-structures associated with the capacity-based metering may not be able to
deal with the dynamically changing freeway conditions with time-variant bottlenecks, such as
incidents. The new strategy developed in this study is based on a ‘segment density’ and adopts
an implicit coordination approach in determining the rates of each meter to manage the flows at
bottlenecks. Further, the bottlenecks in a given corridor are identified in real time with the
estimates of traffic density at each detector station and a metering zone is determined for each
bottleneck every 30 seconds. The metering rate of each entrance ramp within a zone is
calculated with the density of a ‘mainline segment’, which is dynamically assigned to each meter
in real time depending on the location of the controlling bottleneck. A feedback control rule is
also developed to determine the rate of each meter as a function of the difference between the
current mainline segment density and its desired target value. In particular, to reflect the wait
time and maximum queue length restrictions at each entrance ramp, the minimum metering rates
are explicitly calculated for each entrance ramp in real time with the current traffic/ramp
conditions and incorporated into the dynamic feedback control rule. The framework of the new
process is as follows:

Specify Metering Parameters, e.g., Target Density,

v

Collect Density Data for Each Detector Station

\

Identify Bottlenecks and Metering Zone for Each Bottleneck

\’

Determine Minimum/Maximum Rates for Each Meter

v

Estimate Segment Density for Each Meter

v

Determine Rate for Each Meter

Figure 7.1. New Metering Process

48

The above process is repeated every 30 seconds during the ramp metering period. The rest of
this report summarizes the detailed procedure of each step.

7.2 Identification of Bottlenecks

Density
A
I<_hre old
I I I | I I Traffic
Direction

St1 2 3 4 5 6 7 89101112131415161718192021'

Figure 7.2. An Example Identification of Bottlenecks

The bottleneck identification procedure developed in this research aims to find the ‘active and
dominant’ bottlenecks for a given corridor in real time by using the traffic density estimates for
each detector station and the speed acceleration values between two consecutive stations. The
procedure consists of two steps:

Step 1: Identification of the preliminary bottlenecks

First, using the 30-second density estimates from all the mainline detector stations for a given
corridor, any station i that satisfies the following conditions are selected as the preliminary
bottlenecks (PB).

Kit>= Kinresthold and satisfying any of the following three conditions:
K> Kiw1 > Ko i.e., the density of station i has been continuously increasing from t-2,
Or, Kit, Kit1 , Kita >= Kinreshold 1.€., continuously above the threshold value during last two
intervals,
Or, Station 1 was a bottleneck at t-1.

Step 2: ldentification of Dominant Bottlenecks for Metering

At this step, each preliminary bottleneck station identified at Step 1 is examined in terms of its
relationship with the immediate upstream/downstream stations and the stations satisfying the
following conditions becomes the dominant bottlenecks (DB), which would be the main targets
of the metering operation.

1) The first downstream preliminary bottleneck (PB) automatically becomes a DB.
2) From the first PB station j,
Up to two upstream stations, j-1, j-2,
Station j-1 becomes a DB if K > K and Aj.ij.i-1 1 >= Athreshold

49

where, Aj.ij.i.1 = speed acceleration between station j-1 and j-1-1 during the interval t,
Atnreshold = acceleration threshold.
From 3™ upstream station, j-3,
Station j-3 becomes a DB if Aj3.¢>= Ashreshold
Else go to the next upstream PB.

The above process is to identify the location of the controlling bottleneck from the stations with
similar level of congestion. Multiple dominant bottlenecks can be identified in a given corridor
at a same time interval.

7.3 Determination of Metering Rates for Entrance Ramps Controlled by Each
Bottleneck

Once the main bottlenecks are identified for a given corridor, the metering rates of all the meters
between two consecutive bottlenecks are determined such a way that the traffic density level at
the downstream bottleneck can be as close to the desired value as possible. In this research, a
traffic-responsive metering approach with an implicit coordination scheme is developed. The
new approach first determines a metering zone for each dominant bottleneck identified from the
previous step and calculates the rates of each meter within the metering zone using the traffic
density of the ‘mainline segment’ associated with each meter in relation to the dominant
bottleneck. Figure 7.3 illustrates the configuration of the ‘density segments’ of the ramp
meters that are associated with the downstream bottleneck Station i.

le Si-

[
»

[
»

Sl Stih St i- Sti-1 - A] l R
T
NN N s

ti
Figure 7.3. “Density Segment” Configuration for Each Meter between Two Dominant
Bottlenecks

Mi-2

As indicated in the figure, the density segment for a meter i-k is defined as the mainline section
between the station i-k and the dominant bottleneck station i. Finally the rate of the meter i-k for
a time interval t, Rix4, is calculated as follows:

Rik 1= Ricke + Rickt (0o — 1)

In the above equation, aiyis the on-line adjustment factor for the meter i-k and tries to
determine the metering rate for the next time interval such a way that the new rate can make the
traffic density of a given mainline segment be closer to the desired value. Specifically it is
determined through time as a function of the current and desired traffic density values within its
minimum and maximum boundaries, i.e.,

50

[Ri-k,min,/Rickt] <= skt = [Rick max,¢/Rik.(]
where,
Rik min,t = Minimum rate for the meter i-k for time t,
Rik, maxt = Maximum rate for the meter i-k for time t.

Let Kiy(= Average traffic density for the segment between the bottleneck Station i and the
Station i-k

during time interval t,
Ki.xa= Desired traffic density for the segment between the station i and i-k,

Figure 7.3.2 shows the process to determine aix; as a function of the difference between the
desired and current values of a given segment. In Figure 7.3.2, the segment density, Ky, 1s
calculated as an weighted average of all the station densities between station i and i-k, i.e.,

Kixi=2 [(kiji/3) + (ki + Kijr1,0/6 + (Kije1,¢/ 3)]*Lisjici+1 /Lik
where, Li.x ;= Distance between stations i-k and 1.

The above procedure tries to improve the mainline segment density by implicitly coordinating
the multiple ramps affected by a same bottleneck, while the current restrictions on maximum
wait time limit are explicitly incorporated into the metering rate calculation process.

51

If Ri mint/Rix <= 1.0,

Rik max /Rik t '
|
1.0 |

Rikmin/Rik,t

. (Kika— Kixy)
Kixa— Kjam 0 Ki.

K <Kixag @ s = [(Kid- Kis)/Kikd] (Risk max,/Rie— 1.0) + 1.0
Else @ aixe = 1- [(Kixa- Kis)/(Kixa—Kjam)][1 - (Rix min/Rix,)]

When Riy mint/Rixe> 1.0, 0.k has the following relationship and calculated as follows:

Ri-k max t/ Ri-k t

Ri-k,min,t/ Ri-k,t

. : ' (Kika— Kik,)

If Ki < Kika © ikt = [(Kika- Kik)/ Kiokd] (Rick max,t/Rickt = Rickmin,t/Rick 1) + Rk min,t/Rick ¢
Else : ikt = Rikmint/Riks

Figure 7.4. Functional Relationship and Calculation Procedure of ai-k,t

52

Determination of Minimum and Maximum Metering Rates: Rik mint @nd Ri maxt

The maximum metering rate for a given ramp i-k is governed by the shortest red time interval
determined by the traffic engineer within the limitations of the controller hardware. l.e.,

Rixmaxt = 3600/[Min_Red + (G+Y)] =3600/(Min_Red + 2)

The minimum metering rate for each ramp is determined by considering the projected waiting
time. The waiting time at each ramp can be estimated with a simple queuing diagram with the
cumulative volumes entering and exiting a given ramp:

Case 1: Estimated Current Wait Time >= Maximum Allowed Wait Time

Figure 7.5 shows the process to estimate the current wait time in the queuing diagram with the
cumulative volumes entering and exiting a given ramp. As indicated in this figure, the wait time
for the current and next time interval, W; and W, can be estimated as the lengths of the
horizontal lines in the queuing diagram. If W; > Wy,,«, maximum allowed wait time, then the
minimum metering rate that can satisfy the maximum estimated wait time restriction can be
determined as follows:

Rikmin,t (Veh/hr) = [I(t—B) — Ot]* 120

where, I; and O; = cumulative 30-second volumes entering and exiting a ramp.

B=Wmax *2-1:
(e.g. B =7, 1f max waiting time is 4min and the data collection interval is 30
of Vehicles)
Rmin,t+1
N

t t+l

Figure 7.5. Queuing Diagram for Estimating the Minimum Metering Rate
Case 2: Estimated Current Wait Time < Maximum Allowed Wait Time

In this case, the minimum rate can be set as the allowable minimum rate considering the
maximum red time set for each meter.

Rimine= 3600 /(Max_Red + G +Y) = 3600 / (Max_Red +2)

53

where Max_Red = maximum red time limit set in the controller.

Metering Rates for Special Case

) Sti
St j k St i- St i-1

N7 N N NTw

Mi-k Mi-2

Figure 7.6. Special Cases

Meter located right after a bottleneck, e.g., Mj

The rate for the meter located right after a bottleneck station, e.g., Mj, is determined with the
density of the bottleneck station, e.g., j, as shown in the above figure, using the same procedure
described above.

Meters with no controlling bottleneck e.g., Mi — Mi-k

In this case, the rate of each meter is determined with the density of the station associated with
each meter by using the same procedure. This requires each meter needs to have one associated
mainline detector station.

Meter Turn-On and Off Process
Meter Turn-On Process

In the new metering algorithm, the metering can start after a dominant bottleneck is identified.
However, the metering start time of each meter can vary depending on the mainline segment
density and the amount of the merging flow rate for a given entrance ramp. Specifically, after a
first dominant bottleneck is identified, any meter within the metering zone of the bottleneck can
start metering when one the following two conditions is met:

1) Meter j starts if q;; > (B * R;) for n time intervals after a bottleneck is identified.
Where, t = the time when a bottleneck is identified,
q;, = measured merging flow rate from the ramp j during t interval,
R; = calculated metering rate with the mainline segment density,
B = adjustment factor.
In the current prototype algorithm, n=3 and B = 0.8 are used for the first time start.
(n =10 for ‘re-starting’ after stopped.)

2) Meter j starts if Kj; > Knreshold start fOr m intervals after a bottleneck is identified.
Where, K; = mainline segment density associated with Meter j,
Kitreshold start = Segment Density Threshold for Meter Turn On.
In the current prototype algorithm, m = 1, and Kinreshold start = 25 veh/mile are used.
(m=10 for ‘re-starting’ after stopped.)

54

Meter Turn-Off Process
Case 1: Meters downstream of the last bottleneck, i.e., no further downstream bottleneck

For a meter downstream of the last bottleneck, if all of the following 3 conditions are satisfied
for n time intervals: (the metering rate, Ri,t, for the ramp 1 is calculated with the local segment
density).

1) qit<Rj, 2) Kii<Ky 3) No new bottleneck downstream of the ramp i
Current prototype algorithm: n = 5 minutes.
Case 2: For the ramps upstream of a bottleneck : when only one bottleneck is left.

The turn-off process is activated for the ramps located upstream of the last bottlenck when the
average density of the entire segment upstream of the last bottleneck continuously decreases or
does not increase for the last n time intervals, i.e,.

K< < < < Ky, and only one bottleneck is left,

where K¢ = 15 min moving average of the weighted average density for the segment
between the last bottleneck and the most upstream station in a given corridor at t-i time interval.

The turn-off process consists of two steps:

Step 1: Change the bottleneck threshold density: 1i.e, for a station to become a preliminary
bottleneck, the station density needs to be greater than Kinreshold afier fOr n previous intervals.
Currently Kinreshold afier = 32 veh/mile, and n=2 minutes are used.

Step 2: Check each ramp upstream of the bottleneck: the ramp i upstream of the bottleneck can
stop metering if the following two conditions are met:

1) qgi;<Ri;and 2)Kj, Kj1, ----- Kiwn< Kqg

where, gi = measured merging flow rate of ramp i, at t,
Ri¢= caculated metering rate for ramp 1 at t,
K x = Segment density for ramp 1 at t-k,
K4 = desired density
Currently n=5 minutes, and K4 = 0.8 * critical density
Metering restart condtion
The new algorithm allows for a meter j to restart metering under the following conditions:

Kt > Kinreshold afier and qjc > (B * R;;) for n time intervals. Currently n=5 minutes, and 3 = 0.8.

The above condition is more restrictive than the requirements in the initial turn-on process to
avoid unncessary metering from the random fluctuations in the traffic flow.

55

7.4 Incorporation of the New Algorithm into IRIS

The new algorithm developed in this chapter is coded with the Java language and incorporated
into the current version of IRIS. Figure 7.7 shows the interrelationship of the main classes,
whose functionalities are as follows (The detailed procedure to incoporate the new module into
IRIS is described in Appendix).

KbasedAdaptive PlanState

: Main algorithm class — operates the metering algorithm at ‘processInterval()’ for a corridor.
CorridorHelper

: Inner class — manages corridor structures, e.g., station and entrance lists, and calculates segment
density between two stations.

BottleneckFinder

: Inner class — identifies bottleneck stations.

StationState

: Inner class — gets station traffic data, identifies stations associated with each meter and manages
the states of each station including bottleneck history.

EntranceState

: Inner class — calculates minimum rates of all the meters, operates turn-on/off process, manages
the states of all the entrances including metering rate, demand and traffic flow history.

KbasedAdaptivePlanState

BottleneckFinder CorridorHelper

U. StationState u EntranceState

Stationlmpl MeterState

RampMeterimpl

Figure 7.7. Main Classes and Overall Structure of the New Metering Module in IRIS

56

7.5 Evaluation of the New Algorithm using IRIS-in-Loop Simulation System

The metering algorithm developed in this research is evaluated with the IRIS-in-Loop simulation
system, which has been equipped with the new metering module as described in the previous
section. Two real freeway sections from the [-35W NB (S71 -> S34) and the 169 SB (S750 ->
S469) are used as the sample freeways. Figure 7.8 & 2 show those freeway sections modeled in
this study with Vissim. For [-35W NB section, an average weekday 5-min flow rates collected
in 2008 from the detector stations on the mainline and ramps were used as the demand data. For
the 169 SB section, the data from April 7, 2011, were used. For both sections, a morning peak
period from 6:00-9:00 a.m. was selected as the evaluation period. For each demand set, different
random seeds were tried with lower/higher demand patterns to see the effectiveness of the
proposed algorithm under the various traffic conditions. Further, for each demand set, no-
metering and the current IRIS metering algorithms were also simulated using the IRIS-in-Loop
simulation system. The rest of this section summarizes the performance of the proposed
algorithm compared with those from the no-metering and current IRIS algorithm.

1 ¥ISSIM 5.20-06 - D:W...ationWIR1S-Simulation Framework W C I [[3
¢ Fle Edt Yiew BaseData Trafic Signal Control Evaluation Simulstion Presentation Test Seripts Help
RRRRE.RRAS. IR0 PN,
i
)
£
1
&
>
4
]
ot
L
i
)
&)
V
s -
v
8
o7
Pz
& 4
[11]
B 4
A i
P
X
1
4 J o
[s142.0:2036.9 I I | 4

Figure 7.8. I-35W NB in Vissim

57

[YISSIM 5.20-06 - d:W...ationWiris-simulation framework W case file W169sb ¥ 1695binp

ad

Figure 7.9. 169 SB in Vissim
Simulation Results of the New Algorithm on I-35W NB

Table 7.1 summarizes the simulation results of the 3 cases with the different random seeds, i.e.,
no-metering, current IRIS metering and the new proposed algorithm, using the I-35W NB test
section under the following conditions:

Normal Demand (weekday average 6:00-9:00 a.m.)

Desired Density = 32 veh/miles, (80 % of Critical Density = 40 veh/mile)

Maximum Ramp Wait Time = 4 min. (normal ramp), 2 min (freeway to freeway ramp)
Jam Density = 160 veh/mile

58

Table 7.1. Summary Simulation Results with I-35W NB Test Section

No Current Proposed
Metering Metering Algorithm
Vehicle Miles Traveled
Radom Seed 12 87835.2 87582.0 87608.0
Radom Seed 13 87608.7 87535.9 87731.6
Radom Seed 14 87322.9 87376.7 87373.4
Radom Seed 15 88217.0 87991.2 87900.4
Delayed Vehicle Hours
Radom Seed 12 294.2 238.6 209.6
Radom Seed 13 238.9 218.3 197.4
Radom Seed 14 264.4 233.8 210.2
Radom Seed 15 309.6 276.2 209.6
Lost Vehicle Miles
Traveled
Radom Seed 12 3928.0 2892.8 3026.3
Radom Seed 13 3305.4 2995.5 2734.8
Radom Seed 14 3430.4 3144.7 2997.9
Radom Seed 15 4195.9 3563.6 2770.0
Average Travel Time
(min)
Radom Seed 12 9.9 9.5 9.2
Radom Seed 13 94 9.3 9.1
Radom Seed 14 9.6 9.4 9.2
Radom Seed 15 9.9 9.7 9.2

As indicated in the above table, the new proposed algorithm resulted in significant reduction of
the congestion, i.e., in terms of the delayed vehicle hours and lost vehicle miles traveled,
compared to the no-metering and the current metering method options, while maintaining the
compatible values of the vehicle miles traveled for each simulation case. The examination of the
speed contours also indicates that the new algorithm delayed the onset of the congestion and
reduced the spill-back at the major bottleneck in the test section. The speed contours for each
simulation case are included in the Appendix.

Simulation Results of the New Algorithm on 169 SB

Table 7.2 summarizes the simulation results of the 3 cases with the different random seeds, i.e.,
no-metering, current IRIS metering and the new proposed algorithm, using the 169 SB test
section under the same conditions as the I-35W test section:

Normal Demand (weekday average 6:00-9:00 a.m.)
Desired Density = 32 veh/miles, (80 % of Critical Density = 40 veh/mile)
Maximum Ramp Wait Time = 4 min. (normal ramp), 2 min (freeway to freeway ramp)

59

Jam Density = 160 veh/mile

Table 7.2. Summary Simulation Results with 169 SB Test Section

No Current Proposed

Metering | Metering | Algorithm
Vehicle Miles Traveled
Radom Seed 10 131024.2 | 130478.6 | 130534.9
Radom Seed 11 131184.3 | 130858.1 | 130433.2
Radom Seed 12 131679.0 | 131372.4 | 131942.9
Radom Seed 13 131780.1 | 131930.3 | 132115.5
Delayed Vehicle Hours
Radom Seed 10 256.7 199.0 170.8
Radom Seed 11 272.1 217.1 202.9
Radom Seed 12 316.0 287.6 229.1
Radom Seed 13 263.5 277.4 219.1
Lost Vehicle Miles
Traveled
Radom Seed 10 3497.6 2775.5 2529.6
Radom Seed 11 3980.8 3093.4 2704.1
Radom Seed 12 4570.9 4434.3 3431.0
Radom Seed 13 3749.9 3903.3 3099.3
Average Travel Time (min)
Radom Seed 10 19.0 18.5 18.3
Radom Seed 11 19.0 18.7 18.5
Radom Seed 12 19.5 19.2 18.8
Radom Seed 13 19.0 19.2 18.7

As indicated in the above table, the proposed algorithm showed significant reduction of the
delayed vehicle hours and lost vehicle miles traveled because of congestion, while maintaining
similar or slightly higher values of the total vehicle miles traveled than the current metering
method. The speed contours also show that, compared to the current metering method, the
proposed metering scheme resulted in the reduced congestion level throughout the test corridor,
which includes multiple bottlenecks because of the relatively short ramp-to-ramp distances. The
speed contours of the 169 SB test cases are also included in the Appendix.

60

8 CONCLUSIONS

This research produced several important tools that are essential in managing and operating
freeway corridors. First, an off-line process and a computer program were developed to
automatically estimate the performance of a given freeway corridor for selected time periods
using the data collected from the existing detectors on the field. Further, a set of traffic measures
were developed and incorporated into the software, called TICAS (Traffic Information and
Condition Analysis System), whose built-in contour module provides a graphical overview of the
traffic parameter variation process through time and space. Using the contour module, the
location of bottlenecks and their effects can be easily identified for a given corridor during the
selected time periods. Secondly, an on-line process was developed to estimate the selected
performance measures using the current day traffic data in real time. The on-line process was
designed to assist traffic operators in monitoring the current day traffic trends and identifying
any abnormal patterns.

Third, an integrated simulation system was developed by combining IRIS, the freeway traffic
control system developed by MnDOT, and the Vissim microscopic simulation software, so that
new operational strategies can be directly coded into IRIS and evaluated under the simulated
environment. The resulting IRIS-in-Loop Simulation System (ILSS) makes it possible to develop
realistic operational strategies that can directly work under the current freeway operational
environment. The ILSS was applied to assess two new operational strategies developed in this
study: Variable Advisory Speed Limit Control and Density-based Adaptive Metering Strategies.
The new variable advisory speed limit control strategy is designed to mitigate the shock waves
propagated from downstream bottlenecks by gradually reducing the speed levels of the incoming
traffic flows. The algorithm first identifies the locations of the bottlenecks and the VSL control
zones by examining the flow deceleration rates between two detector stations in a given corridor.
The advisory speed limits for each control zone are calculated with a constant deceleration rate,
which has been determined to result in minimum increases in travel times. The relatively simple
procedures of the proposed VSL approach, which determines bottleneck locations and advisory
speed limit values with the data from the existing loop detectors, can be easily transferrable to
most operational environments. The preliminary evaluation results with microscopic simulation
indicate that the proposed VSL system could significantly reduce the sudden deceleration rates
of the traffic flows reacting to fixed or moving bottlenecks, while the increases in travel times
can be kept relatively small. The variable speed limit control strategy has been implemented at
the [-35W corridor in July 2010 and the detailed analysis of the field data will be conducted in a
subsequent phase of this research.

Finally, an alternative ramp metering algorithm was developed and evaluated with ILSS. The
new algorithm identifies bottlenecks for a given corridor every 30 seconds and determines the
metering rates for each entrance ramp with the estimated mainline ‘segment density’. Further,
the ramp wait time restriction is explicitly incorporated into the metering rate calculation. The
new algorithm was simulated with ILSS using two real corridors, I-35W NB and 169 SB, and its
performance was compared with those from the current IRIS metering control and No-metering
cases. The simulation results indicate substantial improvements over the existing control method
in terms of reducing congestion, such as delayed vehicle hours and lost vehicle miles traveled,
while achieving the similar levels of vehicle miles traveled.

61

Future research needs include the field testing of the proposed ramp metering strategy on a
selected corridor. Further, the variable speed limit control algorithm can be enhanced to reflect
different weather conditions and also to reduce the bottleneck identification time. The
development of the on-line prediction capability for the traffic flow parameters by extending the
current on/off-line estimation process is also recommended as the major step toward proactive
traffic management.

62

REFERENCES

1. MnDOT, Intelligent Roadway Information System (IRIS) User Manual, Regional
Transportation Management Center, Minnesota Department of Transportation, St. Paul, MN,
2008.

2. Kwon, E., Ambadipudi, R. and Bieniek, J. “Adaptive Coordination of Ramp Meter and
Intersection Signal for Balanced Management of a Freeway Corridor”, Compendium of
Papers, 2005 Annual Transportation Research Board Meeting, Washington, D.C., January
2005.

3. Kwon, E., Nanduri, S., Lau, R. and Aswegan, J., “Comparative analysis of operational
algorithms for coordinated ramp metering”, Transportation Research Record, 1748, pp.
144-152, 2001.

4. PTV, Vissim 5.3 User Manual, 2011.

63

APPENDIX A. PROCESS TO INCORPORATE NEW METERING
ALGORITHM INTO IRIS

Step 1: Add ‘KbasedAdaptivePlanState.java’ to ‘us.mn.state.dot.tms.server’ package

Step 2: Edit ‘us.mn.state.dot.tms.server.SampleQuery30SecJob’

176 E] " Validate all cCiming plans

177 provecred void validateTimingPlans () {

178 % TimingPlanHelper .rfindinew Checker<TimingPlan> () {
Qi - public boolean check (TimingPlan p) {

180 TimingPlanImpl plan = (TimingPlanImpl) p:
181 plan.validace ()

182 recturn false:

183 H

184)z

185 ScracifiedPlanState. processAllStates ()

186

187 i NATSRL

188 EKbhasedidaptivePlanState . processAllStates() 2

189

190 [= RampMeterHelper.find(new Checker<RampMeter> () {
Q‘lg public boolean check (RampMeter m) {

192 RampMeterImpl meter = (RampMeterImpl)m:
193 meter . updacteRaceP lanned () -

194 recturn false:

195 - ¥

196 - X))z

197 - ¥

Step 3: Add timing plan type to ‘iris.timing_plan_type’ table on DB

id description

[PK] integer character varying(32)
1 o Travel Time
2 1 Simple Metering
3 2 Stratified Meterinu
4 3 KBasedAdaptive
- []

Step 4: Add timing plan type to “‘us.mn.state.dot.tms.TimingPlanType’

=4 pulnlic =snitun TimdangPlanType E

=5

26 [[=1 SAFF Inr=mlid tirmdng plan [wa=s Tr=awel Time) L
=7 FIVAL TR (T Ircrsl ity

=5

=29 [[=1 S Sdmple metcering plsn YL

=0 SrrMprs (T"Sdmple Metermdrnnog™) oo

=1

3z =1 SFF Sroratified metering plasmnm T

=5 STYRATIFIED (TStratifiecd Meteritnucr ™1

S

35 =1 SFF MATSRL metcering plasrmn w5

55 F_SASED ADRArTIVE [(THEo-lhasseod LAdsptiwve HMetesrinmog™) f
=7

Step 5: Add routine for creating timing plan and looking up method to
‘us.mn.state.dot.tms.server.TimingPlanimpl’

340 [/*#% Create the ciming plan scate *#/

341 |3 protected TimingPlanState createState() { 387

34z switeh (TimingPlanType. fromOrdinal (plan_typel) { 368 /4 WATSRL

343 case STMPLE: 369 = /7% Lookup or creste a stratified plan state ¥/

344 return new SimplePlanState(): 170 protected TimingPlanState lookupOrCreateKbasedAdaptive () {

345 case STRATIFIED: 371 Device d = device:

346 return lookupOrcreateStratified(): 372 if(d instanceof RempMeterImpl] (

B A/ - 373 RewpleterImpl meter = (RewpleterImpl)d:

a2 case X BASED ADAPTIVE: 374 Corridor o = meter.getCorridor();

349 return lockupOrCreateRbasedidaptive ()

350 375 if{e !'= null))
351 default: 376 return KhasedAdaptivePlandtate. lookupCorrider(c);
352 return null; i }

353 H 378 return null;

354 L i 373 ¥

APPENDIX B. SPEED CONTOURS FROM SIMULATION RESULTS

[-35W NB (Random Seed=12)

No Metering Current Metering New Metering

1-35W NE [201112010600-201112010858] 1350 N [201111300600-201111300859)

135V NB [201198260600-201108260858]

Random Seed = 13

FISHNG 0118RE0601201108260859)

Random Seed = 14
) |30 NE: [201111300600-201111300859) 135V NB [201111300600-201111500859]

o 135 NE: [201108250600-201103280850] E‘

Random Seed = 15

135WNE [201111300800-201111340858]

LISHNE [201108260608-201 104260158] N 15WNE [201112010600-201112010859] =

e e — o @ @b

B-1

169 SB (Random Seed = 10)

No Metering

US160 58 [201100250600-201109250350)

Random Seed = 12

US160 SB [201112010600-201112010859]

Random Seed = 13

169 SB [201109250600-201189250655]

<>

Q0 ”{

,‘*/ ‘“\ =

Current Metering

US169 SB [201112010600-201112010350]

20 e

B-2

New Metering

US160 58 [201112010600-201112010859]

US169 SB [201111300600-201111300850]

US169 58 [2611120108608-201112010835]

G 0“ y 4

o D D o @

	Technical Report Documentation Page
	EXECUTIVE SUMMARY
	1 INTRODUCTION
	1.1 Background and Research Objectives
	1.2 Report Organization

	2 DEVELOPMENT OF THE IRIS-IN-LOOP SIMULATION SYSTEM
	2.1 Structure of IRIS-In-Loop Simulation System
	2.2 Communicator
	2.3 Data Manager
	2.4 VISSIM Controller

	3 DEVELOPMENT OF AN OFF-LINE ESTIMATION PROCESS FOR FREEWAY TRAFFIC CONDITIONS
	3.1 Structure of Traffic Information and Condition Analysis System (TICAS)
	3.2 Traffic Condition Measures in TICAS
	3.3 Data Structure of TICAS

	4 DEVELOPMENT OF AN ON-LINE ESTIMATION PROCESS FOR FREEWAY TRAFFIC CONDITIONS
	4.1 Data Structure and Operational Sequence of On-Line Process
	4.2 Example On-Line Graphs for Selected Traffic Parameters

	5 MICROSCOPIC MODELING A FREEWAY CORRIDOR FOR EXAMPLE APPLICATION OF ILSS WITH FREEWAY OPERATIONAL STRATEGIES
	5.1 Sample Freeway Corridor
	5.2 Modeling and Calibration of Vissim for Sample Freeway Corridor

	6 DEVELOPMENT AND EVALUATION OF VARIABLE SPEED LIMIT CONTROL STRATEGY
	6.1 Overview of the Variable Speed Limit Control Approach
	6.2 Identification of VSL Starting Locations
	6.3 Determination of Speed Control Zones and Advisory Speed Limits
	6.4 Assessment of VSL Control Strategy with Microscopic Simulation

	7 DEVELOPMENT AND TESTING OF NEW RAMP METERING ALGORITHM
	7.1 Overview of New Ramp Metering Strategy
	7.2 Identification of Bottlenecks
	7.3 Determination of Metering Rates for Entrance Ramps Controlled by Each Bottleneck
	7.4 Incorporation of the New Algorithm into IRIS
	7.5 Evaluation of the New Algorithm using IRIS-In-Loop Simulation System

	8 CONCLUSIONS
	References
	APPENDIX A. PROCESS TO INCORPORATE NEW METERINGALGORITHM INTO IRIS
	APPENDIX B. SPEED CONTOURS FROM SIMULATION RESULTS

