

# 2009-05

Investigation of Stripping in Minnesota Class 7 (RAP) and Full-Depth Reclamation Base Materials



Take the C steps... Research...Knowledge...Innovative Solutions!

**Transportation Research** 

# **Technical Report Documentation Page**

| 1. Report No.<br>MN/RC 2009-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.                                             | 3. Recipients Accession No.                                                                                          |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | esote Class 7 (PAP) and Full                   | 5. Report Date<br>January 2009                                                                                       |            |
| Depth Reclamation Base Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                | 6.                                                                                                                   |            |
| 7. Author(s)<br>Mohamed Attia, Magdy Abdelrah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | man, and Tahsina Alam                          | 8. Performing Organization 1                                                                                         | Report No. |
| 9. Performing Organization Name and Address<br>Civil Engineering Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 10. Project/Task/Work Unit                                                                                           | No.        |
| North Dakota State University<br>1410 <sup>th</sup> 14 <sup>th</sup> Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 11. Contract (C) or Grant (G<br>(c) 88200                                                                            | ) No.      |
| Fargo, ND 58105-5285         12. Sponsoring Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 13. Type of Report and Perio                                                                                         | od Covered |
| Minnesota Department of Transpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rtation<br>Stop 220                            | Final Report                                                                                                         | a          |
| St. Paul, Minnesota 55155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stop 550                                       | The sponsoring regency cou                                                                                           | -          |
| 15. Supplementary Notes<br>http://www.lrrb.org/PDF/200905.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | odf                                            |                                                                                                                      |            |
| <ul> <li>15. Supplementary Notes</li> <li>http://www.lrrb.org/PDF/200905.pdf</li> <li>16. Abstract (Limit: 200 words)</li> <li>This research investigates the effect of RAP content, freeze-thaw and severe moisture conditions on the structural capacity of the pavement base layer. The investigated material included one source of 100% RAP, one source of virgin aggregate, and three full depth reclamation samples where RAP was mixed with virgin aggregate/soil and was in use as a base layer. RAP was blended in the lab with the virgin aggregate at 50% and 75% RAP content. RAP was coarser than virgin aggregate and it had a higher percentage loss in the Micro-Deval test. The resilient modulus (M<sub>R</sub>) was measured following the National Cooperative Highway Research Program 1-28A test protocol. The M<sub>R</sub> for all RAP material was higher than that of the virgin aggregate. The resilient modulus of RAP material was found to be dependent on confining pressure. There was no clear loss of the modulus for RAP material. Maximum deviator stress in the shear test was reduced after freeze-thaw (F-T) conditioning for RAP/aggregate blends at a low confining pressure, but the effect of F-T on the maximum deviator stress was not clear at a higher confining pressure.</li> </ul> |                                                |                                                                                                                      |            |
| RAP, Base Layer, Resilient Modulus, Environmental Effect,<br>Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | No restrictions. Document available from:<br>National Technical Information Services,<br>Springfield, Virginia 22161 |            |
| 19. Security Class (this report)<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20. Security Class (this page)<br>Unclassified | 21. No. of Pages<br>216                                                                                              | 22. Price  |

# Investigation of Stripping in Minnesota Class 7 (RAP) and Full-Depth Reclamation Base Materials

**Final Report** 

Prepared by

Mohamed Attia Magdy Abdelrahman Tahsina Alam

Department of Civil Engineering North Dakota State University

# January 2009

Published by

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation and/or the Center for Transportation Studies. This report does not contain a standard or specified technique.

# Acknowledgements

This study was funded by the Minnesota Department of Transportation (Mn/DOT). The support and advice from Mn/DOT Technical Advisory Panel (TAP) is greatly appreciated. Special thanks are extended to Dr. Shongtao Dai and John Zollars at the Maplewood laboratory for providing training for students on running and analyzing data in resilient modulus testing.

# **Table of Contents**

| Chapter 1: Introduction                                                | 1    |
|------------------------------------------------------------------------|------|
| 1.1.Background                                                         | 1    |
| 1.2.Problem Statement                                                  | 1    |
| 1.3.Objectives                                                         | 2    |
| 1.4.Implementation                                                     | 2    |
| 1.5.Report Organization                                                | 2    |
| Chapter 2: Literature Review                                           | 3    |
| 2.1.Introduction                                                       | 3    |
| 2.1.1.Application of RAP as Base Layer                                 | 3    |
| 2.1.2.Examples of using RAP in base layers                             | 3    |
| 2.2.Resilient Modulus                                                  | 4    |
| 2.3.Past Studies on MR of RAP                                          | 5    |
| 2.4. Investigation of Other Engineering Properties of RAP              | 5    |
| 2.4.1.Particle Size Distribution                                       | 5    |
| 2.4.2.Specific Gravity                                                 | 5    |
| 2.4.3.Optimum Moisture Content and Maximum Dry Density                 | 6    |
| 2.4.4.Moisture Susceptibility                                          | 6    |
| 2.5.Methods of Evaluating Freeze Thaw Effect on Construction Materials | 6    |
| Chapter 3: Data Collection                                             | 8    |
| 3.1.Introduction                                                       | 8    |
| 3.2.Data Collection from Mn/DOT                                        | 8    |
| 3.2.1.The Resilient Modulus Data Collection                            | 8    |
| Chapter 4: Experimental Considerations                                 | . 10 |
| 4.1.Introduction                                                       | . 10 |
| 4.2. General Description of Materials and Testing Procedures           | . 10 |
| 4.3. Material Index Properties                                         | . 14 |
| 4.3.1.Aggregate Gradation                                              | . 14 |
| 4.3.2.Asphalt Extraction                                               | . 14 |
| 4.3.3.Maximum Dry Density and Optimum Moisture Content                 | . 15 |
| 4.4.Evaluation of Material Durability                                  | . 16 |
| 4.4.1.Resistance to Abrasion and Degradation by Micro-Deval            | . 16 |
| 4.5.Structural Properties of RAP                                       | . 17 |
| 4.5.1.Resilient Modulus Testing                                        | . 18 |
| 4.5.1.1.Resilient Modulus Sample Preparation                           | . 20 |
| 4.5.2.Quality Control of M <sub>R</sub> testing Data                   | . 21 |
| 4.5.3.Freeze Thaw Conditioning                                         | . 22 |
| 4.5.4. Triaxial Shear Test                                             | . 22 |

| Chapter 5: Data Analysis                                                          | 30 |
|-----------------------------------------------------------------------------------|----|
| 5.1.Introduction                                                                  | 30 |
| 5.2. Material Index Properties                                                    | 30 |
| 5.2.1.Sieve Analysis                                                              | 30 |
| 5.2.2.Effect of RAP Content on Maximum Dry Density and Optimum                    |    |
| Moisture Content                                                                  | 31 |
| 5.3.Evaluation of Material Durability                                             | 34 |
| 5.3.1.Micro-Deval Test Results                                                    | 34 |
| 5.4. Evaluation of Structure Properties of RAP as Base Layer                      | 35 |
| 5.4.1.Effect of Freeze-Thaw on M <sub>R</sub> of Base Layer                       | 36 |
| 5.4.2.Effect of Freeze-Thaw conditioning and RAP Content on Shear                 |    |
| Resistance of Base Layer Containing RAP                                           | 42 |
| 5.4.3.Effect of RAP Content on M <sub>R</sub> of Base Layer                       | 47 |
| 5.4.4.Effect of Moisture Content on Resilient Modulus (M <sub>R</sub> )           | 47 |
| 5.4.5.Effect of Dry Density on Resilient Modulus                                  | 54 |
| 5.4.6.Effect of State of Stress on Resilient Modulus                              | 56 |
| 5.4.6.1.Effect of Confining Pressure on Resilient Modulus                         | 57 |
| 5.4.6.2.Effect of Bulk Stress on Resilient Modulus                                | 58 |
| 5.4.6.3. Effect of Confining Pressure and Deviator Stress on Resilient            |    |
| Modulus                                                                           | 61 |
|                                                                                   |    |
| Chapter 6: Summary and Conclusions                                                | 64 |
| References                                                                        | 66 |
| Appendix A: Index Properties                                                      |    |
| Appendix B: Resilient Modulus Equipment Description and Calibration               |    |
| Appendix C: Detailed Testing Results                                              |    |
| Appendix D: Relation between Confining Pressure and Resilient Modulus             |    |
| Appendix E: Relation between Bulk Stress and Resilient Modulus                    |    |
| Appendix F: Effect of Confining Pressure and Deviator Stress on Resilient Modulus |    |
| Appendix G: Dynamic Cone Penetration Results                                      |    |

# List of Tables

| Table 2.1 Summary of Freeze Thaw Testing for Basic Pavement Construction Material          | 7    |
|--------------------------------------------------------------------------------------------|------|
| Table 3.1 List of M <sub>R</sub> Testing Conducted by Mn/DOT                               | 9    |
| Table 4.1 List of Tested RAP Samples                                                       | 10   |
| Table 4.2 M <sub>R</sub> Samples Coding                                                    | 11   |
| Table 4.3 Fine Aggregate Weights for Micro-Deval Test                                      | 17   |
| Table 4.4 Test Sequence for Base/Subbbase Materials NCHRP1-28A-procedure 1A (14)           | 19   |
| Table 4.5 List of Tested M <sub>R</sub> Samples for Phase 1                                | 24   |
| Table 4.6 List of Tested Samples for Phase 2                                               | 25   |
| Table 4.7 Moisture Control for Phase 1                                                     | 26   |
| Table 4.8 Moisture Control for Phase 2                                                     | 27   |
| Table 4.9 Specimen Compaction Control for Phase 1                                          | 28   |
| Table 4.10 Specimen Compaction Control for Phase 2                                         | 29   |
| Table 5.1 Micro-Deval Results for Fine Aggregate                                           | 34   |
| Table 5.2 Micro-Deval Results for Coarse Aggregate                                         | 34   |
| Table 5.3 Comparing Moisture Content before and after M <sub>R</sub> testing for Phase 1   | 39   |
| Table 5.4 Comparing Moisture Content before and after M <sub>R</sub> testing for Phase 2   | 40   |
| Table 5.5 Summery of Shear Test Results                                                    | 46   |
| Table 5.6 Summary of Equation 5.2 Regression Coefficients for all Samples                  | 59   |
| Table A.1 Summery of Gradation and Asphalt Content.                                        | A-1  |
| Table A.2 Moisture Density Relation for tested material, Part 1                            | A-3  |
| Table A.3 Moisture Density Relation for tested material, Part 2                            | A-4  |
| Table B.1 Resilient Modulus testing results for Synthetic Rubber Sample                    | B-5  |
| Table C.1 List of Tested M <sub>R</sub> Samples for Phase 1                                | C-1  |
| Table C.2 List of Tested Samples for Phase 2                                               | C-2  |
| Table C.3 Moisture Control for Phase 1                                                     | C-3  |
| Table C.4 Moisture Control for Phase 2                                                     | C-4  |
| Table C.5 Specimen Compaction Control for Phase 1                                          | C-5  |
| Table C.6 Specimen Compaction Control for Phase 2                                          | C-6  |
| Table C.7 M <sub>R</sub> Results for Class 5 (OMC, 100% MDD), One Sample and a Replicate   | C-7  |
| Table C.8 M <sub>R</sub> Results for Class 5 (OMC, 100% MDD, 2 <sup>nd</sup> replicate)    | C-8  |
| Table C.9 M <sub>R</sub> Results for Class 5 (OMC, 100% MDD, Freeze-Thaw Conditioned), One |      |
| Sample and a Replicate                                                                     | C-9  |
| Table C.10 $M_R$ Results for Class 5 (OMC + 1%, OMC + 2%)                                  | C-10 |
| Table C.11 M <sub>R</sub> Results for Class 5 (OMC + 2%, Freeze-Thaw Conditioned)          | C-11 |
| Table C.12 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD), One              |      |
| Sample and a Replicate                                                                     | C-12 |
| Table C.13 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC + 1% and OMC +               |      |
| 2%)                                                                                        | C-13 |
| Table C.14 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD,                   |      |
| Freeze-Thaw Conditioned), One Sample and a Replicate                                       | C-14 |
| Table C.15 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC +1% and OMC + 2%,            |      |
| Freeze-Thaw Conditioned)                                                                   | C-15 |

| Table C.16 $M_R$ Results for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-16      |
| Table C.17 M <sub>R</sub> Results for $25\%$ Class 5 + 75% RAP TH 10 (OMC + 1% and OMC +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-17      |
| Table C.18 M <sub>R</sub> Results for 25% Class $5 + 75\%$ RAP TH 10 (OMC, 100% MDD,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Freeze-Thaw Conditioned). One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-18      |
| Table C 19 M <sub>P</sub> Results for 25 % Class 5+ 75% RAP TH 10 (OMC +2% 96% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Freeze-Thaw Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-19      |
| Table C 20 M <sub>P</sub> Results for 100% RAP TH 10 (OMC 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-20      |
| Table C 21 M <sub>R</sub> Results for 100% RAP TH 10 (OMC, 100% MDD) $2^{nd}$ replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-21      |
| Table C 22 M <sub>R</sub> Results for 100% RAP TH 10 (OMC + 1% 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-22      |
| Table C 23 M <sub>R</sub> Results for 100% RAP TH 10 (OMC + 2% 97 5% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-23      |
| Table C 24 $M_{\rm R}$ Results for 100% RAP TH 10 (OMC 100% MDD) Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 25      |
| Conditioned) One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C-24      |
| Table C 25 M <sub>p</sub> Results for 100% RAP TH 10 (OMC + 1% 100% MDD Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-25      |
| Table C 26 M <sub>p</sub> Results for 100% RAP TH 10 (OMC + 2% 98% MDD Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C 23      |
| Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-26      |
| Table C 27 M <sub>p</sub> Results for RAP TH 19-101 (OMC 100% MDD). One Sample and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C 20      |
| Renlicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-27      |
| Table C 28 $M_{\rm p}$ Results for RAP TH 19-101 (OMC 97.5% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C 27      |
| Table C 20 M <sub>R</sub> Results for RAP TH 19-101 (OMC + $2\%$ 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C 20      |
| Table C 30 M <sub>R</sub> Results for RAP TH 19-101 (OMC $\pm 2/6$ , 100% MDD) Erecze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C 2)      |
| Conditioned) One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C-30      |
| Table C 31M <sub>2</sub> Results for RAP TH 19-104 (OMC 100% MDD). One Sample and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-30      |
| Renlicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-31      |
| Table C 32 M <sub>p</sub> Results for RAP TH 19-104 (OMC + 2% 97% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{-32}$ |
| Table C 33 $M_{\rm R}$ Results for RAP TH 19-104 (OMC + 2/0, 97/0 MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 52      |
| Conditioned) One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C-33      |
| Table C 34 M <sub>p</sub> Results for RAP TH 19-104 (OMC + $2\%$ 97% MDD Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C 55      |
| Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-34      |
| Table C 35 $M_p$ Results for RAP TH 22 (OMC 100% MDD). One Sample and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Renlicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-35      |
| Table C 36 M <sub>p</sub> Results for RAP TH 19-104 (OMC + $2\%$ 98% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-36      |
| Table C 37 $M_R$ Results for RAP TH 22 (OMC 100% MDD Freeze-Thaw Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 50      |
| One Sample and a Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-37      |
| Table C 38 M <sub>p</sub> Results for RAP TH 19-104 (OMC + $2\%$ 98% MDD Freeze-Thaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Conditioned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-38      |
| Table C 30 $100\%$ RAP Sample 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C-30      |
| Table C 40 100% RAP. Sample 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{-40}$ |
| Table C 41 100% RAP. Sample 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{-40}$ |
| Table C 42 70% $RAP + 30\%$ CI 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{-41}$ |
| Table C 43 50% RAP + 50% Class 6 Sample 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_{-41}$ |
| Table C 44 50% RAP + 50% Class 6, Sample 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_{-47}$ |
| Table C 45 30% RAP + 70% Class 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C-42      |
| Table C 46 50% RAP + 50% Taconite Sample 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-43      |
| There exists a solution of the |           |

| Table C.47 50% RAP + 50% Taconite, Sample 2                  | C-43 |
|--------------------------------------------------------------|------|
| Table C.48 50% RAP + 50% Taconite, Sample 3                  | C-44 |
| Table C.49 50% RAP + 50% Taconite, Sample 4                  | C-45 |
| Table C.50 50% RAP + 50% Taconite, Sample 5                  | C-46 |
| Table C.51 50% RAP + 50% Taconite, Sample 6                  | C-47 |
| Table G.1 Dynamic Cone Penetration Results for RAP TH 19-101 | G-1  |
| Table G.2 Dynamic Cone Penetration Results for RAP TH 19-104 | G-2  |
| Table G.3 Dynamic Cone Penetration Results for RAP TH 22     | G-3  |

# List of Figures

| Figure 1.1 Schematic of milling machine operation in FDR process (6)                           | 1  |
|------------------------------------------------------------------------------------------------|----|
| Figure 2.1 Definition of resilient modulus terms (14)                                          | 4  |
| Figure 4.1 Phase 1 testing matrix (M <sub>R</sub> at optimum moisture content)                 | 12 |
| Figure 4.2 Phase 2 testing matrix (M <sub>R</sub> at moisture content higher than the optimum) | 13 |
| Figure 4.3 Sieve shaker                                                                        | 14 |
| Figure 4.4 Asphalt extraction apparatus                                                        | 15 |
| Figure 4.5 Superpave gyratory compactor used                                                   | 16 |
| Figure 4.6 Micro-Deval apparatus                                                               | 17 |
| Figure 4.7 Resilient modulus sample during testing on the MTS                                  | 18 |
| Figure 4.8 Resilient modulus sample with the internal load cell and LVDTs connected            |    |
| around the sample                                                                              | 20 |
| Figure 4.9 Example represent SNR concept (31)                                                  | 22 |
| Figure 4.10 Graphical representation of the Mohr-Coulomb failure criteria (32)                 | 29 |
| Figure 5.1 Gradation chart of all material after replacing material larger than 12.5 mm vs.    |    |
| Mn/DOT Class 5 specification                                                                   | 31 |
| Figure 5.2 Moisture density relation for Class 5 and 50% RAP TH10 + 50% Class 5                |    |
| using standard Proctor test and gyratory compactor at 50 gyrations                             | 32 |
| Figure 5.3 Moisture density relation for 75% RAP TH 10 +25% Class 5 and 100% RAP               |    |
| TH 10 using standard Proctor test and gyratory compactor at 50 gyrations                       | 32 |
| Figure 5.4 Relation between MDD, OMC and RAP content at 50 gyrations vs.                       |    |
| standard Proctor                                                                               | 32 |
| Figure 5.5 Relation between MDD, OMC and RAP content at 50 gyrations vs. standard              |    |
| Proctor, based on published data by Kim and Labuz (5)                                          | 33 |
| Figure 5.6 MDD and OMC for different RAP content using standard Proctor test (19, 20)          | 34 |
| Figure 5.7 Micro-Deval percentage loss for fine aggregate                                      | 35 |
| Figure 5.8 Micro-Deval percentage loss for coarse aggregate                                    | 35 |
| Figure 5.9 Effect of freeze-thaw on M <sub>R</sub> for Class 5                                 | 36 |
| Figure 5.10 Effect of freeze-thaw on $M_R$ of Class 5 for samples compacted OMC + 2%           | 37 |
| Figure 5.11 Effect of freeze-thaw on $M_R$ for 50% Class 5 + 50% RAP TH 10                     | 37 |
| Figure 5.12 Effect of freeze-thaw on $M_R$ for 50% Class 5 + 50% RAP TH 10, samples            |    |
| compacted at OMC+ 1%                                                                           | 38 |
| Figure 5.13 Effect of freeze-thaw on $M_R$ for 50% Class 5 + 50% RAP TH 10, samples            |    |
| compacted at OMC+ 1%                                                                           | 41 |
| Figure 5.14 Effect of freeze-thaw on M <sub>R</sub> for RAP TH 19-101                          | 41 |
| Figure 5.15 Effect of F-T on friction angle of base layer                                      | 43 |
| Figure 5.16 Effect of F-T on cohesion of base layer                                            | 43 |
| Figure 5.17 Effect of F-T on maximum deviator stress at confining pressure = 4 psi             | 44 |
| Figure 5.18 Effect of F-T on maximum deviator stress at confining pressure = 8 psi             | 44 |
| Figure 5.19 Effect of F-T on friction angle of base layer for field samples                    | 45 |
| Figure 5.20 Effect of F-T on cohesion of base layer for field samples                          | 45 |
| Figure 5.21 Effect of RAP content on M <sub>R</sub> of base layer, Mn/DOT data (20)            | 48 |

| Figure 5.22 Effect of RAP content on $M_R$ of base layer at selected states of stress,            |     |
|---------------------------------------------------------------------------------------------------|-----|
| Mn/DOT data (20)                                                                                  | 48  |
| Figure 5.23 Effect of RAP content on M <sub>R</sub> of base layer (average of tested samples)     | 49  |
| Figure 5.24 Effect of moisture content on 50% RAP + 50% Taconite, Mn/DOT data                     |     |
| (MC = 6.7 % is based on average of 2 samples)                                                     | 49  |
| Figure 5.25 Effect of moisture content on Class 5 (OMC results are based on average of            |     |
| tested samples)                                                                                   | 50  |
| Figure 5.26 Effect of moisture content on 50% RAP TH 10 + 50% Class 5                             | 51  |
| Figure 5.27 Effect of moisture content on $M_{\rm R}$ of 50% RAP + 50% Class 5 at bulk            |     |
| stress = $30 \text{ psi}$                                                                         | 51  |
| Figure 5.28 Effect of moisture content on 75% RAP TH10 + 25% Class 5 (OMC results                 |     |
| are based on average of tested samples)                                                           |     |
| Figure 5.29 Effect of moisture content on RAP TH 19-101 (OMC results are based on                 |     |
| average of tested samples)                                                                        | 53  |
| Figure 5.30 Effect of moisture content on RAP TH 22 (OMC results are based on average             |     |
| of tested samples)                                                                                | 53  |
| Figure 5.31 Effect of dry density on M <sub>P</sub> of 50% RAP + 50% Class 6 (MC = 6.6%).         |     |
| (Mn/DOT data)                                                                                     | 54  |
| Figure 5.32 Effect of dry density on M <sub>P</sub> of 50% RAP + 50% Taconite (MC = 6.5%).        |     |
| (Mn/DOT data), (data for dry density = 125 pcf is based on average of 2 samples)                  |     |
| Figure 5.33 Effect of dry density on M <sub>P</sub> of 50% RAP + 50% Taconite (MC = 7.7 %).       |     |
| (Mn/DOT data)                                                                                     | 55  |
| Figure 5.34 Effect of dry density on M <sub>P</sub> of RAP TH19-101 (100% MDD is based on         |     |
| average of 2 samples)                                                                             | 56  |
| Figure 5.35 Effect of dry density on resilient modulus of granular material (34)                  |     |
| Figure 5.36 M <sub>P</sub> vs. confining pressure for Class 5 and 50% Class $5 + 50$ % RAP TH10   |     |
| (OMC, 100% MDD)                                                                                   |     |
| Figure 5.37 M <sub>P</sub> vs. confining pressure for 50% Class $5 + 50\%$ RAP TH 10 and 25%      |     |
| Class 5 + 75% RAP TH 10 (OMC, 100% MDD, 2 F-T)                                                    |     |
| Figure 5.38 M <sub>P</sub> vs. confining pressure for field samples, RAP TH 19-101 and RAP TH 22  |     |
| (OMC, 100% MDD)                                                                                   | 58  |
| Figure 5.39 M <sub>P</sub> vs. bulk stress for Class 5 and 50% Class $5 + 50\%$ RAP TH10 (OMC.    |     |
| 100% MDD)                                                                                         | 60  |
| Figure 5.40 M <sub>P</sub> vs. bulk stress for 25% Class 5 + 75% RAP TH 10 and 100% RAP TH        |     |
| 10 (OMC, 100% MDD)                                                                                | 60  |
| Figure 5.41 M <sub>P</sub> vs. bulk stress for field blends, RAP TH 19-101 and RAP TH 22 (samples |     |
| at OMC and 100% MDD)                                                                              | 61  |
| Figure 5.42 M <sub>P</sub> vs. deviator stress at different confining pressure for Class 5        |     |
| (OMC, 100% MDD)                                                                                   | 62  |
| Figure 5.43 M <sub>P</sub> vs. deviator stress at different confining pressure for 100% RAP TH 10 |     |
| (OMC, 100% MDD, replicate)                                                                        | 62  |
| Figure 5.44 $M_P$ vs. deviator stress at different confining pressure for RAP TH 19-101           |     |
| (OMC, 100% MDD)                                                                                   | 63  |
| Figure A.1 Aggregate gradation compared to Mn/DOT Class 5 specification                           | A-2 |
| Figure A.2 Aggregate gradation compared to Mn/DOT Class 7 specification                           | A-2 |
| Figure A.3 Moisture density relation for Class 5                                                  |     |
|                                                                                                   | -   |

| Figure A.4 Moisture density relation for 50% RAP TH-10 + 50% Class 5                             | A-5 |
|--------------------------------------------------------------------------------------------------|-----|
| Figure A.5 Moisture density relation for 75% RAP TH-10 + 25% Class 5                             | A-5 |
| Figure A.6 Moisture density relation for RAP TH-10                                               | A-6 |
| Figure A.7 Moisture density relation for RAP TH 19-MM101                                         | A-6 |
| Figure A.8 Moisture density relation for RAP TH 19-MM104                                         | A-7 |
| Figure A.9 Moisture density relation for RAP TH 22                                               | A-7 |
| Figure B.1 Triaxial pressure chamber at NDSU.                                                    | B-2 |
| Figure B.2 MTS electro-hydraulic loading frame at NDSU.                                          | B-2 |
| Figure B.3 5000 Lb electronic load cell at NDSU.                                                 | B-3 |
| Figure B.4 LVDT (on the right) and LVDT holder (on the left) at NDSU.                            | B-3 |
| Figure B.5 Load cell calibration setup                                                           | B-4 |
| Figure B.6 Load cell calibration results                                                         | B-4 |
| Figure B.7 Synthetic rubber specimen and LVDTs                                                   | B-6 |
| Figure B.8 Resilient modulus testing results for Synthetic Rubber Sample                         | B-6 |
| Figure B.9 Comparison between $M_R$ for the Synthetic specimen                                   | B-7 |
| Figure D.1 M <sub>R</sub> vs. confining pressure for Class 5 (OMC, 100% MDD, one sample          |     |
| and 2 replicates)                                                                                | D-1 |
| Figure D.2 M <sub>R</sub> vs. confining pressure for Class 5 (OMC, 100% MDD, freeze-thaw         |     |
| conditioned), (one sample and a replicate)                                                       | D-1 |
| Figure D.3 $M_R$ vs. confining pressure for Class 5 (OMC + 1%, 99% MDD)                          | D-2 |
| Figure D.4 $M_R$ vs. confining pressure for Class 5 (OMC + 2%, 97% MDD)                          | D-2 |
| Figure D.5 $M_R$ vs. confining pressure for Class 5 (OMC + 2%, 100% MDD, 2 F-T)                  | D-3 |
| Figure D.6 $M_R$ vs. confining pressure for 50 % Class 5 + 50% RAP TH 10 (OMC, 100%)             |     |
| MDD), (one sample and a replicate)                                                               | D-3 |
| Figure D.7 M <sub>P</sub> vs. confining pressure for 50% Class $5 + 50\%$ RAP TH 10 (OMC, 100%   |     |
| MDD. 2 F-T). (one sample and a replicate)                                                        | D-4 |
| Figure D.8 $M_R$ vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC+ 1%).               |     |
| 100% MDD)                                                                                        | D-4 |
| Figure D.9 M <sub>P</sub> vs. confining pressure for 50% Class $5 + 50\%$ RAP TH 10 (OMC + 2%.   |     |
| 98.5% MDD)                                                                                       | D-5 |
| Figure D.10 $M_R$ vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC + 1%).             |     |
| 100% MDD. 2 F-T)                                                                                 | D-5 |
| Figure D.11 M <sub>R</sub> vs. confining pressure for 50% Class $5 + 50\%$ RAP TH 10 (OMC + 2%.  |     |
| 98% MDD. 2 F-T)                                                                                  | D-6 |
| Figure D.12 M <sub>R</sub> vs. confining pressure for 25% Class $5 + 75\%$ RAP TH 10 (OMC, 100%  |     |
| MDD), (one sample and a replicate)                                                               | D-6 |
| Figure D.13 M <sub>R</sub> vs. confining pressure for 25% Class $5 + 75\%$ RAP TH 10 (OMC, 100%  |     |
| MDD. freeze-thaw conditioned). (one sample and a replicate)                                      | D-7 |
| Figure D.14 M <sub>P</sub> vs. confining pressure for 25% Class $5 + 75\%$ RAP TH 10 (OMC + 1%). |     |
| 97.6% MDD)                                                                                       | D-7 |
| Figure D.15 M <sub>P</sub> vs. confining pressure for 25% Class $5 + 75\%$ RAP TH 10 (OMC + 2%). |     |
| 97% MDD)                                                                                         | D-8 |
| Figure D.16 M <sub>R</sub> vs. confining pressure for 25% Class $5 + 75\%$ RAP TH 10 (OMC + 2%   |     |
| 96% MDD. freeze-thaw conditioned)                                                                | D-8 |
| Figure D.17 M <sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC, 100% MDD). (one       |     |
| sample and 2 replicates)                                                                         | D-9 |
| 1 1 /                                                                                            |     |

| Figure D.18 M <sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC, 100% MDD freeze-    |                 |
|------------------------------------------------------------------------------------------------|-----------------|
| thaw conditioned)                                                                              | D-9             |
| Figure D.19 M <sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC + 1%, 100% MDD)      | <b>D-</b> 10    |
| Figure D.20 M <sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC + 2%, 97.5% MDD)     | . D-10          |
| Figure D.21 $M_R$ vs. confining pressure for 100% RAP TH 10 (OMC + 1%,                         |                 |
| 100% MDD, 2 F-T)                                                                               | . D-11          |
| Figure D.22 $M_R$ vs. confining pressure for 100% RAP TH 10 (OMC + 2%,                         |                 |
| 98% MDD, 2 F-T)                                                                                | . <b>D-</b> 11  |
| Figure D.23 M <sub>R</sub> vs. confining pressure for RAP TH 19-101 (OMC, 100% MDD), one       |                 |
| sample and a replicate                                                                         | D-12            |
| Figure D.24 $M_R$ vs. confining pressure for RAP TH 19-101 (OMC, 97.5% MDD)                    | <b>D-</b> 12    |
| Figure D.25 M <sub>R</sub> vs. confining pressure for RAP TH 19-101 (OMC, 100% MDD, freeze-    | D 10            |
| thaw conditioned), (one sample and a replicate)                                                | D-13            |
| Figure D.26 $M_R$ vs. confining pressure for RAP TH 19-101 (OMC + 2%, 100% MDD)                | <b>D-</b> 13    |
| Figure D.27 M <sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC, 100% MDD), (one      | D 14            |
| sample and a replicate).                                                                       | D-14            |
| Figure D.28 $M_R$ vs. confining pressure for RAP TH 19-104 (OMC, 100% MDD, 2 F-1)              | D-14            |
| Figure D.29 M <sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC + 2%, 97% MDD)        | D-15            |
| Figure D.30 $M_R$ vs. contining pressure for RAP 1H 19-104 (OMC + 2%, 97% MDD,                 | D 15            |
| 2  F-1)                                                                                        | D-15            |
| Figure D.31 M <sub>R</sub> vs. contining pressure for RAP TH 22 (OMC, 100% MDD), (one sample   | D 1(            |
| Eigene D 22 M vis confining massive for DAD TH 22 (OMC 1000/ MDD 2 E T) (one                   | <b>D-</b> 16    |
| Figure D.32 M <sub>R</sub> vs. contining pressure for KAP TH 22 (OMC, 100% MDD, 2 F-1), (one   | D 16            |
| Sample and a replicate)                                                                        | D 17            |
| Figure D.35 M <sub>R</sub> vs. confining pressure for PAP TH 22 (OMC + 2%, 98% MDD)            | D 17            |
| Figure E.1 M <sub>x</sub> vs. comming pressure for KAT $11122$ (OMC + 270, 9870 MDD, 21-1)     | ,. <b>D-</b> 17 |
| replicates)                                                                                    | <b>F</b> _1     |
| Figure E 2 M <sub>p</sub> vs hulk stress for Class 5 (OMC 100% MDD 2 E-T) (one sample          | L-1             |
| and a renlicate)                                                                               | E-1             |
| Figure E 3 M <sub>p</sub> vs bulk stress for Class 5 (OMC + $1\%$ 99% MDD)                     | E-2             |
| Figure E 4 M <sub>P</sub> vs. bulk stress for Class 5 (OMC + $2\%$ 99% MDD)                    | E-2             |
| Figure E 5 M <sub>P</sub> vs. bulk stress for Class 5 (OMC + $2\%$ , $2$ F-T)                  | E-3             |
| Figure E 6 M <sub>P</sub> vs. bulk stress for 50% Class $5 + 50\%$ RAP TH 10 (OMC 100% MDD)    |                 |
| (one sample and a replicate)                                                                   | E-3             |
| Figure E.7 M <sub>R</sub> vs. bulk stress for 50% Class $5 + 50\%$ RAP TH 10 (OMC, 100% MDD, 2 |                 |
| F-T). (one sample and a replicate)                                                             | E-4             |
| Figure E.8 M <sub>R</sub> vs. bulk stress for 50% Class $5 + 50\%$ RAP TH 10 (OMC + 1%).       |                 |
| 100% MDD)                                                                                      | E-4             |
| Figure E.9 M <sub>R</sub> vs. bulk stress for 50% Class $5 + 50\%$ RAP TH 10 (OMC + 2%,        |                 |
| 98.5% MDD)                                                                                     | E-5             |
| Figure E.10 $M_R$ vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC + 1%).                  | 1               |
| 100% MDD, 2 F-T)                                                                               | E-5             |
| Figure E.11 M <sub>R</sub> vs. bulk stress for 50% Class $5+50\%$ RAP TH 10 (OMC + 2%,         |                 |
| 98% MDD, 2 F-T)                                                                                | E-6             |

| Figure E.12 $M_R$ vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD),                                          |              |
|-----------------------------------------------------------------------------------------------------------------------------|--------------|
| (one sample and a replicate)                                                                                                | E-6          |
| Figure E.13 $M_R$ vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD,                                           |              |
| 2 F-T), (one sample and a replicate)                                                                                        | E <b>-</b> 7 |
| Figure E.14 $M_R$ vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC + 1%,                                                |              |
| 97.6% MDD)                                                                                                                  | E-7          |
| Figure E.15 $M_R$ vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 97%                                            |              |
| MDD)                                                                                                                        | E-8          |
| Figure E.16 M <sub>R</sub> vs. bulk stress for 25% Class $5 + 75\%$ RAP 1H 10 (OMC + 2%,                                    | БО           |
| 90% MDD, 2 F-1)                                                                                                             | E-8          |
| rigule E.17 M <sub>R</sub> vs. bulk suess for 100% KAP TH 10 (OMC, 100% MDD), (one sample and 2 replicates)                 | ΕO           |
| Figure E 18 M <sub>b</sub> vs. hulk stress for 100% $R \Delta P TH 10$ (OMC 100% MDD 2 E-T)                                 | E-9<br>E-9   |
| Figure E 19 M <sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 1% 100% MDD)                                           | E-10         |
| Figure E 20 M <sub>P</sub> vs. bulk stress for 100% RAP TH 10 (OMC + $1\%$ , 100% MDD)                                      | E-10         |
| Figure E 21 M <sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 1% 100% MDD 2 F-T)                                     | E-11         |
| Figure E 22 M <sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 2% 98% MDD 2 F-T)                                      | E-11         |
| Figure E.23 $M_R$ vs. bulk stress for RAP TH 19-101 (OMC, 100% MDD), one sample                                             |              |
| and a replicate                                                                                                             | E-12         |
| Figure E.24 M <sub>R</sub> vs. bulk stress for RAP TH 19-101 (OMC, 100% MDD, 2 F-T), (one                                   |              |
| sample and a replicate)                                                                                                     | E-12         |
| Figure E.25 $M_R$ vs. bulk stress for RAP TH 19-101 (OMC + 2%, 100% MDD)                                                    | E-13         |
| Figure E.26 M <sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC, 100% MDD), (one sample                                   |              |
| and a replicate)                                                                                                            | E-13         |
| Figure E.27 M <sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC, 100% MDD, 2 F-T)                                         | E-14         |
| Figure E.28 $M_R$ vs. bulk stress for RAP TH 19-104 (OMC + 2%, 97% MDD)                                                     | E-14         |
| Figure E.29 M <sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC + 2%, 97% MDD, 2 F-T)                                     | E-15         |
| Figure E.30 M <sub>R</sub> vs. bulk stress for RAP TH 22 (OMC, 100% MDD), (one sample                                       |              |
| and a replicate).                                                                                                           | E-15         |
| Figure E.31 M <sub>R</sub> vs. bulk stress for RAP TH 22 (OMC, 100% MDD, 2 F-T), (one sample                                | <b>F</b> 16  |
| and a replicate)                                                                                                            | E-16         |
| Figure E.32 M <sub>R</sub> vs. bulk stress for RAP TH 22 (OMC + 2%, 98% MDD)                                                | E-16         |
| Figure E.33 $M_R$ vs. bulk substitution at a figure E 1 M, vs. deviator strong at different confining pressures for Class 5 | E-1/         |
| Figure F.1 $W_R$ vs. deviator success at different continuing pressures for Class 5 (OMC 100% MDD)                          | Е 1          |
| (OMC, 100% MDD)                                                                                                             | Г-I          |
| (OMC 100% MDD replicate)                                                                                                    | F-1          |
| Figure F 3 $M_p$ vs. deviator stress at different confining pressures for Class 5 (OMC                                      | 1 - 1        |
| $100\%$ MDD $2^{nd}$ replicate)                                                                                             | F-2          |
| Figure F 4 M <sub>P</sub> vs deviator stress at different confining pressures for Class 5                                   | 1 2          |
| (OMC + 1%, 99% MDD)                                                                                                         | F-2          |
| Figure F.5 M <sub>R</sub> vs. deviator stress at different confining pressures for Class 5                                  |              |
| (OMC + 2%, 99% MDD)                                                                                                         | F-3          |
| Figure F.6 M <sub>R</sub> vs. deviator stress at different confining pressures for Class 5                                  |              |
| (OMC, 100% MDD, 2 F-T)                                                                                                      | F-3          |

| Figure F       | F.7 $M_R$ vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD, 2 E-T, replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F-4   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure F       | $F.8 M_R vs.$ deviator stress at different confining pressures for Class 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| . (            | (OMC + 2%, 2 F-T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-4   |
| Figure F       | F.9 $M_R$ vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F-5   |
| Figure F       | F.10 $M_R$ vs. deviator stress at different confining pressures for 50% Class 5 + 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| ŀ              | RAP TH 10 (OMC, 100% MDD, replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F-5   |
| Figure F       | F.11 M <sub>R</sub> vs. deviator stress at different confining pressures for 50% Class $5 + 50\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E (   |
| f<br>Eisenne E | $ \begin{array}{l} \text{KAP IH I0} (\text{OMC}, 100\% \text{ MDD}, 2 \text{ F-I}) \\ \text{F} 12 \text{ M} \text{ are deviation strange at different confining programmed for } 500\% \text{ Class } 5 + 500\% \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Г-О   |
| riguie r       | RAP TH 10 (OMC, 100% MDD, 2 F-T, replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-6   |
| Figure F       | F.13 $M_R$ vs. deviator stress at different confining pressures for 50% Class 5 + 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| ŀ              | RAP TH 10 (OMC + 1%, 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F-7   |
| Figure F       | F.14 $M_R$ vs. deviator stress at different confining pressures for 50% Class 5 + 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| ŀ              | RAP TH 10 (OMC + 2%, 98.5% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F-7   |
| Figure F       | F.15 M <sub>R</sub> vs. deviator stress at different confining pressures for 50% Class $5 + 50\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| - E            | RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . F-8 |
| Figure F       | $F_{16}$ M <sub>R</sub> vs. deviator stress at different confining pressures for 50% Class 5 + 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                | RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . F-8 |
| Figure F       | $F_{17}$ M <sub>P</sub> vs. deviator stress at different confining pressures for 25% Class 5 + 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| F              | RAP TH 10 (OMC 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F-9   |
| Figure F       | $E 18 M_P$ vs. deviator stress at different confining pressures for 25% Class 5 + 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| I Iguie I      | RAP TH 10 (OMC 100% MDD replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F-9   |
| Figure F       | $F_{19}$ M <sub>p</sub> vs. deviator stress at different confining pressures for 25% Class 5 + 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| I Iguie I      | $R \Delta P TH 10 (OMC + 1\% 97.6\% MDD)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F-10  |
| Figure F       | $F_{20}$ M <sub>p</sub> vs. deviator stress at different confining pressures for 25% Class 5 + 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-10  |
| riguic r       | PAD TH 10 (OMC + $2\%$ 07% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F 10  |
| T<br>Figura E  | E 21 M vg. deviator strong at different confining programs for $250$ / Class 5 + 750/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-10  |
| riguie r       | $7.21$ M <sub>R</sub> vs. deviator suess at different comming pressures for 25% Class $5 \pm 75\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Е 11  |
| r<br>Eisenne E | $ \begin{array}{l} \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ \text{KAP III 10 (OMC, 100\% MDD, 2 F-1)} \\ KAP III $ | г-11  |
| rigure r       | $^{1.22}$ M <sub>R</sub> vs. deviator stress at different contining pressure for 25% Class 5 + 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F 11  |
| 1<br>          | RAP 1H 10 (OMC, 100% MDD, 2 F-1, replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-11  |
| Figure F       | $4.23 \text{ M}_{\text{R}}$ vs. deviator stress at different contining pressure for 25% Class 5 + /5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 10  |
|                | RAP 1H 10 (OMC + $2\%$ , 96% MDD, 2 F-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F-12  |
| Figure F       | $7.24 M_R$ vs. deviator stress at different confining pressures for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| (              | (OMC, 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F-12  |
| Figure F       | $F.25 M_R$ vs. deviator stress at different confining pressures for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| (              | (OMC, 100% MDD, replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F-13  |
| Figure F       | F.26 $M_R$ vs. deviator stress at different confining pressure for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| (              | (OMC, 100% MDD, 2 <sup>nd</sup> replicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F-13  |
| Figure F       | F.27 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| (              | (OMC + 1%, 100% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F-14  |
| Figure F       | F.28 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| (              | (OMC + 2%, 97.5% MDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F-14  |
| Figure F       | F.29 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| (              | (OMC + 1%, 100% MDD, 2 F-T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-15  |

| Figure F.30 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T, replicate)                                      | . F-15         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure F.31 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)                                                 | . F-16         |
| Figure F.32 M <sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)                                                  | . F-16         |
| Figure F.33 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD)                                                              | . F-17         |
| Figure F.34 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD, replicate)                                                   | . F-17         |
| Figure F.35 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC + $2\%$ 100% MDD)                                                       | F-18           |
| Figure F.36 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101<br>(OMC 97.5% MDD)                                                           | F-18           |
| Figure F.37 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-101<br>(OMC 100% MDD 2 F-T)                                                               | F-19           |
| Figure F.38 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101<br>(OMC_100% MDD_2 E-T_replicate)                                            | F <b>-</b> 19  |
| Figure F.39 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104<br>(OMC 100% MDD)                                                                     | E 20           |
| Figure F.40 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104<br>(OMC, 100% MDD, replicate)                                                         | E 20           |
| Figure F.41 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104<br>(OMC + 2%, 97%, MDD)                                                               | . Г-20<br>Е 21 |
| Figure F.42 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104                                                                                       | . Г-21<br>Е 21 |
| Figure F.43 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104<br>(OMC, 100% MDD, 2 F T, replicate)                                                  | . г-21         |
| Figure F.44 $M_R$ vs. deviator stress at different confining pressures for RAP TH 19-104                                                                                       | . Г-22         |
| Figure F.45 $M_R$ vs. deviator stress at different confining pressures for RAP TH 22 (OMC,                                                                                     | . F-22         |
| Figure F.46 M <sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 22 (OMC,                                                                            | . F-23         |
| Figure F.47 $M_R$ vs. deviator stress at different confining pressures for RAP TH 22 (OMC                                                                                      | . F-23         |
| + 2%, 98% MDD)                                                                                                                                                                 | . F-24         |
| Figure F.48 M <sub>R</sub> vs. bulk stress for RAP TH 22 (OMC, 100% MDD, 2 F-T)                                                                                                | . F-24         |
| Figure F.49 $M_R$ vs. bulk stress for RAP TH 22 (OMC, 100% MDD, 2 F-T, replicate)<br>Figure F.50 $M_R$ vs. deviator stress at different confining pressures for RAP TH 22 (OMC | . F-25         |
| + 2%, 98% MDD, 2 F-T)                                                                                                                                                          | . F-25         |

#### **Executive Summary**

The use of reclaimed asphalt pavement (RAP) as a pavement base material can reduce the amount of virgin aggregate needed, reduce construction cost, reduce lane closure time and eliminate disposal issues. Currently Mn/DOT allows the use of RAP as Class 7, which is an aggregate base course containing salvage/recycled aggregate material. This research investigates the effect of RAP on the structural capacity of the base layer, defined by resilient modulus ( $M_R$ ) and shear strength. The effect of freeze-thaw (F-T) and severe moisture conditions on the structural capacity of RAP material as a base layer is investigated.

In the preliminary part of the project, data from test results on RAP material from Mn/ROAD cell 26 was collected from the Mn/DOT data base. Samples were collected from different highways in Minnesota. The investigated material included one source of 100% RAP produced by cold planning from Trunk Highway 10 (RAP TH 10), one source of virgin aggregate (Minnesota Class 5), and three Class 7 samples where RAP was mixed with virgin aggregate and is in use as a base layer. RAP TH 10 was blended with the virgin aggregate at 50% and 75% RAP content to investigate the effect of RAP content on base layer structural capacity.

The collected samples were evaluated in the laboratory by several testing methods, starting with aggregate gradation and asphalt extraction. Moisture density relations for the samples were determined using the standard Proctor test and the Superpave gyratory compactor. Aggregate/RAP resistance to abrasion and degradation was evaluated using the Micro-Deval test. The structural capacity of the RAP as compared to virgin aggregate was evaluated using the resilient modulus test following the National Cooperative Highway Research Program (NCHRP) 1-28A test protocol. Resilient modulus samples were compacted by the gyratory compactor to the objective dry density. Triaxial shear test was conducted on the resilient modulus samples, for samples compacted at optimum moisture content and maximum dry density, at two confining pressures to evaluate the shear strength of the tested samples. One set of samples was subject to two freeze-thaw cycles to evaluate the effect of freeze-thaw on the resilient modulus and the shear strength of RAP as compared to virgin aggregate.

RAP gradation was coarser than virgin aggregate and it fell within the Mn/DOT Class 5 gradation limits. RAP had a higher percentage loss in the Micro-Deval test as compared to virgin aggregate. Optimum moisture content (OMC) for RAP aggregate blend mixes were lower than OMC for Class 5 based on the gyratory compactor at 50 gyrations, however the OMC for RAP/aggregate blends were higher than Class 5 based on the standard Proctor test. The maximum dry densities (MDD) for RAP/aggregate blends and field samples were lower than MDD for Class 5. The resilient modulus for all RAP material was higher than that of Class 5. The resilient modulus of RAP material was found to be dependent on confining pressure. There was no clear loss of the modulus due to freeze-thaw conditioning for the tested RAP material. Decreasing the moisture content increased the resilient modulus for RAP aggregate blend mixes field samples and Class 5. There was no clear difference in friction angle and cohesion between RAP aggregate blend mixes, field samples and Class 5. There was no change in the internal friction angle for RAP due to freeze-thaw conditioning for RAP aggregate blend mixes, field samples and Class 5. There was no change in the internal friction angle for RAP due to freeze-thaw conditioning for the tested blend mixes for RAP due to freeze-thaw conditioning for the tested blend mixes field samples and Class 5. There was no change in the internal friction angle for RAP due to freeze-thaw conditioning for the tested samples except RAP TH 19-101 material. Maximum deviator stress in the shear test was reduced after F-T conditioning for RAP aggregate blends at a

low confining pressure (4 psi) but the effect of F-T on maximum deviator stress was not clear at a higher confining pressure (8 psi).

#### Chapter 1

#### Introduction

#### 1.1. Background

Over 100 million tons of recycled asphalt pavement (RAP) are produced by pavement rehabilitation activities each year in the USA (*I*). The Asphalt Recycling and Reclaiming Association (ARRA) defines Full Depth Reclamation (FDR) as "a pavement rehabilitation technique in which the full flexible pavement section and a pre-determined portion of the underlying materials are uniformly crushed, pulverized or blended, resulting in a stabilized base course (SBC); further stabilization may be obtained through the use of available additives" (2). Figure 1.1 shows a schematic of a typical FDR milling machine. The use of RAP as a base material can reduce the amount of virgin aggregate needed, reduce construction cost, reduce lane closure time and eliminate disposal issues. Currently Mn/DOT allows the use of RAP as Class 7, which is an aggregate base course containing salvage/recycled aggregate material (8).

The resilient modulus ( $M_R$ ) is the basic property that defines the structural capacity of unbound layer strength in the pavement analysis and design process (3). The resilient modulus ( $M_R$ ) test is a commonly conducted laboratory test to define stiffness of the base material (3, 4). Proper characterizations of the nonlinear stress-dependent behavior of pavement unbound layers have significant impact on the accuracy of prediction of pavement responses (5).



Figure 1.1 Schematic of milling machine operation in FDR process (6)

### **1.2.** Problem Statement

The use of RAP as a base material can reduce the amount of virgin aggregate needed, reduce construction cost, reduce lane closure time and eliminate disposal issues. However, the long term change in the properties of RAP as a base material in service is a gap in the literature. The effect of RAP on the structural capacity of the base layer is not fully investigated. The effect of freeze-thaw (F-T) and severe moisture conditions on the behavior of RAP material as a base layer was not fully investigated.

# 1.3. Objectives

The research objectives are:

- Assess structure properties of RAP as a base layer.
- Evaluate the effect of freeze-thaw (F-T) cycles on the stiffness and strength of RAP material in Minnesota.

# 1.4. Implementation

The results of this research should help Mn/DOT in evaluating the suitability of using RAP as a base layer. Results will give data regarding the structural adequacy of RAP as a base layer in severe conditions where the pavement base is subject to several freeze-thaw cycles.

# 1.5. Report Organization

Chapter 2: presents a summarized literature review of the previous research conducted on using RAP as a base layer.

Chapter 3: contains descriptions of the data collected from Mn/DOT on RAP aggregate blends tested at Mn/DOT laboratories.

Chapter 4: contains descriptions of the tested material, experimental design, sample preparation procedures including gradation tests, Proctor and gyratory compaction tests, the Micro-Deval test, shear strength test and resilient modulus testing procedures.

Chapter 5: contains analysis and discussion of the collected data and the laboratory test results.

Chapter 6: summarizes and concludes the findings of the research.

#### Chapter 2

#### Literature Review

#### 2.1. Introduction

Over 100 million tons of recycled asphalt pavement (RAP) are produced by pavement rehabilitation activities each year in the USA. RAP is the old asphalt pavement material that has been removed and/or reprocessed (1). It contains the aggregate and the aged asphalt cement. The two most common asphalt pavement removal processes are milling and full-depth reclamation. In first process, the pavement surface is removed using a milling machine, which can remove up to a 2 in. thickness in a single pass (1). Full-depth removal involves ripping and breaking the pavement using a rhino horn on a bulldozer and/or pneumatic pavement breakers.

When properly crushed and screened, RAP consists of high-quality, well-graded aggregates coated by asphalt. After collecting the RAP, material characterization is performed with respect to aggregate gradation and asphalt content (1). The old asphalt pavement is often recycled and processed in the same place to produce a granular pavement base. Hot in-place and cold in-place are the two methods of in-place recycling of asphalt pavement. Sometimes the recycling is performed by adding some additives, for example, cement or foamed asphalt to produce a stabilized base layer.

#### 2.1.1. Application of RAP as Base Layer

It is reported that at least 13 state agencies (Arizona, Illinois, Louisiana, Maine, Nebraska, New Hampshire, North Dakota, Oregon, Rhode Island, South Dakota, Texas, Virginia, and Wisconsin) have used RAP as aggregate in the base course (1).

Through the literature review a full project was found in Illinois which consisted of the construction of the pavement base and then the observation of the performance of the roadway. In 1993 the Lincoln Avenue of Urbana, Illinois, was constructed with RAP base (7). The overall structural response and the field performance were monitored; in the conclusion the author mentioned that RAP can be successfully used as a conventional flexible pavement base material (7).

#### 2.1.2. Examples of using RAP in base layers

The examples of the application of RAP in base layers in different state agencies are discussed here:

• Mn/DOT has adopted RAP as Class 7, which is an aggregate base mix containing salvage/recycle aggregate material (8).

• TXDOT allows 15%-20% RAP in the base layer but calls for a 100% RAP with a cement-stabilized base (9).

• FDOT allows 100% RAP only in paved shoulders, bike paths or other no traffic applications (10).

• NJDOT allows RAP in the HMA base layer. The maximum percentage of RAP is 25% (11).

• MHD's use of RAP in the base layer consists of recycling the existing pavement structure and a specified depth of acceptable sub-base material to produce a stabilized base (12).

Overall, the performance of RAP as a granular base, or as an additive to a granular base, has been described as satisfactory, good, very good, or excellent. Some of the positive features of RAP aggregates that have been properly incorporated into granular base applications include adequate bearing capacity, good drainage characteristics, and very good durability (1).

#### 2.2. Resilient Modulus

Resilient modulus is among the level two inputs for unbound layer strength in the current Mechanistic-Empirical Pavement Design Guide (MEPDG) (13). The resilient modulus ( $M_R$ ) is the measure of the modulus of elasticity (E) under rapid loading (i.e. moving wheel load) where E is calculated under gradual loading applications. Resilient modulus is defined in Equation 2.1. The definition of  $M_R$  terms are explained in Figure 2.1.

$$M_R = \frac{\sigma_d}{\varepsilon_r} \quad (2.1)$$

 $M_R$  = Resilient modulus.  $\sigma_d$  = Peak axial cyclic stress.  $\varepsilon_r$  = Peak axial resilient strain.



Figure 2.1 Definition of resilient modulus terms (14)

The loading type and duration used in the  $M_R$  testing simulates the actually occurring conditions in the field. When a wheel load is at a considerable distance from a given point in the pavement, the stress at that point is zero. When the load is directly above the given point, the stress at that point is the maximum (3). Resilient modulus values of material is obtained by applying a repeated axial cyclic stress of fixed magnitude, load duration, and cycle duration to a cylindrical test specimen. During testing, the specimen is subjected to a dynamic cyclic stress which simulates the stress from the vehicle and a static confining stress which simulates the stress from the surrounding material of a pavement section.

A number of factors affect the  $M_R$  of a material, some of which are moisture content, density, stress history, aggregate type, gradation, temperature, percent fines, and degree of saturation. There are a number of methods to perform the resilient modulus testing. The most common protocols for resilient modulus testing are: AASHTO T 292-91, AASHTO T 294-92, AASHTO T P46-94, LTPP Protocol P46 and NCHRP 1-28 (Appendix E).

The value of the  $M_R$  of these procedures is a measure of the elastic modulus of the unbound base, subbase materials and subgrade soils, recognizing its nonlinear variation with deviator stress and confining pressure.  $M_R$  values can be used with structural response analysis models to calculate the pavement structural response to wheel loads and with pavement design procedures to design pavement structures.

#### 2.3. Past Studies on MR of RAP

This section summarizes previous studies related to the  $M_R$  of RAP. Bejarano (15) investigated the  $M_R$  of RAP. Resilient modulus testing was performed by following the protocol LTTP P-46. Three samples were used for this study. One was RAP, and the other two samples were two California aggregate Class 2 base materials. He found that RAP had the highest  $M_R$  value.

In a project done for Massachusetts Highway Department (MHD), MacGregor et al. (16) conducted  $M_R$  tests with different ratios of RAP and aggregate (crushed stone and gravel) mixtures.  $M_R$  test results showed an increase of  $M_R$  with the addition of RAP to the blend of RAP and aggregate. Kim and Labuz (5) did a study which showed that the  $M_R$  of 50% RAP mixed with 50% aggregate were similar to the  $M_R$  of 100% aggregate. Bennert and Maher (17) found that by adding RAP to a dense-graded aggregate base course, the  $M_R$  increased.

#### 2.4. Investigation of Other Engineering Properties of RAP

To use RAP as a base layer, other engineering properties need to be investigated. In the next few sections, the literature on other properties is presented.

#### 2.4.1. Particle Size Distribution

Gradation is a very important material property for a pavement base layer because it influences the base stability. Numerous factors are responsible for the variation of the particle size distribution of milled or crushed RAP. Those factors include: the type of equipment used to produce the RAP, the type of aggregate in the pavement, and whether any underlying base or subbase aggregate has been mixed in with the reclaimed asphalt pavement material during the pavement removal. In an aggregate plus RAP blend, the gradation also depends on the characteristics of the virgin aggregate. In a laboratory testing program for a research study in Montana (18), it was found that the addition of RAP to the virgin materials resulted in an increase in the amount of particles passing the upper sieves, and a decrease in the percentage of particles passing the lower sieves.

#### 2.4.2. Specific Gravity

Based on laboratory testing conducted on the four materials examined in a research study done for the Montana Department of Transportation (18), it was found that the reclaimed asphalt

had an average specific gravity of 2.49. This value is significantly lower than the specific gravities of any of the virgin aggregate, which ranged from 2.67 to 2.72. The researchers concluded that the effect of adding RAP to a granular aggregate would result in a reduction in the overall specific gravity of the blend.

#### 2.4.3. Optimum Moisture Content and Maximum Dry Density

Guthrei et al. (19) showed that by increasing RAP content, optimum moisture content (OMC) and maximum dry density (MDD) decreased. They concluded that the reductions occurred because the RAP consisted of aggregate particles that were encased in asphalt, which led to reduced specific gravity values. The presence of the asphalt cement also led to reductions in the amount of water required to achieve MDD by reducing the amount of absorbed water and inter-particle friction (19). Kim and Labuz 2007 (5) have shown that increasing the RAP content decreased the OMC and MDD using both standard Proctor test and the gyratory compactor. MacGregor et al. 1999 (16) evaluated the relation between the RAP content and OMC and MDD using one RAP source and two sources of virgin aggregate, but they did not find a clear relation between the RAP content and any of the OMC or MDD.

#### 2.4.4. Moisture Susceptibility

Moisture susceptibility of a material can be defined as the potential to hold water by capillary rising. This property of a material causes the detrimental or unstable conditions of a pavement layer under traffic loading.

The moisture susceptibility testing on RAP was conducted by Guthrie et al. (19) using the tube suction test (TST). Guthrei et al. (19) have presented research using 25%, 50% and 75% RAP blended with other base materials. In TST, the dielectric value (DV) is a measure of the unbound water within the soil sample (19). Aggregates whose final dielectric values in the TST are less than 10 are expected to provide superior performance, while those with dielectric values above 16 are expected to provide poor performance as base materials. Aggregates having final dielectric values between 10 and 16 are expected to be marginally moisture susceptible (19). The authors of the study conclude that for materials having similar properties to those evaluated in their study, the use of high RAP contents can improve the moisture susceptibility of the base layer (20).

#### 2.5. Methods of Evaluating Freeze Thaw Effect on Construction Materials

One objective of this project is to evaluate the effect of freeze-thaw on the resilient modulus/strength of RAP as a base layer. Table 2.1 summarizes the methods that are used to investigate the effect of freeze-thaw on hot mix asphalt, Portland cement concrete, soil cement mixture, and coarse aggregate and fine-grained clay.

| Material<br>tested          | Freeze<br>conditions                                                                                                   | Thaw conditions                                                                           | Number<br>of F-T<br>cycles         | Reference                                       |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|
| Compacted<br>HMA            | $-18 \pm 2^{\circ} \text{ C} (-0.04 \pm 3.6^{\circ} \text{ F})$ for at least 15 hours, sample warped in plastic bag    | $60 \pm 1^{\circ} C (140 \pm 1.8^{\circ} F)$ for 24<br>hours, sample<br>immersed in water | 1                                  | ASTM D 4867<br>(21)                             |
| Portland Cement concrete    | From 40° F to 0° F a<br>within 2 to 5 hours, a<br>time shall be used for                                               | nd back to 40° F<br>t least 20 to 25% of<br>thawing                                       | Less than 36 cycles                | ASTM C 666<br>(22)                              |
| Soil-cement<br>mixture      | Less than -10° F (-<br>32° C ) for 24 hours                                                                            | 70° F (21° C) for 24<br>hours                                                             |                                    | ASTM D 560<br>(23)                              |
| Soil-cement<br>mixture      | 20° F for 16 hours                                                                                                     | 77° F for 8 hours                                                                         | 10                                 | George and<br>Donald 1963<br>(24)               |
| Portland Cement<br>concrete | $-17.8 \pm 2.8^{\circ}$ C at<br>rate of $2.8 \pm 0.6^{\circ}$ C<br>(by calculation it<br>should take about<br>14 hours | Warm back to<br>initial temperature<br>while sample<br>immersed in water                  | Record<br>height each<br>10 cycles | California test<br>No. 528-2001<br>(25)         |
| Coarse<br>Aggregate         | -15° F (-26° C) for<br>time enough for<br>sample to freeze, 90<br>minutes is ok                                        | 30 minutes at 70 to<br>81° F (21 to 27° C)                                                | 16                                 | AASHTO T<br>103-91<br>Nebraska<br>modified (26) |
| Fine grained clay           | 20° F (-7° C) for 18<br>hours                                                                                          | 57° F (14° C) for 6<br>hours                                                              | Up to 21<br>cycles                 | Da-Yan et al.<br>2007 (27)                      |
| Soil-cement<br>mixture      | 8 hours at cooling<br>rate < 10° F/hour                                                                                | 8 hours                                                                                   |                                    | Packard and<br>Chapman 1963<br>(28)             |

 Table 2.1 Summary of Freeze Thaw Testing for Basic Pavement Construction Material

# Chapter 3

### **Data Collection**

### 3.1. Introduction

This chapter presents the data collected from the Minnesota Department of Transportation (Mn/DOT) on the resilient modulus ( $M_R$ ) testing on RAP/aggregate blends. The data served as the start for the analysis and experimental design presented in the following chapter.

# **3.2.** Data Collection from Mn/DOT

Millings from a 2001 rehabilitation project on Mn/ROAD cell 26 constructed in 1994 provided the RAP source. The data collected from Mn/DOT included the following:

- M<sub>R</sub> testing on various percentages of RAP blended with different materials. The aggregates blended with RAP are Taconite and Minnesota's CL6 material,
- M<sub>R</sub> testing on samples with different combination of dry density and moisture content,
- Properties of the RAP which includes asphalt content, maximum dry density and optimum moisture content,
- Resilient modulus testing on different aggregate without RAP for comparison,
- Asphalt properties and the content of RAP samples.

# 3.2.1. The Resilient Modulus Data Collection

The M<sub>R</sub> testing was conducted in Mn/DOT Office of Materials laboratory, by following a modified version of the LTPP P-46 (35). Mn/DOT measures the axial displacements using three internal linear variable differential transducers (LVDTs). Resilient modulus samples were compacted using a vibratory hammer in a split mold following LTPP P-46 protocol requirements. The height of the samples was 12 inches and the diameter was 6 inches. Optimum moisture content and maximum dry density was determined using the standard Proctor test (AASHTO T 99, Mn/DOT modified). The resilient modulus testing was performed at different combinations of moisture content and dry density. The moisture contents were 7% and 8%, and the dry densities of the samples were 125 pcf, 130 pcf, and 135 pcf. The testing was conducted on the following materials:

- 100% RAP
- RAP + CL6 material (granular material) RAP content = 0%, 30%, 50%, 70%
- RAP + Taconite

RAP content = 50 %

Table 3.1 presents a list of M<sub>R</sub> testing samples collected from Mn/DOT.

| Sample                           | Dry<br>density,<br>pcf | Moisture<br>content | Mn/DOT<br>file name |
|----------------------------------|------------------------|---------------------|---------------------|
| 30% RAP + 70% Class 6            | 130.35                 | 6.59%               | 26GKR1              |
| 50% RAP + 50% Class 6 sample 1   | 130.24                 | 6.66%               | 26GGR2              |
| 50% RAP + 50% Class 6 sample 2   | 125.31                 | 6.71%               | 26GJR4              |
| 70% RAP + 30% Class 6            | 125.26                 | 6.76%               | 26GJR5              |
| 100% RAP, sample1                | 124.68                 | 6.83%               | C26031A             |
| 100% RAP , sample2               | 124.56                 | 6.86%               | C26032A             |
| 100% RAP, sample3                | 124.14                 | 7.28%               | 26036A              |
| 50% RAP+ 50% Taconite- sample 1  | 125.2                  | 6.78%               | 26GNR1              |
| 50% RAP+ 50% Taconite- sample 2  | 124.54                 | 6.63%               | 26GNR2              |
| 50% RAP+ 50% Taconite- sample 3  | 135.34                 | 6.58%               | 26GPR1              |
| 50% RAP+ 50% Taconite- sample 4  | 123.82                 | 8.26%               | 26HNR1              |
| 50% RAP+ 50% Taconite - sample 5 | 124.11                 | 7.77%               | 26HNR2              |
| 50% RAP+ 50% Taconite- sample 6  | 129.53                 | 7.65%               | 26HOR1              |

Table 3.1 List of  $M_R$  Testing Conducted by Mn/DOT

#### **Chapter 4**

#### **Experimental Considerations**

#### 4.1. Introduction

This chapter presents details of the testing program that was established to investigate the physical and mechanical properties of collected field RAP/aggregate samples.

Resilient modulus testing and the triaxial shear test were conducted on the collected samples. Moisture related damage to RAP/aggregate combinations due to freeze-thaw (F-T) cycles was evaluated. Several other tests including Micro-Deval, standard Proctor, specific gravity and asphalt extraction were conducted.

#### 4.2. General Description of Materials and Testing Procedures

This study was conducted on RAP and base materials that were collected by Mn/DOT from several rehabilitation projects in the state of Minnesota. A list of all tested materials is presented in Table 4.1. The dynamic cone penetration test was conducted on the field samples and results are presented in Appendix G. The test program was categorized into 2 phases. Phase 1, the original plan of the project, investigated the effect of the F-T cycles on materials compacted at optimum moisture content (OMC). Phase 2 contains more experiments on samples compacted at moisture content higher than OMC. Phase 2 was added to the project by the research team as we thought that its results could support the recommendations regarding the effect of F-T on RAP/aggregate blends. Figures 4.1 and 4.2 present the detailed testing matrix for the two phases.

| Material code                                   | Description                         | Notes                       |  |
|-------------------------------------------------|-------------------------------------|-----------------------------|--|
|                                                 |                                     |                             |  |
| С                                               | Class 5                             | Base aggregate              |  |
| R                                               | RAP - TH 10 – Lake Park             | 100% RAP material           |  |
| Т                                               | 50 % Class 5 + 50 % RAP TH10        | Laboratory blended material |  |
| S                                               | 25% Class 5 + 75 % RAP TH 10        | Laboratory blended material |  |
| U                                               | TH 19 - LT Sh 1d – MM 101.0 – CL 7B | Field blend                 |  |
| V                                               | TH 19 - RT Sh 1d – MM 104.0 – CL 7B | Field blend                 |  |
| W                                               | TH 22 – NBL - RT Sh 1d – CL 7 BG    | Field blend                 |  |
| Notes:                                          |                                     | ·                           |  |
| TH: Trunk highway                               |                                     |                             |  |
| MM: Refer to mile at which sample was collected |                                     |                             |  |

**Table 4.1 List of Tested RAP Samples** 

The  $M_R$  samples were coded in the following manner: Litter 1-Litter 2-Number. The sample code meaning is presented in Table 4.2.

|                                         | Litter 1                                                                | Litter 2                | Number               |
|-----------------------------------------|-------------------------------------------------------------------------|-------------------------|----------------------|
|                                         | Represent tested material                                               | Status of the sample    | Express material     |
|                                         |                                                                         | with respect to freeze- | moisture content and |
|                                         |                                                                         | thaw conditioning       | replicate            |
| Possible                                | C, R, S, T, S, U, V or                                                  | N = No freeze- thaw     | 1 = OMC              |
| values                                  | W                                                                       |                         | 2=OMC (replicate)    |
|                                         | (material symbols are                                                   | F= sample was subject   | 3 = OMC + 1%         |
|                                         | defined in Table 1)                                                     | to 2 freeze thaw cycles | 4= OMC + 2%          |
|                                         |                                                                         | before testing          |                      |
|                                         |                                                                         |                         |                      |
| Examples                                | mples C-F-1: Class 5, subject to 2 freeze thaw cycles, compacted at OMC |                         |                      |
|                                         | T-N-3: 50% Class 5 + 50% RAP TH-10, no freeze-thaw conditioning,        |                         |                      |
|                                         | compacted at (MC = OMC + $1\%$ )                                        |                         |                      |
| MC: Moisture content at compaction time |                                                                         |                         |                      |
| OMC: Optimum moisture content           |                                                                         |                         |                      |

Table 4.2 M<sub>R</sub> Samples Coding

Detailed testing results will be presented in the following Sequence:

- Material index properties
  - Gradation
  - Asphalt extraction
  - o Moisture density relations
- Evaluation of material durability
  - o Micro-Deval.
- Structure properties of RAP
  - Resilient modulus testing
  - Freeze thaw conditioning
  - o Shear test



Figure 4.1 Phase 1 testing matrix (M<sub>R</sub> at optimum moisture content)

MR: Resilient modulus testing (for 1 sample and a replicate) (at optimum moisture content)

ST: Shear test at 4 and 8 psi confining pressure

MD: Micro-Deval

MC: Moisture content and maximum dry density by gyratory compactor

EX: Asphalt extraction

GR: Aggregate gradation

FT (MR&ST): Resilient modulus and shear test for freeze-thaw conditioned sample (testing for 1 sample and a replicate at optimum moisture content)



Figure 4.2 Phase 2 testing matrix (M<sub>R</sub> at moisture content higher than the optimum)

SP: Standard Proctor

OMC: Optimum moisture content as determined by gyratory compactor

MR: Resilient modulus testing

FT (M<sub>R</sub>): Resilient modulus test for freeze- thaw conditioned sample

### 4.3. Material Index Properties

This section presents the methods used to determine aggregate gradation, moisture density relationship and asphalt content for the investigated materials.

### 4.3.1. Aggregate Gradation

Gradation is a very important material property for the pavement base layer because it influences the base stability. Dry sieve analysis was done based on ASTM C136. Representative material of each sample was collected and oven dried at a temperature less than 140° F for 2 days. Then, the material of each sample was put into the soil sieve shaker; Figure 4.3; and the mass retained on each sieve was measured after 10 minutes of shaking.



Figure 4.3 Sieve shaker

# 4.3.2. Asphalt Extraction

Asphalt content is one of the criteria that are normally considered by the highway agencies when trying to utilize RAP material. In this research, asphalt extraction was done by reflux extraction following ASTM D2172 (Method B). Figure 4 presents the asphalt extraction apparatus. A representative amount of the material was oven dried. The material was then placed in the 2 cones, 500 grams in each cone. Trichloroethylene (TCE) was used as an extraction solvent.



**Figure 4.4 Asphalt extraction apparatus** 

### 4.3.3. Maximum Dry Density and Optimum Moisture Content

The relation between the dry density and moisture content was conducted by gyratory compactor (Figure 4.5) and standard Proctor tests. All material greater than 12.5 mm was replaced by material passing 12.5 mm and retained on sieve # 4 (5, 29). The optimum moisture content and maximum dry density are based on samples compacted by the gyratory compactor at a pressure equal to 600 Kpa, the number of gyrations equal to 50, the machine was set to conduct 30 revolutions per minute and the angle of gyration was set to 1.25 degrees. This setup was recommended in the literature as it is the best to simulate field conditions (5).

The standard Proctor test was conducted on all materials following the Mn/DOT procedure # 1305 in Mn/DOT procedure manual "The Moisture-Density Relations of Soils Using A 2.5kg (5.5 LB) Rammer and A 305mm (12 inch) Drop, AASHTO Designation T 99, Method "C" (Mn/DOT Modified)". All particles greater than 12.5 mm were replaced by particles passing 12.5 mm and retained on sieve # 4 to facilitate the comparison between the maximum dry density and optimum moisture content by the gyratory compactor and standard Proctor test.



Figure 4.5 Superpave gyratory compactor used

# 4.4. Evaluation of Material Durability

Durability is a very important property for the aggregate to be used in pavement applications. Aggregate and RAP durability was evaluated in this research using the Micro-Deval test.

# 4.4.1. Resistance to Abrasion and Degradation by Micro-Deval

The Micro-Deval test provides a measure of durability and abrasion resistance of mineral aggregates. The test depends on the actions of abrasion between aggregate particles and steel balls in the presence of water (30). The Micro-Deval test for fine aggregate was conducted based on Mn/DOT procedure # 1217 in Mn/DOT procedure manual "Resistance of Fine Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus". The sample was sieved into separate sizes. The samples were oven dried then made up to F.M. of 2.8 using the weights presented in Table 4.3. The sample was then saturated in tap water for  $24 \pm 4$  hours. The sample was placed in the Micro-Deval abrasion container with  $1250 \pm 5$  gms of the stainless steel balls and  $750 \pm 25$ ml of tap water. The Micro-Deval machine (Figure 4.6) then runs at  $100 \pm 5$  rpm for 15 minutes. The material was washed over # 200 sieves, oven dried and the new weight of the material was recorded.

The Micro-Deval test for coarse aggregate was done based on Mn/DOT procedure #1216 as listed in Mn/DOT procedure manual "Resistance of Abrasion of coarse aggregate to Degradation by Abrasion in the Micro-Deval Apparatus, Ontario Standard Test Method LS-618 (Mn/DOT Modified)". 1500 gms of coarse aggregate were soaked in water for 2 hours. The

sample was placed with water in the Micro-Deval abrasion container with  $5000 \pm 5$  gms of the stainless steel balls and the container was placed on the Micro-Deval machine. After the test material retained on sieve # 4 was oven dried and the new weight is recorded.

| Passing Sieve # | Retained<br>on<br>Sieve # | Weight<br>Retained,<br>gm |
|-----------------|---------------------------|---------------------------|
| #4              | # 8                       | 50                        |
| # 8             | # 16                      | 125                       |
| # 16            | # 30                      | 125                       |
| # 30            | # 50                      | 100                       |
| # 50            | #100                      | 75                        |
| #100            | # 200                     | 25                        |
| Total           |                           | 500                       |

**Table 4.3 Fine Aggregate Weights for Micro-Deval Test** 



**Figure 4.6 Micro-Deval apparatus** 

#### 4.5. Structural Properties of RAP

The structural capacity of the base layer is evaluated by its resilient modulus and shear strength. The effect of freeze thaw on structural capacity of RAP is evaluated. This section gives detailed procedures followed in the resilient modulus and shear strength testing.

#### 4.5.1. Resilient Modulus Testing

The resilient modulus test was conducted based on NCHRP 1-28A (14) testing protocol and Mn/DOT requirements. The resilient modulus is the ratio of axial cyclic stress to the recoverable strain. In order to determine the resilient modulus of unbound materials, a cyclic stress of fixed magnitude for 0.1 second is applied to the specimen followed by a 0.9 second rest period. The specimen is subjected to a confining stress provided by means of a triaxial pressure chamber. The test loads that were applied are presented in Table 4.4. The system used to measure the resilient modulus is presented in Figures 4.7 and 4.8. A detailed description of the testing equipment and calibration process is provided in Appendix B.



Figure 4.7 Resilient modulus sample during testing on the MTS
| Sequence | Confining pressure | Contact<br>stress | Cyclic<br>stress | Maximum<br>stress | Number of load repetitions |
|----------|--------------------|-------------------|------------------|-------------------|----------------------------|
|          | psi                | psi               | psi              | psi               |                            |
| 0        | 15                 | 3                 | 30               | 33                | 1000                       |
| 1        | 3                  | 0.6               | 1.5              | 2.1               | 100                        |
| 2        | 6                  | 1.2               | 3                | 4.2               | 100                        |
| 3        | 10                 | 2                 | 5                | 7                 | 100                        |
| 4        | 15                 | 3                 | 7.5              | 10.5              | 100                        |
| 5        | 20                 | 4                 | 10               | 14                | 100                        |
| 6        | 3                  | 0.6               | 3                | 3.6               | 100                        |
| 7        | 6                  | 1.2               | 6                | 7.2               | 100                        |
| 8        | 10                 | 2                 | 10               | 12                | 100                        |
| 9        | 15                 | 3                 | 15               | 18                | 100                        |
| 10       | 20                 | 4                 | 20               | 24                | 100                        |
| 11       | 3                  | 0.6               | 6                | 6.6               | 100                        |
| 12       | 6                  | 1.2               | 12               | 13.2              | 100                        |
| 13       | 10                 | 2                 | 20               | 22                | 100                        |
| 14       | 15                 | 3                 | 30               | 33                | 100                        |
| 15       | 20                 | 4                 | 40               | 44                | 100                        |
| 16       | 3                  | 0.6               | 9                | 9.6               | 100                        |
| 17       | 6                  | 1.2               | 18               | 19.2              | 100                        |
| 18       | 10                 | 2                 | 30               | 32                | 100                        |
| 19       | 15                 | 3                 | 45               | 48                | 100                        |
| 20       | 20                 | 4                 | 60               | 64                | 100                        |
| 21       | 3                  | 0.6               | 15               | 15.6              | 100                        |
| 22       | 6                  | 1.2               | 30               | 31.2              | 100                        |
| 23       | 10                 | 2                 | 50               | 52                | 100                        |
| 24       | 15                 | 3                 | 75               | 78                | 100                        |
| 25       | 20                 | 4                 | 100              | 104               | 100                        |
| 26       | 3                  | 0.6               | 21               | 21.6              | 100                        |
| 27       | 6                  | 1.2               | 42               | 43.2              | 100                        |
| 28       | 10                 | 2                 | 70               | 72                | 100                        |
| 29       | 15                 | 3                 | 105              | 108               | 100                        |
| 30       | 20                 | 4                 | 140              | 144               | 100                        |

 Table 4.4 Test Sequence for Base/Subbbase Materials NCHRP1-28A-procedure 1A (14)



Figure 4.8 Resilient modulus sample with the internal load cell and LVDTs connected around the sample

# 4.5.1.1. Resilient Modulus Sample Preparation

The following procedure was followed during sample preparation and testing:

- Dry the sample in the oven for 24 hours at 150° F.
- Mix the sample material until it is homogeneous.
- Mix the required amount of water and soil to achieve the predefined moisture content until the sample become homogeneous.
- Take 2 samples for moisture content from different locations from the sample.
- Seal the reminder of the sample in an airtight container.
- Check that the moisture content is within 0.5% of the objective moisture content.
- Calculate the target weight of the material to be molded in the gyratory compactor to achieve the required dry density.
- Compact the sample using the gyratory compactor.
- Prepare 2 molds with the same material, (No visual lateral movement was found between the top and bottom samples in any of the tested samples at the end of the testing, deformation shape reflected that the 2 molds behaved as one sample).
- Calculate the actual wet and dry density.
- Place the upper plate on top of the sample, seal with o-rings.
- Assemble the LVDTs around the sample, connect the internal load cell.

- Check to make sure that the LVDTs have a sufficient stroke range.
- Cover and close the triaxial cell.
- Connect the cell to the air line, adjust the confining pressure to 15 psi
- Resilient modulus testing is done on a MTS hydraulic testing machine, the software used to control the test is MultiPurpose TestWare from MTS systems.
- Load sequences are in accordance to NCHRP 1-28a testing protocol, procedure 1A.
- Collect 512 data point/sec for the last 5 seconds of each load sequence.

Tables 4.5 and 4.6 list all tested samples, objective moisture content and objective dry density. Tables 4.7 to 4.10 give information regarding moisture and density control for all resilient modulus samples. 100 % of the samples achieved the objective moisture content  $\pm 0.5\%$  as required by the NCHRP 1-28a protocol. A few samples failed to achieve the objective dry density when compacted at moisture content higher than the optimum.

# 4.5.2. Quality Control of M<sub>R</sub> testing Data

Mn/DOT quality control procedures (31) for the resilient modulus data were followed.

• The coefficient of variation (COV) between the  $M_R$  values collected during the last 5 seconds of the each sequence was calculated. The COV was controlled to be less than 10%. All cycles that failed to meet Mn/DOT requirements were canceled from the analysis.

$$COV = \frac{Sdev}{Average}$$
(4.1)

Where:

 $S_{dev}$  = Standard deviation of  $M_R$  values during the last five cycles in each loading sequence.

Average = Average  $M_R$  value of the last five cycles in each loading sequence.

• The signal to noise ratio (SNR) was calculated for both load and displacement. A SNR value of 3 is the minimum limit for each of the three LVDTs at each cycle as reported by Mn/DOT. A SNR value of 10 was used for each loading cycle. All cycles that failed to pass the limits were withdrawn. Figure 4.9 and Equation 4.2 present the SNR.

$$SNR = 3 * \frac{Peak}{Sden (base line)}$$
 (4.2)

Where:

Peak= Peak values of load or LVDT from time history data. Sdev (baseline)= standard deviation of baseline values

• The uniformity of the deformation on the sample was evaluated using the angle of rotation (AR) following Mn/DOT procedures. The limit value for AR is determined by Mn/DOT to be 0.04 degrees. All cycles that failed to meet Mn/DOT requirements were canceled from the analysis.



Figure 4.9 Example represent SNR concept (31)

#### 4.5.3. Freeze Thaw Conditioning

One of the objectives of this research h is to evaluate the effect of freeze-thaw on the stiffness /strength RAP material. To achieve this objective one set of the samples were tested for resilient modulus and shear strength immediately after compaction. The second set was subject to freeze-thaw conditioning before  $M_R$  testing.

The freeze thaw conditioning consisted of:

- Freezing time: 24 hours.
- Freezing temperature: temperature below -12° F.
- Thawing time: 24 hours.
- Thawing temperature and humidity level: Room temperature  $(75 \pm 2^{\circ} \text{ F})$ .
- The sample was kept inside the latex membrane during the freeze-thaw process to keep its moisture content.
- The overall freeze-thaw conditioning consisted of 2 cycles (freeze, thaw, freeze and thaw then test for resilient modulus and shear strength).

#### 4.5.4. Triaxial Shear Test

The triaxial shear test was conducted on the samples which were compacted at the optimum moisture content and maximum dry density. The shear test was conducted after the

resilient modulus testing. The shear test was conducted in strain controlled mode, at a loading rate of 0.03 mm/sec and confining pressure of 4 and 8 psi. Figure 4.10 presents the basic concept for Mohr-Coulomb failure criteria which was used to calculate the friction angle and cohesion for the tested samples.

| Sample ID | Description                                             | Target | Target dry |
|-----------|---------------------------------------------------------|--------|------------|
|           |                                                         | MC, %  | density,   |
|           |                                                         |        | $Lb/ft^3$  |
| C-N-1     | 100% Class 5, OMC, no freeze                            | 6.4    | 138.7      |
| C-N- 2    | 100% Class 5, OMC, no freeze, replicate                 | 6.4    | 138.7      |
| CNOMC-3   | 100% Class 5, OMC, no freeze, 2 <sup>nd</sup> replicate | 6.4    | 138.7      |
| C-F-1     | 100% Class 5, OMC, 2 freeze-thaw cycles                 | 6.4    | 138.7      |
| C-F-2     | 100% Class 5, OMC, 2 freeze-thaw cycles, replicate      | 6.4    | 138.7      |
| T-N1      | 50% Class 5- 50% RAP TH 10, OMC, no freeze              | 5.2    | 136.5      |
| T-N-2     | 50% Class 5- 50% RAP TH 10, OMC, no freeze,             | 5.2    | 136.5      |
|           | replicate                                               |        |            |
| T-F-1     | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-thaw          | 5.2    | 136.5      |
|           | cycles                                                  |        |            |
| T-F-2     | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-thaw          | 5.2    | 136.5      |
|           | cycles, replicate                                       |        |            |
| S-N-1     | 25% Class 5- 75% RAP TH 10, OMC, no freeze              | 5.7    | 134.8      |
| S-N-2     | 25% Class 5- 75% RAP TH 10, OMC, no freeze,             | 5.7    | 134.8      |
|           | replicate                                               |        |            |
| S-F-1     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-thaw          | 5.7    | 134.8      |
|           | cycles                                                  |        |            |
| S-F-2     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-thaw          | 5.7    | 134.8      |
|           | cycles, replicate                                       |        |            |
| R-N-1     | 100% RAP TH 10, OMC, no freeze                          | 5.5    | 132.5      |
| R-N-2     | 100% RAP TH 10, OMC, no freeze, replicate               | 5.5    | 132.5      |
| R-F-1     | 100 % RAP TH 10, OMC, 2 freeze-thaw cycles              | 5.5    | 132.5      |
| R-F-2     | 100% RAP TH 10, OMC, 2 freeze-thaw cycles, replicate    | 5.5    | 132.5      |
| U-N-1     | RAP TH 19-101, OMC, No freeze                           | 5.9    | 122.5      |
| U-N-2     | RAP TH 19-101, OMC, No freeze, replicate                | 5.9    | 122.5      |
| U-F-1     | RAP TH 19-101, OMC, 2 freeze-thaw cycles                | 5.9    | 122.5      |
| U-F-2     | RAP TH 19-101, OMC, 2 freeze-thaw cycles, replicate     | 5.9    | 122.5      |
| V-N-1     | RAP TH 19-104, OMC, no freeze                           | 7      | 129.3      |
| V-N-2     | RAP TH 19-104, OMC, no freeze, replicate                | 7      | 129.3      |
| V-F-1     | RAP TH 19-104, OMC, 2 freeze-thaw cycles                | 7      | 129.3      |
| V-F-2     | RAP TH 19-104, OMC, 2 freeze-thaw cycles, replicate     | 7      | 129.3      |
| W-N-1     | RAP TH 22, OMC, no freeze                               | 5.25   | 133.74     |
| W-N-2     | RAP TH 22, OMC, no freeze, replicate                    | 5.25   | 133.74     |
| W-F-1     | RAP TH 22, OMC, 2 freeze-thaw cycles                    | 5.25   | 133.74     |
| W-F-2     | RAP TH 22, OMC, 2 freeze-thaw cycles, replicate         | 5.25   | 133.74     |

Table 4.5 List of Tested  $M_R$  Samples for Phase 1  $\,$ 

MC= Moisture content

| Sample ID | Description                                              | Target | Target dry         |
|-----------|----------------------------------------------------------|--------|--------------------|
| -         |                                                          | MC, %  | density,           |
|           |                                                          |        | Lb/ft <sup>3</sup> |
| C-N-3     | 100% Class 5, OMC + 1%, no freeze                        | 7.4    | 138.7              |
| C-N-4     | 100% Class 5, OMC + 2%, no freeze                        | 8.4    | 138.7              |
| C-F- 4    | 100% Class 5, OMC + 2%, 2 freeze-thaw cycles             | 8.4    | 138.7              |
| T-N- 3    | 50% Class 5 - 50% RAP TH 10, OMC +1%, no freeze          | 6.2    | 136.5              |
| T-N- 4    | 50% Class 5 - 50% RAP TH 10, OMC + 2%, no freeze         | 7.2    | 136.5              |
| T-F- 3    | 50% Class 5 - 50% RAP TH 10, OMC + 1%, 2 freeze-thaw     | 6.2    | 136.5              |
|           | cycles                                                   |        |                    |
| T-F- 4    | 50% Class 5- 50% RAP TH 10, OMC+2%, 2 freeze-thaw        | 7.2    | 136.5              |
|           | cycles, replicate                                        |        |                    |
| S-N- 3    | 25% Class 5- 75% RAP TH 10, OMC+1%, no freeze            | 6.7    | 134.8              |
| S-N-4     | 25% Class 5- 75% RAP TH 10, OMC+2%, no freeze            | 7.7    | 134.8              |
| S-F-4     | 25% Class 5- 75% RAP TH 10, OMC+2%, 2 freeze-thaw        | 7.7    | 134.8              |
|           | cycles, replicate                                        |        |                    |
| R-N- 3    | 100% RAP TH 10, OMC + 1%, no freeze                      | 6.5    | 132.5              |
| R-N-4     | 100% RAP TH 10, OMC + 2%, no freeze, replicate           | 7.5    | 132.5              |
| R-F- 3    | 100% RAP TH 10, OMC + 1%, 2 freeze-thaw cycles           | 6.5    | 132.5              |
| R-F- 4    | 100% RAP TH 10, OMC + $2\%$ , 2 freeze-thaw cycles,      | 7.5    | 132.5              |
|           | replicate                                                |        |                    |
| U-N- 4    | RAP TH 19-101, OMC + 2%, no freeze, replicate            | 7.9    | 122.5              |
| V-N-4     | RAP TH 19-104, OMC + 2%, no freeze                       | 9      | 129.3              |
| V-F- 4    | RAP TH 19-104, OMC + 2%, 2 freeze-thaw cycles            | 9      | 129.3              |
| W-N-4     | RAP TH 22, OMC + 2%, no freeze                           | 7.25   | 133.74             |
| W-F-2     | RAP TH 22, OMC + $2\%$ , 2 freeze-thaw cycles, replicate | 7.25   | 133.74             |

 Table 4.6 List of Tested Samples for Phase 2

MC = Moisture content

| Sample | Description                                             | Target | MC of sample   | $\Delta$ MC, |
|--------|---------------------------------------------------------|--------|----------------|--------------|
| ID     | *                                                       | MC, %  | before test, % | %            |
| C-N-1  | 100% Class 5, OMC, no freeze                            | 6.4    | 6.4            | 0            |
| C-N-2  | 100% Class 5, OMC, no freeze, replicate                 | 6.4    | 6.4            | 0            |
| CNOMC- | 100% Class 5, OMC, no freeze, 2 <sup>nd</sup> replicate | 6.4    | 6.5            | 0.1          |
| 3      |                                                         |        |                |              |
| C-F-1  | 100% Class 5, OMC, 2 freeze-thaw cycles                 | 6.4    | 6.4            | 0            |
| C-F-2  | 100% Class 5, OMC, 2 freeze-thaw cycles,                | 6.4    | 6.57           | 0.17         |
|        | replicate                                               |        |                |              |
| T-N-1  | 50% Class 5- 50% RAP TH 10, OMC, no freeze              | 5.2    | 5.15           | -0.05        |
| T-N-2  | 50% Class 5- 50% RAP TH 10, OMC, no freeze,             | 5.2    | 4.87           | -0.33        |
|        | replicate                                               |        |                |              |
| T-F-1  | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.25           | -0.05        |
|        | thaw cycles                                             |        |                |              |
| T-F-2  | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.22           | 0.02         |
|        | thaw cycles, replicate                                  |        |                |              |
| S-N-1  | 25% Class 5- 75% RAP TH 10, OMC, no freeze              | 5.7    | 5.4            | -0.3         |
| S-N-2  | 25% Class 5- 75% RAP TH 10, OMC, no freeze,             | 5.7    | 5.93           | 0.23         |
|        | replicate                                               |        |                |              |
| S-F-1  | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75           | 0            |
|        | thaw cycles                                             |        |                |              |
| S-F-2  | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75           | 0            |
|        | thaw cycles, replicate                                  |        |                |              |
| R-N-1  | 100% RAP TH 10, OMC, no freeze                          | 5.5    | 5.4            | 0.1          |
| R-N-2  | 100% RAP TH 10, OMC, no freeze, replicate               | 5.5    | 5.1            | -0.4         |
| R-F-1  | 100% RAP TH 10, OMC, 2 freeze-thaw cycles               | 5.5    | 5.42           | 08           |
| R-F-2  | 100% RAP TH 10, OMC, 2 freeze-thaw cycles,              | 5.5    | 5.5            | 0            |
|        | replicate                                               |        |                |              |
| U-N-1  | RAP TH 19-101, OMC, no freeze                           | 5.9    | 6.3            | 0.4          |
| U-N-2  | RAP TH 19-101, OMC, no freeze, replicate                | 5.9    | 6.08           | 0.18         |
| U-F-1  | RAP TH 19-101, OMC, 2 freeze-thaw cycles                | 5.9    | 5.8            | -0.1         |
| U-F-2  | RAP TH 19-101, OMC, 2 freeze-thaw cycles,               | 5.9    | 6.0            | 0.1          |
|        | replicate                                               |        |                |              |
| V-N-1  | RAP TH 19-104, OMC, no freeze                           | 7      | 7.1            | 0.1          |
| V-N-2  | RAP TH 19-104, OMC, no freeze, replicate                | 7      | 6.7            | -0.30        |
| V-F-1  | RAP TH 19-104, OMC, 2 freeze-thaw cycles                | 7      | 6.6            | -0.4         |
| V-F-2  | RAP TH 19-104, OMC, 2 freeze-thaw cycles,               | 7      | 6.7            | -0.30        |
|        | replicate                                               |        |                |              |
| W-N-1  | RAP TH 22, OMC, no freeze                               | 5.25   | 5.5            | 0.25         |
| W-N-2  | RAP TH 22, OMC, no freeze, replicate                    | 5.25   | 5.45           | 0.20         |
| W-F-1  | RAP TH 22, OMC, 2 freeze-thaw cycles                    | 5.25   | 5.5            | 0.25         |
| W-F-2  | RAP TH 22, OMC, 2 freeze-thaw cycles,                   | 5.25   | 5.45           | 0.20         |
|        | replicate                                               |        |                |              |

 Table 4.7 Moisture Content Control for Phase 1

MC= Moisture content

| Sample | Description                                    | Target | MC of sample   | $\Delta$ MC, |
|--------|------------------------------------------------|--------|----------------|--------------|
| ID     |                                                | MC, %  | before test, % | %            |
| C-N-3  | 100% Class 5, OMC + 1%, no freeze              | 7.4    | 7.4            | 0            |
| C-N-4  | 100% Class 5, OMC+ 2%, no freeze               | 8.4    | 8.65           | 0.25         |
| C-F- 4 | 100% Class 5, OMC+2%, 2 freeze-thaw cycles     | 8.4    | 8.3            | -0.1         |
| T-N- 3 | 50% Class 5- 50% RAP TH 10, OMC + 1%, no       | 6.2    | 5.95           | -0.25        |
|        | freeze                                         |        |                |              |
| T-N- 4 | 50% Class 5- 50% RAP TH 10, OMC + 2%, no       | 7.2    | 7              | -0.20        |
|        | freeze                                         |        |                |              |
| T-F- 3 | 50% Class 5- 50% RAP TH 10, OMC + 1%, 2        | 6.2    | 5.95           | -0.25        |
|        | freeze-thaw cycles                             |        |                |              |
| T-F- 4 | 50% Class 5- 50% RAP TH 10, OMC + 2%, 2        | 7.2    | 7.35           | 0.15         |
|        | freeze-thaw cycles, replicate                  |        |                |              |
| S-N-3  | 25% Class 5- 75% RAP TH 10, OMC + 1%, no       | 6.7    | 6.5            | -0.20        |
|        | freeze                                         |        |                |              |
| S-N-4  | 25% Class 5- 75% RAP TH 10, OMC + 2%, no       | 7.7    | 7.64           | -0.06        |
|        | freeze                                         |        |                |              |
| S-F-4  | 25% Class 5- 75% RAP TH 10, OMC + 2%, 2        | 7.7    | 7.84           | 0.14         |
|        | freeze-thaw cycles, replicate                  |        |                |              |
| R-N- 3 | 100% RAP TH 10, OMC + 1%, no freeze            | 6.5    | 6.3            | -0.20        |
| R-N-4  | 100% RAP TH 10, OMC + 2%, no freeze,           | 7.5    | 7.5            | 0            |
|        | replicate                                      |        |                |              |
| R-F- 3 | 100% RAP TH 10, OMC + 1%, 2 freeze-thaw        | 6.5    | 6.36           | -0.14        |
|        | cycles                                         |        |                |              |
| R-F- 4 | 100% RAP TH 10, OMC + 2%, 2 freeze-thaw        | 7.5    | 7.4            | -0.10        |
|        | cycles, replicate                              |        |                |              |
| U-N- 4 | RAP TH 19-101, OMC + 2%, no freeze, replicate  | 7.9    | 8.4            | 0.50         |
| U-N-   | RAP TH 19-101, OMC, no freeze, replicate       | 5.9    | 6              | 0.1          |
| OMC-   |                                                |        |                |              |
| 97MDD  |                                                |        |                |              |
| V-N- 4 | RAP TH 19-104, OMC + 2%, no freeze             | 9      | 9.5            | 0.50         |
| V-F- 4 | RAP TH 19-104, OMC + 2%, 2 freeze-thaw         | 9      | 9.4            | 0.40         |
|        | cycles                                         |        |                |              |
| W-N-4  | RAP TH 22, OMC $+ 2\%$ , no freeze             | 7.25   | 7.1            | -0.15        |
| W-F-4  | RAP TH 22, OMC + $2\%$ , 2 freeze-thaw cycles, | 7.25   | 7.50           | 0.25         |
|        | replicate                                      |        |                |              |

 Table 4.8 Moisture Content Control for Phase 2

MC= Moisture content

| Sample<br>ID | # of<br>gyrations<br>top | # of<br>gyrations<br>bottom | Total<br>sample<br>height,<br>mm | ADD,<br>lbf | ADD/MDD,<br>% |
|--------------|--------------------------|-----------------------------|----------------------------------|-------------|---------------|
| C-N-1        | 57                       | 46                          | 293.14                           | 139.27      | 100.34        |
| C-N-2        | 49                       | 47                          | 293.4                            | 139.25      | 100.33        |
| C-F-1        | 55                       | 59                          | 293.4                            | 139.6       | 100.6         |
| C-F-2        | 69                       | 77                          | 293.05                           | 138.9       | 100.1         |
| T-N-1        | 73                       | 66                          | 301.7                            | 136.88      | 100.27        |
| T-N-2        | 61                       | 48                          | 303.3                            | 136.2       | 99.8          |
| T-F-1        | 45                       | 40                          | 301.4                            | 136.7       | 100.16        |
| T-F-2        | 48                       | 50                          | 301.46                           | 136.8       | 100.2         |
| S-N-1        | 40                       | 35                          | 305.1                            | 135.1       | 100.2         |
| S-N-2        | 51                       | 55                          | 302.7                            | 135.3       | 100.4         |
| S-F-1        | 54                       | 57                          | 303.4                            | 135.3       | 100.3         |
| S-F-2        | 42                       | 35                          | 303.4                            | 135.2       | 100.3         |
| R-N-1        | 140                      | 136                         | 305                              | 132.34      | 99.88         |
| R-N-2        | 115                      | 101                         | 304.4                            | 132.5       | 100           |
| R-F-1        | 50                       | 45                          | 302.2                            | 132.56      | 100.05        |
| R-F-2        | 59                       | 58                          | 305.2                            | 132.55      | 100           |
| U-N-1        | 120                      | 97                          | 305.2                            | 123.5       | 100.8         |
| U-N-2        | 104                      | 130                         | 293.6                            | 123.09      | 100.5         |
| U-F-1        | 150                      | 150                         | 311.4                            | 121.8       | 99.4          |
| U-F-2        | 150                      | 150                         | 314.3                            | 121.44      | 99.4          |
| V-N-1        | 134                      | 96                          | 305.1                            | 129.9       | 100.47        |
| V-N-2        | 83                       | 83                          | 306                              | 129.96      | 100.5         |
| V-F-1        | 120                      | 50                          | 307                              | 129.56      | 100.2         |
| V-F-2        | 50                       | 50                          | 306.5                            | 129.62      | 100.25        |
| W-N-1        | 119                      | 81                          | 306.75                           | 134.16      | 100.31        |
| W-N-2        | 102                      | 98                          | 306.96                           | 134.25      | 100.38        |
| W-F-1        | 66                       | 66                          | 305.2                            | 133.83      | 100.06        |
| W-F-2        | 73                       | 67                          | 305.4                            | 133.93      | 100.14        |

 Table 4.9 Specimen Compaction Control for Phase 1

ADD = Average dry density MDD= Maximum dry density

| Sample ID         | # of      | # of gyrations | Total      | ADD, lbf | ADD/MDD, % |
|-------------------|-----------|----------------|------------|----------|------------|
| 1 I               | gyrations | bottom         | Sample     | , ,      |            |
|                   | top       |                | height, mm |          |            |
| C-N-3             | 150       | 150            | 299.74     | 137.6    | 99.11      |
| C-N-4             | 150       | 150            | 301.8      | 134.8    | 97.12      |
| C-F- 4            | 150       | 150            | 297        | 136.7    | 98.5       |
| T-N- 3            | 150       | 50             | 305        | 136.9    | 100.29     |
| T-N- 4            | 150       | 150            | 304.95     | 134.4    | 98.46      |
| T-F- 3            | 57        | 40             | 302.2      | 136.6    | 100.1      |
| T-F- 4            | 150       | 150            | 312        | 133.6    | 97.9       |
| S-N- 3            | 150       | 150            | 306.2      | 131.6    | 97.63      |
| S-N-4             | 150       | 150            | 307.7      | 130.45   | 96.77      |
| S-F-4             | 150       | 150            | 306.4      | 130.65   | 96.92      |
| R-N- 3            | 64        | 69             | 323.4      | 131.9    | 99.56      |
| R-N-4             | 150       | 150            | 306.9      | 129.2    | 97.5       |
| R-F- 3            | 82        | 130            | 302.2      | 132.4    | 99.92      |
| R-F- 4            | 150       | 150            | 308        | 129.6    | 97.8       |
| U-N- 4            | 150       | 150            | 307.4      | 123.8    | 101        |
| U-N-OMC-<br>97MDD | 150       | 150            | 319.5      | 119.46   | 97.5       |
| V-N-4             | 150       | 150            | 312.6      | 124.48   | 96.27      |
| V-F- 4            | 150*      | 150*           | 307.1      | 125      | 96.7       |
| W-N-4             | 150       | 150            | 306.9      | 131.2    | 98.1       |
| W-F-4             | 150*      | 150*           | 303        | 130.9    | 97.9       |

 Table 4.10 Specimen Compaction Control for Phase 2

\*Gyratory pressure = 700 KPa





# Chapter 5

# Data Analysis

### 5.1. Introduction

This chapter presents the analysis and discussion of the finding of the research. The difference in the physical and mechanical properties between RAP and typical base aggregate will be discussed based on testing conducted at North Dakota State University (NDSU) and data collected from the Minnesota Department of Transportation (Mn/DOT). The following relations are discussed:

- Effect of RAP on durability of base aggregate.
- Effect of RAP on maximum dry density and moisture content of base layer.
- The effect of freeze-thaw (F-T) on resilient modulus and shear strength of RAP as compared to a typical Minnesota base aggregate.
- Effect of different parameters, including moisture content, dry density, RAP content and state of stress, on the resilient modulus of base layer containing RAP.

The analysis included:

- a. Material index properties
  - a. RAP gradation vs. Class
  - b. Effect of RAP content on maximum dry density and optimum moisture content
- b. Evaluation of material durability
  - a. Micro-Deval for RAP vs. Class 5.
- c. Evaluation of structure properties of RAP
  - a. Effect of freeze-thaw (F-T) conditioning on resilient modulus (M<sub>R</sub>) of base layer containing RAP
  - b. Effect of F-T conditioning and RAP content on shear strength of base layer containing RAP
  - c. Effect of RAP content on  $M_R$  of base layer containing RAP
  - d. Effect of moisture content on  $M_R$  of base layer containing RAP
  - e. Effect of dry density on  $M_R$  of base layer containing RAP
  - f. Effect of state of stress on  $M_R$  of base layer containing RAP

# 5.2. Material Index Properties

Material gradation and moisture density relation are investigated in this section. It is expected that adding RAP to virgin aggregate will alter the gradation, maximum dry density and optimum moisture content of the mixture.

# 5.2.1. Sieve Analysis

Sieve analysis was done based on ASTM C136. Results are presented in Figure 5.1. All tested materials were within the Mn/DOT aggregate specifications for Mn/DOT Class 5 material (33). Tested samples complied with Mn/DOT Class 7 material for particles finer than 2 mm, but

did not meet specifications for coarser particles (tested materials were finer than Mn/DOT Class 7 specifications). The Mn/DOT specification states that "If Class 7 is substituted for Classes 1, 3, 4, 5, or 6, it shall meet the gradation requirements of the substituted class" (33). The RAP materials were considered to be useful as a substitute for Class 5 as a base layer based on the material gradation.



Figure 5.1 Gradation chart of all material after replacing material larger than 12.5 mm vs. Mn/DOT Class 5 specification

#### 5.2.2. Effect of RAP Content on Maximum Dry Density and Optimum Moisture Content

The relation between the dry density and moisture content was established based on the gyratory compactor and the standard Proctor tests as presented in the experimental design. Detailed results are presented in Appendix A. Class 5 material had the highest dry density compared to all RAP sources. The gyratory compactor gave a lower dry density than the standard Proctor test for Class 5 material. For RAP/aggregate blends, the gyratory compactor gave a higher dry density than standard Proctor as presented in Figures 5.2 and 5.3.

Increasing RAP content decreased dry density as presented in Figure 5.4. Optimum moisture content (OMC) had different trends depending on the method of compaction. For the gyratory compactor, increasing RAP content decreased OMC. However, increasing RAP content decreased the OMC when the standard Proctor test was used, as presented in Figure 5.4. Literature reviews gave some mixed results. Data collected from a study done by Kim and Labuz (5) showed that RAP content did not have an effect on maximum dry density (MDD) when the gyratory compactor was used. However, using the standard Proctor procedures, increasing RAP

content decreased MDD. In the same study by Kim and Labuz (5), analyzing the data showed that gyratory compactor samples had lower OMC than the standard Proctor test, and that increasing RAP content decreased the OMC, as presented in Figure 5.5. Data collected from earlier testing (19, 20) showed that increasing RAP content reduces both MDD and OMC, as presented in Figure 5.6.

Data collected from MnRoad cell 26 showed that the RAP had a lower maximum dry density (124 to 127 pcf) and higher optimum moisture content (8% to 9%) as compared to Class 6 material (136 pcf dry density and 7% OMC).



Figure 5.2 Moisture density relation for Class 5 and 50% RAP TH10 + 50% Class 5 using standard Proctor test and gyratory compactor at 50 gyrations



Figure 5.3 Moisture density relation for 75% RAP TH 10 +25% Class 5 and 100% RAP TH 10 using standard Proctor test and gyratory compactor at 50 gyrations



Figure 5.4 Relation between MDD, OMC and RAP content at 50 gyrations vs. standard Proctor



▲ Gyratory ◆ Standard Proctor

Figure 5.5 Relation between MDD, OMC and RAP content at 50 gyrations vs. standard Proctor, based on published data by Kim and Labuz (5)



Figure 5.6 MDD and OMC for different RAP content using standard Proctor test (19, 20)

#### 5.3. Evaluation of Material Durability

Material durability was evaluated using the Micro-Deval test. Results are presented in the following section.

#### 5.3.1. Micro-Deval Test Results

The Micro-Deval test results are presented in Tables 5.1 and 5.2. The test results show that the percentage loss for Class 5 material is much less than the loss in all received RAP material. The results also show that the loss of coarser particles was greater than the loss of fine particles for all tested samples. Results are presented in Figures 5.7 and 5.8.

| Material      | Percentage loss |
|---------------|-----------------|
| Class 5       | 7.62            |
| RAP TH 10     | 13.74           |
| RAP TH 19-101 | 15.01           |
| RAP TH 19-104 | 14.33           |
| RAP TH 22     | 16.21           |

Table 5.1 Micro-Deval Results for Fine Aggregate

| Material      | Percentage loss |
|---------------|-----------------|
| Class 5       | 13.11           |
| RAP TH 10     | 23.81           |
| RAP TH 19-101 | 26.62           |
| RAP TH 19-104 | 17.72           |
| RAP TH 22     | 23.26           |

**Table 5.2 Micro-Deval Results for Coarse Aggregate** 



Figure 5.7 Micro-Deval percentage loss for fine aggregate



Figure 5.8 Micro-Deval percentage loss for coarse aggregate

#### 5.4. Evaluation of Structure Properties of RAP as Base Layer

The structural capacity of the base layer is defined by its resilient modulus. The resilient modulus of the base layer is affected by several factors, including dry density, moisture content and environmental conditions. The effect of those factors on the base layer containing RAP is investigated in the following sections. Detailed resilient modulus testing results for all samples are presented in Appendix C.

#### 5.4.1. Effect of Freeze-Thaw on M<sub>R</sub> of Base Layer

Only the testing conducted at NDSU is considered in the analysis of this section. No data was collected from Mn/DOT regarding the effect of F-T on the base layer containing RAP. For Class 5 material, samples compacted at OMC did not show loss of strength due to freeze-thaw conditioning. For samples compacted at a moisture content higher than the OMC, there was an increase in  $M_R$  after freeze-thaw conditioning. The MC for both CN4 and CF4 samples were the same immediately before compaction, but the MC values after the  $M_R$  test were found to be different (6.5% and 5% respectively). This indicates loss of water during testing. After the thaw period the lower portion of the sample had a lot of water, and some water was lost from the base of the sample during the triaxial test. This indicates that the material does not have the ability to retain extra moisture which was drained during the 24 hour thawing period. The lower moisture content can be a reason for higher  $M_R$  for the sample after F-T cycles. Class 5 results are presented in Figures 5.9 and 5.4.

For 50% RAP + 50% Class 5, samples compacted at OMC did not show loss of strength due to freeze-thaw conditioning, as presented in Figure 5.11. For samples compacted at a higher moisture content (OMC + 1%, OMC + 2%) there was an increase in  $M_R$  after freeze-thaw conditioning. This increase was apparent at higher confining pressures in the case of OMC + 1%, as presented in Figure 5.12, and at all confining pressures in the case of OMC + 2%. For 25% Class 5 + 75% RAP material, samples compacted at OMC did not show loss of strength due to freeze-thaw conditioning. For samples compacted at higher moisture content (OMC + 2%) there was an increase in  $M_R$  after freeze-thaw conditioning. For samples compacted at higher moisture content (OMC + 2%) there was an increase in  $M_R$  after freeze-thaw conditioning. This increase was apparent at higher freeze-thaw conditioning. This increase was apparent at higher confining pressures in  $M_R$  after freeze-thaw conditioning. This increase was apparent at higher freeze-thaw conditioning. This increase was apparent at higher confining pressures. Comparing the MC for SN4 and SF4 showed that after  $M_R$  testing the MC became 6.5% and 5.5% respectively. This can explain the increase in the  $M_R$  for the sample after freeze-thaw.



Figure 5.9 Effect of freeze-thaw on M<sub>R</sub> for Class 5



Figure 5.10 Effect of freeze-thaw on M<sub>R</sub> of Class 5 for samples compacted OMC + 2%



Figure 5.11 Effect of freeze-thaw on  $M_R$  for 50% Class 5 + 50% RAP TH 10

For 100% RAP material, samples compacted at OMC did not show loss of strength due to freeze-thaw conditioning. For samples compacted at a higher moisture content (OMC + 1%, OMC + 2%) there is an increase in  $M_R$  after freeze-thaw conditioning. This increase was apparent at higher confining pressure in the case of OMC + 1% and at all confining pressure in

the case of OMC + 2%. Samples RN4 and RF4 were compacted at OMC +2% (MC= 7.5%), but checking MC after the  $M_R$  test showed that MC became 6.0% and 4.26% respectively. This can explain the increase in the  $M_R$  for the sample after freeze-thaw conditioning. A similar trend was found for the field RAP samples. The only exception was in RAP TH-19-101 material, as presented in Figure 5.13. The sample retained the moisture and showed loss of strength after F-T cycles.

As the tested materials did not hold the extra water, this indicates that they will not have extra moisture raised inside the base layer. Lack of fines could be the basic reason the materials did not hold extra moisture. For all tested materials the percent material passing # 200 sieve was less than 3%. RAP TH19-101 material kept its moisture content through the F-T cycles and in testing. A considerable loss of strength due to F-T cycles was found in RAP TH 19-101 material.



Figure 5.12 Effect of freeze-thaw on M<sub>R</sub> for 50% Class 5 + 50% RAP TH 10, samples compacted at OMC+ 1%

| Sample ID | Description                                             | Target | MC of   | MC of   | ADD/M        |
|-----------|---------------------------------------------------------|--------|---------|---------|--------------|
| 1         | 1                                                       | MČ,    | sample  | sample  | DD, %        |
|           |                                                         | %      | before  | After   | -            |
|           |                                                         |        | test, % | test, % |              |
| C-N-1     | 100% Class 5, OMC, 100% MDD, no freeze                  | 6.4    | 6.4     |         | 100.34       |
| C-N-2     | 100% Class 5, OMC, no freeze, replicate                 | 6.4    | 6.4     | 5.8     | 100.33       |
| CNOMC-    | 100% Class 5, OMC, no freeze, 2 <sup>nd</sup> replicate | 6.4    | 6.5     | 5.2     | 100.14       |
| 3         |                                                         |        |         |         | 100.14       |
| C-F-1     | 100% Class 5, OMC, 2 freeze-thaw cycles                 | 6.4    | 6.4     | 5.3     | 100.6        |
| C-F-2     | 100% Class 5, OMC, 2 freeze-thaw cycles,                | 6.4    | 6.57    | 5.37    | 100.1        |
|           | replicate                                               |        |         |         | 100.1        |
| T-N-1     | 50% Class 5- 50% RAP TH 10, OMC, no                     | 5.2    | 5.15    | 5       | 100.27       |
|           | freeze                                                  |        |         |         | 100.27       |
| T-N-2     | 50% Class 5- 50% RAP TH 10, OMC, no                     | 5.2    | 4.87    | 4.75    | 99.8         |
|           | freeze, replicate                                       |        |         |         | <i>yy</i> .0 |
| T-F-1     | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.25    | 4.8     | 100.16       |
|           | thaw cycles                                             |        |         |         | 100.10       |
| T-F-2     | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.22    | 4.7     | 100.2        |
|           | thaw cycles, replicate                                  |        |         |         | 100.2        |
| S-N-1     | 25% Class 5- 75% RAP TH 10, OMC, no freeze              | 5.7    | 5.4     | 5       | 100.2        |
| S-N-2     | 25% Class 5- 75% RAP TH 10, OMC, no                     | 5.7    | 5.93    | 5.5     | 100.4        |
|           | freeze, replicate                                       |        |         |         | 100.1        |
| S-F-1     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75    | 5.1     | 100.3        |
|           | thaw cycles                                             |        |         |         | 100.5        |
| S-F-2     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75    | 4.95    | 100.3        |
|           | thaw cycles, replicate                                  |        |         |         | 100.2        |
| R-N-1     | 100% RAP TH 10, OMC, no freeze                          | 5.5    | 5.4     | 4.7     | 99.88        |
| R-N-2     | 100% RAP TH 10, OMC, no freeze, replicate               | 5.5    | 5.1     | 4.5     | 100          |
| R-F-1     | 100% RAP TH 10, OMC, 2 freeze-thaw cycles               | 5.5    | 5.42    | 4.9     | 100.05       |
| R-F-2     | 100% RAP TH 10, OMC, 2 freeze-thaw cycles,              | 5.5    | 5.5     | 4.55    | 100          |
|           | replicate                                               |        |         |         | 100          |
| U-N-1     | RAP TH 19-101, OMC, no freeze                           | 5.9    | 6.3     | 5.9     | 100.8        |
| U-N-2     | RAP TH 19-101, OMC, no freeze, replicate                | 5.9    | 6       | 6       | 100          |
| U-F-1     | RAP TH 19-101, OMC, 2 freeze-thaw cycles                | 5.9    | 5.8     | 6       | 99.4         |
| U-F-2     | RAP TH 19-101, OMC, 2 freeze-thaw cycles,               | 5.9    | 6.0     | 5.5     | 99.4         |
|           | replicate                                               |        |         |         | · · · · ·    |
| V-N-1     | RAP TH 19-104, OMC, no freeze                           | 7      | 7.1     | 6.5     | 100.47       |
| V-N-2     | RAP TH 19-104, OMC, no freeze, replicate                | 7      | 6.7     | 6.35    | 100.5        |
| V-F-1     | RAP TH 19-104, OMC, 2 freeze-thaw cycles                | 7      | 6.6     | 6.22    | 100.2        |
| V-F-2     | RAP TH 19-104, OMC, 2 freeze-thaw cycles,               | 7      | 6.7     | 6.67    | 100.25       |
|           | replicate                                               |        |         |         | 100.25       |
| W-N-1     | RAP TH 22, OMC, no freeze                               | 5.25   | 5.5     | 5.23    | 100.31       |
| W-N-2     | RAP TH 22, OMC, no freeze, replicate                    | 5.25   | 5.45    | 4.9     | 100.38       |
| W-F-1     | RAP TH 22, OMC, 2 freeze-thaw cycles                    | 5.25   | 5.5     | 5       | 100.06       |
| W-F-2     | RAP TH 22, OMC, 2 freeze-thaw cycles,                   | 5.25   | 5.45    | 5       | 100 14       |
|           | replicate                                               |        |         |         | 100.17       |

MC: Moisture content, MDD: Maximum dry density, ADD: Actual dry density

| Sample | Description                        | Target | MC of   | MC of       | ADD/MDD |
|--------|------------------------------------|--------|---------|-------------|---------|
| ĪD     | •                                  | MC, %  | sample  | sample      | , %     |
|        |                                    |        | before  | After test, |         |
|        |                                    |        | test, % | %           |         |
| C-N-3  | 100% Class 5, OMC + 1%, no freeze  | 7.4    | 7.4     | 6           | 99.11   |
| C-N-4  | 100% Class 5, OMC + 2%, no freeze  | 8.4    | 8.65    | 6.5         | 97.12   |
| C-F- 4 | 100% Class 5, OMC + 2%, 2 freeze-  | 8.4    | 8.3     | 5           | 98.5    |
|        | thaw cycles                        |        |         |             |         |
| T-N- 3 | 50% Class 5- 50% RAP TH 10,        | 6.2    | 5.95    | 5.1         | 100.29  |
|        | OMC + 1%, no freeze                |        |         |             |         |
| T-N-4  | 50% Class 5- 50% RAP TH 10,        | 7.2    | 7       | 6           | 98.46   |
|        | OMC + 2%, no freeze                |        |         |             |         |
| T-F- 3 | 50% Class 5- 50% RAP TH 10,        | 6.2    | 5.95    | 4.9         | 100.1   |
|        | OMC+1%, 2 freeze-thaw cycles       |        |         |             |         |
| T-F- 4 | 50 % Class 5- 50% RAP TH 10,       | 7.2    | 7.35    | 5.5         | 97.9    |
|        | OMC+2%, 2 freeze-thaw cycles,      |        |         |             |         |
|        | replicate                          |        |         |             |         |
| S-N- 3 | 25% Class 5- 75% RAP TH 10,        | 6.7    | 6.5     | 5.7         | 97.63   |
|        | OMC + 1%, no freeze                |        |         |             |         |
| S-N-4  | 25% Class 5- 75% RAP TH 10,        | 7.7    | 7.64    | 6.5         | 96.77   |
|        | OMC + 2%, no freeze                |        |         |             |         |
| S-F-4  | 25% Class 5- 75% RAP TH 10,        | 7.7    | 7.84    | 5.5         | 96.92   |
|        | OMC+2%, 2 freeze-thaw cycles,      |        |         |             |         |
|        | replicate                          |        |         |             |         |
| R-N- 3 | 100% RAP TH 10, OMC + 1%, no       | 6.5    | 6.3     | 5.23        | 99.56   |
|        | freeze                             |        |         |             |         |
| R-N-4  | 100% RAP TH 10, OMC + 2%, no       | 7.5    | 7.5     | 6.1         | 97.5    |
|        | freeze, replicate                  |        |         |             |         |
| R-F- 3 | 100% RAP TH 10, OMC + 1%, 2        | 6.5    | 6.36    | 5           | 99.92   |
|        | freeze-thaw cycles                 |        |         |             |         |
| R-F- 4 | 100% RAP TH 10, OMC + 2%, 2        | 7.5    | 7.4     | 4.26        | 97.8    |
|        | freeze-thaw cycles, replicate      |        |         |             |         |
| U-N- 4 | RAP TH 19-101, OMC + 2%, no        | 7.9    | 8.4     | 7.6         | 101     |
|        | freeze, replicate                  |        |         |             |         |
| U-N-   | RAP TH 19-101, OMC, no freeze,     | 5.9    | 6.08    | 5.3         |         |
| OMC-   | replicate                          |        |         |             | 97.5    |
| 97MDD  |                                    |        |         |             |         |
| V-N- 4 | RAP TH 19-104, OMC + 2%, no        | 9      | 9.5     | 8.6         | 96.27   |
|        | freeze                             |        |         |             |         |
| V-F- 4 | RAP TH 19-104, OMC + 2%, 2         | 9      | 9.4     |             | 96.7    |
|        | freeze-thaw cycles                 |        |         |             |         |
| W-N-4  | RAP TH 22, OMC + 2%, no freeze     | 7.25   | 7.1     | 6.35        | 98.1    |
| W-F-4  | RAP TH 22, OMC $+ 2\%$ , 2 freeze- | 7.25   | 7.50    | 6           | 97.9    |
|        | thaw cycles, replicate             |        |         |             |         |

# Table 5.4 Comparing Moisture Content before and after $M_{\text{R}}$ testing for Phase 2

MC: Moisture content, MDD: Maximum dry density, ADD: Actual dry density



Figure 5.13 Effect of freeze-thaw on M<sub>R</sub> for 50% Class 5 + 50% RAP TH 10, samples compacted at OMC+ 1%



Figure 5.14 Effect of freeze-thaw on M<sub>R</sub> for RAP TH 19-101

# 5.4.2. Effect of Freeze-Thaw conditioning and RAP Content on Shear Resistance of Base Layer Containing RAP

Analysis for this part will be based on testing conducted at NDSU. No data was collected from Mn/DOT regarding the effect of F-T on shear strength of the base layer containing RAP. The triaxial shear test was conducted on the samples which were compacted at the optimum moisture content and maximum dry density. The shear test was conducted after the resilient modulus testing. The shear test was conducted in strain controlled mode, at a loading rate of 0.03 mm/sec and a confining pressure of 4 and 8 psi. The maximum deviator stress from each confining pressure was used to construct the Mohr-Circle diagram for the determination of the friction angle ( $\phi$ ) and cohesion (C). The equation used to determine the final shear strength of the material is in the form of Equation 5.1.

(5.1)

 $\tau = C + \sigma_n \tan(\phi)$ Where,  $\tau = \text{shear strength}$ C = cohesion $\sigma_n = \text{normal stress}$  $\phi = \text{friction angle (degrees)}$ 

Figure 5.14 presents the effect of F-T on the friction angle of RAP TH-10 and its blends with Class 5. It indicates that RAP mixes had a similar or lower friction angle compared to the Class 5 base material. For all RAP blends, an increase in the friction angle is shown after F-T cycles. Figure 5.15 presents the effect of F-T on cohesion of RAP/aggregate blends. F-T caused a reduction in the cohesion of RAP/aggregate blends. Increasing RAP content either did not have an effect or increased the cohesion of the material compared to Class 5. Figures 5.16 and 5.17 present the maximum deviator stress that was carried by the RAP/aggregate blends sample at 4 and 8 psi confining pressure. At low confining pressure, loss of strength was found for samples at 75% and 100% RAP after two F-T cycles, as presented in Figure 5.16. At high confining pressure, Figure 5.17 indicates that the failure load after F-T was almost equal to that of samples before conditioning.

Testing on field samples showed that there was no change in friction angle due to F-T for two field samples (RAP TH 19-104 and RAP TH 22), while there was considerable loss of friction between particles for RAP TH 19-101, as presented in Figure 5.18. However, examining the cohesion indicates that RAP TH 19-101 had higher cohesion after F-T, as presented in Figure 5.19.



Figure 5.15 Effect of F-T on friction angle of base layer



Figure 5.16 Effect of F-T on cohesion of base layer



Figure 5.17 Effect of F-T on maximum deviator stress at confining pressure = 4 psi



Figure 5.18 Effect of F-T on maximum deviator stress at confining pressure = 8 psi



Figure 5.19 Effect of F-T on friction angle of base layer for field samples



Figure 5.20 Effect of F-T on cohesion of base layer for field samples

| Sample | Sample Description                            | Conf.    | Deviator | Total   | Friction | Cohesion |
|--------|-----------------------------------------------|----------|----------|---------|----------|----------|
| ID     |                                               | pressure | stress   | stress  | angle    |          |
|        |                                               |          |          |         | (φ)      |          |
|        |                                               | psi      | psi      | psi     | degree   | psi      |
| C-N-1  | Class 5, OMC, no freeze                       | 8        | 100.51   | 108.51  | 45.78    | 12.18    |
| C-N-2  | Class 5, OMC, No freeze, replicate            | 4        | 80.25    | 84.25   |          |          |
| C-F-1  | Class 5, OMC, 2 freeze-thaw cycles            | 8        | 125.01   | 133.01  | 5( 70    | ( 10     |
| C-F-2  | Class 5, OMC, 2 freeze-thaw cycles, replicate | 4        | 84.21    | 88.21   | 30.70    | 6.49     |
| T-N-1  | 50% Class 5- 50% RAP TH 10, OMC, no           | 8        | 98.03    | 106.03  |          |          |
|        | freeze                                        |          |          |         | 47.30    | 10.47    |
| T-N-2  | 50% Class 5- 50% RAP TH 10, OMC, no           | 4        | 75.82    | 79.82   | 47.50    | 10.47    |
|        | freeze, replicate                             |          |          |         |          |          |
| T-F-1  | 50% Class 5- 50% RAP TH 10, OMC, 2            | 8        | 108.11   | 116.11  |          |          |
|        | freeze-thaw cycles                            |          |          | 0.0.4.6 | 51.93    | 8.42     |
| T-F-2  | 50% Class5- 50% RAP TH 10, OMC, 2             | 4        | 78.46    | 82.46   |          |          |
| SN 1   | 17 Integer that cycles, replicate             | 0        | 02.79    | 100.79  |          |          |
| S-IN-1 | 25% Class 5-75% KAP 11 10, OMC, 10            | 0        | 92.78    | 100.78  |          |          |
| S-N-2  | 25% Class 5- 75% RAP TH 10, OMC, no           | 4        | 81.24    | 85.24   | 36.18    | 17.69    |
| 5-11-2 | freeze replicate                              | -        | 01.24    | 05.24   |          |          |
| S-F-1  | 25% Class 5- 75% RAP TH 10, OMC, 2 FTC        | 8        | 99.03    | 107.03  |          |          |
| S-F-2  | 25 % Class5- 75% RAP TH 10. OMC. 2 FTC.       | 4        | 70.40    | 74.40   | 51.38    | 7.31     |
| ~      | replicate                                     |          |          | ,       |          |          |
| R-N-1  | 100% RAP TH 10, OMC, no freeze                | 8        | 99.85    | 107.85  | 11 (2    | 12.00    |
| R-N-2  | 100% RAP TH 10, OMC, no freeze, replicate     | 4        | 80.95    | 84.95   | 44.02    | 12.90    |
| R-F-1  | 100% RAP TH 10, OMC, 2 freeze-thaw            | 8        | 92.80    | 100.80  |          |          |
|        | cycles                                        |          |          |         | 45.98    | 10.46    |
| R-F-2  | 100% RAP TH 10, OMC, 2 freeze-thaw            | 4        | 72.30    | 76.30   | 45.90    | 10.40    |
|        | cycles, replicate                             |          | 100.01   | 111.01  |          |          |
| U-N-1  | RAP TH 19-101, OMC, no freeze                 | 8        | 133.94   | 141.94  | 50.26    | 14.56    |
| U-N-2  | RAP TH 19-101, OMC, no freeze, replicate      | 4        | 107.28   | 111.28  |          |          |
| U-F-1  | RAP TH 19-101, OMC, 2 freeze-thaw cycles      | 8        | 110.27   | 118.27  |          |          |
| U-F-2  | RAP TH 19-101, OMC, 2 freeze-thaw cycles,     | 4        | 100.66   | 104.66  | 33.07    | 24.68    |
|        | replicate                                     |          | 110.65   | 100.65  |          |          |
| V-N-I  | RAP 1H 19-104, OMC, no freeze                 | 8        | 112.65   | 120.65  | 53.54    | 7.70     |
| V-N-2  | RAP 1H 19-104, OMC, no freeze, replicate      | 4        | 79.73    | 83.73   |          |          |
| V-F-1  | RAP TH 19-104, OMC, 2 freeze-thaw cycles      | 8        | 110.70   | 118.70  |          |          |
| V-F-2  | RAP TH 19-104, OMC, 2 freeze-thaw cycles,     | 4        | 76.64    | 80.64   | 54.06    | 6.90     |
|        | replicate                                     |          | 112.00   | 101.00  |          |          |
| W-N-I  | RAP TH 22, OMC, no freeze                     | 8        | 113.22   | 121.22  | 44 50    | 15.86    |
| W-N-2  | RAP TH 22, OMC, no freeze, replicate          | 4        | 94.45    | 98.45   |          |          |
| W-F-1  | RAP TH 22, OMC, 2 freeze-thaw cycles          | 8        | 109.92   | 117.92  |          |          |
| W-F-2  | RAP TH 22, OMC, 2 freeze-thaw cycles,         | 4        | 88.59    | 92.59   | 46.64    | 13.36    |
|        | replicate                                     |          |          |         |          |          |

# Table 5.5 Summery of Shear Test Results

#### 5.4.3. Effect of RAP Content on M<sub>R</sub> of Base Layer

Data for this section is based on samples tested at NDSU and data collected from Mn/DOT. Figures 5.20 and 5.21 present the effect of RAP content on  $M_R$  of base layer based on data collected from Mn/DOT.  $M_R$  results indicate an increase of strength as the percent RAP increases in the base layer. For testing conducted at NDSU, all RAP samples had higher resilient modulus than Class 5, as presented in Figure 5.22. This indicates that RAP/aggregate blends are a valuable alternative as a base layer, and are structurally sound.

#### 5.4.4. Effect of Moisture Content on Resilient Modulus (M<sub>R</sub>)

Investigating moisture sensitivity of the RAP is based on data collected from Mn/DOT and testing conducted at NDSU. Four samples composed of 50% RAP + 50% Taconite were compacted at the same dry density, at different moisture contents, and then tested for  $M_R$ . The results, presented in Figure 5.23, showed mixed effects of moisture content. While samples at the lowest moisture content (6.7%) had the highest resilient modulus, samples at the highest moisture content (8.2%) gave similar or higher resilient modulus values as compared to samples at 7.7% moisture content. Testing conducted by Kim and Labuz (5) showed that samples compacted at 65% of OMC always had a higher resilient modulus than samples compacted at OMC (5).

For testing conducted at NDSU, Class 5 samples tested at OMC had higher  $M_R$  than samples compacted at OMC + 1% or OMC + 2%, as presented in Figure 5.24. For samples containing 50% RAP + 50% Class 5 testing was conducted at OMC, OMC + 1%, OMC + 2%, OMC - 1% and OMC - 2%. The testing results are presented in Figures 5.25 and 5.26. The data showed a trend of increasing resilient modulus with decreasing the moisture content as long as it was possible to achieve the maximum dry density. For 75% RAP, samples compacted at moisture higher than the optimum had lower resilient modulus as compared to samples compacted at OMC, data are presented in Figure 5.27. Field RAP samples showed reduction in  $M_R$  with increasing moisture content for 2 materials; RAP TH19-101 and RAP TH19-104. Figure 5.28 represents RAP TH 19-101. RAP TH 22 did not show change in  $M_R$  due to 2% change in moisture content at low confining pressure, but there was reduction in  $M_R$  at high confining pressure, as presented in Figure 5.29.



Figure 5.21 Effect of RAP content on M<sub>R</sub> of base layer, Mn/DOT data (20)



Figure 5.22 Effect of RAP content on M<sub>R</sub> of base layer at selected states of stress, Mn/DOT data (20)



Figure 5.23 Effect of RAP content on M<sub>R</sub> of base layer (average of tested samples)



Figure 5.24 Effect of moisture content on 50% RAP + 50% Taconite, Mn/DOT data (MC =6.7 % is based on average of 2 samples)



Figure 5.25 Effect of moisture content on Class 5 (OMC results are based on average of tested samples)



Figure 5.26 Effect of moisture content on 50% RAP TH 10 + 50% Class 5



Figure 5.27 Effect of moisture content on  $M_R$  of 50% RAP + 50% Class 5 at bulk stress = 30 psi



Figure 5.28 Effect of moisture content on 75% RAP TH10 + 25% Class 5 (OMC results are based on average of tested samples)



Figure 5.29 Effect of moisture content on RAP TH 19-101 (OMC results are based on average of tested samples)



Figure 5.30 Effect of moisture content on RAP TH 22 (OMC results are based on average of tested samples)

#### 5.4.5. Effect of Dry Density on Resilient Modulus

The effect of dry density was investigated based on limited testing at NDSU and data collected from Mn/DOT. Figure 5.31 presents the effect of dry density on samples composed of 50% RAP + 50% Class 6 at two different dry densities (125 and 130 lb/ft<sup>3</sup>) at moisture content (MC) = 6.6%. The results did not show the effect of dry density at this moisture content. Figure 5.32 presents the effect of dry density on samples composed of 50% RAP + 50% Taconite at two different dry densities (125 and 135 lb/ft<sup>3</sup>) at MC = 6.6%. Results showed that the sample compacted at a higher dry density had higher M<sub>R</sub> at high confining pressure, while the difference did not look significant at low confining pressure.

Limited testing was conducted at NDSU. For RAP field sample TH 19-101, the reduction in dry density had decreased the resilient modulus, as presented in Figure 5.33. The results obtained based on this data are explained by Figure 5.34 which describes the relation between dry density and resilient modulus for granular materials. It is clear that the effect of dry density is greatly dependent on the moisture content within the sample. The results also showed that the effect of dry density on  $M_R$  is dependent on the state of stress.



Figure 5.31 Effect of dry density on  $M_R$  of 50% RAP + 50% Class 6 (MC = 6.6%), (Mn/DOT data)


Figure 5.32 Effect of dry density on  $M_R$  of 50% RAP + 50% Taconite (MC = 6.5%), (Mn/DOT data), (data for dry density = 125 pcf is based on average of 2 samples)



Figure 5.33 Effect of dry density on  $M_R$  of 50% RAP + 50% Taconite (MC =7.7 %), (Mn/DOT data)



Figure 5.34 Effect of dry density on  $M_R$  of RAP TH19-101 (100% MDD is based on average of 2 samples)



Figure 5.35 Effect of dry density on resilient modulus of granular material (34)

### 5.4.6. Effect of State of Stress on Resilient Modulus

The resilient modulus of granular material is known to be nonlinear and varies with the state of stress. Several models have been developed to describe the resilient behavior of granular material. The following sections investigate the effect of confining pressure, bulk stress, and the combined effect of deviator stress and confining pressure on resilient modulus of tested samples.

### 5.4.6.1. Effect of Confining Pressure on Resilient Modulus

Increasing the confining pressure had increased the  $M_R$  for tested samples. Figures 5.36 to 5.38 present the effect of the confining pressure on the resilient modulus of some of the tested RAP materials. It is clear that  $M_R$  was closely correlated to confining pressure. The  $M_R$  of field sample RAP TH 22 was also well related to confining pressure but  $M_R$  for RAP TH 19-101 was poorly related to confining pressure, as presented in Figure 5.38. The relation between confining pressure and resilient modulus for all tested samples is presented in Appendix D. The resilient modulus was modeled using Equation 5.2 and the regression coefficients are summarized in Table 5.6.



 $M_{R} = K_{1} * (\sigma_{R})^{K_{2}} \tag{5.2}$ 

Figure 5.36  $M_R$  vs. confining pressure for Class 5 and 50% Class 5 + 50 % RAP TH10 (OMC, 100 % MDD)



Figure 5.37  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 and 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, 2 F-T)



Figure 5.38 M<sub>R</sub> vs. confining pressure for field samples, RAP TH 19-101 and RAP TH 22 (OMC, 100% MDD)

### 5.4.6.2. Effect of Bulk Stress on Resilient Modulus

Increasing bulk stress had increased the  $M_R$  for tested samples. Figures 5.39 to 5.41 present the effect of bulk stress on resilient modulus of some of the tested RAP materials. The relation between  $M_R$  and the bulk stress was material dependent.  $M_R$  of Class 5 had a strong correlation with bulk stress. The  $M_R$  of field sample RAP TH 22 was also strongly correlated to bulk stress but  $M_R$  for field sample RAP TH-19-101 was poorly related to bulk stress. The relation between bulk stress and resilient modulus for all tested samples is presented in Appendix E. The relation between confining pressure and resilient modulus was found to be better than the

relation between resilient modulus and bulk stress for RAP/aggregate blends as it had higher  $R^2$  value.

| Sample ID | K <sub>1</sub> | K <sub>2</sub> | $R^2$ | Sample ID | <b>K</b> <sub>1</sub> | K <sub>2</sub> | $\mathbf{R}^2$ |
|-----------|----------------|----------------|-------|-----------|-----------------------|----------------|----------------|
| C-N-1     | 10627          | 0.52           | 0.86  | R-F-1     | 26737                 | 0.42           | 0.85           |
| C-N-2     | 7065           | 0.66           | 0.86  | R-F-2     | 30650                 | 0.4            | 0.80           |
| CNOMC-3   | 9775           | 0.56           | 0.88  | R-N-3     | 13326                 | 0.53           | 0.96           |
| C-F-1     | 8464           | 0.678          | 0.943 | R-N-4     | 25591                 | .31            | 0.74           |
| C-F-2     | 9316           | 0.644          | .885  | R-F-3     | 16555                 | 0.52           | 0.92           |
| C-N-3     | 6110           | 0.59           | 0.815 | R-F-4     | 28524                 | 0.39           | 0.75           |
| C-N-4     | 6899           | 0.595          | 0.86  | U-N-1     | 49532                 | 0.22           | 0.54           |
| C-F-4     | 9828           | 0.525          | 0.89  | U-N-2     | 34302                 | 0.25           | 0.61           |
| T-N-1     | 14040          | 0.578          | 0.95  | U-F-1     | 30044                 | 0.24           | 0.59           |
| T-N-2     | 20167          | 0.50           | 0.93  | U-F-2     | 26207                 | 0.32           | 0.6            |
| T-F-1     | 17096          | 0.56           | 0.97  | U-N-4     | 17509                 | 0.33           | 0.57           |
| T-F-2     | 19125          | 0.53           | 0.97  | V-N-1     | 21825                 | 0.41           | 0.55           |
| T-N-3     | 17265          | 0.43           | 0.83  | V-N-2     | 14831                 | 0.46           | 0.87           |
| T-N-4     | 15238          | 0.41           | 0.91  | V-F-1     | 19194                 | 0.45           | 0.85           |
| T-F-3     | 16045          | 0.53           | 0.91  | V-F-2     | 16307                 | 0.51           | 0.89           |
| T-F-4     | 23523          | 0.47           | 0.80  | V-N-4     | 13207                 | 0.39           | 0.76           |
| S-N-1     | 12984          | 0.55           | 0.95  | V-F-4     | 12851                 | 0.35           | 0.75           |
| S-N-2     | 18057          | 0.47           | 0.94  | W-N-1     | 18579                 | 0.56           | 0.97           |
| S-F-1     | 14289          | 0.53           | 0.97  | W-N-2     | 12032                 | 0.64           | 0.96           |
| S-F-2     | 19132          | 0.44           | 0.97  | W-F-1     | 17414                 | 0.59           | 0.96           |
| S-N-3     | 14145          | 0.46           | 0.92  | W-F-2     | 17993                 | 0.54           | 0.97           |
| S-N-4     | 17226          | 036            | 0.91  | W-N-4     | 22410                 | 0.36           | 0.88           |
| S-F-4     | 17049          | 0.45           | 0.95  | W-F-4     | 19168                 | 0.4            | 0.84           |
| R-N-1     | 18602          | 0.59           | 0.93  |           |                       |                |                |
| R-N-2     | 27509          | 0.49           | 0.94  |           |                       |                |                |
| R-N-OMC-3 | 2731           | 0.44           | 0.82  |           |                       |                |                |

Table 5.6 Summary of Equation 5.2 Regression Coefficients for all Samples

Note: Tables 5.3 and 5.4 contain detailed samples description



Figure 5.39  $M_R$  vs. bulk stress for Class 5 and 50% Class 5 + 50% RAP TH10 (OMC, 100 % MDD)



Figure 5.40 M<sub>R</sub> vs. bulk stress for 25% Class 5 + 75% RAP TH 10 and 100% RAP TH 10 (OMC, 100% MDD)



Figure 5.41 M<sub>R</sub> vs. bulk stress for field blends, RAP TH 19-101 and RAP TH 22 (samples at OMC and 100% MDD)

### 5.4.6.3. Effect of Confining Pressure and Deviator Stress on Resilient Modulus

The effects of both confining pressure and deviator stress were investigated. Results showed that increasing the confining pressure had in all cases increased the resilient modulus. However, the deviator stress effect was dependent on the sample and the confining pressure.

Figure 5.42 shows that for Class 5 at low confining pressure, increasing deviator stress had increased the  $M_R$  slightly. While at high confining pressures, increasing deviator stress did not affect the  $M_R$ . The trend was different for RAP TH 10 and RAP TH 19-101 as presented in Figures 5.43 and 5.44. For those materials, increasing deviator stress has decreased resilient modulus at all confining pressures, which is expected for granular material. The effect of both confining pressure and deviator stress on all tested samples is presented in Appendix F.



Figure 5.42  $M_R$  vs. deviator stress at different confining pressure for Class 5 (OMC, 100 % MDD)



Figure 5.43 M<sub>R</sub> vs. deviator stress at different confining pressure for 100% RAP TH 10 (OMC, 100% MDD, replicate)



Figure 5.44 M<sub>R</sub> vs. deviator stress at different confining pressure for RAP TH 19-101 (OMC, 100% MDD)

#### Chapter 6

### **Summary and Conclusion**

The use of RAP as a base material can reduce the amount of virgin aggregate needed, reduce construction cost, reduce lane closure time and eliminate disposal issues. Currently Mn/DOT allows the use of RAP as Class 7, which is an aggregate base course containing salvage/recycled aggregate material. This research investigated the effect of RAP on the structural capacity of the base layer, defined by resilient modulus ( $M_R$ ) and shear strength. The effect of freeze-thaw (F-T) and severe moisture conditions on the structural capacity of RAP material as a base layer was investigated.

Data from testing on RAP material from Mn/ROAD cell 26 was collected. RAP samples were collected from different highways in Minnesota. The investigated material included one source of 100% RAP from Trunk Highway 10 (RAP TH 10), one source of virgin aggregate (Minnesota Class 5), and three Class 7 samples where RAP was mixed with virgin aggregate and is in use as a base layer. RAP TH 10 was blended with the virgin aggregate at 50% and 75% RAP content to investigate the effect of RAP content on the base layer structural capacity.

The collected samples were evaluated in the laboratory starting with aggregate gradation and asphalt extraction. Moisture density relations for the samples were determined using the standard Proctor test and the Superpave gyratory compactor. Aggregate/RAP resistance to abrasion and degradation was evaluated using the Micro-Deval test. The structural capacity of the RAP, as compared to virgin aggregate, was evaluated using the resilient modulus test following the National Cooperative Highway Research Program (NCHRP) 1-28A test protocol. The triaxial shear test was conducted on the resilient modulus samples, for samples compacted at optimum moisture content and maximum dry density, at two confining pressures to evaluate the shear strength of the tested materials. One set of samples was subjected to two freeze-thaw cycles to evaluate the effect of freeze-thaw on resilient modulus and shear strength of RAP as compared to virgin aggregate.

RAP gradation was coarser than virgin aggregate, and fell within Mn/DOT Class 5 gradation limits. RAP had a higher percentage loss in the Micro-Deval test as compared to virgin aggregate. Optimum moisture content (OMC) for RAP/aggregate blends were lower than OMC for Class 5 based on gyratory compactor at 50 gyrations, however the OMC for RAP/aggregate were higher than Class 5 based on the standard Proctor test. The maximum dry densities (MDD) for RAP aggregate blends and field samples were lower than MDD for Class 5. The resilient modulus for all RAP material was higher than that of Class 5. Resilient modulus of RAP material was found to be dependent on the confining pressure. There was no clear loss of the modulus due to freeze-thaw conditioning for the tested RAP. Decreasing the moisture content increased the resilient modulus for RAP material. The effect of dry density on M<sub>R</sub> was dependent on the state of stress, material type and moisture content. There was no clear difference in the friction angle and cohesion between RAP/aggregate blends, field samples and Class 5. There was no change in the internal friction angle for RAP due to freeze-thaw conditioning for the tested samples, except for RAP TH 19-101 material. Maximum deviator stress in the shear test was reduced after F-T conditioning for RAP/aggregate blends at a low confining pressure (4 psi) but the effect of F-T on maximum deviator stress was not clear at a higher confining pressure (8 psi).

Based on the findings from this research, RAP is a viable alternative for virgin aggregate as a base layer. RAP gradations fall within the Mn/DOT gradation band. RAP had a higher resilient modulus and equivalent shear strength as compared to virgin aggregate. The effect of freeze-thaw on RAP material was negligible for the tested material for the testing conditions used.

### References

- 1. User Guidelines: Reclaimed Asphalt Pavement, Granular Base. Turner-Fairbank Highway Research Center. Federal Highway Administration, (cited July 2007), http://www.tfhrc.gov/hnr20/recycle/waste/rap131.htm.
- 2. Asphalt Recycling and Reclaiming Association, U.S. Department of Transportation, and the Federal Highway Administration. *Basic Asphalt Recycling Manual*, 2001.
- 3. Y. Huang. *Pavement Analysis and Design*: 2<sup>nd</sup> Edition. Persons, Prentice Hall, NJ, 2005.
- 4. W. Kim and J. F. Labuz, *Resilient Modulus and Strength of Base Course with Recycled Bituminous*. Minnesota Department of Transportation, Report No. MN/RC-2007-05, January 2007.
- M. Kim and E. Tutumluer, "Nonlinear Pavement Foundation Modeling For Three-Dimensional Finite Element Analysis of Flexible Pavements," 86<sup>th</sup> Annual Meeting of the Transportation Research Board, Washington, D.C., January, 2007. Paper No: 07-1827 CD ROM.
- 6. Asphalt Recycling and Reclaiming Association, (cited October 2008), www.arra.org/.
- 7. N. Garg and M. R. Thompson, "Lincoln Avenue Reclaimed Asphalt Pavement Base Project," *Transportation Research Record*, No. 1547, 1996, pp. 89-95.
- 8. *Division III Materials: 3138 Aggregate for Surface and Base Courses.* Specification Book, 2005 Edition. Mn/DOT Standard Specifications for Construction, (cited March 2006), <u>http://www.dot.state.mn.us/tecsup/spec/2005/3101-3491.pdf</u>.
- Specifications Using Recycled Materials by Material. Texas Department of Transportation (cited May 2007), http://www.dot.state.tx.us/services/general\_services/recycling/speclist2.htm.
- Section 283: Reclaimed Asphalt Pavement Base. FDOT Standard Specifications for Road and Bridge Construction 2007, (cited April 2007), http://www.dot.state.fl.us/Specificationsoffice/2007BK/283.pdf.
- 11. Division 300 *Subbase and Base Courses*. Standard Specifications for Road and Bridge Construction 2007. New Jersey Department of Transportation, (cited November 2007) <u>http://www.state.nj.us/transportation/eng/specs/2007/spec300.shtm#s300</u>.
- 12. Section 403: *Reclaimed Pavement for Base Course and/or Subbase*. Massachusetts Highway's Standard Specifications for Highways and Bridges, (cited November 2007), http://www.mhd.state.ma.us/default.asp?pgid=environ/ContentSpec&sid=about.
- 13. NCHRP 1–37A Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Final Report, Part 2, Design Inputs. National Cooperative Highway Research Program (NCHRP), March 2004.
- 14. M.W. Witczak, *Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design*. Project No. NCHRP 1-28A, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, May 2003.
- 15. M. O. Bejarano, *Evaluation of Recycled Asphalt Concrete Materials as Aggregate Base*. Technical Memorandum TM-UCB-PRC-2001-4 California Department of Transportation, District 2 Materials Branch, 2001.

- 16. J. A. C. MacGregor, W.H. Highter and D.J. DeGroot. "Structural Numbers for Reclaimed Asphalt Pavement Base and Subbase Course Mixes," Transportation Research Record, No. 1687, 1999, pp. 22-28.
- 17. T. Bennert and A. Maher, The Development of a Performance Specification for Granular Base and Subbase Material. Publication FHWA-NJ-05-003. FHWA, U.S. Department of Transportation, Washington, D.C., 2005.
- 18. R. Mokwa and C. Peebles. Evaluation of the Engineering Characteristics of RAP/Aggregate Blends. Publication FHWA-MT-05-008. FHWA, U.S. Department of Transportation, Washington, D.C., 2005.
- 19. W. S. Guthrie, D. Cooley, and D. L. Eggett, "Effects of Reclaimed Asphalt Pavement on Mechanical Properties of Base Materials," Transportation Research Record, No. 2005, 2007 pp. 44-52.
- 20. T. B. Alam, "Structural Properties of Recycled Asphalt Pavement as a Base Layer," Master Thesis, North Dakota State University, Fargo, ND, 2008.
- 21. ASTM Standard D4867 04, Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/D4867 D4867M-04.
- 22. ASTM Standard C666 03 (2008), Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/C0666\_C0666M-03.
- 23. ASTM Standard D560 03, Standard Test Method for Freezing and Thawing Compacted Soil-Cement Mixture. ASTM International, West Conshohocken, PA, 2003, DOI:10.1520/D0560-03.
- 24. K. George and D. T. Davidson, "Development of Freeze Thaw test for Design of soil-Cement," Highway Research Record No. 236, 1963, pp 77-96.
- 25. California test No. 528-2001, Test for Freeze Thaw Resistance of Aggregate in Air Entrained Concrete, California Department of Transportation, (cited January 2008), http://www.dot.ca.gov/hq/esc/ctms/pdf/CT\_528.pdf.
- 26. AASHTO T 103-91 Nebraska modified, Soundness of Aggregate by Freezing and Thawing. Nebraska Department of Roads, (cited January 2008), http://www.dor.state.ne.us/mat-ntests/NDR%20Standard%20Test%20Methods/ndrt103.pdf.
- 27. Da-Yan Wag, W. Ma, Y. Niu, X. Chang, and Z. Wen, "Effect of Cyclic Freezing and Thawing on Mechanical Properties of Qinghai-Tibet clay," Cold regions science and technology, Vol. 48, 2007, pp 34–43.
- 28. B. G. Packard and G. A. Chapman, "Developments in Durability Testing of Soil Cement Mixtures," 2001, Highway Research Record No. 236, pp 97-122.
- 29. P. Davich, J. Labuz, B. Guzina, and A. Drescher. Small Strain and Resilient Modulus Testing of Granular Soils. Minnesota Department of Transportation, Report No 2004-39, 2004.
- 30. L. A. Cooley, Jr., M. S. Huner and R. H. James, *Micro-Deval Testing of Aggregate in the* Southeast. National Center for Asphalt technology, NCAT Report 02-092002.
- 31. Mn/DOT Resilient Modulus (Mr) Testing Protocol and Data Quality Control Criteria, (cited July 2006),

http://www.mrr.dot.state.mn.us/research/mr/MnDOTMrTestingProtocol.asp.

- J. D. Reid, B. A. Coon, B. A. Lewis, S. H. Sutherland, and Y. D. Murray, *Evaluation of LS-DYNA Soil Material Model 147*. U.S. Report No. FHWA-HRT-04-094, Department of Transportation, Federal Highway Administration, Washington, D.C., November 2004.
- 33. *Mn/DOT Standard Specifications for Construction*. 2005 and 2000 Editions Spec Books, (cited February 2008), <u>http://www.dot.state.mn.us/pre-letting/spec/2005/3101-3491.pdf</u>.
- 34. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, "Appendix DD-1: Resilient Modulus as Function of Soil Moisture-Summery of Predictive Models," (cited August 2008), <u>http://www.trb.org/mepdg/2appendices\_DD.pdf</u>.
- 35. Long-Term Pavement Performance Protocol P46, Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils. U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., August 1996, (cited July 2007), <u>http://www.tfhrc.gov/pavement/ltpp/pdf/p46.pdf</u>.

# Appendix A Index Properties

## A.1. Gradation

| Sieve<br>Size,<br>mm     | Class 5  | RAP<br>TH 10 | RAP<br>TH 19 –<br>MM<br>101 | RAP<br>TH 19-<br>MM-<br>104 | RAP TH<br>22 | 50%<br>RAP TH<br>10 +<br>50%<br>Class 5 | 75%<br>RAP TH<br>10 +<br>25%<br>Class 5 |
|--------------------------|----------|--------------|-----------------------------|-----------------------------|--------------|-----------------------------------------|-----------------------------------------|
| 50                       | 100      | 100          | 100                         | 100                         | 100          | 100                                     | 100                                     |
| 25                       | 100      | 100          | 100                         | 100                         | 100          | 100                                     | 100                                     |
| 19                       | 100      | 100          | 100                         | 100                         | 100          | 100                                     | 100                                     |
| 12.5                     | 100      | 100          | 100                         | 100                         | 100          | 100                                     | 100                                     |
| 9.5                      | 84       | 69           | 91                          | 90                          | 84           | 76.5                                    | 72.75                                   |
| 4.75                     | 68       | 49           | 78                          | 76                          | 59           | 58.5                                    | 53.75                                   |
| 2.36                     | 60       | 35           | 63                          | 62                          | 45           | 47                                      | 42                                      |
| 2                        | 58       | 32           | 62                          | 59                          | 40           | 44                                      | 39                                      |
| 1.18                     | 50       | 18           | 44                          | 46                          | 32           | 34                                      | 26                                      |
| 0.85                     | 42       | 14           | 40                          | 39                          | 22           | 28                                      | 21                                      |
| 0.6                      | 35       | 11           | 24                          | 25                          | 15           | 23                                      | 16                                      |
| 0.425                    | 24       | 7            | 20                          | 22                          | 11           | 15.5                                    | 11.25                                   |
| 0.3                      | 13       | 4            | 9                           | 12                          | 5            | 9                                       | 6.25                                    |
| 0.25                     | 11       | 2            | 8                           | 10                          | 4            | 6.5                                     | 4.25                                    |
| 0.15                     | 4.8      | 1            | 2.7                         | 3.7                         | 1.3          | 3                                       | 1.95                                    |
| 0.075                    | 2.9      | 0.4          | 1.4                         | 2.1                         | 1.3          | 1.65                                    | 1.025                                   |
|                          |          |              | Other p                     | roperties                   |              |                                         |                                         |
| <b>D</b> <sub>10</sub>   | 0.24     | 0.6          | 0.32                        | 0.25                        | 0.42         | 0.32                                    | 0.4                                     |
| D <sub>30</sub>          | 0.5      | 2            | 0.7                         | 0.7                         | 1.1          | 0.9                                     | 1                                       |
| D <sub>60</sub>          | 2.36     | 9            | 2                           | 2                           | 4.75         | 4.75                                    | 7                                       |
| Cu                       | 9.833333 | 15           | 6.25                        | 8                           | 11.30952     | 14.84375                                | 17.5                                    |
| Cc                       | 0.441    | 0.74         | 0.76                        | 0.98                        | 0.61         | 0.532                                   | 0.36                                    |
| Asphalt<br>Content,<br>% | N/A      | 4            | 1.7                         | 2                           | 2.8          | 1.8                                     | 2.36                                    |

Table A.1 Summery of Gradation and Asphalt Content



Figure A.1 Aggregate gradation compared to Mn/DOT Class 5 specification



Figure A.2 Aggregate gradation compared to Mn/DOT Class 7 specification

# A.2. Moisture Density Relations

|                     | Gyratory co<br>50 gyra | mpactor at<br>itions   | Standard Proctor    |                     |  |
|---------------------|------------------------|------------------------|---------------------|---------------------|--|
| Material            | Moisture<br>content    | Dry<br>density,<br>pcf | Moisture<br>content | Dry density,<br>pcf |  |
|                     | 1.71                   | 133.03                 | 3.544962948         | 133.63099           |  |
|                     | 3.7                    | 134.91                 | 5.126135217         | 139.90125           |  |
|                     | 5.67                   | 136.69                 | 6.15261686          | 142.46967           |  |
| Class 5             | 6.03                   | 137.354                | 7.507351669         | 139.72654           |  |
|                     | 6.42                   | 138.715                |                     |                     |  |
|                     | 6.8                    | 137.86                 |                     |                     |  |
|                     | 7.53                   | 137.27                 |                     |                     |  |
|                     | 2.77                   | 129.6                  | 3.375596904         | 127.16903           |  |
| 50% RAP TH          | 3.6513                 | 134.23                 | 4.613149292         | 133.97268           |  |
| $\frac{10+50\%}{5}$ | 5.19                   | 136.6                  | 5.849722642         | 136.69238           |  |
| C C                 | 6.01                   | 134.36                 | 7.419486343         | 133.80204           |  |
|                     | 2.115                  | 127.36                 | 3.123903124         | 123.38488           |  |
| 75% RAP TH          | 4.062                  | 132                    | 4.532775453         | 126.95268           |  |
| 10 + 25%            | 5.24                   | 133.98                 | 5.67710298          | 132.51671           |  |
| Class 5             | 5.71                   | 134.83                 | 6.652065081         | 132.79777           |  |
|                     | 6.311                  | 133.74                 |                     |                     |  |
|                     | 3.57                   | 127.04                 | 3.149327672         | 119.14472           |  |
| 1000/ DAD 771       | 4.74                   | 129.67                 | 4.366171345         | 125.93012           |  |
| 100% KAP 1H<br>10   | 5.45                   | 132.516                | 5.607850991         | 130.6108            |  |
| 10                  | 6.16                   | 131.218                | 7.108603667         | 131.06275           |  |
|                     | 6.185                  | 128.9                  |                     |                     |  |

 Table A.2 Moisture Density Relation for tested material, Part 1

|          | Gyratory con<br>gyra  | npactor at 50<br>tions | Standard    | Proctor   |
|----------|-----------------------|------------------------|-------------|-----------|
|          | Moisture              | Dry density,           | Moisture    | Dry       |
| Material | content               | Lbf                    | content     | density   |
|          | 2.27821               | 115.066                | 4.709638795 | 108.6873  |
|          | 5.0343                | 116.42                 | 5.954596204 | 113.51366 |
| RAP      | 5.9365                | 124.5431               | 6.671398155 | 120.68633 |
| TH -19-  | 7.47                  | 123.323                | 8.563943016 | 125.96856 |
| 101      | <b>101</b> 9.11 122.9 |                        | 13.89769126 | 112.96501 |
|          | 3.502129673           | 124.1667715            | 5.601948504 | 117.18483 |
|          | 5.036968577           | 126.996817             | 6.732290385 | 122.34594 |
| RAP      | 6.08974359            | 128.7943797            | 8.133387556 | 125.48468 |
| TH 19-   | 7.060849598           | 129.295108             | 9.702895825 | 125.11606 |
| 104      | 7.735247209           | 128.3008181            |             |           |
|          | 3.9534                | 126.9                  | 3.4928599   | 120.89217 |
|          | 5.1559                | 132.02                 | 3.780964798 | 125.80596 |
|          | 5.2541                | 133.74                 | 5.81776151  | 134.80145 |
| RAP      | 6.4795                | 132.17                 | 7.571168988 | 130.8335  |
| TH 22    | 6.7806                | 131.05                 |             |           |

Table A.3 Moisture Density Relation for tested material, Part 2



Figure A.3 Moisture density relation for Class 5



Figure A.4 Moisture density relation for 50% RAP TH-10 + 50% Class 5



Figure A.5 Moisture density relation for 75% RAP TH-10 + 25% Class 5



Figure A.6 Moisture density relation for RAP TH-10



Figure A.7 Moisture density relation for RAP TH 19-MM101



Figure A.8 Moisture density relation for RAP TH 19-MM104



Figure A.9 Moisture density relation for RAP TH 22

# Appendix B

**Resilient Modulus Equipment Description and Calibration** 

## **B.1. Resilient Modulus Testing System Description**

- Triaxial pressure chamber: The pressure chamber is used to contain the test specimen and the confining fluid during the test. The triaxial cell used at NDSU is constructed of three-column stainless steel with an external acrylic plastic cell wall, presented in Figure B.1. The cell has 1000 kPa (water) / 250 kPa (air) lateral confining pressure capacity. The cell allows testing a sample of size 6 in diameter \*15 in height (The actual sample size used was 6 in diameter \* 12 in height).
- Loading device: Electro-Hydraulic testing machine MTS series 312 load frame was used to apply the load, as presented in Figure B.2. It has the capability of applying the required load pulse that is required by the specification.
- Load cell: The load was monitored directly above the sample using electronic load cell located inside the triaxial cell. The load cell capacity is 5000 Lb, with minimum accuracy of  $\pm 2.5$  Lbs. The load cell is presented in Figure B.3.
- Axial deformation measuring devices: three on-specimen LVDTs to measure the specimen deformation with range of  $\pm 0.25$  in, presented in Figure B.4.
- Data acquisition: A new controller and data acquisition card was purchased from the MTS company. The new system can collect data up to 10,000 points/sec.
- Miscellaneous apparatus:
  - Compaction Split Mold
  - Rubber membranes from 0.25 to 0.79 mm thickness
  - Rubber O-rings
  - o Vacuum source
  - o 6.4-mm (0.25-in) thick porous stones for (base/subbase)
  - o Scales



Figure B.1 Triaxial pressure chamber at NDSU.



Figure B.2 MTS electro-hydraulic loading frame at NDSU.



Figure B.3 5000 Lb electronic load cell at NDSU.



Figure B.4 LVDT (on the right) and LVDT holder (on the left) at NDSU.

## **B.2.** Load Cell Calibration

The load cell was calibrated using proving ring "Humboldt MFG.CO, model H-4454.property of Mn/DOT". Calibration test setup is presented in Figure B.5. Calibration results are presented in Figure B.6. The results showed that the load cell is accurate and its results are equal to the proving ring results and to the MTS external load cell that was calibrated by MTS Inc.



Figure B.5 Load cell calibration setup



Figure B.6 Load cell calibration results

### B.3. System verification with Mn/DOT system

A synthetic rubber specimen (property of the University of Minnesota (U of M)) was used to assure the accuracy of the NDSU resilient modulus testing system compared to the Mn/DOT testing system. Figure B.7 presents the rubber specimen with the LVDTs connected around it. The test was conducted using loads described in NCHRP 1-28A protocol –procedure 1B. Testing results are presented in Table B.1 and Figure B.8. Synthetic rubber sample modulus measured by NDSU was compared to earlier results for the same specimen at Mn/DOT and the U of M. Results are presented in Figure B.9,and they indicate that NDSU resilient modulus testing system produces similar results as those produced by Mn/DOT and the U of M.

|                    | NDSU Rubber 1 |                      |  | NDSU Rubbe    | r 2 (Replicate)      |
|--------------------|---------------|----------------------|--|---------------|----------------------|
| Confining pressure | Cyclic stress | Resilient<br>modulus |  | Cyclic stress | Resilient<br>modulus |
| psi                | psi           | psi                  |  | psi           | psi                  |
| 2                  | 3.151518488   | 12765.30299          |  | 2.976785434   | 12807.85281          |
| 4                  | 2.876490599   | 13217.22215          |  | 2.794926977   | 13177.93456          |
| 6                  | 3.040348605   | 13039.93688          |  | 3.010469975   | 13228.667            |
| 8                  | 2.916998477   | 12940.81423          |  | 2.841306081   | 13162.03968          |
| 12                 | 3.410103186   | 12581.8229           |  | 3.315526882   | 12662.73192          |
| 2                  | 3.104785363   | 12722.86711          |  | 3.006755769   | 12911.43594          |
| 4                  | 3.485804211   | 12703.73189          |  | 3.318118998   | 12722.18413          |
| 6                  | 4.066204845   | 12334.84461          |  | 3.940391349   | 12383.89679          |
| 8                  | 5.186776332   | 11668.13743          |  | 5.210565972   | 11471.43796          |
| 12                 | 8.317891269   | 9638.367066          |  | 8.076549164   | 9413.340608          |
| 2                  | 3.550203683   | 12569.03213          |  | 3.371075998   | 12550.03944          |
| 4                  | 6.123501287   | 11054.5057           |  | 5.946430722   | 10898.85685          |
| 6                  | 9.276327215   | 9170.16728           |  | 9.068168755   | 9040.503023          |
| 8                  | 12.3496585    | 7833.512518          |  | 12.12880629   | 7683.916802          |
| 12                 | 17.98444923   | 6066.420071          |  | 17.5458308    | 5959.00982           |
| 2                  | 4.670229731   | 11323.71361          |  | 4.607523998   | 11396.72356          |
| 4                  | 9.254051021   | 8789.098547          |  | 9.181333611   | 8767.158413          |
| 6                  | 13.75889204   | 7154.139567          |  | 13.53143221   | 7122.774436          |
| 8                  | 18.45316209   | 6053.299494          |  | 18.06222881   | 5931.55378           |
| 12                 | 24.50570548   | 4997.876935          |  | 24.11868383   | 4955.166403          |

 Table B.1 Resilient Modulus testing results for Synthetic Rubber Sample



Figure B.7 Synthetic rubber specimen and LVDTs



Figure B.8 Resilient modulus testing results for Synthetic Rubber Sample



Figure B.9 Comparison between  $M_{R}% ^{\prime}$  for the Synthetic specimen

# Appendix C Detailed Testing Results

## C.1. All Testing Results of Samples Tested at NDSU

| Sample ID | Description                                             | Target<br>MC, % | Target Dry<br>Density, |
|-----------|---------------------------------------------------------|-----------------|------------------------|
|           |                                                         | ,               | Lb/ft <sup>3</sup>     |
| C-N-1     | 100% Class 5, OMC, no freeze                            | 6.4             | 138.7                  |
| C-N- 2    | 100% Class 5, OMC, No freeze, replicate                 | 6.4             | 138.7                  |
| CNOMC-3   | 100% Class 5, OMC, No freeze, 2 <sup>nd</sup> replicate | 6.4             | 138.7                  |
| C-F-1     | 100% Class 5, OMC, 2 freeze-thaw cycles                 | 6.4             | 138.7                  |
| C-F-2     | 100% Class 5, OMC, 2 freeze-thaw cycles, replicate      | 6.4             | 138.7                  |
| T-N1      | 50% Class 5- 50% RAP TH 10, OMC, No freeze              | 5.2             | 136.5                  |
| T-N-2     | 50% Class 5- 50% RAP TH 10, OMC, No freeze,             | 5.2             | 136.5                  |
| Т Е 1     | 50% Class 5, 50% PAD TH 10, OMC 2 fragge than           | 5.2             | 126.5                  |
| 1-1-1     | cycles                                                  | 5.2             | 130.3                  |
| T-F-2     | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-thaw          | 5.2             | 136.5                  |
| CN 1      | cycles, replicate                                       | 57              | 124.0                  |
| S-N-1     | 25% Class 5- 75% RAP TH 10, OMC, No freeze              | 5.7             | 134.8                  |
| 5-IN-2    | replicate                                               | 5.7             | 134.8                  |
| S-F-1     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-thaw          | 5.7             | 134.8                  |
|           | cycles                                                  |                 |                        |
| S-F-2     | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-thaw          | 5.7             | 134.8                  |
|           | cycles, replicate                                       |                 |                        |
| R-N-1     | 100% RAP TH 10, OMC, No freeze                          | 5.5             | 132.5                  |
| R-N-2     | 100% RAP TH 10, OMC, No freeze, replicate               | 5.5             | 132.5                  |
| R-F-1     | 100% RAP TH 10, OMC, 2 freeze-thaw cycles               | 5.5             | 132.5                  |
| R-F-2     | 100% RAP TH 10, OMC, 2 freeze-thaw cycles, replicate    | 5.5             | 132.5                  |
| U-N-1     | RAP TH 19-101, OMC, No freeze                           | 5.9             | 122.5                  |
| U-N-2     | RAP TH 19-101, OMC, No freeze, replicate                | 5.9             | 122.5                  |
| U-F-1     | RAP TH 19-101, OMC, 2 freeze-thaw cycles                | 5.9             | 122.5                  |
| U-F-2     | RAP TH 19-101, OMC, 2 freeze-thaw cycles, replicate     | 5.9             | 122.5                  |
| V-N-1     | RAP TH 19-104, OMC, No freeze                           | 7               | 129.3                  |
| V-N-2     | RAP TH 19-104, OMC, No freeze, replicate                | 7               | 129.3                  |
| V-F-1     | RAP TH 19-104, OMC, 2 freeze-thaw cycles                | 7               | 129.3                  |
| V-F-2     | RAP TH 19-104, OMC, 2 freeze-thaw cycles, replicate     | 7               | 129.3                  |
| W-N-1     | RAP TH 22, OMC, No freeze                               | 5.25            | 133.74                 |
| W-N-2     | RAP TH 22, OMC, No freeze, replicate                    | 5.25            | 133.74                 |
| W-F-1     | RAP TH 22, OMC, 2 freeze-thaw cycles                    | 5.25            | 133.74                 |
| W-F-2     | RAP TH 22, OMC, 2 freeze-thaw cycles, replicate         | 5.25            | 133.74                 |

Table C.1 List of Tested  $M_R$  Samples for Phase 1

MC= Moisture content

| Sample ID | Description                                          | Target | Target Dry         |
|-----------|------------------------------------------------------|--------|--------------------|
| -         |                                                      | MC, %  | Density,           |
|           |                                                      |        | Lb/ft <sup>3</sup> |
| C-N-3     | 100% Class 5, OMC + 1%, No freeze                    | 7.4    | 138.7              |
| C-N-4     | 100% Class 5, OMC + 2%, No freeze                    | 8.4    | 138.7              |
| C-F- 4    | 100% Class 5, OMC + 2%, 2 freeze-thaw cycles         | 8.4    | 138.7              |
| T-N- 3    | 50% Class 5- 50% RAP TH 10, OMC + 1%, No freeze      | 6.2    | 136.5              |
| T-N- 4    | 50% Class 5- 50% RAP TH 10, OMC + 2%, No freeze      | 7.2    | 136.5              |
| T-F- 3    | 50% Class 5- 50% RAP TH 10, OMC + 1%, 2 freeze-thaw  | 6.2    | 136.5              |
|           | cycles                                               |        |                    |
| T-F- 4    | 50% Class 5- 50% RAP TH 10, OMC + 2%, 2 freeze-thaw  | 7.2    | 136.5              |
|           | cycles, replicate                                    |        |                    |
| S-N- 3    | 25% Class 5- 75% RAP TH 10, OMC + 1%, No freeze      | 6.7    | 134.8              |
| S-N-4     | 25% Class 5- 75% RAP TH 10, OMC + 2%, No freeze      | 7.7    | 134.8              |
| S-F-4     | 25% Class 5- 75% RAP TH 10, OMC + 2%, 2 freeze-thaw  | 7.7    | 134.8              |
|           | cycles, replicate                                    |        |                    |
| R-N-3     | 100% RAP TH 10, OMC + 1%, No freeze                  | 6.5    | 132.5              |
| R-N-4     | 100% RAP TH 10, OMC + 2%, No freeze, replicate       | 7.5    | 132.5              |
| R-F- 3    | 100% RAP TH 10, OMC + 1%, 2 freeze-thaw cycles       | 6.5    | 132.5              |
| R-F- 4    | 100% RAP TH 10, OMC + $2\%$ , 2 freeze-thaw cycles,  | 7.5    | 132.5              |
|           | replicate                                            |        |                    |
| U-N- 4    | RAP TH 19-101, OMC + 2%, No freeze, replicate        | 7.9    | 122.5              |
| V-N-4     | RAP TH 19-104, OMC + 2%, No freeze                   | 9      | 129.3              |
| V-F- 4    | RAP TH 19-104, OMC + 2%, 2 freeze-thaw cycles        | 9      | 129.3              |
| W-N-4     | RAP TH 22, OMC + 2%, No freeze                       | 7.25   | 133.74             |
| W-F-2     | RAP TH 22. OMC + 2%. 2 freeze-thaw cycles, replicate | 7.25   | 133.74             |

 Table C.2 List of Tested Samples for Phase 2

MC = Moisture content

| Sample | Description                                             | Target | MC of sample   | $\Delta$ MC, |
|--------|---------------------------------------------------------|--------|----------------|--------------|
| ID     |                                                         | MC, %  | before test, % | %            |
| C-N-1  | 100% Class 5, OMC, no freeze                            | 6.4    | 6.4            | 0            |
| C-N-2  | 100% Class 5, OMC, no freeze, replicate                 | 6.4    | 6.4            | 0            |
| CNOMC- | 100% Class 5, OMC, no freeze, 2 <sup>nd</sup> replicate | 6.4    | 6.5            | 0.1          |
| 3      |                                                         |        |                |              |
| C-F-1  | 100% Class 5, OMC, 2 freeze-thaw cycles                 | 6.4    | 6.4            | 0            |
| C-F-2  | 100% Class 5, OMC, 2 freeze-thaw cycles,                | 6.4    | 6.57           | 0.17         |
|        | replicate                                               |        |                |              |
| T-N-1  | 50% Class 5- 50% RAP TH 10, OMC, no freeze              | 5.2    | 5.15           | -0.05        |
| T-N-2  | 50% Class 5- 50 RAP TH 10, OMC, no freeze,              | 5.2    | 4.87           | -0.33        |
|        | replicate                                               |        |                |              |
| T-F-1  | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.25           | -0.05        |
|        | thaw cycles                                             |        |                |              |
| T-F-2  | 50% Class 5- 50% RAP TH 10, OMC, 2 freeze-              | 5.2    | 5.22           | 0.02         |
|        | thaw cycles, replicate                                  |        |                |              |
| S-N-1  | 25% Class 5- 75% RAP TH 10, OMC, no freeze              | 5.7    | 5.4            | -0.3         |
| S-N-2  | 25% Class 5- 75% RAP TH 10, OMC, no freeze,             | 5.7    | 5.93           | 0.23         |
|        | replicate                                               |        |                |              |
| S-F-1  | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75           | 0            |
|        | thaw cycles                                             |        |                |              |
| S-F-2  | 25% Class 5- 75% RAP TH 10, OMC, 2 freeze-              | 5.7    | 5.75           | 0            |
|        | thaw cycles, replicate                                  |        |                |              |
| R-N-1  | 100% RAP TH 10, OMC, No freeze                          | 5.5    | 5.4            | 0.1          |
| R-N-2  | 100% RAP TH 10, OMC, No freeze, replicate               | 5.5    | 5.1            | -0.4         |
| R-F-1  | 100% RAP TH 10, OMC, 2 freeze-thaw cycles               | 5.5    | 5.42           | 08           |
| R-F-2  | 100% RAP TH 10, OMC, 2 freeze-thaw cycles,              | 5.5    | 5.5            | 0            |
|        | replicate                                               |        |                |              |
| U-N-1  | RAP TH 19-101, OMC, no freeze                           | 5.9    | 6.3            | 0.4          |
| U-N-2  | RAP TH 19-101, OMC, no freeze, replicate                | 5.9    | 6.08           | 0.18         |
| U-F-1  | RAP TH 19-101, OMC, 2 freeze-thaw cycles                | 5.9    | 5.8            | -0.1         |
| U-F-2  | RAP TH 19-101, OMC, 2 freeze-thaw cycles,               | 5.9    | 6.0            | 0.1          |
|        | replicate                                               |        |                |              |
| V-N-1  | RAP TH 19-104, OMC, no freeze                           | 7      | 7.1            | 0.1          |
| V-N-2  | RAP TH 19-104, OMC, no freeze, replicate                | 7      | 6.7            | -0.30        |
| V-F-1  | RAP TH 19-104, OMC, 2 freeze-thaw cycles                | 7      | 6.6            | -0.4         |
| V-F-2  | RAP TH 19-104, OMC, 2 freeze-thaw cycles,               | 7      | 6.7            | -0.30        |
|        | replicate                                               |        |                |              |
| W-N-1  | RAP TH 22, OMC, no freeze                               | 5.25   | 5.5            | 0.25         |
| W-N-2  | RAP TH 22, OMC, no freeze, replicate                    | 5.25   | 5.45           | 0.20         |
| W-F-1  | RAP TH 22, OMC, 2 freeze-thaw cycles                    | 5.25   | 5.5            | 0.25         |
| W-F-2  | RAP TH 22, OMC, 2 freeze-thaw cycles,                   | 5.25   | 5.45           | 0.20         |
|        | replicate                                               |        |                |              |

| Table C.3 Moisture | <b>Content Control</b> | for Phase 1 |
|--------------------|------------------------|-------------|
|--------------------|------------------------|-------------|

MC= Moisture content

| Sample | Description                                  | Target | MC of sample   | $\Delta$ MC, |
|--------|----------------------------------------------|--------|----------------|--------------|
| ID     | •                                            | MC, %  | before test, % | %            |
| C-N-3  | 100% Class 5, OMC + 1%, no freeze            | 7.4    | 7.4            | 0            |
| C-N-4  | 100% Class 5, OMC + 2%, no freeze            | 8.4    | 8.65           | 0.25         |
| C-F- 4 | 100% Class 5, OMC + 2%, 2 freeze-thaw cycles | 8.4    | 8.3            | -0.1         |
| T-N- 3 | 50% Class 5- 50% RAP TH 10, OMC +1%, no      | 6.2    | 5.95           | -0.25        |
|        | freeze                                       |        |                |              |
| T-N- 4 | 50% Class 5- 50% RAP TH 10, OMC + 2%, no     | 7.2    | 7              | -0.20        |
|        | freeze                                       |        |                |              |
| T-F- 3 | 50% Class 5- 50% RAP TH 10, OMC + 1%, 2      | 6.2    | 5.95           | -0.25        |
|        | freeze-thaw cycles                           |        |                |              |
| T-F- 4 | 50% Class 5- 50% RAP TH 10, OMC + 2%, 2      | 7.2    | 7.35           | 0.15         |
|        | freeze-thaw cycles, replicate                |        |                |              |
| S-N- 3 | 25% Class 5- 75% RAP TH 10, OMC + 1%, no     | 6.7    | 6.5            | -0.20        |
|        | freeze                                       |        |                |              |
| S-N-4  | 25% Class 5- 75% RAP TH 10, OMC + 2%, no     | 7.7    | 7.64           | -0.06        |
|        | freeze                                       |        |                |              |
| S-F-4  | 25% Class 5- 75% RAP TH 10, OMC + 2%, 2      | 7.7    | 7.84           | 0.14         |
|        | freeze-thaw cycles, replicate                |        |                |              |
| R-N- 3 | 100% RAP TH 10, OMC + 1%, No freeze          | 6.5    | 6.3            | -0.20        |
| R-N-4  | 100% RAP TH 10, OMC + 2%, No freeze,         | 7.5    | 7.5            | 0            |
|        | replicate                                    |        |                |              |
| R-F- 3 | 100% RAP TH 10, OMC + 1%, 2 freeze-thaw      | 6.5    | 6.36           | -0.14        |
|        | cycles                                       |        |                |              |
| R-F- 4 | 100% RAP TH 10, OMC + 2%, 2 freeze-thaw      | 7.5    | 7.4            | -0.10        |
|        | cycles, replicate                            |        |                |              |
| U-N- 4 | RAP TH 19-101, OMC+2%, No freeze, replicate  | 7.9    | 8.4            | 0.50         |
| U-N-   | RAP TH 19-101, OMC, no freeze, replicate     | 5.9    | 6              | 0.1          |
| OMC-   |                                              |        |                |              |
| 97MDD  |                                              |        |                |              |
| V-N- 4 | RAP TH 19-104, OMC+2%, no freeze             | 9      | 9.5            | 0.50         |
| V-F- 4 | RAP TH 19-104, OMC+2%, 2 freeze-thaw cycles  | 9      | 9.4            | 0.40         |
| W-N-4  | RAP TH 22, OMC+2%, no freeze                 | 7.25   | 7.1            | -0.15        |
| W-F-4  | RAP TH 22, OMC+2%, 2 freeze-thaw cycles,     | 7.25   | 7.50           | 0.25         |
|        | replicate                                    |        |                |              |

 Table C.4 Moisture Content Control for Phase 2

MC= Moisture content

| Sample<br>ID | # of<br>gyrations<br>top | # of<br>gyrations<br>bottom | Total<br>Sample<br>height,<br>mm | ADD,<br>lbf | ADD/MDD,<br>% |
|--------------|--------------------------|-----------------------------|----------------------------------|-------------|---------------|
| C-N-1        | 57                       | 46                          | 293.14                           | 139.27      | 100.34        |
| C-N-2        | 49                       | 47                          | 293.4                            | 139.25      | 100.33        |
| C-F-1        | 55                       | 59                          | 293.4                            | 139.6       | 100.6         |
| C-F-2        | 69                       | 77                          | 293.05                           | 138.9       | 100.1         |
| T-N-1        | 73                       | 66                          | 301.7                            | 136.88      | 100.27        |
| T-N-2        | 61                       | 48                          | 303.3                            | 136.2       | 99.8          |
| T-F-1        | 45                       | 40                          | 301.4                            | 136.7       | 100.16        |
| T-F-2        | 48                       | 50                          | 301.46                           | 136.8       | 100.2         |
| S-N-1        | 40                       | 35                          | 305.1                            | 135.1       | 100.2         |
| S-N-2        | 51                       | 55                          | 302.7                            | 135.3       | 100.4         |
| S-F-1        | 54                       | 57                          | 303.4                            | 135.3       | 100.3         |
| S-F-2        | 42                       | 35                          | 303.4                            | 135.2       | 100.3         |
| R-N-1        | 140                      | 136                         | 305                              | 132.34      | 99.88         |
| R-N-2        | 115                      | 101                         | 304.4                            | 132.5       | 100           |
| R-F-1        | 50                       | 45                          | 302.2                            | 132.56      | 100.05        |
| R-F-2        | 59                       | 58                          | 305.2                            | 132.55      | 100           |
| U-N-1        | 120                      | 97                          | 305.2                            | 123.5       | 100.8         |
| U-N-2        | 104                      | 130                         | 293.6                            | 123.09      | 100.5         |
| U-F-1        | 150                      | 150                         | 311.4                            | 121.8       | 99.4          |
| U-F-2        | 150                      | 150                         | 314.3                            | 121.44      | 99.4          |
| V-N-1        | 134                      | 96                          | 305.1                            | 129.9       | 100.47        |
| V-N-2        | 83                       | 83                          | 306                              | 129.96      | 100.5         |
| V-F-1        | 120                      | 50                          | 307                              | 129.56      | 100.2         |
| V-F-2        | 50                       | 50                          | 306.5                            | 129.62      | 100.25        |
| W-N-1        | 119                      | 81                          | 306.75                           | 134.16      | 100.31        |
| W-N-2        | 102                      | 98                          | 306.96                           | 134.25      | 100.38        |
| W-F-1        | 66                       | 66                          | 305.2                            | 133.83      | 100.06        |
| W-F-2        | 73                       | 67                          | 305.4                            | 133.93      | 100.14        |

Table C.5 Specimen Compaction Control for Phase 1

ADD = Average dry density MDD= Maximum dry density
| Sample | # of      | # of      | Total   | ADD,   | ADD/MDD, |
|--------|-----------|-----------|---------|--------|----------|
| ID     | gyrations | gyrations | Sample  | lbf    | %        |
|        | top       | bottom    | height, |        |          |
|        |           |           | mm      |        |          |
| C-N-3  | 150       | 150       | 299.74  | 137.6  | 99.11    |
| C-N-4  | 150       | 150       | 301.8   | 134.8  | 97.12    |
| C-F- 4 | 150       | 150       | 297     | 136.7  | 98.5     |
| T-N- 3 | 150       | 50        | 305     | 136.9  | 100.29   |
| T-N- 4 | 150       | 150       | 304.95  | 134.4  | 98.46    |
| T-F- 3 | 57        | 40        | 302.2   | 136.6  | 100.1    |
| T-F- 4 | 150       | 150       | 312     | 133.6  | 97.9     |
| S-N- 3 | 150       | 150       | 306.2   | 131.6  | 97.63    |
| S-N-4  | 150       | 150       | 307.7   | 130.45 | 96.77    |
| S-F-4  | 150       | 150       | 306.4   | 130.65 | 96.92    |
| R-N- 3 | 64        | 69        | 323.4   | 131.9  | 99.56    |
| R-N-4  | 150       | 150       | 306.9   | 129.2  | 97.5     |
| R-F- 3 | 82        | 130       | 302.2   | 132.4  | 99.92    |
| R-F- 4 | 150       | 150       | 308     | 129.6  | 97.8     |
| U-N-4  | 150       | 150       | 307.4   | 123.8  | 101      |
| U-N-   |           |           |         |        |          |
| OMC-   | 150       | 150       | 319.5   | 119.46 | 97.5     |
| 97MDD  |           |           |         |        |          |
| V-N- 4 | 150       | 150       | 312.6   | 124.48 | 96.27    |
| V-F- 4 | 150*      | 150*      | 307.1   | 125    | 96.7     |
| W-N-4  | 150       | 150       | 306.9   | 131.2  | 98.1     |
| W-F-4  | 150*      | 150*      | 303     | 130.9  | 97.9     |

 Table C.6 Specimen Compaction Control for Phase 2

\*Gyratory pressure = 700 KPa

|          | C-N                           | -1                       |                              |          | C-N                           | N-2                      |                              |
|----------|-------------------------------|--------------------------|------------------------------|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>Pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        | 3                             |                          |                              | 1        | 3.00                          | 0.86                     | 12795.78                     |
| 2        | 6.5                           | 1.79                     | 21478.21                     | 2        | 6.40                          | 2.16                     | 16543.45                     |
| 3        | 10.2                          | 3.45                     | 26540.21                     | 3        | 10.20                         | 4.08                     | 24725.27                     |
| 4        | 15.2                          | 6.77                     | 40193.62                     | 4        | 15.10                         | 7.03                     | 35272.46                     |
| 5        | 20.1                          | 9.99                     | 53293.35                     | 5        | 20.20                         | 10.51                    | 47584.96                     |
| 6        | 3.4                           | 1.78                     | 20917.25                     | 6        | 3.60                          | 1.95                     | 13330.21                     |
| 7        | 6.6                           | 4.54                     | 21415.60                     | 7        | 6.40                          | 4.83                     | 18304.00                     |
| 8        | 10.3                          | 9.49                     | 29453.41                     | 8        | 10.30                         | 10.12                    | 26970.35                     |
| 9        | 15.3                          | 16.17                    | 43740.17                     | 9        | 15.50                         | 16.24                    | 40631.08                     |
| 10       | 20.2                          | 21.59                    | 56721.10                     | 10       | 20.20                         | 22.11                    | 53457.96                     |
| 11       | 3.7                           | 4.54                     | 20384.56                     | 11       | 3.60                          | 4.69                     | 14577.18                     |
| 12       | 6.7                           | 12.38                    | 27482.79                     | 12       | 6.30                          | 12.85                    | 22616.01                     |
| 13       | 10.1                          | 21.41                    | 38508.64                     | 13       | 10.60                         | 22.52                    | 35086.19                     |
| 14       | 15.2                          | 31.39                    | 40892.25                     | 14       | 15.20                         | 32.91                    | 48101.76                     |
| 15       | 20                            | 41.61                    | 56708.29                     | 15       | 20.10                         | 43.47                    | 59437.09                     |
| 16       | 3.3                           | 8.26                     | 23153.69                     | 16       | 3.60                          | 8.69                     | 16752.59                     |
| 17       | 6.3                           | 18.46                    | 29446.66                     | 17       | 6.40                          | 19.74                    | 26707.03                     |
| 18       | 10.5                          | 30.46                    | 35776.83                     | 18       | 10.30                         | 32.65                    | 39511.40                     |
| 19       | 15.3                          | 45.55                    | 43456.50                     | 19       | 15.10                         | 48.44                    | 49733.62                     |
| 20       | 20.1                          | 61.30                    | 53283.92                     | 20       | 20.30                         | 63.53                    | 55450.46                     |
| 21       | 3.5                           | 14.91                    | 21668.44                     | 21       | 2.70                          | 15.90                    | 19749.64                     |
| 22       | 6.3                           | 30.00                    | 29551.32                     | 22       | 6.40                          | 31.85                    | 30271.05                     |
| 23       | 10.2                          | 49.89                    | 36962.79                     | 23       | 10.30                         | 52.05                    | 37345.69                     |
| 24       | 15.2                          |                          |                              | 24       | 15.2                          |                          |                              |
| 25       | 20.1                          | 99.44                    | 56211.38                     | 25       | 20.4                          | 102.4817                 | 50449.77                     |
| 26       | 3.8                           | 19.76                    | 25466.50                     | 26       | 3.7                           | 20.94403                 | 19946.56                     |
| 27       | 6.3                           |                          |                              | 27       | 6.8                           | 43.05084                 | 30342.93                     |
| 28       | 10.4                          |                          |                              | 28       | 10.2                          | 71.1862                  | 38558.7                      |
| 29       | 15.3                          |                          |                              | 29       | 15.3                          |                          |                              |
| 30       |                               |                          |                              | 30       | 20.2                          | 140.7208                 | 49341.07                     |

Table C.7  $M_R$  Results for Class 5 (OMC, 100% MDD), One Sample and a Replicate

| C-N-OMC-3 |                               |                          |                              |  |  |  |  |
|-----------|-------------------------------|--------------------------|------------------------------|--|--|--|--|
| Sequence  | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |  |  |
| 1         | 3                             | 0.72                     | 17371.41                     |  |  |  |  |
| 2         | 6                             | 1.71                     | 19097.48                     |  |  |  |  |
| 3         | 10                            | 3.59                     | 26425.84                     |  |  |  |  |
| 4         | 15                            | 7.13                     | 41548.48                     |  |  |  |  |
| 5         | 20                            | 10.50                    | 55568.96                     |  |  |  |  |
| 6         | 3                             | 1.58                     | 17494.52                     |  |  |  |  |
| 7         | 6                             | 4.55                     | 20093.78                     |  |  |  |  |
| 8         | 10                            | 9.88                     | 30025.83                     |  |  |  |  |
| 9         | 15                            | 16.16                    | 45653.85                     |  |  |  |  |
| 10        | 20                            | 21.78                    | 60255.97                     |  |  |  |  |
| 11        | 3                             | 4.55                     | 18816.47                     |  |  |  |  |
| 12        | 6                             | 11.76                    | 26471.01                     |  |  |  |  |
| 13        | 10                            | 21.40                    | 39375.87                     |  |  |  |  |
| 14        | 15                            | 31.86                    | 50079.05                     |  |  |  |  |
| 15        | 20                            | 42.53                    | 60902.76                     |  |  |  |  |
| 16        | 2.5                           | 8.13                     | 19891.56                     |  |  |  |  |
| 17        | 6                             | 18.12                    | 28541.63                     |  |  |  |  |
| 18        | 10                            | 31.04                    | 37865.59                     |  |  |  |  |
| 19        | 15                            | 46.56                    | 50315.96                     |  |  |  |  |
| 20        | 20                            | 62.00                    | 56100.64                     |  |  |  |  |
| 21        | 3                             | 14.14                    | 23657.20                     |  |  |  |  |
| 22        | 6                             | 29.68                    | 29103.08                     |  |  |  |  |
| 23        | 10                            | 49.86                    | 36389.96                     |  |  |  |  |
| 24        | 15                            | 75.09                    | 45046.13                     |  |  |  |  |
| 25        | 20                            | 100.68                   | 49694.03                     |  |  |  |  |

Table C.8 M<sub>R</sub> Results for Class 5 (OMC, 100% MDD, 2<sup>nd</sup> replicate)

Note: Table C.1 contains detailed sample description

|          | C-F                           | -1                       |                              |          | C-F-2                         |                          |                              |  |  |
|----------|-------------------------------|--------------------------|------------------------------|----------|-------------------------------|--------------------------|------------------------------|--|--|
| Sequence | Confining<br>Pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |
| 1        | 3.2                           | 0.92                     | 18888.52                     | 1        | 3.30                          | 0.86                     | 19130.78                     |  |  |
| 2        | 6                             | 2.25                     | 23443.39                     | 2        | 6.10                          | 2.13                     | 21329.83                     |  |  |
| 3        | 10.5                          | 4.11                     | 33046.29                     | 3        | 10.10                         | 4.19                     | 32473.30                     |  |  |
| 4        | 15.1                          | 6.80                     | 46985.02                     | 4        | 14.90                         | 7.15                     | 44662.86                     |  |  |
| 5        | 20.1                          | 10.02                    | 62543.91                     | 5        | 20.10                         | 10.72                    | 61291.10                     |  |  |
| 6        | 3.2                           | 1.86                     | 16631.78                     | 6        | 3.00                          | 1.82                     | 16672.73                     |  |  |
| 7        | 6.1                           | 4.72                     | 24634.13                     | 7        | 6.70                          | 4.93                     | 23800.38                     |  |  |
| 8        | 10.2                          | 10.07                    | 36453.70                     | 8        | 10.10                         | 10.30                    | 34338.74                     |  |  |
| 9        | 15.4                          | 16.08                    | 50600.25                     | 9        | 15.10                         | 17.12                    | 52025.09                     |  |  |
| 10       | 20.2                          | 22.17                    | 66432.33                     | 10       | 20.20                         | 23.01                    | 67398.84                     |  |  |
| 11       | 3.2                           | 4.43                     | 17033.53                     | 11       | 3.20                          | 4.62                     | 17122.76                     |  |  |
| 12       | 6                             | 12.87                    | 26186.03                     | 12       | 6.00                          | 13.25                    | 27607.77                     |  |  |
| 13       | 10                            | 22.40                    | 40372.19                     | 13       | 9.80                          | 23.04                    | 41711.35                     |  |  |
| 14       | 15.2                          | 32.49                    | 53544.10                     | 14       | 15.20                         | 33.50                    | 54862.44                     |  |  |
| 15       | 20.1                          | 42.25                    | 71361.36                     | 15       | 20.00                         | 43.62                    | 70381.19                     |  |  |
| 16       | 3.2                           | 8.35                     | 19653.31                     | 16       | 3.00                          | 8.66                     | 19384.40                     |  |  |
| 17       | 6                             | 19.34                    | 30430.71                     | 17       | 6.00                          | 20.03                    | 31618.62                     |  |  |
| 18       | 10.2                          | 32.11                    | 46549.80                     | 18       | 9.50                          | 32.87                    | 45077.36                     |  |  |
| 19       | 15                            | 46.95                    | 60000.22                     | 19       | 15.30                         | 48.30                    | 59834.08                     |  |  |
| 20       | 20                            | 62.06                    | 68801.00                     | 20       | 20.00                         | 63.61                    | 71330.97                     |  |  |
| 21       | 3.1                           | 15.49                    | 21627.60                     | 21       | 3.00                          | 15.92                    | 24961.33                     |  |  |
| 22       | 6.1                           | 31.32                    | 33769.80                     | 22       | 6.00                          | 31.97                    | 38527.37                     |  |  |
| 23       | 10.1                          | 51.30                    | 43997.75                     | 23       | 10.00                         | 52.14                    | 46064.37                     |  |  |
| 24       | 15.1                          | 76.69                    | 55172.23                     | 24       | 15.00                         | 77.35                    | 55828.40                     |  |  |
| 25       | 20.2                          | 101.70                   | 68454.03                     | 25       | 20                            | 103.24                   | 69556.63                     |  |  |
| 26       | 3.4                           | 20.72                    | 22863.37                     | 26       | 3                             | 20.98                    | 24605.09                     |  |  |
| 27       | 6                             |                          |                              | 27       | 5                             | 43.21                    |                              |  |  |
| 28       | 10.2                          |                          |                              | 28       | 10                            | 70.80                    |                              |  |  |
| 29       | 15.2                          |                          |                              | 29       | 15                            | 106.11                   |                              |  |  |
| 30       | 20.1                          |                          |                              | 30       | 20.1                          | 141.51                   |                              |  |  |

## Table C.9 M<sub>R</sub> Results for Class 5 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

Г ٦

|          | C-N-3                         |                       |                              | C-N-4 |                  |                               |                          |                              |
|----------|-------------------------------|-----------------------|------------------------------|-------|------------------|-------------------------------|--------------------------|------------------------------|
|          | OMC +1%                       | , 99% MDD             |                              |       | OMC +2%, 97% MDD |                               |                          |                              |
| Sequence | Confining<br>Pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi |       | Sequence         | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        | 3                             |                       |                              |       | 1                |                               |                          |                              |
| 2        | 6                             | 1.49                  | 10847.82                     |       | 2                | 0.7                           | 1.26                     | 18381.49                     |
| 3        | 10                            | 3.46                  | 17506.31                     |       | 3                | 10                            | 3.00                     | 25377.06                     |
| 4        | 15.3                          | 6.83                  | 26396.89                     |       | 4                | 15                            | 6.39                     | 37510.94                     |
| 5        | 20                            | 10.28                 | 35911.66                     |       | 5                | 20.1                          | 9.59                     | 52901.02                     |
| 6        | 3                             | 1.37                  | 10509.54                     |       | 6                | 3                             | 1.14                     | 18725.71                     |
| 7        | 6                             | 4.17                  | 12265.20                     |       | 7                | 6                             | 3.71                     | 16104.31                     |
| 8        | 10                            | 9.23                  | 18727.58                     |       | 8                | 10                            | 8.76                     | 24869.88                     |
| 9        | 15                            | 15.65                 | 29432.31                     |       | 9                | 15                            | 14.50                    | 41065.99                     |
| 10       | 20.2                          | 21.67                 | 40046.03                     |       | 10               | 20                            | 20.01                    | 51724.00                     |
| 11       | 3                             | 4.03                  | 11282.69                     |       | 11               | 2.9                           | 3.60                     | 15678.78                     |
| 12       | 5.9                           | 10.67                 | 15295.73                     |       | 12               | 6                             | 9.93                     | 18928.04                     |
| 13       | 10                            | 20.44                 | 24265.32                     |       | 13               | 9.9                           | 18.80                    | 28421.29                     |
| 14       | 15                            | 30.98                 | 34320.05                     |       | 14               | 15                            | 29.13                    | 37798.41                     |
| 15       | 20.1                          | 41.73                 | 43210.69                     |       | 15               | 20                            | 40.14                    | 38932.24                     |
| 16       | 3                             | 7.35                  | 13639.28                     |       | 16               | 3                             | 6.78                     | 12097.78                     |
| 17       | 5.9                           | 16.50                 | 17493.30                     |       | 17               | 6                             | 15.16                    | 16516.66                     |
| 18       | 10                            | 29.48                 | 25368.52                     |       | 18               | 10                            | 27.55                    | 23030.48                     |
| 19       | 15                            | 45.07                 | 32176.87                     |       | 19               | 15                            | 43.31                    | 28567.45                     |
| 20       | 20                            | 61.06                 | 40811.03                     |       | 20               | 20                            | 59.53                    | 35808.33                     |
| 21       | 3                             | 12.78                 | 15562.33                     |       | 21               | 3                             | 11.76                    | 14022.66                     |
| 22       | 6                             | 27.71                 | 20108.16                     |       | 22               | 6                             | 25.45                    | 18059.18                     |
| 23       | 10                            | 47.62                 | 25258.63                     |       | 23               | 10                            |                          |                              |
| 24       | 15                            | 72.85                 | 34128.56                     |       | 24               | 15                            |                          |                              |
| 25       | 20                            | 98.71                 | 38351.77                     |       |                  |                               |                          |                              |
| 26       | 3                             | 18.18                 | 16462.56                     |       |                  |                               |                          |                              |
| 27       | 6                             | 39.169686             | 19219.17                     |       |                  |                               |                          |                              |

Table C.10  $M_R$  Results for Class 5 (OMC + 1%, OMC + 2%)

| C-F-4       |                               |                          |                        |                              |  |  |  |  |  |
|-------------|-------------------------------|--------------------------|------------------------|------------------------------|--|--|--|--|--|
| MDD, OMC+2% |                               |                          |                        |                              |  |  |  |  |  |
| Sequence    | Confining<br>Pressure,<br>psi | Cyclic<br>stress,<br>psi | Bulk<br>stress,<br>Psi | Resilient<br>modulus,<br>psi |  |  |  |  |  |
| 1.00        |                               |                          |                        |                              |  |  |  |  |  |
| 2.00        |                               |                          |                        |                              |  |  |  |  |  |
| 3.00        | 10.00                         | 3.58                     | 33.58                  | 26384.55                     |  |  |  |  |  |
| 4.00        | 15.00                         | 6.98                     | 51.98                  | 37148.48                     |  |  |  |  |  |
| 5.00        | 20.00                         | 10.35                    | 70.35                  | 48929.27                     |  |  |  |  |  |
| 6.00        |                               |                          |                        |                              |  |  |  |  |  |
| 7.00        | 5.90                          | 4.43                     | 22.13                  | 18666.63                     |  |  |  |  |  |
| 8.00        | 10.20                         | 9.63                     | 40.23                  | 29344.84                     |  |  |  |  |  |
| 9.00        | 15.00                         | 15.81                    | 60.81                  | 41143.29                     |  |  |  |  |  |
| 10.00       | 20.00                         | 21.52                    | 81.52                  | 50358.13                     |  |  |  |  |  |
| 11.00       | 3.00                          | 4.34                     | 13.34                  | 15953.97                     |  |  |  |  |  |
| 12.00       | 6.00                          | 11.53                    | 29.53                  | 24465.43                     |  |  |  |  |  |
| 13.00       | 10.00                         | 21.15                    | 51.15                  | 33893.53                     |  |  |  |  |  |
| 14.00       | 15.00                         | 31.67                    | 76.67                  | 43465.22                     |  |  |  |  |  |
| 15.00       | 20.00                         | 42.05                    | 102.05                 | 51066.44                     |  |  |  |  |  |
| 16.00       | 3.00                          | 7.71                     | 16.71                  | 18365.39                     |  |  |  |  |  |
| 17.00       | 6.00                          | 17.85                    | 35.85                  | 25850.98                     |  |  |  |  |  |
| 18.00       | 10.00                         | 30.68                    | 60.68                  | 34742.26                     |  |  |  |  |  |
| 19.00       | 15.00                         | 45.64                    | 90.64                  | 43629.17                     |  |  |  |  |  |
| 20.00       | 20.00                         | 61.28                    | 121.28                 | 50128.83                     |  |  |  |  |  |
| 21.00       | 3.00                          | 13.72                    | 22.72                  | 21649.44                     |  |  |  |  |  |
| 22.00       | 6.00                          | 29.32                    | 47.32                  | 30110.21                     |  |  |  |  |  |
| 23.00       | 10.00                         | 48.06                    | 78.06                  | 33839.13                     |  |  |  |  |  |
| 24.00       | 15.00                         | 72.28                    | 117.28                 | 37677.94                     |  |  |  |  |  |

#### Table C.11 $M_R$ Results for Class 5 (OMC + 2%, Freeze-Thaw Conditioned)

|          | T-N-1                         |                       |                              |          |                               |                       |                              |  |  |
|----------|-------------------------------|-----------------------|------------------------------|----------|-------------------------------|-----------------------|------------------------------|--|--|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi |  |  |
| 1        |                               |                       |                              | 1        |                               |                       |                              |  |  |
| 2        | 6                             | 2.36                  | 35579.50                     | 2        | 6.00                          | 2.59                  | 52141.50                     |  |  |
| 3        | 9.8                           | 4.34                  | 49048.06                     | 3        | 10.00                         | 4.59                  | 68042.80                     |  |  |
| 4        | 14.8                          | 7.08                  | 68787.95                     | 4        | 15.00                         | 7.22                  | 90818.95                     |  |  |
| 5        | 19.7                          | 10.22                 | 84772.14                     | 5        | 20.00                         | 10.00                 | 107198.27                    |  |  |
| 6        | 3.4                           | 2.13                  | 26266.05                     | 6        | 2.30                          | 2.29                  | 39958.36                     |  |  |
| 7        | 5.9                           | 4.88                  | 35238.38                     | 7        | 6.00                          | 5.16                  | 49076.84                     |  |  |
| 8        | 10                            | 10.09                 | 49533.48                     | 8        | 10.00                         | 10.09                 | 61454.79                     |  |  |
| 9        | 14.8                          | 15.71                 | 68691.95                     | 9        | 15.10                         | 16.01                 | 81234.79                     |  |  |
| 10       | 19.7                          | 21.51                 | 85018.18                     | 10       | 20.00                         | 21.70                 | 102899.06                    |  |  |
| 11       | 3.6                           | 4.79                  | 27112.71                     | 11       | 3.10                          | 4.87                  | 35374.48                     |  |  |
| 12       | 6                             | 12.45                 | 37786.95                     | 12       | 6.00                          | 12.49                 | 44905.66                     |  |  |
| 13       | 10                            | 22.53                 | 57231.08                     | 13       | 10.00                         | 22.84                 | 63854.27                     |  |  |
| 14       | 15                            | 32.86                 | 69768.91                     | 14       | 15.10                         | 33.23                 | 84250.31                     |  |  |
| 15       | 19.9                          | 43.02                 | 84725.94                     | 15       | 20.00                         | 43.29                 | 96720.74                     |  |  |
| 16       | 3.2                           | 8.64                  | 27698.35                     | 16       | 3.00                          | 8.69                  | 32298.97                     |  |  |
| 17       | 5.9                           | 19.83                 | 41012.31                     | 17       | 6.00                          | 20.30                 | 46678.18                     |  |  |
| 18       | 10                            | 32.59                 | 57658.95                     | 18       | 10.20                         | 32.95                 | 64765.63                     |  |  |
| 19       | 15                            | 47.88                 | 70051.89                     | 19       | 15.00                         | 48.20                 | 79386.21                     |  |  |
| 20       | 20                            | 62.87                 | 78222.17                     | 20       | 20.00                         | 63.39                 | 89222.86                     |  |  |
| 21       | 3.2                           | 16.23                 | 29367.95                     | 21       | 3.00                          | 16.60                 | 33776.32                     |  |  |
| 22       | 5.9                           | 32.11                 | 42826.49                     | 22       | 5.50                          | 32.40                 | 46345.83                     |  |  |
| 23       | 10                            | 52.45                 | 53602.21                     | 23       | 10.00                         | 52.87                 | 64376.18                     |  |  |
| 24       | 15                            | 77.21                 | 63929.44                     | 24       | 15.00                         | 77.71                 | 74585.94                     |  |  |
| 25       | 20                            | 102.09                | 71831.56                     | 25       | 20.00                         | 102.84                | 85183.46                     |  |  |
| 26       | 3                             | 22.15                 | 29568.29                     | 26       | 3.00                          | 22.23                 | 32067.20                     |  |  |
| 27       | 6                             | 44.20                 | 42636.56                     | 27       | 5.70                          | 44.41                 | 48240.72                     |  |  |
| 28       | 10                            | 72.02                 | 53398.23                     | 28       | 10.30                         | 72.63                 | 68468.99                     |  |  |
| 29       | 15                            | 105.66147             | 53524.36                     | 29       | 15.10                         | 107.13                | 73549.99                     |  |  |
| 30       |                               |                       |                              | 30       | 20.00                         | 141.45                | 71099.69                     |  |  |

# Table C.12 M<sub>R</sub> Results for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD), One Sample and a Replicate

Г

|          | T-N- 3                        |                       |                              |          | T-N-4                         |                       |                              |  |  |
|----------|-------------------------------|-----------------------|------------------------------|----------|-------------------------------|-----------------------|------------------------------|--|--|
|          | OMC +1%,                      | 100% MDD              |                              |          | OMC +2%, 98.5% MDD            |                       |                              |  |  |
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi |  |  |
| 1        | 3                             | 0.98                  | 35775.87                     | 1        | 3.2                           | 0.87                  | 24643.27                     |  |  |
| 2        | 6                             | 2.19                  | 37153.94                     | 2        | 6                             | 1.92                  | 25877.70                     |  |  |
| 3        | 10                            | 4.22                  | 47393.71                     | 3        | 10.1                          | 3.66                  | 32553.76                     |  |  |
| 4        | 14.9                          | 7.23                  | 64333.79                     | 4        | 15                            | 6.77                  | 44620.84                     |  |  |
| 5        | 20                            | 10.43                 | 82843.84                     | 5        | 20                            | 10.14                 | 56240.07                     |  |  |
| 6        | 3                             | 2.05                  | 31343.13                     | 6        | 3                             | 1.86                  | 23187.57                     |  |  |
| 7        | 6                             | 4.85                  | 31684.22                     | 7        | 6                             | 4.53                  | 28642.51                     |  |  |
| 8        | 9.9                           | 10.14                 | 42262.90                     | 8        | 10                            | 9.68                  | 36288.44                     |  |  |
| 9        | 15                            | 15.78                 | 61952.13                     | 9        | 15                            | 16.25                 | 48165.84                     |  |  |
| 10       | 20                            | 21.76                 | 78287.76                     | 10       | 20                            | 21.48                 | 59462.47                     |  |  |
| 11       | 3.2                           | 5.00                  | 30053.75                     | 11       | 3.1                           | 4.61                  | 25555.43                     |  |  |
| 12       | 6                             | 12.67                 | 36759.24                     | 12       | 6                             | 12.31                 | 32677.57                     |  |  |
| 13       | 10                            | 22.01                 | 48350.90                     | 13       | 10                            | 21.43                 | 41459.82                     |  |  |
| 14       | 15                            | 32.23                 | 57306.93                     | 14       | 15                            | 31.43                 | 49186.69                     |  |  |
| 15       | 20                            | 42.49                 | 72027.93                     | 15       | 20.3                          | 41.54                 | 57089.75                     |  |  |
| 16       | 3                             | 8.73                  | 28120.64                     | 16       | 3.21                          | 8.22                  | 27831.62                     |  |  |
| 17       | 6.2                           | 19.40                 | 36874.84                     | 17       | 6                             | 18.28                 | 32514.81                     |  |  |
| 18       | 10                            | 32.09                 | 49928.93                     | 18       | 10                            | 30.59                 | 39114.68                     |  |  |
| 19       | 15                            | 47.18                 | 58111.45                     | 19       | 15                            | 45.58                 | 46122.16                     |  |  |
| 20       | 19.5                          | 62.16                 | 66290.28                     | 20       | 19.8                          | 60.68                 | 48963.91                     |  |  |
| 21       | 3                             | 15.75                 | 28778.33                     | 21       | 3                             | 14.90                 | 26495.37                     |  |  |
| 22       | 6                             | 31.43                 | 36368.18                     | 22       | 6                             | 29.94                 | 33237.53                     |  |  |
| 23       | 10.2                          | 51.30                 | 42234.38                     | 23       | 10                            | 49.03                 | 41198.42                     |  |  |
| 24       | 15                            | 75.86                 | 44849.96                     | 24       | 15                            |                       |                              |  |  |
| 25       | 20                            | 100.72                | 48912.33                     | 25       |                               |                       |                              |  |  |
| 26       | 2                             | 21.40                 | 23137.49                     | 26       |                               |                       |                              |  |  |
| 27       | 6                             | 43.37                 | 30793.40                     | 27       |                               |                       |                              |  |  |
| 28       | 10                            | 70.96                 | 37188.68                     | 28       |                               |                       |                              |  |  |

#### Table C.13 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC + 1% and OMC + 2%)

|          | T-F-1                         |                       |                              |          |                               |                       |                              |  |
|----------|-------------------------------|-----------------------|------------------------------|----------|-------------------------------|-----------------------|------------------------------|--|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Resilient<br>modulus,<br>psi |  |
| 1        | 3                             | 1.16                  | 33328.52                     | 1        | 3.00                          | 1.01                  | 38705.65                     |  |
| 2        | 6.5                           | 2.64                  | 45713.90                     | 2        | 6.00                          | 2.33                  | 49464.89                     |  |
| 3        | 10                            | 4.62                  | 58301.57                     | 3        | 10.00                         | 4.13                  | 61944.06                     |  |
| 4        | 15.1                          | 7.22                  | 77971.29                     | 4        | 15.10                         | 6.70                  | 77588.46                     |  |
| 5        | 20                            | 10.32                 | 97154.43                     | 5        | 21.00                         | 9.45                  | 94642.94                     |  |
| 6        | 3.3                           | 2.41                  | 35216.76                     | 6        | 3.00                          | 2.09                  | 37172.24                     |  |
| 7        | 6                             | 5.26                  | 44293.64                     | 7        | 5.80                          | 4.62                  | 44531.66                     |  |
| 8        | 9.9                           | 10.08                 | 56458.73                     | 8        | 10.00                         | 9.34                  | 57795.63                     |  |
| 9        | 15.2                          | 15.77                 | 79591.44                     | 9        | 15.00                         | 14.90                 | 76604.11                     |  |
| 10       | 20.1                          | 20.81                 | 98694.32                     | 10       | 20.10                         | 20.32                 | 98193.82                     |  |
| 11       | 3.6                           | 4.96                  | 35556.39                     | 11       | 3.00                          | 4.31                  | 33999.53                     |  |
| 12       | 6.4                           | 12.26                 | 44523.17                     | 12       | 6.00                          | 11.28                 | 43588.67                     |  |
| 13       | 10.2                          | 22.19                 | 63113.76                     | 13       | 10.00                         | 21.65                 | 63287.18                     |  |
| 14       | 15                            | 32.77                 | 79104.50                     | 14       | 14.80                         | 32.05                 | 78514.20                     |  |
| 15       | 20                            | 42.90                 | 99170.57                     | 15       | 19.60                         | 42.01                 | 102784.34                    |  |
| 16       | 3.4                           | 8.53                  | 33232.18                     | 16       | 3.20                          | 8.16                  | 33950.73                     |  |
| 17       | 6                             | 19.79                 | 46975.80                     | 17       | 5.90                          | 19.38                 | 48338.79                     |  |
| 18       | 10                            | 32.61                 | 65166.51                     | 18       | 9.70                          | 31.76                 | 69010.69                     |  |
| 19       | 15.1                          | 47.96                 | 79901.58                     | 19       | 15.20                         | 46.93                 | 88089.47                     |  |
| 20       | 20.1                          | 63.17                 | 88593.06                     | 20       | 19.80                         | 61.76                 | 95754.82                     |  |
| 21       | 3.4                           | 16.07                 | 33318.08                     | 21       | 3.30                          | 15.56                 | 38151.44                     |  |
| 22       | 6.1                           | 32.27                 | 48299.07                     | 22       | 6.00                          | 31.02                 | 52620.60                     |  |
| 23       | 10.3                          | 52.58                 | 63377.12                     | 23       | 10.20                         | 51.17                 | 67633.73                     |  |
| 24       | 15.1                          | 77.77                 | 81278.71                     | 24       | 15.00                         | 76.77                 | 83115.27                     |  |
| 25       | 20                            | 103.18                | 93438.39                     | 25       | 20.00                         | 102.19                | 89690.04                     |  |
| 26       | 3.4                           | 22.00                 | 33497.21                     | 26       | 3.00                          | 21.53                 | 35761.03                     |  |
| 27       | 6                             | 44.07                 | 51501.98                     | 27       | 6.20                          | 43.51                 | 51476.71                     |  |
| 28       | 10.1                          | 72.87                 | 73622.17                     | 28       |                               |                       |                              |  |
| 29       | 15                            | 107.80                | 80863.54                     | 29       |                               |                       |                              |  |
| 30       | 20.5                          | 142.42                | 79660.11                     | 30       |                               |                       |                              |  |

### Table C.14 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

### Table C.15 $M_R$ Results for 50% Class 5 + 50% RAP TH 10 (OMC +1% and OMC + 2%, Freeze-Thaw Conditioned)

|          | T-F-3               |             |                       |   | T-F-4    |                     |             |                       |  |
|----------|---------------------|-------------|-----------------------|---|----------|---------------------|-------------|-----------------------|--|
|          | OMC +1%,            | 100% MDD    |                       |   | Ν        | IC = OMC +          | 2%, 98% ME  | DD                    |  |
|          | Confining pressure, | Cyclic      | Resilient<br>modulus, |   |          | Confining pressure, | Cyclic      | Resilient<br>modulus, |  |
| Sequence | psi                 | stress, psi | psi                   |   | Sequence | psi                 | stress, psi | psi                   |  |
| 1        | 3                   | 0.8719561   | 35676.229             |   | 1        |                     |             |                       |  |
| 2        | 5.8                 | 2.067       | 38718.357             |   | 2        | 6                   | 2.3258854   | 49043.09              |  |
| 3        | 10.2                | 3.8567      | 52507.423             |   | 3        | 10                  | 4.216162    | 70378.979             |  |
| 4        | 15                  | 7.059       | 73641.255             |   | 4        | 15                  | 7.2373405   | 95321.234             |  |
| 5        | 19.9                | 10.394      | 93413.641             |   | 5        | 20                  | 10.477824   | 110984.21             |  |
| 6        | 3                   | 1.854       | 32052.74              |   | 6        | 2.5                 | 2.0461918   | 38979.879             |  |
| 7        | 6                   | 4.5597819   | 38069.64              |   | 7        | 5.8                 | 4.9433756   | 51546.118             |  |
| 8        | 10                  | 10.011963   | 51968.166             |   | 8        | 10                  | 10.155306   | 71176.826             |  |
| 9        | 15                  | 16.078301   | 74276.825             |   | 9        | 15                  | 16.029196   | 96034.85              |  |
| 10       | 20                  | 21.37389    | 95545.981             |   | 10       | 20                  | 21.392725   | 114943.73             |  |
| 11       | 3                   | 4.5837578   | 29182.203             |   | 11       | 3                   | 4.8307308   | 43002.05              |  |
| 12       | 6.2                 | 12.101732   | 39837.232             |   | 12       | 6                   | 12.37761    | 57016.944             |  |
| 13       | 10.1                | 21.573665   | 54654.357             |   | 13       | 10                  | 21.66488    | 77194.216             |  |
| 14       | 15                  | 31.773871   | 62113.784             |   | 14       | 15.2                | 32.0596     | 102102.65             |  |
| 15       | 20                  | 41.986362   | 85198.009             |   | 15       | 20.5                | 42.455291   | 117642.67             |  |
| 16       | 3.2                 | 8.0245063   | 28922.587             |   | 16       | 3                   | 8.3851208   | 41299.561             |  |
| 17       | 5.9                 | 18.663708   | 38436.128             |   | 17       | 6                   | 18.913975   | 59240.158             |  |
| 18       | 10.1                | 31.32971    | 55427.563             |   | 18       | 10                  | 31.836703   | 81779.432             |  |
| 19       | 15                  | 46.360283   | 64235.622             |   | 19       | 15                  | 47.189868   | 87889.61              |  |
| 20       | 20                  | 62.084556   | 72881.123             |   | 20       | 20                  | 62.005671   | 101776.54             |  |
| 21       | 3                   | 14.547449   | 28663.486             |   | 21       | 3                   | 15.109388   | 41863.483             |  |
| 22       | 6                   | 30.626909   | 41134.339             |   | 22       | 6                   | 31.047716   | 61970.873             |  |
| 23       | 10                  | 50.69734    | 51648.712             |   | 23       | 10                  | 51.075822   | 69399.958             |  |
| 24       | 15                  | 75.823397   | 58499.425             |   | 24       | 15                  | 75.169838   | 71749.062             |  |
| 25       | 20                  | 101.06105   | 69081.949             |   | 25       | 20                  | 99.725468   | 74637.922             |  |
| 26       | 3                   | 20.150524   | 27154.435             |   | 26       | 3.4                 | 20.620543   | 34136.18              |  |
| 27       | 6                   | 42.607175   | 44500.085             |   | 27       | 5.9                 | 42.941252   | 50571.306             |  |
| 28       | 10                  | 71.045199   | 55466.014             | 1 | 28       | 10                  | 69.84855    | 57099.112             |  |
| 29       | 15                  | 103.572     | 51955.45              | 1 | 29       | 15                  | 100.22448   | 51234.423             |  |
| 30       | 20                  | 136.04219   | 102696.61             |   | 30       |                     |             |                       |  |

|          | S-1       | N-1         |           |          | S-1       | N-2         |           |
|----------|-----------|-------------|-----------|----------|-----------|-------------|-----------|
|          | Confining |             | Resilient |          | Confining |             | Resilient |
|          | pressure, | Cyclic      | modulus,  |          | pressure, | Cyclic      | modulus,  |
| Sequence | psi       | stress, psi | psi       | Sequence | psi       | stress, psi | psi       |
| 1        | 3         | 0.98        | 22391.44  | 1        | 3         | 1.10        | 31540.60  |
| 2        | 6         | 2.31        | 29724.71  | 2        | 6         | 2.44        | 36835.48  |
| 3        | 10        | 4.15        | 41677.86  | 3        | 10.3      | 4.21        | 47213.45  |
| 4        | 15        | 6.72        | 61084.70  | 4        | 15.1      | 6.83        | 64337.89  |
| 5        | 20        | 9.71        | 76239.26  | 5        | 20.1      | 9.95        | 82035.29  |
| 6        | 3         | 2.11        | 22910.80  | 6        | 3.1       | 2.26        | 31711.36  |
| 7        | 6         | 4.75        | 30819.23  | 7        | 6         | 4.93        | 38072.08  |
| 8        | 10        | 9.74        | 44172.38  | 8        | 10.1      | 9.83        | 49559.57  |
| 9        | 15.1      | 15.43       | 63067.40  | 9        | 15        | 15.72       | 67779.51  |
| 10       | 20        | 21.53       | 75271.32  | 10       | 20.1      | 21.89       | 82417.65  |
| 11       | 3         | 4.56        | 23065.34  | 11       | 3.1       | 4.73        | 31933.90  |
| 12       | 6         | 12.17       | 33955.55  | 12       | 6.1       | 12.43       | 41602.15  |
| 13       | 10.1      | 21.97       | 49966.36  | 13       | 10.4      | 22.34       | 56267.05  |
| 14       | 15        | 32.15       | 55851.15  | 14       | 15.1      | 32.56       | 61913.39  |
| 15       | 20        | 42.17       | 71096.59  | 15       | 20        | 42.86       | 82445.02  |
| 16       | 3         | 8.34        | 24358.18  | 16       | 3.7       | 8.65        | 31882.91  |
| 17       | 6         | 19.24       | 34920.55  | 17       | 6.2       | 19.90       | 43080.36  |
| 18       | 10        | 31.77       | 47934.73  | 18       | 10.3      | 32.33       | 57719.67  |
| 19       | 15        | 46.75       | 56990.63  | 19       | 15.1      | 47.35       | 67885.63  |
| 20       | 20.2      | 61.83       | 63493.94  | 20       | 20        | 62.41       | 70666.64  |
| 21       | 3         | 15.71       | 25683.20  | 21       | 3         | 16.55       | 30787.53  |
| 22       | 6         | 31.17       | 35959.54  | 22       | 6.3       | 31.76       | 42089.23  |
| 23       | 10        | 51.09       | 45499.66  | 23       | 10.4      | 51.68       | 51559.24  |
| 24       |           |             |           | 24       |           |             |           |
| 25       | 20        | 100.28      | 60882.40  | 25       | 20        | 100.82      | 67329.15  |
| 26       | 3         | 21.51       | 25692.69  | 26       | 3.4       | 22.22       | 32136.01  |
| 27       | 6         | 43.24       | 39281.68  | 27       | 6.3       | 43.72       | 46830.78  |
| 28       | 10        | 71.27       | 49168.72  | 28       | 10.1      | 70.34       | 53592.09  |
| 29       | 15        |             |           | 29       |           |             |           |
| 30       | 20.2      | 137.82      | 56194.39  | 30       | 20.2      | 138.69      | 60981.90  |

## Table C.16 M<sub>R</sub> Results for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD), One Sample and a Replicate

| S-N-3    |                               |                          |                              |  |  |  |  |  |
|----------|-------------------------------|--------------------------|------------------------------|--|--|--|--|--|
|          | OMC +1%,                      | 97.6% MD                 | D                            |  |  |  |  |  |
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |  |  |  |
| 1        |                               |                          |                              |  |  |  |  |  |
| 2        | 6                             | 2.02                     | 27010.65                     |  |  |  |  |  |
| 3        | 10                            | 3.77                     | 34309.91                     |  |  |  |  |  |
| 4        | 15                            | 7.03                     | 46365.72                     |  |  |  |  |  |
| 5        | 20                            | 10.38                    | 56210.04                     |  |  |  |  |  |
| 6        | 3.1                           | 1.87                     | 22278.20                     |  |  |  |  |  |
| 7        | 6                             | 4.82                     | 28670.63                     |  |  |  |  |  |
| 8        | 10                            | 10.01                    | 37793.33                     |  |  |  |  |  |
| 9        | 15                            | 16.02                    | 49046.65                     |  |  |  |  |  |
| 10       | 20                            | 21.38                    | 59616.27                     |  |  |  |  |  |
| 11       | 3.2                           | 4.72                     | 23858.42                     |  |  |  |  |  |
| 12       | 5.8                           | 12.39                    | 34050.49                     |  |  |  |  |  |
| 13       | 10                            | 21.47                    | 45151.22                     |  |  |  |  |  |
| 14       | 15                            | 31.59                    | 53432.52                     |  |  |  |  |  |
| 15       | 19                            | 41.63                    | 59243.10                     |  |  |  |  |  |
| 16       | 3                             | 8.13                     | 24291.42                     |  |  |  |  |  |
| 17       | 6.1                           | 18.56                    | 34160.21                     |  |  |  |  |  |
| 18       | 10                            | 31.12                    | 44476.88                     |  |  |  |  |  |
| 19       | 14.5                          | 45.87                    | 51552.66                     |  |  |  |  |  |
| 20       | 20                            | 61.02                    | 59054.85                     |  |  |  |  |  |
| 21       | 3                             | 14.75                    | 27314.97                     |  |  |  |  |  |
| 22       | 6                             | 30.30                    | 35755.32                     |  |  |  |  |  |
| 23       | 10                            | 49.57                    | 42790.95                     |  |  |  |  |  |
| 24       | 15                            | 73.47                    | 43614.46                     |  |  |  |  |  |

| S-N-4    |                               |                          |                              |  |  |  |  |  |
|----------|-------------------------------|--------------------------|------------------------------|--|--|--|--|--|
|          | OMC+2%, 97% MDD               |                          |                              |  |  |  |  |  |
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |  |  |  |
| 1        |                               |                          |                              |  |  |  |  |  |
| 2        | 6.1                           | 2.11                     | 32092.66                     |  |  |  |  |  |
| 3        | 10                            | 3.72                     | 37804.64                     |  |  |  |  |  |
| 4        | 15                            | 6.89                     | 45991.40                     |  |  |  |  |  |
| 5        | 19.8                          | 10.20                    | 54698.05                     |  |  |  |  |  |
| 6        | 3                             | 1.95                     | 27864.85                     |  |  |  |  |  |
| 7        | 6                             | 4.74                     | 31094.71                     |  |  |  |  |  |
| 8        | 10                            | 9.71                     | 37162.52                     |  |  |  |  |  |
| 9        | 15                            | 15.60                    | 46756.96                     |  |  |  |  |  |
| 10       | 20                            | 20.80                    | 56236.87                     |  |  |  |  |  |
| 11       | 3                             | 4.68                     | 28124.61                     |  |  |  |  |  |
| 12       | 6                             | 11.99                    | 34413.42                     |  |  |  |  |  |
| 13       | 10                            | 20.94                    | 41474.51                     |  |  |  |  |  |
| 14       | 15                            | 30.73                    | 46240.45                     |  |  |  |  |  |
| 15       | 20                            | 40.61                    | 53559.97                     |  |  |  |  |  |
| 16       | 3                             | 8.22                     | 25329.66                     |  |  |  |  |  |
| 17       | 6                             | 18.14                    | 30141.37                     |  |  |  |  |  |
| 18       | 10                            | 30.07                    | 34166.11                     |  |  |  |  |  |
| 19       | 15                            | 44.42                    | 41632.94                     |  |  |  |  |  |

#### Table C.17 $M_R$ Results for 25% Class 5 + 75% RAP TH 10 (OMC + 1% and OMC + 2%)

|          | S-F-                | 1                 |                       |          | S-F-                | 2                 |                       |
|----------|---------------------|-------------------|-----------------------|----------|---------------------|-------------------|-----------------------|
|          | Confining pressure, | Cyclic<br>stress, | Resilient<br>modulus, | 6        | Confining pressure, | Cyclic<br>stress, | Resilient<br>modulus, |
| Sequence | psi                 | psı               | psı                   | Sequence | psi                 | psi               | psi                   |
| 1        |                     |                   |                       | 1        |                     |                   |                       |
| 2        | 5.8                 | 2.59              | 33255.23              | 2        | 6                   | 2.47              | 40978.17              |
| 3        | 9.9                 | 4.62              | 45239.80              | 3        | 10.1                | 4.30              | 53043.03              |
| 4        | 15                  | 7.34              | 60828.26              | 4        | 15                  | 6.76              | 65257.69              |
| 5        | 20                  | 10.41             | 73399.66              | 5        | 20                  | 9.86              | 77179.89              |
| 6        | 3                   | 2.32              | 26297.86              | 6        | 3                   | 2.29              | 33120.87              |
| 7        | 5.7                 | 5.25              | 32408.45              | 7        | 6                   | 5.03              | 40840.19              |
| 8        | 10                  | 10.21             | 44053.63              | 8        | 10                  | 9.86              | 51597.85              |
| 9        | 15                  | 15.49             | 61839.94              | 9        | 14.7                | 15.26             | 63810.73              |
| 10       | 20                  | 20.55             | 76108.50              | 10       | 20                  | 20.69             | 76222.12              |
| 11       | 2.9                 | 5.11              | 24577.19              | 11       | 2.9                 | 4.86              | 31810.01              |
| 12       | 6                   | 12.31             | 34003.04              | 12       | 6.1                 | 12.06             | 41989.10              |
| 13       | 10                  | 21.66             | 50659.96              | 13       | 10                  | 21.28             | 53726.84              |
| 14       | 15                  | 32.37             | 65240.27              | 14       | 15                  | 31.20             | 64580.20              |
| 15       | 20                  | 42.52             | 75745.40              | 15       | 20                  | 41.52             | 73879.75              |
| 16       | 3                   | 8.74              | 26327.70              | 16       | 3                   | 8.39              | 30795.46              |
| 17       | 6                   | 19.33             | 36397.06              | 17       | 6                   | 18.97             | 38707.48              |
| 18       | 10.3                | 32.23             | 52116.17              | 18       | 10                  | 30.79             | 53137.67              |
| 19       | 15                  | 47.40             | 62638.74              | 19       | 15                  | 45.94             | 62268.44              |
| 20       | 19.7                | 62.74             | 70461.29              | 20       | 20.1                | 60.99             | 74167.97              |
| 21       | 3                   | 15.52             | 26397.94              | 21       | 3                   | 15.23             | 33707.42              |
| 22       | 6                   | 31.64             | 39775.15              | 22       | 6                   | 30.14             | 43418.90              |
| 23       | 10                  | 52.30             | 50466.47              | 23       | 9.5                 | 50.31             | 52929.20              |
| 24       | 15.3                | 77.07             | 57983.75              | 24       | 15                  | 75.29             | 58220.42              |
| 25       | 20                  | 102.06            | 65268.39              | 25       | 20                  | 100.45            | 65330.35              |
| 26       | 3                   | 21.30             | 26334.26              | 26       | 3                   | 20.62             | 28833.86              |
| 27       | 5.5                 | 43.58             | 37735.98              | 27       | 6.2                 | 41.86             | 40136.68              |
| 28       | 10                  | 71.72             | 48500.37              | 28       | 10.2                | 69.70             | 51727.46              |
| 29       | 15.1                |                   |                       | 29       | 15                  | 104.51            | 55447.56              |
| 30       | 20.5                | 140.02            | 58958.60              | 30       |                     |                   |                       |

### Table C.18 $M_R$ Results for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

| S-F-4    |                            |                    |                           |                     |  |  |  |
|----------|----------------------------|--------------------|---------------------------|---------------------|--|--|--|
| Sequence | Confining<br>pressure, psi | Cyclic stress, psi | Resilient modulus,<br>psi | Notes               |  |  |  |
| 1        |                            |                    |                           |                     |  |  |  |
| 2        | 6                          | 2.26               | 41076.76                  |                     |  |  |  |
| 3        | 10                         | 4.06               | 47641.79                  |                     |  |  |  |
| 4        | 15                         | 7.02               | 60873.67                  |                     |  |  |  |
| 5        | 20                         | 10.31              | 71830.46                  |                     |  |  |  |
| 6        | 3                          | 1.99               | 30869.99                  |                     |  |  |  |
| 7        | 6                          | 4.70               | 35793.74                  |                     |  |  |  |
| 8        | 10                         | 9.97               | 46471.56                  |                     |  |  |  |
| 9        | 15                         | 16.12              | 58576.86                  |                     |  |  |  |
| 10       | 20                         | 21.52              | 69596.94                  |                     |  |  |  |
| 11       | 3                          | 4.65               | 28276.36                  |                     |  |  |  |
| 12       | 6                          | 12.36              | 36801.99                  |                     |  |  |  |
| 13       | 10                         | 21.41              | 50436.99                  |                     |  |  |  |
| 14       | 15                         | 31.44              | 63114.41                  |                     |  |  |  |
| 15       | 20                         | 41.63              | 68701.26                  |                     |  |  |  |
| 16       | 3                          | 8.19               | 28911.45                  |                     |  |  |  |
| 17       | 6                          | 18.38              | 37300.37                  |                     |  |  |  |
| 18       | 10                         | 30.79              | 48348.76                  |                     |  |  |  |
| 19       | 15                         | 45.32              | 54433.02                  |                     |  |  |  |
| 20       | 20                         | 59.98              | 60526.34                  | Due to high SNR for |  |  |  |
| 21       | 3                          | 14.55              | 27294.14                  | LVDI I, the         |  |  |  |
| 22       | 6                          | 29.63              | 37812.39                  | calculated based on |  |  |  |
| 23       | 10                         | 47.11              | 39811.47                  | only 2 lvdts        |  |  |  |

### Table C.19 $M_R$ Results for 25% Class 5+ 75% RAP TH 10 (OMC +2%, 96% MDD, Freeze-Thaw Conditioned)

| R-N-1    |                               |                          |                              | R-N-2    |                               |                          |                              |
|----------|-------------------------------|--------------------------|------------------------------|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
|          |                               |                          |                              |          |                               |                          |                              |
| 1        | 3                             | 1.06                     | 35764.77                     | 1        |                               |                          |                              |
| 2        | 6                             | 2.63                     | 48278.38                     | 2        |                               |                          |                              |
| 3        | 10                            | 4.66                     | 69854.24                     | 3        |                               |                          |                              |
| 4        | 15                            | 7.28                     | 107233.62                    | 4        |                               |                          |                              |
| 5        | 20                            | 10.05                    | 135115.35                    | 5        |                               |                          |                              |
| 6        | 3                             | 2.33                     | 38108.31                     | 6        | 3                             | 2.48                     | 53357.36                     |
| 7        | 6                             | 5.28                     | 52177.06                     | 7        | 5.9                           | 5.42                     | 67636.23                     |
| 8        | 10                            | 10.03                    | 79591.36                     | 8        | 9.9                           | 10.16                    | 88630.72                     |
| 9        | 14.9                          | 15.46                    | 108629.87                    | 9        | 14.8                          | 15.66                    | 114938.88                    |
| 10       | 20                            | 20.21                    | 128398.12                    | 10       | 20.2                          | 20.38                    | 151009.19                    |
| 11       | 3                             | 4.93                     | 40663.62                     | 11       | 3.3                           | 5.11                     | 51557.44                     |
| 12       | 6                             | 12.33                    | 55075.83                     | 12       | 6                             | 12.41                    | 63557.08                     |
| 13       | 10                            | 21.80                    | 76113.58                     | 13       | 9.8                           | 21.75                    | 85364.58                     |
| 14       | 15                            | 32.49                    | 95250.86                     | 14       | 14.8                          | 31.95                    | 111595.34                    |
| 15       | 20                            | 42.39                    | 110525.08                    | 15       | 20                            | 42.50                    | 135068.56                    |
| 16       | 3                             | 8.65                     | 34805.48                     | 16       | 3.3                           | 8.77                     | 48221.42                     |
| 17       | 6                             | 19.86                    | 51114.37                     | 17       | 6.2                           | 19.61                    | 65984.57                     |
| 18       | 10                            | 32.32                    | 71966.47                     | 18       | 10                            | 32.37                    | 88768.24                     |
| 19       | 15                            | 47.64                    | 83999.87                     | 19       | 15                            | 47.71                    | 110640.27                    |
| 20       | 20                            | 63.14                    | 94609.69                     | 20       | 20.1                          | 62.90                    | 123927.06                    |
| 21       | 3.2                           | 16.54                    | 35487.68                     | 21       | 3.2                           | 16.30                    | 48932.91                     |
| 22       | 6                             | 32.24                    | 49263.29                     | 22       | 5.8                           | 32.13                    | 63192.18                     |
| 23       | 10                            | 52.53                    | 64347.69                     | 23       | 10                            | 52.54                    | 85312.80                     |
| 24       |                               |                          |                              | 24       | 14.9                          | 0.09                     | 8676.39                      |
| 25       | 20.1                          | 102.92                   | 91376.90                     | 25       | 20                            | 102.74                   | 107979.41                    |
| 26       | 3.4                           | 22.52                    | 36067.06                     | 26       | 3.1                           | 22.19                    | 42823.10                     |
| 27       | 6                             | 44.27                    | 52257.23                     | 27       | 6                             | 43.98                    | 60439.58                     |
| 28       | 10.1                          | 72.12                    | 69779.28                     | 28       | 9.9                           | 70.09                    | 77195.42                     |
| 29       | 15                            |                          |                              | 29       | 15                            | 107.34                   | 96696.76                     |
| 30       | 20                            | 142.03                   | 83657.53                     | 30       | 20                            | 141.94                   | 96987.34                     |

Table C.20  $M_R$  Results for 100% RAP TH 10 (OMC, 100% MDD)

| R-N-OMC 3 |                        |                   |                        |  |  |  |  |
|-----------|------------------------|-------------------|------------------------|--|--|--|--|
| Sequence  | Confining pressure psi | Cyclic stress nsi | Resilient modulus, psi |  |  |  |  |
| Bequeilee |                        |                   |                        |  |  |  |  |
| 1         | 3                      | 1.05              | 58300.93               |  |  |  |  |
| 2         | 6                      | 2.40              | 73929.53               |  |  |  |  |
| 3         | 10                     | 4.31              | 95689.02               |  |  |  |  |
| 4         | 15                     | 7.19              | 113903.41              |  |  |  |  |
| 5         | 20                     | 10.43             | 130895.05              |  |  |  |  |
| 6         | 3                      | 2.21              | 54742.50               |  |  |  |  |
| 7         | 6                      | 5.06              | 66124.46               |  |  |  |  |
| 8         | 10                     | 10.05             | 75999.99               |  |  |  |  |
| 9         | 15                     | 15.72             | 97431.99               |  |  |  |  |
| 10        | 19.8                   | 21.13             | 114631.80              |  |  |  |  |
| 11        | 3                      | 4.87              | 48591.21               |  |  |  |  |
| 12        | 6                      | 12.05             | 56106.70               |  |  |  |  |
| 13        | 10                     | 21.50             | 73697.65               |  |  |  |  |
| 14        | 15.1                   | 31.52             | 91325.00               |  |  |  |  |
| 15        | 20                     | 41.75             | 105245.69              |  |  |  |  |
| 16        | 3                      | 8.45              | 41985.35               |  |  |  |  |
| 17        | 6                      | 18.99             | 54935.50               |  |  |  |  |
| 18        | 10.2                   | 31.39             | 71703.17               |  |  |  |  |
| 19        | 15                     | 46.69             | 88208.93               |  |  |  |  |
| 20        | 20                     | 61.94             | 100413.36              |  |  |  |  |
| 21        | 2.8                    | 15.40             | 44667.23               |  |  |  |  |
| 22        | 6                      | 31.09             | 56311.49               |  |  |  |  |
| 23        | 10                     | 51.29             | 70137.26               |  |  |  |  |
| 24        | 15.1                   | 76.34             | 74207.60               |  |  |  |  |
| 25        | 20                     | 101.29            | 90872.23               |  |  |  |  |
| 26        | 3.5                    | 21.38             | 37870.52               |  |  |  |  |
| 27        | 5.9                    | 43.33             | 54793.27               |  |  |  |  |
| 28        | 10                     | 71.44             | 68255.87               |  |  |  |  |
| 29        | 15                     | 105.21            | 70127.91               |  |  |  |  |

### Table C.21 M<sub>R</sub> Results for 100% RAP TH 10 (OMC, 100% MDD, 2<sup>nd</sup> replicate)

| R-N-3    |                        |                   |                        |  |  |  |  |
|----------|------------------------|-------------------|------------------------|--|--|--|--|
| Sequence | Confining pressure psi | Cyclic stress nsi | Resilient modulus, psi |  |  |  |  |
| Bequence |                        |                   |                        |  |  |  |  |
| 1        |                        |                   |                        |  |  |  |  |
| 2        | 6                      | 2.15              | 30131.25               |  |  |  |  |
| 3        | 10.2                   | 4.01              | 40316.11               |  |  |  |  |
| 4        | 15                     | 7.14              | 57527.26               |  |  |  |  |
| 5        | 19.5                   | 10.25             | 69288.81               |  |  |  |  |
| 6        | 2.5                    | 1.96              | 23212.63               |  |  |  |  |
| 7        | 5.5                    | 4.83              | 28206.09               |  |  |  |  |
| 8        | 10                     | 9.91              | 40911.50               |  |  |  |  |
| 9        | 15                     | 15.80             | 58272.77               |  |  |  |  |
| 10       | 20                     | 20.96             | 70470.09               |  |  |  |  |
| 11       | 3                      | 4.77              | 22857.33               |  |  |  |  |
| 12       | 6                      | 12.27             | 32719.71               |  |  |  |  |
| 13       | 10                     | 21.29             | 46461.61               |  |  |  |  |
| 14       | 15                     | 31.57             | 59598.22               |  |  |  |  |
| 15       | 20.1                   | 41.74             | 68250.17               |  |  |  |  |
| 16       | 3                      | 8.40              | 24903.66               |  |  |  |  |
| 17       | 6                      | 18.65             | 33165.53               |  |  |  |  |
| 18       | 10                     | 31.21             | 46149.00               |  |  |  |  |
| 19       | 15                     | 46.62             | 56507.75               |  |  |  |  |
| 20       | 20                     | 61.36             | 65473.18               |  |  |  |  |
| 21       | 3.2                    | 14.90             | 25940.45               |  |  |  |  |
| 22       | 6                      | 30.58             | 36197.59               |  |  |  |  |
| 23       | 10                     | 50.72             | 44233.99               |  |  |  |  |
| 24       | 15                     | 75.32             | 52556.51               |  |  |  |  |
| 25       | 20                     | 100.40            | 65197.31               |  |  |  |  |
| 26       | 3                      | 20.54             | 26300.45               |  |  |  |  |
| 27       | 6                      | 42.60             | 39337.48               |  |  |  |  |

Table C.22  $M_R$  Results for 100% RAP TH 10 (OMC + 1%, 100% MDD)

| R-N-4    |                         |                    |                        |  |  |  |  |
|----------|-------------------------|--------------------|------------------------|--|--|--|--|
| Sequence | Confining pressure, psi | Cyclic stress, psi | Resilient modulus, psi |  |  |  |  |
| 1        |                         |                    |                        |  |  |  |  |
| 2        | 6                       | 2.25               | 45186.46               |  |  |  |  |
| 3        | 10                      | 3.85               | 51198.75               |  |  |  |  |
| 4        | 15                      | 6.90               | 59161.60               |  |  |  |  |
| 5        | 20                      | 10.11              | 70707.94               |  |  |  |  |
| 6        | 3.1                     | 2.09               | 44101.48               |  |  |  |  |
| 7        | 6                       | 4.86               | 47282.97               |  |  |  |  |
| 8        | 9.6                     | 9.90               | 55025.87               |  |  |  |  |
| 9        | 15                      | 15.77              | 67053.11               |  |  |  |  |
| 10       | 20                      | 21.01              | 74242.13               |  |  |  |  |
| 11       | 3                       | 4.77               | 39974.89               |  |  |  |  |
| 12       | 6                       | 12.43              | 45927.55               |  |  |  |  |
| 13       | 10                      | 21.20              | 54138.68               |  |  |  |  |
| 14       | 15                      | 31.09              | 64732.86               |  |  |  |  |
| 15       | 20.2                    | 41.23              | 66261.86               |  |  |  |  |
| 16       | 2.9                     | 8.40               | 34882.48               |  |  |  |  |
| 17       | 6.5                     | 18.42              | 44037.55               |  |  |  |  |
| 18       | 10                      | 30.46              | 47731.08               |  |  |  |  |
| 19       | 15                      | 45.12              | 52918.43               |  |  |  |  |
| 20       | 20                      | 59.58              | 49954.88               |  |  |  |  |
| 21       | 3                       | 14.89              | 29747.14               |  |  |  |  |
| 22       | 6                       | 30.38              | 36611.69               |  |  |  |  |
| 23       | 10                      | 50.07              | 44434.34               |  |  |  |  |

#### Table C.23 $M_R$ Results for 100% RAP TH 10 (OMC + 2%, 97.5% MDD)

|          | R-F                           | -1                       |                              |   |          | R-F                           | -2                       |                              |
|----------|-------------------------------|--------------------------|------------------------------|---|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |   | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        |                               |                          |                              |   | 1        |                               |                          |                              |
| 2        | 6                             | 2.71                     | 48137.66                     |   | 2        | 6.5                           | 2.80                     | 72287.55                     |
| 3        | 10                            | 4.77                     | 66476.26                     |   | 3        | 10                            | 4.78                     | 90645.36                     |
| 4        | 15                            | 7.33                     | 85922.95                     |   | 4        | 16                            | 7.48                     | 143446.29                    |
| 5        | 20                            | 10.24                    | 105935.67                    |   | 5        | 20                            | 10.31                    | 69420.29                     |
| 6        | 3                             | 2.53                     | 39874.61                     |   | 6        | 3                             | 2.73                     | 67828.28                     |
| 7        | 6.2                           | 5.45                     | 52195.41                     |   | 7        | 6                             | 5.44                     | 71629.41                     |
| 8        | 9.8                           | 10.19                    | 66446.07                     |   | 8        | 9.9                           | 10.34                    | 85948.57                     |
| 9        | 15.1                          | 15.75                    | 92019.38                     |   | 9        | 15                            | 16.02                    | 105228.73                    |
| 10       |                               |                          |                              |   | 10       | 20                            | 21.49                    | 123736.38                    |
| 11       | 3.1                           | 5.34                     | 55260.32                     |   | 11       | 3.5                           | 4.94                     | 51110.95                     |
| 12       | 6.2                           | 12.42                    | 69779.16                     |   | 12       | 5.6                           | 12.60                    | 61971.92                     |
| 13       |                               |                          |                              |   | 13       | 10                            | 22.60                    | 83981.09                     |
| 14       | 20                            | 32.68                    | 104798.08                    |   | 14       | 14.5                          | 32.83                    | 100093.08                    |
| 15       | 20                            | 42.83                    | 100950.99                    |   | 15       | 20                            | 43.14                    | 119421.22                    |
| 16       | 3                             | 8.56                     | 38920.45                     |   | 16       | 2.9                           | 8.91                     | 45897.96                     |
| 17       | 6.2                           | 19.87                    | 55172.05                     |   | 17       | 6                             | 20.20                    | 63626.95                     |
| 18       | 10.1                          | 32.48                    | 70800.18                     |   | 18       | 10                            | 32.74                    | 85079.95                     |
| 19       | 15                            | 47.77                    | 87673.99                     |   | 19       | 15                            | 47.92                    | 96073.83                     |
| 20       | 20                            | 62.97                    | 101804.12                    |   | 20       | 20                            | 63.04                    | 106855.40                    |
| 21       | 2                             | 16.30                    | 36454.64                     |   | 21       | 3                             | 16.46                    | 46586.29                     |
| 22       | 6.2                           | 32.05                    | 54327.83                     |   | 22       | 5.9                           | 32.12                    | 62445.39                     |
| 23       | 10.3                          | 52.27                    | 72424.62                     |   | 23       | 10                            | 52.33                    | 78744.91                     |
| 24       | 15                            | 77.06                    | 79257.48                     |   | 24       | 15                            | 77.00                    | 83666.44                     |
| 25       | 20                            | 101.93                   | 96852.18                     |   | 25       | 20                            | 102.42                   | 94891.59                     |
| 26       | 2.9                           | 21.90                    | 38941.75                     |   | 26       | 3                             | 21.93                    | 40934.27                     |
| 27       | 6                             | 43.46                    | 56814.20                     | 1 | 27       | 6                             | 43.53                    | 58935.99                     |
| 28       | 10                            | 71.86                    | 73585.51                     | 1 | 28       | 10                            | 71.59                    | 71649.24                     |
| 29       | 15                            | 106.19                   | 81740.40                     |   | 29       | 15                            | 106.86                   | 80753.15                     |
| 30       | 20                            | 140.01                   | 84502.35                     |   | 30       | 20                            | 141.25                   | 79920.91                     |

## Table C.24 M<sub>R</sub> Results for 100% RAP TH 10 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

| R-F-3    |                         |                    |                        |  |  |  |  |
|----------|-------------------------|--------------------|------------------------|--|--|--|--|
| Saguanaa | Confining processor noi | Cuelie stress, pei | Desilient modulus, pri |  |  |  |  |
| Sequence | Contining pressure, psi | Cyclic stress, psi | Resilient modulus, psi |  |  |  |  |
| 1        |                         |                    |                        |  |  |  |  |
| 2        | 6                       | 2.31               | 37244.49               |  |  |  |  |
| 3        | 10                      | 4.11               | 52636.60               |  |  |  |  |
| 4        | 15.2                    | 6.78               | 73732.05               |  |  |  |  |
| 5        | 20                      | 9.91               | 91473.40               |  |  |  |  |
| 6        | 3                       | 2.05               | 29255.95               |  |  |  |  |
| 7        | 6                       | 4.90               | 39627.13               |  |  |  |  |
| 8        | 10                      | 9.55               | 55736.79               |  |  |  |  |
| 9        | 15                      | 15.38              | 74932.20               |  |  |  |  |
| 10       | 20                      | 21.23              | 90945.49               |  |  |  |  |
| 11       | 2.9                     | 4.62               | 29662.40               |  |  |  |  |
| 12       | 6                       | 11.22              | 40909.01               |  |  |  |  |
| 13       | 10                      | 21.30              | 63185.60               |  |  |  |  |
| 14       | 15                      | 31.57              | 74527.61               |  |  |  |  |
| 15       | 20                      | 41.60              | 84286.08               |  |  |  |  |
| 16       | 3                       | 7.92               | 28337.47               |  |  |  |  |
| 17       | 6                       | 17.92              | 41364.47               |  |  |  |  |
| 18       | 10                      | 31.07              | 59873.71               |  |  |  |  |
| 19       | 15                      | 45.93              | 68168.48               |  |  |  |  |
| 20       | 20                      | 60.69              | 76894.81               |  |  |  |  |
| 21       | 3                       | 14.20              | 29990.51               |  |  |  |  |
| 22       | 6                       | 30.09              | 43038.39               |  |  |  |  |
| 23       | 10                      | 50.31              | 54377.60               |  |  |  |  |
| 24       | 15                      | 74.75              | 61531.69               |  |  |  |  |
| 25       | 20                      | 99.40              | 66594.02               |  |  |  |  |
| 26       | 3                       | 19.71              | 29071.36               |  |  |  |  |
| 27       | 6                       | 41.74              | 42299.22               |  |  |  |  |
| 28       | 10                      | 69.40              | 53036.62               |  |  |  |  |
| 29       | 15                      | 103.20             | 55716.50               |  |  |  |  |
| 30       | 20                      | 136.04             | 56496.18               |  |  |  |  |

### Table C.25 $M_R$ Results for 100% RAP TH 10 (OMC + 1%, 100% MDD, Freeze-Thaw Conditioned)

| R-F-4     |                         |                   |                        |
|-----------|-------------------------|-------------------|------------------------|
| Sequence  | Confining pressure, psi | Cyclic stress psi | Resilient modulus, psi |
| bequeilee |                         |                   |                        |
| 1         |                         |                   |                        |
| 2         | 6                       | 2.38              | 59966.35               |
| 3         | 10                      | 4.20              | 87037.92               |
| 4         | 15                      | 7.24              | 121138.70              |
| 5         | 20                      | 10.18             | 126666.17              |
| 6         | 2                       | 2.09              | 44833.07               |
| 7         | 5.9                     | 4.93              | 61146.21               |
| 8         | 10                      | 10.03             | 78417.14               |
| 9         | 15                      | 15.71             | 94213.15               |
| 10        | 20                      | 21.08             | 106750.60              |
| 11        | 3                       | 4.75              | 48834.97               |
| 12        | 6                       | 12.13             | 58286.60               |
| 13        | 10                      | 21.42             | 75230.19               |
| 14        | 15                      | 31.24             | 89669.66               |
| 15        | 20                      | 41.00             | 94250.43               |
| 16        | 3                       | 8.06              | 42272.21               |
| 17        | 6                       | 18.47             | 54239.01               |
| 18        | 10                      | 30.71             | 70634.60               |
| 19        | 15                      | 45.41             | 80106.27               |
| 20        | 20                      | 59.70             | 78643.26               |
| 21        | 3                       | 14.67             | 38057.21               |
| 22        | 6                       | 30.03             | 50841.38               |
| 23        | 10                      | 49.63             | 65391.78               |
| 24        | 15                      | 72.63             | 70376.77               |
| 25        | 20                      | 97.29             | 78790.80               |
| 26        | 3                       | 19.59             | 38365.08               |
| 27        | 6                       | 41.15             | 55446.50               |
| 28        | 10                      | 68.64             | 62054.58               |
| 29        | 15                      | 99.66             | 65471.09               |
| 30        | 20                      | 132.23            | 71097.23               |

### Table C.26 $M_R$ Results for 100% RAP TH 10 (OMC + 2%, 98% MDD, Freeze-Thaw Conditioned)

# Table C.27 M<sub>R</sub> Results for RAP TH 19-101 (OMC, 100% MDD), One Sample and a Replicate

| U-N-1    |                               |                          | U-N-2                        |                               |                       |                     |                              |  |
|----------|-------------------------------|--------------------------|------------------------------|-------------------------------|-----------------------|---------------------|------------------------------|--|
|          | OMC, 10                       | 0% MDD                   |                              | OMC, 100% MDD                 |                       |                     |                              |  |
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi | Confining<br>pressure,<br>psi | Cyclic<br>stress, psi | Bulk stress,<br>Psi | Resilient<br>modulus,<br>psi |  |
| 1        |                               |                          |                              |                               |                       |                     |                              |  |
| 2        | 6                             | 2.770823                 | 74248.61                     |                               |                       |                     |                              |  |
| 3        | 10                            | 4.751283                 | 95734.81                     |                               |                       |                     |                              |  |
| 4        | 15                            | 7.237704                 | 116700.9                     |                               |                       |                     |                              |  |
| 5        | 20                            | 9.878699                 | 119187.2                     |                               |                       |                     |                              |  |
| 6        | 3                             | 2.751838                 | 68090.95                     | 3.03                          | 2.42941               | 11.51941036         | 99929.3933                   |  |
| 7        | 6                             | 5.520318                 | 78597.94                     | 6.06                          | 5.439018              | 23.61901831         | 106153.804                   |  |
| 8        | 10                            | 9.853983                 | 91704.17                     | 9.9                           | 10.2607               | 39.96069918         | 111639.498                   |  |
| 9        | 15                            | 15.36486                 | 100418.2                     | 14.97                         | 15.95759              | 60.86758776         | 120733.731                   |  |
| 10       | 20                            | 20.10226                 | 113603.3                     | 20.07                         | 21.54951              | 81.7595071          | 137311.164                   |  |
| 11       | 3                             | 5.37252                  | 69635.92                     | 3.6                           | 5.357216              | 16.15721559         | 90690.2564                   |  |
| 12       | 6                             | 12.24791                 | 77080.36                     | 6.05                          | 12.61471              | 30.76470526         | 91182.5332                   |  |
| 13       | 10                            | 21.0729                  | 79740.55                     | 9.95                          | 21.90898              | 51.75898104         | 91390.6338                   |  |
| 14       | 15                            | 31.50415                 | 96319.45                     | 15.03                         | 31.9429               | 77.0328963          | 107469.517                   |  |
| 15       | 20                            | 41.44235                 | 100154.8                     | 20.04                         | 42.09753              | 102.217526          | 118558.702                   |  |
| 16       | 3                             | 8.576723                 | 69135.53                     | 2.95                          | 9.027474              | 17.87747447         | 84171.4759                   |  |
| 17       | 6                             | 18.69148                 | 72312.53                     | 6.07                          | 19.42822              | 37.63821951         | 84062.5108                   |  |
| 18       | 10                            | 31.57801                 | 78238.64                     | 10                            | 31.80977              | 61.80976936         | 86439.4208                   |  |
| 19       | 15                            | 46.76428                 | 86981.36                     | 15.03                         | 47.12226              | 92.2122606          | 95614.8862                   |  |
| 20       | 20                            | 61.74129                 | 88718.78                     | 20                            | 62.14471              | 122.1447066         | 97835.1263                   |  |
| 21       | 3                             | 15.30061                 | 59952.1                      | 2.9                           | 16.1859               | 24.88590376         | 72444.4888                   |  |
| 22       | 6                             | 31.56566                 | 64017.13                     | 6.08                          | 31.70551              | 49.94550603         | 69343.1874                   |  |
| 23       | 10                            | 51.72821                 | 70749.32                     | 10.04                         | 51.84518              | 81.96518195         | 75839.2679                   |  |
| 24       | 15                            | 76.63503                 | 75843.84                     | 15.02                         | 76.58211              | 121.6421129         | 78875.8575                   |  |
| 25       | 20                            | 101.4264                 | 81657.67                     | 20.02                         | 101.6736              | 161.733564          | 82380.1412                   |  |
| 26       | 3                             | 21.91072                 | 58551.27                     | 3.08                          | 22.10793              | 31.34793409         | 65660.3109                   |  |
| 27       | 6                             | 43.1364                  | 59868.75                     | 6.08                          | 43.06423              | 61.30423404         | 59528.118                    |  |
| 28       | 10                            | 70.80337                 | 66017.41                     | 9.95                          | 70.82121              | 100.6712073         | 63602.6531                   |  |
| 29       | 15                            | 106.1458                 | 74193.64                     | 14.96                         | 106.194               | 151.0740236         | 74299.0728                   |  |
| 30       | 20                            | 140.9049                 | 79561.56                     | 20.03                         | 140.6683              | 200.758286          | 81897.5592                   |  |

Note: Table 3 contains detailed samples description

| U-N-OMC-97MDD   |                         |                    |                        |  |  |  |  |  |
|-----------------|-------------------------|--------------------|------------------------|--|--|--|--|--|
| OMC, 97.5 % MDD |                         |                    |                        |  |  |  |  |  |
| Sequence        | Confining pressure, psi | Cyclic stress, psi | Resilient modulus, psi |  |  |  |  |  |
| 1               | 3.2                     | 1.31               | 55078.67               |  |  |  |  |  |
| 2               | 6.2                     | 2.63               | 64677.93               |  |  |  |  |  |
| 3               | 9.8                     | 4.53               | 74976.75               |  |  |  |  |  |
| 4               | 15.1                    | 7.14               | 83681.03               |  |  |  |  |  |
| 5               | 20.1                    | 10.12              | 92500.08               |  |  |  |  |  |
| 6               | 2.7                     | 2.56               | 56496.21               |  |  |  |  |  |
| 7               | 6.2                     | 5.18               | 61340.36               |  |  |  |  |  |
| 8               | 10                      | 9.99               | 62743.56               |  |  |  |  |  |
| 9               | 15                      | 15.15              | 70174.82               |  |  |  |  |  |
| 10              | 20                      | 20.75              | 81154.15               |  |  |  |  |  |
| 11              | 2.5                     | 5.03               | 50260.03               |  |  |  |  |  |
| 12              | 6                       | 11.86              | 49671.15               |  |  |  |  |  |
| 13              |                         |                    |                        |  |  |  |  |  |
| 14              | 15                      | 30.87              | 67426.75               |  |  |  |  |  |
| 15              | 19.9                    | 40.89              | 73720.06               |  |  |  |  |  |
| 16              | 3                       | 8.54               | 44826.02               |  |  |  |  |  |
| 17              | 6                       | 18.24              | 48113.84               |  |  |  |  |  |
| 18              | 10.1                    | 30.33              | 55643.50               |  |  |  |  |  |
| 19              | 15                      | 45.16              | 64742.56               |  |  |  |  |  |
| 20              | 20                      | 59.68              | 71403.53               |  |  |  |  |  |
| 21              | 2.9                     | 15.00              | 40491.88               |  |  |  |  |  |
| 22              | 6                       | 29.72              | 44814.85               |  |  |  |  |  |
| 23              | 10.8                    | 49.12              | 53792.13               |  |  |  |  |  |
| 24              | 15                      | 74.05              | 60355.82               |  |  |  |  |  |
| 25              | 20                      | 99.36              | 67231.13               |  |  |  |  |  |
| 26              | 3                       | 21.14              | 40214.79               |  |  |  |  |  |
| 27              | 6.2                     | 40.98              | 43699.34               |  |  |  |  |  |
| 28              | 10                      | 68.48              | 51461.09               |  |  |  |  |  |
| 29              | 15                      | 103.96             | 60872.91               |  |  |  |  |  |
| 30              | 20                      | 138.84             | 66061.63               |  |  |  |  |  |

#### Table C.28 $M_R$ Results for RAP TH 19-101 (OMC, 97.5% MDD)

| U-N-4    |                         |                    |                        |  |  |  |
|----------|-------------------------|--------------------|------------------------|--|--|--|
|          |                         |                    |                        |  |  |  |
| Sequence | Confining pressure, psi | Cyclic stress, psi | Resilient modulus, psi |  |  |  |
| 1        |                         |                    |                        |  |  |  |
| 2        | 10                      | 2.76               | 520/1 00               |  |  |  |
| <u> </u> | 10                      | 5.70               | 55058 21               |  |  |  |
| 5        | 20                      | 0.08               | 64671.07               |  |  |  |
| 6        | 20                      | 9.71               | 040/1.0/               |  |  |  |
| 7        | 6                       | 4.61               | /2183.83               |  |  |  |
| 8        | 10                      | 9.02               | 36181.80               |  |  |  |
| 9        | 15.1                    | 9.02               | 42839.08               |  |  |  |
| 10       | 20                      | 20.11              | 53638.92               |  |  |  |
| 11       | 3                       | 4 42               | 34546.08               |  |  |  |
| 12       | 6                       | 10.85              | 27170.87               |  |  |  |
| 13       | 10.1                    | 19.28              | 30999.18               |  |  |  |
| 14       | 15                      | 28.70              | 41842.88               |  |  |  |
| 15       | 20                      | 38.44              | 48771.47               |  |  |  |
| 16       | 3.2                     | 7.52               | 26520.09               |  |  |  |
| 17       | 6                       | 15.96              | 25163.81               |  |  |  |
| 18       | 10                      | 27.02              | 31051.98               |  |  |  |
| 19       | 15                      | 41.33              | 38597.50               |  |  |  |
| 20       | 20                      | 55.93              | 41692.46               |  |  |  |
| 21       | 3                       | 12.86              | 23369.02               |  |  |  |
| 22       | 6                       | 25.15              | 24464.54               |  |  |  |
| 23       | 10                      | 44.10              | 29766.56               |  |  |  |
| 24       | 15                      | 68.02              | 39667.98               |  |  |  |
| 25       | 20                      | 92.80              | 43745.72               |  |  |  |
| 26       | 3                       | 18.17              | 26670.00               |  |  |  |
| 27       |                         |                    |                        |  |  |  |
| 28       | 10.5                    | 63.31              | 33564.52               |  |  |  |
| 29       | 15                      | 96.09              | 41571.40               |  |  |  |
| 30       |                         |                    |                        |  |  |  |

#### Table C.29 $M_R$ Results for RAP TH 19-101 (OMC + 2%, 100% MDD)

|          | U-                     | F-1               |                       |          | U-F-                   | -2                |                       |
|----------|------------------------|-------------------|-----------------------|----------|------------------------|-------------------|-----------------------|
| Saguanaa | Confining<br>pressure, | Cyclic<br>stress, | Resilient<br>modulus, | Saguanaa | Confining<br>pressure, | Cyclic<br>stress, | Resilient<br>modulus, |
|          | psi                    | psi               | psi                   | sequence | psi                    | psi               | psi                   |
| 1        | (                      | 2.46              | 5(794(0               | 1        | (                      | 2.72              | 50(07.20              |
| 2        | 0                      | 2.40              | 56/84.69              | 2        | 0                      | 2.72              | 59697.20              |
| 3        | 10                     | 4.08              | 60680.26              | 3        | 10                     | 4.55              | /113/.11              |
| 4        | 15                     | 6.42              | 66582.50              | 4        | 15                     | /.11              | 84240.78              |
| 5        | 20                     | 9.60              | /6441./8              | 5        | 20.1                   | 10.22             | 92216.15              |
| 6        | 3                      | 2.37              | 50741.58              | 6        | 3.2                    | 2.55              | 49961.94              |
| 7        | 6                      | 5.10              | 49/24.70              | ·/       | 6                      | 5.31              | 55597.20              |
| 8        | 10                     | 9.58              | 53395.52              | 8        | 10                     | 9.94              | 57518.88              |
| 9        | 15                     | 15.13             | 59866.97              | 9        | 15                     | 15.25             | 67320.43              |
| 10       | 20                     | 20.71             | 70962.31              | 10       | 19.9                   | 21.28             | 84525.43              |
| 11       | 3                      | 4.87              | 44229.41              | 11       | 3                      | 5.00              | 46527.97              |
| 12       | 6                      | 11.87             | 43647.43              | 12       | 6                      | 12.02             | 42646.67              |
| 13       | 10                     | 20.97             | 45969.87              | 13       | 10                     | 21.24             | 47225.89              |
| 14       | 15                     | 30.77             | 57183.33              | 14       | 15.1                   | 31.56             | 64282.06              |
| 15       | 20                     | 40.65             | 65283.53              | 15       | 20                     | 41.69             | 72630.92              |
| 16       | 3                      | 8.54              | 40630.89              | 16       | 2.5                    | 8.43              | 36606.98              |
| 17       | 6                      | 18.38             | 40322.74              | 17       | 6                      | 18.61             | 39195.83              |
| 18       | 10                     | 30.24             | 46760.75              | 18       | 10                     | 30.87             | 48111.93              |
| 19       | 15                     | 45.28             | 54554.02              | 19       | 15                     | 46.07             | 59142.33              |
| 20       | 20                     | 60.43             | 62390.68              | 20       | 20                     | 61.13             | 64752.32              |
| 21       | 3                      | 15.35             | 35439.42              | 21       | 3                      | 15.34             | 32473.04              |
| 22       | 6                      | 29.69             | 38357.56              | 22       | 6                      | 30.01             | 37451.87              |
| 23       | 10                     | 49.11             | 45215.36              | 23       | 10                     | 49.82             | 46859.89              |
| 24       | 15                     | 73.93             | 52443.35              | 24       | 15                     | 74.69             | 53690.50              |
| 25       | 20                     | 98.68             | 57407.13              | 25       | 19.8                   | 99.81             | 59006.82              |
| 26       | 3                      | 21.17             | 38285.84              | 26       | 3                      | 20.95             | 34398.29              |
| 27       | 6                      | 40.44             | 38349.01              | 27       | 5.8                    | 40.92             | 36423.61              |
| 28       | 10                     | 67.47             | 43162.19              | 28       | 10                     | 68.86             | 43115.77              |
| 29       | 15                     | 102.20            | 51089.92              | 29       | 15.8                   | 103.89            | 54785.30              |
| 30       | 20                     |                   |                       | 30       | 20                     | 138.41            | 63743.32              |

# Table C.30 M<sub>R</sub> Results for RAP TH 19-101 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

|          | V-N                           | [-1                      |                              |   |          | V-N-                          | -2                       |                              |
|----------|-------------------------------|--------------------------|------------------------------|---|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |   | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        | 3.2                           |                          |                              | I | 1        |                               |                          |                              |
| 2        | 6                             | 2.36                     | 59794.83                     | 1 | 2        | 6.20                          | 2.57                     | 38531.60                     |
| 3        | 10                            | 4.14                     | 71374.59                     | 1 | 3        | 9.90                          | 4.38                     | 48770.13                     |
| 4        | 15.2                          | 6.87                     | 96373.95                     | 1 | 4        | 15.50                         | 6.89                     | 62607.61                     |
| 5        | 20                            | 9.86                     | 118561.15                    | 1 | 5        | 20.80                         | 10.02                    | 73766.25                     |
| 6        | 3.1                           | 2.25                     | 53113.19                     | 1 | 6        | 3.90                          | 2.39                     | 36857.43                     |
| 7        | 5.9                           | 4.91                     | 52091.11                     | 1 | 7        | 6.10                          | 5.03                     | 34314.51                     |
| 8        | 10.3                          | 9.46                     | 61857.09                     | 1 | 8        | 10.70                         | 9.77                     | 42465.01                     |
| 9        | 15                            | 14.92                    | 77766.86                     | 1 | 9        | 15.30                         | 15.13                    | 52468.87                     |
| 10       | 20.1                          | 20.45                    | 98448.40                     | 1 | 10       | 20.00                         | 20.72                    | 64061.60                     |
| 11       | 3.4                           | 4.75                     | 44568.33                     | 1 | 11       | 3.50                          | 4.79                     | 29426.81                     |
| 12       | 6.1                           | 11.52                    | 43584.92                     | 1 | 12       | 6.00                          | 11.66                    | 30726.31                     |
| 13       | 10.1                          | 20.73                    | 49017.90                     | 1 | 13       | 10.50                         | 21.51                    | 40046.93                     |
| 14       | 15                            | 30.98                    | 62069.62                     | 1 | 14       | 15.10                         | 31.82                    | 52285.06                     |
| 15       | 20                            | 41.19                    | 67268.82                     | 1 | 15       | 20.50                         | 42.08                    | 60958.82                     |
| 16       | 3.1                           | 8.03                     | 35741.80                     | 1 | 16       | 3.70                          | 8.18                     | 26329.84                     |
| 17       | 6.2                           | 17.98                    | 37085.82                     | 1 | 17       | 6.30                          | 18.57                    | 30792.15                     |
| 18       | 10.3                          | 30.40                    | 46097.33                     | 1 | 18       | 10.00                         | 31.18                    | 39493.46                     |
| 19       | 15                            | 45.44                    | 53150.68                     | 1 | 19       | 15.50                         | 46.29                    | 48965.57                     |
| 20       | 20                            | 60.50                    | 59310.08                     | 1 | 20       | 20.30                         | 61.60                    | 57754.18                     |
| 21       | 3.1                           | 14.38                    | 29540.29                     | 1 | 21       | 3.10                          | 15.13                    | 22929.98                     |
| 22       | 6.3                           | 29.22                    | 34385.07                     | 1 | 22       | 6.90                          | 30.04                    | 30610.47                     |
| 23       | 10                            | 49.54                    | 43875.23                     | 1 | 23       | 10.30                         | 50.57                    | 40851.72                     |
| 24       | 15                            | 74.75                    | 49719.89                     | 1 | 24       | 15.30                         | 75.58                    | 49972.36                     |
| 25       | 20                            |                          |                              | 1 | 25       | 20.10                         | 100.20                   | 52648.44                     |
| 26       | 3.5                           | 20.43                    | 30143.93                     | 1 | 26       | 3.00                          | 20.67                    | 25726.50                     |
| 27       | 6.2                           | 40.95                    | 36918.63                     | I | 27       | 6.30                          | 41.13                    | 31123.96                     |
| 28       |                               |                          |                              | I | 28       | 10.30                         | 70.35                    | 40703.95                     |
| 29       | 15.8                          | 104.78                   | 59439.52                     | I | 29       |                               |                          |                              |
| 30       |                               |                          |                              | I | 30       |                               |                          |                              |

Table C.31 $M_R$  Results for RAP TH 19-104 (OMC, 100% MDD), One Sample and a Replicate

|          |                            | V-N-4              |                        |
|----------|----------------------------|--------------------|------------------------|
| Sequence | Confining<br>pressure, psi | Cyclic stress, psi | Resilient modulus, psi |
| 1        |                            |                    |                        |
| 2        |                            |                    |                        |
| 3        | 10.00                      | 3.32               | 36594.92               |
| 4        | 15.00                      | 6.19               | 41426.24               |
| 5        | 20.00                      | 9.41               | 50276.51               |
| 6        | 3.00                       | 1.63               | 32494.19               |
| 7        | 6.00                       | 4.10               | 25072.32               |
| 8        | 10.00                      | 8.72               | 29406.91               |
| 9        | 15.00                      | 14.38              | 37942.92               |
| 10       | 20.00                      | 19.76              | 48145.41               |
| 11       | 3.50                       | 4.06               | 23021.69               |
| 12       | 6.00                       | 10.68              | 24912.27               |
| 13       | 10.00                      | 19.31              | 35032.73               |
| 14       | 15.00                      | 28.84              | 38336.11               |
| 15       | 20.00                      | 38.35              | 43521.65               |
| 16       | 3.00                       | 6.97               | 18413.99               |
| 17       | 6.50                       | 15.92              | 24538.49               |
| 18       | 10.20                      | 27.43              | 29576.59               |
| 19       | 15.00                      | 41.41              | 36196.92               |
| 20       | 20.00                      | 55.12              | 37910.09               |
| 21       | 3.10                       | 12.30              | 17000.46               |
| 22       | 6.00                       | 26.46              | 24520.02               |
| 23       | 10.00                      | 44.50              | 29217.86               |

#### Table C.32 $M_R$ Results for RAP TH 19-104 (OMC + 2%, 97% MDD)

| V-F-1    |                               |                          | V-F-2                        |          |                               |                          |                              |
|----------|-------------------------------|--------------------------|------------------------------|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        |                               |                          |                              | 1        |                               |                          |                              |
| 2        | 6.1                           | 2.48                     | 51585.78                     | 2        | 5.8                           | 2.427721                 | 45151.472                    |
| 3        | 10                            | 4.24                     | 62208.07                     | 3        | 9.9                           | 4.310312                 | 58654.227                    |
| 4        | 15                            | 6.88                     | 78783.05                     | 4        | 15                            | 7.041652                 | 74094.809                    |
| 5        | 20                            | 10.30                    | 90686.31                     | 5        | 20                            | 10.17916                 | 92342.911                    |
| 6        | 2.8                           | 2.30                     | 39870.88                     | 6        | 3                             | 2.252522                 | 36984.536                    |
| 7        | 6.7                           | 4.96                     | 49889.66                     | 7        | 6.3                           | 5.020164                 | 44774.39                     |
| 8        | 10                            | 9.90                     | 57310.37                     | 8        | 11                            | 9.809618                 | 54763.006                    |
| 9        | 15.2                          | 15.58                    | 70036.27                     | 9        | 15                            | 15.31885                 | 66810.164                    |
| 10       | 20                            | 21.68                    | 87547.21                     | 10       | 20.2                          | 20.83779                 | 81481.509                    |
| 11       | 4                             | 4.82                     | 41278.66                     | 11       | 3                             | 4.762295                 | 33455.742                    |
| 12       | 6                             | 11.84                    | 42291.44                     | 12       | 5.8                           | 11.66493                 | 37464.222                    |
| 13       | 10                            | 21.68                    | 50230.92                     | 13       | 10                            | 20.96863                 | 48307.026                    |
| 14       | 15.2                          | 31.89                    | 69355.83                     | 14       | 14.5                          | 31.23334                 | 61454.305                    |
| 15       | 20                            | 42.06                    | 80010.72                     | 15       | 20                            | 41.46713                 | 72999.82                     |
| 16       | 3                             | 8.19                     | 34202.73                     | 16       | 3                             | 8.06027                  | 30388.224                    |
| 17       | 6                             | 18.71                    | 39403.17                     | 17       | 6.2                           | 18.06502                 | 37165.521                    |
| 18       | 10                            | 31.25                    | 50451.15                     | 18       | 10                            | 30.63283                 | 48466.979                    |
| 19       | 15                            | 46.73                    | 64596.70                     | 19       | 15                            | 45.86502                 | 58385.306                    |
| 20       | 19.7                          | 62.00                    | 75777.11                     | 20       | 20                            | 61.07805                 | 66790.633                    |
| 21       | 3.1                           | 15.07                    | 30660.73                     | 21       | 3.2                           | 14.10705                 | 26159.854                    |
| 22       | 6                             | 30.06                    | 36520.70                     | 22       | 6                             | 29.22028                 | 34276.67                     |
| 23       | 10                            | 50.79                    | 51561.00                     | 23       | 10                            | 49.62086                 | 46218.701                    |
| 24       | 15.2                          | 76.18                    | 61965.83                     | 24       | 15.1                          | 74.73282                 | 62981.205                    |
| 25       | 20.2                          | 101.65                   | 69720.06                     | 25       | 20.1                          | 100.1434                 | 72489.504                    |
| 26       | 3.3                           | 20.21                    | 28180.54                     | 26       | 3.1                           | 19.5638                  | 24640.742                    |
| 27       | 6                             | 41.02                    | 34437.04                     | 27       | 6.2                           | 40.43508                 | 34044.528                    |
| 28       | 10                            | 70.54                    | 48558.66                     | 28       |                               |                          |                              |
| 29       | 14.9                          | 105.76                   | 59549.87                     | 29       |                               |                          |                              |
| 30       | 20.2                          | 140.58                   | 65834.90                     | 30       |                               |                          |                              |

## Table C.33 M<sub>R</sub> Results for RAP TH 19-104 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

-

|          | V-F-4                         |                          |                              |  |  |  |  |
|----------|-------------------------------|--------------------------|------------------------------|--|--|--|--|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |  |  |
| 1        |                               |                          |                              |  |  |  |  |
| 2        | 6                             | 1.91                     | 27671.28                     |  |  |  |  |
| 3        | 10                            | 3.51                     | 31912.55                     |  |  |  |  |
| 4        | 15                            | 6.38                     | 35975.55                     |  |  |  |  |
| 5        | 20                            | 9.25                     | 39547.25                     |  |  |  |  |
| 6        | 3                             | 1.76                     | 23378.88                     |  |  |  |  |
| 7        | 6                             | 4.34                     | 24294.87                     |  |  |  |  |
| 8        | 10                            | 8.75                     | 27267.71                     |  |  |  |  |
| 9        | 15                            | 14.20                    | 33978.16                     |  |  |  |  |
| 10       | 20                            | 19.44                    | 40992.93                     |  |  |  |  |
| 11       | 3.2                           | 4.21                     | 21484.56                     |  |  |  |  |
| 12       | 6                             | 10.61                    | 23997.52                     |  |  |  |  |
| 13       | 10                            | 18.98                    | 30334.17                     |  |  |  |  |
| 14       | 15                            | 28.11                    | 36245.56                     |  |  |  |  |
| 15       | 20                            | 36.85                    | 33556.97                     |  |  |  |  |
| 16       | 3.5                           | 7.08                     | 15562.31                     |  |  |  |  |
| 17       | 6.1                           | 15.48                    | 19371.45                     |  |  |  |  |
| 18       | 10                            | 26.79                    | 25647.84                     |  |  |  |  |
| 19       | 14.5                          | 38.69                    | 28481.08                     |  |  |  |  |
| 20       |                               |                          |                              |  |  |  |  |

### Table C.34 $M_R$ Results for RAP TH 19-104 (OMC + 2%, 97% MDD, Freeze-Thaw Conditioned)

| W-N-1    |                               |                          | 1                            | W-N-2 |          |                               |                          |                              |
|----------|-------------------------------|--------------------------|------------------------------|-------|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |       | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        |                               |                          |                              | 1     | 1        |                               |                          |                              |
| 2        | 6.10                          | 2.27                     | 30669.87                     | I     | 2        |                               |                          |                              |
| 3        | 10.10                         | 4.16                     | 47310.45                     | I     | 3        | 10.1                          | 4.705573                 | 72675.4746                   |
| 4        | 15.00                         | 7.23                     | 68371.39                     | I     | 4        | 15                            | 7.373165                 | 96523.2782                   |
| 5        | 20.00                         | 10.43                    | 88357.66                     | I     | 5        | 20                            | 10.38807                 | 119304.769                   |
| 6        | 3.60                          | 2.08                     | 24611.66                     | I     | 6        | 3                             | 2.367251                 | 38159.7324                   |
| 7        | 6.30                          | 5.00                     | 34917.63                     | I     | 7        | 6                             | 5.248743                 | 49364.5295                   |
| 8        | 10.30                         | 10.03                    | 48793.71                     | I     | 8        | 10                            | 10.191                   | 67994.1816                   |
| 9        | 14.90                         | 16.50                    | 68139.96                     | 1     | 9        | 15                            | 15.65363                 | 90415.5213                   |
| 10       | 20.00                         | 22.54                    | 89237.55                     | I     | 10       | 20                            | 20.70552                 | 108136.8                     |
| 11       | 3.20                          | 4.71                     | 25143.69                     | I     | 11       | 3.5                           | 4.987702                 | 37811.0154                   |
| 12       | 6.30                          | 12.45                    | 36991.16                     |       | 12       | 6.1                           | 12.39938                 | 49439.3592                   |
| 13       | 10.30                         | 22.45                    | 55168.99                     | I     | 13       | 10                            | 22.0573                  | 67681.2348                   |
| 14       | 15.20                         | 32.90                    | 72152.11                     | 1     | 14       | 15.1                          | 32.60163                 | 87551.3154                   |
| 15       | 20.00                         | 42.97                    | 85619.40                     | I     | 15       | 20                            | 42.81086                 | 98276.493                    |
| 16       | 3.40                          | 8.42                     | 26492.62                     | I     | 16       | 3                             | 8.721829                 | 35177.3637                   |
| 17       | 6.30                          | 19.23                    | 38216.73                     | I     | 17       | 6                             | 19.7855                  | 48086.15                     |
| 18       | 10.20                         | 32.29                    | 54568.26                     | I     | 18       | 10.2                          | 32.52658                 | 65989.0714                   |
| 19       | 15.21                         | 47.64                    | 68209.33                     | I     | 19       | 14.9                          | 47.87853                 | 82029.5467                   |
| 20       | 20.00                         | 62.80                    | 79707.55                     | I     | 20       | 20                            | 62.96704                 | 91622.3816                   |
| 21       | 3.30                          | 15.40                    | 28424.89                     | I     | 21       | 3                             | 16.04054                 | 34445.5589                   |
| 22       | 6.10                          | 31.19                    | 40215.99                     | I     | 22       | 6                             | 32.00035                 | 48473.5088                   |
| 23       | 10.00                         | 51.85                    | 55210.05                     | I     | 23       | 10                            | 52.44942                 | 64089.238                    |
| 24       | 15.10                         | 77.25                    | 67239.44                     | I     | 24       | 15.2                          | 77.33261                 | 78133.4703                   |
| 25       | 20.10                         | 102.60                   | 78562.14                     | 1     | 25       | 20.1                          | 102.756                  | 91823.1826                   |
| 26       | 3.50                          | 20.83                    | 29745.79                     | I     | 26       | 3                             | 21.69188                 | 33537.765                    |
| 27       | 6.10                          | 43.26                    | 43198.31                     | I     | 27       | 6                             | 43.84229                 | 49932.7865                   |
| 28       | 9.90                          | 72.01                    | 57449.96                     | I     | 28       | 9.9                           | 71.89867                 | 67399.3108                   |
| 29       | 15.00                         | 106.83                   | 64857.82                     | I     | 29       | 15.2                          | 107.594                  | 84832.3154                   |
| 30       | 20.00                         | 141.62                   | 69300.50                     | I     | 30       | 20.1                          | 142.6369                 | 93459.3209                   |

Table C.35  $M_R$  Results for RAP TH 22 (OMC, 100% MDD), One Sample and a Replicate

|                                        | W-N-4 |                          |                              |  |  |  |  |  |
|----------------------------------------|-------|--------------------------|------------------------------|--|--|--|--|--|
| Sequence Confining<br>pressure,<br>psi |       | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |  |  |  |  |  |
| 1                                      | 3     | 1.032317                 | 40211.4                      |  |  |  |  |  |
| 2                                      | 5.8   | 2.230576                 | 42885.51                     |  |  |  |  |  |
| 3                                      | 10.1  | 3.908962                 | 50334.59                     |  |  |  |  |  |
| 4                                      | 15    | 7.034996                 | 62065.43                     |  |  |  |  |  |
| 5                                      | 20    | 10.37593                 | 77740.03                     |  |  |  |  |  |
| 6                                      | 3     | 2.106322                 | 37592.03                     |  |  |  |  |  |
| 7                                      | 6     | 4.909398                 | 40500.87                     |  |  |  |  |  |
| 8                                      | 10    | 9.95788                  | 47931.03                     |  |  |  |  |  |
| 9                                      | 15    | 15.92622                 | 59132.67                     |  |  |  |  |  |
| 10                                     | 19    | 21.22118                 | 71677.66                     |  |  |  |  |  |
| 11                                     | 3     | 4.763688                 | 34140.52                     |  |  |  |  |  |
| 12                                     | 6     | 12.2808                  | 42493.71                     |  |  |  |  |  |
| 13                                     | 10    | 21.43723                 | 53129.88                     |  |  |  |  |  |
| 14                                     | 15    | 31.31423                 | 60148.11                     |  |  |  |  |  |
| 15                                     | 19.5  | 41.1564                  | 66151.79                     |  |  |  |  |  |
| 16                                     | 3     | 8.285667                 | 31619.2                      |  |  |  |  |  |
| 17                                     | 6     | 18.38725                 | 40769.56                     |  |  |  |  |  |
| 18                                     | 10    | 30.65965                 | 49939.5                      |  |  |  |  |  |
| 19                                     | 15    | 45.43908                 | 53686.18                     |  |  |  |  |  |
| 20                                     | 20    | 60.09581                 | 58196.47                     |  |  |  |  |  |
| 21                                     | 3     | 14.46199                 | 29022.19                     |  |  |  |  |  |
| 22                                     | 6     | 29.92784                 | 38290.94                     |  |  |  |  |  |
| 23                                     | 9     | 49.06351                 | 44464.46                     |  |  |  |  |  |
| 24                                     | 15    | 72.7422                  | 56002.73                     |  |  |  |  |  |

Table C.36  $M_R$  Results for RAP TH 19-104 (OMC + 2%, 98% MDD)

#### Table C.37 M<sub>R</sub> Results for RAP TH 22 (OMC, 100% MDD, Freeze-Thaw Conditioned), One Sample and a Replicate

| W-F-1    |                               | W-F-2                    |                           |          |                               |                          |                              |
|----------|-------------------------------|--------------------------|---------------------------|----------|-------------------------------|--------------------------|------------------------------|
| Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus, psi | Sequence | Confining<br>pressure,<br>psi | Cyclic<br>stress,<br>psi | Resilient<br>modulus,<br>psi |
| 1        |                               |                          |                           | 1        |                               |                          |                              |
|          |                               |                          |                           |          |                               |                          |                              |
| 2        |                               |                          |                           | 2        | 6.1                           | 2.67                     | 47385.61                     |
| 3        |                               |                          |                           | 3        | 10                            | 4.61                     | 62384.88                     |
| 4        | 15.2                          | 7.353905                 | 93255.01                  | 4        | 15                            | 7.12                     | 79649.08                     |
| 5        | 20                            | 10.17811                 | 118872.3                  | 5        | 20.2                          | 10.00596                 | 99715.04                     |
| 6        |                               |                          |                           | 6        | 3.4                           | 2.424327                 | 37348.7                      |
| 7        | 6                             | 5.270214                 | 48648.42                  | 7        | 6.1                           | 5.242971                 | 47049.67                     |
| 8        | 10                            | 10.18468                 | 66614.54                  | 8        | 10.1                          | 9.930718                 | 60994.06                     |
| 9        | 15                            | 16.01496                 | 91195.11                  | 9        | 15.1                          | 15.41614                 | 80833.5                      |
| 10       | 20.2                          | 21.6298                  | 118353.9                  | 10       | 20                            | 20.12987                 | 99451.13                     |
| 11       | 3                             | 4.993537                 | 36678.42                  | 11       | 3.3                           | 4.99015                  | 37432.82                     |
| 12       | 6.4                           | 12.54777                 | 50040.69                  | 12       | 6.2                           | 12.15996                 | 47566.74                     |
| 13       | 10                            | 22.62743                 | 68109.17                  | 13       | 10.1                          | 21.29075                 | 65291.52                     |
| 14       | 14.9                          | 32.91193                 | 91271.21                  | 14       | 15                            | 31.59003                 | 82163.82                     |
| 15       | 20                            | 43.06892                 | 102856.4                  | 15       | 20                            | 41.97878                 | 94142.16                     |
| 16       | 3                             | 8.761432                 | 34883.39                  | 16       | 3.4                           | 8.610078                 | 35399.81                     |
| 17       | 6.1                           | 20.15368                 | 50117.65                  | 17       | 6.2                           | 19.04574                 | 48334.28                     |
| 18       | 10.2                          | 32.92072                 | 68270.47                  | 18       | 10                            | 31.7412                  | 64709.97                     |
| 19       | 15.1                          | 48.07816                 | 84758.74                  | 19       | 15.2                          | 47.16881                 | 78679.36                     |
| 20       | 20                            | 63.17165                 | 92080.48                  | 20       | 20.1                          | 62.33828                 | 86811.55                     |
| 21       | 3                             | 16.26826                 | 33696.57                  | 21       | 3.3                           | 15.51923                 | 34195.38                     |
| 22       | 6.1                           | 32.17065                 | 48188.79                  | 22       | 6                             | 31.37901                 | 46763.41                     |
| 23       | 10                            | 52.61908                 | 61542.49                  | 23       | 10.1                          | 52.16599                 | 62188.69                     |
| 24       | 15                            | 77.65546                 | 78542                     | 24       | 15.2                          | 77.28051                 | 70351.94                     |
| 25       | 20.1                          | 102.8068                 | 88195.7                   | 25       | 20.1                          | 102.6082                 | 81439.18                     |
| 26       | 3.4                           | 21.8872                  | 34438.93                  | 26       | 3.5                           | 21.4517                  | 31509.84                     |
| 27       | 6                             | 43.93008                 | 48941.78                  | 27       | 6.4                           | 43.5258                  | 46000.52                     |
| 28       | 10.2                          | 72.56                    | 71658.58                  | 28       | 10                            | 72.06996                 | 61151.36                     |
| 29       |                               |                          |                           | 29       | 15.2                          | 107.0951                 | 71130.09                     |

| W-F-4    |                         |                    |                        |  |  |  |  |
|----------|-------------------------|--------------------|------------------------|--|--|--|--|
| Sequence | Confining pressure, psi | Cyclic stress, psi | Resilient modulus, psi |  |  |  |  |
| 1        | 3                       | 0.943986           | 44270.96               |  |  |  |  |
| 2        | 6                       | 2.154839           | 46396.11               |  |  |  |  |
| 3        | 10.1                    | 3.849648           | 52196.98               |  |  |  |  |
| 4        | 15                      | 6.603847           | 57821.39               |  |  |  |  |
| 5        | 19.5                    | 9.706825           | 74618.37               |  |  |  |  |
| 6        | 3                       | 1.960968           | 36171.36               |  |  |  |  |
| 7        | 5.8                     | 4.739419           | 36077.83               |  |  |  |  |
| 8        | 10                      | 9.485286           | 41875.51               |  |  |  |  |
| 9        | 15                      | 15.10549           | 56189.45               |  |  |  |  |
| 10       | 20                      | 20.39342           | 72878.27               |  |  |  |  |
| 11       | 3                       | 4.524745           | 31307.94               |  |  |  |  |
| 12       | 6                       | 11.75062           | 37101.48               |  |  |  |  |
| 13       | 10                      | 20.47944           | 49056.68               |  |  |  |  |
| 14       | 15                      | 30.51338           | 58923.85               |  |  |  |  |
| 15       | 20                      | 40.64164           | 69613                  |  |  |  |  |
| 16       | 3.2                     | 7.917966           | 29809.29               |  |  |  |  |
| 17       | 6                       | 17.81591           | 38306.09               |  |  |  |  |
| 18       | 10                      | 29.62592           | 48087.98               |  |  |  |  |
| 19       | 15                      | 44.42776           | 53278.89               |  |  |  |  |
| 20       | 20                      | 59.44431           | 61486.34               |  |  |  |  |
| 21       | 3                       | 13.78801           | 28605.09               |  |  |  |  |
| 22       | 6                       | 28.71819           | 39373.58               |  |  |  |  |
| 23       | 10.2                    | 43.51569           | 34663.32               |  |  |  |  |
| 24       |                         |                    |                        |  |  |  |  |

#### Table C.38 M<sub>R</sub> Results for RAP TH 19-104 (OMC + 2%, 98% MDD, Freeze-Thaw Conditioned)

#### C.2. Resilient Modulus Testing Conducted by Mn/DOT

|          | MC= 6.83%                          |              |             |                  |                |  |  |  |  |
|----------|------------------------------------|--------------|-------------|------------------|----------------|--|--|--|--|
|          | Dry density = $124.68 \text{ pcf}$ |              |             |                  |                |  |  |  |  |
| Sequence | Confining pressure                 | Devi. stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |  |  |
|          | psi                                | psi          | psi         |                  | psi            |  |  |  |  |
| 1        | 3.0885                             | 2.619527186  | 11.88502719 | 0.000161854      | 16186.46339    |  |  |  |  |
| 2        | 3.09337996                         | 5.328127147  | 14.60826703 | 0.000288425      | 18476.29228    |  |  |  |  |
| 3        | 3.08362                            | 7.983443879  | 17.23430388 | 0.000387265      | 20615.41448    |  |  |  |  |
| 4        | 5.03925992                         | 4.440164708  | 19.55794447 | 0.000185309      | 23963.47625    |  |  |  |  |
| 5        | 5.0416999                          | 8.871572053  | 23.99667175 | 0.000343859      | 25800.21635    |  |  |  |  |
| 6        | 5.03925992                         | 13.36278434  | 28.4805641  | 0.000511145      | 26143.15532    |  |  |  |  |
| 7        | 9.94656032                         | 8.780819241  | 38.6205002  | 0.000245814      | 35722.41423    |  |  |  |  |
| 8        | 9.95144028                         | 17.80447782  | 47.65879866 | 0.000499547      | 35642.85375    |  |  |  |  |
| 9        | 9.94412024                         | 26.84717487  | 56.67953559 | 0.000803553      | 33411.16832    |  |  |  |  |
| 10       | 14.88811984                        | 8.88309865   | 53.54745817 | 0.000215002      | 41320.28365    |  |  |  |  |
| 11       | 14.893                             | 13.23012346  | 57.90912346 | 0.000308515      | 42884.53421    |  |  |  |  |
| 12       | 14.88567996                        | 27.00718721  | 71.66422709 | 0.000623835      | 43292.60468    |  |  |  |  |
| 13       | 19.82723962                        | 13.25119601  | 72.73291487 | 0.000256739      | 51613.84405    |  |  |  |  |
| 14       | 19.83456002                        | 17.78883364  | 77.2925137  | 0.000334256      | 53224.73704    |  |  |  |  |
| 15       | 19.83456002                        | 35.9820046   | 95.48568466 | 0.000707613      | 50850.84721    |  |  |  |  |

#### Table C.39 100% RAP, Sample 1

|                          | MC= 6.86%          |                                  |          |                  |                |  |  |  |  |
|--------------------------|--------------------|----------------------------------|----------|------------------|----------------|--|--|--|--|
| Dry density = 124.56 pcf |                    |                                  |          |                  |                |  |  |  |  |
| Sequence                 | Confining pressure | re Deviator stress Bulk stress 1 |          | Resilient strain | M <sub>R</sub> |  |  |  |  |
|                          | psi                | psi                              | psi      |                  | psi            |  |  |  |  |
| 1                        | 2.942              | 2.684966497                      | 11.51097 | 0.000102966      | 26085.36       |  |  |  |  |
| 2                        | 2.94932            | 5.437508273                      | 14.28547 | 0.000192974      | 28179.15       |  |  |  |  |
| 3                        | 2.95664            | 7.895117383                      | 16.76504 | 0.000269088      | 29341.77       |  |  |  |  |
| 4                        | 4.91228            | 4.586775531                      | 19.32362 | 0.000132176      | 34702.74       |  |  |  |  |
| 5                        | 4.92692            | 8.82766888                       | 23.60843 | 0.000250836      | 35194.4        |  |  |  |  |
| 6                        | 4.93912            | 13.29550309                      | 28.11286 | 0.000380123      | 34978.2        |  |  |  |  |
| 7                        | 9.87824            | 8.828832225                      | 38.46355 | 0.000179328      | 49238.7        |  |  |  |  |
| 8                        | 9.8758             | 17.81502391                      | 47.44242 | 0.000393966      | 45222.53       |  |  |  |  |
| 9                        | 9.87824            | 26.80749764                      | 56.44222 | 0.000706141      | 37964.04       |  |  |  |  |
| 10                       | 14.81248           | 8.840090381                      | 53.27753 | 0.000164611      | 53705.43       |  |  |  |  |
| 11                       | 14.81004           | 13.32297695                      | 57.7531  | 0.000249435      | 53413.16       |  |  |  |  |
| 12                       | 14.81004           | 26.79162874                      | 71.22175 | 0.000549498      | 48756.64       |  |  |  |  |
| 13                       | 19.72964           | 13.3212832                       | 72.5102  | 0.000203225      | 65554.96       |  |  |  |  |
| 14                       | 19.7272            | 17.8382334                       | 77.01983 | 0.000273027      | 65337.71       |  |  |  |  |

#### Table C.40 100% RAP, Sample 2

Table C.41 100% RAP, Sample 3

| MC= 7.28%                |                    |              |             |                  |                |  |  |  |
|--------------------------|--------------------|--------------|-------------|------------------|----------------|--|--|--|
| Dry density = 124.14 pcf |                    |              |             |                  |                |  |  |  |
| Sequence                 | Confining pressure | Devi. stress | Bulk stress | Resilient Strain | M <sub>R</sub> |  |  |  |
|                          | Conf psi           | psi          | psi         |                  | psi            |  |  |  |
| 1                        | 2.89074            | 2.625766     | 11.29799    | 0.000165951      | 15824.7671     |  |  |  |
| 2                        | 2.89316            | 5.35551      | 14.03499    | 0.000296046      | 18091.11456    |  |  |  |
| 3                        | 2.92004            | 7.879796     | 16.63992    | 0.000394691      | 19964.76645    |  |  |  |
| 4                        | 4.89276            | 4.496592     | 19.17487    | 0.000184858      | 24326.0154     |  |  |  |
| 5                        | 4.90008            | 9.00608      | 23.70632    | 0.000351566      | 25618.13786    |  |  |  |
| 6                        | 4.89032            | 13.28549     | 27.95645    | 0.000517734      | 25661.44954    |  |  |  |
| 7                        | 9.8392             | 9.014052     | 38.53165    | 0.000249544      | 36123.0756     |  |  |  |
| 8                        | 9.83188            | 17.91247     | 47.40811    | 0.000524561      | 34148.24857    |  |  |  |
| 9                        | 9.81968            | 26.57564     | 56.03468    | 0.000841684      | 31574.66558    |  |  |  |
| 10                       | 14.76856           | 8.829518     | 53.1352     | 0.000221931      | 39787.78016    |  |  |  |
| 11                       | 14.771             | 13.2896      | 57.6026     | 0.000323558      | 41075.99811    |  |  |  |
| 12                       | 14.77096           | 26.76875     | 71.08163    | 0.000649747      | 41200.77078    |  |  |  |
| 13                       | 19.71496           | 13.2979      | 72.44278    | 0.00026918       | 49405.28388    |  |  |  |
| 14                       | 19.71006           | 17.82125     | 76.95142    | 0.000352686      | 50532.90396    |  |  |  |
| 15                       | 19.70518           | 35.66926     | 94.7848     | 0.000755092      | 47239.51205    |  |  |  |

| MC= 7.6.76%              |                    |              |             |                  |                |  |  |  |
|--------------------------|--------------------|--------------|-------------|------------------|----------------|--|--|--|
| Dry density = 125.26 pcf |                    |              |             |                  |                |  |  |  |
| Sequence                 | Confining pressure | Devi. stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |  |
|                          | psi                | psi          | psi         |                  | psi            |  |  |  |
| 1                        | 3.00055998         | 2.62299326   | 11.6246732  | 0.00011294       | 23236.6568     |  |  |  |
| 2                        | 2.9907999          | 5.32591649   | 14.2983162  | 0.00024817       | 21461.7176     |  |  |  |
| 3                        | 2.98835996         | 7.96262952   | 16.9277094  | 0.00034375       | 23164.682      |  |  |  |
| 4                        | 4.8829999          | 4.46784084   | 19.1168405  | 0.00016854       | 26509.4339     |  |  |  |
| 5                        | 4.99036014         | 8.85634948   | 23.8274299  | 0.00031747       | 27897.6822     |  |  |  |
| 6                        | 4.99280012         | 13.4373887   | 28.4157891  | 0.00047544       | 28263.414      |  |  |  |
| 7                        | 10.0345001         | 8.84439793   | 38.9478982  | 0.00022523       | 39274.2892     |  |  |  |
| 8                        | 10.0345001         | 17.913877    | 48.0173773  | 0.0004797        | 37344.6829     |  |  |  |
| 9                        | 10.0222998         | 26.8479602   | 56.9148596  | 0.00074254       | 36157.7901     |  |  |  |
| 10                       | 14.9052            | 8.9328097    | 53.6484097  | 0.00020201       | 44227.0223     |  |  |  |
| 11                       | 15.0199797         | 13.3409867   | 58.4009257  | 0.00030923       | 43142.5844     |  |  |  |
| 12                       | 15.0126596         | 26.8787102   | 71.916689   | 0.00059446       | 45215.5868     |  |  |  |
| 13                       | 20.093399          | 13.3364455   | 73.6166425  | 0.00025467       | 52371.6232     |  |  |  |
| 14                       | 20.0811996         | 17.892121    | 78.1357198  | 0.00034035       | 52570.8274     |  |  |  |
| 15                       | 20.0836395         | 35.5103789   | 95.7612973  | 0.00066417       | 53466.0577     |  |  |  |

Table C.42 70%RAP + 30% CL6

Table C.43 50% RAP + 50% Class 6, Samp1e 1

| MC =6.6%              |                    |                 |             |                  |                |  |  |  |
|-----------------------|--------------------|-----------------|-------------|------------------|----------------|--|--|--|
| Dry Density = 130 pcf |                    |                 |             |                  |                |  |  |  |
| Sequence              | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |  |
|                       | psi                | psi             | psi         |                  | psi            |  |  |  |
| 1                     | 3.02984            | 2.652933        | 11.74245    | 0.00015554       | 17061.7596     |  |  |  |
| 2                     | 3.03228            | 5.329171        | 14.42601    | 0.00029519       | 18054.9362     |  |  |  |
| 3                     | 3.003              | 7.940864        | 16.94986    | 0.00041831       | 18984.0085     |  |  |  |
| 4                     | 4.97816            | 4.416248        | 19.35073    | 0.00019951       | 22136.3275     |  |  |  |
| 5                     | 5.02458            | 8.862313        | 23.93605    | 0.00037196       | 23827.8457     |  |  |  |
| 6                     | 5.0295             | 13.36043        | 28.44893    | 0.00058862       | 22698.0592     |  |  |  |
| 7                     | 9.99058            | 8.889971        | 38.86171    | 0.0002655        | 33485.7183     |  |  |  |
| 8                     | 9.9857             | 17.97272        | 47.92982    | 0.0005434        | 33074.6724     |  |  |  |
| 9                     |                    |                 |             |                  |                |  |  |  |
| 10                    | 14.99802           | 8.886851        | 53.88091    | 0.0002213        | 40160.7359     |  |  |  |
| 11                    | 15.00534           | 13.4709         | 58.48692    | 0.0003252        | 41424.1296     |  |  |  |
| 12                    | 14.99558           | 26.88015        | 71.86689    | 0.00063028       | 42648.8755     |  |  |  |
| 13                    | 20.1056            | 13.46295        | 73.77975    | 0.00027359       | 49213.1533     |  |  |  |
| 14                    | 20.1056            | 17.9107         | 78.2275     | 0.00036293       | 49352.6802     |  |  |  |
| 15                    | 20.0934            | 35.92432        | 96.20452    | 0.00073809       | 48672.782      |  |  |  |
| MC= 6.7%              |                    |                 |             |                  |                |  |
|-----------------------|--------------------|-----------------|-------------|------------------|----------------|--|
| Dry density = 125 pcf |                    |                 |             |                  |                |  |
| Sequence              | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |
|                       | psi                | psi             | psi         |                  | psi            |  |
| 1                     | 3.0469799          | 2.681553421     | 11.82249312 | 0.000129219      | 20763.80747    |  |
| 2                     | 3.09093998         | 5.37408868      | 14.64690862 | 0.000259841      | 20683.37263    |  |
| 3                     | 3.0885             | 8.010709854     | 17.27620985 | 0.000352613      | 22718.29852    |  |
| 4                     | 5.0661001          | 4.447514412     | 19.64581471 | 0.000170266      | 26124.21883    |  |
| 5                     | 5.0538998          | 9.014681562     | 24.17638096 | 0.000342117      | 26350.27235    |  |
| 6                     | 5.0538998          | 13.61805889     | 28.77975829 | 0.000508727      | 26769.562      |  |
| 7                     | 10.0345001         | 8.996098366     | 39.09959867 | 0.000265387      | 33900.56338    |  |
| 8                     | 10.0222998         | 17.82995743     | 47.89685683 | 0.000530325      | 33621.11565    |  |
| 9                     | 10.0101004         | 26.73333367     | 56.76363487 | 0.000720628      | 37097.62703    |  |
| 10                    | 14.99801998        | 8.846368215     | 53.84042816 | 0.000241969      | 36564.16626    |  |
| 11                    | 14.9906998         | 13.31055188     | 58.28265128 | 0.00036148       | 36823.37742    |  |
| 12                    | 14.9785004         | 26.82445024     | 71.75995144 | 0.000652902      | 41085.14901    |  |
| 13                    | 20.0200996         | 13.34964171     | 73.40994051 | 0.000321632      | 41506.53312    |  |
| 14                    | 20.0200996         | 17.83441005     | 77.89470885 | 0.000427245      | 41743.27836    |  |

Table C.44 50% RAP + 50% Class 6, Samp1e 2

Table C.45 30% RAP + 70% Class 6

| MC = 6.6%                          |                    |                 |             |                  |                |  |
|------------------------------------|--------------------|-----------------|-------------|------------------|----------------|--|
| Dry density = $130.35 \text{ pcf}$ |                    |                 |             |                  |                |  |
| Sequence                           | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |
|                                    | psi                | psi             | psi         |                  | psi            |  |
| 1                                  | 3.02007994         | 2.658001398     | 11.71824122 | 0.00023678       | 11226.55373    |  |
| 2                                  | 2.9542             | 5.341082612     | 14.20368261 | 0.00038104       | 14017.43784    |  |
| 3                                  | 2.95175998         | 7.978502736     | 16.83378268 | 0.00049705       | 16052.55966    |  |
| 4                                  | 5.09538002         | 4.44987003      | 19.73601009 | 0.00025208       | 17653.01417    |  |
| 5                                  | 4.93911992         | 8.935487186     | 23.75284695 | 0.00046059       | 19400.08926    |  |
| 6                                  | 4.9317999          | 13.28376018     | 28.07915988 | 0.00065835       | 20177.71107    |  |
| 7                                  | 10.07841984        | 8.860855308     | 39.09611483 | 0.0003229        | 27443.45536    |  |
| 8                                  | 10.06377984        | 17.9169046      | 48.10824412 | 0.00061614       | 29079.5867     |  |
| 9                                  | 10.05645982        | 26.80025896     | 56.96963842 | 0.00087367       | 30675.565      |  |
| 10                                 | 14.98825992        | 8.848171951     | 53.81295171 | 0.00026876       | 32925.58941    |  |
| 11                                 | 14.9785004         | 13.42355181     | 58.35905301 | 0.00038921       | 34488.98012    |  |
| 12                                 | 14.98582004        | 26.8968993      | 71.85435942 | 0.0006995        | 38451.60716    |  |
| 13                                 | 20.0200996         | 13.40082049     | 73.46111929 | 0.00031075       | 43123.92693    |  |
| 14                                 | 20.0200996         | 17.92702759     | 77.98732639 | 0.00040255       | 44534.05383    |  |
| 15                                 | 20.0200996         | 35.7156242      | 95.775923   | 0.00076118       | 46921.83504    |  |

| MC = 6.7%               |                    |                 |                             |             |                |  |
|-------------------------|--------------------|-----------------|-----------------------------|-------------|----------------|--|
| Dry density = 125.2 pcf |                    |                 |                             |             |                |  |
| Sequence                | Confining pressure | Deviator stress | Deviator stress Bulk stress |             | M <sub>R</sub> |  |
|                         | psi                | psi             | psi                         |             | psi            |  |
| 1                       | 3.00787996         | 2.713583413     | 11.73722329                 | 0.000118269 | 22949.26136    |  |
| 2                       | 2.98347996         | 5.332162588     | 14.28260247                 | 0.000232078 | 22976.37836    |  |
| 3                       | 3.01763992         | 7.970601423     | 17.02352118                 | 0.000309492 | 25754.24316    |  |
| 4                       | 4.97083998         | 4.462348037     | 19.37486798                 | 0.000165715 | 26934.36002    |  |
| 5                       | 4.9562001          | 8.845957946     | 23.71455825                 | 0.000295123 | 29976.41758    |  |
| 6                       | 4.9562001          | 13.43081986     | 28.29942016                 | 0.000435755 | 30822.48836    |  |
| 7                       | 9.9979             | 8.847754774     | 38.84145477                 | 0.000240431 | 36802.09442    |  |
| 8                       | 10.00034008        | 17.84966199     | 47.85068223                 | 0.000445697 | 40049.40303    |  |
| 9                       | 9.99545994         | 26.84544485     | 56.83182467                 | 0.000737336 | 36409.58755    |  |
| 10                      | 15.01753958        | 8.858846277     | 53.91146502                 | 0.000190112 | 46609.39743    |  |
| 11                      | 15.01753958        | 13.32334113     | 58.37595987                 | 0.000292826 | 45501.00358    |  |
| 12                      | 15.01997964        | 26.84835958     | 71.9082985                  | 0.000572569 | 46891.83402    |  |
| 13                      | 20.0200996         | 13.40707393     | 73.46737273                 | 0.00026212  | 51150.85444    |  |
| 14                      | 20.02253986        | 17.84315382     | 77.9107734                  | 0.0003498   | 51011.82173    |  |
| 15                      | 20.02987972        | 35.93437242     | 96.02401158                 | 0.000665729 | 53978.26358    |  |

Table C.46 50% RAP + 50% Taconite, Samp1e 1

Table C.47 50% RAP + 50% Taconite, Sample 2

| MC = 6.7%               |                    |                 |             |                  |                |  |  |
|-------------------------|--------------------|-----------------|-------------|------------------|----------------|--|--|
| Dry density = 124.5 pcf |                    |                 |             |                  |                |  |  |
| Sequence                | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |
|                         | psi                | psi             | psi         |                  | psi            |  |  |
| 1                       | 3.10313992         | 2.6284967       | 11.93791646 | 0.000136136      | 19313.24846    |  |  |
| 2                       | 3.01275992         | 5.370244177     | 14.40852394 | 0.000301386      | 17819.75753    |  |  |
| 3                       | 3.00299996         | 7.926811583     | 16.93581146 | 0.000413982      | 19148.67498    |  |  |
| 4                       | 5.05145982         | 4.522170952     | 19.67655041 | 0.000213766      | 21157.25947    |  |  |
| 5                       | 5.0416999          | 8.826087602     | 23.9511873  | 0.000394371      | 22383.49487    |  |  |
| 6                       | 5.05145982         | 13.29755777     | 28.45193723 | 0.000550083      | 24173.9827     |  |  |
| 7                       | 10.0222998         | 8.962130256     | 39.02902966 | 0.00031933       | 28069.54448    |  |  |
| 8                       | 10.02961998        | 18.00649731     | 48.09535725 | 0.000632622      | 28463.44307    |  |  |
| 9                       | 10.02717992        | 26.78989311     | 56.87143287 | 0.000986492      | 27156.74821    |  |  |
| 10                      | 15.0272999         | 8.999076564     | 54.08097626 | 0.000337425      | 26671.59475    |  |  |
| 11                      | 15.0272999         | 13.38080184     | 58.46270154 | 0.000491473      | 27227.35554    |  |  |
| 12                      | 15.0395002         | 26.85385531     | 71.97235591 | 0.000883258      | 30403.30405    |  |  |
| 13                      | 20.0323009         | 13.37836505     | 73.47526775 | 0.000477893      | 27995.2489     |  |  |
| 14                      | 20.02500034        | 17.98453622     | 78.05953724 | 0.000622448      | 28893.92506    |  |  |

| MC= 6.5%              |                    |                 |             |                  |                |  |  |
|-----------------------|--------------------|-----------------|-------------|------------------|----------------|--|--|
| Dry density = 135 pcf |                    |                 |             |                  |                |  |  |
| Sequence              | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |
|                       | psi                | psi             |             | psi              |                |  |  |
| 1                     | 3.06654            | 2.77071459      | 11.9703344  | 0.0001499        | 18482.73       |  |  |
| 2                     | 3.06166            | 5.32344419      | 14.508424   | 0.000253         | 21045.09       |  |  |
| 3                     | 3.05432            | 7.95598729      | 17.1189471  | 0.0003374        | 23586.82       |  |  |
| 4                     | 5.0417             | 4.39407203      | 19.5191717  | 0.0001749        | 25131.4        |  |  |
| 5                     | 5.04658            | 8.87610627      | 24.0158459  | 0.0003186        | 27859.41       |  |  |
| 6                     | 5.05146            | 13.4778502      | 28.6322296  | 0.0004569        | 29501.6        |  |  |
| 7                     | 10.05402           | 8.81325249      | 38.9753117  | 0.0002358        | 37378.53       |  |  |
| 8                     | 10.0467            | 17.9256192      | 48.0657183  | 0.0004646        | 38585.02       |  |  |
| 9                     | 10.0467            | 26.9066857      | 57.0467842  | 0.0007068        | 38068.92       |  |  |
| 10                    | 14.8808            | 8.8446137       | 53.4870138  | 0.000218         | 40586.71       |  |  |
| 11                    | 15.01998           | 13.2993264      | 58.3592654  | 0.0003283        | 40516.63       |  |  |
| 12                    | 15.0151            | 26.9350775      | 71.980376   | 0.0006172        | 43639.38       |  |  |
| 13                    | 20.01522           | 13.3894033      | 73.4350629  | 0.0002822        | 47453.15       |  |  |
| 14                    | 20.0079            | 17.843086       | 77.8667866  | 0.0003738        | 47743.4        |  |  |
| 15                    | 20.0079            | 35.8358712      | 95.8595718  | 0.0007178        | 49924.02       |  |  |

Table C.48 50% RAP + 50% Taconite, Sample 3

| MC= 8.2%                |                    |                 |             |                  |                |  |  |  |
|-------------------------|--------------------|-----------------|-------------|------------------|----------------|--|--|--|
| Dry density = 123.8 pcf |                    |                 |             |                  |                |  |  |  |
| Sequence                | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |  |
|                         | psi                | psi             | psi         |                  | psi            |  |  |  |
| 1                       | 3.1129             | 2.727664        | 12.06636    | 0.00015062       | 18115.76       |  |  |  |
| 2                       | 3.10802            | 5.369696        | 14.69376    | 0.00029936       | 17939.07       |  |  |  |
| 3                       | 3.1129             | 7.903086        | 17.24179    | 0.00040895       | 19327.07       |  |  |  |
| 4                       | 5.0417             | 4.441693        | 19.56679    | 0.00019619       | 22648.02       |  |  |  |
| 5                       | 5.0417             | 8.814759        | 23.93986    | 0.00037744       | 23355.32       |  |  |  |
| 6                       | 5.0417             | 13.2999         | 28.425      | 0.00055448       | 23986.7        |  |  |  |
| 7                       | 9.9124             | 8.820867        | 38.55807    | 0.00028607       | 30834.91       |  |  |  |
| 8                       | 9.9124             | 17.83511        | 47.57231    | 0.00059831       | 29810.45       |  |  |  |
| 9                       | 9.9246             | 26.78677        | 56.56057    | 0.00094458       | 28358.64       |  |  |  |
| 10                      | 14.7832            | 8.806805        | 53.15641    | 0.00026714       | 32969.96       |  |  |  |
| 11                      | 14.77588           | 13.3133         | 57.64094    | 0.00042341       | 31443.99       |  |  |  |
| 12                      | 14.7832            | 26.77882        | 71.12843    | 0.00080476       | 33276          |  |  |  |
| 13                      | 19.63926           | 13.30888        | 72.22666    | 0.00035423       | 37573.96       |  |  |  |
| 14                      | 19.60754           | 17.82236        | 76.64498    | 0.00048739       | 36567.26       |  |  |  |
| 15                      | 19.6417            | 35.79437        | 94.71947    | 0.00095718       | 37395.99       |  |  |  |

Table C.49 50% RAP + 50% Taconite, Sample 4

| MC = 7.7 %              |                    |                 |             |                  |                |  |  |
|-------------------------|--------------------|-----------------|-------------|------------------|----------------|--|--|
| Dry density = 124.1 pcf |                    |                 |             |                  |                |  |  |
| Sequence                | Confining pressure | Deviator stress | Bulk stress | Resilient strain | M <sub>R</sub> |  |  |
|                         | psi                | psi             | psi         | si               |                |  |  |
| 1                       | 2.98104            | 2.74009593      | 11.68322    | 0.0001781        | 15382.73       |  |  |
| 2                       | 2.98104            | 5.34451328      | 14.28763    | 0.0003178        | 16816.53       |  |  |
| 3                       | 2.97616            | 7.99028773      | 16.91877    | 0.0004219        | 18941.49       |  |  |
| 4                       | 4.88056            | 4.51409634      | 19.15578    | 0.0002247        | 20087.71       |  |  |
| 5                       | 4.88056            | 8.88934853      | 23.53103    | 0.0003993        | 22262.37       |  |  |
| 6                       | 4.87812            | 13.3603547      | 27.99471    | 0.0005739        | 23280.18       |  |  |
| 7                       | 9.69026            | 8.87811531      | 37.9489     | 0.0003345        | 26541.11       |  |  |
| 8                       | 9.69026            | 17.8317151      | 46.9025     | 0.0006344        | 28109.67       |  |  |
| 9                       | 9.6805             | 26.8300953      | 55.8716     | 0.0010182        | 26350.8        |  |  |
| 10                      | 14.539             | 8.86425079      | 52.48125    | 0.0003635        | 24385.12       |  |  |
| 11                      | 14.5146            | 13.3360917      | 56.87989    | 0.0005284        | 25239.34       |  |  |
| 12                      | 14.5146            | 26.7952321      | 70.33903    | 0.0009323        | 28741.12       |  |  |
| 13                      | 19.28526           | 13.3372026      | 71.19298    | 0.000523         | 25502.36       |  |  |
| 14                      | 19.16804           | 17.8289422      | 75.33306    | 0.0006693        | 26636.92       |  |  |
| 15                      | 19.1534            | 35.8534986      | 93.3137     | 0.0012651        | 28339.8        |  |  |

Table C.50 50% RAP + 50% Taconite, Sample 5

| MC = 7.7 %              |                    |                    |                |                     |                |  |  |
|-------------------------|--------------------|--------------------|----------------|---------------------|----------------|--|--|
| Dry density = 129.5 pcf |                    |                    |                |                     |                |  |  |
| Sequence                | Confining pressure | Deviator<br>stress | Bulk<br>stress | Resilient<br>strain | M <sub>R</sub> |  |  |
|                         | psi                | psi                | psi            |                     | psi            |  |  |
| 1                       | 2.86384            | 2.59728            | 11.1888        | 0.000228099         | 11388.84617    |  |  |
| 2                       | 3.003              | 5.34863            | 14.35763       | 0.000371931         | 14381.45757    |  |  |
| 3                       | 3.00056            | 7.969558           | 16.97124       | 0.000477575         | 16687.81442    |  |  |
| 4                       | 5.07586            | 4.443068           | 19.67065       | 0.000243807         | 18225.97589    |  |  |
| 5                       | 5.0539             | 8.815311           | 23.97701       | 0.000426634         | 20662.8268     |  |  |
| 6                       | 5.0417             | 13.42939           | 28.55449       | 0.000637879         | 21053.25247    |  |  |
| 7                       | 10.00522           | 8.81263            | 38.82829       | 0.000309804         | 28447.44593    |  |  |
| 8                       | 9.9979             | 17.85968           | 47.85338       | 0.000567949         | 31446.0616     |  |  |
| 9                       | 9.9857             | 26.88083           | 56.83793       | 0.000972382         | 27644.43041    |  |  |
| 10                      | 14.9907            | 8.846128           | 53.81823       | 0.000257382         | 34373.22114    |  |  |
| 11                      | 14.9907            | 13.35307           | 58.32517       | 0.000375746         | 35538.33145    |  |  |
| 12                      | 14.9785            | 26.92567           | 71.86117       | 0.000684715         | 39324.45353    |  |  |
| 13                      | 20.0079            | 13.42392           | 73.44762       | 0.000318379         | 42167.3277     |  |  |
| 14                      | 20.00058           | 17.84516           | 77.8469        | 0.000410131         | 43512.66609    |  |  |
| 15                      | 19.98594           | 33.81473           | 93.77255       | 0.000697751         | 48279.66747    |  |  |

Table C.51 50% RAP + 50% Taconite, Sample 6

## Appendix D

**Relation between Confining Pressure and Resilient Modulus** 



Figure D.1  $M_R$  vs. confining pressure for Class 5 (OMC, 100% MDD, one sample and 2 replicates) and



Figure D.2 M<sub>R</sub> vs. confining pressure for Class 5 (OMC, 100% MDD, freeze-thaw conditioned), (one sample and a replicate)



Figure D.3 M<sub>R</sub> vs. confining pressure for Class 5 (OMC + 1%, 99% MDD)



Figure D.4 M<sub>R</sub> vs. confining pressure for Class 5 (OMC + 2%, 97% MDD)



Figure D.5 M<sub>R</sub> vs. confining pressure for Class 5 (OMC + 2%, 100% MDD, 2 F-T)



Figure D.6  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD), (one sample and a replicate)



Figure D.7 M<sub>R</sub> vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure D.8  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD)



Figure D.9  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98.5% MDD)



Figure D.10  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure D.11  $M_R$  vs. confining pressure for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)



Figure D.12 M<sub>R</sub> vs. confining pressure for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD), (one sample and a replicate)



Figure D.13 M<sub>R</sub> vs. confining pressure for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, freeze-thaw conditioned), (one sample and a replicate)



Figure D.14  $M_R$  vs. confining pressure for 25% Class 5 + 75% RAP TH 10 (OMC + 1%, 97.6% MDD)



Figure D.15  $M_R$  vs. confining pressure for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 97% MDD)



Figure D.16  $M_R$  vs. confining pressure for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 96% MDD, freeze-thaw conditioned)



Figure D.17 M<sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC, 100% MDD), (one sample and 2 replicates)



Figure D.18 M<sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC, 100% MDD freezethaw conditioned)



Figure D.19 M<sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC + 1%, 100% MDD)



Figure D.20 M<sub>R</sub> vs. confining pressure for 100% RAP TH 10 (OMC + 2%, 97.5% MDD)



Figure D.21  $M_R$  vs. confining pressure for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure D.22  $M_R\,vs.$  confining pressure for 100% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)



Figure D.23 M<sub>R</sub> vs. confining pressure for RAP TH 19-101 (OMC, 100% MDD), one sample and a replicate



Figure D.24 M<sub>R</sub> vs. confining pressure for RAP TH 19-101 (OMC, 97.5% MDD)



Figure D.25 M<sub>R</sub> vs. confining pressure for RAP TH 19-101 (OMC, 100% MDD, freeze-thaw conditioned), (one sample and a replicate)



Figure D.26  $M_R\,vs.$  confining pressure for RAP TH 19-101 (OMC + 2%, 100% MDD)



Figure D.27 M<sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC, 100% MDD), (one sample and a replicate)



Figure D.28 M<sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC, 100% MDD, 2 F-T)



Figure D.29 M<sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC + 2%, 97% MDD)



Figure D.30 M<sub>R</sub> vs. confining pressure for RAP TH 19-104 (OMC + 2%, 97% MDD, 2 F-T)



Figure D.31 M<sub>R</sub> vs. confining pressure for RAP TH 22 (OMC, 100% MDD), (one sample and a replicate)



Figure D.32 M<sub>R</sub> vs. confining pressure for RAP TH 22 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure D.33  $M_R$  vs. confining pressure for RAP TH 22 (OMC + 2%, 98% MDD)



Figure D.34 M<sub>R</sub> vs. confining pressure for RAP TH 22 (OMC + 2%, 98% MDD, 2 F-T)

## Appendix E

**Relation between Bulk Stress and Resilient Modulus** 



Figure E.1 M<sub>R</sub> vs. bulk stress for Class 5 (OMC, 100% MDD, one sample and 2 replicates)



Figure E.2  $M_R$  vs. bulk stress for Class 5 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure E.3  $M_R\,vs.$  bulk stress for Class 5 (OMC + 1%, 99% MDD)



Figure E.4 M<sub>R</sub> vs. bulk stress for Class 5 (OMC + 2%, 99% MDD)



Figure E.5 M<sub>R</sub> vs. bulk stress for Class 5 (OMC + 2%, 2 F-T)



Figure E.6 M<sub>R</sub> vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD), (one sample and a replicate)



Figure E.7  $M_R$  vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure E.8  $M_R$  vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD)



Figure E.9  $M_R$  vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98.5% MDD)



Figure E.10  $M_R$  vs. bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure E.11  $M_R\,vs.$  bulk stress for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)



Figure E.12  $M_R$  vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD), (one sample and a replicate)



Figure E.13  $M_R$  vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure E.14  $M_R$  vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC + 1%, 97.6% MDD)



Figure E.15  $M_R$  vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 97% MDD)



Figure E.16  $M_R$  vs. bulk stress for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 96% MDD, 2 F-T)



Figure E.17  $M_R$  vs. bulk stress for 100% RAP TH 10 (OMC, 100% MDD), (one sample and 2 replicates)



Figure E.18 M<sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC, 100% MDD, 2 F-T)



Figure E.19 M<sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 1%, 100% MDD)



Figure E.20 M<sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 2%, 97.5% MDD)



Figure E.21 M<sub>R</sub> vs. bulk stress for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure E.22  $M_Rvs.$  bulk stress for 100% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)


Figure E.23 M<sub>R</sub> vs. bulk stress for RAP TH 19-101 (OMC, 100% MDD), one sample and a replicate



Figure E.24 M<sub>R</sub> vs. bulk stress for RAP TH 19-101 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure E.25  $M_R\,vs.$  bulk stress for RAP TH 19-101 (OMC + 2%, 100% MDD)



Figure E.26 M<sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC, 100% MDD), (one sample and a replicate)



Figure E.27 M<sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC, 100% MDD, 2 F-T)



Figure E.28  $M_R\,vs.$  bulk stress for RAP TH 19-104 (OMC + 2%, 97% MDD)



Figure E.29 M<sub>R</sub> vs. bulk stress for RAP TH 19-104 (OMC + 2%, 97% MDD, 2 F-T)



Figure E.30  $M_R$  vs. bulk stress for RAP TH 22 (OMC, 100% MDD), (one sample and a replicate)



Figure E.31 M<sub>R</sub> vs. bulk stress for RAP TH 22 (OMC, 100% MDD, 2 F-T), (one sample and a replicate)



Figure E.32 M<sub>R</sub> vs. bulk stress for RAP TH 22 (OMC + 2%, 98% MDD)



Figure E.33  $M_R$  vs. bulk stress for RAP TH 22 (OMC + 2%, 98% MDD, 2 F-T)

## Appendix F

Effect of Confining Pressure and Deviator Stress on Resilient Modulus



Figure F.1  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD)



Figure F.2  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD, replicate)



Figure F.3  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD,  $2^{nd}$  replicate)



Figure F.4  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC + 1%, 99% MDD)



Figure F.5  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC + 2%, 99% MDD)



Figure F.6  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD, 2 F-T)



Figure F.7 M<sub>R</sub> vs. deviator stress at different confining pressures for Class 5 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.8  $M_R$  vs. deviator stress at different confining pressures for Class 5 (OMC + 2%, 2 F-T)



Figure F.9  $M_R$  vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD)



Figure F.10 M<sub>R</sub> vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, replicate)



Figure F.11  $M_R$  vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, 2 F-T)



Figure F.12 M<sub>R</sub> vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.13  $M_R$  vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD)



Figure F.14  $M_R$  vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98.5% MDD)



Figure F.15  $M_R$  vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure F.16 M<sub>R</sub> vs. deviator stress at different confining pressures for 50% Class 5 + 50% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)



Figure F.17  $M_R$  vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD)



Figure F.18 M<sub>R</sub> vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, replicate)



Figure F.19  $M_R$  vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC + 1%, 97.6% MDD)



Figure F.20  $M_R$  vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 97% MDD)



Figure F.21  $M_R$  vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, 2 F-T)



Figure F.22 M<sub>R</sub> vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.23  $M_R$  vs. deviator stress at different confining pressures for 25% Class 5 + 75% RAP TH 10 (OMC + 2%, 96% MDD, 2 F-T)



Figure F.24 M<sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC, 100% MDD)



Figure F.25 M<sub>R</sub> vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC, 100% MDD, replicate)



Figure F.26  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC, 100% MDD, 2<sup>nd</sup> replicate)



Figure F.27  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10  $(OMC+1\%, 100\%\ MDD)$ 



Figure F.28  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10  $(OMC+2\%,97.5\%\ MDD)$ 



Figure F.29  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure F.30  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T, replicate)



Figure F.31  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 1%, 100% MDD, 2 F-T)



Figure F.32  $M_R$  vs. deviator stress at different confining pressures for 100% RAP TH 10 (OMC + 2%, 98% MDD, 2 F-T)



Figure F.33  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD)



Figure F.34  $M_R\,vs.$  deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD, replicate)



Figure F.35  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC + 2%, 100% MDD)



Figure F.36  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 97.5% MDD)



Figure F.37  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD, 2 F-T)



Figure F.38 M<sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-101 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.39  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-104 (OMC, 100% MDD)



Figure F.40  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-104 (OMC, 100% MDD, replicate)



Figure F.41  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-104  $(OMC+2\%,97\%\ MDD)$ 



Figure F.42  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-104 (OMC, 100% MDD, 2 F-T)



Figure F.43 M<sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 19-104 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.44  $M_R$  vs. deviator stress at different confining pressures for RAP TH 19-104  $(OMC+2\%,97\%\ MDD,2\ F\text{-}T)$ 



Figure F.45  $M_R$  vs. deviator stress at different confining pressures for RAP TH 22 (OMC, 100% MDD)



Figure F.46 M<sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 22 (OMC, 100% MDD, replicate)



Figure F.47  $M_R$  vs. deviator stress at different confining pressures for RAP TH 22 (OMC + 2%, 98% MDD)



Figure F.48  $M_R$  vs. deviator stress at different confining pressures for RAP TH 22 (OMC, 100% MDD, 2 F-T)



Figure F.49 M<sub>R</sub> vs. deviator stress at different confining pressures for RAP TH 22 (OMC, 100% MDD, 2 F-T, replicate)



Figure F.50  $M_R$  vs. deviator stress at different confining pressures for RAP TH 22 (OMC + 2%, 98% MDD, 2 F-T)

## Appendix G Dynamic Cone Penetration Results

| RAP TH 19-101 |         |         |         |  |  |  |
|---------------|---------|---------|---------|--|--|--|
|               | DCP#1   | DCP#2   | DCP#3   |  |  |  |
| No. of        |         |         |         |  |  |  |
| blows         | mm/blow | mm/blow | mm/blow |  |  |  |
| 0             | 311     | 314     | 313     |  |  |  |
| 1             | 335     | 337     | 335     |  |  |  |
| 2             | 353     | 349     | 347     |  |  |  |
| 3             | 370     | 365     | 360     |  |  |  |
| 4             | 381     | 380     | 372     |  |  |  |
| 5             | 392     | 389     | 382     |  |  |  |
| 6             | 402     | 400     | 393     |  |  |  |
| 7             | 412     | 410     | 404     |  |  |  |
| 8             | 421     | 419     | 412     |  |  |  |
| 9             | 432     | 424     | 420     |  |  |  |
| 10            | 442     | 432     | 428     |  |  |  |
| 11            | 455     | 440     | 437     |  |  |  |
| 12            | 465     | 446     | 445     |  |  |  |
| 13            | 479     | 451     | 452     |  |  |  |
| 14            | 493     | 460     | 460     |  |  |  |
| 15            | 510     | 470     | 467     |  |  |  |
| 16            | 519     | 480     | 475     |  |  |  |
| 17            | 528     | 490     | 483     |  |  |  |
| 18            | 537     | 499     | 493     |  |  |  |
| 19            | 546     | 508     | 503     |  |  |  |
| 20            | 559     | 517     | 512     |  |  |  |
| 21            | 566     | 524     | 525     |  |  |  |
| 22            | 580     | 530     | 533     |  |  |  |
| 23            | 604     | 538     | 540     |  |  |  |
| 24            | 630     | 544     | 545     |  |  |  |
| 25            |         | 548     | 551     |  |  |  |
| 26            |         | 554     | 560     |  |  |  |
| 27            |         | 563     | 569     |  |  |  |
| 28            |         | 570     | 582     |  |  |  |
| 29            |         | 580     | 595     |  |  |  |
| 30            |         | 595     | 610     |  |  |  |
| 31            |         | 611     | 632     |  |  |  |

 Table G.1 Dynamic Cone Penetration Results for RAP TH 19-101

| RAP - TH 19-104 |         |          |         |         |  |  |  |  |
|-----------------|---------|----------|---------|---------|--|--|--|--|
|                 | DCP#4-1 | DCP#4-2  | DCP#5   | DCP#6   |  |  |  |  |
| No. of blows    | mm/blow | mm/blow  | mm/blow | mm/blow |  |  |  |  |
| 0               | 315     | 305      | 304     | 305     |  |  |  |  |
| 1               | 342     | 330      | 330     | 327     |  |  |  |  |
| 2               | 356     | 352      | 352     | 342     |  |  |  |  |
| 3               | 370     | 365      | 369     | 357     |  |  |  |  |
| 4               | 382     | 379      | 382     | 370     |  |  |  |  |
| 5               | 390     | 387      | 390     | 380     |  |  |  |  |
| 6               | 397     | 395      | 398     | 388     |  |  |  |  |
| 7               | 402     | 402      | 404     | 395     |  |  |  |  |
| 8               | 409     | 408      | 410     | 401     |  |  |  |  |
| 9               | 414     | 416      | 416     | 405     |  |  |  |  |
| 10              |         | 422      | 422     | 410     |  |  |  |  |
| 11              |         | 429      | 428     | 416     |  |  |  |  |
| 12              |         | 437      | 433     | 424     |  |  |  |  |
| 13              |         | 442      | 438     | 430     |  |  |  |  |
| 14              |         | 446      | 444     | 435     |  |  |  |  |
| 15              |         | 450      | 449     | 442     |  |  |  |  |
| 16              |         | 458      | 457     | 447     |  |  |  |  |
| 17              |         | 465      | 465     | 452     |  |  |  |  |
| 18              |         | 470      | 473     | 457     |  |  |  |  |
| 19              |         | 476      | 482     | 462     |  |  |  |  |
| 20              |         | 483      | 490     | 470     |  |  |  |  |
| 21              |         | 489      | 497     | 475     |  |  |  |  |
| 22              |         | 495      | 506     | 481     |  |  |  |  |
| 23              |         | 501      | 512     | 488     |  |  |  |  |
| 24              |         | 507      | 521     | 493     |  |  |  |  |
| 25              |         | 514      | 523     | 502     |  |  |  |  |
| 26              |         | 520      | 535     | 509     |  |  |  |  |
| 27              |         | 525      | 545     | 515     |  |  |  |  |
| 28              |         | 532      | 560     | 520     |  |  |  |  |
| 29              |         | 538      | 592     | 527     |  |  |  |  |
| 30              |         | 543      | 628     | 533     |  |  |  |  |
| 31              |         | 550      |         | 536     |  |  |  |  |
| 32              |         | 558      |         | 545     |  |  |  |  |
| 33              |         | 566      |         | 552     |  |  |  |  |
| 34              |         | 5/5      |         | 559     |  |  |  |  |
| <u> </u>        |         | <u> </u> |         | 579     |  |  |  |  |
| 30              |         | 632      |         | 597     |  |  |  |  |
| 38              |         | 0.52     |         | 626     |  |  |  |  |

 Table G.2 Dynamic Cone Penetration Results for RAP TH 19-104

| TH 22  |         |         |         |  |  |  |
|--------|---------|---------|---------|--|--|--|
|        | DCP#1   | DCP#2   | DCP#3   |  |  |  |
| No. of |         |         |         |  |  |  |
| blows  | mm/blow | mm/blow | mm/blow |  |  |  |
| 0      | 305     | 305     | 308     |  |  |  |
| 1      | 338     | 329     | 332     |  |  |  |
| 2      | 349     | 344     | 347     |  |  |  |
| 3      | 364     | 360     | 359     |  |  |  |
| 4      | 375     | 370     | 372     |  |  |  |
| 5      | 386     | 383     | 385     |  |  |  |
| 6      | 398     | 393     | 399     |  |  |  |
| 7      | 408     | 403     | 414     |  |  |  |
| 8      | 418     | 414     | 429     |  |  |  |
| 9      | 429     | 426     | 442     |  |  |  |
| 10     | 438     | 436     | 454     |  |  |  |
| 11     | 447     | 448     | 464     |  |  |  |
| 12     | 455     | 457     | 474     |  |  |  |
| 13     | 463     | 467     | 481     |  |  |  |
| 14     | 472     | 472     | 490     |  |  |  |
| 15     | 483     | 479     | 497     |  |  |  |
| 16     | 492     | 485     | 504     |  |  |  |
| 17     | 504     | 490     | 512     |  |  |  |
| 18     | 509     | 496     | 518     |  |  |  |
| 19     |         | 503     |         |  |  |  |
| 20     |         | 507     |         |  |  |  |
| 21     |         | 513     |         |  |  |  |
| 22     |         | 518     |         |  |  |  |

 Table G.3 Dynamic Cone Penetration Results for RAP TH 22