

# THE SAFETY AND COST-EFFECTIVENESS OF BRIDGE-APPROACH GUARDRAIL FOR COUNTY STATE-AID (CSAH) BRIDGES IN MINNESOTA







# **Technical Report Documentation Page**

| 1. Report No.         2.           MN/RC-2005-39         2.                                          |       | 3. Recipients Accession No.           |  |  |  |
|------------------------------------------------------------------------------------------------------|-------|---------------------------------------|--|--|--|
| 4. Title and Subtitle<br>The Safety and Cost-Effectiveness of<br>Guardrail for County State-Aid (CSA |       | 5. Report Date<br>October 2005<br>6.  |  |  |  |
| 7. Author(s)<br>Tim J. Gates, David A. Noyce                                                         |       | 8. Performing Organization Report No. |  |  |  |
| 9. Performing Organization Name and Address<br>The University of Wisconsin – Madis                   | son   | 10. Project/Task/Work Unit No.        |  |  |  |
| Department of Civil and Environmen                                                                   |       | 11. Contract (C) or Grant (G) No.     |  |  |  |
| 1210 Engineering Hall<br>1415 Engineering Drive<br>Madison, Wisconsin 53706                          |       | (c) 84374                             |  |  |  |
| 12. Sponsoring Organization Name and Address                                                         |       | 13. Type of Report and Period Covered |  |  |  |
| Minnesota Department of Transporta                                                                   | tion  | Final Report                          |  |  |  |
| Research Services Section                                                                            | 220   | 14. Sponsoring Agency Code            |  |  |  |
| 395 John Ireland Boulevard Mail Sto<br>St. Paul, Minnesota 55155                                     | p 330 |                                       |  |  |  |
| 15. Supplementary Notes                                                                              |       |                                       |  |  |  |
| http://www.lrrb.org/PDF/200539.pdf                                                                   |       |                                       |  |  |  |

16. Abstract (Limit: 200 words)

Bridge-approach guardrail provides protection for vehicles from collision with bridge components, such as the blunt end of the bridge rail or abutment, and other types of run-off-the-road collisions. The primary objective of this research was to determine the average daily traffic (ADT) at which the benefit/cost ratio for the installation of approach guardrail at county-state-aid (CSAH) bridges in Minnesota becomes greater than 1.0. A survey of state transportation agencies found that 26 of 35 responding agencies have policies or guidelines requiring placement of approach guardrail on any bridge if the bridge was built using state funds. Results of the research analyses showed that bridge-approach guardrail was effective at reducing the severity of run-off-the-road crashes occurring on the approach or departure to CSAH bridges. Fatalities and A-injury crashes accounted for only 6 percent of the crashes occurring at bridges with approach guardrail compared to 28.5 percent at bridges without approach guardrail. The subsequent benefit/cost analysis showed that bridge-approach guardrail is cost-effective (i.e., B/C > 1) for CSAH bridges with ADT greater than or equal to 300 vehicles per day (vpd). Overall, approach guardrail has a benefit/cost ratio of approximately 3.5 to 5.5. The researchers recommended that the ADT threshold for approach guardrail on CSAH bridges be set at 400 vpd, which is consistent with previous Mn/DOT standards and AASHTO low-volume local road guidelines. Approach guardrail should be considered on a case-by-case basis for bridges with ADT between 150 and 400 vpd, especially those between 300 and 400 vpd. Placement of approach guardrail at bridges with ADT less than 150 vpd is not cost-effective in most cases.

| 17. Document Analysis/Descriptors<br>Guardrail<br>Safety<br>Cost-Effectiveness | Bridge<br>County                               | <ul> <li>18. Availability Statement</li> <li>No restrictions. Document available from:</li> <li>National Technical Information Services,</li> <li>Springfield, Virginia 22161</li> </ul> |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 19. Security Class (this report)<br>Unclassified                               | 20. Security Class (this page)<br>Unclassified | page) 21. No. of Pages 22. Price 209                                                                                                                                                     |  |  |  |

# THE SAFETY AND COST-EFFECTIVENESS OF BRIDGE-APPROACH GUARDRAIL FOR COUNTY STATE-AID (CSAH) BRIDGES IN MINNESOTA

# **Final Report**

Prepared by:

Tim J. Gates David A. Noyce The University of Wisconsin - Madison Department of Civil and Environmental Engineering

# October 2005

Published by:

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation and/or the Center for Transportation Studies. This report does not contain a standard or specified technique.

### ACKNOWLEDGEMENTS

This project was conducted in cooperation with the Minnesota Local Road Research Board and the Minnesota Department of Transportation. The authors would like to thank the project director, Paul Stine of Mn/DOT, for providing guidance and expertise on this project. The authors would also like to thank the following individuals for their assistance:

- Loren Hill, Marc Briese, and Marj Ebensteiner from Mn/DOT for providing crash data and crash reports;
- Thomas Martin from Mn/DOT for providing CSAH bridge data and other information from the Pontis database;
- Dave Conkel and Nancy Sannes from Mn/DOT for providing bridge cost and policy information;
- John Grindeland, Tom Miles Fillmore County; Kaye Bieniek, Michael Sheehan Olmsted County; Jim Klevan – Goodhue County; Todd Howard – Dakota County; Gary Barclay, Mike Hanson – Mower County; Wayne Dosh – Crow Wing County; Michael Banks - Wantowan County; Andrew Witter, Jim Christenson – Anoka County; Mark Sehr – Rock County; and Steve Johnson – Lyon County and other county personnel for providing detailed information about the location of approach guardrail on CSAH bridges;
- Numerous county personnel on the report review panel who provided detailed reviews and feedback of the final report; and
- George Lu from UW-Madison for assistance with the logistic regression modeling.

# TABLE OF CONTENTS

| Chapter 1: Introduction                                                   | 1  |
|---------------------------------------------------------------------------|----|
| Background                                                                | 1  |
| Objective                                                                 | 2  |
| Literature Review                                                         | 2  |
| Current Guidelines and Standards                                          | 2  |
| Relevant Safety Research                                                  | 4  |
| Chapter 2: Survey of Nationwide State Agency Practice                     | 5  |
| Survey Findings                                                           | 5  |
| Criteria for Application of Approach Guardrail on Local State-Aid Bridges | 5  |
| Use of Protective Treatments Other than Guardrail                         | 7  |
| Iowa Procedure for Determining Need for Bridge-Approach Guardrail         | 8  |
| Chapter 3: Analysis Methodology                                           | 10 |
| CSAH Bridge Data                                                          | 11 |
| Development of Bridge Sample Populations and Collection of Inventory Data | 11 |
| Bridge Characteristics                                                    | 13 |
| Collection of Crash Data                                                  | 17 |
| Initial Queries of Minnesota Crash Database                               | 17 |
| Crash Data Filtering                                                      | 17 |
| Police Crash-Report Data                                                  | 18 |
| Research Hypotheses                                                       | 19 |
| Chapter 4: Analysis of Database Crashes                                   | 20 |
| Initial Crash Investigations                                              | 20 |
| Crash Frequency per Bridge                                                | 20 |
| Relationship between Crashes, ADT, and Deck Width                         | 21 |
| Crashes Separated by ADT                                                  | 24 |
| Analysis of Coded Crash Types                                             | 26 |
| All Bridges                                                               | 26 |
| Data Separated by ADT                                                     | 27 |
| Analysis of Crash Severity                                                | 29 |
| All Bridges                                                               | 29 |
| Data Separated by ADT                                                     | 30 |

| Chapter 5: Analysis of Police Crash-Report Data                                         | 33 |
|-----------------------------------------------------------------------------------------|----|
| Crash-Report Acquisition                                                                | 33 |
| Report Screening and Filtering                                                          | 34 |
| Screening Results                                                                       | 34 |
| Analysis and Results                                                                    | 35 |
| Initial Object Struck versus Guardrail Presence                                         | 35 |
| Initial Object Struck versus Guardrail Presence for Crashes Coded as TYPE 31            | 37 |
| Logistic Regression Analysis for Crash Severity versus Various Bridge and Crash Factors | 38 |
| Crash Severity versus Guardrail Presence                                                | 41 |
| Discussion of Fatal and Severe Injury Crashes                                           | 42 |
| Crash Severity versus Initial Object Struck                                             | 44 |
| Effectiveness of Guardrail Based on Type of Collision and Guardrail Presence            | 45 |
| Assessment of the Need for Guardrail at All Bridge Corners versus Approach Corner Only  |    |
| Chapter 6: Benefit/Cost Analysis                                                        | 50 |
| Costs of Approach Guardrail                                                             | 50 |
| Benefits of Approach Guardrail                                                          | 51 |
| Analysis and Findings                                                                   | 52 |
| Chapter 7: Conclusions and Recommendations                                              | 60 |
| Conclusions                                                                             | 60 |
| Mn/DOT Practice Compared to Other Agencies                                              | 60 |
| Effect of Approach Guardrail on Crash Severity                                          | 61 |
| Effectiveness of Approach Guardrail                                                     | 61 |
| Guardrail Protection at All Corners of Bridge versus Approach Corners Only              | 61 |
| Crash Coding for Collisions with Bridge Components                                      | 62 |
| Cost-Effectiveness of Approach Guardrail                                                | 62 |
| Recommendations                                                                         | 62 |
| ADT Threshold for Installation of Approach Guardrail on CSAH Bridges                    | 62 |
| Guardrail Protection at All Corners of Bridge                                           | 62 |
| Crash Type Coding for Collisions with Bridge Components                                 | 63 |
| References                                                                              | 64 |

| Appendix A: State Survey Form                                                                    | A-1           |
|--------------------------------------------------------------------------------------------------|---------------|
| Appendix B: State Survey Responses                                                               | B-1           |
| Appendix C: Iowa Procedure for Determining the Need for Bridge Guardrail on Roads                |               |
| Appendix D: Pontis Inventory Information for Sample CSAH Bridges                                 | D-1           |
| Appendix E: Database Query: Fixed-Object and Run-Off-Road Occurring at Sat<br>Bridges, 1988-2002 | 1             |
| Appendix F: Summarized Police Report Information for Crashes at Sample CSA                       | AH BridgesF-1 |
| Appendix G: Explanation of Minnesota Procedure for Coding Crashes with Brid<br>and Guardrail     | 0 1           |
| Appendix H: Crash Frequencies and Costs by ADT Category, Crash Severity, a<br>Presence           |               |
| Appendix I: Benefit/Cost Computations                                                            | I-1           |

# List of Tables

| Table 1.1 Clear-Zone Distances in Feet from Edge of Through-Traveled Way                                                            | 3            |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Table 3.1 Example of CSAH Bridge Data Obtained from Pontis Database                                                                 | 12           |
| Table 4.1 Descriptive Statistics for Crashes versus ADT, Deck Width, and Deck Width         minus Approach Width                    | 23           |
| Table 4.2 Chi-Square Test for Crash Type versus Guardrail Presence, All Bridges                                                     | 27           |
| Table 4.3 Chi-Square Test for Crash Type versus Guardrail Presence Separated by ADT .                                               | 28           |
| Table 4.4 Chi-Square Test for Crash Severity versus Guardrail Presence, All Bridges                                                 | 29           |
| Table 4.5 Chi-Square Test for Crash Severity versus Guardrail Presence Separated by         ADT                                     | 31           |
| Table 5.1 Crash Frequency at CSAH Bridges                                                                                           | 35           |
| Table 5.2 Coded Crash Types versus Guardrail Presence                                                                               | 36           |
| Table 5.3 Chi-Square Test for Initial Object Struck versus Guardrail Presence                                                       | 37           |
| Table 5.4 Initial Object Struck for Crashes Coded as TYPE 31                                                                        | 38           |
| Table 5.5 Results of Ordinal Logistic Regression Analysis for Crash Severity                                                        | 39           |
| Table 5.6 Probabilities of Crash Severity versus Object Struck Based on Logistic         Regression                                 | 40           |
| Table 5.7 Chi-Square Test for Crash Severity versus Guardrail Presence                                                              | 41           |
| Table 5.8 Fatal and A-Injury Crash Details                                                                                          | 43           |
| Table 5.9 Chi-Square Test for Crash Severity versus Initial Object Struck                                                           | 44           |
| Table 6.1 2004 Costs for Approach Guardrail on a CSAH Bridge                                                                        | 51           |
| Table 6.2 2004 Minnesota Crash Costs versus KABCO Severity                                                                          | 52           |
| Table 6.3 Bridge Crashes from 1988-2002 by ADT, Severity, and Guardrail Presence                                                    | 53           |
| Table 6.4 Benefit/Cost Calculations for Bridge-Approach Guardrail (2004 Dollars, 30-yea<br>Life-Cycle)                              |              |
| Table D-1 Pontis Data for Bridges WITH Approach Guardrail                                                                           |              |
| Table D-2 Pontis Data for Bridges WITHOUT Approach Guardrail                                                                        | <b>D-</b> 17 |
| Table E-1 Fixed-Object and Run-Off-Road Crashes Occurring at Bridges WITH Approac Guardrail, 1988-2002                              |              |
| Table E-2 Fixed-Object and Run-Off-Road Crashes Occurring at Bridges WITHOUT         Approach Guardrail, 1988-2002                  | .E-6         |
| Table F-1 Summary of Crash Reports: Fixed-Object and ROR Crashes Occurring at Bridg         WITHOUT Approach Guardrail, 1988 - 2002 |              |
| Table F-2 Summary of Crash Reports: Fixed-Object and ROR Crashes Occurring at Bridg<br>WITH Approach Guardrail, 1988 - 2002         |              |

| Table H-1 Bridge-Crash Costs vs. Guardrail Presence – All Bridges                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Table H-2 Bridge-Crash Costs vs. Guardrail Presence – ADT < 150                                                                                |
| Table H-3 Bridge-Crash Costs vs. Guardrail Presence – ADT 150-299                                                                              |
| Table H-4 Bridge-Crash Costs vs. Guardrail Presence – ADT 300-399                                                                              |
| Table H-5 Bridge-Crash Costs vs. Guardrail Presence – ADT 400-749                                                                              |
| Table H-6 Bridge-Crash Costs vs. Guardrail Presence – ADT 750-999                                                                              |
| Table H-7 Bridge-Crash Costs vs. Guardrail Presence – ADT 1,000-1,499                                                                          |
| Table H-8 Bridge-Crash Costs vs. Guardrail Presence – ADT 1,500-4,999 H-4                                                                      |
| Table H-9 Bridge-Crash Costs vs. Guardrail Presence – ADT 5,000-9,999 H-5                                                                      |
| Table H-10 Bridge-Crash Costs vs. Guardrail Presence – ADT > 10,000 H-5                                                                        |
| Table I-1 Bridge-Crash Costs from 1988-2002 Separated by ADT Range and Guardrail         Presence         I-1                                  |
| Table I-2 Bridge-Crash Costs from 1988-2002 Separated by Threshold ADT and Guardrail         Presence                                          |
| Table I-3 30-year Cumulative Traffic Forecasts and Estimated Crash Benefits at BridgesWithout Approach Guardrail Separated by ADT RangeI-2     |
| Table I-4 30-year Cumulative Traffic Forecasts and Estimated Crash Benefits at BridgesWithout Approach Guardrail Separated by ADT ThresholdI-2 |
| Table I-5 30-year Costs per Bridge With Approach Guardrail and Associated Benefit/Cost         Ratio by ADT Range         I-3                  |
| Table I-6 30-year Costs per Bridge With Approach Guardrail and Associated Benefit/Cost         Ratio by ADT Threshold         I-3              |
| Table I-7 Revised Benefit/Cost Ratio Based on ADT 150-299 and ADT 300-399I-4                                                                   |

# List of Figures

| Figure 2.1 Criteria for Application of Approach Guardrail on Local State-Aid Bridges                                         | 6         |
|------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 2.2 Treatments Used Where Insufficient Guardrail Space Exists                                                         | 8         |
| Figure 3.1 CSAH Bridge With Approach Guardrail                                                                               | 10        |
| Figure 3.2 CSAH Bridge Without Approach Guardrail                                                                            | 11        |
| Figure 3.3 Map of CSAH Bridges Used in the Analysis                                                                          | 13        |
| Figure 3.4 Number of Bridges by County                                                                                       | 14        |
| Figure 3.5 Number of Bridges by ADT Range                                                                                    | 15        |
| Figure 3.6 Percent of Bridges by Number of Lanes                                                                             | 15        |
| Figure 3.7 Number of Bridges by Functional Class                                                                             | 16        |
| Figure 3.8 Number of Bridges by Age of Structure                                                                             | 17        |
| Figure 4.1 Frequency of ROR and Fixed-Object Crashes Occurring near Bridges from 198<br>2002                                 |           |
| Figure 4.2 Frequency of ROR and Fixed-Object Crashes Occurring near Bridges from 198<br>2002, ADT ≤ 1,000 vpd                | 88-<br>21 |
| Figure 4.3 Scatterplots of Bridge-Crash Frequency versus ADT, Deck Width, and Deck Width Minus Approach Width                | 22        |
| Figure 4.4 Crash Frequency per Bridge versus ADT Range and Approach Guardrail Presence                                       | 25        |
| Figure 4.5 Crash Type versus Guardrail Presence, All Bridges                                                                 | 27        |
| Figure 4.6 Crash Type versus Guardrail Presence and ADT Category                                                             | 28        |
| Figure 4.7 Crash Severity (KABCO scale) versus Guardrail Presence, All Bridges                                               | 30        |
| Figure 4.8 Crash Severity versus Guardrail Presence and ADT Category                                                         | 31        |
| Figure 5.1 Initial Object Struck versus Guardrail Presence                                                                   | 37        |
| Figure 5.2 Initial Object Struck for Crashes Coded as TYPE 31                                                                | 38        |
| Figure 5.3 Crash Severity versus Guardrail Presence                                                                          | 41        |
| Figure 5.4 Crash Severity versus Initial Object Struck                                                                       | 44        |
| Figure 5.5 Effectiveness (or Potential Effectiveness) of Approach Guardrail                                                  | 45        |
| Figure 5.6 Guardrail Protection at Approach Corners Only versus All Corners                                                  | 46        |
| Figure 5.7 Location of First Harmful Event with Respect to Bridge                                                            | 47        |
| Figure 5.8 Effectiveness of Guardrail for Approach-Side versus Departure-Side Collisions for Bridges with Approach Guardrail |           |
| Figure 5.9 Severity of Departure-Side Collisions for Bridges with Approach Guardrail                                         | 49        |
| Figure 6.1 Cash-Flow Diagram for Cost of Approach Guardrail on a CSAH Bridge                                                 | 51        |

| Figure 6.2 Crash Costs per 10 <sup>8</sup> Vehicle Crossings by ADT Range and Guardrail Presence | 53 |
|--------------------------------------------------------------------------------------------------|----|
| Figure 6.3 Estimated Crash Savings and Costs per Bridge if Approach Guardrail is<br>Installed    | 55 |
| Figure 6.4 Benefit/Cost Ratio Based on Threshold ADT and Traffic Growth Rate                     | 57 |
| Figure 6.5 Revised Benefit/Cost Ratios for Bridges with ADT between 0 and 750 vpd                | 58 |
| Figure 6.6 Benefit/Cost Ratio Based on Revised Threshold ADT for Guardrail Installation .5       | 59 |

#### **EXECUTIVE SUMMARY**

#### **Introduction and Objectives**

Certain bridge components, including bridge railings, piers, headwalls, and abutments are fixedobjects that are typically very close to the edge of the traveled way and their presence in the clear-zone constitutes a roadside safety hazard. Guardrail and other treatments are often connected to the ends of the rail/parapet to keep vehicles from running-off-the-road (ROR) and striking the less-forgiving ends of the rail or other bridge components or roadside objects. Yet the installation of bridge-approach guardrail on these low-volume roads can add costs and other safety and maintenance problems that may outweigh the proposed benefits.

The FWHA requires bridge-approach guardrail on all NHS roadways, but states are given discretion to develop their own policies or guidelines for non-NHS roadways, such as county state-aid roadways. As of 2004, Mn/DOT required guardrail to be placed on the approach to bridges on the county



state-aid bridges if the average daily traffic (ADT) exceeds 750 vehicles per day (vpd), although previous Mn/DOT standards required bridge-approach guardrail on county state-aid bridges with ADTs greater than 400 vpd. The objective of this research was to determine the ADT at which the benefit/cost ratio suggests that installing bridge-approach guardrail provides a positive return on investment (i.e., B/C ratio >1.0) for county state-aid highway (CSAH) bridges in Minnesota. The primary tasks included: review literature, survey other states to determine current practices, analyze crashes at CSAH bridges with approach guardrail versus those without, and analyze the benefits vs. costs for approach guardrail on CSAH bridges.

#### **Literature Summary**

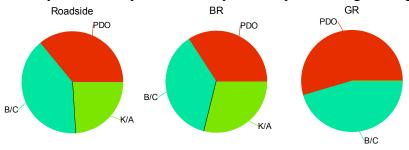
The AASHTO *Roadside Design Guide (RDG)* provides guidance in evaluating the need for protection of roadside objects, including bridge rail. Tables in the *RDG* provides minimum clear-zone requirements based on design speed, ADT, and slope. However, the *RDG*, does not specifically address design issues with very low-volume local roads (i.e.,  $ADT \le 400$ ), which are of specific interest to the research described here. Perhaps a better tool for addressing design issues on very low-volume local roads is the AASHTO *Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT \le 400)*, which states that roadside clear-zones and safety barriers provide little benefit on low-volume local roads because the probability of striking a roadside object on these types of roads is extremely low when compared to similar higher volume roads.

#### **Nationwide Survey of Current Practice**

The researchers conducted a survey of state transportation agencies to determine the state-ofpractice for approach guardrail application on county state-aid bridges. Twenty-six of the 35 responding state agencies (74 percent) have policies or guidelines requiring the placement of guardrail or attenuators on bridge approaches if the bridge was built using state funds, regardless of the roadway system. Only Wisconsin, Illinois, and Virginia have policies similar to Minnesota's requiring bridge-approach guardrail on state-aid local highways only where an ADT threshold is exceeded. Six of the respondents indicated that approach guardrail is not required on lower-speed facilities (i.e.,  $\leq$  45 mph).

#### **Bridge-Crash Data Collection**

The researchers obtained data for 398 Minnesota CSAH bridges from 10 counties. The 398 bridges were divided into two samples: those with approach guardrail (155) and those without approach guardrail (243). The presence of approach guardrail was confirmed by the county officials, while Mn/DOT's "Pontis" bridge database was queried to obtain other relevant bridge information.


The Minnesota crash database was queried to obtain the crashes that occurred near the 398 bridges included in the sample. The database queries were filtered to include only all single-vehicle fixed-object or ROR crashes that occurred from 1988 – 2002 within approximately 200 ft of the sample bridges. The resulting crash data set included a total of 263 crashes that met the aforementioned criteria, 156 of which occurred at bridges with approach guardrail and the remaining 107 crashes occurred at bridges without approach guardrail.

Analysis of the crash database queries was initially limited because collisions with approach guardrail and all other bridge components were coded into the crash database under a single code (TYPE 31 "bridge piers") and included no further information about the object struck. As a result, the effectiveness of approach guardrail could not be determined using solely the database information. Thus, the researchers reviewed the diagrams and descriptions from the crash reports of the 263 database crashes. A crash was included for further analyses if it involved collision with a bridge component, roadside fixed-object, or other roadside collision and occurred on the approach or departure to one of the sample bridges. The crash report screening process resulted in 96 crashes being deemed useful to the analyses, 47 of which occurred near bridges with approach guardrail, while the remaining 49 crashes occurred at bridges without approach guardrail. Multiple analyses were performed on the data.

#### Findings

#### Safety-Effectiveness of Approach Guardrail

The analyses showed that bridge-approach guardrail was effective at reducing the severity (and subsequent costs) of ROR crashes occurring on the approach or departure to CSAH bridges. The proportions of fatal and A-injury crashes were considerably lower when guardrail existed at the bridge. Fatalities or A-injury crashes accounted for only 6 percent of the crashes occurring at bridges with approach guardrail, but accounted for 28.5 percent of the crashes at bridges without approach guardrail – a rate that is 4.5 times greater than at bridges with approach guardrail. As reflected in the following figure, further analysis of the severity of various objects struck showed that zero of the 33 bridge guardrail collisions were fatal or A-injuries compared to 24 percent and 29 percent of roadside and bridge rail collisions resulting in fatalities or A-injuries. These findings were statistically validated by both a chi-square analysis and logistic regression analysis.



Severity vs. Initial Object Struck

### Guardrail Protection at All Corners of Bridges versus Approach Corners Only

The analysis showed that approach-side collisions occurred in approximately 62 percent of the sample crashes, while departure-side collisions occurred approximately 34 percent of the crashes (undetermined in 4 percent of the cases). For approach-side crashes at bridges with approach guardrail, the guardrail provided effective attenuation or redirection in 69 percent of the cases with no A-injuries or fatalities. However, departure-side guardrail either did not exist or was too short to be effective in 65 percent of the departure-side collisions at bridges where approach-side guardrail existed and 82 percent of these collisions resulted in either an injury or fatality.

### Cost-Effectiveness of Approach Guardrail

The benefit/cost analysis showed that, based on the crash and cost data, bridge-approach guardrail installed at all four bridge corners is cost-effective (i.e., B/C > 1) for CSAH bridges with ADT greater than or equal to 300 vpd and becomes increasingly more cost-effective with increasing ADT. However, bridge-approach guardrail is not cost-effective for CSAH bridges with ADT less than 300 vpd because crashes occur very infrequently. Overall, approach guardrail has a benefit/cost ratio of approximately 3.5 to 5.5 depending on assumptions for traffic growth rate and guardrail costs.

### Crash Coding for Collisions with Bridge Components

The Minnesota crash reporting system does not included a specific code for either bridge rail or approach guardrail, rather both were typically included in TYPE 31 "bridge piers," which represented crashes with any component of the bridge, including approach guardrail. A detailed review of the police diagrams/descriptions showed that all of the 67 crashes coded in the database as TYPE 31 were found to be either collision with bridge rail or approach guardrail. Thus, to reduce the ambiguity that exists in the current crash coding system for collisions with bridge components and guardrail, the researchers recommend splitting the current TYPES 31 "bridge pier" and 34 "guardrail" into the following categories: "bridge pier/abutment," "bridge rail", "bridge guardrail (approach or departure)," and "other guardrail (not attached to bridge)."

#### **Recommended Installation for CSAH Bridge-Approach Guardrail**

Given the limited number of bridges in the 300 to 400 ADT range, the researchers recommend that the new threshold for approach guardrail on CSAH bridges be set at 400 vpd. In other words, all CSAH bridges with ADT greater than or equal to 400 vpd should have approach guardrail. An ADT threshold of 400 vpd is consistent with previous Mn/DOT standards and AASHTO guidelines. It is recommended that bridges with ADT between 150 and 400 vpd, especially those between 300 and 400 vpd, be reviewed on a case by case basis for guardrail need. Bridges located on horizontal curves and with bridge deck widths less than the approach roadway may warrant guardrail at ADT between 150 and 400 vpd. Placement of approach guardrail at bridges with ADT less than 150 vpd is probably not cost-effective in most cases.

The researchers recommend application of guardrail to all four corners of the bridge rail instead of at the two approach corners only. Guardrail applied at all four bridge corners provides protection for both approach and departure-side events, such as where the vehicle runs off the road to the right after crossing the bridge or runs-off-the-road ahead of the bridge to the left, potentially striking the bridge rail end. Departure-side protection is especially critical on roads with narrow lanes and bridges.

#### CHAPTER 1: INTRODUCTION

#### BACKGROUND

Certain bridge components, including bridge railings, piers, headwalls, and abutments are fixed-objects that are typically very close to the edge of the traveled way. Their presence in the clear-zone constitutes a roadside safety hazard. Guardrail and other treatments, such as attenuators, are often connected to the ends of the rail/parapet to keep vehicles from running-off-the-road (ROR) and striking the less forgiving ends of the rail or other bridge components or roadside objects. Yet the installation of approach guardrail can add costs and other safety and maintenance problems that outweigh the proposed benefits. Beyond the fact that the guardrail itself is a fixed-object within the clear-zone, guardrail is known to promote snow drifting during the winter months providing an additional maintenance and safety concern. Additionally, grass and weeds that grow near the guardrail cannot be cut by traditional lawn mowers requiring county workers to use labor-intensive weed cutting devices around guardrail posts.

The Minnesota Department of Transportation (Mn/DOT) currently requires guardrail to be placed on the approach to bridges on the county state-aid system (CSAH) if the average daily traffic (ADT) exceeds 750 vehicles per day (vpd). Previous Mn/DOT standards required bridge-approach guardrail on highways with ADT greater than 400 vpd. Local traffic engineers, and Mn/DOT staff, suggested that this standard be reviewed since many questioned the benefit versus the cost of the 400 vpd threshold.

After careful consideration, the Standards Committee of Mn/DOT agreed to increase the minimum ADT standard for requiring bridge-approach guardrail to 750 vpd. The 750 vpd value was selected subjectively and represented the upper limit of the next highest ADT range on the design standards chart. In contrast to this standards change, the Mn/DOT Bridge Section recommended lowering the ADT standard to 150 vpd because current standards require that roadways with ADTs greater than 150 vpd be paved, which increases vehicle operating speeds. The Standards Committee has decided to maintain the 750 vpd standard until research is conducted to determine an appropriate ADT value. The Rules Committee in Mn/DOT also looked at this issue and considered:

- Shortening the length of the railing and using a different type of protection;
- Requiring local agencies to pay for approach work costs, including the guardrail;
- The inability of large farm equipment to use the shoulder in areas where guardrail is present; and
- How changes in guardrail or county/township responsibility limits the ability of counties and townships to replace bridges.

In light of the above information and discussion, the Rules Committee accepted the recommendation of the Standards Committee to no longer require bridge-approach guardrail for roadways with less than 750 vpd (anticipated ADT in the design year). However, the discussion and resulting standard change made evident the need for research to determine the conditions (ADT, roadway geometrics, speed, clear-zone) for which the benefits of installing approach guardrail (i.e., improving safety) outweigh the costs. These costs may include installation,

general maintenance/repair, and additional maintenance and safety issues associated with snow drifting and vegetation removal.

#### **OBJECTIVE**

The objective of this research was to determine the ADT at which the benefit/cost ratio suggests that installing bridge-approach guardrail provides a positive return on investment. In other words, identify the ADT where benefits exceed costs and the benefit/cost ratio exceeds 1.0. This ADT value will be used to establish the threshold/standard for bridge-approach guardrail installation on CSAH roadways in Minnesota.

#### LITERATURE REVIEW Current Guidelines and Standards

To protect vehicles from striking the blunt end of the bridge rail, the Federal Highway Administration (FHWA) requires approach guardrail on all National Highway System (NHS) bridges, but does not regulate non-NHS bridges. As a result, states and local agencies are given discretion to develop their own policies or guidelines for the application of approach guardrail on non-NHS roadways. Guidance for determining whether or not approach guardrail should be applied to bridges is provided by two main documents, both published by the American Association of State Highway and Transportation Officials (AASHTO): *Roadside Design Guide* (*RDG*) and *Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT \leq 400)* (*VLVRDG*).

The *RDG* (1) is a leading document for evaluating the need for protection of vehicles from roadside objects, including bridge rail. Table 1.1 is a reproduction of Table 3.1 from the *RDG*, which provides minimum clear-zone requirements based on design speed, ADT, and slope. For example, for a roadway with a design speed of 55 mph and an ADT less than 750 vpd and fore slopes flatter than 1:4, a minimum clear-zone of 12-18 feet is required. However, the *RDG*, does not specifically address design issues with very low-volume local roads (i.e., ADT  $\leq$  400 vpd), which are of specific interest to the research described here.

Perhaps a better tool for addressing design issues on very low-volume local roads is the AASHTO *Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT*  $\leq$  400) (2), which states that based on research, roadside clear-zones provide very little benefit on low-volume roads. The *VLVRDG* concludes that traffic barriers are not generally cost-effective on roads with very low traffic volumes because the probability of striking a fixed-object on these types of roads is extremely low (compared to similar roadways with higher traffic volumes). Therefore, it is often not economical to provide the same level of roadside hazard protection especially considering the number of centerline miles that possess ADTs of  $\leq$  400 vpd.

| DEGICN          | DEGICN        | FORESLOPES          |                   |       | BACKSLOPES |                   |                     |
|-----------------|---------------|---------------------|-------------------|-------|------------|-------------------|---------------------|
| DESIGN<br>SPEED | DESIGN<br>ADT | 1V:6H<br>of flatter | 1V:5H TO<br>1V:4H | 1V:3H | 1V:3H      | 1V:5H TO<br>1V:4H | 1V:6H<br>or Flatter |
| 40 mph          | UNDER 750     | 7 – 10              | 7 – 10            | **    | 7 - 10     | 7 - 10            | 7 - 10              |
| or              | 750 - 1500    | 10-12               | 12 - 14           | **    | 10 - 12    | 10 - 12           | 10 - 12             |
| less            | 1500 - 6000   | 12 - 14             | 14 - 16           | **    | 12-14      | 12 - 14           | 12 - 14             |
|                 | OVER 6000     | 14 – 16             | 16 - 18           | **    | 14 - 16    | 14 – 16           | 14 – 16             |
| 45-50           | UNDER 750     | 10 - 12             | 12-14             | **    | 8-10       | 8-10              | 10 - 12             |
| mph             | 750 - 1500    | 12 - 14             | 16 - 20           | **    | 10-12      | 12 - 14           | 14 – 16             |
|                 | 1500 - 6000   | 16 - 18             | 20 - 26           | **    | 12-14      | 14 - 16           | 16 - 18             |
|                 | OVER 6000     | 18 - 20             | 24 - 28           | **    | 14 - 16    | 18 - 20           | 20 - 22             |
| 55 mph          | UNDER 750     | 12 - 14             | 14 - 18           | **    | 8 - 10     | 10 - 12           | 10 - 12             |
|                 | 750 - 1500    | 16 – 18             | 20 - 24           | **    | 10-12      | 14 - 16           | 16 - 18             |
|                 | 1500 - 6000   | 20 - 22             | 24 - 30           | **    | 14 – 16    | 16 - 18           | 20 - 22             |
|                 | OVER 6000     | 22 - 24             | 26 - 32 *         | **    | 16 - 18    | 20 - 22           | 22 - 24             |
| 60 mph          | UNDER 750     | 16 – 18             | 20 - 24           | **    | 10 - 12    | 12 - 14           | 14 – 16             |
|                 | 750 - 1500    | 20 - 24             | 26 - 32 *         | **    | 12 - 14    | 16 - 18           | 20 - 22             |
|                 | 1500 - 6000   | 26 - 30             | 32 - 40 *         | **    | 14 - 18    | 18 - 22           | 24 - 26             |
|                 | OVER 6000     | 30 - 32 *           | 36 - 44 *         | **    | 20 - 22    | 24 - 26           | 26 - 28             |
| 65-70           | UNDER 750     | 18 - 20             | 20 - 26           | **    | 10 - 12    | 14 - 16           | 14 - 16             |
| mph             | 750 - 1500    | 24 - 26             | 28 - 36 *         | **    | 12 - 16    | 18 - 20           | 20 - 22             |
|                 | 1500 - 6000   | 28 - 32 *           | 34 - 42 *         | **    | 16 - 20    | 22 - 24           | 26 - 28             |
|                 | OVER 6000     | 30 - 34 *           | 38 - 46 *         | **    | 22 - 24    | 26 - 30           | 28 - 30             |

 Table 1.1. Clear-Zone Distances in Feet from Edge of Through Traveled Way (1)

\* Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear-zone distances greater than the clear-zone shown in Table 3.1. Clear zones may be limited to 30 ft for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.

\*\* Since recovery is less likely on the unshielded, traversable 1V:3H slopes, fixed objects should not be present in the vicinity of the toe of these slopes. Recovery of high-speed vehicles that encroach beyond the edge of the shoulder may be expected to occur beyond the toe of slope. Determination of the width of the recovery area at the toe of slope should take into consideration right-of-way availability, environmental concerns, economic factors, safety needs, and crash histories. Also, the distance between the edge of the through traveled lane and the beginning of the 1V:3H slope should influence the recovery area provided at the toe of slope. While the application may be limited by several factors, the foreslope parameters which may enter into determining a maximum desirable recovery area are illustrated in Figure 3.2.

Note that the AASHTO VLVRDG applies only to roads that are functionally classified as a local road *and* have a design ADT of 400 vpd or less (2). This definition is extended to "collectors" that are below the 400 vpd threshold and primarily serve familiar drivers. The VLVRDG makes it clear that "local" functional classification of a road is a key element of the definition for the roadways to which the guidelines pertain because it implies a level of driver familiarity with the roadway that is not provided on higher classifications of roads. The 400 vpd ADT threshold for guardrail placement on the approach to bridges was also deemed suitable in NCHRP Report 22-5A, A User's Guide to Guardrail Warrants for Low-Volume Roads, as documented in Transportation Research Circular 416 (3). It is significant to note that in 2004, 52 percent of the approximately 5,500 bridges on Minnesota's CSAH roadway network had an ADT of 400 vpd or less.

#### **Relevant Safety Research**

Several states have analyzed bridge-approach guardrail through various research efforts, although most of the focus in these studies was placed on crashworthiness of the guardrail/bridge rail connections and end treatments. Very few published literature sources were found to be directly related to the placement-related objectives of this research.

In a late 1970's study for the New Mexico DOT (4), Hall found that collisions with guardrail produced severity indices that were approximately 50 percent lower than that of collisions with bridge abutments, which had the highest severity index of all fixed-object collisions that were examined. Crashes with guardrail accounted for only 1.8 percent of all fatal crashes. As a result, it was suggested that the addition of guardrail to protect an abutment or bridge would reduce the crash severity by 50 percent. Hall also found that bridges were the most common location for a guardrail crash to occur (28 percent of all reported guardrail crashes in New Mexico), likely due to the fact that bridges were the most common location for guardrail installations.

In 1989, the Iowa DOT conducted a study examining the application of bridge-approach guardrail on primary roads (5). At this time, 65 percent of Iowa's bridge-crash fatalities were due to impacts with unprotected bridge rail/abutments. After determining an array of potential benefits and costs, a benefit/cost analysis was completed using an early version of AASHTO's ROADSIDE software program, which generated linear relationships between the benefit/cost ratio and ADT at various lateral offsets for the guardrail. The Iowa study found the break-even benefit/cost ratio (i.e., b/c = 1.0) for the application of bridge-approach guardrail to apply to roadways with 1,400 vpd and a guardrail offset of two feet from the edge of pavement. Higher traffic volumes would increase the expected benefit/cost ratio, while higher guardrail offsets would decrease the benefit/cost ratio. The report suggests that benefit/cost ratios as low as 0.8 are still acceptable values for upgrading.

More recently, a study by Wolford and Sicking found little need for guardrail for protection of embankments and culverts when the ADT was less than approximately 500 vpd, regardless of other variables (6).

#### CHAPTER 2: SURVEY OF NATIONWIDE STATE AGENCY PRACTICE

A critical extension of the literature review was a survey of current agency practice pertaining to application of bridge-approach guardrail on low-volume state-aid (or similar) local facilities. The researchers developed an Internet-based survey questionnaire and administered the survey to members of the AASHTO Highway Subcommittee on Traffic Engineering, representing all 50 state departments of transportation (DOTs). The survey consisted of seven concise questions and relevant state DOT personnel were contacted via email in January 2004 and asked to respond to the Internet survey. The survey responses were automatically submitted via email to the research staff. A copy of the survey instrument can be found in Appendix A.

The goal of the survey was to determine the procedures of state DOTs pertaining to the use of bridge-approach guardrail. Of particular interest was the basis for determining whether approach guardrail should be applied to bridges on low-volume local roads. The primary survey questions included:

- Is ADT used to determine whether or not to place guardrail on the approach to bridges on local roads, and if so, what is this ADT value and how was it chosen?
- If ADT is not used, what is the basis for placement of guardrail on bridge approaches for local roads?
- Do other factors play a role in the decision to place/not place bridge-approach guardrail?
- Are treatments other than guardrail used to shield the bridge rail?

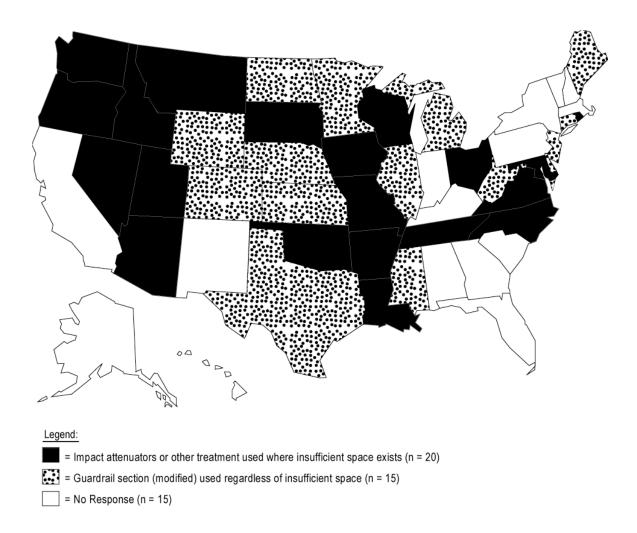
Detailed survey responses provided by the state DOTs and the FHWA are presented in Appendix B. A summary of the survey findings is provided in the following section.

#### **SURVEY FINDINGS** Criteria for Application of Approach Guardrail on Local State-Aid Bridges

Figure 2.1 summarizes the state-by-state criteria for approach guardrail on local state-aid bridges. Twenty-six of the 35 responding state agencies (74 percent) have policies or guidelines requiring the placement of guardrail or attenuators on bridge approaches if the bridge was built using state funds, regardless of the roadway system. The general belief among these agencies was that the bridge rail or parapet ends are fixed-object hazards within the clear-zone and therefore traffic must be shielded. This complies with the clear-zone requirements in the AASHTO *Roadside Design Guide* (1), which was cited by many agencies as the basis for their policy or guideline. Furthermore, nearly every agency indicated that guardrail placement was dictated by agency policy rather than a guideline, although some agencies grant exceptions to their guardrail policy, as noted in Figure 2.1.

| Legend:       |                                                                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>ADT and Speed Threshold (n = 3)</li> <li>Decision made on case-by-case basis (n = 1)</li> <li>No Response (n = 15)</li> </ul> |
| <u>Notes:</u> |                                                                                                                                        |

- 1. Historic bridges or urban routes 35 mph or less may be exempted
- 2. ADT and operating speed are used to make bridge-approach guardrail decisions for low-volume state and local roads.
- 3. Very low-volume roads or low-speed urban facilities may be exempted on a case-by-case basis, but rarely is this done.
- 4. ADT < 150 requires only turned down guardrail treatment connected directly to bridge
- 5. ADT < 750 doesn't require guardrail; design speed 40 mph or less may also be exempted
- Guardrail not needed if speed limit is 35 mph or less; also exempted are bridges with ADT < 200, bridge wider than 24 ft, on tangent, and benefit/cost ratio < 0.8</li>
- 7. ADT < 300 doesn't require guardrail; also exempted are curbed urban roads with design speeds 45 mph or less
- 8. ADT < 150 doesn't require guardrail (tangent alignment only); approach guardrail required for all bridges on curves 9. Speed limit 45 mph or less doesn't require guardrail
- 10. ADT < 400 doesn't require guardrail; factors such as speed, crashes, paving, cost, and bridge rail condition are also considered
- 11. Very low-volume roads or low-speed urban facilities may be exempted on case-by-case basis, but is generally not done
- 12. Design speeds 35 mph or less use a tapered-down parapet; guardrail must be applied if slope steeper than 3:1


#### Figure 2.1. Criteria for Application of Approach Guardrail on Local State-Aid Bridges

Four of the 35 responding state agencies (Minnesota, Wisconsin, Illinois, and Virginia) require bridge-approach guardrail on state- or federal-aid local facilities only at locations where an ADT threshold is exceeded (Figure 2.1). Wisconsin and Virginia noted that their respective ADT threshold values were based on the guidelines in the AASHTO *Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT*  $\leq$  400), which suggests that the use of guardrail for protection of fixed-objects is generally not cost-effective for roadways with ADT  $\leq$  400 vpd (2).

Six of the responding agencies (Minnesota, Wisconsin, Iowa, Washington, Ohio, and Delaware) indicated that lower-speed facilities (i.e., speeds equal to or less than 45 mph) do not require approach guardrail. Oregon DOT indicated that the decision to place approach guardrail for non-National Highway System bridges is made by the supervising engineer on a case-by-case basis, considering factors such as ADT and operating speed. Some agencies indicated that other factors may also be considered when determining whether or not to place approach guardrail on local state-aid bridges, including horizontal curvature, bridge width, and benefit/cost analysis. These additional factors are noted in Figure 2.1.

#### Use of Protective Treatments Other than Guardrail

The minimum length of an NCHRP 350-compliant section of approach guardrail with proper transition and end treatment is approximately 75 feet. Certain cases exist where there is insufficient space to place a minimum section of guardrail on a bridge approach. This may occur when a driveway, roadway, or immovable structure is located very near the bridge and movement or realignment is not economical. Where space is limited, some agencies opt to use treatments such as crash attenuators directly affixed to the bridge rail, while other agencies continue to use a shortened or curved/flared section of guardrail due to the expense of the attenuator. Figure 2.2 displays state agency use of attenuators where insufficient guardrail space exists. Responses were rather evenly split between attenuator versus a minimal or modified section of guardrail when insufficient guardrail space exists.



#### Figure 2.2. Treatments Used Where Insufficient Guardrail Space Exists

#### Iowa Procedure for Determining Need for Bridge-Approach Guardrail

The Iowa Department of Transportation has developed an instructional memorandum explaining the procedure for determining the need for traffic barriers at roadway bridges and culverts, which is perhaps the most comprehensive procedure of its kind among state DOTs. A copy of this procedure is provided in Appendix C. Note that a scoring system has been developed to determine the type of guardrail system required. The memo states that design exceptions to not install guardrail at bridges or culverts will be considered if the following conditions exist:

- 1. Current ADT at structure is less than 200 vpd,
- 2. Structure width is 24 feet or greater,
- 3. Structure is on tangent alignment, and
- 4. Benefit/cost Ratio is less than 0.80.

The memo goes on to say that other obstructions, within the right-of-way and clear-zone, should be reviewed for removal, relocation, and installation of a traffic barrier or the "do nothing" option based on a cost-effectiveness approach.

### CHAPTER 3: ANALYSIS METHODOLOGY

One of the major data analysis tasks of this project involved comparison of crashes occurring at bridges both with and without approach guardrail. This task was important for two reasons:

- Inference could be made as to the relative safety effects of using guardrail on bridge approaches for a number of different bridge/roadway characteristics; and
- Results could be used in a benefit/cost analysis.

To perform such a safety analysis, the researchers deemed it necessary to collect crash data for two discrete populations of bridges on Minnesota CSAH roadways:

- Crashes occurring at bridges WITH guardrail on the approach; and
- Crashes occurring at bridges WITHOUT guardrail on the approach.

Examples of typical CSAH bridges with and without guardrail are shown in Figures 3.1 and 3.2, respectively.

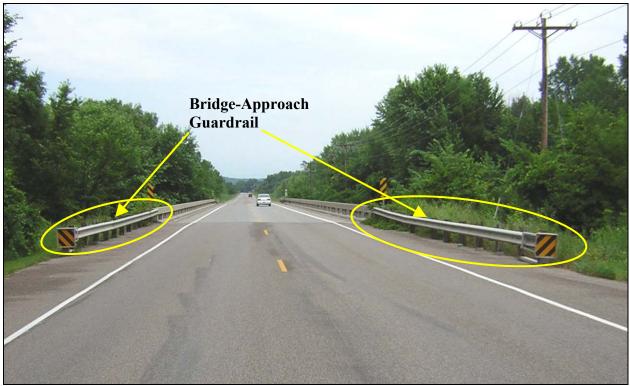



Figure 3.1. CSAH Bridge With Approach Guardrail



Figure 3.2. CSAH Bridge Without Approach Guardrail

## CSAH BRIDGE DATA

Because of the relatively few number of crashes that occur at CSAH bridges, researchers deemed it appropriate to create a sample of at least 100 CSAH bridges for each of the two bridge populations. The belief was that 100 bridges would provide at least 100 crashes for each population, thereby providing a sample size large enough for statistical interpretation.

## **Development of Bridge Sample Populations and Collection of Inventory Data**

In order to identify CSAH bridges for inclusion in one of the two sample populations, it was necessary to identify whether or not approach guardrail existed on the bridge. Identifying the existence of approach guardrail on CSAH bridges turned out to be a substantial challenge. The researchers determined early in the project that sufficient approach guardrail information for CSAH bridges could not be obtained from Mn/DOT's "Pontis" bridge inventory database. Other options, such as reviewing roadway inventory video logs or reviewing construction plans, were also ruled out due to unavailability of such records for the CSAH bridges would need to be obtained that approach guardrail information for CSAH bridges would need to be obtained directly from the counties.

An initial step in the collection of bridge data occurred on July 20<sup>th</sup> and 21<sup>st</sup> of 2004 when University of Wisconsin-Madison researchers met with engineering personnel from four Minnesota counties: Fillmore, Olmsted, Goodhue, and Dakota. These counties were chosen based on their availability of appropriate data and because they provided a suitable balance of rural and urban/suburban bridges with a broad range of traffic volumes. The meetings provided the researchers with necessary data pertaining to CSAH bridge-approach guardrail, including;

- Complete lists of CSAH bridges with approach guardrail (by bridge number);
- Current costs associated with guardrail installation on bridges; and
- Issues and challenges faced by the counties with regards to placing approach guardrail on CSAH bridges.

Based on these meetings, researchers developed a plan for telephone or email correspondence with engineering personnel from numerous other Minnesota counties to obtain similar information. By October 2004, detailed CSAH bridge data had been received from a total of ten Minnesota counties: Anoka, Crow Wing, Dakota, Fillmore, Goodhue, Lyon, Mower, Olmsted, Rock, and Watonwan. Other counties were contacted but were unable to provide the necessary data.

The ten previously listed Minnesota counties provided the researchers with a list of 155 CSAH bridge identification numbers for bridges *with* approach guardrail. Using this list of 155 bridge ID numbers, Mn/DOT's Pontis bridge inventory database was queried to obtain additional information pertaining to each of the bridges for use in the crash analysis. Such relevant data included reference point, location, year built, max span length, number of lanes, functional class, and ADT. A sample of the resulting Pontis query is shown in Table 3.1.

A second Pontis query was generated to form a comparison sample of CSAH bridges *without* approach guardrail for each of the ten counties. This resulting group of 243 CSAH bridges was generated by querying all CSAH bridges for each of the ten counties excluding the 155 generated in the first query, culverts, and structures without a deck. The purpose of generating the comparison group in this manner was to provide a set of CSAH bridges similar to the 155 generated in the first query with the primary physical difference being the lack of approach guardrail. The full Pontis bridge inventory data for all 398 CSAH bridges can be found in Appendix D.

| Br Num | Ref Point  | Facility | County No. | Location                | Yr Built | Lanes | Functional Class  | ADT Total |
|--------|------------|----------|------------|-------------------------|----------|-------|-------------------|-----------|
| 55516  | 005+00.500 | CSAH 7   | 55         | 2.1 MI N OF JCT TH 52   | 1968     | 2     | 06-RUR/MINOR ART  | 940       |
| 55521  | 003+00.710 | CSAH 7   | 55         | 0.4 MI N OF JCT TH 52   | 1971     | 2     | 06-RUR/MINOR ART  | 940       |
| 55512  | 001+00.750 | CSAH 8   | 55         | 0.7 MI N OF JCT CSAH 6  | 1966     | 2     | 08-RUR/MINOR COLL | 1,000     |
| 6787   | 006+00.490 | CSAH 17  | 67         | 1.0 MI S OF JCT TH 90   | 1955     | 2     | 07-RURAL COLL     | 560       |
| 67538  | 016+00.360 | CSAH 3   | 67         | 0.3 MI N OF JCT CSAH 8  | 1999     | 2     | 07-RURAL COLL     | 470       |
| 67524  | 018+00.805 | CSAH 4   | 67         | 0.7 MI W OF JCT CSAH 3  | 1984     | 2     | 07-RURAL COLL     | 1,450     |
| L2033  | 007+00.950 | CSAH 5   | 67         | 1.9 MI E OF JCT CSAH 6  | 1956     | 2     | 07-RURAL COLL     | 350       |
| 83513  | 003+00.450 | CSAH 12  | 83         | 1.4 MI N OF JCT CSAH 10 | 1978     | 2     | 07-RURAL COLL     | 255       |
| 90340  | 003+00.000 | CSAH 18  | 83         | 0.9 MI N OF JCT CR116   | 1920     | 2     | 08-RUR/MINOR COLL | 40        |
| 90343  | 006+00.760 | CSAH 19  | 83         | 0.4 MI N OF JCT CR119   | 1923     | 2     | 08-RUR/MINOR COLL | 135       |

| Table 3.1. | <b>Example of</b> | <b>CSAH Bridg</b> | e Data | <b>Obtained from</b> | Pontis Database |
|------------|-------------------|-------------------|--------|----------------------|-----------------|
|            | ··· ···           |                   |        |                      |                 |

# **Bridge Characteristics**

Upon obtaining the Pontis data for the 398 CSAH bridges, the researchers were able to summarize and compare the characteristics of the bridges in each sample population. Figure 3.3 provides a map of the bridge locations. Figure 3.4 shows the number of bridges per county both with and without approach guardrail.

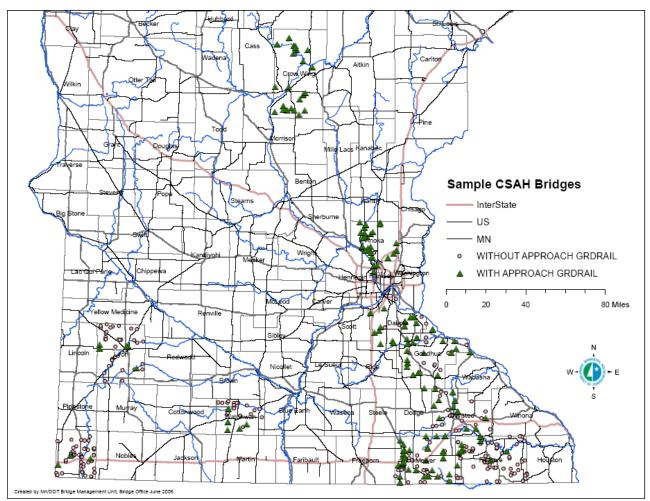



Figure 3.3. Map of CSAH Bridges Used in the Analysis

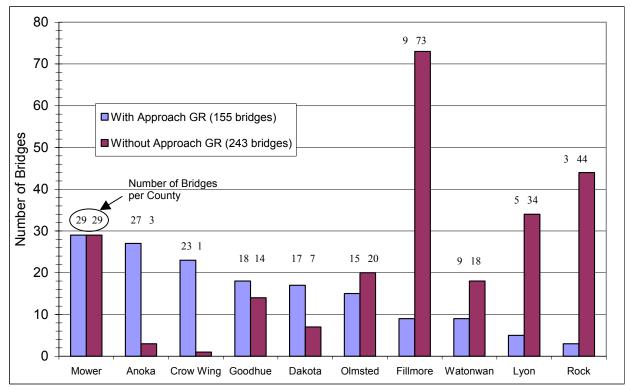



Figure 3.4. Number of Bridges by County

The counties shown in Figure 3.4 are ordered from the most to least number of bridges with approach guardrail. It can be observed that the counties with the greatest number of bridges *with* approach guardrail (mostly suburban counties) typically have the fewest number of bridges *without* approach guardrail and vice-versa. This is expected as the suburban counties have higher traffic volumes and thus a greater percentage of bridges with guardrail on the approach, since guardrail placement on CSAH bridges is typically based on ADT.

Perhaps a more useful representation of the two bridge sample populations is separation by ADT, as displayed in Figure 3.5. With some exceptions, ADT data reported in Pontis were measured by the counties between 2001 and 2003. To provide consistency, these ADT values were converted to 2004 ADT prior to the analyses using each county's estimated 2004 traffic growth rate. As expected, the sample of bridges with approach guardrail was shifted toward the higher ADT ranges while the bridges without approach guardrail generally fell into the lower ADT ranges. The median ADT was 1,320 vpd with a range from 42 to 41,524 vpd for the 155 bridges with approach guardrail and 325 vpd with a range from 16 to 27,785 vpd for the 243 bridges without approach guardrail. It is interesting to note that 57 of the bridges *without* approach guardrail have ADTs exceeding the current CSAH guardrail warrant of 750 vpd. It is likely that many of these bridges were built prior to any ADT requirement for approach guardrail and were thus grandfathered in.

Figure 3.6 displays the percent of bridges versus number of lanes on the bridge. The figure shows that a majority of the bridges were two-lane bridges. With very few exceptions, the bridges in both populations accommodated two-way traffic. Also with very few exceptions, the bridges in both populations were water crossings.

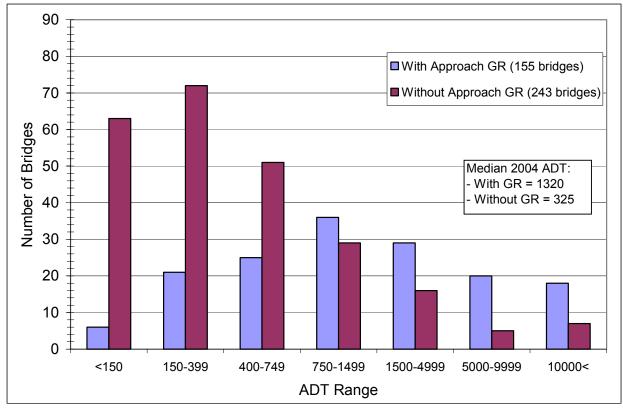



Figure 3.5. Number of Bridges by ADT Range

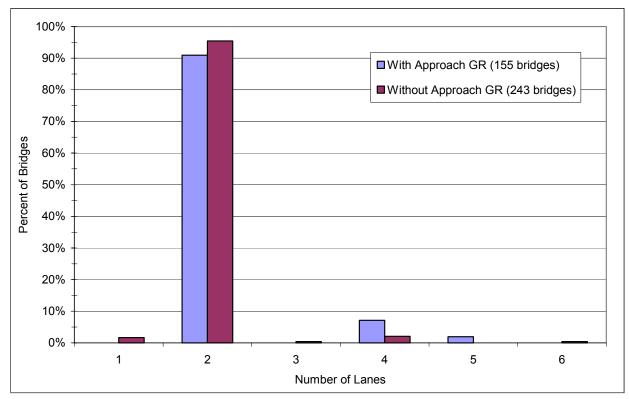



Figure 3.6. Percent of Bridges by Number of Lanes

Further separation by functional class and bridge age are shown in Figures 3.7 and 3.8, respectively. Separation by functional class in Figure 3.7 shows that 83 percent and 96 percent of the sample bridges with and without guardrail, respectively, are on roadways classified as rural. Figure 3.8 shows that the bridges with approach guardrail are slightly newer with a median age of 34 years, compared to 44 years for those without approach guardrail.

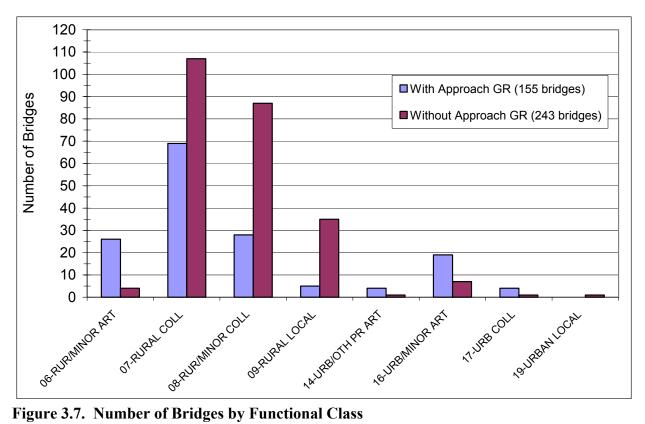



Figure 3.7. Number of Bridges by Functional Class

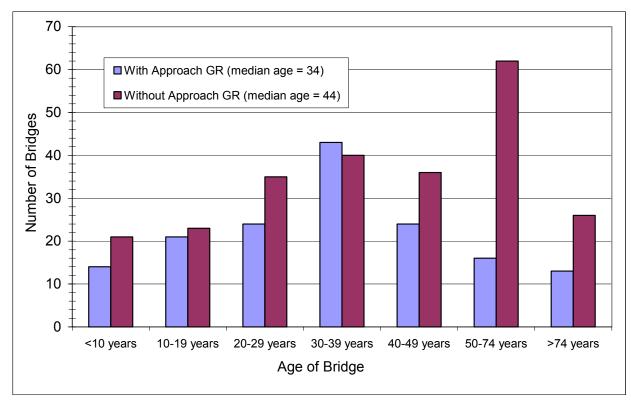



Figure 3.8. Number of Bridges by Age of Structure

### **COLLECTION OF CRASH DATA Initial Queries of Minnesota Crash Database**

After determination of the relevant bridge characteristics for the 398 sample bridges, the roadway and linear reference point data obtained from the Pontis queries were used by the researchers to collect the associated crash data for the bridges. Two queries were obtained from the Mn/DOT crash database:

- Crashes that occurred near the 155 bridges *with* approach guardrail, and
- Crashes that occurred near the 243 bridges *without* approach guardrail.

Each query included all crashes from 1988 - 2002 that occurred on the specified CSAH highway within  $\pm 1$  mile from each bridge's reference point (from Pontis). The 15-year analysis period was chosen to obtain the largest sample of crashes possible, recognizing the infrequency at which collisions occur near bridges. The effect of both changing traffic volumes and changes to the crash reporting practices over the 15-year analysis period should be offset by the fact that both bridge sample populations were taken from the same ten counties and thus any temporal effects are expected to be roughly the same for both bridge populations.

#### **Crash Data Filtering**

The initial crash database queries included information for crashes of all types that occurred within  $\pm 1$  mile from the bridges, which resulted in approximately 10,250 crashes at bridges with approach guardrail and 5,150 crashes for bridges without approach guardrail.

Further screening of the crash data was thus necessary to obtain only "target" crashes occurring near the bridges that would likely be affected by the presence or absence of approach guardrail.

The target crashes included all fixed-object and run-off-the-road crashes occurring in the general vicinity of the bridge. The researchers used the following two criteria to further filter (i.e., select) crashes from the initial crash queries:

- Crash occurred within 0.04 miles (approximately 211 ft) of the bridge reference point (this was extended out further for crashes involving TYPE 31 "bridge piers" to aid against slight inaccuracies in the reference point coding); and
- Crash was one of the following types: collision with light pole (TYPE 24), collision • with utility pole (25), collision with sign structure or post (26), collision with mailboxes and/or posts (27), collision with other poles (28), collision with tree/shrubbery (30), collision with bridge piers (31), collision with median safety barrier (32), collision with crash cushion (33), collision with guardrail (34), collision with fence collision with culvert/headwall (36), collision (35),with embankment/ditch/curb (37), collision with building/wall (38), collision with rock outcrops (38), collision with other fixed-object (41), collision with unknown type of fixed-object (42), overturn/rollover (51), submersion (52), other type of crash (90) (single vehicle crashes only).

The filtering task was very labor-intensive as each of the more than 15,000 crashes in the initial query was manually examined to determine its applicability to our analysis based on the above criteria. The resulting crash data set included a total of 263 crashes occurring between 1988 and 2002 that met the aforementioned criteria. Of the 263 crashes, 156 crashes occurred at bridges *with* approach guardrail and 107 crashes occurred at bridges *without* approach guardrail. Detailed information on all 263 crashes can be found in Appendix E.

For each bridge population, about half of the crashes were coded in the database as having occurred on dry pavement, while the other half occurred on wet/snowy/icy pavement. Furthermore, although wet or icy pavement conditions are typically associated with a higher frequency of crashes, such conditions do not necessarily cause the crashes to be more severe. Because the analyses performed here were largely focused on crash severity rather than overall frequency, the researchers felt it was not necessary to further analyze the effect of pavement condition.

#### **Police Crash-Report Data**

The filtered crash data from the database queries provided a general overview of the crashes occurring near CSAH bridges. However, the researchers quickly determined that a detailed analysis of the effectiveness of approach guardrail could not be determined solely from the crash database information. This was because approach guardrail and all other bridge components occurring during the analysis period were coded in the crash database as TYPE 31 "bridge piers" and no further information was listed that would allow for determination of the actual object struck. To resolve this problem, researchers obtained Mn/DOT crash reports for most of the 263 bridge crashes that were identified from the initial database queries. The researchers then performed a detailed manual review of each crash report to gather necessary information that was not available in the database, including the object struck, the location of the collision with respect to the bridge, and the nature of the collision. The data obtained from the

police crash-reports were then used to perform a detailed analysis of the safety effectiveness of bridge-approach guardrail. Detailed information about the analysis of police crash-report data is described later in Chapter 5. The crash report data were also used in the benefit/cost analysis, which is fully discussed in Chapter 6.

## **RESEARCH HYPOTHESES**

With the exception of guardrail crashes, the crash types included in the analysis (see aforementioned crash filtering criteria) were chosen because the frequency of such crashes occurring at or near bridges is intuitively lower when guardrail exists on the bridge approach due to the added protection against run-off-the-road related rollover or fixed-object crashes. The frequency of guardrail crashes occurring at bridges is obviously expected to be higher for bridges with approach guardrail, but crashes with guardrail are generally less severe than most other fixed-object or rollover crashes. As a result, the researchers hypothesized that two major trends would be observed in the analyses:

- 1. A lower occurrence of fixed-object and other run-off-the-road crashes (except guardrail crashes) in the vicinity of the bridge for bridges with guardrail on the approach versus bridges without guardrail;
- 2. A lower severity of fixed-object and other run-off-the-road crashes occurring in the vicinity of bridges with guardrail on the approach versus bridges without guardrail.

Multiple analyses were performed on the crash data and are described in Chapter 4, 5, and 6 including:

- Initial investigations of crashes occurring at CSAH bridges (Chapter 4),
- Analysis of CSAH bridge-crash types based on database queries (Chapter 4),
- Analysis of CSAH bridge-crash severity based on database queries (Chapter 4),
- Analysis of the effectiveness of CSAH bridge-approach guardrail based on police crash-reports (Chapter 5), and
- Benefit/cost analysis for CSAH bridge-approach guardrail (Chapter 6).

#### CHAPTER 4: ANALYSIS OF DATABASE CRASHES

#### INITIAL CRASH INVESTIGATIONS Crash Frequency per Bridge

An initial analysis task was to determine the distribution of crashes per bridge. Because crashes typically occur at random, they are generally assumed to follow the Poisson distribution. However, based on the results of a chi-square test for independence, the crashes did not fit a Poisson distribution for either bridge population (p-value < 0.0001 confidence for both populations). Figure 4.1 displays the frequency of run-off-the-road and fixed-object crashes near the sample bridges from 1998-2002.

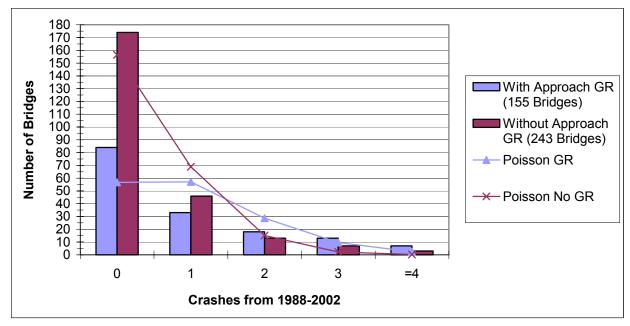


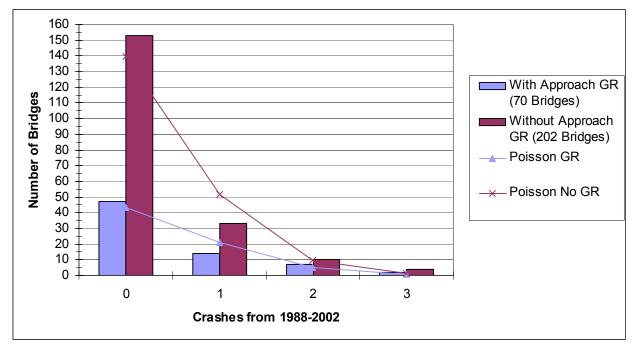
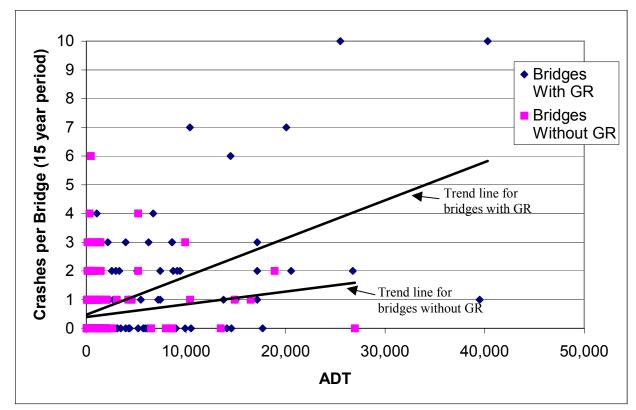

Figure 4.1. Frequency of ROR and Fixed-Object Crashes Occurring near Bridges from 1988-2002

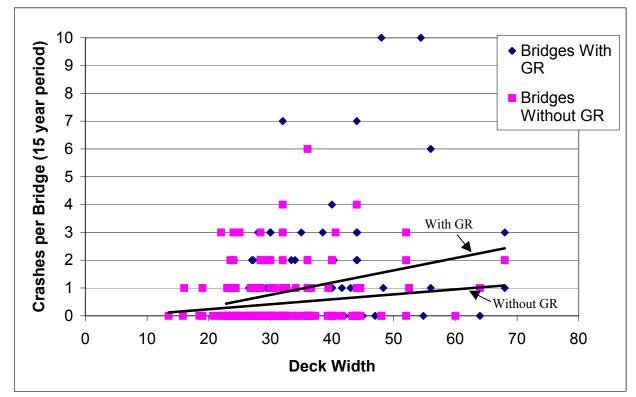
Figure 4.1 shows that a majority of the bridges in the two samples had zero reported runoff-the-road or fixed-object crashes from 1988 - 2002. During the 15-year analysis period, the sample of 243 CSAH bridges without approach guardrail included 174 (72 percent) with zero crashes during the entire period, and 69 (28 percent) with at least one reported crash, with an average of 0.44 crashes per bridge during the entire 15-year analysis period (i.e., 0.029 crashes per bridge per year). The maximum number of crashes for any bridge without approach guardrail was six.

The percentage of bridges with at least one reported crash was considerably higher for bridges with approach guardrail. During the 15-year analysis period, the sample of 155 CSAH bridges with approach guardrail included 84 (54 percent) with zero crashes during the entire period, and 71 (46 percent) with at least one reported crash, with an average of 1.01 crashes per

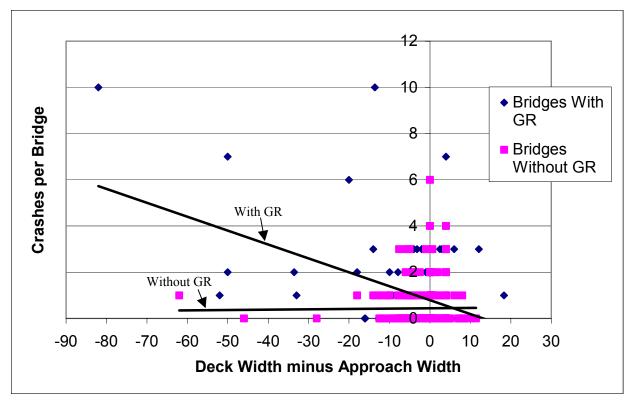
bridge during the entire 15-year analysis period (i.e., 0.0673 crashes per bridge per year). The higher crash frequencies for bridges with approach guardrail versus without were likely a result of higher traffic volumes. The maximum number of crashes occurring at any bridge with approach guardrail during the 15-year analysis period was ten crashes, which occurred at two locations.

Similar crash-frequency trends existed when only bridges with ADT  $\leq 1,000$  vpd were considered, as displayed in Figure 4.2. The percentage of bridges with zero reported crashes increased slightly regardless of guardrail presence. Additionally, the distribution of crashes that occurred at bridges with approach guardrail and ADT  $\leq 1,000$  vpd fit a Poisson distribution based on a chi-squared test for independence (with approach GR: p-value = 0.1287; without approach GR: p-value = 0.0020).



Figure 4.2. Frequency of ROR and Fixed-Object Crashes Occurring near Bridges from 1988-2002, ADT ≤ 1,000 vpd

#### Relationship between Crashes, ADT, and Deck Width


Because of the broad range of traffic volumes and deck widths for the bridges used in the analysis, it was important to determine if any trends existed between these factors and bridgecrash frequency. The researchers also considered the difference between deck width and approach roadway width since bridges that are narrower than the approaching roadway present a potential safety hazard. Figure 4.3 shows scatterplots for the run-off-the-road and fixed-object crash data for each bridge population versus the 2004 ADT on the bridge (Figure 4.3a), versus bridge deck width (Figure 4.3b), and versus deck width minus approach width (Figure 4.3c). Basic descriptive statistics are shown in Table 4.1.



a. Scatterplot of Bridge Crashes versus ADT



b. Bridge Crashes versus Deck Width



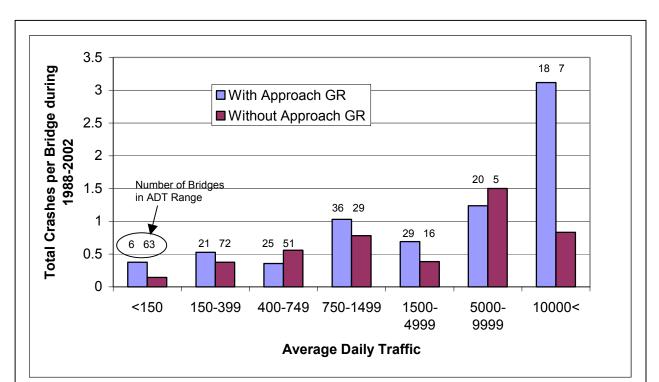
c. Bridge Crashes versus Deck Width minus Approach Width

Figure 4.3. Scatterplots of Bridge-Crash Frequency versus ADT, Deck Width, and Deck Width Minus Approach Width

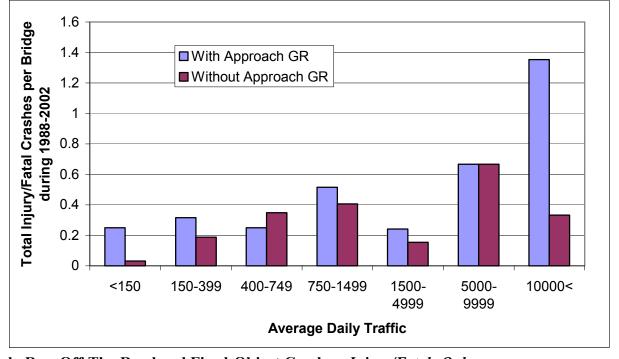
| Table 4.1. Descriptive Statistics for Cra | shes versus ADT, Deck Width, and Deck Width |
|-------------------------------------------|---------------------------------------------|
| minus Approach Width                      |                                             |

| 2004 ADT               | GR     | No GR  |
|------------------------|--------|--------|
| Mean                   | 4,118  | 1,102  |
| Median                 | 1,320  | 325    |
| Mode                   | 1,351  | 52     |
| Min                    | 42     | 16     |
| Max                    | 41,524 | 27,785 |
| Deck Width             | GR     | No GR  |
| Mean                   | 35.76  | 31.28  |
| Median                 | 32.1   | 30.1   |
| Mode                   | 44     | 32     |
| Min                    | 22.8   | 13.5   |
| Max                    | 68     | 68     |
| Deck Width - App Width | GR     | No GR  |
| Mean                   | -3.61  | -1.66  |
| Median                 | 0      | 0      |
| Mode                   | 0      | 0      |
| Min                    | -82    | -62    |
| Max                    | 18.3   | 39.4   |

For bridges with approach guardrail, Figure 4.3a shows a generally upward trend for crash frequency versus ADT. This trend is especially evident for ADT greater than 10,000 vpd. Figure 4.3b shows very weak linear trends between bridge crashes and deck width, regardless of approach guardrail presence/absence. Figure 4.3c shows a generally downward trend for crashes versus deck width minus approach width at bridges with approach guardrail. No considerable trends exist for crashes versus any of the three variables for bridges without approach guardrail.


#### **Crashes Separated by ADT**

The trend lines in Figure 4.3a showed an upward linear trend between bridge crashes and ADT. In addition, Table 4.1 shows that considerable disparity exits between the average daily traffic volumes for the two bridge data sets. Thus, the bridge crashes were clustered based on ADT for further analysis. Figure 4.4 shows a comparison of the total number of run-off-the-road and fixed-object crashes per bridge occurring from 1988 - 2002 separated by ADT range. Figure 4.4a is based on all crashes in the sample, while Figure 4.4b is based only on injury/fatal crashes. Please note that the data shown in Figure 4.4 and elsewhere in this report include the sum of all crashes that occurred during the entire 15-year analysis period and are not annual rates.


Figure 4.4 displays a number of interesting findings. The rates of crashes per bridge were similar both in magnitude and trend for bridges both with and without approach guardrail when bridges with ADT between 150 and 9,999 vpd were considered. With the exception of the 1,500 – 4,999 vpd range, there was a similar general upward trend for rate versus ADT for both bridge populations, regardless of whether or not property damage only (PDO) crashes were considered. The ADT range of 400 - 4,999 vpd contained the most balanced number of bridges with and without approach guardrail and thus should likely provide the most accurate comparison of crash rates for the two bridge populations.

Comparison of crash rates versus presence of approach guardrail for both the 150-399 and 400-749 vpd ranges was of particular significance to this study. Bridges with approach guardrail had slightly more crashes per bridge in the 150-399 vpd range, but slightly fewer crashes per bridge in the 400-749 vpd range. This trend was the same regardless of whether or not PDOs were included in the analysis.

Unusual patterns were observed for crash rates in the lowest and highest ADT ranges (i.e., ADT < 150 or ADT > 10,000) as bridges with approach guardrail had more crashes than bridges without approach guardrail. Two explanations are given for this phenomenon. First, a highly unbalanced number of bridges existed between bridges with and without approach guardrail for each of these ADT ranges. Second, for bridges in the highest ADT range, the average ADT for bridges with and without approach guardrail differed greatly with ADTs of 19,674 vpd and 16,242 vpd, respectively.



a. Run-Off-The-Road and Fixed-Object Crashes: *All Crashes* 



b. Run-Off-The-Road and Fixed-Object Crashes: *Injury/Fatals Only* 

Figure 4.4. Crash Frequency per Bridge versus ADT Range and Approach Guardrail Presence

#### ANALYSIS OF CODED CRASH TYPES

The researchers were particularly interested in whether or not the presence of approach guardrail had an effect on bridge-crash type. However, this analysis was not possible using only the crash information from the Minnesota crash database because crashes with approach guardrail and all other bridge components were coded in the crash database together as TYPE 31 "bridge piers." Thus, based on the database information, only the TYPE codes could be analyzed as described in the paragraphs that follow. A comprehensive analysis of approach guardrail effectiveness was performed using information obtained from the police crash-reports and is described in Chapter 5.

The researchers believed that the presence of guardrail on bridge approaches may redistribute the types of crashes that occur. For example, run-off-the-road fixed-object and rollover crashes are expected to be less frequent where guardrail is present. In addition, crashes with bridge components (i.e., crash TYPE 31) may actually increase when approach guardrail is present. The researchers were particularly interested in the effect that guardrail had on the frequency and severity of crashes with bridge components versus roadside fixed-object crashes and rollover crashes. To avoid "sparse" categories for the analysis (i.e., cell frequency < 5), similar crash types were clustered into the three categories based on TYPE code as follows:

- Fixed-Object Roadside (i.e, not related to the bridge), included:
  - TYPE 24 (light pole), 25 (utility pole), 26 (sign structure), 27 (mailbox), 28 (other poles), 29 (hydrant), 30 (tree/shrubbery), 35 (fence), 38 (wall), 39 (rock outcrops), 41 (other fixed-object), 42 (unknown type of fixed-object)
- Fixed-Object Bridge, included:
  - 31 (bridge piers), 32 (median safety barrier), 33 (crash cushion), 34 (guardrail), 36 (culvert/headwall)
- Rollover/Ditch, included:
  - o 37 (embankment/ditch), 51 (overturn/rollover), 52 (submersion)

The hypotheses were tested using a 2-way Pearson chi-square test for independence of

the form  $\chi^2 = \sum_{i} \sum_{j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$ , where  $o_{ij}$  = observed frequency and  $e_{ij}$  = expected frequency for

cell ij. The probability of  $e_{ij}$  is computed by multiplying the row total count by column total count divided by the overall total count for the table. The Pearson chi-square test measures the independence (or level of association) between the rows and columns in the table; for example, testing the null hypothesis (H<sub>o</sub>) that bridge-crash type does not depend on the presence/absence of approach guardrail. The degrees of freedom for a 2-way Pearson chi-square test = (# rows - 1)\*(# columns -1). All statistical testing was performed at a 95 percent level of confidence. In other words, a p-value of less than 0.05 indicates a statistically significant difference between the row-by-row distribution of crashes for bridges with approach guardrail versus those without.

#### **All Bridges**

The researchers first analyzed database crashes from all 398 bridges to determine if the presence of approach guardrail had an effect on the types of run-off-the-road crashes occurring at bridges. Table 4.2 and Figure 4.5 present the results of the chi-square analysis for database crashes occurring at the 398 bridges during the 15-year analysis period.

|                    | Percent |       |       |                                        |
|--------------------|---------|-------|-------|----------------------------------------|
| Crash Type Cluster | No GR   | GR    | Total | Total Count                            |
| Fixed Obj Roadside | 13.5    | 24.3  | 20.2  | 50                                     |
| Fixed Obj Bridge   | 45.8    | 44.7  | 45.1  | 112                                    |
| Rollover/Ditch     | 40.6    | 30.9  | 34.7  | 86                                     |
| Total Percent      | 100.0   | 100.0 | 100.0 | 248                                    |
| Total Count        | 96      | 152   | 248   |                                        |
| Test statistic     | Value   | df    | Prob  | Statistically Significant Differences? |
| Pearson chi-square | 5.018   | 2     | 0.081 | No                                     |

 Table 4.2. Chi-Square Test for Crash Type versus Guardrail Presence, All Bridges

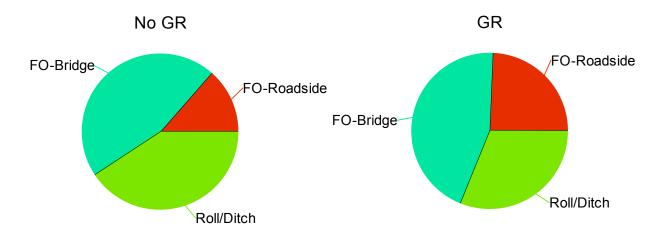



Figure 4.5. Crash Type versus Guardrail Presence, All Bridges

Both Table 4.2 and Figure 4.5 show slight, although non-statistically significant, differences in the proportion of crash types that occur at the bridges – particularly fixed-object roadside and rollover/ditch crashes. Rollover/ditch crashes are slightly more frequent for bridges without guardrail than bridges with guardrail, which was expected. Crashes with non-bridge-related fixed-objects on the roadside were more frequent for bridges with approach guardrail than those without, which was not expected. However, none of these differences were statistically significant and thus could not be attributed to the presence or absence of approach guardrail.

#### Data Separated by ADT

Because crash frequency may be influenced by traffic volume, the researchers deemed it appropriate to perform the analysis with data separated into similar ADT categories. To avoid the problems associated with sparse categories, data were split into only two ADT classes: ADT  $\leq$  1,000 vpd and ADT > 1,000 vpd. The results of the analysis are found in Table 4.3 and Figure 4.6 that follow.

|             | 1 0                |              |           |              | · · · · · ·               |
|-------------|--------------------|--------------|-----------|--------------|---------------------------|
|             | Crash Type Cluster | No GR (pct.) | GR (pct.) | Total (pct.) | Total Count               |
|             | Fixed Obj Roadside | 10.6         | 21.8      | 14.2         | 14                        |
|             | Fixed Obj Bridge   | 40.9         | 43.7      | 41.8         | 41                        |
|             | Rollover/Ditch     | 48.4         | 34.3      | 43.8         | 43                        |
| ADT ≤ 1,000 | Total Percent      | 100.0        | 100.0     | 100.0        |                           |
|             | Total Count        | 66           | 32        | 98           |                           |
|             | Test statistic     | Value        | Df        | Droh         | Statistically Significant |
|             | Test statistic     | Value        | DI        | Prob         | Differences?              |
|             | Pearson chi-square | 2.935        | 2.000     | 0.230        | No                        |
|             | Crash Type Cluster | No GR (pct.) | GR (pct.) | Total (pct.) | Total Count               |
|             | Fixed Obj Roadside | 20.0         | 25.0      | 24.0         | 36                        |
|             | Fixed Obj Bridge   | 56.6         | 45.0      | 47.3         | 71                        |
|             | Rollover/Ditch     | 23.3         | 30.0      | 28.6         | 43                        |
| ADT >1,000  | Total Percent      | 100.0        | 100.0     | 100.0        |                           |
|             | Total Count        | 30           | 120       | 150          |                           |
|             | Test statistic     | Value        | 16        | Duch         | Statistically Significant |
|             | Test statistic     | Value        | df        | Prob         | Differences?              |
|             |                    |              |           |              |                           |

Table 4.3. Chi-Square Test for Crash Type versus Guardrail Presence Separated by ADT

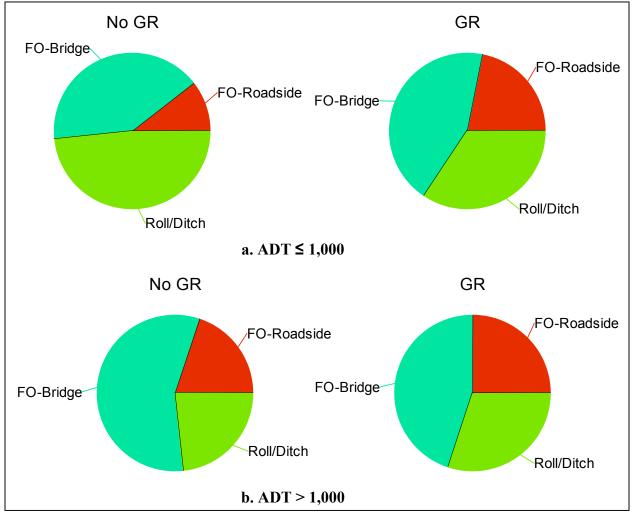



Figure 4.6. Crash Type versus Guardrail Presence and ADT Category

Based on Table 4.3 and Figures 4.6a-b, it does not appear that separation of database crashes into ADT category has any improved effect on the analysis as no statistically significant differences were found between the crash types for bridges with approach guardrail versus those without.

#### ANALYSIS OF CRASH SEVERITY

The researchers were also interested in whether or not the presence of approach guardrail had an effect on CSAH bridge-crash severity. Guardrail is not intended to reduce the frequency of crashes, although it is designed to reduce the severity of crashes when they occur. Because of this the researchers hypothesized that presence of approach guardrail at bridges would result in a lower crash severity. In other words, guardrail was expected to be associated with a lesser proportion of severe injury/fatal crashes (i.e., K, A, B, and C crash severities using KABCO scale) and greater proportion of property damage (PDO) crashes.

A Pearson chi-square analysis of the crash severity for bridges with approach guardrail versus those without was performed on the database crashes. Again, all statistical testing performed at a 95 percent level of confidence. A more comprehensive severity analysis was performed using information obtained from the police crash-reports and is described in Chapter 5.

#### **All Bridges**

The researchers first analyzed data from all 398 bridges to determine if the presence of approach guardrail had an effect on the crash severity. Table 4.4 and Figure 4.7 present the results of the chi-square analysis for crashes occurring at the 398 bridges during the 15-year analysis period.

|                               | Percent |       |       |                                        |
|-------------------------------|---------|-------|-------|----------------------------------------|
| Crash Severity                | No GR   | GR    | Total | Total Count                            |
| A (incapacitating injury)     | 10.2    | 7.6   | 8.7   | 23                                     |
| B (non-incapacitating injury) | 18.6    | 23.7  | 21.6  | 57                                     |
| C (possible injury)           | 14.9    | 16.6  | 15.9  | 42                                     |
| K (fatal)                     | 5.6     | 0.6   | 2.6   | 7                                      |
| PDO (no injury)               | 50.4    | 51.2  | 50.9  | 134                                    |
| Total Percent                 | 100.0   | 100.0 | 100.0 |                                        |
| Total Count                   | 107     | 156   | 263   |                                        |
| Test statistic                | Value   | df    | Prob  | Statistically Significant Differences? |
| Pearson chi-square            | 7.233   | 4.000 | 0.124 | No                                     |

Table 4.4. Chi-Square Test for Crash Severity versus Guardrail Presence, All Bridges

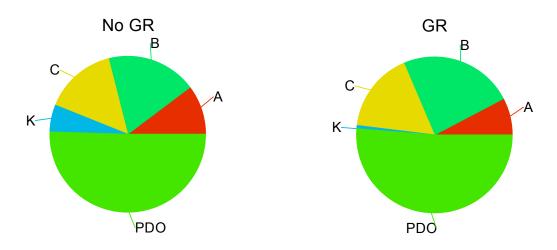



Figure 4.7. Crash Severity (KABCO scale) versus Guardrail Presence, All Bridges

Both Table 4.4 and Figure 4.7 show only slight non-statistically significant differences in the proportion of crash types that occur versus presence of approach guardrail. It is important to note that only one of the 156 crashes (0.6 percent) at bridges with approach guardrail was a fatality compared to six of the 107 crashes (5.6 percent) at bridges without approach guardrail. This finding will be discussed in greater detail in the analysis of police crash-reports described in Part 4 of this chapter.

#### Data Separated by ADT

Again, because crash frequency is influenced by traffic volumes, the researchers deemed it appropriate to perform the severity analysis with data separated into similar ADT categories. To avoid a high number of sparse categories, (i.e., cell frequency < 5) injury/fatal crashes were pooled together (i.e., K, A, B, and C crash severities) and analyzed versus PDO crashes. To further address problems associated with sparse categories, data were split into only two ADT classes: ADT  $\leq 1,000$  vpd and ADT > 1,000 vpd. The results of the analysis are found in Table 4.5 and Figure 4.8.

|             | Crash Severity                | No GR (pct.) | GR (pct.) | Total (pct.) | Total Count                               |
|-------------|-------------------------------|--------------|-----------|--------------|-------------------------------------------|
|             | A (incapacitating injury)     | 13.3         | 14.7      | 13.7         | 15                                        |
|             | B (non-incapacitating injury) | 21.3         | 17.6      | 20.1         | 22                                        |
|             | C (possible injury)           | 12.0         | 26.4      | 16.5         | 18                                        |
|             | K (fatal)                     | 5.3          | 0.0       | 3.6          | 4                                         |
| ADT ≤ 1,000 | PDO (no injury)               | 48.0         | 41.1      | 45.8         | 50                                        |
|             | Total Percent                 | 100.0        | 100.0     | 100.0        |                                           |
|             | Total Count                   | 75           | 34        | 109          |                                           |
|             | Test statistic                | Value        | df        | Prob         | Statistically Significant<br>Differences? |
|             | Pearson chi-square            | 5.207        | 4.000     | 0.267        | No                                        |
|             | Crash Severity                | No GR (pct.) | GR (pct.) | Total (pct.) | Total Count                               |
|             | A (incapacitating injury)     | 3.1          | 5.7       | 5.1          | 8                                         |
|             | B (non-incapacitating injury) | 12.5         | 25.4      | 22.7         | 35                                        |
|             | C (possible injury)           | 21.8         | 13.9      | 15.5         | 24                                        |
|             | K (fatal)                     | 6.2          | 0.8       | 1.9          | 3                                         |
| ADT >1,000  | PDO (no injury)               | 56.2         | 54.0      | 54.5         | 84                                        |
| ,           | Total Percent                 | 100.0        | 100.0     | 100.0        |                                           |
|             | Total Count                   | 32           | 122       | 154          |                                           |
|             | Test statistic                | Value        | df        | Prob         | Statistically Significant<br>Differences? |
|             | Pearson chi-square            | 7.077        | 4.000     | 0.132        | No                                        |

Table 4.5. Chi-Square Test for Crash Severity versus Guardrail Presence Separated by ADT

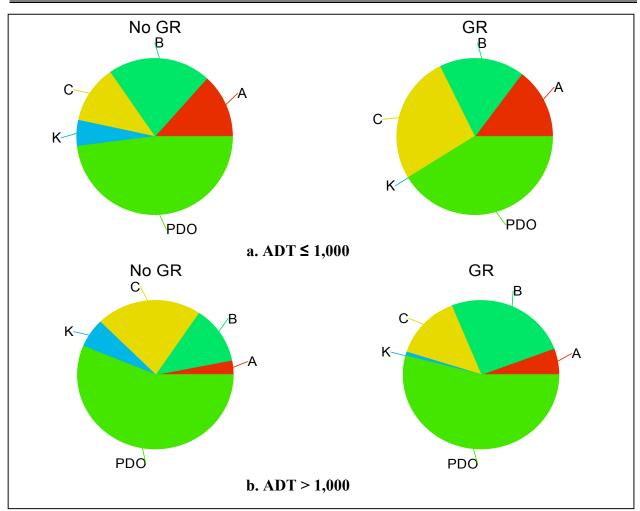



Figure 4.8. Crash Severity versus Guardrail Presence and ADT Category

Based on Table 4.5 and Figure 4.8, it does not appear that separation of crashes into ADT category has any improved effect on the analysis. Similar to the analysis of all data, fatalities were considerably lower for bridges with approach guardrail versus those without in both ADT categories.

# CHAPTER 5: ANALYSIS OF POLICE CRASH-REPORT DATA

The major objective of the research described herein was to determine if the presence of approach guardrail had an effect on both the type and severity of crashes occurring near the respective bridges. In particular, the researchers hypothesized that for crashes occurring near bridges, the presence of approach guardrail would result in:

- A greater proportion of guardrail crashes;
- A lower proportion of other types of fixed-object crashes (i.e., bridge rail, trees, ditches) and rollover crashes; and
- A lower proportion of severe crashes (i.e., fatal and A-injury).

Collisions with approach guardrail and all other bridge components were combined into a single database code: TYPE 31 "bridge piers". As a result, the effectiveness of approach guardrail could not be specifically determined using solely the crash database information. Furthermore, the researchers wanted to focus solely on the crashes that could be directly related to the presence or absence of approach guardrail. Therefore, a detailed microscopic review of the respective police crash-reports was required.

# **CRASH REPORT ACQUISITION**

Hard copies of specific police crash-reports were requested from Mn/DOT. Although a time consuming task, analyzing the diagrams and descriptions contained within each police crash-report provided detailed information that was not available from the Mn/DOT crash database. Researchers also had several questions pertaining to the crash coding methods for certain fixed-object collisions, namely the predominant types of objects struck for TYPE 31 "bridge pier" crashes.

A police report was requested for all crashes meeting one or more of the following criteria:

- Crashes with a bridge or safety component:
  - Crash TYPE = 31 (bridge pier), 32 (median barrier), 33 (crash cushion), 34 (guardrail), 36 (culvert);
- Crashes with a roadside fixed-object or rollover:
  - Crash TYPE = 25 (utility pole), 26 (sign structure), 30 (tree/shrubbery), 37 (embankment/ditch/ culvert), 41 (other fixed-object), 51 (rollover), or 90 (other type of crash); or
- Injury TYPE = K or A.

238 of the 263 total run-off-the-road and fixed-object crashes met the above requirement and were thus requested from Mn/DOT.

## **REPORT SCREENING AND FILTERING**

After receiving the hard copies of the 238 crash reports, researchers analyzed each of the diagrams and crash descriptions to obtain the following information:

- Did the crash involve a bridge component (including approach guardrail) or did a runoff-the-road crash occur very near the bridge, potentially prevented by approach- or departure-side guardrail connected to the bridge?
- Did the crash occur on the approach side of the bridge, departure side, or on the bridge itself?
- If approach (or departure) guardrail did not exist, would approach (or departure) guardrail have improved the situation either through redirection of the vehicle back onto the roadway or attenuation of the vehicle with the end of the bridge rail?
- If approach (or departure) guardrail did exist, was it effective at preventing a potentially more severe crash?
- Did the coded crash type fit the police officer's description?

After each report was reviewed, the researchers assessed whether or not it was appropriate for inclusion in any of the desired analyses based on the following criteria:

- The crash occurred on the approach or departure and within approximately 200 feet of the appropriate CSAH bridge and
- The crash involved collision with a bridge component, roadside fixed-object, or other roadside collision.

# **Screening Results**

Of the 238 reports that were screened, ten were unusable for a variety of reasons, such as: illegible report, no diagram or description on file, and/or lack of relevant information. Of the 228 usable reports now available, 100 were determined not to be related to the objectives of this analysis in that they were most likely unrelated to the presence/absence of approach guardrail. Many of these crashes were run-off-the-road crashes occurring within the designated bridge 'zone' as described in the crash database analysis but outside the reach of the typical guardrail application. Another 26 crashes were removed from the analysis because they occurred entirely while the vehicle was on bridge and were thus unaffected by the presence/absence of approach guardrail. Finally, six reports involved motorcycles and were also excluded from the analysis. Thus, 96 of the initial 238 crash reports were used in the final analyses.

Of the 96 analyzed crash reports, 47 involved crashes occurring at 32 bridges with approach guardrail, while the remaining 49 crashes occurred at 36 bridges without approach guardrail. Table 5.1 displays the frequency of target crashes at the sample CSAH bridges.

|                             |                   | 0  |       |  |
|-----------------------------|-------------------|----|-------|--|
|                             | Number of Bridges |    |       |  |
| Crashes Observed per Bridge | No GR             | GR | Total |  |
| 1                           | 27                | 23 | 50    |  |
| 2                           | 5                 | 7  | 12    |  |
| 3                           | 4                 | 1  | 5     |  |
| 7                           | 0                 | 1  | 1     |  |
| Total Bridges               | 36                | 32 | 68    |  |
| Total Crashes               | 49                | 47 | 96    |  |
|                             |                   |    |       |  |

Table 5.1. Crash Frequency at CSAH Bridges

The specific detail provided in the police report sketches and narratives allowed for a detailed microscopic analysis of crashes that were very likely affected by approach guardrail or the lack thereof. Thus, detailed analyses of the safety effectiveness of approach guardrail could be performed. The results of the safety analyses were later used to determine the financial savings provided by approach guardrail at various levels of traffic.

# ANALYSES AND RESULTS

Numerous analyses were performed to satisfy the research objectives, including:

- Initial object struck:
  - Chi-square analysis for object struck versus guardrail presence,
  - Chi-square analysis for object struck versus guardrail presence for TYPE 31 crashes only,
- Crash severity:
  - Logistic regression analysis for crash severity versus object struck, surface condition, 2004 ADT, speed limit, deck width, and deck width minus approach width,
  - Chi-square analysis for crash severity versus guardrail presence,
  - Chi-square analysis for crash severity versus object struck,
- Guardrail effectiveness and placement:
  - Chi-square analysis for effectiveness of guardrail based on type of collision and guardrail presence, and
  - Assessment of the need for departure-side guardrail in addition to approach-side guardrail.

The following sections detail the analyses and their results.

#### Initial Object Struck versus Guardrail Presence

The initial analysis focused on whether or not the presence of approach guardrail had an effect on the initial object struck. The researchers hypothesized that presence of approach guardrail would result in a greater occurrence of guardrail crashes and a lesser occurrence of crashes with all other types of bridge components, roadside fixed-objects, and rollover crashes when compared to bridges without approach guardrail.

Table 5.2 displays a breakdown of the crash types for the 96 crashes as coded in the Minnesota database. The summarized list of attributes from the 96 crash reports, including police descriptions and diagram summaries, can be found in Appendix F.

| Table 3.2. Couca Crash   | i jpes versu | Juarura | II I I Cochee |
|--------------------------|--------------|---------|---------------|
| Crash Type               | No GR        | GR      | Total         |
| 25 "utility pole"        | 0            | 1       | 1             |
| 26 "sign structure/post" | 1            | 1       | 2             |
| 30 "tree/shrubbery"      | 4            | 1       | 5             |
| 31 "bridge piers"        | 33           | 34      | 67            |
| 33 "crash cushion"       | 0            | 1       | 1             |
| 34 "guardrail"           | 1            | 2       | 3             |
| 35 "fence"               | 0            | 1       | 1             |
| 37 "embankment"          | 2            | 1       | 3             |
| 41 "other fixed-object"  | 1            | 0       | 1             |
| 51 "overturn/rollover"   | 7            | 5       | 12            |
| Total                    | 49           | 47      | 96            |

Table 5.2. Coded Crash Types versus Guardrail Presence

Table 5.2 shows 67 of the 96 crashes (69 percent) occurring near the bridges were coded in the database as TYPE 31 "bridge piers," while very few crashes were coded TYPE 34 "guardrail". Discussions with Mn/DOT staff indicated that for crashes included in this study, database TYPE 31 "bridge piers" represented crashes with any component of the bridge, including approach guardrail. TYPE 34 represented crashes with other guardrail not connected to a bridge. Thus, the Minnesota crash-reporting system does not include a specific code for either bridge rail or approach guardrail; rather both were included in TYPE 31 making it impossible to make inferences on the effectiveness of guardrail based solely on analysis of database crash records. A breakdown of the initial object struck for crashes coded as TYPE 31 can be found in the next section of this report. A more detailed explanation of the Minnesota coding procedures for crash TYPE exists in Appendix G.

The researchers used the diagrams and descriptions from the crash report to determine the initial object struck (or first harmful event, in the case of roadside crashes) for each of the crashes. Because of the uncontrolled variation in the roadside conditions from bridge to bridge, all roadside crashes not involving a bridge component were clustered together in a single category. The hypotheses were tested using a Pearson two-way chi-square test for independence at a 95 percent level of confidence. Table 5.3 and Figure 5.1 display the results of the chi-square analysis.

|                         | Percent |       |       |                                        |
|-------------------------|---------|-------|-------|----------------------------------------|
| Initial Object Struck   | No GR   | GR    | Total | Total Count                            |
| Bridge Rail (BR)        | 71.4    | 6.4   | 39.6  | 38                                     |
| Guardrail (GR)          | 0.0     | 51.1  | 25.0  | 24                                     |
| <b>BR/GR</b> Connection | 0.0     | 19.1  | 9.4   | 9                                      |
| Roadside                | 28.6    | 23.4  | 26.0  | 25                                     |
| Total Percent           | 100.0   | 100.0 | 100.0 | 96                                     |
| Total Count             | 49      | 47    | 96    |                                        |
| Test statistic          | Value   | df    | Prob  | Statistically Significant Differences? |
| Pearson chi-square      | 60.292  | 3.000 | 0.000 | Yes                                    |

 Table 5.3. Chi-Square Test for Initial Object Struck versus Guardrail Presence

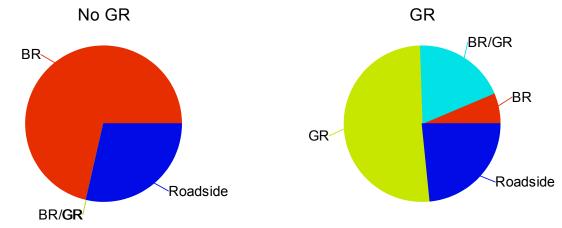



Figure 5.1. Initial Object Struck versus Guardrail Presence

Table 5.3 and Figure 5.1 show that approximately 71 percent of the crashes occurring near bridges without approach guardrail were collisions with the bridge rail, while approximately 29 percent were collisions with a roadside fixed-object or rollover. As expected, the results were much different for bridges with approach guardrail. Seventy percent of the crashes near bridges with approach guardrail involved collision with either the guardrail or the bridge rail/guardrail connection, while only six percent were collisions with the bridge rail. Roadside collisions comprised 23 percent of the crashes for bridges with guardrail.

## Initial Object Struck versus Guardrail Presence for Crashes Coded as TYPE 31

As previously stated, the Minnesota crash reporting system does not included a specific code for either bridge rail or approach guardrail, rather both were typically coded as TYPE 31 "bridge piers," which represented crashes with any component of the bridge, including approach guardrail. A detailed review of the police diagrams/descriptions showed all of the 67 analyzed crashes coded in the database as TYPE 31 "bridge piers" were bridge rail and approach guardrail crashes. Table 5.4 and Figure 5.2 display a breakdown of the initial objects struck for the 67 crashes coded with TYPE = 31.

|                         | Percent |       |       |             |
|-------------------------|---------|-------|-------|-------------|
| Initial Object Struck   | No GR   | GR    | Total | Total Count |
| Bridge Rail (BR)        | 100.0   | 17.6  | 58.2  | 39          |
| Guardrail (GR)          | 0.0     | 58.8  | 29.8  | 20          |
| <b>BR/GR</b> Connection | 0.0     | 23.6  | 12.0  | 8           |
| Total Percent           | 100.0   | 100.0 | 100.0 | 67          |
| Total Count             | 33      | 34    | 67    |             |

 Table 5.4. Initial Object Struck for Crashes Coded as TYPE 31

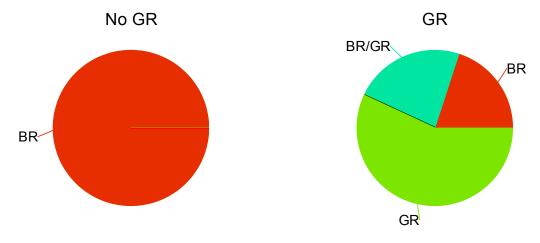



Figure 5.2. Initial Object Struck for Crashes Coded as TYPE 31

Many interesting findings are displayed in Table 5.4 and Figure 5.2. All of the TYPE 31 collisions for bridges without approach guardrail were collisions with the bridge rail. However, for bridges with approach guardrail, the primary fixed-objects struck included: guardrail (59 percent), bridge rail (18 percent), and the bridge rail/guardrail connection (23 percent). Interestingly, none of the 67 crashes coded as TYPE 31 were actually pier (i.e., supporting column) strikes. This is not surprising since a pier strike on a typical CSAH bridge over water is virtually impossible, since it would require a vehicle to run-off-the-road and travel back under the bridge in order to strike a pier column. Thus, using the description of "bridge pier" for TYPE 31 is a misnomer, at least for bridges over water.

# Logistic Regression Analysis for Crash Severity versus Various Bridge and Crash Factors

Logistic regression modeling was used to predict crash severity as a function of various bridge and crash factors for the sample of 96 crashes. Logistic regression is useful for predicting the probability of an outcome based on values of a set of predictor variables. Specifically, ordinal logistic regression was used here because the response for the dependent variable (severity) is ordered, but the distances are non-numeric (i.e., A-injury is more severe than B-injury). The ordinal logistic regression model for binary response has the form:

$$\ln\left[\frac{p_i}{(1-p_i)}\right] = \alpha + \beta' X_i \tag{1}$$

Where:  $p_i = \text{Probability}(y_i = y_1 | X_i)$  is the response probability to be modeled (i.e., crash severity given that a crash has occurred), and  $y_1$  is the first ordered level of y

 $\alpha$  = Intercept parameter

 $\beta' =$  Vector of slope parameters

 $X_i =$  Vector of predictor variables

A stepwise ordinal logistic regression model was developed for crash severity versus object struck, surface condition, 2004 ADT, speed limit, deck width, and deck width minus approach width. These predictor variables were chosen because they are often associated with crash severity. The alpha for a predictor to be entered into the stepwise model was 0.10. The analysis was run in SAS using the LOGISTIC procedure. The results are displayed in Table 5.5 with discussion to follow.

Table 5.5. Results of Ordinal Logistic Regression Analysis for Crash Severity

| Summary of Stepwise     | Selec | tion           |               |                |                                       |
|-------------------------|-------|----------------|---------------|----------------|---------------------------------------|
| Step Entered DF         |       | No. In S       | core Chi-Sq   | uare $Pr > C$  | 'hi-square                            |
| 1 OBJECT 2              |       | 1 7            | .8278         | 0.020          | 00                                    |
| No additional predicto  | rs m  | et the 0.1 sig | gnificance le | evel necessary | y for entry into the model.           |
| Predictors not entered: | SUI   | RFACE CO       | ND., ADT, S   | SPEED LIMI     | T, DECK WIDTH, DECK WIDTH - APP. WIDT |
| Score Test for the Prop | porti | onal Odds A    | Assumption    |                |                                       |
| Chi-Square DF Pr >      | > Chi | i-square       |               |                |                                       |
| 1                       | 697   | 1              |               |                |                                       |
|                         |       |                |               |                |                                       |
| Analysis of Maximum     | Likel | lihood Estim   | nates         |                |                                       |
| Parameter               | DF    | Estimate       | Std. Error    | Chi-Square     | Pr > Chi-square                       |
| Intercept (K/A)         | 1     | -2.3331        | 0.4229        | 30.4366        | <.0001 Sig.                           |
| Intercept $(K/A + B/C)$ |       | -0.3460        | 0.3470        | 0.9942         | 0.3187 Insig.                         |
| OBJECT Roadside         | 1     | 1.0233         | 0.5134        | 3.9719         | 0.0463 Sig.                           |
| OBJECT Bridge Rail      | 1     | 1.1973         | 0.4674        | 6.5610         | 0.0104 Sig.                           |
|                         |       |                |               |                |                                       |
| Odds Ratio Estimates    |       |                |               |                |                                       |
| Effect                  |       | Рс             | oint Estimate | e 95% Con      | nfidence Limits                       |
| OBJECT Roadside vs      | Guai  | rdrail 2       | 2.782         | 1.017          | 7.611                                 |
| OBJECT Bridge Rail      | vs Gi | uardrail 3     | 3.311         | 1.325          | 8.276                                 |
| -                       |       |                |               |                |                                       |

The stepwise logistic regression analysis showed object struck (OBJECT) to be the only predictor variable with a significant effect on the response variable, crash severity. Interpretation of the score test verifies that the proportional odds model is adequately valid for fitting the data (p-value = 0.0697). Thus, the odds-ratio estimates could then be used to determine the probability of a certain crash severity based on the object struck in the collision. Because the

ordinal logistic regression equation is a binary function, two equations were necessary to represent the three severity levels (K or A-injury, B- or C-injury, PDO):

$$\ln\left[\frac{\pi_{K/A}}{(\pi_{B/C} + \pi_{PDO})}\right] = -2.3331 + 1.0233x_{roadside} + 1.1973x_{bridgerail}$$
(2)

$$\ln\left[\frac{\left(\pi_{K/A} + \pi_{B/C}\right)}{\pi_{PDO}}\right] = -0.3460 + 1.0233x_{roadside} + 1.1973x_{bridgerail}$$
(3)

Where:  $\pi_{K/A}$  = Probability of Fatal or A-injury  $\pi_{B/C}$  = Probability of B- or C-injury  $\pi_{PDO}$  = Probability of Property Damage Only  $x_{roadside}$  = Roadside crash indicator (1 if yes, 0 otherwise)  $x_{bridgerail}$  = Bridge rail crash indicator (1 if yes, 0 otherwise) Note: Guardrail crash is indicated by 0's for both  $x_{roadside}$  and  $x_{bridgerail}$ 

Accordingly, based on the preceding equations, the predicted probabilities for each crash severity versus object struck can be calculated in the following way:

$$\pi_{K/A} = \frac{e^{equation(2)}}{1 + e^{equation(2)}} \tag{4}$$

$$\pi_{B/C} = \frac{e^{equation(3)}}{1 + e^{equation(3)}} - \frac{e^{equation(2)}}{1 + e^{equation(2)}}, (\pi_{K/A} + \pi_{B/C} = \frac{e^{equation(3)}}{1 + e^{equation(3)}})$$
(5)

$$\pi_{PDO} = 1 - (\pi_{K/A} + \pi_{B/C}) \tag{6}$$

Using equations 4, 5, and 6, the probabilities of a crash being of K/A, B/C, and PDO severity level can be calculated for collisions with the roadside, bridge rail, and guardrail as shown in Table 5.6.

Table 5.6. Probabilities of Crash Severity versus Object Struck Based on Logistic Regression

|          | Probability |             |           |
|----------|-------------|-------------|-----------|
| Severity | Roadside    | Bridge Rail | Guardrail |
| PDO      | 0.337       | 0.299       | 0.586     |
| B/C      | 0.451       | 0.458       | 0.326     |
| K/A      | 0.213       | 0.243       | 0.088     |

Table 5.6 shows that fatal and A-injuries are approximately 2.5 more likely to result if the collision occurs with the roadside or bridge rail versus guardrail. Guardrail collisions are roughly twice as likely to result in no injuries versus roadside or bridge rail collisions. The most severe collisions are those with the bridge rail, although roadside collisions are nearly as severe.

#### **Crash Severity versus Guardrail Presence**

Also of interest was whether or not the presence of approach guardrail had an effect on crash severity. Although guardrail is not intended to reduce the frequency of crashes, it is designed to reduce the severity of crashes when they occur. Because of this, the researchers hypothesized that presence of approach guardrail at bridges would result in a lower crash severity. In other words, guardrail was expected to be associated with a lesser proportion of severe injury/fatal crashes (i.e., K and A crash severities) and greater proportion of property damage (PDO) crashes. The hypothesis was tested using a two-way Pearson chi-square test for independence, performed at a 95 percent level of confidence. To avoid sparse categories in the chi-squared test, crashes were clustered into three severity categories: PDO, B/C, and K/A. Table 5.7 and Figure 5.3 show the clustered KABCO severity rates and associated chi-squared analysis.

#### Table 5.7. Chi-Square Test for Crash Severity versus Guardrail Presence

|                                                    | Percent |       |       |                           |
|----------------------------------------------------|---------|-------|-------|---------------------------|
| Crash Severity                                     | No GR   | GR    | Total | Total Count               |
| PDO (no injury)                                    | 36.7    | 46.8  | 41.7  | 40                        |
| B/C (non-incapacitating injury or possible injury) | 34.7    | 46.8  | 40.6  | 39                        |
| K/A (fatal or incapacitating injury)               | 28.6    | 6.4   | 17.7  | 17                        |
| Total                                              | 100.0   | 100.0 | 100.0 |                           |
| Ν                                                  | 49      | 47    | 96    |                           |
| Test statistic                                     | Value   | df    | Prob  | Statistically Significant |
| Test statistic                                     | value   | ai    | P100  | Differences?              |
| Pearson chi-square                                 | 8.121   | 2.000 | 0.017 | Yes                       |

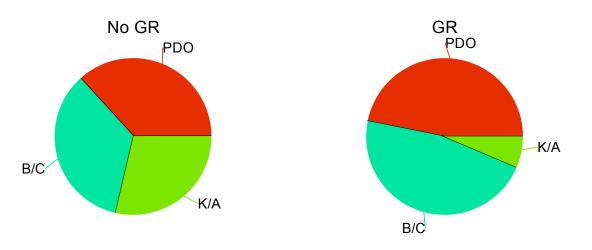



Figure 5.3. Crash Severity versus Guardrail Presence

Table 5.7 and Figure 5.3 show that crashes occurring near the CSAH bridges were significantly less severe when approach guardrail existed than when it did not exist. While guardrail did not appear to have a large effect on the proportion of B- and C-injury crashes, fatality and A-injury crashes accounted for a much smaller proportion of the crashes for bridges with approach guardrail as only three of the 47 crashes (six percent) were coded as K or A-injury. Alarmingly, 14 of the 49 crashes (28.5 percent) occurring at bridges without approach guardrail resulted in either a fatality or A-injury – <u>a rate that is 4.5 times greater</u> than at bridges where

guardrail exists on the approach. Further discussion of the K and A-injury crashes analyzed here is provided in the following section.

# Discussion of Fatal and Severe Injury Crashes

The researchers thoroughly investigated the crash reports for each of the 17 fatal and severe injury (i.e., A-injury) crashes that occurred near the sample bridges. Table 5.8 summarizes the attributes of these crashes.

| Did bridge<br>have<br>approach<br>Guardrail? | 2004<br>ADT | Crash<br>severity | Crash<br>type | Summary of police description                                                                                                                                                                             | Initial<br>object<br>struck or<br>first<br>harmful<br>event | Was guardrail<br>effective or if<br>guardrail did<br>not exist,<br>would it have<br>been effective? |
|----------------------------------------------|-------------|-------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| No                                           | 425         | A                 | 31            | Swerved to miss deer; struck corner of bridge rail near end on approach                                                                                                                                   | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 790         | А                 | 31            | Lost control on slippery road, crossed<br>centerline and side-impacted the end of the<br>bridge rail end                                                                                                  | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 205         | А                 | 31            | Crossed centerline and struck the bridge railing head-on and continued off the roadway                                                                                                                    | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 394         | А                 | 31            | Head-on strike to end of bridge rail on approach                                                                                                                                                          | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 1445        | А                 | 31            | Head-on strike to end of bridge rail on approach                                                                                                                                                          | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 8846        | А                 | 31            | Lost control on icy road and struck end of bridge rail head-on                                                                                                                                            | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 317         | А                 | 37            | Crossed centerline, ROR and struck bank of waterway                                                                                                                                                       | Embank-<br>ment                                             | Potentially<br>(Redirection)                                                                        |
| No                                           | 418         | А                 | 51            | Swerved to miss deer, crossed centerline,<br>ROR into ditch just ahead of bridge and rolled<br>over                                                                                                       | Ditch/<br>Rollover                                          | Potentially<br>(Redirection)                                                                        |
| No                                           | 343         | К                 | 30            | ROR on the right (approx. 177-ft upstream of<br>the bridge), went into ditch, sideswiped one<br>tree and struck another head-on, vehicle<br>engulfed in fire                                              | Tree                                                        | Potentially<br>(Redirection)                                                                        |
| No                                           | 481         | К                 | 31            | Struck end of bridge rail head-on on the<br>approach, went through the rail and into the<br>creek; a piece of the rail went through the car                                                               | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 1507        | К                 | 31            | Struck end of bridge rail head-on on the<br>approach, railing came through cab striking<br>driver, car flipped and came to rest in creek                                                                  | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 826         | K                 | 31            | ROR to left, overcorrected back to right,<br>struck end of bridge rail with rear of veh<br>(sheared off rear of veh), vaulted down river<br>bank striking trees, coming to rest submerged<br>in the river | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 833         | Κ                 | 31            | Lost control of veh and driver side collided with end of bridge rail on approach                                                                                                                          | Bridge<br>Rail                                              | Potentially<br>(Attenuation)                                                                        |
| No                                           | 1455        | К                 | 51            | Crossed centerline, ROR on left side near<br>bridge (but did not strike), struck ditch, went<br>airborne, and overturned                                                                                  | Ditch/<br>Rollover                                          | Potentially<br>(Redirection)                                                                        |
| Yes                                          | 249         | А                 | 31            | ROR onto shoulder, overcorrected back onto<br>roadway, rolled on roadway and overturned,<br>and struck bridge rail where veh came to rest                                                                 | Bridge<br>Rail                                              | No (ROR on<br>departure side<br>where GR did<br>not exist)                                          |
| Yes                                          | 253         | А                 | 51            | Crossed centerline, ROR on left side about 150-ft prior to bridge, struck ditch then tree and rolled multiple times into creek.                                                                           | Ditch/<br>Rollover                                          | No (ROR on<br>departure side<br>where GR<br>existed but wa<br>short)                                |
| Yes                                          | 5629        | K                 | 37            | ROR on the right side approximately 100-ft<br>past bridge, went into ditch, collided with<br>culvert wall, went airborne and landed on roof                                                               | Ditch/<br>Culvert                                           | No (ROR on<br>departure side<br>where GR did<br>not exist)                                          |

# Table 5.8. Fatal and A-Injury Crash Details

Table 5.8 shows that for each of the 14 fatal or severe-injury crashes at bridges without approach guardrail, the severity of those crashes could potentially have been reduced had guardrail been in place when the collision occurred. In ten of these 14 crashes, the vehicle struck the end of the unprotected bridge rail – usually head-on. Had approach guardrail been present in these cases, it would likely have either attenuated the vehicle from a direct impact on the blunt end of the rail or redirected the vehicle back onto the roadway before impacting the bridge rail. The other four crashes were a result of the vehicle running-off-the-road and striking a roadside object or rolling over. Had approach guardrail existed in these cases, it would likely have redirected the vehicle back onto the roadway, thereby preventing the more severe run-off-the-road collision.

For the three severe crashes that occurred at bridges with approach guardrail, the collisions occurred on the departure side of the bridges, which either did not have guardrail or had a section of guardrail that was too short to prevent the collision.

#### **Crash Severity versus Initial Object Struck**

Table 5.8 showed that none of the 17 fatal or severe injury crashes involved a collision with approach guardrail. All of the severe crashes were either collision with the end of the bridge rail, collision with a roadside object, or roadside rollover. Table 5.9 and Figure 5.4 show how the collision object affects crash severity. Note, "GR" also included crashes that occurred at the bridge rail/guardrail connection.

#### Table 5.9. Chi-Square Test for Crash Severity versus Initial Object Struck

|                                                    | Percent  |       |       |       |                           |
|----------------------------------------------------|----------|-------|-------|-------|---------------------------|
| Crash Severity                                     | Roadside | BR    | GR    | Total | Total Count               |
| PDO (no injury)                                    | 36.0     | 34.2  | 54.5  | 41.7  | 40                        |
| B/C (non-incapacitating injury or possible injury) | 40.0     | 36.8  | 45.5  | 40.6  | 39                        |
| K/A (fatal or incapacitating injury)               | 24.0     | 28.9  | 0.0   | 17.7  | 17                        |
| Total                                              | 100.0    | 100.0 | 100.0 | 100.0 |                           |
| Ν                                                  | 25       | 38    | 33    | 96    |                           |
| Test statistic                                     | Value    | df    | Prob  |       | Statistically Significant |
| i est statistic                                    | varue    | ui    | 1100  |       | Differences?              |
| Pearson chi-square                                 | 11.452   | 4.000 | 0.022 |       | Yes                       |

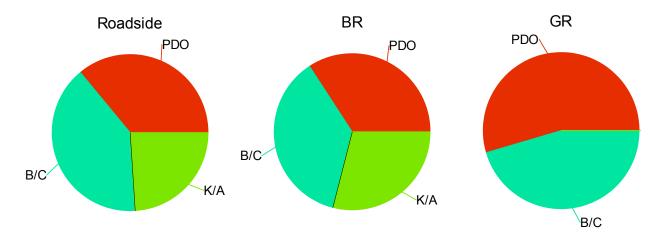



Figure 5.4. Crash Severity versus Initial Object Struck

Table 5.9 and Figure 5.4 clearly show that collision with approach guardrail resulted in a significantly lower proportion of fatalities and A-injuries and a significantly higher proportion of PDO crashes. As stated earlier, zero of the fatal and A-injury crashes involved collision with the approach guardrail. Roadside collisions and collisions with the ends of the bridge rail each resulted in similar proportions of fatalities and A-injuries (24 percent and 29 percent, respectively). The type of object struck had only a moderate effect on the proportion of B/C injuries. Importantly, the data shown in Table 5.9 and Figure 5.4 correlate very closely with the severity probabilities shown in Table 5.6 that were predicted by the logistic regression analysis.

#### Effectiveness of Guardrail Based on Type of Collision and Guardrail Presence

The information obtained from the police descriptions and diagrams, in most cases allowed the researchers to determine the following:

- If approach guardrail existed, was it effective in preventing a potentially more serious crash?
- If no approach guardrail existed, would guardrail have potentially reduced the severity of the crash (i.e., provided attenuation from the bridge rail end or kept the vehicle on the roadway)?

The following graphs display the findings from this analysis of the 96 crashes near the sample bridges with and without approach guardrail.

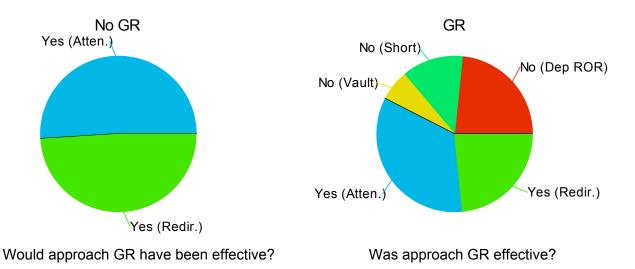



Figure 5.5. Effectiveness (or Potential Effectiveness) of Approach Guardrail

Figure 5.5 shows many important findings. First, for the 49 collisions at bridges without approach guardrail, researchers hypothesized that each crash could potentially have been less severe if approach guardrail had existed, either by redirection of the vehicle back onto the roadway or by attenuation from the bridge-rail end. For the 47 collisions at bridges with approach guardrail, the guardrail was considered effective in approximately 57 percent of the cases. The guardrail was considered effective if it provided attenuation from the end of the bridge rail or redirection back onto the roadway. The approach guardrail was deemed ineffective

in roughly 43 percent of the collisions. Approach guardrail was deemed ineffective if any of the following occurred:

- The vehicle vaulted over or broke through the guardrail;
- The guardrail section was too short to protect the vehicle against running off the road; or
- The vehicle ran off the road on the departure side of the bridge where no guardrail was present (i.e., guardrail existed on the two approach corners only).

# Assessment of the Need for Guardrail at All Bridge Corners versus Approach Corners Only

Based on conversations with numerous Minnesota county engineers, it appeared that the application of guardrail on all four corners of the bridge rail versus on the two approach corners only is a practice that varies from county to county. Figure 5.6 shows a comparison of guardrail protection at all corners of the bridge versus only the two approach corners.

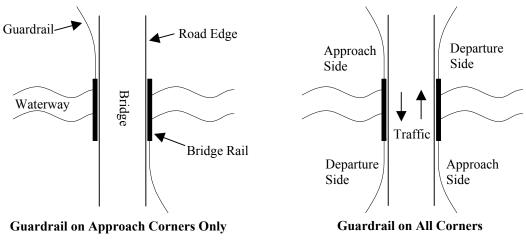



Figure 5.6. Guardrail Protection at Approach Corners Only versus All Corners

Guardrail applied at all four bridge corners is designed to protect both approach- and departure-side events. Departure-side collisions include cases where the vehicle runs off the road to the right after crossing the bridge or crosses the centerline ahead of the bridge and runs-off-the-road to the left, potentially striking the bridge rail head on. Departure-side protection is especially critical on narrow bridges. Figure 5.7 shows the occurrence of approach- versus departure-side crashes for the 96 crashes near CSAH bridges.

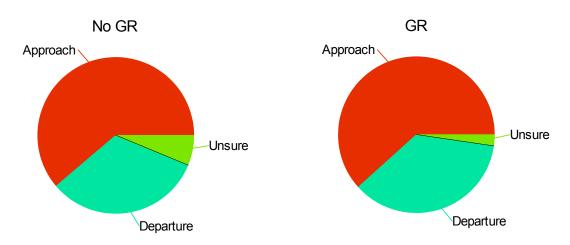



Figure 5.7. Location of First Harmful Event with Respect to Bridge

Figure 5.7 shows that, as expected, the location of the collision with respect to the bridge is not affected by the presence of guardrail. Approach-side collisions occurred in approximately 62 percent of the sample crashes, while departure-side collisions occurred approximately 34 percent of the crashes. Thus, departure-side collisions with a bridge component occur frequently enough to potentially warrant departure-side guardrail protection. Due to a lack of detail in certain collision diagrams and descriptions, the researchers were unsure of the location of initial collision in approximately four percent of the cases.

Further analysis of approach- versus departure-side collisions included comparison of guardrail effectiveness for the approach- versus departure-side collisions. This analysis was performed using only data for bridges with approach guardrail. Figure 5.8a-c shows the analysis of 29 approach-side and 17 departure-side bridge collisions at bridges with approach guardrail.

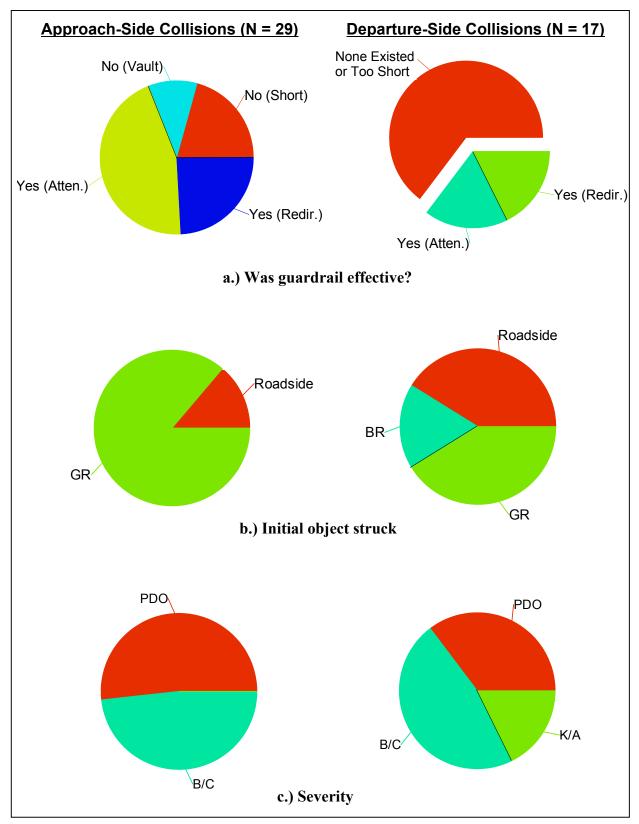



Figure 5.8. Effectiveness of Guardrail for Approach-Side versus Departure-Side Collisions for Bridges with Approach Guardrail

Figure 5.8a-c shows a number of useful findings. Looking first at the approach-side collisions, guardrail was found to be effective in approximately 69 percent of these cases. Furthermore, 86 percent of the approach-side crashes were collisions with the guardrail. Finally, slightly more than half of the approach-side collisions were property-damage only, while the rest were B- or C-injuries and, most importantly, zero were fatalities or A-injuries.

In contrast, for departure-side collisions, departure-side guardrail existed and was effective in only 35 percent. Furthermore, departure-side guardrail either did not exist or was too short to be effective in 65 percent of the departure-side collisions, with each of these crashes resulting in either a collision with the end of the bridge rail or a roadside collision. Only 35 percent of the departure-side collisions were PDO, while 18 percent were fatalities or A-injuries. The researchers deemed it important to further analyze the severity of the 17 departure-side crashes versus departure-side guardrail presence, the findings of which are shown in Figure 5.9.

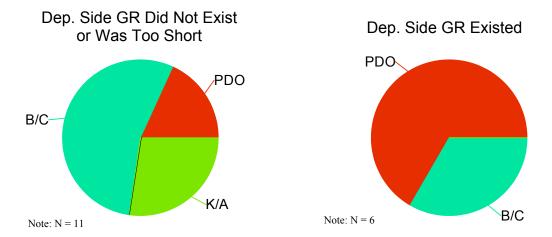



Figure 5.9. Severity of Departure-Side Collisions for Bridges with Approach Guardrail

Figure 5.9 shows that 9 of the 11 (82 percent) departure-side collisions where either no guardrail was present or it was too short to be effective resulted in either an injury or fatality (one fatality, two A-injuries, two B-injuries, and four C-injuries). It is important to note that the three K/A-injuries that occurred on the departure-side of bridges where guardrail either did not exist or was too short to be effective accounted for all of the K/A-injuries at bridges with approach guardrail (see Table 5.8).

Guardrail was present and provided effective protection for six departure-side collisions. Four of these collisions resulted in property-damage only, while the other two resulted in B- or C-injuries. Although the sample size is small, these results suggest substantial reductions in severity if guardrail protection is provided at both the approach- and departure-sides of bridges rather than at the approach-sides only.

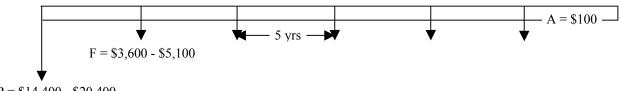
# CHAPTER 6: BENEFIT/COST ANALYSIS

There is no debating the fact that hazardous immovable objects such as bridge abutments, piers, and railings exist within roadway clear-zones on CSAH roadways presenting a significant safety concern. Yet the installation of guardrail on these low-volume roads can add costs and other safety and maintenance problems that may outweigh the proposed benefits. Beyond the fact that guardrail itself is a fixed-object within the clear-zone, guardrail is known to promote snow drifting during the winter months and vegetation growth during summer months providing an additional maintenance and safety concerns.

Thus, a primary task of this research was to perform a benefit/cost analysis. Benefit/cost analyses are used to compare the relative benefits and costs of treatment alternatives. The objective of the analysis performed here was to determine the ADT at which the benefit/cost ratio suggests installing bridge-approach guardrail provides a positive return on investment for CSAH bridges in Minnesota. In other words, the researchers sought to identify the ADT where the benefit/cost ratio exceeds 1.0.

#### **COSTS OF APPROACH GUARDRAIL**

Any benefit/cost analysis begins with determination of the potential costs (i.e., materials, labor) and benefits (i.e., crash savings). The first step in the analysis was to determine an approximate life-cycle cost for a typical section of approach guardrail. Conversations with numerous Mn/DOT employees allowed the researchers to develop an approximate life-cycle cost for a typical installation of approach guardrail to all four bridge corners. Costs for bridge-approach guardrail include those for:


- Installation
  - o standard guardrail,
  - o transition guardrail,
  - $\circ$  end treatment,
  - supplementary signs and/or delineators,
  - o labor;
- Maintenance
  - o vegetation removal,
  - snow removal; and
- Repair.

It was reasonable to assume that the guardrail has no salvage value at the end of its useful life. The estimated life-cycle was 30 years, although this may be greater if steel posts are used instead of wood. Because maintenance and repair costs will occur sometime after installation, they were first converted to present-worth. Mn/DOT's Office of Investment Management recommends using a 3.6 percent annual discount rate (7), which represents the interest rate minus inflation rate for a 30-year U.S. Treasury note or bond. The estimated 2004 costs for installation, maintenance, and repair of approach guardrail for a single Minnesota CSAH bridge is shown in Table 6.1. The corresponding cash-flow diagram is shown in Figure 6.1. The 2004 cost per bridge for bridge-approach guardrail assuming a 30-year design-life and protection at all four

corners was estimated at \$27,100 - \$45,000 with approximately \$14,400 - \$20,000 (roughly 40 - 60 percent) of that being the cost of materials and labor for installation.

|                           |                                                                                      |                           | Minimum<br>Section | Total Cost per<br>Bridge (All 4 |                    |  |
|---------------------------|--------------------------------------------------------------------------------------|---------------------------|--------------------|---------------------------------|--------------------|--|
| Category                  | Item                                                                                 | Unit Cost                 | Length             | Corners)                        | Net 2004 Cost      |  |
|                           | Standard Guardrail                                                                   | \$12-\$15 /ft             | 50 ft              | \$2,400-\$3,000                 | \$2,400-\$3,000    |  |
|                           | Transition Guardrail                                                                 | \$36-\$50 /ft             | 25 ft              | \$3,600-\$5,000                 | \$3,600-\$5,000    |  |
| Initial Installation      | End Treatment                                                                        | \$2,000-<br>\$3,000 /ea.  | 1 unit             | \$8,000-\$12,000                | \$8,000-\$12,000   |  |
| (Including Labor)         | Supplementary<br>Object Markers                                                      | \$100 /ea.                | 1 unit             | \$400                           | \$400              |  |
|                           | Salvage                                                                              | \$0                       | -                  | \$0                             | \$0                |  |
|                           | Total Installation                                                                   |                           |                    |                                 | \$14,400 - \$20,00 |  |
| Additional<br>Maintenance | Vegetation Removal,<br>Snow Removal                                                  | \$100 /yr                 | -                  | \$100- \$500 /yr                | \$1,800- \$9,100   |  |
| Repair                    | Replacement of 1<br>section every 5 years<br>due to vehicle or farm<br>equipment hit | \$3,600-<br>\$5,100 /5 yr | -                  | \$3,600-<br>\$5,100 /5 yr       | \$10,900- \$15,500 |  |
| Total Life-Cycle<br>Cost  |                                                                                      |                           |                    |                                 | \$27,100- \$45,000 |  |

Table 6.1. 2004 Costs for Approach Guardrail on a CSAH Bridge



P = \$14,400 - \$20,400

Figure 6.1. Cash-Flow Diagram for Cost of Approach Guardrail on a CSAH Bridge

#### **BENEFITS OF APPROACH GUARDRAIL**

The primary benefit for installing approach guardrail is a reduction in the costs of target crashes (i.e., crashes with bridge components, run-off-the-road near the bridge, etc.). Crash costs can be reduced either through a reduction in the severity and/or frequency of such crashes. For bridges without approach guardrail, typical crashes may include the following:

- ROR bridge component
  - bridge rail (including blunt ends),
  - o curb,
  - o pier, or
  - o abutment;
- ROR roadside
  - o rollover,
  - o tree,

- o embankment,
- o ditch,
- o culvert/headwall, or
- o pole/post.

Based on the results of the crash analysis, installation of bridge-approach guardrail is expected to greatly reduce the occurrence of all types of roadside collisions and collisions with bridge components – especially the blunt ends of the bridge rail. These crashes would typically be replaced by a less-severe collision with the guardrail. The analysis also showed that the severity of crashes near bridges will be lower if approach (and departure) guardrail exists. The reduction in crash severity will consequently result in a net crash cost savings. Mn/DOT's Office of Investment Management maintains a list of estimated crash costs for each severity level (based on the KABCO scale), which are summarized in Table 6.2 (7).

|                                      | s versus infiber severity               |
|--------------------------------------|-----------------------------------------|
| Crash Severity                       | Estimated Cost per Crash (2004 dollars) |
| Property Damage Only                 | \$4,300                                 |
| C Injury (Possible Injury)           | \$29,000                                |
| B Injury (Non-Incapacitating Injury) | \$59,000                                |
| A Injury (Incapacitating Injury)     | \$270,000                               |
| Fatal                                | \$3,500,000                             |
|                                      |                                         |

Table 6.2. 2004 Minnesota Crash Costs versus KABCO Severity

As can be observed in Table 6.2, any treatment that can reduce a crash from a fatality to an A-injury has a net positive economic impact of \$3.23 million. A treatment that reduces crash severity from an A-injury to a B-injury has a net positive economic impact of \$211,000, and so forth for the remaining severity reductions. Therefore, the analysis focused on quantifying differences in crash severity that could be attributed to approach guardrail.

### ANALYSIS AND FINDINGS

The analysis was performed using data from the same 96 run-off-the-road and fixedobject bridge crashes used in the crash analysis described in Chapter 5. The 96 crashes were separated by 2004 ADT, crash severity, and guardrail presence and placed in a series of tables along with the estimated crash costs from Table 6.2. Table 6.3 summarizes the crash frequencies by ADT category, severity, and guardrail presence.

|           | Brie | dges | PI | 00 |    | С  | -  | В  |    | A  | -  | K  | TO | TAL |
|-----------|------|------|----|----|----|----|----|----|----|----|----|----|----|-----|
|           | No   |      | No |    | No |    | No |    | No |    | No |    | No |     |
| 2004 ADT  | GR   | GR   | GR | GR | GR | GR | GR | GR | GR | GR | GR | GR | GR | GR  |
| <150      | 63   | 6    | 3  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 4  | 0   |
| 150-399   | 72   | 21   | 4  | 3  | 1  | 0  | 1  | 0  | 3  | 2  | 1  | 0  | 10 | 5   |
| 400-749   | 51   | 25   | 4  | 1  | 1  | 0  | 5  | 3  | 2  | 0  | 1  | 0  | 13 | 4   |
| 750-999   | 12   | 15   | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 2  | 0  | 6  | 2   |
| 1000-1499 | 17   | 21   | 4  | 5  | 3  | 4  | 0  | 3  | 1  | 0  | 1  | 0  | 9  | 12  |
| 1500-4999 | 16   | 29   | 0  | 5  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 6   |
| 5000-9999 | 5    | 20   | 1  | 3  | 1  | 1  | 1  | 3  | 1  | 0  | 0  | 1  | 4  | 8   |
| 10000<    | 7    | 18   | 1  | 5  | 0  | 2  | 1  | 3  | 0  | 0  | 0  | 0  | 2  | 10  |
| All       | 243  | 155  | 18 | 22 | 7  | 9  | 10 | 13 | 8  | 2  | 6  | 1  | 49 | 47  |

Table 6.3. Bridge Crashes from 1988-2002 by ADT, Severity, and Guardrail Presence

Using the data from Tables 6.2 and 6.3, the total crash costs for each of the ADT categories were computed for bridges with and without approach guardrail. Because the traffic volumes varied from bridge to bridge, it was important to normalize the crash costs on a per-vehicle basis. The estimated cumulative traffic volumes for the 1988-2002 analysis period were generated based on the reported ADTs and the 2004 traffic growth factors (shrink factors in this case) for each county. Figure 6.2 presents a summary of the estimated crash costs (2004 dollars) per one hundred million  $(10^8)$  vehicle crossings based on ADT category and guardrail presence. These results exist in tabular-format in Appendix H.

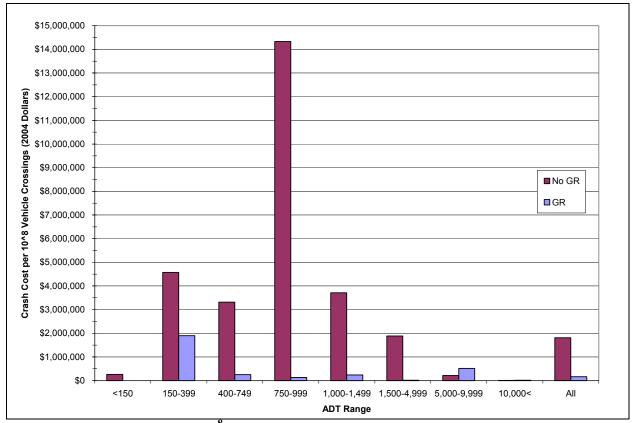



Figure 6.2. Crash Costs per 10<sup>8</sup> Vehicle Crossings by ADT Range and Guardrail Presence

Figure 6.2 shows a number of important findings. First, for all bridges with ADT less than 5,000 vpd, the crash costs per vehicle crossing are considerably higher at bridges without approach guardrail than at bridges with approach guardrail. This is especially true for the 750-999 vpd category where bridges without approach guardrail have crash costs that are 105 times those of bridges with approach guardrail. This is largely due to the disproportionate number of K and A-injury crashes occurring in this ADT range at bridges without approach guardrail. When all bridges are considered, the crash cost-per-vehicle-crossing is approximately 11 times greater for bridges without approach guardrail than for bridges with approach guardrail.

The findings shown in Figure 6.2 and Appendix H were used to estimate the crash benefits for each ADT range. In a practical sense, a crash benefit can be thought of as the estimated reduction in crash costs that would be expected if approach guardrail was installed at bridges where no guardrail existed. Although such values cannot truly be determined, they can be estimated based on the costs of crashes that occurred at the cohort sample of bridges with approach guardrail.

Furthermore, because approach guardrail costs were computed for a 30-year life-cycle, the benefits were also computed for the same 30-year term from 2004 to 2034. Three 30-year cumulative traffic volume forecasts, which can be found in Appendix I, were created for use in the benefit/cost analysis based on the estimated 2004 ADTs for each bridge and the following growth rates:

- No traffic growth during the 30-year period;
- 30-year traffic based on the 2004 estimated traffic growth rate per county (Anoka 1.5%, Crow Wing 1.7%, Dakota 1.4%, Fillmore 1.3%, Goodhue, 1.6%, Lyon 1.3%, Mower 1.2%, Olmsted 1.6%, Rock 1.2%, Wantowan 1.3%); and
- 30-year traffic based on a 2 percent annual growth rate.

The 30-year crash benefits for installing approach guardrail were then computed by multiplying the per-vehicle crash costs for bridges without approach guardrail (in 2004 dollars as shown in Figure 6.2) by an estimate of the cumulative number of vehicle crossings at these bridges for the 30-year period of 2004 to 2034. Three estimates of the benefits were computed for each ADT category based on the three traffic forecasts and are displayed along with the low and high approach guardrail costs in Figure 6.3 and in tabular-format in Appendix I.

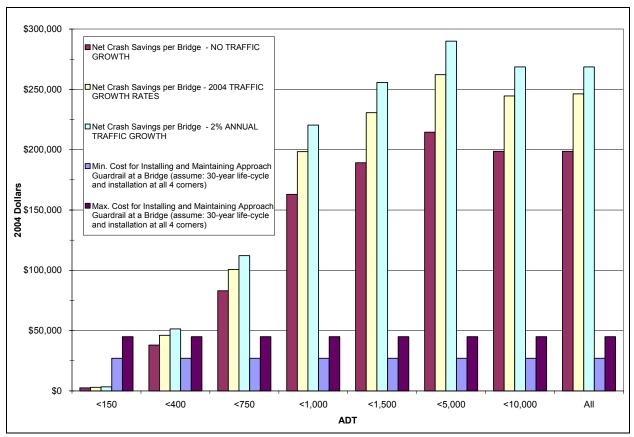



Figure 6.3. Estimated Crash Savings and Costs per Bridge if Approach Guardrail is Installed

The data in Figure 6.3 were used to compute a benefit/cost ratio for each ADT category using the equation that follows. Table 6.4 displays a summary of the benefit/cost calculations, while the full procedure can be found in Appendix I. The results are displayed in Figure 6.4a-b.

$$\frac{\text{Benefit}}{\text{Cost}} = \frac{\frac{\text{Crash Savings}}{\text{Vehicle}} \times \frac{\# \text{Vehicles}}{\# \text{Bridges}}}{\frac{\text{Crash Costs}}{\text{Vehicle}} \times \frac{\# \text{Vehicles}}{\# \text{Bridges}} + \frac{\text{GR Costs}}{\text{Bridge}}}$$
(7)

Where: Crash Savings/Vehicle = 30-year estimated crash savings per vehicle that would occur if approach guardrail is added to bridges previously without guardrail (2004 dollars) Crash Costs/Vehicle = 30-year estimated crash costs per vehicle for bridges with approach guardrail (2004 dollars)

# Vehicles = 30-year cumulative traffic volume for bridges without approach guardrail # Bridges = number of bridges without approach guardrail

GR Cost/Bridge = 30-year life-cycle cost of approach guardrail per bridge (2004 dollars)

|                   |         |                                |                          | Benefits                                                         | Costs                                                                                      |                                                                                         | B/C F | Ratio |
|-------------------|---------|--------------------------------|--------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|-------|
| Traffic<br>Growth | ADT     | Cumulative 30-<br>year Traffic | Bridges<br>Without<br>GR | Total 30-year<br>Crash Savings<br>per Bridge if<br>GR is Applied | Min. Total<br>30-year<br>Costs per<br>Bridge if GR<br>is Applied <sup><math>a</math></sup> | Max. Total<br>30-year<br>Costs per<br>Bridge if GR<br>Applied <sup><math>b</math></sup> | Min   | Max   |
|                   | <150    | 59,554,131                     | 63                       | \$2,497                                                          | \$27,100                                                                                   | \$45,000                                                                                | 0.06  | 0.09  |
|                   | <400    | 270,678,691                    | 135                      | \$72,680                                                         | \$61,743                                                                                   | \$79,643                                                                                | 0.91  | 1.18  |
|                   | <750    | 560,103,092                    | 186                      | \$104,319                                                        | \$48,423                                                                                   | \$66,323                                                                                | 1.57  | 2.15  |
| None              | <1,000  | 673,435,068                    | 198                      | \$179,599                                                        | \$43,695                                                                                   | \$61,595                                                                                | 2.92  | 4.11  |
| None              | <1,500  | 902,932,388                    | 215                      | \$205,050                                                        | \$42,975                                                                                   | \$60,875                                                                                | 3.37  | 4.77  |
|                   | <5,000  | 1,312,120,407                  | 231                      | \$224,324                                                        | \$36,927                                                                                   | \$54,827                                                                                | 4.09  | 6.07  |
|                   | <10,000 | 1,687,691,045                  | 236                      | \$223,613                                                        | \$52,060                                                                                   | \$69,960                                                                                | 3.20  | 4.30  |
|                   | All     | 2,932,663,571                  | 243                      | \$218,440                                                        | \$46,864                                                                                   | \$64,764                                                                                | 3.37  | 4.66  |
|                   | <150    | 72,219,261                     | 63                       | \$3,027                                                          | \$27,100                                                                                   | \$45,000                                                                                | 0.07  | 0.11  |
|                   | <400    | 327,977,731                    | 135                      | \$88,065                                                         | \$69,076                                                                                   | \$86,976                                                                                | 1.01  | 1.27  |
|                   | <750    | 679,637,910                    | 186                      | \$126,582                                                        | \$52,974                                                                                   | \$70,874                                                                                | 1.79  | 2.39  |
| 2004              | <1,000  | 819,740,831                    | 198                      | \$218,618                                                        | \$47,300                                                                                   | \$65,200                                                                                | 3.35  | 4.62  |
| Rates             | <1,500  | 1,101,206,922                  | 215                      | \$250,076                                                        | \$46,461                                                                                   | \$64,361                                                                                | 3.89  | 5.38  |
|                   | <5,000  | 1,604,359,858                  | 231                      | \$274,286                                                        | \$39,116                                                                                   | \$57,016                                                                                | 4.81  | 7.01  |
|                   | <10,000 | 2,077,635,497                  | 236                      | \$275,279                                                        | \$57,827                                                                                   | \$75,727                                                                                | 3.64  | 4.76  |
|                   | All     | 3,635,725,478                  | 243                      | \$270,807                                                        | \$51,602                                                                                   | \$69,502                                                                                | 3.90  | 5.25  |
|                   | <150    | 80,533,223                     | 63                       | \$3,376                                                          | \$27,100                                                                                   | \$45,000                                                                                | 0.08  | 0.12  |
|                   | <400    | 366,030,486                    | 135                      | \$98,283                                                         | \$73,946                                                                                   | \$91,846                                                                                | 1.07  | 1.33  |
|                   | <750    | 757,410,220                    | 186                      | \$141,067                                                        | \$55,935                                                                                   | \$73,835                                                                                | 1.91  | 2.52  |
| 2%                | <1,000  | 910,665,573                    | 198                      | \$242,867                                                        | \$49,541                                                                                   | \$67,441                                                                                | 3.60  | 4.90  |
| Annual            | <1,500  | 1,221,007,755                  | 215                      | \$277,282                                                        | \$48,568                                                                                   | \$66,468                                                                                | 4.17  | 5.71  |
|                   | <5,000  | 1,774,340,153                  | 231                      | \$303,346                                                        | \$40,389                                                                                   | \$58,289                                                                                | 5.20  | 7.51  |
|                   | <10,000 | 2,282,212,800                  | 236                      | \$302,385                                                        | \$60,853                                                                                   | \$78,753                                                                                | 3.84  | 4.97  |
|                   | All     | 3,965,750,934                  | 243                      | \$295,389                                                        | \$53,826                                                                                   | \$71,726                                                                                | 4.12  | 5.49  |

# Table 6.4. Benefit/Cost Calculations for Bridge-Approach Guardrail (2004 Dollars, 30year Life-Cycle)

Notes: <sup>a</sup> Includes estimated crash costs and \$27,100 installation and maintenance costs (for 30-year life-cycle, 2004 dollars)

<sup>b</sup> Includes estimated crash costs and \$45,000 installation and maintenance costs (for 30-year life-cycle, 2004 dollars)

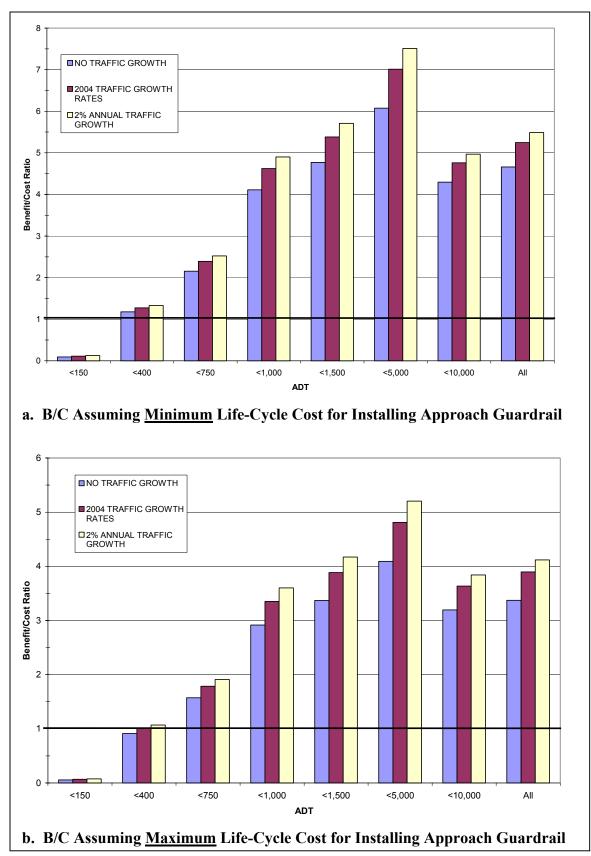



Figure 6.4. Benefit/Cost Ratio Based on Threshold ADT and Traffic Growth Rate

Table 6.4 and Figure 6.4 show that for ADT less than 150 vpd, the benefit/cost ratio for bridge-approach guardrail is very small (i.e., < 0.10) regardless of the forecasted traffic growth rate or guardrail costs. For ADT less than 400 vpd, the benefit/cost ratio ranges between 0.9 and 1.3 depending on the traffic growth rate and guardrail installation costs. The benefit/cost ratio for approach guardrail increases steadily as the ADT threshold is increased above 400 vpd.

For bridges with ADT between 150 and 399 vpd, further analysis was necessary to determine the cost-effectiveness. Closer investigation of the one fatal and three A-injury crashes at bridges without guardrail in this ADT range showed that only one A-injury and no fatalities occurred for ADTs between 150 and 299 vpd. The remaining three severe crashes occurred at bridges with ADTs between 300 and 399 vpd. As a result, the researchers split this ADT range into 150-299 vpd and 300-399 vpd and re-ran the benefit/cost analysis. Figure 6.5 displays the benefit/cost ratios for each of these ADT ranges along with the two adjacent ADT ranges (<150 vpd and 400-749 vpd).

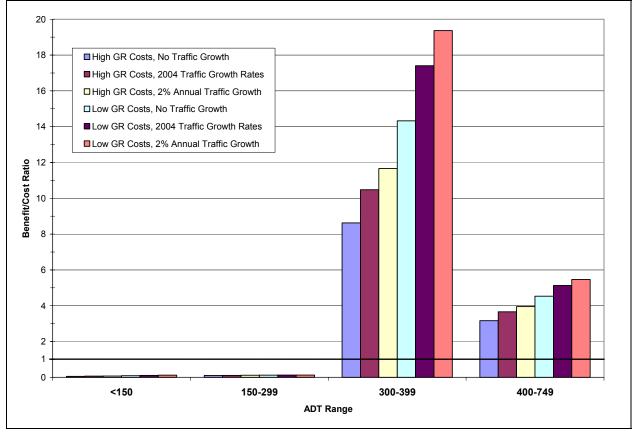



Figure 6.5. Revised Benefit/Cost Ratios for Bridges with ADT between 0 and 750 vpd

Figure 6.5 shows that approach guardrail is not cost-effective for CSAH bridges with ADT less than 300 vpd, but is highly cost-effective for CSAH bridges with ADT greater than or equal to 300 vpd. Figure 6.6 displays the benefit/cost ratios for the revised cumulative ADT thresholds for the maximum guardrail costs only.

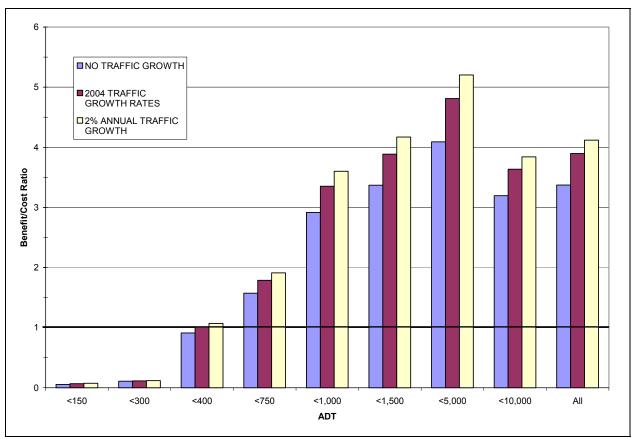



Figure 6.6. Benefit/Cost Ratio Based on Revised Threshold ADT for Guardrail Installation

## CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

The major objective of the research described herein was to determine if the presence of approach guardrail had an effect on both the type and severity of crashes occurring near a ten-county sample of Minnesota CSAH bridges. The initial tasks included a literature review and survey of state agency practice, which produced little data related to the safety or cost-effectiveness for bridge-approach guardrail. The primary tasks included analysis of Minnesota crash data to determine the safety and cost-effectiveness of approach guardrail for CSAH bridges and to determine ADT-based criteria for bridge-approach guardrail on the CSAH system.

The initial data analyses focused solely on queries from the Minnesota crash database. The final database query included a total of 263 run-off-the-road and fixed-object crashes occurring between 1988 and 2002 and within approximately 200 feet of any of the 398 CSAH bridges included in the sample. Analysis of the crash database queries was limited because collisions with approach guardrail and all other bridge components were coded into the crash database under a single code (TYPE 31 "bridge piers") and included no further information about the object struck. As a result, the effectiveness of approach guardrail could not be determined based solely on the crash database information and thus required a detailed review of the respective police crash-reports.

The researchers reviewed the diagrams and descriptions from the crash reports of 238 of the 263 crashes from the database query. Upon review of the crash report, a crash was considered to be appropriate for use in the analyses if the crash:

- Occurred on the approach or departure and within approximately 200 ft of the appropriate CSAH bridge; and
- Involved collision with a bridge component (including approach guardrail), roadside fixed-object, or other roadside collision.

The screening process resulted in 96 of the initial 238 crash reports being deemed useful to the analyses, 47 of which occurred near bridges with approach guardrail, while the remaining 49 crashes occurred at bridges without approach guardrail. Comprehensive safety analyses and benefit/cost analyses were performed on the sample of 96 crashes. The conclusions and recommendations from these analyses are summarized in the sections that follow.

## **CONCLUSIONS Mn/DOT Practice Compared to Other Agencies**

Twenty-six of the 35 state agencies responding to the survey (74 percent) have policies or guidelines requiring the placement of approach guardrail or attenuators on state-aid bridges. Only Wisconsin, Illinois, and Virginia have policies similar to Minnesota's in that bridge-approach guardrail is required on state-aid local highways only where an ADT threshold is exceeded. These states' ADT thresholds ranged from 150 to 750 vpd. Six of the responding agencies also indicated that lower-speed facilities (i.e., speeds  $\leq$  45 mph) do not require approach guardrail. Agencies were rather evenly split between use of an attenuator versus a minimal or modified section of guardrail when insufficient guardrail space exists.

## Effect of Approach Guardrail on Crash Severity

The analyses showed that bridge-approach guardrail was effective at reducing the severity (and subsequent costs) of run-off-the-road crashes occurring on the approach or departure to CSAH bridges. While guardrail did not appear to have a large effect on the proportion of B- and C-injury crashes, the proportions of fatal and A-injury crashes were considerably lower when guardrail existed on the approach. Fatal or A-injury crashes accounted for only six percent of the crashes occurring at bridges with approach guardrail, but accounted for 28.5 percent of the crashes at bridges without approach guardrail - a rate that is 4.5 times greater than at bridges with approach guardrail.

As previously presented in Figure 5.4, further analysis of the severity of various object-types struck showed that collisions with approach guardrail resulted in a significantly lower proportion of fatal and A-injury crashes when compared to collisions with the bridge rail or other roadside collisions. In fact, zero of the 33 approach guardrail collisions were fatal or A-injuries. This statistic is even more significant when compared to roadside and bridge rail collisions of which 24 percent and 29 percent, respectively, were fatalities or A-injuries. These findings were statistically validated by both a chi-square analysis and logistic regression analysis.

## **Effectiveness of Approach Guardrail**

A section of approach guardrail was deemed effective if it either provided attenuation from the end of the bridge rail or redirection back onto the roadway or shoulder. The guardrail was deemed ineffective if a vehicle vaulted over or broke through the section, if it was too short to prevent a vehicle from running off the road, or if no guardrail existed at the corner of the bridge where the crash occurred. The researchers determined that all of the 49 collisions at bridges without approach guardrail could potentially have been less severe if approach guardrail had existed at the time of the crash.

Approach guardrail was effective in approximately 57 percent of the 47 collisions at bridges with approach guardrail, either by attenuation or redirection. However, the approach guardrail was found to be less effective or ineffective in roughly 43 percent of the collisions, although the researchers concluded that each of these cases could have been prevented. For example, cases of vehicles vaulting over or breaking through the guardrail could have been avoided with the use of upgraded end-treatments and improved guardrail designs, respectively. Cases where the vehicle ran-off-the-road just ahead or beyond the guardrail could have been prevented by longer guardrail sections. Finally, cases where guardrail existed only on the two approach corners but a vehicle ran-off-the-road on the departure side of the bridge would have been aided if departure-side guardrail had been installed.

## Guardrail Protection at All Corners of Bridge versus Approach Corners Only

The analysis showed that approach-side collisions occurred in approximately 62 percent of the crashes near CSAH bridges, while approximately 34 percent of the collisions were departure-side collisions (undetermined in 4 percent of the cases). For approach-side crashes at bridges with approach guardrail, the guardrail provided effective attenuation or redirection in 69 percent of the cases with no A-injuries or fatalities. However, departure-side guardrail either did not exist or was too short to be effective in 65 percent of the departure-side collisions at bridges where approach-side guardrail existed. Alarmingly, 82 percent of these departure-side collisions where either departure-side guardrail was not present or it was too short to be effective resulted in either an injury or fatality.

## **Crash Coding for Collisions with Bridge Components**

The Minnesota crash reporting system does not included a specific code for either bridge rail or approach guardrail, rather both were typically included in TYPE 31 "bridge piers", which represented crashes with any component of the bridge, including approach guardrail. A detailed review of the police diagrams/descriptions showed that none of the 67 crashes coded as TYPE 31 were actually pier strikes. Instead, all of the 67 crashes coded in the database as TYPE 31 were found to be either collision with bridge rail or approach guardrail.

## **Cost-Effectiveness of Approach Guardrail**

The benefit/cost analysis showed that typical installations of bridge-approach guardrail (i.e., approximately 75 ft of rail and end treatments installed at all four bridge corners) are cost-effective (i.e., B/C > 1) for CSAH bridges with ADT greater than or equal to 300 vpd, becoming increasingly more cost-effective with increasing ADT. However, bridge-approach guardrail is generally not cost-effective for CSAH bridges with ADT less than 300 vpd. Overall, approach guardrail installed on CSAH bridges has a benefit/cost ratio of approximately 3.5 to 5.5 depending on assumptions for traffic growth rate and guardrail costs. The benefit/cost ratios for approach guardrail installation at various ADT thresholds were presented previously in Table 6.4 and Figures 6.4 and 6.6.

## RECOMMENDATIONS

## ADT Threshold for Installation of Approach Guardrail on CSAH Bridges

The primary goal of this research was to determine the appropriate ADT threshold at which approach guardrail is cost-effective at CSAH bridges. The safety analysis showed significantly lower rates of severe crashes at bridges with approach guardrail versus those without for all ADTs except the very low ranges. The subsequent benefit/cost analysis showed that approach guardrail was cost-effective (i.e., B/C > 1) at all bridges except those with ADTs less than 300 vpd.

Given the limited number of bridges in the 300 to 400 vpd range, the researchers recommend that the ADT threshold for approach guardrail on CSAH bridges be set at 400 vpd. In other words, all CSAH bridges with ADT greater than or equal to 400 vpd should have approach guardrail. A threshold ADT of 400 vpd is consistent with previous Mn/DOT standards and AASHTO guidelines (2). It is recommended that bridges with ADT between 150 and 400 vpd, especially those between 300 and 400 vpd, be reviewed on a case by case basis for guardrail need. Bridges located on horizontal curves and with bridge deck widths less than the approach guardrail at bridges with ADT between 150 and 400 vpd. Placement of approach guardrail at bridges with ADT less than 150 vpd is probably not cost-effective for a vast majority of the cases.

## **Guardrail Protection at All Corners of Bridges**

Although only about 1/3 of all collisions analyzed here were departure-side collisions, the researchers recommend application of guardrail at all four corners of the bridge rail instead of only at the two approach corners. This practice has traditionally varied from county to county but installation at all four corners appears to now be occurring more frequently. Guardrail applied at all four bridge corners provides protection for both approach- and departure-side

events, such as where the vehicle runs off the road to the right after crossing the bridge or crosses the centerline ahead of the bridge and runs-off-the-road to the left, potentially striking the bridge rail head-on. Departure-side protection is especially critical for narrow bridges.

# **Crash Type Coding for Collisions with Bridge Components**

To reduce the ambiguity that exists in the current crash coding system for collisions with bridge components and guardrail, the researchers recommend splitting the current crash TYPE 31 "bridge pier" and TYPE 34 "guardrail" into the following four distinct categories (also assigning an arbitrary numeric code):

- "Bridge pier/abutment",
- "Bridge rail",
- "Bridge guardrail (approach or departure)", and
- "Other guardrail (not attached to bridge)".

## REFERENCES

- 1. American Association of State Highway and Transportation Officials (AASHTO), *Roadside Design Guide* (Washington, D.C.: AASHTO, 2002).
- 2. American Association of State Highway and Transportation Officials (AASHTO), Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT  $\leq$  400) (Washington, D.C.: AASHTO, 2001).
- 3. L.B. Stephens, A User's Guide to Guardrail Warrants for Low-Volume Roads, Report NCHRP 22-5A (Washington, D.C.: National Research Council, April 1992).
- 4. J.W. Hall, "Guardrail Installation and Improvement Priorities," *Transportation Research Record* 868, (1982), 47-53.
- 5. W.A. Schwall, *Upgrading of Bridge-Approach Guardrail on Primary Roads in Iowa* (Ames, IA: Federal Highway Administration, Iowa Division, 1989).
- 6. D. Wolford and D.L. Sicking, "Guardrail Need: Embankments and Culverts," *Transportation Research Record 1599*, (1997).
- Mn/DOT Office of Investment Management (Internet), *Benefit/Cost Analysis for Transportation Projects*, July 2004 (cited January 2005), http://www.oim.dot.state.mn.us/EASS/ (see Table 1).

# **APPENDIX A**

**State Survey Form** 

# University of Wisconsin Survey: Application of Guardrail on Bridge Approaches for Low Volume Roads

\_\_\_\_\_

AGENCY: NAME: DIVISION: PHONE: EMAIL:

1. Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low-volume state and local roads?

- *If Yes:* i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?
  - ii. How was this ADT threshold developed?
  - iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?
- If No: What is the basis for placement of guardrail on bridge approaches for local roads?

2. Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

3. Does your agency use treatments other than guardrail to protect bridge abutments?

*If Yes*, please describe:

- 4. Is the basis for guardrail placement a state/agency policy or simply a guideline?
- 5. Has this policy/guideline been recently changed or considered for change?

If Yes, why?

6. Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low-volume roads?

If Yes, how can we obtain a copy of the report?

7. May we receive:

- i. A copy of the current application policy/guideline
- ii. A copy of the current design standard for bridge-approach guardrail?

# **APPENDIX B**

**State Survey Responses** 

### **Full Agency Responses**

Agency: Ohio Dept. of Transportation Name: Dean Focke Division: Office of Roadway Engineering Phone: 614-466-2847 Email: dfocke@dot.state.oh.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads?

Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Ohio does recognize AASHTO's 2001 Guidelines for Geometric Design of Very Low Volume Local Roads, but only for county and municipal projects. The state system cannot use that AASHO Guideline (very little meets that ADT criteria and is considered a local road). Therefore, all facilities that are constructed with state or federal money must comply with ODOT standards which are based on a speed threshold of 50 mph for approach guardrail placement.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Only difference we allow is between low speed and high speed facilities. Protection on low speed facilities on city streets and urban type facilities is normally not required.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: When deflection would be a problem, concrete barrier is used. In certain high accident locations, Impact Attenuators could be substituted for guardrail and guardrail transitions.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why? Answer: Just to allow AASHTO's Very Low Volume Guidelines on county/local roads. Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Question 7a: Policy - ODOT's Location and Design Manual is found on-line at: http://www.dot.state.oh.us/roadwayengineering/LDM1\_link.htm Section 600 is on Roadside Safety.

Question 7b: Standards - ODOT's Standard Drawings for Guardrails are found on-line at: http://www.dot.state.oh.us/roadwayengineering/standard\_drawingslink.htm Guardrail drawings for bridge approaches are GR-6.a and 6.2.

#### . . .

Agency: Nebraska Department of Roads Name: Phil TenHulzen Division: Roadway Design Phone: (402) 479 - 3951 Email: ptenhulz@dor.state.ne.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All highways constructed with Federal and State moneys receive guardrail attached to bridge rail.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No

Question 3a: If Yes: Please describe: Answer: No response. Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### Agency: CONNDOT

Name: DANIEL GLADOWSKI Division: DESIGN Phone: 860-594-3280 Email: Daniel.Gladowski@po.state.ct.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: If state/federal money was used to construct the bridge, it must follow the state standard and have guardrail on the approach, regardless of the system. Municipalities are encouraged to use Department guiderail standards. These can be obtained on our website, ct.gov/dot under Publications, see Highway Design Manual - Chapter 13.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: Illinois Department of Transportation**

Name: Gary Galecki Division: Highways-Bureau of Local Roads and Streets Phone: 217-785-8564 Email: galeckigj@nt.dot.state.il.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: 150 ADT on a local road for a federal-funded project provided the roadway is on a tangent alignment. Also, when the distance between the bridge rails is greater than two time the clear-zone for ADTs 0-400, guardrail on the departure sides of the bridge is not required.

Question 1ii. How was this ADT threshold developed?

Answer: Based on a policy committee including representatives of the Illinois Department of Transportation Bureau of Local Roads & Streets, county engineers and municipal engineers.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: Not to our knowledge. The design of lane widths, shoulders, etc. are based on a different ADT. A copy of our design guidelines for rural roadways is attached.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: As stated above, if the ADT is at least 150 and on a tangent alignment, guardrail is required. If the roadway is not on a tangent alignment, it is required regardless of the ADT.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Yes. Illinois has a township (road district) road system within each county. Most of these roads are low volume with oil and chip or aggregate surfaces. If the road district bridge is wider than the existing roadway and on a tangent alignment, guardrail is not required.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No

Question 3a: If Yes: Please describe:

Answer: Not for local low volume roads. Also, please note that when guardrail is used on low volume local roads, typically a Type 1A barrier is used as an end treatment. Attached is a copy of our standard.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe:

Answer: Please note that the policy we refer to is for local roads using federal funds.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Our department's local roads policy manual is currently being revised. The chapter for roadside safety has not been drafted, but this policy will be reviewed. We anticipate to have the new manual completed at the end of this year.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Illinois Department of Transportation (IDOT) Name: David L Piper Division: Highways/Bureau of Design and Environment Phone: (217)785-0720 Email: piperdl@nt.dot.state.il.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: See separate response from our Local Roads Bureau.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No response.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.

Question 4a: If Other, please describe:

Answer: See our Bureau of Design Manual, online at: <u>http://www.dot.state.il.us/desenv/bdemanual.html</u> For Roadside Safety Policy (New/Reconstruction) see: Ch 38-4.09. For 3R (Other than Freeway) see Ch 49-3.07(d). For 3R (Freeway) see Ch 50-3.09. For a statement on low speed (<30 mph) urban sections see Ch 38-3.02(f). This availability of documents online is to be considered as positive response to last two questions. Design Standards and Specifications are available at: <u>http://www.dot.state.il.us/desenv/demanuals.html</u>

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Statement in Ch 38-3.02(f) recently updated to conform with Roadside Design Guide.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

\_\_\_\_\_

#### Agency: Maine Department of Transportation

Name: Leanne Timberlake Division: Bridge Program Phone: 0207-624-3422 Email: leanne.timberlake@maine.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: We place guardrail on all bridge approaches, including those on local roads. However, we do have reduced standards based on AADT for determining the length of guardrail and the type of end treatment on local and collector roads. For example, if the ADT is less than 500, a low-volume end treatment may be used.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: The only time I can envision not having guardrail on a bridge-approach is in an urban setting where the edge of a building butts up against the end of the bridge rail.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: On rare occasions, we might use fencing in addition to guardrail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: The guardrail and guardrail policy was updated for NHS and other state roads in July 2003 to be NCHRP 350 compliant for new construction. New AADT levels were set for the selection of guardrail end treatment on non-NHS state roads: NCHRP 350 compliant for AADT =>500, Low Volume Guardrail End for

AADT <500. We are currently in the process of developing new standards for guardrail lengths and end treatments with bridges on local roads.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: Mississippi Department of Transportation** Name: Wes Dean, P.E.

Division: Traffic Engineering Division Phone: 601-359-1454 Email: wdean@mdot.state.ms.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: N/A

Question 1ii. How was this ADT threshold developed? Answer: N/A

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: N/A

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: We install guardrail on all MDOT maintained bridges, including state-aid local road bridges.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: New Jersey Department of Transportation**

Name: Shirish Patel Division: Structural Engineering Phone: (609)530-5656 Email: shirish.patel@dot.state.nj.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All state bridges must have approach guardrail. Local roadway bridges must follow this policy if state or federal money is used.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: N/A This response reflects only State roads.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: Delaware DOT**

Name: Jiten K. Soneji Division: Transportation Solution, Bridge Section Phone: (302) 7602299 Email: jsoneji@mail.dot.state.de.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Design speed. For the design speed up to 35 mph, we allow tapered down parapet. Otherwise all bridges built with state/federal monies must have approach guardrail.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Yes, mainly clear-zone. If the slope is greater than 3:1 than approach guardrail must be placed.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments?

#### Answer: No

- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Guideline
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No, but we review and implement FHWA guidelines, and the crash test results
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: Oklahoma DOT**

Name: Faria Emamian, P.E Division: Traffic Engineering Phone: 405-521-2867 Email: emamian@odot.org

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: We are using the Min distance of Clear-zone (see Table 3.1 Road side Design Guide)

Question 1ii. How was this ADT threshold developed? Answer: Based on National Study (AASHTO)

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Bridge approaches are considered a hazard. All state bridges are protected with approach guardrail and any local bridges that were built with state monies are also protected at the same level. We calculate the guard rail for bridge approaches based on length of need which takes in to account the approach slopes, ADT, shy line, distance to the bridge-approach, and clear-zone distance.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: YES

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: Yes, Most cases we are using Guard Rail, but there is some situation that we are using crash cushioning type devices like Quad Gard or Tracc etc if the bridge is too close to an immovable object.

- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Based on the newest requirement from FHWA(which is based on crash tests) Guard rail Block out and Bridge connection has been changed to satisfy the latest crash test requirements.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Arkansas Highway and Transportation Department Name: Charles Clements Division: Roadway Design Phone: 501-569-2336 Email: charles.clements@ahtd.state.ar.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response. Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridge ends are protected regardless of AADT, including state-aid local bridges. The clearzone requirement follows the AASHTO Roadside Design Guide.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: See response under 1b.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: In curb and gutter sections, bridge ends are protected with a concrete parapet transition wall. Also, other bridge end treatments such as "Trend Systems" (i.e. crash cushions) are used if existing driveways or intersecting roadways are positioned too close to a bridge to use guardrail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

- Question 4a: If Other, please describe: Answer: See response to 1b.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: No

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No

### Agency: Virginia Dept. of Transportation

Name: Bryant Lowery Division: Engineering Services Section of Location and Design Div. Phone: (804) 786-9468 Email: Bryant.Lowery@VirginiaDOT.org

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads?

Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: ADT less than or equal to 400 vpd as a general guide.

Question 1ii. How was this ADT threshold developed?

Answer: Defined by AASHTO in the 2001 Guidelines for Geometric Design of Very Low-Volume Roads.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: The VDOT Road Design Manual (available online) uses ADT along with other factors to determine paving, shoulders, etc.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Each - Pay limits are from the terminal end treatment, or standard strong post guardrail at the point where the post spacing begins to decrease, to the physical attachment on the bridge.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Yes. Typical items we look at other than ADT are: speed, accident history, paved/unpaved roadway, room for guardrail, can guardrail be physically attached to an older bridge, cost, hazards other than bridge, would bad situation become worse with addition of guardrail which itself is a hazard.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: Delineation, Impact Attenuators

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Other

Question 4a: If Other, please describe:

Answer: For low-volume roads, each location is handled on a case by case basis. Good engineering judgment must be used to determine if guardrail should be used on bridge-approach.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Iowa Department of Transportation Name: Will Stein Division: Methods Engineer Phone: 515-239-1402 Email: Will.Stein@dot.state.ia.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: Yes for low volume county roads  $\sim 200$  ADT. No for state roads, we shield all bridge ends.

Question 1ii. How was this ADT threshold developed?

Answer: Used the cost effective selection procedure given in AASHTO's 1977 Guide for selecting, locating, and designing traffic barriers.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: Yes, must also have a structure width of 24' or greater, must be on a tangent alignment, and the benefit/cost ratio is less than 0.80.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: For local county roads see County Engineers I.M. 3.213. This is available on-line at : http://www.dot.state.ia.us/local\_systems/publications/county\_im/county\_im\_toc.htm.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe: Answer: Occasionally we use impact attenuators if there is insufficient room for guardrail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: For local/county roads  $\sim$  I.M. 3.213 may be updated in the future as per AASHTO'S policy for very low volume local roads. The current edition of I.M. 3.213 does not account for the latest AASHTO guidance. For state roads, no.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Nevada Department of Transportation Name: Dennis Coyle Division: Specifications/Standards and Manuals Phone: 775-888-7598 Email: dcoyle@dot.state.nv.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: We have adopted the the AASHTO Roadside Design Guide as a criteria for justifying all roadside design issues regardless of the type of facility. The Roadside Safety Analysis Program is used to analyze benefits and costs in conjunction with engineering judgment to make decisions.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Please refer to the AASHTO Roadside Design Guide. In addition, the funding source may be a factor.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: First of all we do not normally install safety hardware to protect bridge components. We use safety hardware to shield traffic from the blunt ends of bridge rails along with the feature that the bridge is crossing if the feature itself is an obstacle. In conjunction with guardrail we use a transition section to eliminate the coffin corner effect at the bridge rail end and then a guard rail end terminal to protect traffic from the end of the guardrail. If the feature that the bridge crosses is not an obstacle itself then a crash cushion is acceptable to protect traffic from the blunt end of the bridge rail. For abutments I assume you are referring to when traffic is running under the bridge. In these cases we use guardrail or concrete barrier rail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline?

#### Answer: Other

Question 4a: If Other, please describe:

Answer: It is actually a combination of the two. The AASHTO Roadside Design Guide is adopted as a guide however we also have policy regarding the placement of safety hardware also.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: The latest edition of the Roadside Design Guide was issued in 2003.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### Agency: Michigan Department of Transportation Name: Mark C. Harrison Division: Highways Phone: 517-373-2346 Email: harrisonm@michigan.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: We have all bridges use guardrail on bridge approaches.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

Ouestion 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Ouestion 3a: If Yes: Please describe:

Answer: In urban settings where guardrail cannot be placed and the traffic speed is low (25mph) a sloped concrete end section has been used.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Michigan has yet to adopt the low volume road manual. However, when it does, which should be shortly, the state is making a policy that all bridge ends must be protected.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: West Virginia Department of Transportation (Response 1) Name: Rav Lewis Division: Traffic Engr. Div., Division of Highways Phone: 304 558 8912 Email: rlewis@dot.state.wv.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: We attempt to put adequate approach guardrail on all bridges on local roads. In some cases, we can go to the point of need; however, we try to get 62.5 feet of guardrail on each corner. In cases where speeds are low this may be w-beam guardrail with 12' 6" post spacing, no blockouts, and buffer ends.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No response.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No
- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No

Agency: West Virginia Department of Transportation (Response 2) Name: Randy Epperly Division: Deputy State Highway Engineer Phone: 304-558-6266 Email: repperly@dot.state.wv.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed?

Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Many issues are considered including speed, height of the roadway, types of vehicles, roadway alignment

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: See above

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Ouestion 3a: If Yes: Please describe: Answer: Concrete barriers in certain situations.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

## Agency: Rhode Island Department of Transportation Name: David A. Craveiro, P.E. Division: Transportation Development, Road Design Phone: (401)222-2023 ext 4036

Email: dcraveiro@dot.state.ri.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No, we protect all bridges, including state-aid local bridges. Use AASHTO Roadside Design Guide for clear-zone.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: Crash cushions such as Sand Barrels or expandable guardrail systems with cells are also used at abutments and gore abutments on bridge ramps.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Other

Question 4a: If Other, please describe:

Answer: RIDOT uses the Roadside Design Guide, the AASHTO Green Book Design Guide and also develops standards which are base on our those design standards and performance experiences in the field with installations.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Only in the sense that it is upgraded and adjusted to account for newer guidelines and standards developed under the auspices of the National Cooperative Highway Research Program. NCHRP 350 is the latest and adjustments are made when necessary.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: No response.

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No response. **Agency: Kansas Department of Transportation** Name: Ron Seitz Division: Bureau of Local Projects Phone: (785)296-3861 Email: seitz@ksdot.org

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: On city/county road projects we require a minimum length of guardrail (approach transition plus crashworthy terminal) as a minimum on all bridges regardless of how low the traffic volumes are. We are only protecting the end of the bridge rail and do not consider the full clear-zone.

On state highway projects, approach guardrails will be used in accordance with the Roadside Design Guide (length of need) regardless of traffic volumes.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No other factors. We place approach guardrail in all cases.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Ouestion 3a: If Yes: Please describe:

Answer: In urban areas a tapered approach concrete barrier may be used, particularly when there is a sidewalk present. This design reduces maintenance concerns, is more aesthetically pleasing, and is safer for pedestrians because it eliminates the sharp edges and/or projections that are present on a guardrail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Ouestion 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer<sup>.</sup> No

Ouestion 5a: If Yes, why? Answer: No response. Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### **Agency: Utah Department of Transportation**

Name: Boyd Wheeler / Glenn Schulte Division: Structures/ Traffic & Safety Phone: 801-964-4456 801-9654376 Email: bwheeler@utah.gov gschulte@utah.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: AASHTO Roadside Design Guide clear-zone requirements dictate requirements for need for protection.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes
- Question 3a: If Yes: Please describe: Answer: Precast or cast in place concrete barrier or appropriate attenuation.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change?

#### Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Tennessee Department of Transportation (Paper copy only) Name: Ed Wasserman Division: Structures Phone: 615-741-3351 Email: ed.wasserman@state.tn.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges, regardless of system or finding source are fitted with NCHRP 350 approved bridge rails and approach guardrails.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)? Answer: None

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline?

#### Answer: Other

Ouestion 4a: If Other, please describe:

Answer: TnDOT subscribes to following AASHTO policy as defined in the standard specifications for highway bridges and the LRFD specifications for design of highway bridges, which call for crash tested rails to given crash levels. TnDOT and FHWA agree on this.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: See 4a., above.

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes (attached)

#### **Agency: Wisconsin DOT**

Name: Pat Fleming (via telephone, entered by TG) Division: Phone: 608-266-8486 Email:

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: 300 for all state-aid roads. Length of guardrail determined by AASHTO RDG clear-zone calculations.

Question 1ii. How was this ADT threshold developed?

Answer: AASHTO RDG recommends ADT of 400, also AASHTO DG for Very Low Volume Roads, TRB Special Report 214.

Ouestion 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Speed: Urban state-aid routes with curb and gutter and sidewalk with design speed less than or equal to 45 mph do not need guardrail.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes
- Ouestion 3a: If Yes: Please describe: Answer: Crash cushions directly affixed to bridge rail if the space is too confined to place guardrail.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: Chapter 11-45-1 of the WisDOT Design Manual (follows AASHTO RDG for clear-zone).
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No response.
- Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

#### Agency: TxDOT

Name: Rory Meza (via telephone, entered by TG) Division: Roadway Design Phone: 512-416-2678 Email<sup>.</sup>

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridge rails/parapets must be protected including off-system state/federal aid bridges

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: Curve guardrail back if need be (70' min needed for straight section of g.r.)
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No response.

- Question 6a: If yes, how can we obtain a copy of the report? Answer: Possibly TTI or CTR - call Mark Vawshawk 512-416-2178
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No response.
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No response.

#### Agency: Mn/DOT

Name: Paul Stine Division: State Aid for Local Transportation Phone: (651) 296-9973 Email: paul.stine@dot.state.mn.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: 750

Question 1ii. How was this ADT threshold developed? Answer: By consensus of county engineer standards committee. Ouestion 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: Yes, ADT defines standards ranges.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Yes, design speed greater than 40 mph.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Ouestion 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Other
- Question 4a: If Other, please describe: Answer: Rule (has the force and effect of law).
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes
- Question 5a: If Yes, why? Answer: Was raised from 400 ADT to 750 ADT in 2000.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer<sup>.</sup> Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### Agency: SDDOT

Name: Noel Clocksin (via telephone, entered by Tim) Division: Local Roads Phone: 605-773-4256 Email: noel.clocksin@state.sd.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads?

Answer: No, but ADT is used to determine the type of guardrail used

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No bridge rail is left completely unprotected. Local Rural Roads with ADT's less than 150 have only rail end treatments turned down and connected directly to the bridge. Will mail me standard drawings.

Question 1ii. How was this ADT threshold developed? Answer: Will email me information

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: This particular ADT was chosen because it was determined that in most cases in South Dakota, local roads below 150 are gravel and above 150 are asphalt. This basically is our line between low volume and high volume local roads in South Dakota.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: No response.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe: Answer: Attenuators if no space for GR

- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Question 6a: If yes, how can we obtain a copy of the report?

Answer: Standards: <u>http://www.sddot.com/pe/roaddesign/plans\_rdmanual.asp</u> - State Manual <u>http://www.sddot.com/fpa/lga/docs/secondaryroadplan.pdf</u> - Local State Aid

- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Mailed

Agency: Maryland State Highway Admin Name: Tom Hicks Division: Traffic Phone: 410.787.5825 Email: thicks@sha.state.md.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: Safety - all bridges are so provided

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Nearby intersecting roads may affect the design, possibly resulting in a short barrier wall appropriately angled

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe: Answer: Barrier wall, as described above

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response. Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Dick Langoni (Taken by Tim over the phone) has submitted a survey.

Details:

Agency: Colorado DOT Name: Dick Langoni (Taken by Tim over the phone) Division: Traffic Region 5 Phone: 970-385-1416 Email:

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges receiving state funds regardless of system must follow the state guidelines and thus must have guardrail on approach to protect the blunt ends.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No response.

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: Washington State Dept. of Transportation Name: Rick Glidden Division: Design Phone: (360) 705-7246 Email: glidder@wsdot.wa.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: We are usually concerned with State Highways, not local roads.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: We usually apply full design standards at bridge approaches. Sometimes existing conditions will warrant not upgrading the barrier systems. Historic bridges or roadways with posted speed limits below 35 MPH are some examples.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

- Question 3a: If Yes: Please describe: Answer: Concrete Barrier, Impact Attenuators
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Some of the WSDOT Std. Plans for guardrail transitions to bridges were revised to include a curb about one year ago to satisfy concerns raised by the Federal Highway Administration.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: Arizona DOT**

Name: Terry H. Otterness, P.E. Division: ITD Phone: 602-712-4285 Email: totterness@dot.state.az.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: There is no separate policy for local roads. Bridge ends are considered a fixed object without protection. We use either an extended barrier or most times is a thrie-beam transition to a guard rail terminal.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Not at this time.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes Question 3a: If Yes: Please describe:

Answer: Assuming we are talking about bridge dadoes or bridge ends. Crash cushions are sometimes used in special applications where access roads are too close to the bridge to allow proper guard rail length.

- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why?

Answer: No but I think that some consideration should be given for urban conditions where curb and gutter are present and there is sidewalk across the bridge. In those conditions, there may be some justification for not introducing barrier at a bridge end.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: North Dakota DOT**

Name: George Stelzmiller (recorded by Tim over phone) Division: Design Phone: 701-328-2556 Email: gstelzmi@state.nd.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges, all routes if state/federal monies (AASHTO RDG) Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: ADT, Speed limit determines the length - follows AASHTO RDG

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: No response.
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: Guidelines/standards are online: <u>http://www.state.nd.us/dot/designmanual.html</u>

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: Montana DOT**

Name: Duane Williams Division: Traffic and Safety Phone: 406-444-7312 Email: duwilliams@state.mt.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges regardless of ADT or class (see Q2 for exceptions)

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: Very low volume roads or low speed urban are case-by-case and may be excluded, but this is rare

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe: Answer: crash cushion where space is limited

- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Guideline
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: Guidelines likely online
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: Wyoming DOT**

Name: Mike Gustovich Division: Traffic and Safety Phone: 307-777-4492 Email: mike.gostovich@dot.state.wy.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges that receive state/federal money must have approach guardrail (clear-zone requirements follow AASHTO RGD)

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)? Answer: No

11150001.110

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: No
- Question 3a: If Yes: Please describe: Answer: bend rail back where not enough space, particularly with draining ditches
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Guideline
- Question 4a: If Other, please describe: Answer: follow AASHTO RDG strictly
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads? Answer: No
- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No

**Agency: Oregon DOT** 

Name: Dan MacDonald (via telephone, entered by Tim) Division: Design Standards Phone: 503-986-3779 Email: daniel.j.macdonald@odot.state.or.us Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads?

Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All NHS require approach guardrail. All non-NHS routes (ODOT or off-system): approach guardrail is recommended but it's up to the local engineer (ODOT or county/city) to decide based on weighing the injury risk versus the cost of the guardrail.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: volume and operating speed - is a rail cost effective given the injury risk?

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes
- Question 3a: If Yes: Please describe: Answer: but only if space is insufficient for guardrail
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: Guideline
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: ODOT used to protect all bridges, but recently was interested in the need for placement of approach guardrail on low volume or low speed non-NHS routes. Dan MacDonald contacted FHWA's Dick Powers (richard.powers@fhwa.dot.gov 202-366-1320) who suggested the guideline in 1b. FHWA suggests states develop their own policy.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: No response.
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: No response.

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: No response.

### Agency: NCDOT

Name: Dewayne Sykes Division: Design Phone: 919-250-4016 Email: dsykes@dot.state.nc.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: Yes

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: ADT < 400 a minimal section of guardrail is typically placed on most bridges to protect the rail, but there are cases such as low speed urban where exceptions may occur. (400 ADT is in conjunction with AASHTO DG for very low volume roads). Some sort of protection is generally required for all bridges. Over 400 ADT, guardrail is placed and RDG is followed.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: ADT, speed, functional classification

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe: Answer: attenuators where limited space

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy

Question 4a: If Other, please describe: Answer: No response.

Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report?

Answer: <u>www.doh.dot.state.nc.us/preconstruct/highway/dsn\_srvc/value/manuals</u> (Design Manual Part 1 - Chapter 3 Guard Rail)

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

**Agency: Idaho DOT** 

Name: MIIford Miller Division: Design Standards Phone: 208-334-8475 Email: mlmiller@itd.state.id.us

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: All bridges must have guardrail regardless of jurisdiction if state/federal monies are used

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: On lower speed routes (35 mph) in urban areas, use of a turned down end treatment is allowed rather than NCHRP 350 treatment

- Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes
- Question 3a: If Yes: Please describe: Answer: attenuators where space is limited
- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: Yes

Question 5a: If Yes, why?

Answer: Low volumes were considered for change, but decided to keep the policy for all bridges

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: <u>http://www.itd.idaho.gov/manuals/Design/index.htm</u>
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: Missouri DOT**

Name: Joe Jones (taken over phone by Tim) Division: Design Division, Technical Support Engineer Phone: 573-751-3813 Email: joseph.jones@modot.mo.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads? Answer: Policy says no blunt ends in clear-zone - therefore protect every bridge rail regardless of

jurisdiction or ADT or speed as long as state or federal monies are involved.

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No response.

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments? Answer: Yes

Question 3a: If Yes: Please describe:

Answer: wrap guardrail around the radius or modify the end of the bridge to connect an impact attenuator directly to the rail.

Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline?

Answer: State/Agency Policy

- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No

Question 5a: If Yes, why? Answer: No response.

Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

Question 6a: If yes, how can we obtain a copy of the report? Answer: Standards are on-line but manuals are not: <u>http://www.modot.state.mo.us/business/</u>

Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes

Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

### **Agency: Louisiana DOT**

Name: Paul Fossier Division: Assist State Bridge Design Engineer Phone: 225-379-1323 Email: pfossier@dotd.louisiana.gov

Question 1: Does your agency use average daily traffic (ADT) to determine whether or not guardrail should be placed on bridge approaches for low volume state and local roads? Answer: No

Question 1a. If Yes: i. What is the minimum ADT threshold that requires for placement of bridge-approach guardrail?

Answer: No response.

Question 1ii. How was this ADT threshold developed? Answer: No response.

Question 1iii. Does this ADT threshold coincide with any other threshold (i.e., paving, shoulders, lane width, edgelines, etc.)?

Answer: No response.

Question 1b. If No: What is the basis for placement of guardrail on bridge approaches for local roads?

Answer: Require guardrail on all bridges based regardless of ADT or system if state funding is used (follow AASHTO RDG)

Question 2: Are there other factors that play a role in the decision to place/not place approach guardrail on bridge approaches for local roads (e.g., roadway width, roadway geometry, shoulder presence/width/type, speed limit, paved vs. unpaved, etc.)?

Answer: No

Question 3: Does your agency use treatments other than guardrail to protect bridge abutments?

### Answer: Yes

Question 3a: If Yes: Please describe:

Answer: yes - fit in shorter section of guardrail, YUMA treatment (curved guardrail), crash cushion if not enough space

- Question 4: Is the basis for guardrail placement a state/agency policy or simply a guideline? Answer: State/Agency Policy
- Question 4a: If Other, please describe: Answer: No response.
- Question 5: Has this policy/guideline been recently changed or considered for change? Answer: No
- Question 5a: If Yes, why? Answer: No response.
- Question 6: Has your agency performed any research into the safety or benefit/cost of bridge-approach guardrail placement on low volume roads?

Answer: No

- Question 6a: If yes, how can we obtain a copy of the report? Answer: <u>www.dotd.lousiana.gov</u> goto publications manuals (bridge manual)
- Question 7a: May we receive a copy of the current application policy/guideline? Answer: Yes
- Question 7b: May we receive a copy of the current design standard for bridge-approach guardrail? Answer: Yes

Agency: FHWA Name: Dick Powers Division: Office Safety and Design, Highway Engineer Phone: 202-366-1320 Email: richard.powers@fhwa.dot.gov

FHWA only requires that guardrail be placed on federally funded roadways (i.e. NHS). For the case of non NHS roadways, they would like to see all bridges protected, but states are allowed to develop their own policy for non NHS roads and it's probably not cost-effective to protect every bridge. If a threshold is used, it should be based on operating speeds rather than traffic volume. Other factors include: bridge width (compared to roadway width) and presence of trees and other hazards. For example, if a wide bridge has moderate speeds, sufficient delination and object markers and has a considerable line of trees or other hazards on the approach, then it may not make sense to place guardrail on the approach.

## **APPENDIX C**

# Iowa Procedure for Determining the Need for Bridge Guardrail on Low-Volume Roads

## INSTRUCTIONAL MEMORANDUMS (I.M.)

| То                                           | Date          |
|----------------------------------------------|---------------|
| County Engineers                             | November 2001 |
| From                                         | IM No.        |
| Office of Local Systems                      | 3.213         |
| Subject                                      |               |
| Traffic Barriers (Guardrail and Bridge Rail) |               |

## **To County Engineers**

The purpose of this I.M. is to provide guidelines for determining the need for traffic barriers at roadway bridges and culverts. A traffic barrier is a device used to shield a roadside obstacle that is located on the right-of-way within an established minimum width clear-zone (see I.M. 3.215 for clear-zone instruction).

Roadside obstacles are classified as non-traversable objects (such as large culverts) and as fixed objects (such as unprotected ends of bridge rails). These roadside obstacles should first be reviewed for possible removal or relocation outside the Clear-zone. If this is not practical, then a traffic barrier may be necessary. A traffic barrier itself poses some risk to an errant motorist and should be installed only if it is clear that the barrier reduces the severity of potential crashes.

## **GUARDRAIL (Approach Guardrail):**

In general, guardrail should be installed at:

1. All four bridge corners on newly constructed bridges on the Farm-to-Market system, except bridges located within an established speed zone of 35 mph or less.

2. On the approach bridge corners (right side) on new federally funded bridges constructed on the area service system, except bridges within a 35 mph or less speed zone. Consideration should be given to shielding the opposite corner if it is located on the outside edge of a curve. The FHWA will participate in guardrail at all four corners if desired by the county.

3. All four bridge corners on existing bridges within the termini of a 3R project on the Farm-to-Market System. Existing w-beam installations that are flared and anchored at both ends may be used as constructed without upgrading to current standards.

4. Culverts with spans greater than six feet (circular pipe culverts greater than 72" in diameter), if it is impractical to extend beyond the clear-zone and grates are not utilized.

Design exceptions (see I.M. 3.218\_for design exception instructions) to not utilize guardrail at bridges or culverts will be considered if the following conditions exist:

1. Current ADT at structure is less than 200 vehicles per day.

2. Structure width is 24' or greater.

- 3. Structure is on tangent alignment.
- 4. Benefit/cost Ratio is less than 0.80.

Other obstructions, within the right-of-way and clear-zone, should be reviewed for removal, relocation, installation of a traffic barrier or the "do nothing" option based on a cost-effectiveness approach.

## **BRIDGE RAILS (Barrier Rail):**

Bridge rails on newly constructed bridges should be constructed to the latest available standards (includes SL-1 type rail on structures with less than 1,000 vpd). On bridge rehabilitation projects involving federal-aid, any substandard bridge rail should be reviewed for retrofitting.

Bridge rails which are both structurally deficient and functionally obsolete should be reviewed for upgrading as part of the 3R projects. Included with this I.M. is a "Bridge Rail Rating System" developed to assist in determining if a bridge rail should be upgraded with the 3R project and to what extent it should be upgraded. Any bridge which is programmed in the near future for replacement or rehabilitation may not require upgrading as part of the 3R project.

The rating system assigns points to five factors (Crashes, ADT, Width, Length and Type of bridge rail); the sum of these factors will indicate the degree or amount of upgrading required, if any. The crash factor involves crashes (property damage only, personal injury and fatality) in the last five years (Access ALAS). The types of bridge rail are from various county bridge standards. If the existing rail is not an old standard, then determine which type it is similar to and assign the corresponding points.

Consideration should be given to extending the guardrail through the bridge on short bridges or bridges which have no end posts. This may be less costly than attaching the guardrail as per standard RE-27B or constructing an end post.

|                                     |                                        | 5 FACIO                                 | JK SYSTEM                                                    | 1                                                                       |                                                |
|-------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|
| POINTS                              | 0                                      | 5                                       | 10                                                           | 15                                                                      | 20                                             |
| Crashes<br>(in the last<br>5 years) | None                                   | 1 PDO                                   | 1 PI                                                         | 1 F or<br>2 PDO's or<br>1 PI and 1<br>PDO                               | 2 or more<br>F's/PI's or<br>3 or more<br>PDO's |
| ADT<br>(current year)               | < 200                                  | 200 - 299                               | 300 - 399                                                    | 400 - 750                                                               | > 750                                          |
| Bridge Width<br>(feet)              | <u>&gt;</u> 30                         | 28                                      | 24                                                           | 22                                                                      | <u>&lt;</u> 20                                 |
| Bridge Length<br>(feet)             | < 50                                   | 50 - 99                                 | 100 - 149                                                    | 150 - 200                                                               | > 200                                          |
| Bridge Rail<br>(type)               | Aluminum<br>Rail<br>(1967<br>Standard) | Steel Box<br>Rail<br>(1964<br>Standard) | Formed Steel<br>Beam Rail<br>(1951 and<br>1957<br>Standards) | Steel Rail<br>(1941<br>Standard)<br>Concrete Rail<br>(1928<br>Standard) | Angle<br>Handrail<br>(1928<br>Standard)        |

### **BRIDGE RAIL RATING SYSTEM** 5 FACTOR SYSTEM

Abbreviations: PDO = Property Damage Only crash PI = Personal Injury crash F = Fatality crash

## **Upgrading Needed**

< 25 Points - No Upgrading at this time

25 - 50 Points - Delineation according to Standard RE-48A

51 - 75 Points - Block out with Thrie Beam to curb edge

(If existing approach guardrail is W-Beam, W-Beam may be used)

Over 75 Points - Retrofit

# **APPENDIX D**

Pontis Inventory Information for Sample CSAH Bridges

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected       | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class     | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------------|---------------|-------------|---------------|-------------|-------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ANOKA          | CSAH 26  | 2195          | 000+00.650 | 0.6 MI S OF<br>JCT CSAH 24 | CEDAR CREEK                  | 1918          | 30.0        | 41.4          | 2           | 16-<br>URB/MINOR<br>ART | 1409         | 2002      | 2             | 36             | 41.4          | 8                          |
| ANOKA          | CSAH 24  | 02501         | 009+00.030 | 0.2 MI E OF<br>JCT CSAH 28 | RUM RIVER                    | 1964          | 106.5       | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART | 9400         | 2003      | 2             | 44             | 44            | 7                          |
| ANOKA          | CSAH 28  | 02502         | 002+00.160 | 0.1 MI W OF<br>JCT CR 71   | SEELYE BROOK                 | 1961          | 24.8        | 28.1          | 2           | 06-<br>RUR/MINOR<br>ART | 3108         | 2002      | 2             | 28             | 28.1          | 6                          |
| ANOKA          | CSAH 13  | 02518         | 000+00.800 | 0.7 MI N OF<br>JCT CSAH 22 | CEDAR CREEK                  | 1966          | 26.1        | 29.6          | 2           | 06-<br>RUR/MINOR<br>ART | 1976         | 2002      | 2             | 32             | 29.6          | 6                          |
| ANOKA          | CSAH 22  | 02519         | 008+00.810 | 0.2 MI E OF<br>JCT CR 55   | RUM RIVER                    | 1969          | 78.2        | 30.0          | 2           | 06-<br>RUR/MINOR<br>ART | 8586         | 2002      | 2             | 32             | 30            | 7                          |
| ANOKA          | CSAH 2   | 02523         | 000+00.181 | 0.2 MI NE OF<br>JCT CSAH 1 | BNSF RR                      | 1973          | 205.0       | 44.0          | 2           | 16-<br>URB/MINOR<br>ART | 9103         | 2002      | 2             | 44             | 44            | 5                          |
| ANOKA          | CSAH 7   | 02526         | 007+00.670 | 1.5 MI E OF<br>JCT TH 47   | RUM RIVER                    | 1975          | 68.4        | 44.0          | 2           | 17-URB COLL             | 8708         | 2002      | 2             | 50             | 44            | 7                          |
| ANOKA          | CSAH 14  | 02527         | 016+00.405 | 1.0 MI S OF<br>JCT TH 35W  | CHAN<br>BETWEEN TWO<br>LAKES | 1975          | 31.0        | 48.3          | 2           | 06-<br>RUR/MINOR<br>ART | 7201         | 2002      | 2             | 30             | 48.3          | 8                          |
| ANOKA          | CSAH 7   | 02535         | 013+00.210 | 1.2 MI S OF<br>JCT CSAH 24 | SEELYE BROOK                 | 1984          | 20.0        | 44.1          | 2           | 07-RURAL<br>COLL        | 6241         | 2002      | 2             | 32             | 44.1          | 8                          |
| ANOKA          | CSAH 9   | 02536         | 007+00.400 | 1.2 MI S OF<br>JCT CSAH 22 | CEDAR CREEK                  | 1995          | 64.0        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART | 10380        | 2002      | 2             | 40             | 44            | 9                          |

## Table D-1. Pontis Data for Bridges WITH Approach Guardrail

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class     | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|-------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ANOKA          | CSAH 78  | 02539         | 004+00.806 | 0.3 MI S OF<br>JCT CSAH 16 | COON CREEK             | 1982          | 64.6        | 54.8          | 2           | 16-<br>URB/MINOR<br>ART | 14554        | 2002      | 2             | 54             | 54.8          | 8                          |
| ANOKA          | CSAH 1   | 02541         | 003+00.980 | 1.5 MI N OF<br>JCT TH 694  | RICE CREEK             | 1988          | 51.0        | 34.0          | 4           | 16-<br>URB/MINOR<br>ART | 26758        | 2002      | 2             | 84             | 68            | 9                          |
| ANOKA          | CSAH 116 | 02545         | 002+00.026 | 0.4 MI E OF<br>JCT TH 47   | RUM RIVER              | 1990          | 133.4       | 68.0          | 4           | 16-<br>URB/MINOR<br>ART | 17156        | 2002      | 2             | 68             | 68            | 8                          |
| ANOKA          | CSAH 116 | 02546         | 001+00.716 | 0.1 MI E OF<br>JCT TH 47   | RUM RIVER<br>OXBOW     | 1990          | 100.0       | 68.0          | 4           | 16-<br>URB/MINOR<br>ART | 17156        | 2002      | 2             | 68             | 68            | 9                          |
| ANOKA          | CSAH 22  | 02548         | 004+00.994 | 0.4 MI W OF<br>JCT TH 47   | FORD BROOK             | 1987          | 67.0        | 40.0          | 2           | 06-<br>RUR/MINOR<br>ART | 5464         | 2002      | 2             | 40             | 40            | 9                          |
| ANOKA          | CSAH 18  | 02549         | 002+00.571 | 0.2 MI N OF<br>JCT TH 242  | COON CREEK             | 1988          | 69.0        | 56.0          | 4           | 16-<br>URB/MINOR<br>ART | 14479        | 2002      | 2             | 76             | 56            | 7                          |
| ANOKA          | CSAH 11  | 02553         | 004+00.450 | 0.6 MI E OF<br>JCT CSAH 78 | COON CREEK             | 1991          | 42.0        | 56.0          | 4           | 16-<br>URB/MINOR<br>ART | 13770        | 2002      | 2             | 56             | 56            | 8                          |
| ANOKA          | CSAH 14  | 02560         | 001+00.049 | 1.0 MI W OF<br>JCT TH 10   | BNSF RR                | 1991          | 90.0        | 32.0          | 4           | 16-<br>URB/MINOR<br>ART | 20076        | 2002      | 2             | 82             | 64            | 9                          |
| ANOKA          | CSAH 116 | 02564         | 005+00.078 | 0.1 MI E OF<br>JCT CSAH 16 | COON CREEK             | 1999          | 27.2        | 33.4          | 5           | 17-URB COLL             | 20558        | 2002      | 2             | 67             | 78.6          | 8                          |
| ANOKA          | CSAH 35  | 3310          | 001+00.580 | 0.4 MI N OF<br>JCT CSAH 6  | RICE CREEK             | 1920          | 10.0        | 47.0          | 2           | 17-URB COLL             | 10500        | 2003      | 2             | 44             | 0             | 6                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ANOKA          | CSAH 49  | 4711          | 001+00.458 | 0.8 MI S OF<br>JCT CSAH 23 | CHANNEL                | 1927          | 35.0        | 27.0          | 2           | 16-<br>URB/MINOR<br>ART  | 14106        | 2002      | 2             | 36             | 27            | 7                          |
| ANOKA          | CSAH 21  | 90734         | 006+00.080 | 2.5 MI N OF<br>JCT CSAH 14 | HARDWOOD<br>CREEK      | 1960          | 5.0         | 35.0          | 2           | 07-RURAL<br>COLL         | 800          | 2003      | 2             | 32             | 0             | 5                          |
| ANOKA          | CSAH 23  | 90737         | 012+00.263 | 0.8 MI W OF<br>JCT CSAH 21 | RICE CREEK             | 1926          | 10.0        | 45.0          | 2           | 07-RURAL<br>COLL         | 6100         | 2003      | 2             | 44             | 0             | 8                          |
| ANOKA          | CSAH 1   | 92164         | 008+00.926 | 0.8 MI N OF<br>JCT CSAH 11 | COON CREEK             | 1973          | 14.1        | 48.0          | 5           | 16-<br>URB/MINOR<br>ART  | 40306        | 2002      | 2             | 130            | 106           | 8                          |
| ANOKA          | CSAH 24  | 92730         | 017+00.590 | 0.5 MI E OF<br>JCT CSAH 26 | CEDAR CREEK            | 1970          | 9.5         | 32.0          | 2           | 07-RURAL<br>COLL         | 1000         | 2003      | 2             | 32             | 0             | 8                          |
| ANOKA          | CSAH 22  | 95167         | 012+00.146 | 1.9 MI E OF<br>JCT CSAH 9  | CEDAR CREEK            | 1983          | 10.2        | 48.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 8978         | 2002      | 2             | 44             | 0             | 8                          |
| ANOKA          | CSAH 116 | 96834         | 001+00.934 | 0.3 MI E OF<br>JCT TH 47   | PARK ACCESS<br>ROAD    | 1990          | 40.0        | 68.0          | 4           | 16-<br>URB/MINOR<br>ART  | 17156        | 2002      | 2             | 68             | 68            | 8                          |
| CROW<br>WING   | CSAH 3   | 6518          | 001+00.469 | 2.0 MI N OF<br>BRAINERD    | MISSISSIPPI<br>RIVER   | 1950          | 112.6       | 30.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 8600         | 2001      | 2             | 44             | 30            | 8                          |
| CROW<br>WING   | CSAH 16  | 18501         | 012+00.150 | 1.2 MI S OF<br>JCT CSAH 66 | PINE RIVER             | 1963          | 31.1        | 40.3          | 2           | 07-RURAL<br>COLL         | 2550         | 2001      | 2             | 40             | 40.3          | 9                          |
| CROW<br>WING   | CSAH 23  | 18502         | 010+00.330 | 1.7 MI N OF<br>JCT CSAH 22 | NOKASIPPI<br>RIVER     | 1960          | 28.7        | 29.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 590          | 2001      | 2             | 36             | 29.4          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                    | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| CROW<br>WING   | CSAH 15  | 18503         | 004+00.700 | 2.5 MI S OF<br>JCT CSAH 1   | PINE RIVER             | 1971          | 49.6        | 36.0          | 2           | 07-RURAL<br>COLL         | 550          | 2001      | 2             | 40             | 36            | 8                          |
| CROW<br>WING   | CSAH 45  | 18504         | 003+00.980 | 0.4 MI N OF<br>JCT CSAH 2   | NOKASIPPI<br>RIVER     | 1970          | 31.1        | 40.1          | 2           | 07-RURAL<br>COLL         | 930          | 2001      | 2             | 40             | 40.1          | 8                          |
| CROW<br>WING   | CSAH 31  | 18506         | 003+00.510 | 3.0 MI N OF<br>JCT TH 210-6 | RABBIT LAKE<br>NARROWS | 1974          | 22.0        | 30.8          | 2           | 08-<br>RUR/MINOR<br>COLL | 1350         | 2001      | 2             | 40             | 30.8          | 8                          |
| CROW<br>WING   | CSAH 77  | 18508         | 000+00.660 | 2.8 MI W OF<br>JCT TH 371   | GULL RIVER             | 1979          | 81.0        | 44.6          | 2           | 07-RURAL<br>COLL         | 4250         | 2001      | 2             | 48             | 44.6          | 9                          |
| CROW<br>WING   | CSAH 66  | 18510         | 000+00.980 | 0.9 MI N OF<br>JCT CSAH 3   | DAGGETT<br>BROOK       | 1979          | 70.0        | 44.1          | 2           | 06-<br>RUR/MINOR<br>ART  | 5100         | 2001      | 2             | 44             | 44.1          | 9                          |
| CROW<br>WING   | CSAH 2   | 18512         | 002+00.300 | 2.3 MI E OF<br>JCT TH 371   | NOKASIPPI<br>RIVER     | 1984          | 30.7        | 36.2          | 2           | 07-RURAL<br>COLL         | 255          | 2001      | 2             | 36             | 36.2          | 9                          |
| CROW<br>WING   | CSAH 36  | 18514         | 007+00.820 | 1.5 MI W OF<br>JCT TH 6     | LITTLE PINE<br>RIVER   | 1981          | 26.0        | 31.8          | 2           | 07-RURAL<br>COLL         | 570          | 2001      | 2             | 36             | 31.8          | 9                          |
| CROW<br>WING   | CSAH 3   | 18517         | 022+00.757 | 0.2 MI S OF<br>JCT CSAH 6   | PINE RIVER             | 1985          | 59.5        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 5900         | 2001      | 2             | 44             | 44            | 9                          |
| CROW<br>WING   | CSAH 36  | 18518         | 001+00.100 | 0.5 MI S OF<br>JCT CSAH 37  | PINE RIVER             | 1984          | 104.5       | 38.5          | 2           | 07-RURAL<br>COLL         | 1100         | 2001      | 2             | 36             | 38.5          | 9                          |
| CROW<br>WING   | CSAH 9   | 18520         | 000+00.940 | 1.0 MI N OF<br>JCT CSAH 2   | NOKASIPPI<br>RIVER     | 1993          | 32.1        | 36.6          | 2           | 09-RURAL<br>LOCAL        | 260          | 2001      | 2             | 34             | 36.6          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| CROW<br>WING   | CSAH 2   | 18522         | 012+00.690 | 0.5 MI W OF<br>JCT TH 25   | DAGGETT<br>BROOK       | 1996          | 55.8        | 36.0          | 2           | 07-RURAL<br>COLL         | 485          | 2001      | 2             | 32             | 36            | 8                          |
| CROW<br>WING   | CSAH 21  | 18523         | 001+00.160 | 1.1 MI N OF<br>JCT CSAH 2  | NOKASIPPI<br>RIVER     | 2001          | 69.7        | 36.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 530          | 2001      | 2             | 32             | 36            | 8                          |
| CROW<br>WING   | CSAH 11  | 18524         | 018+00.450 | 0.3 MI E OF<br>JCT CSAH 19 | PINE RIVER             | 2003          | 66.7        | 40.0          | 2           | 07-RURAL<br>COLL         | 1050         | 2001      | 2             | 36             | 40            | 8                          |
| CROW<br>WING   | CSAH 2   | 92168         | 018+00.120 | 1.1 MI W OF<br>JCT CR 132  | DAGGETT<br>BROOK       | 1967          | 9.5         | 36.0          | 2           | 07-RURAL<br>COLL         | 1550         | 2001      | 2             | 36             | 0             | 8                          |
| CROW<br>WING   | CSAH 21  | 92547         | 003+00.030 | 0.3 MI N OF<br>JCT CR 121  | HAY CREEK              | 1960          | 12.3        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 940          | 2001      | 2             | 36             | 32            | 8                          |
| CROW<br>WING   | CSAH 8   | 93300         | 017+00.800 | 0.4 MI S OF<br>JCT TH 18   | GRAVE LAKE<br>OUTLET   | 1977          | 12.8        | 36.0          | 2           | 07-RURAL<br>COLL         | 660          | 2001      | 2             | 36             | 0             | 9                          |
| CROW<br>WING   | CSAH 23  | L2839         | 001+00.930 | 0.9 MI N OF<br>JCT CR 139  | DAGGETT<br>BROOK       | 1952          | 19.7        | 28.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 335          | 2001      | 2             | 32             | 28.2          | 8                          |
| CROW<br>WING   | CSAH 24  | L2840         | 002+00.020 | 1.2 MI W OF<br>JCT CSAH 8  | NOKASIPPI<br>RIVER     | 1962          | 5.0         | 30.0          | 2           | 09-RURAL<br>LOCAL        | 345          | 2001      | 2             | 32             | 30            | 8                          |
| CROW<br>WING   | CSAH 1   | L2863         | 008+00.950 | 0.8 MI E OF<br>JCT CR 134  | THOMPSON<br>CREEK      | 1943          | 28.0        | 28.0          | 2           | 07-RURAL<br>COLL         | 1400         | 2001      | 2             | 38             | 28            | 8                          |
| CROW<br>WING   | CSAH 3   | L2865         | 019+00.487 | 0.5 MI N OF<br>JCT CSAH 11 | PELICAN<br>BROOK       | 1958          | 12.3        | 40.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 4350         | 2001      | 2             | 40             | 0             | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class     | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|-------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| DAKOTA         | CSAH 88  | 4914          | 007+00.582 | 0.2 MI W OF<br>JCT TH 52   | STREAM                 | 1930          | 28.3        | 25.0          | 2           | 07-RURAL<br>COLL        | 2000         | 2003      | 2             | 30             | 25            | 8                          |
| DAKOTA         | CSAH 9   | 8433          | 002+00.156 | 1.2 MI N OF<br>JCT CSAH 80 | VERMILLION<br>RIVER    | 1945          | 9.0         | 30.0          | 2           | 06-<br>RUR/MINOR<br>ART | 3300         | 2003      | 2             | 28             | 0             | 8                          |
| DAKOTA         | CSAH 46  | 19502         | 022+00.245 | 0.5 MI W OF<br>JCT CSAH 47 | VERMILLION<br>RIVER    | 1967          | 50.0        | 30.2          | 2           | 06-<br>RUR/MINOR<br>ART | 4200         | 2003      | 2             | 44             | 30.2          | 8                          |
| DAKOTA         | CSAH 46  | 19503         | 023+00.803 | 0.7 MI SW OF<br>JCT TH 61  | VERMILLION<br>RIVER    | 1968          | 57.0        | 34.6          | 2           | 16-<br>URB/MINOR<br>ART | 9900         | 2003      | 2             | 36             | 34.6          | 8                          |
| DAKOTA         | CSAH 85  | 19504         | 011+00.120 | 0.9 MI N OF<br>JCT CSAH 62 | VERMILLION<br>RIVER    | 1968          | 52.1        | 30.0          | 2           | 07-RURAL<br>COLL        | 890          | 2003      | 2             | 48             | 30            | 8                          |
| DAKOTA         | CSAH 42  | 19511         | 000+00.947 | 0.3 MI W OF<br>JCT CSAH 5  | CP RAIL                | 1971          | 54.0        | 28.0          | 4           | 14-URB/OTH<br>PR ART    | 39500        | 2003      | 2             | 61             | 56            | 8                          |
| DAKOTA         | CSAH 23  | 19517         | 011+00.320 | 1.5 MI S OF<br>JCT CSAH 86 | CHUB CREEK             | 1987          | 63.1        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART | 3450         | 2003      | 2             | 44             | 44            | 8                          |
| DAKOTA         | CSAH 31  | 19528         | 013+00.394 | .7 MI S OF JCT<br>CSAH 32  | PARK TRAIL             | 1990          | 46.0        | 64.0          | 5           | 16-<br>URB/MINOR<br>ART | 17700        | 2003      | 2             | 64             | 64            | 8                          |
| DAKOTA         | CSAH 47  | 19542         | 000+00.840 | 0.1 MI S OF<br>JCT CSAH 88 | CHUB CREEK             | 2004          | 40.0        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART | 3100         | 2003      | 2             | 40             | 44            | 9                          |
| DAKOTA         | CSAH 62  | 96705         | 009+00.815 | 1.1 MI W OF<br>JCT CSAH 91 | DRY RUN                | 1990          | 12.0        | 40.0          | 2           | 07-RURAL<br>COLL        | 1700         | 2003      | 2             | 40             | 0             | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                    | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| DAKOTA         | CSAH 50  | 19J07         | 006+00.881 | 0.6 MI E OF<br>JCT CSAH 23  | E BR N FK<br>VERMILLION R | 1996          | 8.0         | 34.0          | 4           | 16-<br>URB/MINOR<br>ART  | 15000        | 2003      | 2             | 86             | 68            | 8                          |
| DAKOTA         | CSAH 47  | L3169         | 015+00.089 | 0.1 MI SW OF<br>JCT CSAH 85 | DRY RUN                   | 1919          | 7.9         | 26.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 2250         | 2003      | 2             | 34             | 26            | 8                          |
| DAKOTA         | CSAH 47  | L3170         | 014+00.869 | 0.3 MI SW OF<br>JCT CSAH 85 | DRY RUN                   | 1919          | 10.0        | 28.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 2250         | 2003      | 2             | 34             | 28            | 8                          |
| DAKOTA         | CSAH 23  | L3173         | 011+00.530 | 0.6 MI N OF<br>JCT CSAH 78  | VERMILLION<br>RIVER       | 1923          | 10.0        | 43.6          | 2           | 06-<br>RUR/MINOR<br>ART  | 5700         | 2003      | 2             | 44             | 43.6          | 8                          |
| DAKOTA         | CSAH 91  | L3180         | 001+00.750 | 3.0 MI SW OF<br>JCT TH 61   | TROUT BROOK               | 1931          | 8.0         | 26.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2003      | 2             | 30             | 26            | 7                          |
| DAKOTA         | CSAH 86  | L3182         | 009+00.810 | 0.9 MI E OF<br>JCT CR 53    | N BR CHUB<br>CREEK        | 1940          | 10.0        | 29.4          | 2           | 06-<br>RUR/MINOR<br>ART  | 2200         | 2003      | 2             | 34             | 29.4          | 7                          |
| DAKOTA         | CSAH 85  | L3196         | 001+00.230 | 1.3 MI N OF<br>JCT CSAH 86  | PINE CREEK                | 1959          | 24.0        | 28.5          | 2           | 07-RURAL<br>COLL         | 490          | 2003      | 2             | 30             | 28.5          | 8                          |
| FILLMORE       | CSAH 1   | 5289          | 020+00.770 | 0.9 MI N OF<br>JCT CSAH 4   | STREAM                    | 1933          | 41.0        | 24.8          | 2           | 07-RURAL<br>COLL         | 1300         | 2001      | 2             | 28             | 24.8          | 6                          |
| FILLMORE       | CSAH 1   | 23507         | 016+00.070 | 0.6 MI S OF<br>JCT CSAH 4   | DEER CREEK                | 1965          | 52.0        | 30.1          | 2           | 07-RURAL<br>COLL         | 1300         | 2001      | 2             | 30             | 30.1          | 6                          |
| FILLMORE       | CSAH 1   | 23508         | 017+00.750 | 1.0 MI N OF<br>JCT CSAH 4   | BEAR CREEK                | 1965          | 46.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 1300         | 2001      | 2             | 30             | 30            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 36  | 23513         | 000+00.020 | 0.1 MI E OF<br>JCT TH 16   | ROOT RIVER             | 1969          | 67.2        | 30.0          | 2           | 09-RURAL<br>LOCAL        | 365          | 2001      | 2             | 30             | 30            | 8                          |
| FILLMORE       | CSAH 1   | 23514         | 006+00.370 | 0.3 MI N OF<br>JCT CSAH 3  | S BR ROOT<br>RIVER     | 1970          | 31.1        | 30.7          | 2           | 07-RURAL<br>COLL         | 900          | 2001      | 2             | 32             | 30.7          | 8                          |
| FILLMORE       | CSAH 5   | 23516         | 027+00.708 | 0.2 MI SW OF<br>JCT CR 102 | BEAR CREEK             | 1971          | 46.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 550          | 2001      | 2             | 32             | 32            | 6                          |
| FILLMORE       | CSAH 8   | 23528         | 002+00.050 | 1.0 MI SE OF<br>JCT CSAH 4 | DEER CREEK             | 1982          | 39.3        | 32.6          | 2           | 07-RURAL<br>COLL         | 1750         | 2001      | 2             | 32             | 32.6          | 8                          |
| FILLMORE       | CSAH 2   | 23535         | 016+00.600 | 0.6 MI W OF<br>JCT TH 52   | N BR ROOT<br>RIVER     | 1998          | 59.5        | 39.3          | 2           | 07-RURAL<br>COLL         | 760          | 2001      | 2             | 35             | 39.3          | 8                          |
| FILLMORE       | CSAH 12  | 23546         | 020+00.700 | 0.3 MI W OF<br>JCT CSAH 17 | S BR ROOT<br>RIVER     | 1985          | 95.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 760          | 2001      | 2             | 44             | 44            | 8                          |
| GOODHUE        | CSAH 2   | 25501         | 007+00.008 | 0.4 MI S OF<br>JCT CR 45   | WELLS CREEK            | 1966          | 25.2        | 29.5          | 2           | 07-RURAL<br>COLL         | 510          | 2003      | 2             | 36             | 29.5          | 5                          |
| GOODHUE        | CSAH 18  | 25505         | 002+00.170 | 2.1 MI N OF<br>JCT TH 61   | VERMILLION<br>RIVER    | 1968          | 85.8        | 36.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 7400         | 2003      | 2             | 34             | 36            | 8                          |
| GOODHUE        | CSAH 18  | 25506         | 002+00.720 | 2.6 MI N OF<br>JCT TH 61   | INDIAN<br>SLOUGH       | 1968          | 72.3        | 36.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 7400         | 2003      | 2             | 34             | 36            | 7                          |
| GOODHUE        | CSAH 14  | 25508         | 004+00.220 | 0.1 MI S OF<br>JCT CR 44   | LITTLE<br>CANNON RIVER | 1969          | 52.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 245          | 2003      | 2             | 34             | 30            | 6                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |    | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|----|----------------------------|
| GOODHUE        | CSAH 14  | 25509         | 006+00.180 | 1.0 MI N OF<br>JCT CSAH 22 | LITTLE<br>CANNON RIVER      | 1969          | 54.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 510          | 2003      | 2             | 32             | 30 | 7                          |
| GOODHUE        | CSAH 10  | 25512         | 010+00.300 | 0.9 MI E OF<br>JCT CSAH 4  | N BR ZUMBRO<br>RIVER        | 1971          | 67.1        | 30.0          | 2           | 07-RURAL<br>COLL         | 920          | 2003      | 2             | 30             | 30 | 8                          |
| GOODHUE        | CSAH 5   | 25513         | 014+00.060 | 0.5 MI W OF<br>JCT TH 61   | GILBERT<br>CREEK            | 1971          | 44.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 2150         | 2003      | 2             | 32             | 36 | 7                          |
| GOODHUE        | CSAH 66  | 25517         | 000+00.270 | 0.2 MI E OF<br>JCT CSAH 1  | HAY CREEK                   | 1975          | 62.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 6700         | 2003      | 2             | 44             | 44 | 9                          |
| GOODHUE        | CSAH 30  | 25520         | 009+00.368 | 1.2 MI W OF<br>JCT TH 57   | N FK ZUMBRO<br>RIVER        | 1979          | 65.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 610          | 2003      | 2             | 32             | 32 | 9                          |
| GOODHUE        | CSAH 27  | 25538         | 000+00.190 | 0.2 MI N 0F S<br>CO LINE   | N BR MID FK<br>ZUMBRO RIVER | 1982          | 40.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2003      | 2             | 32             | 32 | 9                          |
| GOODHUE        | CSAH 17  | 25540         | 002+00.970 | 1.9 MI E OF<br>JCT TH 20   | PINE CREEK                  | 1986          | 85.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 640          | 2003      | 2             | 32             | 32 | 8                          |
| GOODHUE        | CSAH 9   | 25541         | 005+00.430 | 0.3 MI W OF<br>JCT CSAH 14 | LITTLE<br>CANNON RIVER      | 1981          | 55.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 1500         | 2003      | 2             | 44             | 44 | 9                          |
| GOODHUE        | CSAH 24  | 25554         | 006+00.075 | 2.5 MI SW OF<br>JCT TH 52  | LITTLE<br>CANNON RIVER      | 1983          | 70.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 510          | 2003      | 2             | 32             | 32 | 9                          |
| GOODHUE        | CSAH 1   | 25559         | 022+00.447 | 0.2 MI E OF<br>JCT CSAH 8  | BELLE CREEK                 | 1993          | 77.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 1100         | 2003      | 2             | 40             | 44 | 9                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| GOODHUE        | CSAH 1   | 25562         | 007+00.290 | 0.8 MI N OF<br>JCT TH 60   | N FK ZUMBRO<br>RIVER      | 1993          | 55.2        | 40.0          | 2           | 07-RURAL<br>COLL         | 710          | 2003      | 2             | 36             | 40            | 9                          |
| GOODHUE        | CSAH 30  | 25564         | 008+00.910 | 1.5 MI W OF<br>JCT TH 57   | STREAM                    | 1987          | 31.7        | 32.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 420          | 2003      | 2             | 32             | 32.1          | 9                          |
| GOODHUE        | CSAH 5   | 25566         | 005+00.180 | 0.4 MI E OF<br>JCT CSAH 2  | WELLS CREEK               | 1992          | 68.4        | 36.0          | 2           | 07-RURAL<br>COLL         | 650          | 2003      | 2             | 36             | 36            | 9                          |
| GOODHUE        | CSAH 21  | 25582         | 003+00.400 | 0.4 MI S OF<br>JCT TH 61   | BULLARD<br>CREEK          | 1998          | 37.7        | 43.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 1000         | 2003      | 2             | 39             | 43            | 9                          |
| LYON           | CSAH 13  | 42512         | 019+00.470 | 2.3 MI N OF<br>JCT TH 19   | S BR YELLOW<br>MEDICINE R | 1967          | 26.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 145          | 2001      | 2             | 36             | 30            | 8                          |
| LYON           | CSAH 13  | 42514         | 017+00.460 | 0.2 MI N OF<br>JCT TH 19   | S BR YELLOW<br>MEDICINE R | 1967          | 26.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 145          | 2001      | 2             | 36             | 30            | 8                          |
| LYON           | CSAH 33  | 42539         | 002+00.825 | 0.6 MI E OF<br>JCT TH 59   | BNSF RR                   | 1983          | 61.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 3950         | 2001      | 2             | 44             | 44            | 9                          |
| LYON           | CSAH 33  | 42541         | 003+00.475 | 1.2 MI E OF<br>JCT TH 59   | REDWOOD<br>RIVER          | 1983          | 50.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 3950         | 2001      | 2             | 48             | 44            | 9                          |
| LYON           | CSAH 2   | 42557         | 020+00.110 | 0.9 mi E of jct<br>CSAH 9  | Cottonwood River          | 2002          | 101.7       | 40.0          | 2           | 07-RURAL<br>COLL         | 244          | 2001      | 2             | 36             | 40            | 8                          |
| MOWER          | CSAH 2   | 736           | 004+00.040 | 0.1 MI E OF<br>JCT CSAH 25 | STREAM                    | 1939          | 28.1        | 29.0          | 2           | 07-RURAL<br>COLL         | 730          | 1996      | 2             | 28             | 29            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                      | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-------------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| MOWER          | CSAH 25  | 2227          | 003+00.830 | 1.8 MI S OF<br>JCT CSAH 2     | STREAM                 | 1958          | 23.0        | 27.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 800          | 1996      | 2             | 26             | 27.5          | 8                          |
| MOWER          | CSAH 4   | 2534          | 021+00.130 | 1.6 MI E OF<br>JCT CSAH 7     | STREAM                 | 1917          | 24.0        | 22.8          | 2           | 08-<br>RUR/MINOR<br>COLL | 75           | 1996      | 2             | 35             | 22.8          | 8                          |
| MOWER          | CSAH 8   | 4569          | 010+00.570 | 0.6 MI N OF<br>JCT CSAH 13    | DEER CREEK             | 1926          | 47.0        | 23.5          | 2           | 07-RURAL<br>COLL         | 315          | 1996      | 2             | 30             | 23.5          | 8                          |
| MOWER          | CSAH 29  | 5368          | 003+00.700 | 0.3 MI S OF<br>OAKLAND<br>AVE | CEDAR RIVER            | 1933          | 84.0        | 30.0          | 2           | 16-<br>URB/MINOR<br>ART  | 2950         | 1996      | 2             | 40             | 30            | 5                          |
| MOWER          | CSAH 5   | 7016          | 002+00.250 | 0.1 MI E OF<br>JCT TH 105     | CEDAR RIVER            | 1951          | 85.0        | 24.1          | 2           | 07-RURAL<br>COLL         | 210          | 1996      | 2             | 32             | 24.1          | 8                          |
| MOWER          | CSAH 23  | 7048          | 000+00.960 | 0.9 MI N OF<br>JCT CSAH 28    | TURTLE CREEK           | 1955          | 60.0        | 28.0          | 2           | 16-<br>URB/MINOR<br>ART  | 2150         | 1996      | 2             | 30             | 28            | 8                          |
| MOWER          | CSAH 4   | 7050          | 011+00.170 | 0.8 MI W OF<br>JCT CSAH 19    | ROSE CREEK             | 1957          | 60.1        | 24.0          | 2           | 07-RURAL<br>COLL         | 610          | 1996      | 2             | 32             | 24            | 8                          |
| MOWER          | CSAH 6   | 7091          | 002+00.350 | 0.3 MI E OF<br>JCT TH 105     | CEDAR RIVER            | 1953          | 85.0        | 24.0          | 2           | 07-RURAL<br>COLL         | 640          | 1996      | 2             | 36             | 24            | 8                          |
| MOWER          | CSAH 14  | 7148          | 000+00.200 | 0.2 MI N OF<br>JCT TH 56      | UPPER IOWA<br>RIVER    | 1955          | 71.0        | 24.0          | 2           | 07-RURAL<br>COLL         | 1200         | 1996      | 2             | 29             | 24            | 8                          |
| MOWER          | CSAH 28  | 7232          | 003+00.680 | 0.2 MI W OF<br>JCT CSAH 29    | CEDAR RIVER            | 1959          | 80.0        | 28.0          | 2           | 17-URB COLL              | 1300         | 1996      | 2             | 30             | 28            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| MOWER          | CSAH 16  | 50502         | 007+00.200 | 0.1 MI N OF<br>JCT CSAH 2  | ROBERTS<br>CREEK       | 1960          | 30.0        | 27.3          | 2           | 07-RURAL<br>COLL         | 400          | 1996      | 2             | 26             | 27.3          | 8                          |
| MOWER          | CSAH 16  | 50503         | 000+00.900 | 0.9 MI S OF<br>JCT CSAH 25 | WOLF CREEK             | 1960          | 28.5        | 40.0          | 2           | 16-<br>URB/MINOR<br>ART  | 2100         | 1996      | 2             | 45             | 40            | 8                          |
| MOWER          | CSAH 1   | 50504         | 002+00.360 | 0.8 MI E OF<br>JCT TH 218  | CEDAR RIVER            | 1961          | 31.2        | 27.2          | 2           | 07-RURAL<br>COLL         | 410          | 1996      | 2             | 30             | 27.2          | 8                          |
| MOWER          | CSAH 25  | 50507         | 008+00.750 | 1.9 MI S OF<br>JCT CSAH 1  | RED CEDAR<br>RIVER     | 1963          | 31.5        | 27.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 230          | 1996      | 2             | 28             | 27            | 5                          |
| MOWER          | CSAH 7   | 50513         | 023+00.370 | 2.5 MI S OF<br>JCT CSAH 1  | N BR ROOT<br>RIVER     | 1968          | 25.0        | 31.2          | 2           | 07-RURAL<br>COLL         | 270          | 1996      | 2             | 28             | 31.2          | 8                          |
| MOWER          | CSAH 7   | 50514         | 022+00.530 | 2.1 MI N OF<br>JCT CSAH 2  | STREAM                 | 1967          | 31.0        | 31.0          | 2           | 07-RURAL<br>COLL         | 270          | 1996      | 2             | 29             | 31            | 8                          |
| MOWER          | CSAH 13  | 50515         | 000+00.380 | 0.2 MI E OF<br>JCT CR 59   | ROSE CREEK             | 1968          | 25.0        | 30.7          | 2           | 07-RURAL<br>COLL         | 330          | 1996      | 2             | 27             | 30.7          | 8                          |
| MOWER          | CSAH 14  | 50516         | 003+00.980 | 0.8 MI N OF<br>JCT CSAH 11 | LITTLE IOWA<br>RIVER   | 1968          | 25.0        | 30.7          | 2           | 07-RURAL<br>COLL         | 1050         | 1996      | 2             | 32             | 30.7          | 8                          |
| MOWER          | CSAH 25  | 50517         | 000+00.110 | 0.1 MI N OF<br>JCT CSAH 16 | CEDAR RIVER            | 1968          | 61.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 750          | 1996      | 2             | 31             | 30            | 8                          |
| MOWER          | CSAH 7   | 50519         | 004+00.350 | 0.3 MI E OF<br>JCT CSAH 5  | LITTLE CEDAR<br>RIVER  | 1968          | 31.2        | 29.4          | 2           | 07-RURAL<br>COLL         | 700          | 1996      | 2             | 37             | 29.4          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected   | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|--------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| MOWER          | CSAH 8   | 50520         | 014+00.140 | 0.1 MI N OF<br>JCT CSAH 2  | N FK BEAR<br>CREEK       | 1970          | 25.1        | 29.3          | 2           | 07-RURAL<br>COLL         | 500          | 1996      | 2             | 29             | 29.3          | 8                          |
| MOWER          | CSAH 2   | 50524         | 004+00.590 | 0.5 MI E OF<br>JCT CSAH 25 | CEDAR RIVER              | 1971          | 60.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 730          | 1996      | 2             | 28             | 32            | 8                          |
| MOWER          | CSAH 4   | 50528         | 006+00.970 | 1.5 MI E OF<br>JCT TH 218  | ROSE CREEK               | 1973          | 31.1        | 37.0          | 2           | 07-RURAL<br>COLL         | 610          | 1996      | 2             | 32             | 37            | 8                          |
| MOWER          | CSAH 8   | 50576         | 013+00.300 | 1.3 MI N OF<br>JCT TH 16   | S FK BEAR<br>CREEK       | 1995          | 101.5       | 40.0          | 2           | 07-RURAL<br>COLL         | 770          | 1996      | 2             | 36             | 40            | 9                          |
| MOWER          | CSAH 7   | 89215         | 006+00.870 | 0.4 MI S OF<br>JCT TH 56   | STREAM                   | 1958          | 28.8        | 40.0          | 2           | 07-RURAL<br>COLL         | 1150         | 1996      | 2             | 31             | 40            | 8                          |
| MOWER          | CSAH 20  | 89228         | 016+00.860 | 0.6 MI W OF<br>JCT CSAH 7  | STREAM                   | 1934          | 30.2        | 24.1          | 2           | 09-RURAL<br>LOCAL        | 180          | 1996      | 2             | 34             | 24.1          | 8                          |
| MOWER          | CSAH 21  | 92138         | 000+00.170 | 0.2 MI N OF<br>JCT CSAH 28 | DITCH                    | 1967          | 23.1        | 30.5          | 2           | 09-RURAL<br>LOCAL        | 200          | 1996      | 2             | 26             | 30.5          | 8                          |
| MOWER          | CSAH 9   | 93079         | 005+00.960 | 0.1 MI S OF<br>JCT TH 56   | N BR UPPER<br>IOWA RIVER | 1974          | 23.0        | 33.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 65           | 1996      | 2             | 35             | 33.2          | 8                          |
| OLMSTED        | CSAH 19  | 5877          | 002+00.980 | 2.3 MI S OF<br>JCT TH 52   | N BR ROOT<br>RIVER       | 1939          | 46.6        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 495          | 2002      | 2             | 36             | 24            | 5                          |
| OLMSTED        | CSAH 1   | 7092          | 011+00.360 | 0.2 MI S OF<br>JCT CR 146  | WILLOW CREEK             | 1952          | 45.0        | 52.0          | 4           | 16-<br>URB/MINOR<br>ART  | 8200         | 2002      | 2             | 68             | 52            | 8                          |

| County<br>Name | Facility      | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|---------------|---------------|------------|----------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| OLMSTED        | CSAH 3        | 7212          | 033+00.050 | 0.5 MI N OF<br>JCT CSAH 5  | MID FK<br>ZUMBRO RIVER      | 1959          | 65.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 2200         | 2002      | 2             | 32             | 30            | 6                          |
| OLMSTED        | CSAH 14       | 55506         | 003+00.770 | 1.3 MI E OF<br>JCT CR 105  | S BR MID FK<br>ZUMBRO RIVER | 1963          | 66.6        | 30.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 660          | 2002      | 2             | 36             | 30.4          | 8                          |
| OLMSTED        | CSAH 8        | 55512         | 001+00.750 | 0.7 MI N OF<br>JCT CSAH 6  | N BR ROOT<br>RIVER          | 1966          | 68.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 1000         | 2002      | 2             | 36             | 30            | 8                          |
| OLMSTED        | CSAH 3        | 55515         | 013+00.680 | 0.5 MI S OF<br>JCT CSAH 25 | SALEM CREEK                 | 1967          | 51.7        | 32.0          | 2           | 07-RURAL<br>COLL         | 1150         | 2002      | 2             | 40             | 32            | 8                          |
| OLMSTED        | CSAH 22       | 55519         | 011+00.290 | 0.7 MI W OF<br>JCT TH 63   | S FK ZUMBRO<br>RIVER        | 1969          | 86.5        | 54.4          | 4           | 14-URB/OTH<br>PR ART     | 25500        | 2002      | 2             | 68             | 54.4          | 8                          |
| OLMSTED        | CSAH 12       | 55520         | 009+00.624 | 2.6 MI W OF<br>JCT TH 63   | ZUMBRO RIVER                | 1975          | 135.0       | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 1950         | 2002      | 2             | 44             | 44            | 8                          |
| OLMSTED        | CSAH 7        | 55521         | 003+00.710 | 0.4 MI N OF<br>JCT TH 52   | MILL CREEK                  | 1971          | 31.0        | 43.3          | 2           | 06-<br>RUR/MINOR<br>ART  | 940          | 2002      | 2             | 44             | 43.3          | 8                          |
| OLMSTED        | CSAH 5        | 55527         | 007+00.460 | 0.8 MI NW OF<br>JCT CSAH 4 | S BR MID FK<br>ZUMBRO RIVER | 1977          | 100.0       | 44.0          | 2           | 07-RURAL<br>COLL         | 2300         | 2002      | 2             | 40             | 44            | 8                          |
| OLMSTED        | CSAH 14       | 55530         | 011+00.620 | 0.8 MI W OF<br>JCT TH 63   | S FK ZUMBRO<br>RIVER        | 1979          | 115.0       | 44.0          | 2           | 07-RURAL<br>COLL         | 5200         | 2002      | 2             | 44             | 44            | 9                          |
| OLMSTED        | CSAH 22<br>SB | 55548         | 014+00.950 | 0.5 MI N OF<br>JCT CSAH 9  | SILVER CREEK                | 1987          | 32.0        | 40.0          | 2           | 14-URB/OTH<br>PR ART     | 6100         | 2002      | 1             | 40             | 40            | 8                          |

| County<br>Name | Facility      | Bridge<br>No. | Ref. Point | Location                  | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|---------------|---------------|------------|---------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| OLMSTED        | CSAH 3        | 55554         | 003+00.370 | 0.8 MI N OF<br>JCT CSAH 6 | N BR ROOT<br>RIVER          | 1996          | 43.2        | 36.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 265          | 2002      | 2             | 32             | 36            | 9                          |
| OLMSTED        | CSAH 22<br>WB | 55559         | 014+00.950 | 0.5 MI N OF<br>JCT CSAH 9 | SILVER CREEK                | 1995          | 32.0        | 42.0          | 2           | 14-URB/OTH<br>PR ART     | 6100         | 2002      | 1             | 35             | 42            | 9                          |
| OLMSTED        | CSAH 10       | 95764         | 010+00.929 | 0.1 MI S OF<br>JCT TH 14  | S FK<br>WHITEWATER<br>RIVER | 1986          | 40.3        | 40.0          | 2           | 07-RURAL<br>COLL         | 1550         | 2002      | 2             | 40             | 40            | 8                          |
| ROCK           | CSAH 17       | 6787          | 006+00.490 | 1.0 MI S OF<br>JCT TH 90  | BEAVER CREEK                | 1955          | 32.5        | 30.3          | 2           | 07-RURAL<br>COLL         | 560          | 2002      | 2             | 32             | 30.3          | 8                          |
| ROCK           | CSAH 4        | 67524         | 018+00.805 | 0.7 MI W OF<br>JCT CSAH 3 | ELK CREEK                   | 1984          | 33.4        | 41.6          | 2           | 07-RURAL<br>COLL         | 1450         | 2002      | 2             | 40             | 41.6          | 8                          |
| ROCK           | CSAH 5        | L2033         | 007+00.950 | 1.9 MI E OF<br>JCT CSAH 6 | BEAVER CREEK                | 1956          | 60.0        | 24.0          | 2           | 07-RURAL<br>COLL         | 350          | 2002      | 2             | 34             | 24            | 9                          |
| WATON-<br>WAN  | CSAH 3        | 1383          | 022+00.749 | 2.3 MI E OF<br>JCT CSAH16 | JUD DITCH # 13              | 1914          | 15.6        | 25.9          | 2           | 07-RURAL<br>COLL         | 1300         | 2001      | 2             | 42             | 25.9          | 8                          |
| WATON-<br>WAN  | CSAH 57       | 8259          | 000+00.441 | 0.1 MI E OF<br>JCT CR 114 | ST JAMES LAKE               | 1932          | 10.0        | 43.0          | 2           | 07-RURAL<br>COLL         | 2700         | 2001      | 2             | 43             | 0             | 8                          |
| WATON-<br>WAN  | CSAH 3        | 83504         | 025+00.199 | 1.7 MI W OF<br>JCT TH15   | ELM CREEK                   | 1963          | 25.2        | 29.3          | 2           | 06-<br>RUR/MINOR<br>ART  | 1300         | 2001      | 2             | 42             | 29.3          | 8                          |
| WATON-<br>WAN  | CSAH 27       | 83506         | 016+00.420 | 1.0 MI N OF<br>JCT CSAH3  | N FK<br>WATONWAN<br>RIVER   | 1967          | 31.1        | 32.5          | 2           | 06-<br>RUR/MINOR<br>ART  | 1650         | 2001      | 2             | 40             | 32.5          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| WATON-<br>WAN  | CSAH 12  | 83513         | 003+00.450 | 1.4 MI N OF<br>JCT CSAH 10 | S FK<br>WATONWAN<br>RIVER | 1978          | 36.4        | 32.0          | 2           | 07-RURAL<br>COLL         | 255          | 2001      | 2             | 26             | 32            | 8                          |
| WATON-<br>WAN  | CSAH 27  | 83539         | 003+00.130 | 1.0 MI S OF<br>JCT CSAH 10 | S FK<br>WATONWAN<br>RIVER | 1996          | 100.0       | 44.0          | 2           | 07-RURAL<br>COLL         | 1200         | 2001      | 2             | 40             | 44            | 9                          |
| WATON-<br>WAN  | CSAH 18  | 90340         | 003+00.000 | 0.9 MI N OF<br>JCT CR116   | WATONWAN<br>RIVER         | 1920          | 10.0        | 26.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 40           | 2001      | 2             | 38             | 26            | 8                          |
| WATON-<br>WAN  | CSAH 19  | 90344         | 002+00.800 | 0.9 MI N OF<br>JCT CSAH7   | S FK<br>WATONWAN<br>RIVER | 1918          | 38.0        | 26.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 290          | 2001      | 2             | 32             | 26.4          | 7                          |
| WATON-<br>WAN  | CSAH 19  | 90343         | 006+00.760 | 0.4 MI N OF<br>JCT CR119   | CREEK                     | 1923          | 19.9        | 26.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 135          | 2001      | 2             | 35             | 26.5          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                    | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ANOKA          | CSAH 51  | 02520         | 003+00.680 | 1.0 MI S OF<br>JCT TH 242   | SAND CREEK             | 1966          | 25.8        | 52.5          | 2           | 16-<br>URB/MINOR<br>ART  | 16500        | 2003      | 2             | 52             | 52.5          | 8                          |
| ANOKA          | CSAH 30  | 02531         | 000+00.140 | 0.1 MI E OF<br>JCT TH 47    | RUM RIVER              | 1980          | 105.2       | 44.0          | 2           | 19-URBAN<br>LOCAL        | 7970         | 2002      | 2             | 44             | 44            | 8                          |
| ANOKA          | CSAH 78  | 95884         | 001+00.780 | 0.3 MI N OF<br>JCT TH 10    | COON CREEK             | 1983          | 40.3        | 52.0          | 4           | 16-<br>URB/MINOR<br>ART  | 26970        | 2002      | 2             | 52             | 52            | 8                          |
| CROW<br>WING   | CSAH 1   | 6519          | 015+00.110 | 0.4 MI W OF<br>JCT CSAH 3   | DAGGETT<br>BROOK       | 1952          | 37.6        | 24.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 2050         | 2001      | 2             | 36             | 24            | 8                          |
| DAKOTA         | CSAH 54  | 2951          | 002+00.640 | 2.9 MI SE OF<br>JCT CR 91   | DRY RUN                | 1918          | 11.2        | 32.0          | 2           | 07-RURAL<br>COLL         | 4200         | 2003      | 2             | 32             | 32            | 8                          |
| DAKOTA         | CSAH 91  | 7271          | 001+00.920 | 2.8 MI SW OF<br>JCT TH 61   | STREAM                 | 1949          | 26.7        | 29.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2003      | 2             | 32             | 29.5          | _                          |
| DAKOTA         | CSAH 31  | 19512         | 002+00.076 | 0.6 MI N OF<br>JCT CSAH 74  | VERMILLION<br>RIVER    | 1974          | 50.0        | 52.0          | 2           | 17-URB COLL              | 9900         | 2003      | 2             | 48             | 52            | 8                          |
| DAKOTA         | CSAH 68  | 19529         | 002+00.000 | 0.3 MI NE OF<br>JCT CSAH 54 | VERMILLION<br>RIVER    | 1996          | 76.0        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 5200         | 2003      | 2             | 40             | 44            | 8                          |
| DAKOTA         | CSAH 50  | 19532         | 009+00.472 | 0.3 MI E OF<br>JCT CSAH 31  | VERMILLION<br>RIVER    | 1996          | 38.0        | 48.0          | 3           | 16-<br>URB/MINOR<br>ART  | 13500        | 2003      | 2             | 48             | 48            | 8                          |
| DAKOTA         | CSAH 66  | 19541         | 006+00.580 | 0.1 MI W OF<br>JCT TH 52    | VERMILLION<br>RIVER    | 2004          | 83.3        | 44.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 1850         | 2003      | 2             | 40             | 44            | 9                          |

Table D-2. Pontis Data for Bridges WITHOUT Approach Guardrail

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected  | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| DAKOTA         | CSAH 26  | 97556         | 006+00.809 | 0.2 MI W OF<br>JCT CSAH 75 | PED WALK                | 1992          | 20.0        | 64.0          | 4           | 16-<br>URB/MINOR<br>ART  | 10400        | 2003      | 2             | 64             | 64            | 8                          |
| FILLMORE       | CSAH 12  | 376           | 018+00.420 | 0.6 MI W OF<br>JCT CSAH 14 | STREAM                  | 1943          | 25.5        | 23.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 165          | 2001      | 2             | 26             | 23            | 8                          |
| FILLMORE       | CSAH 12  | 449           | 016+00.970 | 0.8 MI E OF<br>JCT CR 118  | STREAM                  | 1937          | 40.5        | 26.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 165          | 2001      | 2             | 30             | 26.4          | 8                          |
| FILLMORE       | CSAH 2   | 2915          | 003+00.270 | 1.5 MI W OF<br>JCT CSAH 1  | KEDRON<br>BROOK         | 1953          | 26.5        | 24.0          | 2           | 07-RURAL<br>COLL         | 220          | 2001      | 2             | 30             | 24            | 8                          |
| FILLMORE       | CSAH 6   | 3309          | 000+00.900 | 0.7 MI SE OF<br>JCT TH 52  | RICE CREEK              | 1941          | 31.3        | 23.1          | 2           | 09-RURAL<br>LOCAL        | 110          | 2001      | 2             | 30             | 23.1          | 8                          |
| FILLMORE       | CSAH 40  | 4026          | 002+00.020 | 2.0 MI E OF<br>JCT TH 52   | STREAM                  | 1923          | 24.0        | 22.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 125          | 2001      | 2             | 26             | 22.2          | 8                          |
| FILLMORE       | CSAH 24  | 4408          | 001+00.460 | 0.7 MI W OF<br>JCT CSAH 28 | S BR S FK ROOT<br>RIVER | 1925          | 34.3        | 23.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 275          | 2001      | 2             | 32             | 23.6          | 8                          |
| FILLMORE       | CSAH 40  | 6081          | 001+00.430 | 1.5 MI E OF<br>JCT TH 52   | LYNCH CREEK             | 1930          | 32.7        | 18.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 125          | 2001      | 2             | 26             | 18.5          | 3                          |
| FILLMORE       | CSAH 40  | 6082          | 000+00.350 | 0.3 MI E OF<br>JCT TH 52   | STREAM                  | 1923          | 23.0        | 24.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 175          | 2001      | 2             | 26             | 24.2          | 3                          |
| FILLMORE       | CSAH 15  | 7188          | 010+00.600 | 1.2 MI N OF<br>JCT CSAH 22 | WILLOW CREEK            | 1958          | 40.0        | 26.0          | 2           | 07-RURAL<br>COLL         | 245          | 2001      | 2             | 30             | 26            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 2   | 7253          | 003+00.400 | 1.3 MI W OF<br>JCT CSAH 1  | KEDRON<br>BROOK        | 1958          | 41.0        | 24.2          | 2           | 07-RURAL<br>COLL         | 220          | 2001      | 2             | 30             | 24.2          | 8                          |
| FILLMORE       | CSAH 27  | 7280          | 001+00.800 | 0.5 MI W OF<br>JCT TH 43   | STREAM                 | 1959          | 24.5        | 26.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 290          | 2001      | 2             | 28             | 26.5          | 8                          |
| FILLMORE       | CSAH 1   | 7950          | 000+00.780 | 0.2 MI W OF<br>JCT CR 109  | BEAVER CREEK           | 1939          | 23.0        | 35.8          | 2           | 07-RURAL<br>COLL         | 850          | 2001      | 2             | 32             | 35.8          | 8                          |
| FILLMORE       | CSAH 4   | 7955          | 001+00.680 | 1.6 MI E OF<br>JCT CSAH 1  | KEDRON<br>BROOK        | 1936          | 22.5        | 19.0          | 2           | 07-RURAL<br>COLL         | 120          | 2001      | 2             | 28             | 19            | 8                          |
| FILLMORE       | CSAH 5   | 7959          | 018+00.998 | 0.3 MI N OF<br>JCT CSAH 8  | CARTERS<br>CREEK       | 1920          | 30.3        | 23.5          | 2           | 07-RURAL<br>COLL         | 680          | 2001      | 2             | 28             | 23.5          | 4                          |
| FILLMORE       | CSAH 7   | 7963          | 006+00.390 | 0.7 MI S OF<br>JCT CSAH 5  | SHADY CREEK            | 1904          | 29.0        | 25.0          | 2           | 09-RURAL<br>LOCAL        | 230          | 2001      | 2             | 26             | 25            | 8                          |
| FILLMORE       | CSAH 7   | 7964          | 005+00.720 | 1.3 MI S OF<br>JCT CSAH 5  | STREAM                 | 1939          | 21.3        | 22.1          | 2           | 09-RURAL<br>LOCAL        | 230          | 2001      | 2             | 26             | 22.1          | 8                          |
| FILLMORE       | CSAH 11  | 7973          | 002+00.890 | 1.6 MI N OF<br>JCT TH 16   | WATSON<br>CREEK        | 1939          | 40.0        | 23.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 135          | 2001      | 2             | 30             | 23            | 8                          |
| FILLMORE       | CSAH 15  | 7979          | 009+00.400 | 0.1 MI N OF<br>JCT CSAH 22 | STREAM                 | 1904          | 16.8        | 16.0          | 1           | 07-RURAL<br>COLL         | 245          | 2001      | 2             | 30             | 16            | 8                          |
| FILLMORE       | CSAH 15  | 7980          | 007+00.910 | 0.5 MI E OF<br>JCT CR 110  | STREAM                 | 1904          | 16.5        | 18.5          | 1           | 07-RURAL<br>COLL         | 110          | 2001      | 2             | 28             | 18.5          | 3                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 15  | 7983          | 000+00.850 | 0.9 MI N OF<br>JCT CSAH 30 | STREAM                 | 1929          | 25.0        | 28.4          | 2           | 07-RURAL<br>COLL         | 385          | 2001      | 2             | 28             | 28.4          | 8                          |
| FILLMORE       | CSAH 16  | 7984          | 007+00.730 | 1.3 MI E OF<br>JCT CR 111  | DITCH                  | 1941          | 11.0        | 26.4          | 2           | 09-RURAL<br>LOCAL        | 140          | 2001      | 2             | 28             | 26.4          | 8                          |
| FILLMORE       | CSAH 16  | 7985          | 001+00.360 | 1.3 MI E OF<br>JCT CSAH 17 | CAMP CREEK             | 1936          | 24.5        | 19.0          | 2           | 09-RURAL<br>LOCAL        | 275          | 2001      | 2             | 28             | 19            | 8                          |
| FILLMORE       | CSAH 16  | 7986          | 002+00.230 | 1.3 MI W OF<br>JCT TH 52   | STREAM                 | 1940          | 31.0        | 23.1          | 2           | 09-RURAL<br>LOCAL        | 275          | 2001      | 2             | 28             | 23.1          | 8                          |
| FILLMORE       | CSAH 21  | 7992          | 021+00.140 | 1.7 MI NW OF<br>JCT CSAH 8 | STREAM                 | 1953          | 22.2        | 23.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2001      | 2             | 30             | 23.1          | 8                          |
| FILLMORE       | CSAH 23  | 9916          | 015+00.230 | 0.9 MI S OF<br>JCT TH 16   | WHALAN<br>CREEK        | 1904          | 30.4        | 13.5          | 1           | 08-<br>RUR/MINOR<br>COLL | 65           | 2001      | 2             | 26             | 13.5          | 3                          |
| FILLMORE       | CSAH 23  | 9917          | 013+00.420 | 2.8 MI S OF<br>JCT TH 16   | WHALAN<br>CREEK        | 1953          | 22.0        | 23.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 65           | 2001      | 2             | 26             | 23            | 8                          |
| FILLMORE       | CSAH 23  | 9918          | 012+00.560 | 3.4 MI S OF<br>JCT TH 16   | WHALAN<br>CREEK        | 1947          | 22.0        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 65           | 2001      | 2             | 26             | 24            | 8                          |
| FILLMORE       | CSAH 23  | 9922          | 002+00.980 | 0.9 MI S OF<br>JCT CSAH 24 | WEISEL CREEK           | 1951          | 29.0        | 23.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 265          | 2001      | 2             | 30             | 23.1          | 6                          |
| FILLMORE       | CSAH 25  | 9923          | 013+00.660 | 1.6 MI N OF<br>JCT TH 30   | PINE CREEK             | 1936          | 40.8        | 19.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 255          | 2001      | 2             | 32             | 19            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                  | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |      | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|---------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|------|----------------------------|
| FILLMORE       | CSAH 26  | 9929          | 001+00.980 | 0.3 MI E OF<br>JCT CR 109 | STREAM                 | 1952          | 31.4        | 23.0          | 2           | 09-RURAL<br>LOCAL        | 85           | 2001      | 2             | 24             | 23   | 8                          |
| FILLMORE       | CSAH 26  | 9931          | 003+00.240 | 1.5 MI W OF<br>JCT TH 63  | STREAM                 | 1936          | 36.3        | 21.2          | 2           | 09-RURAL<br>LOCAL        | 85           | 2001      | 2             | 24             | 21.2 | 8                          |
| FILLMORE       | CSAH 29  | 9938          | 002+00.680 | 1.2 MI E OF<br>JCT TH 43  | STREAM                 | 1940          | 21.5        | 25.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 28             | 25.2 | 8                          |
| FILLMORE       | CSAH 29  | 9939          | 003+00.020 | 1.6 MI E OF<br>JCT TH 43  | STREAM                 | 1949          | 28.3        | 23.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 28             | 23.5 | 8                          |
| FILLMORE       | CSAH 29  | 9940          | 003+00.480 | 1.9 MI E OF<br>JCT TH 43  | RICEFORD<br>CREEK      | 1940          | 31.3        | 22.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 28             | 22.7 | 6                          |
| FILLMORE       | CSAH 29  | 9942          | 004+00.320 | 2.8 MI E OF<br>JCT TH 43  | RICEFORD<br>CREEK      | 1950          | 31.9        | 23.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 28             | 23.2 | 8                          |
| FILLMORE       | CSAH 30  | 9945          | 013+00.160 | 1.1 MI W OF<br>JCT TH 139 | STREAM                 | 1908          | 22.3        | 27.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 155          | 2001      | 2             | 30             | 27.7 | 8                          |
| FILLMORE       | CSAH 30  | 9946          | 014+00.410 | 0.1 MI E OF<br>JCT TH 139 | STREAM                 | 1947          | 31.0        | 23.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 85           | 2001      | 2             | 30             | 23   | 8                          |
| FILLMORE       | CSAH 5   | 23501         | 020+00.708 | 0.7 MI N OF<br>JCT CSAH 8 | ROOT RIVER             | 1961          | 92.8        | 28.0          | 2           | 07-RURAL<br>COLL         | 680          | 2001      | 2             | 32             | 28   | 8                          |
| FILLMORE       | CSAH 1   | 23502         | 011+00.770 | 0.1 MI W OF<br>JCT TH 63  | SPRING<br>VALLEY CREEK | 1961          | 40.0        | 60.0          | 2           | 07-RURAL<br>COLL         | 1850         | 2001      | 2             | 60             | 60   | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected  | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 25  | 23503         | 007+00.580 | 0.1 MI W OF<br>JCT TH 16   | ROOT RIVER              | 1963          | 109.5       | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 990          | 2001      | 2             | 42             | 30            | 8                          |
| FILLMORE       | CSAH 23  | 23505         | 006+00.740 | 1.0 MI N OF<br>JCT CSAH 18 | S BR S FK ROOT<br>RIVER | 1963          | 25.0        | 29.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 300          | 2001      | 2             | 28             | 29.7          | 8                          |
| FILLMORE       | CSAH 8   | 23506         | 033+00.500 | 0.1 MI W OF<br>JCT TH 250  | S BR ROOT<br>RIVER      | 1964          | 78.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 1250         | 2001      | 2             | 30             | 30            | 8                          |
| FILLMORE       | CSAH 5   | 23509         | 029+00.518 | 1.1 MI S OF<br>JCT TH 52   | N BR ROOT<br>RIVER      | 1966          | 72.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 1000         | 2001      | 2             | 36             | 30            | 8                          |
| FILLMORE       | CSAH 17  | 23510         | 009+00.170 | 0.3 MI S OF<br>JCT CSAH 12 | S BR ROOT<br>RIVER      | 1967          | 65.9        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 1800         | 2001      | 2             | 30             | 30            | 8                          |
| FILLMORE       | CSAH 27  | 23511         | 004+00.660 | 0.2 MI E OF<br>JCT TH 43   | RUSH CREEK              | 1967          | 68.1        | 30.3          | 2           | 08-<br>RUR/MINOR<br>COLL | 2100         | 2001      | 2             | 35             | 30.3          | 8                          |
| FILLMORE       | CSAH 12  | 23512         | 019+00.780 | 0.3 MI W OF<br>JCT CSAH 15 | WILLOW CREEK            | 1970          | 45.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 760          | 2001      | 2             | 36             | 36            | 8                          |
| FILLMORE       | CSAH 34  | 23515         | 001+00.436 | 0.1 MI E OF<br>JCT TH 44   | RICEFORD<br>CREEK       | 1971          | 65.0        | 44.0          | 2           | 09-RURAL<br>LOCAL        | 1200         | 2001      | 2             | 44             | 44            | 8                          |
| FILLMORE       | CSAH 29  | 23518         | 003+00.710 | 4.0 MI N OF<br>JCT TH 44   | RICEFORD<br>CREEK       | 1974          | 31.7        | 32.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 32             | 32.1          | 8                          |
| FILLMORE       | CSAH 26  | 23519         | 002+00.130 | 2.7 MI W OF<br>JCT TH 63   | BEAVER CREEK            | 1974          | 18.0        | 32.1          | 2           | 09-RURAL<br>LOCAL        | 15           | 2001      | 2             | 32             | 32.1          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 7   | 23520         | 006+00.780 | 0.35 MI S OF<br>JCT CSAH 5 | MID BR ROOT<br>RIVER   | 1975          | 42.0        | 32.1          | 2           | 09-RURAL<br>LOCAL        | 230          | 2001      | 2             | 32             | 32.1          | 8                          |
| FILLMORE       | CSAH 21  | 23521         | 023+00.350 | 0.9 MI N OF<br>JCT CSAH 6  | N BR ROOT<br>RIVER     | 1977          | 95.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2001      | 2             | 32             | 32            | 8                          |
| FILLMORE       | CSAH 5   | 23522         | 010+00.798 | 0.4 MI S OF<br>JCT CSAH 12 | S BR ROOT<br>RIVER     | 1977          | 60.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 430          | 2001      | 2             | 32             | 32            | 8                          |
| FILLMORE       | CSAH 27  | 23527         | 000+00.820 | 1.4 MI W OF<br>JCT TH 43   | STREAM                 | 1982          | 81.5        | 32.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 290          | 2001      | 2             | 32             | 32.6          | 8                          |
| FILLMORE       | CSAH 8   | 23529         | 012+00.490 | 2.2 mi NW of<br>jct CSAH 5 | Mid Br Root River      | 2001          | 72.2        | 35.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 24             | 35.4          | 8                          |
| FILLMORE       | CSAH 8   | 23530         | 017+00.260 | 0.1 MI E OF<br>JCT CSAH 5  | STREAM                 | 1983          | 42.9        | 32.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 435          | 2001      | 2             | 40             | 32.6          | 8                          |
| FILLMORE       | CSAH 13  | 23533         | 000+00.550 | 0.5 MI E OF<br>JCT TH 43   | S FK ROOT<br>RIVER     | 1985          | 57.2        | 32.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 32             | 32.6          | 8                          |
| FILLMORE       | CSAH 12  | 23538         | 016+00.450 | 0.4 MI S OF<br>JCT CSAH 11 | S BR ROOT<br>RIVER     | 1981          | 47.3        | 32.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 165          | 2001      | 2             | 32             | 32.6          | 8                          |
| FILLMORE       | CSAH 38  | 23539         | 005+00.910 | 0.3 MI S OF<br>JCT CSAH 4  | BEAR CREEK             | 1986          | 53.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 105          | 2001      | 2             | 28             | 32            | 8                          |
| FILLMORE       | CSAH 1   | 23540         | 011+00.400 | 0.4 MI W OF<br>JCT TH 63   | SPRING<br>VALLEY CREEK | 1981          | 80.0        | 32.6          | 2           | 07-RURAL<br>COLL         | 1050         | 2001      | 2             | 32             | 32.6          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 11  | 23541         | 012+00.180 | 1.6 MI S OF<br>JCT TH 30   | N BR ROOT<br>RIVER     | 1980          | 130.0       | 32.0          | 2           | 07-RURAL<br>COLL         | 310          | 2001      | 2             | 32             | 32            | 8                          |
| FILLMORE       | CSAH 2   | 23545         | 016+00.810 | 0.4 MI SW OF<br>JCT TH 52  | MILL CREEK             | 1983          | 50.0        | 40.6          | 2           | 07-RURAL<br>COLL         | 1400         | 2001      | 2             | 40             | 40.6          | 8                          |
| FILLMORE       | CSAH 12  | 23547         | 035+00.250 | 2.1 MI W OF<br>JCT TH 43   | S FK ROOT<br>RIVER     | 1988          | 85.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 490          | 2001      | 2             | 32             | 32            | 8                          |
| FILLMORE       | CSAH 28  | 23550         | 001+00.540 | 0.5 MI S OF<br>JCT TH 44   | RICEFORD<br>CREEK      | 1994          | 40.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 890          | 2001      | 2             | 40             | 44            | 8                          |
| FILLMORE       | CSAH 13  | 23554         | 003+00.190 | 3.0 MI E OF<br>JCT TH 43   | S FK ROOT<br>RIVER     | 1997          | 60.0        | 32.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 28             | 32.1          | 9                          |
| FILLMORE       | CSAH 12  | 23557         | 021+00.950 | 0.1 MI W OF<br>JCT TH 52   | CAMP CREEK             | 1997          | 87.2        | 43.3          | 2           | 07-RURAL<br>COLL         | 2050         | 2001      | 2             | 40             | 43.3          | 8                          |
| FILLMORE       | CSAH 12  | 23558         | 021+00.280 | 0.3 MI E OF<br>JCT CSAH 17 | S BR ROOT<br>RIVER     | 1996          | 93.6        | 43.3          | 2           | 07-RURAL<br>COLL         | 2050         | 2001      | 2             | 44             | 43.3          | 8                          |
| FILLMORE       | CSAH 27  | 23559         | 000+00.370 | 1.8 MI W OF<br>JCT TH 43   | RUSH CREEK             | 1996          | 45.0        | 36.0          | 2           | 09-RURAL<br>LOCAL        | 290          | 2001      | 2             | 32             | 36            | 8                          |
| FILLMORE       | CSAH 18  | 23561         | 005+00.950 | 1.3 mi W of jct<br>TH 43   | Weisel Creek           | 2001          | 83.0        | 36.0          | 2           | 09-RURAL<br>LOCAL        | 92           | 2001      | 2             | 32             | 36            | 8                          |
| FILLMORE       | CSAH 8   | 23562         | 011+00.860 | 2.8 mi NW of<br>jct CSAH 5 | Deer Creek             | 2001          | 81.4        | 36.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 50           | 2001      | 2             | 32             | 36            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| FILLMORE       | CSAH 38  | 23567         | 002+00.990 | 3.2 MI NE OF<br>JCT CSAH 1 | DEER CREEK             | 2003          | 50.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 105          | 2001      | 2             | 28             | 32            | 9                          |
| FILLMORE       | CSAH 11  | 88879         | 000+00.140 | 0.1 MI N OF<br>JCT CSAH 12 | STREAM                 | 1940          | 20.0        | 23.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 225          | 2001      | 2             | 28             | 23            | 8                          |
| FILLMORE       | CSAH 21  | 88903         | 021+00.950 | 0.7 MI S OF<br>JCT CSAH 6  | STREAM                 | 1939          | 21.0        | 20.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 120          | 2001      | 2             | 28             | 20.7          | 8                          |
| FILLMORE       | CSAH 23  | 93038         | 004+00.200 | 0.3 MI N OF<br>JCT CSAH 24 | STREAM                 | 1955          | 29.3        | 24.3          | 2           | 08-<br>RUR/MINOR<br>COLL | 255          | 2001      | 2             | 28             | 24.3          | 6                          |
| GOODHUE        | CSAH 62  | 757           | 000+00.580 | 0.1 MI S OF<br>JCT CSAH 11 | ZUMBRO RIVER           | 1913          | 45.1        | 34.0          | 2           | 07-RURAL<br>COLL         | 8600         | 2003      | 2             | 80             | 34            | 6                          |
| GOODHUE        | CSAH 2   | 2103          | 010+00.435 | 0.2 MI N OF<br>JCT CSAH 5  | STREAM                 | 1960          | 58.9        | 25.0          | 2           | 07-RURAL<br>COLL         | 820          | 2003      | 2             | 30             | 25            | 6                          |
| GOODHUE        | CSAH 2   | 25504         | 007+00.730 | 0.2 MI N OF<br>JCT CR 45   | WELLS CREEK            | 1967          | 41.3        | 30.1          | 2           | 07-RURAL<br>COLL         | 510          | 2003      | 2             | 36             | 30.1          | 7                          |
| GOODHUE        | CSAH 8   | 25516         | 007+00.870 | 0.25 MI N OF<br>JCT CSAH 9 | BELLE CREEK            | 1973          | 31.0        | 34.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 395          | 2003      | 2             | 42             | 34.1          | 8                          |
| GOODHUE        | CSAH 6   | 25518         | 005+00.300 | 7.0 MI N OF<br>ZUMBROTA    | DRY RUN                | 1974          | 31.0        | 34.5          | 2           | 07-RURAL<br>COLL         | 1450         | 2003      | 2             | 32             | 34.5          | 8                          |
| GOODHUE        | CSAH 4   | 25521         | 004+00.870 | 0.9 MI S OF<br>JCT CR 42   | TROUT BROOK            | 1976          | 45.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 350          | 2003      | 2             | 42             | 32            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |      | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|------|----------------------------|
| GOODHUE        | CSAH 7   | 25522         | 020+00.480 | 2.5 MI S OF<br>JCT TH 61   | CANNON RIVER           | 1979          | 94.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 455          | 2003      | 2             | 36             | 36   | 8                          |
| GOODHUE        | CSAH 7   | 25530         | 016+00.910 | 2.8 MI N OF<br>JCT TH 19   | STREAM                 | 1986          | 26.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 320          | 2003      | 2             | 32             | 32   | 9                          |
| GOODHUE        | CSAH 7   | 25531         | 017+00.160 | 3.0 MI N OF<br>JCT CSAH 19 | BELLE CREEK            | 1979          | 70.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 320          | 2003      | 2             | 32             | 32   | 9                          |
| GOODHUE        | CSAH 6   | 25532         | 005+00.990 | 1.9 MI S OF<br>JCT CSAH 9  | STREAM                 | 1979          | 50.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 1450         | 2003      | 2             | 32             | 32   | 9                          |
| GOODHUE        | CSAH 14  | 25534         | 011+00.630 | 0.4 MI S OF<br>JCT TH 52   | BUTLER CREEK           | 1979          | 32.0        | 36.6          | 2           | 07-RURAL<br>COLL         | 1000         | 2003      | 2             | 36             | 36.6 | 9                          |
| GOODHUE        | CSAH 2   | 25535         | 017+00.944 | 0.4 MI N OF<br>JCT TH 61   | WELLS CREEK            | 1980          | 75.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 450          | 2003      | 2             | 36             | 36   | 9                          |
| GOODHUE        | CSAH 30  | 25563         | 010+00.080 | 0.1 MI W OF<br>JCT TH 57   | SHINGLE<br>CREEK       | 1987          | 31.7        | 32.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 610          | 2003      | 2             | 32             | 32.2 | 9                          |
| GOODHUE        | CSAH 3   | 25575         | 002+00.980 | 0.8 MI W OF<br>JCT CSAH 2  | WELLS CREEK            | 1995          | 122.0       | 40.0          | 2           | 07-RURAL<br>COLL         | 510          | 2003      | 2             | 36             | 40   | 9                          |
| LYON           | CSAH 25  | 5034          | 000+00.740 | 2.1 MI SW OF<br>JCT CSAH 5 | REDWOOD<br>RIVER       | 1931          | 73.0        | 27.0          | 2           | 09-RURAL<br>LOCAL        | 35           | 2001      | 2             | 24             | 27   | 9                          |
| LYON           | CSAH 32  | 5524          | 000+00.471 | 0.1 MI N OF<br>JCT TH 23   | BNSF RR                | 1936          | 36.0        | 39.3          | 2           | 09-RURAL<br>LOCAL        | 820          | 2001      | 2             | 32             | 39.3 | 9                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| LYON           | CSAH 5   | 7209          | 020+00.900 | 0.6 MI S OF<br>JCT CR 76   | THREE MILE<br>CREEK         | 1958          | 23.0        | 28.0          | 2           | 07-RURAL<br>COLL         | 400          | 2001      | 2             | 26             | 28            | 8                          |
| LYON           | CSAH 8   | 7210          | 011+00.380 | 0.9 MI W OF<br>JCT CR 65   | THREE MILE<br>CREEK         | 1958          | 25.0        | 28.0          | 2           | 07-RURAL<br>COLL         | 340          | 2001      | 2             | 26             | 28            | 8                          |
| LYON           | CSAH 3   | 7211          | 012+00.870 | 1.5 MI N OF<br>JCT CSAH 26 | N BR YELLOW<br>MEDICINE R   | 1958          | 25.0        | 28.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 420          | 2001      | 2             | 28             | 28            | 8                          |
| LYON           | CSAH 10  | 42502         | 014+00.820 | 0.8 MI W OF<br>JCT TH 14   | YELLOW<br>MEDICINE<br>RIVER | 1960          | 26.0        | 28.6          | 2           | 07-RURAL<br>COLL         | 215          | 2001      | 2             | 32             | 28.6          | 8                          |
| LYON           | CSAH 8   | 42503         | 020+00.170 | 1.5 MI W OF<br>JCT CSAH 9  | THREE MILE<br>CREEK         | 1962          | 26.3        | 28.8          | 2           | 08-<br>RUR/MINOR<br>COLL | 140          | 2001      | 2             | 30             | 28.8          | 8                          |
| LYON           | CSAH 10  | 42505         | 004+00.700 | 0.4 MI W OF<br>JCT CSAH 3  | STREAM                      | 1963          | 24.0        | 28.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 380          | 2001      | 2             | 28             | 28.5          | 8                          |
| LYON           | CSAH 11  | 42507         | 007+00.980 | 0.6 MI S OF<br>JCT CSAH 2  | BIG<br>COTTONWOOD<br>RIVER  | 1964          | 24.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 590          | 2001      | 2             | 38             | 30            | 8                          |
| LYON           | CSAH 7   | 42510         | 001+00.530 | 1.5 MI S OF<br>JCT TH 14   | STREAM                      | 1966          | 25.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 210          | 2001      | 2             | 32             | 30            | 8                          |
| LYON           | CSAH 3   | 42511         | 005+00.990 | 0.9 MI N OF<br>JCT CSAH 8  | S BR YELLOW<br>MEDICINE R   | 1966          | 26.0        | 31.0          | 2           | 07-RURAL<br>COLL         | 670          | 2001      | 2             | 28             | 31            | 8                          |
| LYON           | CSAH 7   | 42513         | 006+00.860 | 1.2 MI S OF<br>JCT CSAH 2  | BIG<br>COTTONWOOD<br>RIVER  | 1967          | 18.4        | 30.4          | 2           | 07-RURAL<br>COLL         | 670          | 2001      | 2             | 28             | 30.4          | 9                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                    | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-----------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| LYON           | CSAH 8   | 42516         | 004+00.140 | 0.1 MI E OF<br>JCT CSAH 3   | S BR YELLOW<br>MEDICINE R   | 1970          | 26.0        | 30.2          | 2           | 07-RURAL<br>COLL         | 220          | 2001      | 2             | 30             | 30.2          | 8                          |
| LYON           | CSAH 11  | 42520         | 022+00.020 | 0.5 MI S OF<br>JCT CSAH 8   | REDWOOD<br>RIVER            | 1971          | 26.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 170          | 2001      | 2             | 28             | 32            | 9                          |
| LYON           | CSAH 10  | 42521         | 011+00.650 | 1.5 MI S OF<br>CO LINE      | YELLOW<br>MEDICINE<br>RIVER | 1971          | 40.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 215          | 2001      | 2             | 32             | 32            | 9                          |
| LYON           | CSAH 9   | 42522         | 018+00.850 | 1.2 MI S OF<br>JCT CSAH 8   | REDWOOD<br>RIVER            | 1973          | 44.0        | 36.1          | 2           | 07-RURAL<br>COLL         | 245          | 2001      | 2             | 30             | 36.1          | 9                          |
| LYON           | CSAH 8   | 42523         | 012+00.000 | 0.2 MI W OF<br>JCT CR 65    | THREE MILE<br>CREEK         | 1973          | 26.0        | 36.3          | 2           | 07-RURAL<br>COLL         | 340          | 2001      | 2             | 26             | 36.3          | 9                          |
| LYON           | CSAH 25  | 42526         | 001+00.290 | 1.7 MI SW OF<br>JCT CSAH 5  | REDWOOD<br>RIVER            | 1975          | 32.0        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 255          | 2001      | 2             | 32             | 32            | 9                          |
| LYON           | CSAH 13  | 42527         | 002+00.110 | 0.3 MI E OF<br>JCT TH 23    | REDWOOD<br>RIVER            | 1978          | 32.0        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 70           | 2001      | 2             | 27             | 32            | 9                          |
| LYON           | CSAH 5   | 42536         | 015+00.720 | 0.5 MI NW OF<br>JCT CSAH 25 | REDWOOD<br>RIVER            | 1986          | 44.0        | 40.0          | 2           | 07-RURAL<br>COLL         | 425          | 2001      | 2             | 40             | 40            | 9                          |
| LYON           | CSAH 26  | 42538         | 000+00.280 | 0.1 MI E OF<br>JCT CSAH 1   | STREAM                      | 1985          | 38.6        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 40           | 2001      | 2             | 32             | 32            | 9                          |
| LYON           | CSAH 26  | 42540         | 005+00.040 | 0.1 MI W OF<br>JCT CSAH 10  | S BR YELLOW<br>MEDICINE R   | 1989          | 44.5        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 40           | 2001      | 2             | 32             | 32            | 9                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| LYON           | CSAH 15  | 42542         | 000+00.790 | 0.3 MI N OF<br>JCT TH 23   | REDWOOD<br>RIVER          | 1989          | 40.2        | 44.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 890          | 2001      | 2             | 44             | 44            | 9                          |
| LYON           | CSAH 8   | 42546         | 010+00.710 | 1.2 MI E OF<br>JCT TH 68   | THREE MILE<br>CREEK       | 1991          | 36.0        | 32.0          | 2           | 07-RURAL<br>COLL         | 340          | 2001      | 2             | 34             | 32            | 9                          |
| LYON           | CSAH 3   | 42547         | 004+00.890 | 0.1 MI S OF<br>JCT CSAH 8  | S BR YELLOW<br>MEDICINE R | 1991          | 63.6        | 32.0          | 2           | 07-RURAL<br>COLL         | 420          | 2001      | 2             | 36             | 32            | 9                          |
| LYON           | CSAH 11  | 42548         | 010+00.760 | 0.7 MI S OF<br>JCT CSAH 20 | COTTONWOOD<br>RIVER       | 1992          | 41.0        | 40.0          | 2           | 07-RURAL<br>COLL         | 275          | 2001      | 2             | 36             | 40            | 9                          |
| LYON           | CSAH 1   | 42549         | 003+00.870 | 0.8 MI N OF<br>JCT CSAH 26 | N BR YELLOW<br>MEDICINE R | 1993          | 41.3        | 36.6          | 2           | 07-RURAL<br>COLL         | 360          | 2001      | 2             | 32             | 36.6          | 8                          |
| LYON           | CSAH 7   | 42555         | 016+00.550 | 0.3 MI S OF<br>JCT TH 19   | Three Mile Creek          | 2000          | 62.0        | 48.0          | 2           | 07-RURAL<br>COLL         | 670          | 2001      | 2             | 48             | 48            | 9                          |
| LYON           | CSAH 12  | 92692         | 004+00.080 | 1.5 MI W OF<br>JCT TH 91   | REDWOOD<br>RIVER          | 1970          | 18.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 45           | 2001      | 2             | 36             | 30            | 8                          |
| LYON           | CSAH 25  | 5101A         | 000+00.200 | 2.6 MI SW OF<br>JCT CSAH 5 | REDWOOD<br>RIVER          | 1931          | 60.0        | 28.0          | 2           | 09-RURAL<br>LOCAL        | 35           | 2001      | 2             | 24             | 28            | 8                          |
| LYON           | CSAH 3   | L1687         | 009+00.080 | 0.5 MI N OF<br>JCT TH 68   | S BR YELLOW<br>MEDICINE R | 1952          | 18.0        | 28.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 420          | 2001      | 2             | 28             | 28.7          | 8                          |
| LYON           | CSAH 9   | L1705         | 004+00.440 | 0.7 MI S OF<br>JCT CSAH 2  | COTTONWOOD<br>RIVER       | 1956          | 18.0        | 24.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 330          | 2001      | 2             | 35             | 24.4          | 3                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| LYON           | CSAH 10  | L1716         | 021+00.010 | 0.4 MI E OF<br>JCT CSAH 23 | DITCH                  | 1940          | 21.3        | 27.8          | 2           | 07-RURAL<br>COLL         | 295          | 2001      | 2             | 30             | 27.8          | 8                          |
| LYON           | CSAH 25  | R0122         | 000+00.910 | 0.8 MI SW OF<br>LYND       | REDWOOD<br>RIVER       | 1925          | 47.5        | 15.8          | 1           | 09-RURAL<br>LOCAL        | 35           | 2001      | 2             | 28             | 15.8          | 8                          |
| MOWER          | CSAH 4   | 738           | 017+00.470 | 1.0 MI W OF<br>JCT CSAH 7  | STREAM                 | 1917          | 25.4        | 28.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 370          | 1996      | 2             | 28             | 28            | 8                          |
| MOWER          | CSAH 24  | 1750          | 001+00.060 | 1.1 MI N OF<br>JCT CSAH 46 | DOBBINS<br>CREEK       | 1944          | 19.0        | 27.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 387          | 2000      | 2             | 28             | 27.1          | 8                          |
| MOWER          | CSAH 4   | 3141          | 015+00.240 | 2.9 MI E OF<br>JCT TH 56   | LITTLE CEDAR<br>RIVER  | 1963          | 23.0        | 30.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 370          | 1996      | 2             | 28             | 30.1          | 8                          |
| MOWER          | CSAH 4   | 4570          | 016+00.720 | 1.2 MI W OF<br>JCT CSAH 7  | STREAM                 | 1926          | 23.0        | 29.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 370          | 1996      | 2             | 28             | 29            | 8                          |
| MOWER          | CSAH 11  | 4866          | 000+00.850 | 0.8 MI E OF<br>JCT TH 56   | UPPER IOWA<br>RIVER    | 1929          | 35.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 130          | 1996      | 2             | 31             | 30            | 8                          |
| MOWER          | CSAH 7   | 4872          | 027+00.560 | 1.7 MI N OF<br>JCT CSAH 1  | STREAM                 | 1938          | 14.8        | 26.9          | 2           | 07-RURAL<br>COLL         | 270          | 1996      | 2             | 30             | 26.9          | 8                          |
| MOWER          | CSAH 46  | 5064          | 007+00.330 | 0.7 MI W OF<br>JCT CSAH 24 | STREAM                 | 1931          | 31.0        | 27.0          | 2           | 07-RURAL<br>COLL         | 1400         | 1996      | 2             | 32             | 27            | 8                          |
| MOWER          | CSAH 46  | 5065          | 007+00.950 | 0.1 MI W OF<br>JCT CSAH 24 | STREAM                 | 1931          | 39.8        | 27.0          | 2           | 07-RURAL<br>COLL         | 1400         | 1996      | 2             | 32             | 27            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                    | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|-----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| MOWER          | CSAH 46  | 5066          | 009+00.250 | 0.8 MI W OF<br>JCT TH 56    | STREAM                 | 1931          | 40.2        | 27.0          | 2           | 07-RURAL<br>COLL         | 330          | 1996      | 2             | 32             | 27            | 8                          |
| MOWER          | CSAH 46  | 5067          | 009+00.690 | 0.4 MI W OF<br>JCT TH 56    | STREAM                 | 1931          | 35.5        | 27.0          | 2           | 07-RURAL<br>COLL         | 330          | 1996      | 2             | 32             | 27            | 8                          |
| MOWER          | CSAH 8   | 6645          | 000+00.050 | 0.2 MI N OF<br>JCT TH 56    | UPPER IOWA<br>RIVER    | 1948          | 36.0        | 24.0          | 2           | 07-RURAL<br>COLL         | 450          | 1996      | 2             | 34             | 24            | 8                          |
| MOWER          | CSAH 6   | 50505         | 012+00.630 | 1.4 MI W OF<br>JCT CSAH 7   | STREAM                 | 1961          | 23.0        | 27.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 235          | 1996      | 2             | 28             | 27.1          | 8                          |
| MOWER          | CSAH 4   | 50508         | 003+00.440 | 0.6 MI E OF<br>JCT TH 105   | CEDAR RIVER            | 1965          | 75.0        | 27.9          | 2           | 08-<br>RUR/MINOR<br>COLL | 300          | 1996      | 2             | 31             | 27.9          | 8                          |
| MOWER          | CSAH 19  | 50509         | 007+00.970 | 1.6 MI S OF<br>JCT CSAH 3   | ROSE CREEK             | 1965          | 31.1        | 29.7          | 2           | 08-<br>RUR/MINOR<br>COLL | 400          | 1996      | 2             | 30             | 29.7          | 8                          |
| MOWER          | CSAH 1   | 50510         | 018+00.240 | 1.3 MI E OF<br>JCT CSAH 7   | N BR ROOT<br>RIVER     | 1965          | 31.5        | 29.6          | 2           | 07-RURAL<br>COLL         | 340          | 1996      | 2             | 30             | 29.6          | 8                          |
| MOWER          | CSAH 29  | 50511         | 000+00.350 | 0.3 MI N OF<br>JCT CSAH 4   | ROSE CREEK             | 1966          | 56.0        | 29.2          | 2           | 07-RURAL<br>COLL         | 550          | 1996      | 2             | 32             | 29.2          | 8                          |
| MOWER          | CSAH 2   | 50525         | 027+00.150 | 0.9 MI E OF<br>JCT CSAH 8   | BEAR CREEK             | 1972          | 31.0        | 33.8          | 2           | 07-RURAL<br>COLL         | 250          | 1996      | 2             | 34             | 33.8          | 8                          |
| MOWER          | CSAH 6   | 50530         | 006+00.380 | 1.0 MI E OF<br>JCT CSAH 105 | OTTER CREEK            | 1974          | 31.1        | 37.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 560          | 1996      | 2             | 30             | 37            | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| MOWER          | CSAH 7   | 50536         | 006+00.550 | 0.1 MI S OF<br>JCT TH 56   | LITTLE CEDAR<br>RIVER  | 1975          | 31.0        | 39.5          | 2           | 07-RURAL<br>COLL         | 1150         | 1996      | 2             | 31             | 39.5          | 8                          |
| MOWER          | CSAH 12  | 50540         | 001+00.680 | 0.7 MI N OF<br>JCT TH 56   | UPPER IOWA<br>RIVER    | 1977          | 60.0        | 36.0          | 2           | 09-RURAL<br>LOCAL        | 1200         | 1996      | 2             | 42             | 36            | 8                          |
| MOWER          | CSAH 13  | 50541         | 008+00.154 | 1.4 MI W OF<br>JCT CSAH 8  | DEER CREEK             | 1977          | 31.1        | 34.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 55           | 1996      | 2             | 35             | 34.2          | 8                          |
| MOWER          | CSAH 7   | 50542         | 028+00.540 | 2.7 MI N OF<br>JCT CSAH 1  | N BR ROOT<br>RIVER     | 1977          | 31.1        | 37.3          | 2           | 07-RURAL<br>COLL         | 270          | 1996      | 2             | 30             | 37.3          | 8                          |
| MOWER          | CSAH 29  | 50547         | 001+00.920 | 0.1 MI S OF<br>JCT CSAH 28 | STREAM                 | 1979          | 82.0        | 44.6          | 2           | 07-RURAL<br>COLL         | 600          | 1996      | 2             | 36             | 44.6          | 9                          |
| MOWER          | CSAH 6   | 50551         | 014+00.640 | 0.6 MI E OF<br>JCT CSAH 7  | LITTLE CEDAR<br>RIVER  | 1982          | 44.3        | 32.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 260          | 1996      | 2             | 29             | 32.6          | 9                          |
| MOWER          | CSAH 19  | 50556         | 013+00.380 | 2.3 MI N OF<br>JCT CSAH 46 | DOBBINS<br>CREEK       | 1979          | 36.3        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 130          | 1996      | 2             | 32             | 32            | 9                          |
| MOWER          | CSAH 4   | 50582         | 001+00.660 | 1.1 mi W of jct<br>TH 105  | Orchard Creek          | 2001          | 31.0        | 36.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 256          | 2001      | 2             | 36             | 36            | 8                          |
| MOWER          | CSAH 5   | 89212         | 000+00.010 | 2.0 MI W OF<br>JCT TH 105  | WOODBURY<br>CREEK      | 1939          | 27.5        | 23.0          | 2           | 07-RURAL<br>COLL         | 220          | 1996      | 2             | 26             | 23            | 8                          |
| MOWER          | CSAH 16  | 89225         | 005+00.550 | 1.5 MI S OF<br>JCT CSAH 2  | WOLF CREEK             | 1954          | 28.9        | 24.1          | 2           | 07-RURAL<br>COLL         | 380          | 1996      | 2             | 24             | 24.1          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected        | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |      | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-------------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|------|----------------------------|
| MOWER          | CSAH 4   | 92137         | 017+00.970 | 0.5 MI W OF<br>JCT CSAH 7  | STREAM                        | 1963          | 29.2        | 30.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 370          | 1996      | 2             | 28             | 30.4 | 8                          |
| OLMSTED        | CSAH 18  | 448           | 000+00.630 | 0.6 MI N OF<br>JCT TH 52   | MID FK<br>ZUMBRO RIVER        | 1918          | 208.2       | 40.0          | 2           | 07-RURAL<br>COLL         | 1950         | 2002      | 2             | 40             | 40   | 8                          |
| OLMSTED        | CSAH 6   | 6643          | 007+00.200 | 0.5 MI W OF<br>JCT TH 63   | CARYS CREEK                   | 1948          | 50.3        | 24.0          | 2           | 07-RURAL<br>COLL         | 1400         | 2002      | 2             | 25             | 24   | 5                          |
| OLMSTED        | CSAH 36  | 55023         | 000+00.167 | 0.3 MI N OF<br>JCT TH 52   | MARION CREEK                  | 1970          | 45.9        | 36.2          | 2           | 07-RURAL<br>COLL         | 4550         | 2002      | 2             | 36             | 36.2 | 8                          |
| OLMSTED        | CSAH 15  | 55507         | 002+00.800 | 0.2 MI S OF<br>JCT CR 126  | S FK ZUMBRO<br>RIVER          | 1962          | 61.5        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 560          | 2002      | 2             | 32             | 30   | 8                          |
| OLMSTED        | CSAH 15  | 55508         | 005+00.800 | 0.8 MI S OF<br>JCT CSAH 25 | SALEM CREEK                   | 1962          | 60.3        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 800          | 2002      | 2             | 34             | 30   | 8                          |
| OLMSTED        | CSAH 26  | 55511         | 000+00.350 | 1.6 MI W OF<br>JCT CSAH 3  | S FK ZUMBRO<br>RIVER          | 1964          | 60.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 240          | 2002      | 2             | 32             | 30   | 8                          |
| OLMSTED        | CSAH 10  | 55513         | 014+00.290 | 0.4 MI N OF<br>JCT CSAH 9  | MID FK<br>WHITEWATER<br>RIVER | 1965          | 31.2        | 29.8          | 2           | 07-RURAL<br>COLL         | 1200         | 2002      | 2             | 32             | 29.8 | 8                          |
| OLMSTED        | CSAH 7   | 55516         | 005+00.500 | 2.1 MI N OF<br>JCT TH 52   | STREAM                        | 1968          | 84.0        | 32.0          | 2           | 06-<br>RUR/MINOR<br>ART  | 940          | 2002      | 2             | 42             | 32   | 8                          |
| OLMSTED        | CSAH 20  | 55518         | 002+00.280 | 0.3 MI N OF<br>JCT CR 120  | N BR ROOT<br>RIVER            | 1971          | 74.4        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 600          | 2002      | 2             | 36             | 32   | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected      | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |    | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|-----------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|----|----------------------------|
| OLMSTED        | CSAH 25  | 55522         | 011+00.226 | 0.3 MI E OF<br>JCT US 52   | S FK ZUMBRO<br>RIVER        | 1975          | 124.0       | 52.0          | 4           | 16-<br>URB/MINOR<br>ART  | 18900        | 2002      | 2             | 48             | 52 | 9                          |
| OLMSTED        | CSAH 3   | 55528         | 028+00.350 | 0.1 MI W OF<br>JCT CSAH 12 | S BR MID FK<br>ZUMBRO RIVER | 1979          | 85.5        | 44.0          | 2           | 07-RURAL<br>COLL         | 910          | 2002      | 2             | 40             | 44 | 8                          |
| OLMSTED        | CSAH 31  | 55533         | 002+00.060 | 1.3 MI S OF<br>JCT TH 52   | MID FK<br>ZUMBRO RIVER      | 1981          | 88.2        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 140          | 2002      | 2             | 32             | 32 | 8                          |
| OLMSTED        | CSAH 32  | 55535         | 003+00.510 | 0.1 MI S OF<br>JCT TH 14   | S FK<br>WHITEWATER<br>RIVER | 1978          | 31.7        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 220          | 2002      | 2             | 24             | 32 | 5                          |
| OLMSTED        | CSAH 1   | 55536         | 003+00.520 | 2.3 MI S OF<br>JCT CSAH 16 | N BR ROOT<br>RIVER          | 1981          | 70.6        | 44.0          | 2           | 07-RURAL<br>COLL         | 1700         | 2002      | 2             | 40             | 44 | 7                          |
| OLMSTED        | CSAH 3   | 55543         | 008+00.500 | 0.1 MI N OF<br>JCT CR 126  | S BR ZUMBRO<br>RIVER        | 1985          | 55.0        | 40.0          | 2           | 07-RURAL<br>COLL         | 500          | 2002      | 2             | 40             | 40 | 8                          |
| OLMSTED        | CSAH 36  | 55551         | 003+00.112 | 1.8 MI SW OF<br>JCT TH 14  | BEAR CREEK                  | 1994          | 32.2        | 68.0          | 4           | 16-<br>URB/MINOR<br>ART  | 5200         | 2002      | 2             | 64             | 68 | 9                          |
| OLMSTED        | CSAH 22  | 55561         | 004+00.761 | 0.1 MI N OF<br>JCT TH 14   | DM&E RR                     | 1996          | 66.2        | 36.0          | 6           | 14-URB/OTH<br>PR ART     | 14900        | 2002      | 2             | 98             | 90 | 8                          |
| OLMSTED        | CSAH 8   | 55567         | 013+00.440 | 0.1 mi S of jct<br>CSAH 22 | S FK Zumbro<br>River        | 2002          | 115.7       | 28.0          | 4           | 16-<br>URB/MINOR<br>ART  | 6500         | 2002      | 2             | 56             | 56 | 8                          |
| OLMSTED        | CSAH 24  | 89179         | 003+00.980 | 0.4 MI E OF<br>JCT CR 102  | N FK<br>WHITEWATER<br>RIVER | 1953          | 30.0        | 29.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 760          | 2002      | 2             | 32             | 29 | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| OLMSTED        | CSAH 30  | 89181         | 004+00.170 | 1.0 MI E OF<br>JCT CR 130  | TROUT CREEK            | 1956          | 15.2        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 140          | 2002      | 2             | 30             | 24            | 8                          |
| ROCK           | CSAH 3   | 3295          | 012+00.990 | 1.9 MI N OF<br>JCT CSAH 4  | ELK CREEK              | 1920          | 30.0        | 27.0          | 2           | 07-RURAL<br>COLL         | 245          | 2002      | 2             | 27             | 27            | 8                          |
| ROCK           | CSAH 3   | 3298          | 008+00.860 | 0.7 MI N OF<br>JCT CSAH 16 | STREAM                 | 1920          | 20.1        | 28.4          | 2           | 07-RURAL<br>COLL         | 630          | 2002      | 2             | 28             | 28.4          | 8                          |
| ROCK           | CSAH 3   | 3299          | 012+00.820 | 1.7 MI N OF<br>JCT CSAH 4  | ELK CREEK              | 1920          | 22.9        | 27.0          | 2           | 07-RURAL<br>COLL         | 245          | 2002      | 2             | 27             | 27            | 8                          |
| ROCK           | CSAH 4   | 5050          | 014+00.015 | 0.1 MI E OF<br>JCT CSAH 18 | ROCK RIVER             | 1931          | 43.0        | 30.0          | 2           | 07-RURAL<br>COLL         | 3050         | 2002      | 2             | 48             | 30            | 8                          |
| ROCK           | CSAH 9   | 5348          | 008+00.140 | 0.9 MI S OF<br>JCT CSAH 16 | ELK CREEK              | 1933          | 49.7        | 30.3          | 2           | 08-<br>RUR/MINOR<br>COLL | 440          | 2002      | 2             | 33             | 30.3          | 8                          |
| ROCK           | CSAH 15  | 5497          | 015+00.560 | 1.5 MI E OF<br>JCT CSAH 3  | KANARANZI<br>CREEK     | 1935          | 49.9        | 30.3          | 2           | 08-<br>RUR/MINOR<br>COLL | 125          | 2002      | 2             | 32             | 30.3          | 8                          |
| ROCK           | CSAH 8   | 7122          | 016+00.240 | 0.4 MI E OF<br>JCT CSAH 19 | ROCK RIVER             | 1954          | 59.5        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 385          | 2002      | 2             | 30             | 24            | 8                          |
| ROCK           | CSAH 1   | 67501         | 007+00.630 | 1.6 MI E OF<br>JCT CSAH 3  | KANARANZI<br>CREEK     | 1961          | 39.8        | 28.1          | 2           | 07-RURAL<br>COLL         | 510          | 2002      | 2             | 26             | 28.1          | 8                          |
| ROCK           | CSAH 1   | 67502         | 001+00.740 | 0.3 MI W OF<br>JCT CSAH 9  | ROCK RIVER             | 1968          | 42.0        | 30.3          | 2           | 07-RURAL<br>COLL         | 420          | 2002      | 2             | 30             | 30.3          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ROCK           | CSAH 7   | 67503         | 017+00.040 | 0.9 MI W OF<br>JCT CSAH 2  | ROCK RIVER             | 1969          | 36.0        | 36.1          | 2           | 07-RURAL<br>COLL         | 680          | 2002      | 2             | 40             | 36.1          | 8                          |
| ROCK           | CSAH 6   | 67504         | 008+00.680 | 0.6 MI N OF<br>JCT CSAH 4  | BEAVER CREEK           | 1972          | 36.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 415          | 2002      | 2             | 34             | 36            | 8                          |
| ROCK           | CSAH 5   | 67505         | 009+00.670 | 0.4 MI W OF<br>JCT CSAH 11 | LITTLE BEAVER<br>CREEK | 1971          | 26.0        | 36.3          | 2           | 07-RURAL<br>COLL         | 750          | 2002      | 2             | 28             | 36.3          | 8                          |
| ROCK           | CSAH 7   | 67506         | 000+00.380 | 2.1 MI W OF<br>JCT TH 23   | SPLIT ROCK<br>CREEK    | 1973          | 26.0        | 32.1          | 2           | 07-RURAL<br>COLL         | 170          | 2002      | 2             | 32             | 32.1          | 8                          |
| ROCK           | CSAH 9   | 67507         | 017+00.430 | 0.6 MI S OF<br>JCT CSAH 8  | CHAMPEPADAN<br>CREEK   | 1971          | 26.0        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 125          | 2002      | 2             | 30             | 32            | 8                          |
| ROCK           | CSAH 21  | 67510         | 004+00.620 | 0.3 MI W OF<br>JCT CSAH 2  | ROCK RIVER             | 1979          | 31.7        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 40           | 2002      | 2             | 34             | 32            | 8                          |
| ROCK           | CSAH 15  | 67512         | 007+00.750 | 0.7 MI E OF<br>JCT TH 75   | ROCK RIVER             | 1991          | 66.0        | 28.0          | 2           | 09-RURAL<br>LOCAL        | 145          | 2002      | 2             | 28             | 28            | 8                          |
| ROCK           | CSAH 1   | 67529         | 001+00.250 | 1.3 MI E OF<br>JCT TH 75   | ASH CREEK              | 1991          | 32.0        | 32.2          | 2           | 07-RURAL<br>COLL         | 420          | 2002      | 2             | 34             | 32.2          | 8                          |
| ROCK           | CSAH 1   | 67530         | 001+00.420 | 1.5 MI E OF<br>JCT TH 75   | ASH CREEK<br>OVERFLOW  | 1991          | 24.0        | 32.1          | 2           | 07-RURAL<br>COLL         | 420          | 2002      | 2             | 34             | 32.1          | 8                          |
| ROCK           | CSAH 1   | 67531         | 001+00.560 | 1.6 MI E OF<br>JCT TH 75   | ROCK RIVER<br>OVERFLOW | 1991          | 31.6        | 32.3          | 2           | 07-RURAL<br>COLL         | 420          | 2002      | 2             | 34             | 32.3          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| ROCK           | CSAH 3   | 67538         | 016+00.360 | 0.3 MI N OF<br>JCT CSAH 8  | CHAMPEPADAN<br>CREEK   | 1999          | 29.2        | 39.4          | 2           | 07-RURAL<br>COLL         | 470          | 2002      | 2             |                | 39.4          | 9                          |
| ROCK           | CSAH 3   | 67540         | 001+00.090 | 2.0 MI S OF<br>JCT CSAH 1  | KANARANZI<br>CREEK     | 2000          | 56.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 190          | 2002      | 2             |                | 36            | 8                          |
| ROCK           | CSAH 4   | 67544         | 014+00.525 | 0.6 mi E of jct<br>CSAH 18 | ROCK RIVER<br>OVERFLOW | 2002          | 42.0        | 44.0          | 2           | 07-RURAL<br>COLL         | 2600         | 2002      | 2             | 36             | 44            | 8                          |
| ROCK           | CSAH 9   | 92429         | 001+00.290 | 1.7 MI S OF<br>JCT CSAH 1  | STREAM                 | 1965          | 22.2        | 30.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 215          | 2002      | 2             | 30             | 30.6          | 8                          |
| ROCK           | CSAH 11  | 92583         | 016+00.470 | 0.7 MI N OF<br>JCT CSAH 20 | LITTLE BEAVER<br>CREEK | 1969          | 24.0        | 30.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 70           | 2002      | 2             | 38             | 30            | 8                          |
| ROCK           | CSAH 8   | 92759         | 015+00.620 | 0.2 MI S OF<br>JCT CSAH 19 | MOUND CREEK            | 1960          | 17.2        | 28.1          | 2           | 08-<br>RUR/MINOR<br>COLL | 385          | 2002      | 2             | 30             | 28.1          | 8                          |
| ROCK           | CSAH 8   | 92760         | 020+00.630 | 0.2 MI W OF<br>JCT CSAH 3  | CHAMPEPADAN<br>CREEK   | 1960          | 17.0        | 28.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 200          | 2002      | 2             | 30             | 28.2          | 8                          |
| ROCK           | CSAH 7   | 92762         | 008+00.440 | 0.4 MI E OF<br>JCT CR 66   | STREAM                 | 1959          | 22.0        | 28.7          | 2           | 07-RURAL<br>COLL         | 175          | 2002      | 2             | 30             | 28.7          | 8                          |
| ROCK           | CSAH 6   | 92763         | 007+00.940 | 0.2 MI S OF<br>JCT CSAH 4  | SPRING BROOK           | 1957          | 18.6        | 40.4          | 2           | 07-RURAL<br>COLL         | 670          | 2002      | 2             | 40             | 40.4          | 8                          |
| ROCK           | CSAH 1   | L1942         | 007+00.690 | 1.8 MI E OF<br>JCT CSAH 3  | STREAM                 | 1949          | 22.0        | 26.8          | 2           | 07-RURAL<br>COLL         | 510          | 2002      | 2             | 26             | 26.8          | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |      | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|------|----------------------------|
| ROCK           | CSAH 3   | L1945         | 000+00.850 | 2.3 MI S OF<br>JCT CSAH 1  | STREAM                 | 1959          | 23.4        | 28.2          | 2           | 07-RURAL<br>COLL         | 190          | 2002      | 2             | 30             | 28.2 | 4                          |
| ROCK           | CSAH 3   | L1991         | 015+00.790 | 0.3 MI S OF<br>JCT CSAH 8  | STREAM                 | 1949          | 24.0        | 28.5          | 2           | 07-RURAL<br>COLL         | 245          | 2002      | 2             | 30             | 28.5 | 8                          |
| ROCK           | CSAH 17  | L2017         | 001+00.150 | 0.9 MI S OF<br>JCT CSAH 13 | BLOOD RUN              | 1960          | 22.0        | 28.3          | 2           | 07-RURAL<br>COLL         | 560          | 2002      | 2             | 26             | 28.3 | 8                          |
| ROCK           | CSAH 8   | L2069         | 008+00.210 | 0.9 MI W OF<br>JCT CSAH 11 | BEAVER CREEK           | 1940          | 38.0        | 26.9          | 2           | 09-RURAL<br>LOCAL        | 250          | 2002      | 2             | 32             | 26.9 | 8                          |
| ROCK           | CSAH 7   | L2106         | 013+00.330 | 0.3 MI E OF<br>JCT TH 75   | MOUND CREEK            | 1959          | 23.9        | 44.6          | 2           | 07-RURAL<br>COLL         | 1100         | 2002      | 2             | 44             | 44.6 | 8                          |
| ROCK           | CSAH 9   | L2120         | 006+00.870 | 0.8 MI N OF<br>JCT CSAH 15 | STREAM                 | 1920          | 31.9        | 30.6          | 2           | 08-<br>RUR/MINOR<br>COLL | 440          | 2002      | 2             | 30             | 30.6 | 8                          |
| ROCK           | CSAH 11  | L2129         | 012+00.020 | 0.4 MI S OF<br>JCT CSAH 8  | LITTLE BEAVER<br>CREEK | 1954          | 17.0        | 24.5          | 2           | 08-<br>RUR/MINOR<br>COLL | 70           | 2002      | 2             | 28             | 24.5 | 8                          |
| ROCK           | CSAH 11  | L2130         | 011+00.040 | 0.6 MI N OF<br>JCT CSAH 5  | LITTLE BEAVER<br>CREEK | 1954          | 23.0        | 24.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 70           | 2002      | 2             | 28             | 24.4 | 8                          |
| ROCK           | CSAH 13  | L2135         | 003+00.480 | 1.6 MI W OF<br>JCT CSAH 6  | STREAM                 | 1952          | 23.8        | 28.3          | 2           | 07-RURAL<br>COLL         | 1200         | 2002      | 2             | 36             | 28.3 | 7                          |
| ROCK           | CSAH 13  | L2136         | 000+00.560 | 0.5 MI W OF<br>JCT CSAH 17 | BLOOD RUN              | 1952          | 23.9        | 28.4          | 2           | 07-RURAL<br>COLL         | 990          | 2002      | 2             | 36             | 28.4 | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width |      | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|------|----------------------------|
| ROCK           | CSAH 16  | L2146         | 000+00.740 | 0.7 MI E OF<br>JCT TH 75   | ROCK RIVER                | 1951          | 64.3        | 22.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 310          | 2002      | 2             | 28             | 22   | 8                          |
| ROCK           | CSAH 16  | L2147         | 004+00.320 | 0.3 MI E OF<br>JCT CR 55   | ELK CREEK                 | 1949          | 25.0        | 24.2          | 2           | 08-<br>RUR/MINOR<br>COLL | 80           | 2002      | 2             | 32             | 24.2 | 8                          |
| ROCK           | CSAH 17  | L2148         | 011+00.078 | 0.3 MI W OF<br>JCT CSAH 4  | BEAVER CREEK              | 1942          | 20.0        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 115          | 2002      | 2             | 26             | 24   | 8                          |
| ROCK           | CSAH 19  | L2150         | 004+00.040 | 0.1 MI S OF<br>JCT CSAH 7  | STREAM                    | 1960          | 21.9        | 28.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 70           | 2002      | 2             | 32             | 28   | 8                          |
| ROCK           | CSAH 20  | L2153         | 008+00.450 | 1.5 MI W OF<br>JCT CSAH 11 | BEAVER CREEK              | 1952          | 19.0        | 24.3          | 2           | 08-<br>RUR/MINOR<br>COLL | 195          | 2002      | 2             | 26             | 24.3 | 8                          |
| WATON-<br>WAN  | CSAH 3   | 4422          | 005+00.610 | 0.4 MI W OF<br>JCT CSAH18  | BUTTERFIELD<br>CREEK      | 1925          | 29.9        | 36.4          | 2           | 07-RURAL<br>COLL         | 600          | 2001      | 2             | 32             | 36.4 | 8                          |
| WATON-<br>WAN  | CSAH 32  | 4795          | 003+00.140 | 0.8 MI S OF<br>JCT TH30    | WATONWAN<br>RIVER         | 1928          | 30.0        | 26.8          | 2           | 09-RURAL<br>LOCAL        | 105          | 2001      | 2             | 32             | 26.8 | 8                          |
| WATON-<br>WAN  | CSAH 32  | 4819          | 004+00.840 | 0.9 MI N OF<br>JCT TH 30   | STREAM                    | 1928          | 20.5        | 23.9          | 2           | 09-RURAL<br>LOCAL        | 50           | 2001      | 2             | 35             | 23.9 | 8                          |
| WATON-<br>WAN  | CSAH 1   | 5354          | 002+00.710 | 0.3 MI W OF<br>JCT CSAH18  | N FK<br>WATONWAN<br>RIVER | 1934          | 50.0        | 24.2          | 2           | 09-RURAL<br>LOCAL        | 35           | 2001      | 2             | 30             | 24.2 | 8                          |
| WATON-<br>WAN  | CSAH 1   | 5861          | 008+00.690 | 0.2 MI E OF<br>JCT TH4     | N FK<br>WATONWAN<br>RIVER | 1939          | 51.5        | 24.2          | 2           | 09-RURAL<br>LOCAL        | 115          | 2001      | 2             | 32             | 24.2 | 8                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                   | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|----------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| WATON-<br>WAN  | CSAH 18  | 5935          | 006+00.720 | 0.6 MI N OF<br>JCT CSAH1   | N FK<br>WATONWAN<br>RIVER | 1941          | 52.0        | 24.8          | 2           | 07-RURAL<br>COLL         | 150          | 2001      | 2             | 32             | 24.8          | 8                          |
| WATON-<br>WAN  | CSAH 4   | 6111          | 002+00.000 | 2.0 MI N OF<br>JCT TH30    | N FK<br>WATONWAN<br>RIVER | 1900          | 45.0        | 25.5          | 2           | 07-RURAL<br>COLL         | 250          | 2001      | 2             | 36             | 25.5          | 8                          |
| WATON-<br>WAN  | CSAH 9   | 83001         | 009+00.232 | 0.3 MI NW OF<br>JCT TH 15  | WATONWAN<br>RIVER         | 1974          | 73.8        | 44.0          | 2           | 07-RURAL<br>COLL         | 1150         | 2001      | 2             | 44             | 44            | 9                          |
| WATON-<br>WAN  | CSAH 26  | 83505         | 001+00.790 | 1.2 MI W OF<br>JCT CSAH9   | DITCH                     | 1964          | 23.1        | 32.5          | 2           | 07-RURAL<br>COLL         | 100          | 2001      | 2             | 32             | 32.5          | 8                          |
| WATON-<br>WAN  | CSAH 10  | 83511         | 015+00.790 | 1.9 MI W OF<br>JCT CSAH 12 | S FK<br>WATONWAN<br>RIVER | 1977          | 50.0        | 36.0          | 2           | 07-RURAL<br>COLL         | 210          | 2001      | 2             | 36             | 36            | 8                          |
| WATON-<br>WAN  | CSAH 16  | 83516         | 012+00.470 | 0.2 MI S OF<br>JCT CSAH 3  | WATONWAN<br>RIVER         | 1979          | 36.3        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 95           | 2001      | 2             | 32             | 32            | 8                          |
| WATON-<br>WAN  | CSAH 16  | 83521         | 006+00.330 | 2.0 MI E OF<br>JCT CSAH 13 | S FK<br>WATONWAN<br>RIVER | 1987          | 46.3        | 32.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 55           | 2001      | 2             | 32             | 32            | 8                          |
| WATON-<br>WAN  | CSAH 13  | 83524         | 007+00.990 | 0.1 MI W OF<br>JCT CR 109  | S FK<br>WATONWAN<br>RIVER | 1984          | 44.3        | 41.6          | 2           | 07-RURAL<br>COLL         | 820          | 2001      | 2             | 40             | 41.6          | 8                          |
| WATON-<br>WAN  | CSAH 1   | 83525         | 006+00.340 | 0.2 MI N OF<br>JCT CSAH 32 | N FK<br>WATONWAN<br>RIVER | 1992          | 28.3        | 32.0          | 2           | 09-RURAL<br>LOCAL        | 65           | 2001      | 2             | 32             | 32            | 9                          |
| WATON-<br>WAN  | CSAH 27  | 83536         | 009+00.870 | 0.4 MI E OF<br>JCT CSAH 56 | ST JAMES<br>CREEK         | 1996          | 22.0        | 44.1          | 2           | 07-RURAL<br>COLL         | 1450         | 2001      | 2             | 40             | 44.1          | 9                          |

| County<br>Name | Facility | Bridge<br>No. | Ref. Point | Location                  | Feature<br>Intersected    | Year<br>Built | Max<br>Span | Deck<br>Width | Lane<br>No. | Functional<br>Class      | ADT<br>Total | ADT<br>Yr | Traf.<br>Dir. | Appr.<br>Width | Road<br>Width | Appr.<br>Algnmt.<br>Rating |
|----------------|----------|---------------|------------|---------------------------|---------------------------|---------------|-------------|---------------|-------------|--------------------------|--------------|-----------|---------------|----------------|---------------|----------------------------|
| WATON-<br>WAN  | CSAH 1   | 83541         | 007+00.990 | 0.5 MI W OF<br>JCT TH 4   | N FK<br>WATONWAN<br>RIVER | 1998          | 40.6        | 31.4          | 2           | 09-RURAL<br>LOCAL        | 65           | 2001      | 2             | 28             | 31.4          | 8                          |
| WATON-<br>WAN  | CSAH 18  | 90339         | 000+00.840 | 0.8 MI N OF<br>JCT CSAH 3 | BUTTERFIELD<br>CREEK      | 1962          | 32.5        | 24.0          | 2           | 08-<br>RUR/MINOR<br>COLL | 40           | 2001      | 2             | 30             | 24            | 8                          |
| WATON-<br>WAN  | CSAH 5   | 92417         | 016+00.426 | 1.9 MI N OF<br>JCT TH30   | N FK<br>WATONWAN<br>RIVER | 1923          | 44.0        | 32.4          | 2           | 08-<br>RUR/MINOR<br>COLL | 560          | 2001      | 2             | 32             | 32.4          | 8                          |

## **APPENDIX E**

## Database Query: Fixed-Object and Run-Off-Road Crashes Occurring at Sample CSAH Bridges, 1988 - 2002

|          |                  | 0              |                |     |              |                |       | 0    | 8    |    | 11            |               |              |               |             |           |
|----------|------------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| Route    | <b>Ref Point</b> | Bridge<br>Num. | Pontis<br>AADT | Sev | Асс.<br>Туре | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
| 02000001 | 003+00.989       | 2541           | 26,758         | В   | 24           | 7-Sat          | 4     | 2003 | 603  | 40 | 4             | 1             | 1            | 1             | 1           | 031550079 |
| 02000001 | 003+00.960       | 2541           | 26,758         | Ν   | 26           | 7-Sat          | 1     | 1997 | 0    | 40 | 3             | 4             | 1            | 3             | 1           | 970110180 |
| 02000001 | 008 + 00.904     | 92164          | 40,306         | В   | 26           | 2-Mon          | 7     | 2000 | 700  | 45 | 3             | 1             | 2            | 1             | 2           | 001850144 |
| 02000001 | 008+00.926       | 92164          | 40,306         | В   | 31           | 7-Sat          | 11    | 1988 | 1000 | 50 | 2             | 1             | 4            | 5             | 1           | 883100262 |
| 02000001 | 008 + 00.884     | 92164          | 40,306         | В   | 32           | 7-Sat          | 11    | 1988 | 1800 | 50 | 3             | 4             | 4            | 5             | 1           | 883100422 |
| 02000001 | 008+00.884       | 92164          | 40,306         | Ν   | 32           | 7-Sat          | 11    | 1988 | 1900 | 50 | 3             | 4             | 4            | 5             | 1           | 883100601 |
| 02000001 | 008+00.882       | 92164          | 40,306         | Ν   | 51           | 1-Sun          | 4     | 1990 | 2300 | 45 | 1             | 6             | 3            | 2             | 2           | 900980004 |
| 02000001 | 008 + 00.884     | 92164          | 40,306         | Ν   | 31           | 5-Thur         | 10    | 1991 | 1200 | 50 | 1             | 1             | 4            | 3             | 2           | 913040207 |
| 02000001 | 008+00.891       | 92164          | 40,306         | Ν   | 31           | 6-Fri          | 3     | 1992 | 1500 | 50 | 90            | 1             | 4            | 5             | 2           | 920730312 |
| 02000001 | 008+00.903       | 92164          | 40,306         | С   | 31           | 6-Fri          | 5     | 1992 | 100  | 45 | 1             | 4             | 2            | 1             | 1           | 921220265 |
| 02000001 | 009+00.016       | 92164          | 40,306         | Ν   | 31           | 1-Sun          | 11    | 1992 | 1200 | 40 | 1             | 1             | 1            | 1             | 1           | 923200172 |
| 02000001 | 009+00.016       | 92164          | 40,306         | В   | 34           | 3-Tue          | 2     | 1993 | 600  | 45 | 1             | 4             | 5            | 5             | 1           | 930400198 |
| 02000002 | 000+00.200       | 2523           | 9,103          | А   | 51           | 3-Tue          | 6     | 1989 | 100  | 30 | 1             | 4             | 1            | 1             | 11          | 891780090 |
| 02000002 | 000+00.189       | 2523           | 9,103          | С   | 31           | 2-Mon          | 1     | 1999 | 900  | 30 | 2             | 1             | 1            | 5             | 1           | 990040503 |
| 02000007 | 007+00.722       | 2526           | 8,708          | Ν   | 51           | 5-Thur         | 12    | 1991 | 500  | 55 | 1             | 6             | 5            | 5             | 4           | 913460323 |
| 02000007 | 007+00.644       | 2526           | 8,708          | В   | 51           | 6-Fri          | 9     | 1995 | 500  | 99 | 1             | 99            | 99           | 5             | 2           | 952650131 |
| 02000007 | 013+00.211       | 2535           | 6,241          | Ν   | 51           | 6-Fri          | 3     | 1993 | 1500 | 55 | 90            | 1             | 2            | 1             | 4           | 930780264 |
| 02000007 | 013+00.211       | 2535           | 6,241          | В   | 51           | 1-Sun          | 4     | 1994 | 2500 | 55 | 1             | 4             | 1            | 1             | 1           | 941070192 |
| 02000007 | 013+00.211       | 2535           | 6,241          | Ν   | 37           | 3-Tue          | 7     | 1995 | 2000 | 55 | 1             | 3             | 2            | 2             | 1           | 952060304 |
| 02000009 | 007+00.336       | 2536           | 10,380         | В   | 31           | 5-Thur         | 2     | 2002 | 600  | 55 | 1             | 1             | 3            | 2             | 2           | 020450216 |
| 02000009 | 007+00.395       | 2536           | 10,380         | В   | 51           | 1-Sun          | 12    | 1989 | 1900 | 55 | 1             | 6             | 2            | 2             | 2           | 893650221 |
| 02000009 | 007+00.395       | 2536           | 10,380         | А   | 30           | 5-Thur         | 3     | 1990 | 1100 | 55 | 1             | 1             | 4            | 3             | 1           | 900670367 |
| 02000009 | 007+00.395       | 2536           | 10,380         | Ν   | 31           | 3-Tue          | 7     | 1991 | 2100 | 55 | 1             | 5             | 1            | 1             | 1           | 912040171 |
| 02000009 | 007+00.386       | 2536           | 10,380         | А   | 51           | 6-Fri          | 8     | 1992 | 100  | 55 | 2             | 6             | 1            | 1             | 1           | 922410008 |
| 02000009 | 007+00.395       | 2536           | 10,380         | Ν   | 26           | 7-Sat          | 2     | 1994 | 300  | 55 | 90            | 6             | 1            | 1             | 1           | 940360172 |
| 02000009 | 007+00.416       | 2536           | 10,380         | Ν   | 51           | 3-Tue          | 1     | 1996 | 1900 | 55 | 1             | 6             | 1            | 5             | 2           | 960300348 |
| 02000011 | 004+00.428       | 2553           | 13,770         | С   | 25           | 2-Mon          | 11    | 1996 | 1600 | 45 | 1             | 1             | 2            | 1             | 1           | 963230168 |
| 02000013 | 000+00.764       | 2518           | 1,976          | Ν   | 25           | 1-Sun          | 12    | 1992 | 2100 | 55 | 99            | 6             | 5            | 5             | 1           | 923480079 |
| 02000014 | 016+00.405       | 2527           | 7,201          | Ν   | 51           | 4-Wed          | 12    | 2000 | 2300 | 50 | 99            | 6             | 4            | 5             | 1           | 003480447 |
| 02000014 | 001+00.111       | 2560           | 20,076         | Ν   | 26           | 1-Sun          | 11    | 2000 | 0    | 55 | 2             | 6             | 4            | 3             | 1           | 003240528 |
| 02000014 | 000+00.998       | 2560           | 20,076         | Ν   | 35           | 4-Wed          | 10    | 1988 | 2300 | 50 | 3             | 4             | 1            | 1             | 1           | 882930297 |
| 02000014 | 000+00.998       | 2560           | 20,076         | Ν   | 28           | 3-Tue          | 12    | 1988 | 800  | 55 | 2             | 1             | 2            | 5             | 2           | 883480150 |
| 02000014 | 001+00.149       | 2560           | 20,076         | Ν   | 31           | 4-Wed          | 3     | 1994 | 1700 | 45 | 90            | 1             | 5            | 5             | 2           | 940820275 |
| 02000014 | 000+00.993       | 2560           | 20,076         | В   | 31           | 4-Wed          | 3     | 1994 | 1800 | 40 | 1             | 4             | 5            | 5             | 1           | 940820565 |
| 02000014 | 001+00.111       | 2560           | 20,076         | В   | 37           | 6-Fri          | 10    | 1996 | 1900 | 55 | 3             | 4             | 1            | 1             | 99          | 962850051 |

 Table E-1. Fixed-Object and Run-Off-Road Crashes Occurring at Bridges WITH Approach Guardrail, 1988-2002

| Route    | Ref Point    | Bridge<br>Num. | Pontis<br>AADT | Sev | Асс.<br>Туре | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|--------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 02000014 | 001 + 00.000 | 2560           | 20,076         | В   | 30           | 7-Sat          | 11    | 1998 | 800  | 55 | 99            | 1             | 1            | 1             | 2           | 983110208 |
| 02000018 | 002+00.596   | 2549           | 14,479         | Ν   | 35           | 6-Fri          | 1     | 2000 | 800  | 45 | 99            | 1             | 1            | 5             | 1           | 000210535 |
| 02000018 | 002+00.621   | 2549           | 14,479         | Ν   | 31           | 5-Thur         | 12    | 2000 | 900  | 45 | 1             | 1             | 4            | 5             | 2           | 003630748 |
| 02000018 | 002+00.559   | 2549           | 14,479         | Ν   | 32           | 6-Fri          | 1     | 2001 | 800  | 45 | 1             | 1             | 4            | 3             | 1           | 010260770 |
| 02000018 | 002+00.554   | 2549           | 14,479         | С   | 31           | 3-Tue          | 3     | 2002 | 2000 | 45 | 2             | 4             | 4            | 3             | 1           | 020640038 |
| 02000018 | 002+00.564   | 2549           | 14,479         | Ν   | 37           | 3-Tue          | 1     | 2003 | 1107 | 45 | 4             | 1             | 2            | 5             | 1           | 031010108 |
| 02000018 | 002+00.621   | 2549           | 14,479         | Ν   | 35           | 1-Sun          | 12    | 1998 | 1000 | 45 | 90            | 1             | 4            | 3             | 1           | 983540105 |
| 02000021 | 006+00.111   | 90734          | 800            | Ν   | 28           | 7-Sat          | 3     | 1989 | 2100 | 50 | 90            | 6             | 1            | 5             | 2           | 890630425 |
| 02000021 | 006+00.111   | 90734          | 800            | В   | 51           | 1-Sun          | 10    | 1989 | 100  | 50 | 1             | 6             | 1            | 1             | 1           | 892740237 |
| 02000021 | 006 + 00.070 | 90734          | 800            | С   | 90           | 1-Sun          | 5     | 1998 | 1900 | 55 | 99            | 3             | 1            | 1             | 1           | 981370045 |
| 02000022 | 008+00.787   | 2519           | 8,586          | А   | 31           | 3-Tue          | 1     | 1990 | 1400 | 55 | 1             | 1             | 3            | 5             | 1           | 900160157 |
| 02000022 | 012+00.166   | 2519           | 8,586          | С   | 31           | 3-Tue          | 9     | 1992 | 100  | 55 | 1             | 6             | 1            | 1             | 4           | 922590283 |
| 02000022 | 008 + 00.780 | 2519           | 8,586          | Ν   | 31           | 1-Sun          | 2     | 1996 | 100  | 55 | 1             | 6             | 2            | 3             | 2           | 960560053 |
| 02000022 | 005+00.020   | 2548           | 5,464          | K   | 37           | 6-Fri          | 11    | 1993 | 100  | 55 | 2             | 6             | 2            | 1             | 2           | 933230002 |
| 02000024 | 009+00.107   | 2501           | 9,400          | В   | 25           | 5-Thur         | 3     | 2000 | 700  | 55 | 90            | 1             | 2            | 3             | 1           | 000690103 |
| 02000024 | 009+00.030   | 2501           | 9,400          | В   | 27           | 7-Sat          | 8     | 1988 | 500  | 55 | 90            | 2             | 1            | 1             | 1           | 882190048 |
| 02000024 | 017+00.590   | 92730          | 1,000          | Ν   | 51           | 4-Wed          | 3     | 2001 | 1900 | 55 | 2             | 6             | 1            | 1             | 1           | 010660132 |
| 02000024 | 017+00.608   | 92730          | 1,000          | Ν   | 51           | 5-Thur         | 11    | 1992 | 2300 | 99 | 90            | 99            | 99           | 5             | 4           | 923240343 |
| 02000116 | 001+00.952   | 2545           | 17,156         | С   | 51           | 5-Thur         | 9     | 2003 | 1433 | 55 | 90            | 1             | 3            | 2             | 1           | 032940023 |
| 02000116 | 002+00.077   | 2545           | 17,156         | Ν   | 41           | 2-Mon          | 2     | 1995 | 900  | 45 | 90            | 1             | 1            | 1             | 1           | 950580088 |
| 02000116 | 001+00.979   | 2545           | 17,156         | Ν   | 31           | 6-Fri          | 2     | 1998 | 700  | 55 | 2             | 1             | 5            | 5             | 2           | 980440065 |
| 02000116 | 001+00.744   | 2546           | 17,156         | Ν   | 31           | 2-Mon          | 1     | 1998 | 1400 | 55 | 1             | 1             | 4            | 3             | 1           | 980120602 |
| 02000116 | 005+00.041   | 2564           | 20,558         | Ν   | 51           | 6-Fri          | 10    | 1991 | 900  | 99 | 1             | 99            | 99           | 1             | 1           | 912770356 |
| 02000116 | 005+00.111   | 2564           | 20,558         | В   | 51           | 4-Wed          | 11    | 1994 | 1400 | 55 | 1             | 1             | 1            | 1             | 35          | 943130191 |
| 02000116 | 001+00.869   | 96834          | 17,156         | Ν   | 31           | 3-Tue          | 12    | 2000 | 900  | 45 | 1             | 1             | 2            | 5             | 2           | 003470382 |
| 02000116 | 001+00.919   | 96834          | 17,156         | В   | 41           | 5-Thur         | 4     | 2003 | 2106 | 55 | 2             | 6             | 5            | 5             | 3           | 030950044 |
| 18000003 | 001+00.541   | 6518           | 8,600          | Ν   | 30           | 3-Tue          | 12    | 1993 | 2300 | 50 | 90            | 6             | 2            | 5             | 1           | 933620236 |
| 18000003 | 001+00.504   | 6518           | 8,600          | Ν   | 37           | 3-Tue          | 12    | 1993 | 2300 | 55 | 99            | 6             | 7            | 5             | 1           | 933620272 |
| 18000003 | 001+00.434   | 6518           | 8,600          | Ν   | 51           | 3-Tue          | 2     | 1997 | 1700 | 50 | 1             | 3             | 2            | 2             | 35          | 970490305 |
| 18000011 | 018+00.450   | 18524          | 1,050          | Ν   | 31           | 7-Sat          | 4     | 2001 | 1800 | 55 | 1             | 6             | 2            | 1             | 1           | 011180221 |
| 18000011 | 018+00.441   | 18524          | 1,050          | Ν   | 51           | 3-Tue          | 1     | 1992 | 1500 | 55 | 99            | 1             | 2            | 5             | 2           | 920140296 |
| 18000011 | 018+00.450   | 18524          | 1,050          | А   | 51           | 3-Tue          | 8     | 1993 | 100  | 55 | 1             | 6             | 1            | 1             | 1           | 932430171 |
| 18000011 | 018+00.460   | 18524          | 1,050          | В   | 51           | 7-Sat          | 5     | 1995 | 2000 | 55 | 2             | 3             | 2            | 1             | 2           | 951470372 |
| 18000016 | 012+00.111   | 18501          | 2,550          | С   | 25           | 7-Sat          | 6     | 1994 | 100  | 30 | 99            | 6             | 99           | 2             | 1           | 941760258 |
| 18000016 | 012+00.160   | 18501          | 2,550          | А   | 30           | 4-Wed          | 8     | 1995 | 1100 | 50 | 2             | 1             | 1            | 1             | 1           | 952420123 |
| 18000021 | 001+00.111   | 18523          | 530            | С   | 30           | 6-Fri          | 6     | 2002 | 2000 | 55 | 1             | 1             | 1            | 1             | 1           | 021790249 |
| 18000021 | 001+00.155   | 18523          | 530            | С   | 31           | 1-Sun          | 1     | 1994 | 1700 | 55 | 90            | 6             | 7            | 3             | 1           | 940090192 |

| Route    | Ref Point    | Bridge<br>Num. | Pontis<br>AADT | Sev | Acc.<br>Type | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|--------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 18000031 | 003+00.495   | 18506          | 1,350          | С   | 51           | 1-Sun          | 5     | 1998 | 2200 | 55 | 2             | 6             | 1            | 1             | 1           | 981370175 |
| 18000036 | 001+00.111   | 18518          | 1,100          | Ν   | 41           | 7-Sat          | 12    | 2000 | 2100 | 55 | 3             | 6             | 99           | 5             | 2           | 003650213 |
| 18000036 | 001 + 00.100 | 18518          | 1,100          | Ν   | 30           | 3-Tue          | 6     | 1988 | 100  | 55 | 90            | 6             | 1            | 1             | 2           | 881800153 |
| 18000036 | 001 + 00.090 | 18518          | 1,100          | Ν   | 31           | 2-Mon          | 3     | 1999 | 1000 | 55 | 2             | 1             | 4            | 3             | 1           | 990670701 |
| 18000066 | 001+00.022   | 18510          | 5,100          | Ν   | 51           | 4-Wed          | 4     | 1991 | 0    | 40 | 1             | 6             | 1            | 1             | 1           | 911000221 |
| 18000066 | 000+00.963   | 18510          | 5,100          | Ν   | 90           | 1-Sun          | 8     | 1996 | 700  | 45 | 90            | 1             | 1            | 1             | 4           | 962310089 |
| 19000009 | 002+00.171   | 8433           | 3,300          | Ν   | 51           | 5-Thur         | 6     | 2000 | 1700 | 55 | 2             | 1             | 1            | 1             | 1           | 001810300 |
| 19000009 | 002+00.170   | 8433           | 3,300          | В   | 30           | 4-Wed          | 11    | 1988 | 1300 | 55 | 90            | 1             | 2            | 1             | 2           | 883350230 |
| 19000042 | 000+00.933   | 19511          | 39,500         | Ν   | 51           | 3-Tue          | 11    | 2000 | 2000 | 50 | 1             | 4             | 4            | 5             | 1           | 003120577 |
| 19000046 | 022+00.246   | 19502          | 4,200          | Ν   | 30           | 1-Sun          | 2     | 1996 | 0    | 30 | 1             | 4             | 1            | 90            | 1           | 960490153 |
| 19000047 | 014+00.823   | L3170          | 2,250          | Ν   | 31           | 3-Tue          | 4     | 2002 | 700  | 55 | 1             | 1             | 1            | 1             | 1           | 021060036 |
| 19000050 | 006+00.931   | 19J07          | 15,000         | Ν   | 37           | 5-Thur         | 2     | 1991 | 2100 | 55 | 1             | 6             | 1            | 1             | 1           | 910520184 |
| 19000085 | 011+00.222   | 19504          | 890            | Ν   | 31           | 1-Sun          | 12    | 1989 | 2300 | 55 | 2             | 6             | 99           | 99            | 1           | 893580035 |
| 19000085 | 011+00.140   | 19504          | 890            | С   | 31           | 7-Sat          | 3     | 1996 | 0    | 99 | 1             | 99            | 99           | 1             | 2           | 960900036 |
| 19000086 | 009+00.840   | L3182          | 2,200          | Ν   | 25           | 5-Thur         | 10    | 1991 | 1500 | 55 | 1             | 1             | 7            | 5             | 2           | 913040125 |
| 23000001 | 020+00.820   | 5289           | 1,300          | Ν   | 51           | 6-Fri          | 4     | 2003 | 345  | 0  | 0             | 6             | 5            | 5             | 1           | 040560320 |
| 23000001 | 020+00.800   | 5289           | 1,300          | А   | 51           | 7-Sat          | 4     | 1989 | 400  | 55 | 1             | 6             | 2            | 1             | 1           | 891120024 |
| 23000001 | 020+00.770   | 5289           | 1,300          | В   | 31           | 1-Sun          | 4     | 1999 | 2500 | 55 | 1             | 1             | 2            | 1             | 1           | 991080111 |
| 23000001 | 016+00.150   | 23507          | 1,300          | В   | 31           | 7-Sat          | 8     | 1988 | 100  | 0  | 2             | 6             | 2            | 1             | 1           | 882400282 |
| 23000001 | 017+00.490   | 23508          | 1,300          | С   | 31           | 1-Sun          | 12    | 1989 | 100  | 55 | 1             | 6             | 4            | 3             | 1           | 893580012 |
| 23000001 | 017+00.690   | 23508          | 1,300          | С   | 31           | 2-Mon          | 2     | 1999 | 800  | 55 | 1             | 1             | 2            | 5             | 1           | 990320184 |
| 23000001 | 017+00.690   | 23508          | 1,300          | С   | 31           | 2-Mon          | 2     | 1999 | 600  | 55 | 1             | 1             | 2            | 5             | 1           | 990460180 |
| 23000001 | 006+00.340   | 23514          | 900            | Ν   | 31           | 1-Sun          | 1     | 2000 | 700  | 55 | 1             | 2             | 5            | 5             | 1           | 000090088 |
| 25000001 | 022+00.454   | 25559          | 1,100          | Ν   | 30           | 4-Wed          | 12    | 1997 | 500  | 30 | 1             | 4             | 2            | 5             | 1           | 973440107 |
| 25000005 | 005+00.230   | 25566          | 650            | С   | 90           | 6-Fri          | 12    | 1998 | 1700 | 55 | 1             | 6             | 1            | 1             | 2           | 983520151 |
| 25000014 | 004+00.200   | 25508          | 245            | А   | 31           | 2-Mon          | 7     | 1991 | 600  | 55 | 1             | 2             | 1            | 1             | 31          | 911890032 |
| 25000017 | 003+00.000   | 25540          | 640            | А   | 51           | 7-Sat          | 4     | 1991 | 1900 | 55 | 1             | 3             | 1            | 1             | 2           | 911170176 |
| 25000018 | 002+00.140   | 25505          | 7,400          | В   | 33           | 2-Mon          | 11    | 1998 | 1700 | 55 | 1             | 6             | 3            | 2             | 1           | 983130218 |
| 25000018 | 002+00.690   | 25506          | 7,400          | В   | 51           | 2-Mon          | 6     | 1988 | 9900 | 55 | 1             | 1             | 1            | 1             | 1           | 881580002 |
| 25000018 | 002+00.770   | 25506          | 7,400          | В   | 51           | 2-Mon          | 3     | 1992 | 2000 | 55 | 1             | 6             | 2            | 1             | 1           | 920760181 |
| 25000030 | 008+00.887   | 25564          | 420            | Ν   | 35           | 6-Fri          | 10    | 2000 | 1500 | 55 | 90            | 1             | 2            | 1             | 1           | 003010337 |
| 25000066 | 000+00.288   | 25517          | 6,700          | В   | 26           | 5-Thur         | 6     | 2000 | 700  | 55 | 1             | 6             | 3            | 99            | 1           | 001530239 |
| 25000066 | 000+00.252   | 25517          | 6,700          | Ν   | 31           | 6-Fri          | 4     | 1988 | 2100 | 30 | 2             | 5             | 3            | 2             | 1           | 881130125 |
| 25000066 | 000+00.300   | 25517          | 6,700          | С   | 30           | 5-Thur         | 8     | 1988 | 200  | 55 | 90            | 4             | 2            | 1             | 2           | 882170114 |

| Route    | <b>Ref Point</b> | Bridge<br>Num. | Pontis<br>AADT | Sev | Acc.<br>Type | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|------------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 25000066 | 000+00.360       | 25517          | 6,700          | Ν   | 34           | 3-Tue          | 1     | 1991 | 1800 | 40 | 1             | 6             | 1            | 5             | 1           | 910220374 |
| 42000002 | 020+00.090       | 42557          | 244            | А   | 51           | 1-Sun          | 8     | 1990 | 1700 | 55 | 1             | 1             | 1            | 1             | 12          | 902380189 |
| 42000013 | 019+00.470       | 42512          | 145            | С   | 51           | 4-Wed          | 9     | 1998 | 800  | 55 | 2             | 1             | 2            | 1             | 2           | 982450176 |
| 42000013 | 017+00.430       | 42514          | 145            | А   | 25           | 7-Sat          | 11    | 2001 | 100  | 55 | 1             | 6             | 1            | 1             | 1           | 013070259 |
| 42000033 | 003+00.457       | 42541          | 3,950          | Ν   | 31           | 5-Thur         | 10    | 1991 | 1500 | 55 | 1             | 1             | 4            | 5             | 1           | 913040929 |
| 42000033 | 003+00.490       | 42541          | 3,950          | Ν   | 26           | 3-Tue          | 11    | 1993 | 2000 | 55 | 1             | 99            | 1            | 5             | 2           | 933340371 |
| 42000033 | 003+00.509       | 42541          | 3,950          | Ν   | 90           | 4-Wed          | 1     | 1997 | 1000 | 55 | 1             | 1             | 2            | 5             | 35          | 970080150 |
| 50000001 | 002+00.230       | 50504          | 410            | Ν   | 31           | 2-Mon          | 8     | 1989 | 800  | 55 | 2             | 1             | 1            | 1             | 1           | 892260077 |
| 50000001 | 002+00.530       | 50504          | 410            | В   | 31           | 2-Mon          | 3     | 1997 | 1700 | 55 | 2             | 1             | 1            | 1             | 2           | 970900207 |
| 5000002  | 004 + 00.500     | 50524          | 730            | Ν   | 52           | 1-Sun          | 5     | 1991 | 1800 | 55 | 2             | 3             | 3            | 2             | 1           | 911250243 |
| 50000005 | 002+00.232       | 7016           | 210            | Ν   | 35           | 7-Sat          | 4     | 1988 | 500  | 55 | 1             | 1             | 3            | 2             | 1           | 881140257 |
| 50000005 | 002+00.185       | 7016           | 210            | Ν   | 31           | 1-Sun          | 7     | 1993 | 1400 | 55 | 1             | 1             | 2            | 1             | 1           | 931850211 |
| 50000006 | 002+00.329       | 7091           | 640            | В   | 25           | 2-Mon          | 10    | 2002 | 300  | 55 | 90            | 6             | 4            | 3             | 1           | 023010229 |
| 5000008  | 010+00.570       | 4569           | 315            | С   | 51           | 3-Tue          | 9     | 1988 | 1100 | 55 | 1             | 1             | 1            | 1             | 11          | 882570167 |
| 5000008  | 013+00.220       | 50576          | 770            | С   | 31           | 1-Sun          | 12    | 2000 | 300  | 55 | 99            | 6             | 7            | 3             | 1           | 003520262 |
| 50000014 | 000+00.180       | 7148           | 1,200          | С   | 31           | 4-Wed          | 12    | 2001 | 500  | 30 | 2             | 6             | 4            | 3             | 1           | 013600097 |
| 50000014 | 000+00.211       | 7148           | 1,200          | Ν   | 51           | 7-Sat          | 8     | 2003 | 1948 | 55 | 1             | 1             | 1            | 1             | 1           | 032750269 |
| 50000014 | 000+00.211       | 7148           | 1,200          | В   | 26           | 7-Sat          | 11    | 2003 | 815  | 55 | 2             | 1             | 2            | 1             | 1           | 040050306 |
| 50000016 | 000+00.861       | 50503          | 2,100          | С   | 51           | 5-Thur         | 5     | 1989 | 1900 | 30 | 1             | 1             | 1            | 1             | 1           | 891310138 |
| 50000023 | 000+00.930       | 7048           | 2,150          | Ν   | 34           | 1-Sun          | 2     | 1989 | 1200 | 30 | 1             | 1             | 2            | 5             | 1           | 890360131 |
| 50000023 | 000+00.930       | 7048           | 2,150          | В   | 31           | 6-Fri          | 11    | 1991 | 1100 | 30 | 99            | 1             | 5            | 5             | 1           | 913330331 |
| 50000023 | 000+00.945       | 7048           | 2,150          | Ν   | 31           | 5-Thur         | 12    | 1998 | 2300 | 30 | 90            | 4             | 1            | 5             | 1           | 983650208 |
| 50000025 | 008+00.730       | 50507          | 230            | В   | 31           | 5-Thur         | 12    | 2002 | 1900 | 55 | 1             | 6             | 4            | 5             | 1           | 023530505 |
| 50000025 | 008+00.750       | 50507          | 230            | А   | 51           | 7-Sat          | 9     | 1988 | 0    | 55 | 1             | 6             | 1            | 1             | 1           | 882610038 |
| 50000025 | 000+00.111       | 50517          | 750            | Ν   | 27           | 7-Sat          | 8     | 2001 | 1900 | 55 | 1             | 1             | 1            | 1             | 1           | 012370226 |
| 50000025 | 000+00.111       | 50517          | 750            | В   | 31           | 1-Sun          | 3     | 1992 | 2000 | 30 | 2             | 5             | 6            | 1             | 1           | 920610125 |
| 50000029 | 003+00.748       | 5368           | 2,950          | Ν   | 31           | 3-Tue          | 3     | 1989 | 1800 | 30 | 1             | 4             | 7            | 5             | 1           | 890730616 |
| 50000029 | 003+00.742       | 5368           | 2,950          | Ν   | 31           | 5-Thur         | 2     | 1994 | 500  | 30 | 1             | 4             | 1            | 5             | 1           | 940340112 |
| 55000005 | 007+00.430       | 55527          | 2,300          | Ν   | 51           | 5-Thur         | 3     | 1988 | 1900 | 55 | 1             | 4             | 1            | 1             | 1           | 880910034 |
| 55000012 | 009+00.701       | 55520          | 1,950          | В   | 37           | 6-Fri          | 7     | 1991 | 1700 | 55 | 2             | 1             | 1            | 1             | 4           | 912000283 |
| 55000022 | 011+00.265       | 55519          | 25,500         | В   | 31           | 5-Thur         | 10    | 2000 | 500  | 40 | 1             | 6             | 1            | 1             | 1           | 002860335 |
| 55000022 | 011+00.326       | 55519          | 25,500         | Ν   | 31           | 5-Thur         | 4     | 1991 | 100  | 40 | 1             | 6             | 2            | 1             | 2           | 911080167 |
| 55000022 | 011+00.315       | 55519          | 25,500         | Ν   | 31           | 7-Sat          | 3     | 1994 | 0    | 40 | 1             | 6             | 2            | 1             | 1           | 940850227 |
| 55000022 | 011+00.326       | 55519          | 25,500         | Ν   | 31           | 7-Sat          | 6     | 1994 | 2200 | 40 | 1             | 6             | 1            | 1             | 1           | 941620139 |

| Route    | Ref Point  | Bridge<br>Num. | Pontis<br>AADT | Sev | Асс.<br>Туре | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 55000022 | 011+00.265 | 55519          | 25,500         | В   | 31           | 3-Tue          | 10    | 1995 | 2300 | 99 | 1             | 4             | 3            | 2             | 2           | 953040220 |
| 55000022 | 011+00.282 | 55519          | 25,500         | С   | 31           | 7-Sat          | 4     | 1997 | 2300 | 40 | 2             | 6             | 1            | 1             | 1           | 971020095 |
| 55000022 | 011+00.288 | 55519          | 25,500         | Ν   | 31           | 7-Sat          | 11    | 1997 | 300  | 40 | 1             | 6             | 6            | 90            | 1           | 973330238 |
| 55000022 | 011+00.176 | 55519          | 25,500         | С   | 31           | 2-Mon          | 1     | 1998 | 2200 | 40 | 1             | 6             | 5            | 3             | 1           | 980260299 |
| 55000022 | 011+00.315 | 55519          | 25,500         | Ν   | 51           | 6-Fri          | 4     | 1998 | 2500 | 55 | 99            | 6             | 1            | 1             | 1           | 981000250 |
| 55000022 | 011+00.232 | 55519          | 25,500         | В   | 31           | 2-Mon          | 1     | 1999 | 1300 | 40 | 1             | 1             | 4            | 3             | 2           | 990110257 |
| 67000004 | 018+00.765 | 67524          | 1,450          | Ν   | 31           | 4-Wed          | 2     | 1993 | 1900 | 55 | 1             | 6             | 7            | 5             | 1           | 930410103 |
| 67000017 | 006+00.310 | 6787           | 560            | В   | 31           | 7-Sat          | 4     | 1998 | 1600 | 55 | 1             | 1             | 2            | 2             | 1           | 981150060 |
| 83000012 | 003+00.477 | 83513          | 255            | С   | 51           | 4-Wed          | 3     | 1990 | 1700 | 55 | 90            | 1             | 5            | 5             | 1           | 900660447 |
| 83000012 | 003+00.480 | 83513          | 255            | Ν   | 51           | 4-Wed          | 4     | 1998 | 2200 | 55 | 1             | 6             | 1            | 1             | 1           | 981190268 |
| 83000012 | 003+00.390 | 83513          | 255            | Ν   | 31           | 2-Mon          | 9     | 1999 | 2100 | 55 | 90            | 6             | 2            | 90            | 2           | 992700240 |
| 83000019 | 006+00.920 | 90343          | 135            | Ν   | 31           | 3-Tue          | 4     | 1989 | 1800 | 0  | 99            | 3             | 1            | 99            | 2           | 891010207 |
| 83000027 | 003+00.040 | 83539          | 1,200          | Ν   | 31           | 5-Thur         | 6     | 1994 | 1900 | 45 | 2             | 1             | 1            | 1             | 35          | 941600143 |
| 83000027 | 003+00.000 | 83539          | 1,200          | Ν   | 34           | 5-Thur         | 1     | 1995 | 1100 | 45 | 2             | 1             | 1            | 5             | 1           | 950050076 |
| 83000027 | 003+00.040 | 83539          | 1,200          | В   | 31           | 1-Sun          | 5     | 1995 | 1300 | 45 | 2             | 1             | 3            | 2             | 1           | 951480159 |
| 83000057 | 000+00.457 | 8259           | 2,700          | С   | 34           | 2-Mon          | 1     | 1992 | 1800 | 55 | 90            | 6             | 6            | 1             | 1           | 920060019 |

| Route    | <b>Ref Point</b> | Bridge<br>Num. | Pontis<br>AADT | Sev | Асс.<br>Туре | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|------------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 02000051 | 003+00.666       | 2520           | 16,500         | В   | 31           | 6-Fri          | 3     | 1995 | 0    | 50 | 2             | 6             | 1            | 1             | 2           | 950690128 |
| 18000001 | 015+00.099       | 6519           | 2,050          | Ν   | 51           | 5-Thur         | 7     | 1993 | 2100 | 55 | 1             | 6             | 1            | 1             | 1           | 932100206 |
| 19000026 | 006+00.818       | 97556          | 10,400         | С   | 90           | 3-Tue          | 8     | 2001 | 1100 | 45 | 1             | 1             | 99           | 1             | 1           | 012400274 |
| 19000031 | 002+00.111       | 19512          | 9,900          | Ν   | 26           | 7-Sat          | 4     | 2000 | 2200 | 50 | 3             | 4             | 1            | 1             | 1           | 000920053 |
| 19000031 | 002+00.077       | 19512          | 9,900          | Ν   | 38           | 3-Tue          | 4     | 1988 | 200  | 50 | 99            | 4             | 2            | 2             | 1           | 881170345 |
| 19000031 | 002+00.111       | 19512          | 9,900          | Ν   | 90           | 4-Wed          | 8     | 1990 | 1500 | 50 | 1             | 1             | 1            | 1             | 1           | 902270266 |
| 19000054 | 002+00.640       | 2951           | 4,200          | В   | 37           | 7-Sat          | 9     | 1988 | 300  | 55 | 90            | 6             | 1            | 1             | 1           | 882610119 |
| 19000068 | 001+00.987       | 19529          | 5,200          | С   | 31           | 2-Mon          | 9     | 1988 | 1600 | 35 | 2             | 1             | 1            | 1             | 1           | 882700230 |
| 19000068 | 001+00.930       | 19529          | 5,200          | Ν   | 31           | 1-Sun          | 4     | 1991 | 1600 | 55 | 1             | 1             | 2            | 2             | 1           | 911040152 |
| 19000068 | 002+00.160       | 19529          | 5,200          | Ν   | 31           | 6-Fri          | 7     | 1994 | 1400 | 15 | 1             | 1             | 1            | 1             | 1           | 941820229 |
| 19000068 | 002+00.080       | 19529          | 5,200          | В   | 31           | 6-Fri          | 8     | 1994 | 100  | 55 | 2             | 6             | 1            | 1             | 2           | 942310046 |
| 19000091 | 001+00.930       | 7271           | 120            | Ν   | 51           | 1-Sun          | 10    | 1993 | 1700 | 55 | 1             | 1             | 1            | 1             | 2           | 932970181 |
| 19000091 | 001+00.930       | 7271           | 120            | Ν   | 51           | 7-Sat          | 12    | 1993 | 0    | 55 | 1             | 6             | 1            | 5             | 2           | 933380104 |
| 23000002 | 016+00.796       | 23545          | 1,400          | С   | 26           | 7-Sat          | 2     | 1989 | 1000 | 30 | 2             | 1             | 2            | 5             | 1           | 890490516 |
| 23000002 | 016+00.824       | 23545          | 1,400          | Ν   | 31           | 7-Sat          | 3     | 1991 | 2200 | 30 | 2             | 4             | 2            | 2             | 2           | 910750085 |
| 23000002 | 016+00.805       | 23545          | 1,400          | Κ   | 51           | 5-Thur         | 5     | 1991 | 2300 | 30 | 90            | 4             | 6            | 1             | 1           | 911290209 |
| 23000005 | 019+00.038       | 7959           | 680            | Ν   | 51           | 6-Fri          | 10    | 2000 | 2300 | 99 | 1             | 6             | 3            | 2             | 1           | 002870122 |
| 23000005 | 018+00.968       | 7959           | 680            | Ν   | 51           | 6-Fri          | 4     | 1991 | 2100 | 99 | 1             | 6             | 2            | 1             | 1           | 911160253 |
| 23000005 | 010+00.778       | 23522          | 430            | С   | 51           | 6-Fri          | 1     | 1995 | 1400 | 55 | 1             | 1             | 4            | 5             | 1           | 950060466 |
| 23000008 | 033+00.500       | 23506          | 1,250          | Ν   | 51           | 6-Fri          | 11    | 1997 | 600  | 55 | 99            | 2             | 1            | 5             | 1           | 973320317 |
| 23000011 | 012+00.190       | 23541          | 310            | Ν   | 51           | 5-Thur         | 5     | 1989 | 2000 | 55 | 1             | 3             | 1            | 1             | 2           | 891310054 |
| 23000012 | 019+00.770       | 23512          | 760            | А   | 31           | 6-Fri          | 11    | 1992 | 2200 | 55 | 1             | 6             | 1            | 5             | 1           | 923320204 |
| 23000012 | 019+00.770       | 23512          | 760            | С   | 51           | 2-Mon          | 12    | 1993 | 900  | 55 | 2             | 1             | 4            | 5             | 1           | 933540349 |
| 23000012 | 016+00.481       | 23538          | 165            | В   | 51           | 4-Wed          | 7     | 1990 | 2100 | 55 | 90            | 6             | 3            | 2             | 1           | 902060253 |
| 23000015 | 009+00.360       | 7979           | 245            | Ν   | 51           | 5-Thur         | 11    | 1992 | 2300 | 99 | 1             | 99            | 99           | 1             | 1           | 923100033 |
| 23000015 | 000+00.780       | 7983           | 385            | Ν   | 30           | 6-Fri          | 2     | 1996 | 1000 | 55 | 2             | 1             | 1            | 5             | 1           | 960330415 |
| 23000015 | 000+00.780       | 7983           | 385            | Ν   | 37           | 7-Sat          | 9     | 1999 | 2500 | 55 | 99            | 6             | 1            | 99            | 1           | 992610193 |
| 23000021 | 023+00.420       | 23521          | 120            | Ν   | 30           | 2-Mon          | 10    | 2001 | 2500 | 55 | 90            | 6             | 1            | 1             | 1           | 012950096 |
| 23000025 | 013+00.690       | 9923           | 255            | Ν   | 90           | 6-Fri          | 11    | 1997 | 1900 | 55 | 99            | 6             | 4            | 3             | 1           | 973180360 |
| 23000027 | 000+00.420       | 23559          | 290            | Ν   | 51           | 1-Sun          | 10    | 2002 | 1200 | 55 | 90            | 1             | 1            | 1             | 4           | 022860099 |
| 23000029 | 002+00.960       | 9939           | 50             | В   | 41           | 1-Sun          | 1     | 2000 | 300  | 55 | 1             | 6             | 99           | 5             | 1           | 000090158 |
| 23000038 | 003+00.000       | 23567          | 105            | Ν   | 90           | 7-Sat          | 12    | 2001 | 900  | 99 | 99            | 1             | 5            | 5             | 4           | 013560635 |
| 23000038 | 002+00.966       | 23567          | 105            | Ν   | 30           | 6-Fri          | 10    | 1994 | 2000 | 55 | 2             | 6             | 1            | 1             | 1           | 942870005 |
| 23000038 | 003+00.000       | 23567          | 105            | Ν   | 31           | 3-Tue          | 8     | 1998 | 600  | 55 | 1             | 6             | 1            | 2             | 2           | 982160233 |
| 25000002 | 010+00.318       | 2103           | 820            | Ν   | 31           | 2-Mon          | 12    | 2001 | 1300 | 55 | 1             | 1             | 1            | 3             | 1           | 013580148 |

 Table E-2. Fixed-Object and Run-Off-Road Crashes Occurring at Bridges WITHOUT Approach Guardrail, 1988-2002

| Route    | <b>Ref Point</b> | Bridge<br>Num. | Pontis<br>AADT | Sev | Acc.<br>Type | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|------------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 25000002 | 010+00.435       | 2103           | 820            | K   | 31           | 7-Sat          | 2     | 1993 | 1600 | 55 | 1             | 1             | 7            | 90            | 1           | 930440001 |
| 25000002 | 010+00.481       | 2103           | 820            | Ν   | 90           | 7-Sat          | 6     | 1996 | 1700 | 55 | 2             | 1             | 1            | 1             | 2           | 961530102 |
| 25000006 | 006+00.018       | 25532          | 1,450          | Ν   | 36           | 2-Mon          | 2     | 2003 | 1800 | 55 | 1             | 3             | 2            | 5             | 1           | 030970367 |
| 25000006 | 006+00.011       | 25532          | 1,450          | Ν   | 51           | 7-Sat          | 1     | 1995 | 1600 | 55 | 1             | 1             | 7            | 1             | 1           | 950210284 |
| 25000007 | 020+00.407       | 25522          | 455            | В   | 51           | 1-Sun          | 6     | 2002 | 800  | 55 | 1             | 1             | 1            | 1             | 1           | 021740176 |
| 25000007 | 020+00.417       | 25522          | 455            | В   | 34           | 6-Fri          | 3     | 1988 | 300  | 55 | 90            | 6             | 99           | 1             | 1           | 880780255 |
| 25000007 | 020+00.429       | 25522          | 455            | Ν   | 51           | 7-Sat          | 6     | 1990 | 200  | 55 | 1             | 6             | 1            | 1             | 1           | 901740199 |
| 25000007 | 020+00.407       | 25522          | 455            | А   | 90           | 1-Sun          | 8     | 1990 | 1500 | 55 | 90            | 1             | 1            | 1             | 11          | 902380115 |
| 25000007 | 020+00.407       | 25522          | 455            | Ν   | 51           | 7-Sat          | 11    | 1991 | 1600 | 55 | 2             | 3             | 4            | 5             | 1           | 913270387 |
| 25000007 | 020+00.507       | 25522          | 455            | В   | 37           | 7-Sat          | 7     | 1995 | 1300 | 55 | 90            | 1             | 1            | 1             | 11          | 952100268 |
| 25000007 | 016+00.937       | 25530          | 320            | А   | 51           | 5-Thur         | 3     | 2002 | 1800 | 55 | 2             | 6             | 5            | 5             | 1           | 020660229 |
| 25000007 | 017+00.091       | 25531          | 320            | С   | 37           | 1-Sun          | 1     | 2002 | 2200 | 55 | 90            | 6             | 2            | 1             | 1           | 020270037 |
| 25000007 | 017+00.097       | 25531          | 320            | В   | 51           | 7-Sat          | 7     | 2002 | 1700 | 55 | 1             | 1             | 1            | 8             | 2           | 022080261 |
| 25000007 | 017+00.097       | 25531          | 320            | А   | 51           | 3-Tue          | 9     | 2003 | 201  | 55 | 4             | 6             | 1            | 1             | 3           | 032830020 |
| 25000007 | 017+00.197       | 25531          | 320            | Ν   | 37           | 4-Wed          | 12    | 1999 | 2000 | 55 | 99            | 6             | 2            | 1             | 1           | 993490275 |
| 25000008 | 007+00.811       | 25516          | 395            | С   | 37           | 7-Sat          | 8     | 1991 | 800  | 55 | 1             | 1             | 1            | 1             | 35          | 912360218 |
| 25000014 | 011+00.560       | 25534          | 1,000          | В   | 51           | 2-Mon          | 11    | 1997 | 1700 | 55 | 1             | 6             | 2            | 1             | 1           | 973070180 |
| 42000003 | 012+00.860       | 7211           | 420            | Ν   | 51           | 4-Wed          | 5     | 1994 | 800  | 55 | 2             | 1             | 1            | 1             | 32          | 941380225 |
| 42000005 | 015+00.691       | 42536          | 425            | В   | 30           | 2-Mon          | 1     | 1990 | 9900 | 0  | 99            | 6             | 1            | 5             | 1           | 900010205 |
| 42000005 | 015+00.709       | 42536          | 425            | А   | 51           | 6-Fri          | 6     | 1991 | 1900 | 30 | 1             | 1             | 1            | 1             | 11          | 911790214 |
| 42000008 | 010+00.630       | 42546          | 340            | Ν   | 31           | 4-Wed          | 4     | 1990 | 2000 | 55 | 1             | 3             | 3            | 2             | 2           | 900940191 |
| 42000009 | 018 + 00.600     | 42522          | 245            | С   | 31           | 6-Fri          | 5     | 1993 | 1900 | 55 | 1             | 3             | 8            | 2             | 2           | 931270218 |
| 42000009 | 004 + 00.402     | L1705          | 330            | Κ   | 30           | 6-Fri          | 5     | 1992 | 500  | 55 | 99            | 6             | 1            | 1             | 1           | 921500001 |
| 42000010 | 004 + 00.709     | 42505          | 380            | Ν   | 31           | 7-Sat          | 11    | 1988 | 9900 | 0  | 99            | 2             | 5            | 3             | 1           | 883170689 |
| 42000010 | 011+00.665       | 42521          | 215            | В   | 90           | 1-Sun          | 8     | 2000 | 200  | 55 | 90            | 6             | 1            | 1             | 1           | 002330051 |
| 50000004 | 017+00.970       | 92137          | 370            | Ν   | 51           | 2-Mon          | 7     | 1988 | 900  | 55 | 2             | 1             | 1            | 1             | 38          | 881930193 |
| 50000005 | 000+00.014       | 89212          | 220            | Ν   | 90           | 1-Sun          | 10    | 2001 | 1200 | 99 | 99            | 99            | 99           | 99            | 1           | 012870159 |
| 5000008  | 000+00.111       | 6645           | 450            | С   | 36           | 3-Tue          | 7     | 2001 | 2000 | 99 | 90            | 1             | 1            | 99            | 10          | 012120256 |
| 50000012 | 001+00.670       | 50540          | 1,200          | Ν   | 30           | 1-Sun          | 11    | 1992 | 1300 | 55 | 99            | 1             | 3            | 2             | 1           | 923060148 |
| 50000016 | 005+00.550       | 89225          | 380            | А   | 51           | 7-Sat          | 7     | 2000 | 200  | 55 | 90            | 6             | 1            | 1             | 1           | 001970205 |
| 55000001 | 003+00.460       | 55536          | 1,700          | N   | 31           | 2-Mon          | 9     | 2003 | 630  | 55 | 2             | 1             | 1            | 1             | 2           | 032930117 |
| 55000003 | 008+00.500       | 55543          | 500            | В   | 51           | 3-Tue          | 3     | 2000 | 600  | 55 | 90            | 1             | 1            | 2             | 2           | 000740218 |
| 55000003 | 008+00.514       | 55543          | 500            | Ν   | 37           | 4-Wed          | 9     | 2000 | 400  | 55 | 1             | 1             | 1            | 1             | 1           | 002710099 |
| 55000006 | 007+00.195       | 6643           | 1,400          | N   | 30           | 7-Sat          | 1     | 2003 | 1248 | 55 | 1             | 1             | 5            | 4             | 2           | 030590002 |
| 55000006 | 007+00.260       | 6643           | 1,400          | А   | 31           | 4-Wed          | 7     | 1997 | 1300 | 55 | 2             | 1             | 1            | 1             | 1           | 971970259 |
| 55000006 | 007+00.160       | 6643           | 1,400          | Ν   | 31           | 1-Sun          | 8     | 1993 | 0    | 55 | 90            | 6             | 1            | 1             | 1           | 932340125 |
| 55000007 | 005+00.610       | 55516          | 940            | Ν   | 31           | 1-Sun          | 11    | 1988 | 1000 | 55 | 1             | 1             | 4            | 5             | 1           | 883320225 |

| Route    | Ref Point    | Bridge<br>Num. | Pontis<br>AADT | Sev | Acc.<br>Type | Day of<br>Week | Month | Year | Time | SL | Loca-<br>tion | Light-<br>ing | Weath-<br>er | Road<br>Surf. | Veh<br>Type | Acc Num   |
|----------|--------------|----------------|----------------|-----|--------------|----------------|-------|------|------|----|---------------|---------------|--------------|---------------|-------------|-----------|
| 55000015 | 005 + 00.800 | 55508          | 800            | В   | 31           | 4-Wed          | 1     | 1992 | 900  | 55 | 99            | 1             | 2            | 8             | 1           | 920220081 |
| 55000015 | 005+00.813   | 55508          | 800            | Κ   | 31           | 6-Fri          | 4     | 1993 | 0    | 55 | 1             | 6             | 1            | 1             | 1           | 931130001 |
| 55000020 | 002+00.250   | 55518          | 600            | С   | 31           | 3-Tue          | 2     | 2002 | 800  | 55 | 1             | 1             | 7            | 5             | 1           | 020570174 |
| 55000022 | 004 + 00.766 | 55561          | 14,900         | Ν   | 38           | 7-Sat          | 3     | 1988 | 1700 | 50 | 99            | 6             | 7            | 5             | 4           | 880720115 |
| 55000025 | 011+00.156   | 55522          | 18,900         | Ν   | 31           | 7-Sat          | 3     | 1993 | 1500 | 35 | 1             | 1             | 1            | 1             | 4           | 930720120 |
| 55000025 | 011+00.196   | 55522          | 18,900         | Ν   | 31           | 6-Fri          | 11    | 1993 | 700  | 35 | 1             | 1             | 4            | 5             | 2           | 933090667 |
| 55000030 | 004 + 00.170 | 89181          | 140            | В   | 37           | 7-Sat          | 3     | 1990 | 1600 | 55 | 1             | 1             | 1            | 1             | 2           | 900620168 |
| 55000032 | 003+00.430   | 55535          | 220            | Ν   | 31           | 3-Tue          | 2     | 1990 | 100  | 55 | 1             | 6             | 1            | 5             | 1           | 900510018 |
| 55000036 | 003+00.111   | 55551          | 5,200          | В   | 51           | 6-Fri          | 3     | 1992 | 2100 | 55 | 1             | 6             | 6            | 2             | 2           | 920660076 |
| 55000036 | 003+00.111   | 55551          | 5,200          | С   | 37           | 7-Sat          | 9     | 1995 | 1000 | 55 | 1             | 1             | 1            | 1             | 2           | 952520226 |
| 55000036 | 000+00.250   | 55023          | 4,550          | С   | 31           | 3-Tue          | 6     | 2000 | 1600 | 55 | 1             | 1             | 3            | 2             | 1           | 001650148 |
| 67000001 | 007+00.618   | 67501          | 510            | В   | 31           | 3-Tue          | 6     | 1999 | 1500 | 55 | 1             | 1             | 1            | 1             | 14          | 991590215 |
| 67000003 | 016+00.355   | 67538          | 470            | Κ   | 31           | 4-Wed          | 7     | 1996 | 1800 | 55 | 1             | 1             | 1            | 1             | 1           | 962060002 |
| 67000003 | 008+00.890   | 3298           | 630            | Ν   | 90           | 4-Wed          | 6     | 1993 | 1800 | 55 | 1             | 1             | 1            | 1             | 2           | 931740300 |
| 67000003 | 009+00.080   | 3298           | 630            | Ν   | 31           | 6-Fri          | 11    | 1993 | 1100 | 55 | 1             | 1             | 3            | 5             | 1           | 933160297 |
| 67000003 | 012+00.740   | 3299           | 245            | Ν   | 31           | 1-Sun          | 9     | 1991 | 100  | 55 | 2             | 6             | 1            | 1             | 1           | 912510175 |
| 67000003 | 001+00.111   | 67540          | 190            | Ν   | 90           | 4-Wed          | 3     | 1989 | 900  | 55 | 2             | 1             | 1            | 5             | 38          | 890670284 |
| 67000004 | 013+00.993   | 5050           | 3,050          | Ν   | 31           | 5-Thur         | 1     | 1996 | 1600 | 30 | 1             | 1             | 1            | 5             | 2           | 960040284 |
| 67000006 | 008+00.650   | 67504          | 415            | А   | 31           | 3-Tue          | 3     | 2000 | 500  | 55 | 1             | 6             | 1            | 1             | 2           | 000670151 |
| 67000006 | 008+00.650   | 67504          | 415            | В   | 51           | 2-Mon          | 12    | 1996 | 1800 | 55 | 1             | 3             | 7            | 5             | 2           | 963510387 |
| 67000007 | 013+00.210   | L2106          | 1,100          | С   | 31           | 7-Sat          | 3     | 1993 | 2000 | 55 | 1             | 6             | 6            | 1             | 2           | 930860150 |
| 6700008  | 016+00.210   | 7122           | 385            | А   | 31           | 2-Mon          | 1     | 1993 | 700  | 55 | 1             | 6             | 1            | 99            | 1           | 930040239 |
| 67000008 | 016+00.210   | 7122           | 385            | С   | 51           | 6-Fri          | 3     | 1995 | 700  | 55 | 1             | 2             | 2            | 1             | 1           | 950830213 |
| 67000008 | 020+00.590   | 92760          | 200            | А   | 31           | 3-Tue          | 8     | 1991 | 100  | 55 | 1             | 6             | 2            | 1             | 1           | 912320191 |
| 67000009 | 006+00.870   | L2120          | 440            | Ν   | 31           | 1-Sun          | 9     | 1996 | 1500 | 55 | 1             | 1             | 2            | 1             | 1           | 962730012 |
| 67000013 | 003+00.480   | L2135          | 1,200          | С   | 31           | 3-Tue          | 5     | 1999 | 300  | 55 | 2             | 6             | 2            | 1             | 1           | 991240286 |
| 67000013 | 000+00.560   | L2136          | 990            | Ν   | 31           | 6-Fri          | 3     | 1989 | 1500 | 55 | 2             | 1             | 4            | 1             | 1           | 890760525 |
| 67000013 | 000+00.560   | L2136          | 990            | Ν   | 31           | 2-Mon          | 3     | 1992 | 1500 | 55 | 1             | 1             | 7            | 3             | 2           | 920690309 |
| 67000013 | 000+00.560   | L2136          | 990            | С   | 90           | 2-Mon          | 11    | 1997 | 1400 | 55 | 2             | 1             | 1            | 1             | 1           | 973210054 |
| 67000016 | 000+00.750   | L2146          | 310            | В   | 31           | 4-Wed          | 10    | 1992 | 2200 | 55 | 99            | 6             | 1            | 1             | 2           | 923020220 |
| 67000016 | 000+00.750   | L2146          | 310            | А   | 37           | 5-Thur         | 7     | 1996 | 200  | 55 | 1             | 6             | 2            | 2             | 1           | 961860211 |
| 67000016 | 000+00.750   | L2146          | 310            | Ν   | 31           | 7-Sat          | 7     | 1996 | 700  | 55 | 1             | 6             | 1            | 1             | 1           | 962020211 |
| 83000005 | 016+00.426   | 92417          | 560            | В   | 30           | 2-Mon          | 3     | 1996 | 1000 | 55 | 90            | 1             | 2            | 1             | 35          | 960710083 |
| 83000027 | 009+00.870   | 83536          | 1,450          | Κ   | 31           | 7-Sat          | 2     | 1994 | 1600 | 55 | 1             | 1             | 1            | 1             | 2           | 940570336 |
| 83000032 | 002+00.912   | 4795           | 105            | Ν   | 31           | 7-Sat          | 6     | 1989 | 600  | 55 | 2             | 2             | 1            | 1             | 1           | 891610272 |

## **APPENDIX F**

Summarized Police Report Information for Crashes at Sample CSAH Bridges

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                    | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 2519       | 2000022  | No                                   | 900160157 | 1990          | А   | 31   | Lost control on icy pavement, ROR and hit "bridge<br>guard fence" on the NE corner. (diag shows direct<br>strike on end of BR on right approach but NO GR<br>shown)   | BR                          | Yes (Atten.)             | Арр                                               | 8586           |
| 6643       | 55000006 | No                                   | 971970259 | 1997          | А   | 31   | ROR on right and struck "end of the bridge" head on<br>approach (diag shows this, clearly no app GR in diag)                                                          | BR                          | Yes (Atten.)             | Арр                                               | 1400           |
| 67504      | 67000006 | No                                   | 670151    | 2000          | A   | 31   | "Swerved to miss deer; struck corner of bridge" (diag<br>shows strike near end of bridge rail)                                                                        | BR                          | Yes (Atten.)             | Арр                                               | 415            |
| 7122       | 67000008 | No                                   | 930040239 | 1993          | A   | 31   | Struck bridge rail (diag shows a head-on strike to end of rail)                                                                                                       | BR                          | Yes (Atten.)             | Арр                                               | 385            |
| 23512      | 23000012 | No                                   | 923320204 | 1992          | A   | 31   | Slippery road, lost control, "struck bridge" (diag<br>shows a side-impact direct strike on rail end)                                                                  | BR                          | Yes (Atten.)             | Dep                                               | 760            |
| 92760      | 67000008 | No                                   | 912320191 | 1991          | A   | 31   | "Driver struck bridge railing on opposite side of road"<br>(diagram shows a head-on strike to end of rail on<br>opposite side and vehicle continuing off the roadway) | BR                          | Yes (Atten.)             | Dep                                               | 200            |
| L2146      | 67000016 | No                                   | 961860211 | 1996          | A   | 37   | ROR and struck bank of waterway (diag shows veh<br>went to left between two bridges)                                                                                  | Roadside                    | Yes (Redir.)             | Арр                                               | 310            |
| 89225      | 50000016 | No                                   | 1970205   | 2000          | A   | 51   | Swerved to miss deer, crossed centerline, ROR into<br>ditch and rolled over; ahead of bridge but no object<br>struck                                                  | Roadside                    | Yes (Redir.)             | Dep                                               | 380            |
| 92417      | 83000005 | No                                   | 960710083 | 1996          | В   | 30   | Lost control, ROR and into ditch on left side ahead of<br>bridge, striking several trees and coming to rest near<br>river                                             | Roadside                    | Yes (Redir.)             | Dep                                               | 560            |

Table F-1. Summary of Crash Reports: Fixed-Object and ROR Crashes Occurring at Bridges WITHOUT Approach Guardrail, 1988 - 2002

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                              | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 42536      | 42000005 | No                                   | 900010205 | 1990          | В   | 30   | ROR and struck tree approx 100 ft from bridge (no diag)                                                                                                                                                         | Roadside                    | Yes (Redir.)             | Unsure                                            | 425            |
| 19529      | 19000068 | No                                   | 942310046 | 1994          | В   | 31   | "Hit bridge abutment (one lane bridge)" (diag shows<br>head-on strike with end of BR on approach side)                                                                                                          | BR                          | Yes (Atten.)             | App                                               | 5200           |
| 2520       | 2000051  | No                                   | 950690128 | 1995          | В   | 31   | Swerved to avoid deer, lost control, left roadway,<br>struck snow bank, "struck bridge" and overturned<br>down embankment into creek (diag shows strike with<br>end of BR on app sideclearly no app GR in diag) | BR                          | Yes (Redir.)             | Арр                                               | 16500          |
| L2146      | 67000016 | No                                   | 923020220 | 1992          | В   | 31   | Swerved to miss deer, "ran head on into the bridge rail<br>on right sidevehicle was totaled" (diag showed<br>head-on end strike with rail)                                                                      | BR                          | Yes (Atten.)             | Арр                                               | 310            |
| 55508      | 55000015 | No                                   | 920220081 | 1992          | В   | 31   | Lost control on slippery road, "hit bridge" (appears to<br>be rail side-strike from diag) stopped near road edge                                                                                                | BR                          | Yes (Redir.)             | Dep                                               | 800            |
| 67501      | 67000001 | No                                   | 991590215 | 1999          | В   | 31   | "Tractor hit bridge guardrail throwing veh out of<br>control then rolled over the bridge rail and into creek"<br>(diag show hitting bridge rail and ROR towards<br>departure end of rail)                       | BR                          | Yes (Redir.)             | Dep                                               | 510            |
| 9939       | 23000029 | No                                   | 90158     | 2000          | В   | 41   | "Struck end of bridge"; (diag shows direct strike on end of rail)                                                                                                                                               | BR                          | Yes (Atten.)             | Арр                                               | 50             |
| 25522      | 25000007 | No                                   | 21740176  | 2002          | В   | 51   | ROR and overturned in ditch near bridge, but no object struck                                                                                                                                                   | Roadside                    | Yes (Redir.)             | Арр                                               | 455            |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                     | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 55543      | 55000003 | No                                   | 740218    | 2000          | В   | 51   | ROR near end of bridge rail on departure side, no object struck                                                                                                                        | Roadside                    | Yes (Redir.)             | Dep                                               | 500            |
| 23545      | 23000002 | No                                   | 890490516 | 1989          | С   | 26   | Lost control on icy bridge, ROR to right, struck end of<br>bridge on approach (diag shows strike on end of BR<br>on approach side, no GR shown)                                        | BR                          | Yes (Atten.)             | Арр                                               | 1400           |
| 42522      | 42000009 | No                                   | 931270218 | 1993          | С   | 31   | ROR and "hit bridge" (no diag, although other portions of the report suggest approach side strike)                                                                                     | BR                          | Yes (Atten.)             | Арр                                               | 245            |
| L2106      | 67000007 | No                                   | 930860150 | 1993          | C   | 31   | ROR and into ditch; recovered out of ditch and "struck<br>the bridge" (diag shows driver striking end of bridge<br>and redirecting back onto road)                                     | BR                          | Yes (Atten.)             | Арр                                               | 1100           |
| L2135      | 67000013 | No                                   | 991240286 | 1999          | С   | 31   | "veh in ditch, bridge rail completely wiped out" (diag<br>shows that veh crossed road and hit BR (sideswipe) on<br>opposite side, went into ditch just past opposite<br>approach side) | BR                          | Yes (Redir.)             | Арр                                               | 1200           |
| 19529      | 19000068 | No                                   | 882700230 | 1988          | С   | 31   | No description. Diagram shows head-on collision<br>with left side BR on approach. Difficult to tell from<br>diag what is actually struck                                               | BR                          | Yes (Atten.)             | Dep                                               | 5200           |
| 55518      | 55000020 | No                                   | 20570174  | 2002          | С   | 31   | Lost control on ice, "vehicle struck bridge head-on",<br>(no diagram included)                                                                                                         | BR                          | Yes (Atten.)             | Unsure                                            | 600            |
| 23512      | 23000012 | No                                   | 933540349 | 1993          | C   | 51   | Snowy roadway, ROR "just before the bridge"<br>(diagram shows nearly missing rail), overturned and<br>landed in creek                                                                  | Roadside                    | Yes (Redir.)             | Dep                                               | 760            |
| L1705      | 42000009 | No                                   | 921500001 | 1992          | K   | 30   | ROR on the right, went into ditch, sideswiped one tree<br>and struck another head-on, vehicle engulfed in fire<br>(diag shows 177' upstream of bridge on approach)                     | Roadside                    | Yes (Redir.)             | Арр                                               | 330            |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                                                                   | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 2103       | 25000002 | No                                   | 930440001 | 1993          | К   | 31   | "Driver lost control and struck bridge" (diag shows<br>driver side impact with end of bridge rail on approach<br>side)                                                                                                                                                               | BR                          | Yes (Atten.)             | Арр                                               | 820            |
| 55508      | 55000015 | No                                   | 931130001 | 1993          | К   | 31   | "Driver ROR to left, overcorrected back to right,<br>struck bridge rail with rear of veh (sheared off rear of<br>veh) vaulted down river bank striking trees, coming to<br>rest submerged in the river" (diag shows impact with<br>end of BR on approach side proceeding into river) | BR                          | Yes (Atten.)             | Арр                                               | 800            |
| 67538      | 67000003 | No                                   | 962060002 | 1996          | K   | 31   | "Swiped bridge guardrail, then went through the<br>guardrail and into the creek, a piece of GR went<br>through the car" (diag shows head-on strike on end of<br>BR on approach - no approach GR)                                                                                     | BR                          | Yes (Atten.)             | Арр                                               | 470            |
| 83536      | 83000027 | No                                   | 940570336 | 1994          | К   | 31   | "Hit bridge, tore 12' of steel bridge railing off, railing<br>came through cab striking driver, ejected him into<br>creek, car flipped and came to rest in creek" (diag<br>does not show point of impact, but based on the<br>description of the "spearing" it's likely an end hit)  | BR                          | Yes (Atten.)             | Арр                                               | 1450           |
| 23545      | 23000002 | No                                   | 911290209 | 1991          | K   | 51   | ROR near bridge (on approach) on left side (but did<br>not strike), struck ditch, went airborne, overturned<br>(difficult from diag to determine how close vehicle<br>was to bridge when ROR occurred)                                                                               | Roadside                    | Yes (Redir.)             | Dep                                               | 1400           |
| 23521      | 23000021 | No                                   | 12950096  | 2001          | N   | 30   | Lost control, ROR near bridge and hit tree                                                                                                                                                                                                                                           | Roadside                    | Yes (Redir.)             | Dep                                               | 120            |
| 2103       | 25000002 | No                                   | 13580148  | 2001          | N   | 31   | Too fast around curve, lost control and struck bridge rail, and ROR into ditch                                                                                                                                                                                                       | BR                          | Yes (Redir.)             | Арр                                               | 820            |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                                                            | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 23567      | 23000038 | No                                   | 982160233 | 1998          | N   | 31   | Unknown events leading to collision. Vehicle found<br>after "collision with guardrail on bridge" (diag shows<br>head-on strike with end of bridge rail, no GR)                                                                                                                | BR                          | Yes (Atten.)             | App                                               | 105            |
| 3299       | 67000003 | No                                   | 912510175 | 1991          | N   | 31   | Driver fell asleep and struck "corner of bridge" (no<br>diag but other portions of the report suggests approach<br>side collision)                                                                                                                                            | BR                          | Yes (Atten.)             | Арр                                               | 245            |
| 4795       | 83000032 | No                                   | 891610272 | 1989          | N   | 31   | Lost control, "hit edge of bridge and went into creek"                                                                                                                                                                                                                        | BR                          | Yes (Redir.)             | App                                               | 105            |
| 55522      | 55000025 | No                                   | 930720120 | 1993          | N   | 31   | Lost control ROR on right on approach, struck<br>"bridge" on approach side, went down embankment<br>into river (diag shows direct strike on end of BR on<br>approach side, no GR)                                                                                             | BR                          | Yes (Atten.)             | Арр                                               | 18900          |
| 55535      | 55000032 | No                                   | 900510018 | 1990          | N   | 31   | Lost control, ROR, struck end of bridge and into ditch                                                                                                                                                                                                                        | BR                          | Yes (Redir.)             | App                                               | 220            |
| 6643       | 55000006 | No                                   | 932340125 | 1993          | N   | 31   | "hit guardrail on bridge, veh came to rest approx 135<br>ft from point of impact" (diag shows impact near<br>leading end of BR, veh stays on road)                                                                                                                            | BR                          | Yes (Atten.)             | App                                               | 1400           |
| L2120      | 67000009 | No                                   | 962730012 | 1996          | N   | 31   | Driver struck bridge (no diagram)                                                                                                                                                                                                                                             | BR                          | Yes (Atten.)             | App                                               | 440            |
| L2146      | 67000016 | No                                   | 962020211 | 1996          | N   | 31   | "Struck bridge, continued east and then ROR into<br>ditch" (diag shows sideswipe of left rail and ROR on<br>left after end of rail)                                                                                                                                           | BR                          | Yes (Redir.)             | Арр                                               | 310            |
| 19529      | 19000068 | No                                   | 941820229 | 1994          | N   | 31   | Veh crossed bridge, struck "bridge guardrail" on the<br>right breaking it, then continuing striking the "cement<br>approach barriers" then ROR to the right coming to<br>rest on shoulder (diag clearly shows strike on<br>departure side concrete wing-wall connected to BR) | BR                          | Yes (Redir.)             | Dep                                               | 5200           |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                            | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 23545      | 23000002 | No                                   | 910750085 | 1991          | N   | 31   | ROR into ditch, turned out of the ditch and "hit the GR and bridge on the left side of the road" (diag shows a side impact direct hit on end of BR but no GR) | BR                          | Yes (Atten.)             | Dep                                               | 1400           |
| 42546      | 42000008 | No                                   | 900940191 | 1990          | Ν   | 31   | "Struck bridge, minor damage to bridge, veh. totaled,<br>driver uninjured" (diag shows veh ROR on departure<br>side after striking bridge)                    | BR                          | Yes (Redir.)             | Dep                                               | 340            |
| L2136      | 67000013 | No                                   | 890760525 | 1989          | N   | 31   | ROR and "hit bridge with right side", no diag                                                                                                                 | BR                          | Yes (Atten.)             | Unsure                                            | 990            |
| 83539      | 83000027 | No                                   | 950050076 | 1995          | N   | 34   | ROR on curve and "went through GR" (diagram shows bridge nearby, but GR does not appear to be connected to bridge)                                            | Roadside                    | Yes (Redir.)             | Арр                                               | 1200           |
| 55543      | 55000003 | No                                   | 2710099   | 2000          | N   | 37   | ROR into ditch on left side ahead of bridge and crashed into embankment near river                                                                            | Roadside                    | Yes (Redir.)             | Dep                                               | 500            |
| 7211       | 42000003 | No                                   | 941380225 | 1994          | N   | 51   | Driver fell asleep and ROR and overturned (from diag it appears to ROR very near bridge)                                                                      | Roadside                    | Yes (Redir.)             | Арр                                               | 420            |
| 25522      | 25000007 | No                                   | 901740199 | 1990          | N   | 51   | ROR into ditch and overturned                                                                                                                                 | Roadside                    | Yes (Redir.)             | Dep                                               | 455            |
| 55023      | 55000036 | No                                   | 1650148   | 2000          | С   | 31   | Lost control on wet road, "struck bridge rail" (diag<br>shows angle hit on BR in middle of bridge)                                                            | BR                          | On Bridge                | On Bridge                                         | 4550           |
| 19529      | 19000068 | No                                   | 911040152 | 1991          | N   | 31   | Lost control on bridge and "struck bridge" (no diag)                                                                                                          | BR                          | On Bridge                | On Bridge                                         | 5200           |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                 | Initial<br>Object<br>Struck | Would GR<br>have helped? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------|----------------|
| 3298       | 67000003 | No                                   | 933160297 | 1993          | N   | 31   | "Lost control on icy bridge and hit guardrail" (no diagram)                                                                                        | BR                          | On Bridge                | On Bridge                                         | 630            |
| 5050       | 67000004 | No                                   | 960040284 | 1996          | N   | 31   | Driver lost control on snowy curve, and "slid into<br>bridge" (diag shows bridge on curve, driver struck BR<br>nearly head-on on outside of curve) | BR                          | On Bridge                | On Bridge                                         | 3050           |
| 55516      | 55000007 | No                                   | 883320225 | 1988          | N   | 31   | Lost control on icy bridge deck, "struck both sides of bridge" (diag doesn't show bridge)                                                          | BR                          | On Bridge                | On Bridge                                         | 940            |
| 55522      | 55000025 | No                                   | 933090667 | 1993          | N   | 31   | veh skidded on icy bridge deck, "struck bridge curb"<br>(diag shows strike on bridge and redirection)                                              | Curb                        | On Bridge                | On Bridge                                         | 18900          |
| L2136      | 67000013 | No                                   | 920690309 | 1992          | N   | 31   | Slippery road, lost control, "collided with<br>bridgeentire railing was removed" (diag shows rail<br>sideswipe)                                    | BR                          | On Bridge                | On Bridge                                         | 990            |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                                                                  | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 25508      | 25000014 | Yes                                  | 911890032 | 1991          | A   | 31   | Crossed centerline, ROR onto left shoulder ahead of<br>bridge, overcorrected back onto road, struck end of<br>"bridge railing" on left side, rolled on roadway and<br>overturned, veh came to rest on bridge railing (diag<br>shows struck railing on opposite side as approaching) | BR                          | No (Dep<br>ROR) | Dep                                               | 245            |
| 50507      | 50000025 | Yes                                  | 882610038 | 1988          | А   | 51   | ROR on left prior to bridge (about 150' prior), struck<br>ditch, tree, and went into creek, rolling multiple times<br>(diag shows no GR)                                                                                                                                            | Roadside                    | No (Dep<br>ROR) | Dep                                               | 230            |
| 7091       | 50000006 | Yes                                  | 23010229  | 2002          | В   | 25   | Driver slid on snow covered bridge deck, spun around,<br>ROR to the right and into ditch striking utility pole<br>(diag shows ROR on right shortly after crossing<br>bridge)                                                                                                        | Roadside                    | No (Dep<br>ROR) | Dep                                               | 640            |
| 25517      | 25000066 | Yes                                  | 001530239 | 2000          | В   | 26   | Swerved to miss animal, ROR onto left ahead of<br>bridge, striking utility sign, tree, then came to rest in<br>creek, submerged (diag shows this, no app GR shown)                                                                                                                  | Roadside                    | No (Dep<br>ROR) | Dep                                               | 6700           |
| 23507      | 23000001 | Yes                                  | 882400282 | 1988          | В   | 31   | "Hit guardrail, vehicle skidded along rail for 28 ft,<br>jumped rail and rolled" (diag shows hit on approach<br>GR)                                                                                                                                                                 | GR                          | No (Vault)      | Арр                                               | 1300           |
| 2536       | 2000009  | Yes                                  | 20450216  | 2002          | В   | 31   | Lost control and "collided with bridge" (diag shows angle hit on BR near GR/BR connection)                                                                                                                                                                                          | BR/GR                       | Yes (Atten.)    | App                                               | 10380          |
| 50504      | 50000001 | Yes                                  | 970900207 | 1997          | В   | 31   | ROR to the right, took out 18-ft of "guardrail", 4- 6X8 posts, 1 bridge sign and end panel (diag shows ROR and strike on end of bridge, but does not show app GR)                                                                                                                   | GR                          | Yes (Atten.)    | Арр                                               | 410            |

Table F-2. Summary of Crash Reports: Fixed-Object and ROR Crashes Occurring at Bridges WITH Approach Guardrail, 1988 - 2002

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                                                       | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 5289       | 23000001 | Yes                                  | 991080111 | 1999          | В   | 31   | lost control "struck bridge, spun around, stopping in<br>opposite lane" (diag shows angle strike on BR/GR<br>connection on approach side)                                                                                                                                | BR/GR                       | Yes (Atten.)    | Арр                                               | 1300           |
| 55519      | 55000022 | Yes                                  | 2860335   | 2000          | В   | 31   | Swerved to miss animal, "struck bridge" (diag shows angle hit at GR/BR connection)                                                                                                                                                                                       | BR/GR                       | Yes (Atten.)    | App                                               | 25500          |
| 55519      | 55000022 | Yes                                  | 990110257 | 1999          | В   | 31   | lost control on icy deck, "stuck cement barrier on<br>right, crossed road, struck broadside by oncoming veh,<br>struck bridge guardrail" (diag shows initial strike on<br>BR in center of bridge, second strike on end of BR<br>near GR connection on opposite approach) | BR/GR                       | Yes (Atten.)    | Арр                                               | 25500          |
| 6787       | 67000017 | Yes                                  | 981150060 | 1998          | В   | 31   | Lost control and "hit the guardrail" (diag shows<br>grazing the end treatment of GR, but no bridge in<br>picture) and proceeded into ditch, through creek and<br>into a fence                                                                                            | GR                          | No (Short)      | Арр                                               | 560            |
| 83539      | 83000027 | Yes                                  | 951480159 | 1995          | В   | 31   | started to hydroplane, lost control, slid sideways into<br>"bridge guardrail" (diag shows strike on what appears<br>to be a very short section of approach GR)                                                                                                           | GR                          | Yes (Atten.)    | Арр                                               | 1200           |
| 50517      | 50000025 | Yes                                  | 920610125 | 1992          | В   | 31   | Driver ROR and struck "bridge guardrail", (diagram shows end strike on left side GR while approaching)                                                                                                                                                                   | GR                          | Yes (Atten.)    | Dep                                               | 750            |
| 25505      | 25000018 | Yes                                  | 983130218 | 1998          | В   | 33   | "drove car into guardrail of a bridge" (no diag, but<br>type = 33 and description implies guardrail strike,<br>probably on BCT or other type of end treatment)                                                                                                           | GR                          | Yes (Atten.)    | Арр                                               | 7400           |
| 2526       | 02000007 | Yes                                  | 952650131 | 1995          | В   | 51   | Driver skidded on icy bridge deck, crossed centerline,<br>ROR to the left after crossing bridge and struck tree<br>(diag shows bridge, but no app GR, it appears that<br>driver ROR slightly upstream of where normal section<br>of app GR would have begun)             | Roadside                    | No (Short)      | Арр                                               | 8708           |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                              | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 2519       | 2000022  | Yes                                  | 922590283 | 1992          | С   | 31   | Veh slid through T-intersection, "went through GR<br>and came to rest in swamp" (Diag does not show<br>bridge or GR although crash location code is very<br>close to bridge reference point)    | GR                          | No (Vault)      | Арр                                               | 8586           |
| 55519      | 55000022 | Yes                                  | 980260299 | 1998          | С   | 31   | lost control and "contacted guardrail" veh redirected<br>into opposing lanes coming to rest (diag confirms app<br>GR strike)                                                                    | GR                          | Yes (Redir.)    | App                                               | 25500          |
| 7148       | 50000014 | Yes                                  | 13600097  | 2001          | С   | 31   | ROR, struck "breakaway guardrail for the bridge"<br>(diag shows direct hit on end treatment of approach<br>GR)                                                                                  | GR                          | Yes (Atten.)    | App                                               | 1200           |
| 19504      | 19000085 | Yes                                  | 960900036 | 1996          | С   | 31   | Lost control, "struck bridge/guardrail" (diagram shows<br>what appears to be a strike on GR near rail end on left<br>side and redirection back to road)                                         |                             | Yes (Atten.)    | Dep                                               | 890            |
| 23508      | 23000001 | Yes                                  | 893580012 | 1989          | С   | 31   | Driver fell asleep, ROR (diag shows head-on strike on<br>end of BR on left side while approaching, no GR<br>shown)                                                                              | BR                          | No (Dep<br>ROR) | Dep                                               | 1300           |
| 23508      | 23000001 | Yes                                  | 990320184 | 1999          | С   | 31   | lost control on icy road on curve, skidded into "bridge<br>rail" on outside of curve (diag shows angle strike on<br>left BR on approach near end)                                               | BR                          | No (Dep<br>ROR) | Dep                                               | 1300           |
| 23508      | 23000001 | Yes                                  | 990460180 | 1999          | С   | 31   | lost control on curve, "slid into bridge, bounced off<br>and went into ditch and rolled" (diag shows BR strike<br>on bridge, veh went off road on departure side just<br>past bridge)           | Roadside                    | No (Dep<br>ROR) | Dep                                               | 1300           |
| 55519      | 55000022 | Yes                                  | 971020095 | 1997          | С   | 31   | "Struck guardrail fence and then vaulted below the<br>bridge" (diag shows strike on fence, I confirmed this<br>as a fence from photo in Olmsted Co. inspection rept.,<br>other corners have GR) | Roadside                    | No (Dep<br>ROR) | Dep                                               | 25500          |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 8259       | 83000057 | Yes                                  | 920060019 | 1992          | C   | 34   | ROR and went "up and over GR" (struck near end treatment; I can't determine from diag if GR associated with bridge)                                                                                                               | GR                          | No (Vault)      | Арр                                               | 2700           |
| 2548       | 2000022  | Yes                                  | 933230002 | 1993          | K   | 37   | "ROR into ditch, collided with culvert wall, went<br>airborne and landed on its roof" (no bridge shown in<br>diag, but further analysis shows that culvert strike<br>occurred approximately 100' from departure end of<br>bridge) | Roadside                    | No (Dep<br>ROR) | Dep                                               | 5464           |
| 18518      | 18000036 | Yes                                  | 881800153 | 1988          | N   | 30   | Swerved to miss deer, ROR on right into ditch, hit tree<br>(diag shows ROR ahead of bridge just missing<br>approach GR on right)                                                                                                  | Roadside                    | No (Short)      | Арр                                               | 1100           |
| 18518      | 18000036 | Yes                                  | 990670701 | 1999          | N   | 31   | slid into "bridge rail; after hitting bridge rail, crossed<br>to opposite side and hit bridge rail on opp side" (diag<br>shows angle strike near BR end on approach side, then<br>crossing and hitting left side BR)              | BR/GR                       | Yes (Atten.)    | Арр                                               | 1100           |
| 2546       | 2000116  | Yes                                  | 980120602 | 1998          | N   | 31   | lost control and "struck GR" (diag does not show bridge or GR)                                                                                                                                                                    | GR                          | Yes (Redir.)    | App                                               | 17156          |
| 42541      | 42000033 | Yes                                  | 913040929 | 1991          | N   | 31   | "started to slide on snowy road and slid into side of<br>bridge" (diag shows sideswipe on BR near end)                                                                                                                            | BR/GR                       | Yes (Atten.)    | Арр                                               | 3950           |
| 55519      | 55000022 | Yes                                  | 940850227 | 1994          | N   | 31   | "struck bridge" (diag clearly shows strike near GR/BR connection on approach, redirection back onto bridge)                                                                                                                       | BR/GR                       | Yes (Atten.)    | Арр                                               | 25500          |
| 55519      | 55000022 | Yes                                  | 941620139 | 1994          | N   | 31   | swerved to miss oncoming veh, "struck bridge,<br>redirected and hit curb on bridge" (diag shows initial<br>strike on BR end near GR/BR connection)                                                                                | BR/GR                       | Yes (Atten.)    | App                                               | 25500          |
| 55519      | 55000022 | Yes                                  | 911080167 | 1991          | N   | 31   | "struck GR and slid 106 ft along bridge coming to rest<br>against bridge" (diag shows approach GR strike)                                                                                                                         | GR                          | Yes (Redir.)    | Арр                                               | 25500          |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                         | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 7016       | 50000005 | Yes                                  | 931850211 | 1993          | N   | 31   | "Hit bridge with right rear, then hit east guardrail with<br>front right, came to rest in ditch" (diagram shows what<br>appears to be very short section of GR attached to<br>bridge rail) | GR                          | No (Short)      | App                                               | 210            |
| 83539      | 83000027 | Yes                                  | 941600143 | 1994          | N   | 31   | "trailer swung out and struck guardrail and then bridge<br>rail on both sides" (diag shows same)                                                                                           | GR                          | Yes (Redir.)    | Арр                                               | 1200           |
| 96834      | 2000116  | Yes                                  | 3470382   | 2000          | N   | 31   | Lost control on icy road, "hit guardrail" (diag shows<br>hit on bridge-approach GR on left side after crossing<br>bridge)                                                                  | GR                          | Yes (Redir.)    | Арр                                               | 17156          |
| L3170      | 19000047 | Yes                                  | 21060036  | 2002          | N   | 31   | Lost control and "hit the guardrail" (diag shows hit on<br>end of BR on approach, but does not discern between<br>BR and GR although it is confirmed to exist at time of<br>crash)         | GR                          | Yes (Atten.)    | Арр                                               | 2250           |
| 18524      | 18000011 | Yes                                  | 11180221  | 2001          | N   | 31   | Lost control "hitting bridge" (diag shows sideswipe on<br>left side BR near end while approaching, GR shown<br>on both app and dep)                                                        | BR/GR                       | Yes (Atten.)    | Dep                                               | 1050           |
| 2519       | 2000022  | Yes                                  | 960560053 | 1996          | N   | 31   | "Struck guardrail, slid along GR, ran into bridge<br>abutment, spun around and off the GR" (diag clearly<br>shows strike on departure-side GR while approaching)                           | GR                          | Yes (Redir.)    | Dep                                               | 8586           |
| 25517      | 25000066 | Yes                                  | 881130125 | 1988          | N   | 31   | Ran stop sign at T-intersection and "hit bridge-<br>approach guardrail" on opposite side of intersection                                                                                   | GR                          | Yes (Redir.)    | Dep                                               | 6700           |
| 50504      | 50000001 | Yes                                  | 892260077 | 1989          | N   | 31   | Blown tire, lost control, "stuck bridge guardrail and<br>then went into ditch", (no diag. although veh damage<br>pattern suggests collision with right side of veh)                        | GR                          | No (Dep<br>ROR) | Dep                                               | 410            |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                                                                                                                      | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 5368       | 50000029 | Yes                                  | 940340112 | 1994          | N   | 31   | No description. Diagram shows collision with departure GR                                                                                                                                                                                                                               | GR                          | Yes (Redir.)    | Dep                                               | 2950           |
| 83513      | 83000012 | Yes                                  | 992700240 | 1999          | N   | 31   | Driver swerved to miss deer and "hit guardrail" (no diagram)                                                                                                                                                                                                                            | GR                          | Yes (Redir.)    | Unsure                                            | 255            |
| 7048       | 50000023 | Yes                                  | 890360131 | 1989          | N   | 34   | Lost control on bridge, "struck three GR posts<br>breaking them off" (diag shows veh crossing bridge,<br>hitting app GR on left and coming to rest on roadway)                                                                                                                          | GR                          | Yes (Redir.)    | Арр                                               | 2150           |
| 7016       | 50000005 | Yes                                  | 881140257 | 1988          | N   | 35   | Lost control on icy bridge deck and ROR on right into ditch striking a fence                                                                                                                                                                                                            | Roadside                    | No (Short)      | Арр                                               | 210            |
| 2526       | 02000007 | Yes                                  | 913460323 | 1991          | N   | 51   | Slid on icy road into snow bank on right just ahead of<br>bridge (diag shows bridge and approach GR, it<br>appears that driver hit snow drifted that had<br>accumulated around the guardrail in which case the<br>GR was or would have been effective for redirecting<br>driver)        | GR                          | Yes (Redir.)    | Арр                                               | 8708           |
| 8433       | 19000009 | Yes                                  | 001810300 | 2000          | N   | 51   | Driver fell asleep, ROR on right ahead of bridge,<br>struck trees and overturned, came to rest in water<br>(diag shows this, bridge is shown but no app GR<br>shown, veh appears to ROR slightly upstream from<br>where GR would start, ref pt is about 80-ft upstream<br>of bridge ID) | Roadside                    | No (Short)      | Арр                                               | 3300           |
| 92730      | 2000024  | Yes                                  | 923240343 | 1992          | N   | 51   | Skidded on ice, ROR into ditch and overturned (diag showed bridge nearby)                                                                                                                                                                                                               | Roadside                    | No (Dep<br>ROR) | Dep                                               | 1000           |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                 | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 2560       | 2000014  | Yes                                  | 940820565 | 1994          | В   | 31   | slid on icy RR overpass, "went over median, striking<br>wall of bridge in opposite lanes" (diag confirms this)                                                                     | BR                          | On Bridge       | On Bridge                                         | 20076          |
| 55519      | 55000022 | Yes                                  | 953040220 | 1995          | В   | 31   | Lost control while passing, "struck bridge on opposite<br>side" crossed back and ROR near bridge" (diag shows<br>sideswipe on BR and ROR just past end of BR on<br>departure side) | BR                          | On Bridge       | On Bridge                                         | 25500          |
| 18523      | 18000021 | Yes                                  | 940090192 | 1994          | С   | 31   | Blizzard conditions, driver lost control and "hit the<br>bridge" (diag shows a sideswipe on the bridge rail)                                                                       | BR                          | On Bridge       | On Bridge                                         | 530            |
| 2523       | 2000002  | Yes                                  | 990040503 | 1999          | С   | 31   | lost control on icy road, "struck right cement<br>guardrail, bounced off and struck left cement<br>guardrail" (diag shows same)                                                    | BR                          | On Bridge       | On Bridge                                         | 9103           |
| 2549       | 2000018  | Yes                                  | 20640038  | 2002          | С   | 31   | Lost control and "hit cement barrier on side of road,<br>bounced and hit barrier on other side" (diag doesn't<br>show BR or GR)                                                    | BR                          | On Bridge       | On Bridge                                         | 14479          |
| 50576      | 5000008  | Yes                                  | 3520262   | 2000          | С   | 31   | "Drove through snow drift, causing veh to hit concrete guard rail on bridge" (no diagram)                                                                                          | BR                          | On Bridge       | On Bridge                                         | 770            |
| 19504      | 19000085 | Yes                                  | 893580035 | 1989          | Ν   | 31   | Swerved and "struck bridge" no diag to confirm                                                                                                                                     | BR                          | On Bridge       | On Bridge                                         | 890            |
| 23514      | 23000001 | Yes                                  | 90088     | 2000          | N   | 31   | "Struck Bridge GR"; (diag shows angle hit on BR while on bridge)                                                                                                                   | BR                          | On Bridge       | On Bridge                                         | 900            |
| 2536       | 2000009  | Yes                                  | 912040171 | 1991          | N   | 31   | Became inattentive while crossing bridge, drifted right<br>and side swiped bridge (diag shows swipe with BR on<br>bridge)                                                          |                             | On Bridge       | On Bridge                                         | 10380          |
| 2545       | 2000116  | Yes                                  | 980440065 | 1998          | N   | 31   | veh 1 spun on icy bridge deck, "comes to stop upon<br>hitting guardrail, veh 2 stops and rear ended by veh 3"<br>(diag shows striking BR on bridge (not GR))                       | BR                          | On Bridge       | On Bridge                                         | 17156          |

| Bridge Num | Route    | Did<br>Bridge<br>Have<br>App.<br>GR? | Acc Num   | Crash<br>Year | Sev | Туре | Police Description                                                                                                                                                                   | Initial<br>Object<br>Struck | Did GR<br>help? | Was Crash on<br>Approach or<br>Departure<br>Side? | Pontis<br>AADT |
|------------|----------|--------------------------------------|-----------|---------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------|----------------|
| 2549       | 2000018  | Yes                                  | 3630748   | 2000          | N   | 31   | Lost control on bridge deck, "struck side of bridge"<br>(diag shows angle hit on left side BR near end upon<br>departing bridge)                                                     | BR                          | On Bridge       | On Bridge                                         | 14479          |
| 2560       | 2000014  | Yes                                  | 940820275 | 1994          | N   | 31   | crested hill over RR overpass, "slid into center curb<br>median, veered into bridge GR hitting it head-on"<br>(diag doesn't show collision details)                                  | Curb                        | On Bridge       | On Bridge                                         | 20076          |
| 5368       | 50000029 | Yes                                  | 890730616 | 1989          | N   | 31   | Veh spun and "struck bridge" (diag shows sideswipe<br>on BR while on bridge, no GR shown)                                                                                            | BR                          | On Bridge       | On Bridge                                         | 2950           |
| 55519      | 55000022 | Yes                                  | 973330238 | 1997          | N   | 31   | swerved to miss vehicle, "collided with wall of<br>bridge" (diag shows sideswipe with BR on bridge)                                                                                  | BR                          | On Bridge       | On Bridge                                         | 25500          |
| 67524      | 67000004 | Yes                                  | 930410103 | 1993          | N   | 31   | Driver hit snow drift on road, veh slid and struck<br>"bridge railing" (diag shows huge drift from behind<br>railing onto road, veh appears to hit railing on bridge)                | BR                          | On Bridge       | On Bridge                                         | 1450           |
| 7048       | 50000023 | Yes                                  | 983650208 | 1998          | N   | 31   | skidded on icy road, struck "cement guardrail on<br>bridge, bounced back hitting opposite guardrail,<br>bounced back stopping at opposite guardrail" (diag<br>doesn't show BR or GR) | BR                          | On Bridge       | On Bridge                                         | 2150           |
| 2549       | 02000018 | Yes                                  | 010260770 | 2001          | N   | 32   | Lost control of veh and hit "cement barrier" on bridge<br>(diag shows striking BR while on bridge)                                                                                   | BR                          | On Bridge       | On Bridge                                         | 14479          |
| 6518       | 18000003 | Yes                                  | 970490305 | 1997          | N   | 51   | Semi rolled on roadway                                                                                                                                                               | BR                          | On Bridge       | On Bridge                                         | 8600           |
| 19511      | 19000042 | Yes                                  | 003120577 | 2000          | N   | 51   | Lost control on icy bridge, struck curb and rolled on<br>roadway (diag shows this, no bridge or GR shown)                                                                            | Curb                        | On Bridge       | On Bridge                                         | 39500          |

# **APPENDIX G**

# Explanation of Minnesota Procedure for Coding Crashes with Bridge Components and Guardrail.

Conversations with Mn/DOT staff<sup>1</sup> provided a straightforward explanation for the bridgecrash coding ambiguity that currently exists in the Minnesota crash database. Prior to 2003, a separate code was included on the crash report to indicate the type of fixed object struck. On crash report forms from 1988–1991, FIXED OBJECT TYPE 13 was used to indicate "bridge/pier (include protective guardrail)". In 1992, a slight modification was made to the description for code 13, which was changed to "bridge/pier/guardrail" and remained as such until after 2002. From 1988–2002 FIXED OBJECT TYPE 14 was used for "other guardrail." The use of FIXED OBJECT TYPES 13 and 14 provided distinction between components of a bridge (including approach guardrail) and guardrail that was not connected to a bridge.

In 2003, the Minnesota crash reporting form experienced dramatic changes in format and coding. FIXED OBJECT TYPES 13 and 14 were eliminated and changed to FIXED OBJECT TYPES 31 "bridge piers" and 34 "guardrail." The fundamental purpose of this change was to code all guardrail collisions (including bridge-approach guardrail and other guardrail) together. All bridge collisions (other than approach guardrail) would be coded by TYPE 31.

Perhaps the most significant change was the elimination of FIXED OBJECT TYPES 13 and 14 from the Minnesota crash database. Crashes previously coded as 13 (bridge/pier/guardrail) were changed to 31 (bridge pier). Similarly, crashes previously coded as TYPE 14 (other guardrail) were changed to 34 (guardrail). Because the analysis performed here only included crashes that occurred prior to the major reporting system changes in 2003, it can be assumed that approach guardrail or bridge rail crashes will be currently coded in the Minnesota crash database as TYPE 31 unless a coding error occurred in the field or during entry into the database.

<sup>&</sup>lt;sup>1</sup> Primary conversation with Loren Hill, Mn/DOT, 4/19/05

## **APPENDIX H**

# Crash Frequencies and Costs by ADT Category, Crash Severity, and Guardrail Presence

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost   |
|---------------------|---------------------------------|-------------------|------------|--------------------------|--------------|
|                     | Property Damage                 | 22                | 46.81      | \$4,300                  | \$94,600     |
|                     | C Injury                        | 9                 | 19.15      | \$29,000                 | \$261,000    |
|                     | B Injury                        | 13                | 27.66      | \$59,000                 | \$767,000    |
|                     | A Injury                        | 2                 | 4.26       | \$270,000                | \$540,000    |
| Bridges<br>WITH     | Fatal                           | 1                 | 2.13       | \$3,500,000              | \$3,500,000  |
| Approach            | Total Crashes                   | 47                |            | Total Cost               | \$5,162,600  |
| Guardrail           | Total Bridges                   | 155               |            | Cost Per Crash           | \$109,843    |
|                     | Est. Traffic 1988-2002          | 3,152,527,769     |            | Cost Per Year            | \$344,173    |
|                     | Crashes per 10 <sup>8</sup> veh | 1.491             |            | Cost Per Bridge          | \$33,307     |
|                     |                                 |                   |            | Cost/Br/Year             | \$2,220      |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$163,761    |
|                     | Property Damage                 | 18                | 36.73      | \$4,300                  | \$77,400     |
|                     | C Injury                        | 7                 | 14.29      | \$29,000                 | \$203,000    |
|                     | B Injury                        | 10                | 20.41      | \$59,000                 | \$590,000    |
|                     | A Injury                        | 8                 | 16.33      | \$270,000                | \$2,160,000  |
| Bridges             | Fatal                           | 6                 | 12.24      | \$3,500,000              | \$21,000,000 |
| WITHOUT<br>Approach | Total Crashes                   | 49                |            | Total Cost               | \$24,030,400 |
| Guardrail           | Total Bridges                   | 243               |            | Cost Per Crash           | \$490,416    |
|                     | Est. Traffic 1988-2002          | 1,327,656,551     |            | Cost Per Year            | \$1,602,027  |
|                     | Crashes per 108 veh             | 3.691             |            | Cost Per Bridge          | \$98,891     |
|                     |                                 |                   |            | Cost/Br/Year             | \$6,593      |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$1,809,986  |

#### Table H-1. Bridge-Crash Costs vs. Guardrail Presence – All Bridges.

#### Table H-2. Bridge-Crash Costs vs. Guardrail Presence – ADT < 150.

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost |
|---------------------|---------------------------------|-------------------|------------|--------------------------|------------|
|                     | Property Damage                 | 0                 | -          | \$4,300                  | \$0        |
|                     | C Injury                        | 0                 | -          | \$29,000                 | \$0        |
|                     | B Injury                        | 0                 | -          | \$59,000                 | \$0        |
|                     | A Injury                        | 0                 | -          | \$270,000                | \$0        |
| Bridges<br>WITH     | Fatal                           | 0                 | -          | \$3,500,000              | \$0        |
| Approach            | Total Crashes                   | 0                 |            | Total Cost               | \$0        |
| Guardrail           | Total Bridges                   | 6                 |            | Cost Per Crash           | \$0        |
|                     | Est. Traffic 1988-2002          | 2,888,633         |            | Cost Per Year            | \$0        |
|                     | Crashes per 10 <sup>8</sup> veh | 0                 |            | Cost Per Bridge          | \$0        |
|                     |                                 |                   |            | Cost/Br/Year             | \$0        |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$0        |
|                     | Property Damage                 | 3                 | 75.00      | \$4,300                  | \$12,900   |
|                     | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0        |
|                     | B Injury                        | 1                 | 25.00      | \$59,000                 | \$59,000   |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0        |
| Bridges             | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0        |
| WITHOUT<br>Approach | Total Crashes                   | 4                 |            | Total Cost               | \$71,900   |
| Guardrail           | Total Bridges                   | 63                |            | Cost Per Crash           | \$17,975   |
|                     | Est. Traffic 1988-2002          | 27,224,725        |            | Cost Per Year            | \$4,793    |
|                     | Crashes per 10 <sup>8</sup> veh | 14.693            |            | Cost Per Bridge          | \$1,141    |
|                     |                                 |                   |            | Cost/Br/Year             | \$76       |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$264,098  |

|                    | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost  |
|--------------------|---------------------------------|-------------------|------------|--------------------------|-------------|
|                    | Property Damage                 | 3                 | 60.00      | \$4,300                  | \$12,900    |
|                    | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0         |
|                    | B Injury                        | 0                 | 0.00       | \$59,000                 | \$0         |
|                    | A Injury                        | 2                 | 40.00      | \$270,000                | \$540,000   |
| Bridges<br>WITH    | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach           | Total Crashes                   | 5                 |            | Total Cost               | \$552,900   |
| Guardrail          | Total Bridges                   | 14                |            | Cost Per Crash           | \$110,580   |
|                    | Est. Traffic 1988-2002          | 16,840,950        |            | Cost Per Year            | \$36,860    |
|                    | Crashes per 10 <sup>8</sup> veh | 29.690            |            | Cost Per Bridge          | \$39,493    |
|                    |                                 |                   |            | Cost/Br/Year             | \$2,633     |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$3,283,069 |
|                    | Property Damage                 | 2                 | 50.00      | \$4,300                  | \$8,600     |
|                    | C Injury                        | 1                 | 25.00      | \$29,000                 | \$29,000    |
|                    | B Injury                        | 0                 | 0.00       | \$59,000                 | \$0         |
|                    | A Injury                        | 1                 | 25.00      | \$270,000                | \$270,000   |
| Bridges<br>WITHOUT | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach           | Total Crashes                   | 4                 |            | Total Cost               | \$307,600   |
| Guardrail          | Total Bridges                   | 50                |            | Cost Per Crash           | \$76,900    |
|                    | Est. Traffic 1988-2002          | 58,748,895        |            | Cost Per Year            | \$20,507    |
|                    | Crashes per 10 <sup>8</sup> veh | 6.809             |            | Cost Per Bridge          | \$6,152     |
|                    |                                 |                   |            | Cost/Br/Year             | \$410       |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$523,584   |

#### Table H-3. Bridge-Crash Costs vs. Guardrail Presence – ADT 150-299.

#### Table H-4. Bridge-Crash Costs vs. Guardrail Presence – ADT 300-399.

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost   |
|---------------------|---------------------------------|-------------------|------------|--------------------------|--------------|
|                     | Property Damage                 | 0                 | -          | \$4,300                  | \$0          |
|                     | C Injury                        | 0                 | -          | \$29,000                 | \$0          |
|                     | B Injury                        | 0                 | -          | \$59,000                 | \$0          |
|                     | A Injury                        | 0                 | -          | \$270,000                | \$0          |
| Bridges<br>WITH     | Fatal                           | 0                 | -          | \$3,500,000              | \$0          |
| Approach            | Total Crashes                   | 0                 |            | Total Cost               | \$0          |
| Guardrail           | Total Bridges                   | 7                 |            | Cost Per Crash           | \$0          |
|                     | Est. Traffic 1988-2002          | 12,270,654        |            | Cost Per Year            | \$0          |
|                     | Crashes per 108 veh             | 0.000             |            | Cost Per Bridge          | \$0          |
|                     |                                 |                   |            | Cost/Br/Year             | \$0          |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$0          |
|                     | Property Damage                 | 2                 | 33.33      | \$4,300                  | \$8,600      |
|                     | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0          |
|                     | B Injury                        | 1                 | 16.67      | \$59,000                 | \$59,000     |
|                     | A Injury                        | 2                 | 33.33      | \$270,000                | \$540,000    |
| Bridges             | Fatal                           | 1                 | 16.67      | \$3,500,000              | \$3,500,000  |
| WITHOUT<br>Approach | Total Crashes                   | 6                 |            | Total Cost               | \$4,107,600  |
| Guardrail           | Total Bridges                   | 22                |            | Cost Per Crash           | \$684,600    |
|                     | Est. Traffic 1988-2002          | 39,815,282        |            | Cost Per Year            | \$273,840    |
|                     | Crashes per 10 <sup>8</sup> veh | 15.070            |            | Cost Per Bridge          | \$186,709    |
|                     |                                 |                   |            | Cost/Br/Year             | \$12,447     |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$10,316,642 |

|                    | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost  |
|--------------------|---------------------------------|-------------------|------------|--------------------------|-------------|
|                    | Property Damage                 | 1                 | 25.00      | \$4,300                  | \$4,300     |
|                    | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0         |
|                    | B Injury                        | 3                 | 75.00      | \$59,000                 | \$177,000   |
|                    | A Injury                        | 0                 | 0.00       | \$270,000                | \$0         |
| Bridges<br>WITH    | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach           | Total Crashes                   | 4                 |            | Total Cost               | \$181,300   |
| Guardrail          | Total Bridges                   | 25                |            | Cost Per Crash           | \$45,325    |
|                    | Est. Traffic 1988-2002          | 71,683,848        |            | Cost Per Year            | \$12,087    |
|                    | Crashes per 10 <sup>8</sup> veh | 5.580             |            | Cost Per Bridge          | \$7,252     |
|                    |                                 |                   |            | Cost/Br/Year             | \$483       |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$252,916   |
|                    | Property Damage                 | 4                 | 30.77      | \$4,300                  | \$17,200    |
|                    | C Injury                        | 1                 | 7.69       | \$29,000                 | \$29,000    |
|                    | B Injury                        | 5                 | 38.46      | \$59,000                 | \$295,000   |
|                    | A Injury                        | 2                 | 15.38      | \$270,000                | \$540,000   |
| Bridges<br>WITHOUT | Fatal                           | 1                 | 7.69       | \$3,500,000              | \$3,500,000 |
| Approach           | Total Crashes                   | 13                |            | Total Cost               | \$4,381,200 |
| Guardrail          | Total Bridges                   | 51                |            | Cost Per Crash           | \$337,015   |
|                    | Est. Traffic 1988-2002          | 132,209,352       |            | Cost Per Year            | \$292,080   |
|                    | Crashes per 108 veh             | 9.833             |            | Cost Per Bridge          | \$85,906    |
|                    |                                 |                   |            | Cost/Br/Year             | \$5,727     |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$3,313,835 |

#### Table H-5. Bridge-Crash Costs vs. Guardrail Presence – ADT 400-749.

#### Table H-6. Bridge-Crash Costs vs. Guardrail Presence – ADT 750-999.

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost   |
|---------------------|---------------------------------|-------------------|------------|--------------------------|--------------|
|                     | Property Damage                 | 0                 | 0.00       | \$4,300                  | \$0          |
|                     | C Injury                        | 1                 | 50.00      | \$29,000                 | \$29,000     |
|                     | B Injury                        | 1                 | 50.00      | \$59,000                 | \$59,000     |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0          |
| Bridges<br>WITH     | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0          |
| Approach            | Total Crashes                   | 2                 |            | Total Cost               | \$88,000     |
| Guardrail           | Total Bridges                   | 15                |            | Cost Per Crash           | \$44,000     |
|                     | Est. Traffic 1988-2002          | 64,828,202        |            | Cost Per Year            | \$5,867      |
|                     | Crashes per 108 veh             | 3.085             |            | Cost Per Bridge          | \$5,867      |
|                     |                                 |                   |            | Cost/Br/Year             | \$391        |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$135,743    |
|                     | Property Damage                 | 1                 | 16.67      | \$4,300                  | \$4,300      |
|                     | C Injury                        | 1                 | 16.67      | \$29,000                 | \$29,000     |
|                     | B Injury                        | 1                 | 16.67      | \$59,000                 | \$59,000     |
|                     | A Injury                        | 1                 | 16.67      | \$270,000                | \$270,000    |
| Bridges             | Fatal                           | 2                 | 33.33      | \$3,500,000              | \$7,000,000  |
| WITHOUT<br>Approach | Total Crashes                   | 6                 |            | Total Cost               | \$7,362,300  |
| Guardrail           | Total Bridges                   | 12                |            | Cost Per Crash           | \$1,227,050  |
|                     | Est. Traffic 1988-2002          | 51,373,731        |            | Cost Per Year            | \$490,820    |
|                     | Crashes per 10 <sup>8</sup> veh | 11.679            |            | Cost Per Bridge          | \$613,525    |
|                     |                                 |                   |            | Cost/Br/Year             | \$40,902     |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$14,330,865 |

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost  |
|---------------------|---------------------------------|-------------------|------------|--------------------------|-------------|
|                     | Property Damage                 | 5                 | 41.67      | \$4,300                  | \$21,500    |
|                     | C Injury                        | 4                 | 33.33      | \$29,000                 | \$116,000   |
|                     | B Injury                        | 3                 | 25.00      | \$59,000                 | \$177,000   |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0         |
| Bridges<br>WITH     | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach            | Total Crashes                   | 12                |            | Total Cost               | \$314,500   |
| Guardrail           | Total Bridges                   | 21                |            | Cost Per Crash           | \$26,208    |
|                     | Est. Traffic 1988-2002          | 132,194,176       |            | Cost Per Year            | \$20,967    |
|                     | Crashes per 10 <sup>8</sup> veh | 9.078             |            | Cost Per Bridge          | \$14,976    |
|                     |                                 |                   |            | Cost/Br/Year             | \$998       |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$237,908   |
|                     | Property Damage                 | 4                 | 44.44      | \$4,300                  | \$17,200    |
|                     | C Injury                        | 3                 | 33.33      | \$29,000                 | \$87,000    |
|                     | B Injury                        | 0                 | 0.00       | \$59,000                 | \$0         |
|                     | A Injury                        | 1                 | 11.11      | \$270,000                | \$270,000   |
| Bridges             | Fatal                           | 1                 | 11.11      | \$3,500,000              | \$3,500,000 |
| WITHOUT<br>Approach | Total Crashes                   | 9                 |            | Total Cost               | \$3,874,200 |
| Guardrail           | Total Bridges                   | 17                |            | Cost Per Crash           | \$430,467   |
|                     | Est. Traffic 1988-2002          | 104,403,154       |            | Cost Per Year            | \$258,280   |
|                     | Crashes per 10 <sup>8</sup> veh | 8.620             |            | Cost Per Bridge          | \$227,894   |
|                     |                                 |                   |            | Cost/Br/Year             | \$15,193    |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$3,710,807 |

#### Table H-7. Bridge-Crash Costs vs. Guardrail Presence – ADT 1,000-1,499.

#### Table H-8. Bridge-Crash Costs vs. Guardrail Presence – ADT 1,500-4,999.

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost  |
|---------------------|---------------------------------|-------------------|------------|--------------------------|-------------|
|                     | Property Damage                 | 5                 | 83.33      | \$4,300                  | \$21,500    |
|                     | C Injury                        | 1                 | 16.67      | \$29,000                 | \$29,000    |
|                     | B Injury                        | 0                 | 0.00       | \$59,000                 | \$0         |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0         |
| Bridges<br>WITH     | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach            | Total Crashes                   | 6                 |            | Total Cost               | \$50,500    |
| Guardrail           | Total Bridges                   | 29                |            | Cost Per Crash           | \$8,417     |
|                     | Est. Traffic 1988-2002          | 385,498,778       |            | Cost Per Year            | \$3,367     |
|                     | Crashes per 108 veh             | 1.556             |            | Cost Per Bridge          | \$1,741     |
|                     |                                 |                   |            | Cost/Br/Year             | \$116       |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$13,100    |
|                     | Property Damage                 | 0                 | 0.00       | \$4,300                  | \$0         |
|                     | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0         |
|                     | B Injury                        | 0                 | 0.00       | \$59,000                 | \$0         |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0         |
| Bridges             | Fatal                           | 1                 | 100.00     | \$3,500,000              | \$3,500,000 |
| WITHOUT<br>Approach | Total Crashes                   | 1                 |            | Total Cost               | \$3,500,000 |
| Guardrail           | Total Bridges                   | 16                |            | Cost Per Crash           | \$3,500,000 |
|                     | Est. Traffic 1988-2002          | 185,931,837       |            | Cost Per Year            | \$233,333   |
|                     | Crashes per 10 <sup>8</sup> veh | 0.538             |            | Cost Per Bridge          | \$218,750   |
|                     |                                 |                   |            | Cost/Br/Year             | \$14,583    |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$1,882,410 |

|                    | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost  |
|--------------------|---------------------------------|-------------------|------------|--------------------------|-------------|
|                    | Property Damage                 | 3                 | 37.50      | \$4,300                  | \$12,900    |
|                    | C Injury                        | 1                 | 12.50      | \$29,000                 | \$29,000    |
|                    | B Injury                        | 3                 | 37.50      | \$59,000                 | \$177,000   |
|                    | A Injury                        | 0                 | 0.00       | \$270,000                | \$0         |
| Bridges<br>WITH    | Fatal                           | 1                 | 12.50      | \$3,500,000              | \$3,500,000 |
| Approach           | Total Crashes                   | 8                 |            | Total Cost               | \$3,718,900 |
| Guardrail          | Total Bridges                   | 20                |            | Cost Per Crash           | \$464,863   |
|                    | Est. Traffic 1988-2002          | 719,418,793       |            | Cost Per Year            | \$247,927   |
|                    | Crashes per 10 <sup>8</sup> veh | 1.112             |            | Cost Per Bridge          | \$185,945   |
|                    |                                 |                   |            | Cost/Br/Year             | \$12,396    |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$516,931   |
|                    | Property Damage                 | 1                 | 25.00      | \$4,300                  | \$4,300     |
|                    | C Injury                        | 1                 | 25.00      | \$29,000                 | \$29,000    |
|                    | B Injury                        | 1                 | 25.00      | \$59,000                 | \$59,000    |
|                    | A Injury                        | 1                 | 25.00      | \$270,000                | \$270,000   |
| Bridges<br>WITHOUT | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0         |
| Approach           | Total Crashes                   | 4                 |            | Total Cost               | \$362,300   |
| Guardrail          | Total Bridges                   | 5                 |            | Cost Per Crash           | \$90,575    |
|                    | Est. Traffic 1988-2002          | 168,774,233       |            | Cost Per Year            | \$24,153    |
|                    | Crashes per 108 veh             | 2.370             |            | Cost Per Bridge          | \$72,460    |
|                    |                                 |                   |            | Cost/Br/Year             | \$4,831     |
|                    |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$214,665   |

#### Table H-9. Bridge-Crash Costs vs. Guardrail Presence – ADT 5,000-9,999.

#### Table H-10. Bridge-Crash Costs vs. Guardrail Presence – ADT > 10,000.

|                     | Severity                        | Crashes 1988-2002 | % of Total | Cost per Crash           | Total Cost |
|---------------------|---------------------------------|-------------------|------------|--------------------------|------------|
|                     | Property Damage                 | 5                 | 50.00      | \$4,300                  | \$21,500   |
|                     | C Injury                        | 2                 | 20.00      | \$29,000                 | \$58,000   |
|                     | B Injury                        | 3                 | 30.00      | \$59,000                 | \$177,000  |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0        |
| Bridges<br>WITH     | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0        |
| Approach            | Total Crashes                   | 10                |            | Total Cost               | \$256,500  |
| Guardrail           | Total Bridges                   | 18                |            | Cost Per Crash           | \$25,650   |
|                     | Est. Traffic 1988-2002          | 1,746,903,736     |            | Cost Per Year            | \$17,100   |
|                     | Crashes per 108 veh             | 0.572             |            | Cost Per Bridge          | \$14,250   |
|                     |                                 |                   |            | Cost/Br/Year             | \$950      |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$14,683   |
|                     | Property Damage                 | 1                 | 50.00      | \$4,300                  | \$4,300    |
|                     | C Injury                        | 0                 | 0.00       | \$29,000                 | \$0        |
|                     | B Injury                        | 1                 | 50.00      | \$59,000                 | \$59,000   |
|                     | A Injury                        | 0                 | 0.00       | \$270,000                | \$0        |
| Bridges             | Fatal                           | 0                 | 0.00       | \$3,500,000              | \$0        |
| WITHOUT<br>Approach | Total Crashes                   | 2                 |            | Total Cost               | \$63,300   |
| Guardrail           | Total Bridges                   | 7                 |            | Cost Per Crash           | \$31,650   |
|                     | Est. Traffic 1988-2002          | 561,177,908       |            | Cost Per Year            | \$4,220    |
|                     | Crashes per 10 <sup>8</sup> veh | 0.356             |            | Cost Per Bridge          | \$9,043    |
|                     |                                 |                   |            | Cost/Br/Year             | \$603      |
|                     |                                 |                   |            | Cost/10 <sup>8</sup> veh | \$11,280   |

# **APPENDIX I**

**Benefit/Cost Computations** 

|             | Total Crashes<br>1988-2002 Bridges |    | Total Traffic | Total Traffic 1988-2002 |               | Total Cost of Crashes 1988-<br>2002 |              | er 10 <sup>8</sup> veh<br>2002 | Crash Cost per 10 <sup>8</sup> veh 1988-<br>2002 |          |              |             |
|-------------|------------------------------------|----|---------------|-------------------------|---------------|-------------------------------------|--------------|--------------------------------|--------------------------------------------------|----------|--------------|-------------|
|             |                                    |    | No            |                         |               |                                     |              |                                |                                                  |          |              |             |
| ADT Range   | No GR                              | GR | GR            | GR                      | No GR         | GR                                  | No GR        | GR                             | No GR                                            | GR       | No GR        | GR          |
| <150        | 4                                  | 0  | 63            | 6                       | 27,224,725    | 2,888,633                           | \$71,900     | \$0                            | 14.69253                                         | 0.00000  | \$264,098    | \$0         |
| 150-399     | 10                                 | 5  | 72            | 21                      | 96,561,610    | 29,111,604                          | \$4,415,200  | \$552,900                      | 10.35608                                         | 17.17528 | \$4,572,418  | \$1,899,243 |
| 400-749     | 13                                 | 4  | 51            | 25                      | 132,209,352   | 71,683,848                          | \$4,381,200  | \$181,300                      | 9.83289                                          | 5.58006  | \$3,313,835  | \$252,916   |
| 750-999     | 6                                  | 2  | 12            | 15                      | 51,373,731    | 64,828,202                          | \$7,362,300  | \$88,000                       | 11.67912                                         | 3.08508  | \$14,330,865 | \$135,743   |
| 1,000-1,499 | 9                                  | 12 | 17            | 21                      | 104,403,154   | 132,194,176                         | \$3,874,200  | \$314,500                      | 8.62043                                          | 9.07756  | \$3,710,807  | \$237,908   |
| 1,500-4,999 | 1                                  | 6  | 16            | 29                      | 185,931,837   | 385,498,778                         | \$3,500,000  | \$50,500                       | 0.53783                                          | 1.55643  | \$1,882,410  | \$13,100    |
| 5,000-9,999 | 4                                  | 8  | 5             | 20                      | 168,774,233   | 719,418,793                         | \$362,300    | \$3,718,900                    | 2.37003                                          | 1.11201  | \$214,665    | \$516,931   |
| 10,000<     | 2                                  | 10 | 7             | 18                      | 561,177,908   | 1,746,903,736                       | \$63,300     | \$256,500                      | 0.35639                                          | 0.57244  | \$11,280     | \$14,683    |
| All         | 49                                 | 47 | 243           | 155                     | 1,327,656,551 | 3,152,527,769                       | \$24,030,400 | \$5,162,600                    | 3.69071                                          | 1.49087  | \$1,809,986  | \$163,761   |

 Table I-1. Bridge-Crash Costs from 1988-2002 Separated by ADT Range and Guardrail Presence.

Table I-2. Bridge-Crash Costs from 1988-2002 Separated by Threshold ADT and Guardrail Presence.

|               | Total Crashes<br>1988-2002 Bridges |    | Total Traffic | Total Traffic 1988-2002 |               | Total Cost of Crashes 1988-<br>2002 |              | r 10 <sup>8</sup> veh<br>2002 | Crash Cost per 1<br>2002 |          |             |             |
|---------------|------------------------------------|----|---------------|-------------------------|---------------|-------------------------------------|--------------|-------------------------------|--------------------------|----------|-------------|-------------|
|               |                                    |    | No            |                         |               |                                     |              |                               |                          |          |             |             |
| ADT Threshold | No GR                              | GR | GR            | GR                      | No GR         | GR                                  | No GR        | GR                            | No GR                    | GR       | No GR       | GR          |
| <150          | 4                                  | 0  | 63            | 6                       | 27,224,725    | 2,888,633                           | \$71,900     | \$0                           | 14.69253                 | 0.00000  | \$264,098   | \$0         |
| <400          | 14                                 | 5  | 135           | 21                      | 123,786,335   | 32,000,236                          | \$4,487,100  | \$552,900                     | 11.30981                 | 15.62488 | \$3,624,875 | \$1,727,800 |
| <750          | 27                                 | 9  | 186           | 15                      | 255,995,687   | 103,684,084                         | \$8,868,300  | \$734,200                     | 10.54705                 | 8.68021  | \$3,464,238 | \$708,113   |
| <1,000        | 33                                 | 11 | 198           | 21                      | 307,369,419   | 168,512,286                         | \$16,230,600 | \$822,200                     | 10.73627                 | 6.52771  | \$5,280,486 | \$487,917   |
| <1,500        | 42                                 | 23 | 215           | 29                      | 411,772,572   | 300,706,462                         | \$20,104,800 | \$1,136,700                   | 10.19981                 | 7.64866  | \$4,882,501 | \$378,010   |
| <5,000        | 43                                 | 29 | 231           | 20                      | 597,704,410   | 686,205,240                         | \$23,604,800 | \$1,187,200                   | 7.19419                  | 4.22614  | \$3,949,243 | \$173,009   |
| <10,000       | 47                                 | 37 | 236           | 18                      | 766,478,643   | 1,405,624,033                       | \$23,967,100 | \$4,906,100                   | 6.13194                  | 2.63228  | \$3,126,910 | \$349,034   |
| All           | 49                                 | 47 | 243           | 155                     | 1,327,656,551 | 3,152,527,769                       | \$24,030,400 | \$5,162,600                   | 3.69071                  | 1.49087  | \$1,809,986 | \$163,761   |

|             |                                                                     |                                                                             |                                                                               | Estimated 30 year                                                        |                                                                                                    |                                                                                                   | Estimated 30<br>year crash cost                                                 | Estimated 30<br>year crash cost                                                         | Estimated 30<br>year crash cost                                                        |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ADT Range   | 30 year<br>cumulative<br>traffic, assuming<br>no growth (w/o<br>GR) | 30 year<br>cumulative<br>traffic, assuming<br>2004 growth rates<br>(w/o GR) | 30 year<br>cumulative<br>traffic,<br>assuming 2%<br>annual growth<br>(w/o GR) | crash costs<br>for bridges<br>w/o<br>guardrail,<br>assuming no<br>growth | Estimated 30 year<br>crash costs for<br>bridges w/o<br>guardrail,<br>assuming 2004<br>growth rates | Estimated 30<br>year crash costs<br>for bridges w/o<br>guardrail,<br>assuming 2%<br>annual growth | per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming no<br>growth | per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming 2004<br>growth rates | per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming 2%<br>annual growth |
| <150        | 59,554,131                                                          | 72,219,261                                                                  | 80,533,223                                                                    | \$157,281                                                                | \$190,730                                                                                          | \$212,686.77                                                                                      | \$2,497                                                                         | \$3,027                                                                                 | \$3,376                                                                                |
| 150-399     | 211,124,560                                                         | 255,758,470                                                                 | 285,497,262                                                                   | \$9,653,496                                                              | \$11,694,345                                                                                       | \$13,054,126.91                                                                                   | \$134,076                                                                       | \$162,421                                                                               | \$181,307                                                                              |
| 400-749     | 289,424,401                                                         | 351,660,179                                                                 | 391,379,734                                                                   | \$9,591,048                                                              | \$11,653,439                                                                                       | \$12,969,679.21                                                                                   | \$188,060                                                                       | \$228,499                                                                               | \$254,307                                                                              |
| 750-999     | 113,331,977                                                         | 140,102,921                                                                 | 153,255,354                                                                   | \$16,241,452                                                             | \$20,077,960                                                                                       | \$21,962,817.57                                                                                   | \$1,353,454                                                                     | \$1,673,163                                                                             | \$1,830,235                                                                            |
| 1,000-1,499 | 229,497,320                                                         | 281,466,092                                                                 | 310,342,182                                                                   | \$8,516,204                                                              | \$10,444,665                                                                                       | \$11,516,200.78                                                                                   | \$500,953                                                                       | \$614,392                                                                               | \$677,424                                                                              |
| 1,500-4,999 | 409,188,018                                                         | 503,152,936                                                                 | 553,332,398                                                                   | \$7,702,597                                                              | \$9,471,403                                                                                        | \$10,415,985.89                                                                                   | \$481,412                                                                       | \$591,963                                                                               | \$650,999                                                                              |
| 5,000-9,999 | 375,570,639                                                         | 473,275,639                                                                 | 507,872,647                                                                   | \$806,220                                                                | \$1,015,959                                                                                        | \$1,090,227.20                                                                                    | \$161,244                                                                       | \$203,192                                                                               | \$218,045                                                                              |
| 0,000<      | 1,244,972,525                                                       | 1,558,089,982                                                               | 1,683,538,134                                                                 | \$140,431                                                                | \$175,750                                                                                          | \$189,900.50                                                                                      | \$20,062                                                                        | \$25,107                                                                                | \$27,129                                                                               |
| All         | 2,932,663,571                                                       | 3,635,725,478                                                               | 3,965,750,934                                                                 | \$53,080,805                                                             | \$65,806,128                                                                                       | \$71,779,543.59                                                                                   | \$218,440                                                                       | \$270,807                                                                               | \$295,389                                                                              |

| Table I-3. 30-year Cumulative Traffic Forecasts and Estimated Crash Benefits at Bridges Without Approach Guardrail |
|--------------------------------------------------------------------------------------------------------------------|
| Separated by ADT Range (boldface indicates "benefit" used in B/C ratio).                                           |

# Table I-4. 30-year Cumulative Traffic Forecasts and Estimated Crash Benefits at Bridges Without Approach Guardrail Separated by ADT Threshold (boldface indicates "benefit" used in B/C ratio).

| ADT Threshold | 30 year<br>cumulative<br>traffic,<br>assuming no<br>growth (w/o<br>GR) | 30 year<br>cumulative<br>traffic,<br>assuming 2004<br>growth rates<br>(w/o GR) | 30 year<br>cumulative<br>traffic,<br>assuming 2%<br>annual growth<br>(w/o GR) | Estimated 30<br>year crash<br>costs for<br>bridges w/o<br>guardrail,<br>assuming no<br>growth | Estimated 30<br>year crash costs<br>for bridges w/o<br>guardrail,<br>assuming 2004<br>growth rates | Estimated 30 year<br>crash costs for<br>bridges w/o<br>guardrail,<br>assuming 2%<br>annual growth | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming no<br>growth | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming 2004<br>growth rates | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u><br>approach<br>guardrail,<br>assuming 2%<br>annual growth |  |
|---------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| <150          | 59,554,131                                                             | 72,219,261                                                                     | 80,533,223                                                                    | \$157,281                                                                                     | \$190,730                                                                                          | \$212,686.77                                                                                      | \$2,497                                                                                                            | \$3,027                                                                                                                    | \$3,376                                                                                                                   |  |
| <400          | 270,678,691                                                            | 327,977,731                                                                    | 366,030,486                                                                   | \$9,811,764                                                                                   | \$11,888,783                                                                                       | \$13,268,147.84                                                                                   | \$72,680                                                                                                           | \$88,065                                                                                                                   | \$98,283                                                                                                                  |  |
| <750          | 560,103,092                                                            | 679,637,910                                                                    | 757,410,220                                                                   | \$19,403,304                                                                                  | \$23,544,275                                                                                       | \$26,238,493.00                                                                                   | \$104,319                                                                                                          | \$126,582                                                                                                                  | \$141,067                                                                                                                 |  |
| <1,000        | 673,435,068                                                            | 819,740,831                                                                    | 910,665,573                                                                   | \$35,560,646                                                                                  | \$43,286,302                                                                                       | \$48,087,570.69                                                                                   | \$179,599                                                                                                          | \$218,618                                                                                                                  | \$242,867                                                                                                                 |  |
| <1,500        | 902,932,388                                                            | 1,101,206,922                                                                  | 1,221,007,755                                                                 | \$44,085,683                                                                                  | \$53,766,439                                                                                       | \$59,615,715.94                                                                                   | \$205,050                                                                                                          | \$250,076                                                                                                                  | \$277,282                                                                                                                 |  |
| <5,000        | 1,312,120,407                                                          | 1,604,359,858                                                                  | 1,774,340,153                                                                 | \$51,818,824                                                                                  | \$63,360,071                                                                                       | \$70,073,005.59                                                                                   | \$224,324                                                                                                          | \$274,286                                                                                                                  | \$303,346                                                                                                                 |  |
| <10,000       | 1,687,691,045                                                          | 2,077,635,497                                                                  | 2,282,212,800                                                                 | \$52,772,586                                                                                  | \$64,965,799                                                                                       | \$71,362,748.22                                                                                   | \$223,613                                                                                                          | \$275,279                                                                                                                  | \$302,385                                                                                                                 |  |
| All           | 2,932,663,571                                                          | 3,635,725,478                                                                  | 3,965,750,934                                                                 | \$53,080,805                                                                                  | \$65,806,128                                                                                       | \$71,779,543.59                                                                                   | \$218,440                                                                                                          | \$270,807                                                                                                                  | \$295,389                                                                                                                 |  |

|             | Min. Cost for<br>Installing and<br>Maintaining Approach<br>Guardrail at a Bridge<br>(assume: 30-year life-<br>cycle and installation | Max. Cost for<br>Installing and<br>Maintaining Approach<br>Guardrail at a Bridge<br>(assume: 30-year life-<br>cycle and installation | cost per bridge per bridge <u>with</u> co<br><u>with</u> approach approach <u>wi</u><br>guardrail – guardrail – g |              | 30-year crash<br>cost per bridge<br><u>with</u> approach<br>guardrail –<br>assuming 2% | B/C –<br>grov |       | B/C – 2004<br>growth rates |       | B/C –<br>annual g |       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------|---------------|-------|----------------------------|-------|-------------------|-------|
| ADT Range   | at all 4 corners)                                                                                                                    | at all 4 corners)                                                                                                                    | growth                                                                                                            | growth rates | annual growth                                                                          | Min           | Max   | Min                        | Max   | Min               | Max   |
| <150        | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$0                                                                                                               | <b>\$0</b>   | \$0                                                                                    | 0.06          | 0.09  | 0.07                       | 0.11  | 0.08              | 0.12  |
| 150-399     | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$55,691                                                                                                          | \$67,465     | \$75,310                                                                               | 1.33          | 1.62  | 1.44                       | 1.72  | 1.51              | 1.77  |
| 400-749     | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$14,353                                                                                                          | \$17,439     | \$19,409                                                                               | 3.17          | 4.54  | 3.66                       | 5.13  | 3.95              | 5.47  |
| 750-999     | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$12,820                                                                                                          | \$15,848     | \$17,336                                                                               | 23.41         | 33.90 | 27.50                      | 38.96 | 29.36             | 41.19 |
| 1,000-1,499 | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$32,117                                                                                                          | \$39,390     | \$43,431                                                                               | 6.50          | 8.46  | 7.28                       | 9.24  | 7.66              | 9.60  |
| 1,500-4,999 | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$3,350                                                                                                           | \$4,120      | \$4,530                                                                                | 9.96          | 15.81 | 12.05                      | 18.96 | 13.14             | 20.58 |
| 5,000-9,999 | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$388,288                                                                                                         | \$489,302    | \$525,070                                                                              | 0.37          | 0.39  | 0.38                       | 0.39  | 0.38              | 0.39  |
| 10,000<     | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$26,114                                                                                                          | \$32,682     | \$35,314                                                                               | 0.28          | 0.38  | 0.32                       | 0.42  | 0.34              | 0.43  |
| All         | \$27,100                                                                                                                             | \$45,000                                                                                                                             | \$19,764                                                                                                          | \$24,502     | \$26,726                                                                               | 3.37          | 4.66  | 3.90                       | 5.25  | 4.12              | 5.49  |

 Table I-5. 30-year Costs per Bridge With Approach Guardrail and Associated Benefit/Cost Ratio by ADT Range (boldface indicates "cost" used in B/C ratio).

| Table I-6. 30-year Costs per Bridge With Approach Guardrail and Associated Benefit/Cost Ratio by ADT Threshold (boldface |
|--------------------------------------------------------------------------------------------------------------------------|
| indicates "cost" used in B/C ratio).                                                                                     |

|               | Min. Cost for<br>Installing and<br>Maintaining Approach<br>Guardrail at a Bridge | Max. Cost for<br>Installing and<br>Maintaining Approach<br>Guardrail at a Bridge | 30-year crash 30-year crash co<br>cost per bridge per bridge <u>with</u><br>with approach approach |                                              | 30-year crash<br>cost per bridge<br>with approach | B/C – No<br>growth |      | B/C – 2004<br>growth rates |      | B/C –<br>annual g |      |
|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|--------------------|------|----------------------------|------|-------------------|------|
| ADT Threshold | (assume: 30-year life-<br>cycle and installation<br>at all 4 corners)            | (assume: 30-year life-<br>cycle and installation<br>at all 4 corners)            | guardrail –<br>assuming no<br>growth                                                               | guardrail –<br>assuming 2004<br>growth rates | guardrail –<br>assuming 2%<br>annual growth       | Min                | Max  | Min                        | Max  | Min               | Max  |
| <150          | \$27,100                                                                         | \$45,000                                                                         | \$0                                                                                                | \$0                                          | \$0                                               | 0.06               | 0.09 | 0.07                       | 0.11 | 0.08              | 0.12 |
| <400          | \$27,100                                                                         | \$45,000                                                                         | \$34,643                                                                                           | \$41,976                                     | \$46,846                                          | 0.91               | 1.18 | 1.01                       | 1.27 | 1.07              | 1.33 |
| <750          | \$27,100                                                                         | \$45,000                                                                         | \$21,323                                                                                           | \$25,874                                     | \$28,835                                          | 1.57               | 2.15 | 1.79                       | 2.39 | 1.91              | 2.52 |
| <1,000        | \$27,100                                                                         | \$45,000                                                                         | \$16,595                                                                                           | \$20,200                                     | \$22,441                                          | 2.92               | 4.11 | 3.35                       | 4.62 | 3.60              | 4.90 |
| <1,500        | \$27,100                                                                         | \$45,000                                                                         | \$15,875                                                                                           | \$19,361                                     | \$21,468                                          | 3.37               | 4.77 | 3.89                       | 5.38 | 4.17              | 5.71 |
| <5,000        | \$27,100                                                                         | \$45,000                                                                         | \$9,827                                                                                            | \$12,016                                     | \$13,289                                          | 4.09               | 6.07 | 4.81                       | 7.01 | 5.20              | 7.51 |
| <10,000       | \$27,100                                                                         | \$45,000                                                                         | \$24,960                                                                                           | \$30,727                                     | \$33,753                                          | 3.20               | 4.30 | 3.64                       | 4.76 | 3.84              | 4.97 |
| All           | \$27,100                                                                         | \$45,000                                                                         | \$19,764                                                                                           | \$24,502                                     | \$26,726                                          | 3.37               | 4.66 | 3.90                       | 5.25 | 4.12              | 5.49 |

|           |                   | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u> | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u> | Estimated 30<br>year crash cost<br>per bridge<br><u>without</u> | 30-year<br>crash cost<br>per bridge<br><u>with</u> | 30-year<br>crash cost<br>per bridge<br><u>with</u><br>approach | 30-year<br>crash cost<br>per bridge<br><u>with</u><br>approach |      | – No<br>owth | B/C –<br>growth |       |       | % annual<br>wth |
|-----------|-------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------|--------------|-----------------|-------|-------|-----------------|
| ADT Range | Bridges<br>w/o GR | approach<br>guardrail,<br>assuming no<br>growth                 | approach<br>guardrail,<br>assuming 2004<br>growth rates         | approach<br>guardrail,<br>assuming 2%<br>annual growth          | approach<br>guardrail –<br>assuming no<br>growth   | guardrail –<br>assuming<br>2004 growth<br>rates                | guardrail –<br>assuming<br>2% annual<br>growth                 | Min  | Max          | Min             | Max   | Min   | Max             |
| 150-299   | 50                | \$13,440                                                        | \$16,250                                                        | \$18,174                                                        | \$84,273                                           | \$101,895                                                      | \$113,960                                                      | 0.10 | 0.12         | 0.11            | 0.13  | 0.11  | 0.13            |
| 300-399   | 22                | \$388,186                                                       | \$471,636                                                       | \$524,931                                                       | \$0                                                | \$0                                                            | <b>\$0</b>                                                     | 8.63 | 14.32        | 10.48           | 17.40 | 11.67 | 19.37           |
| <150      | 63                | \$2,497                                                         | \$3,027                                                         | \$3,376                                                         | \$0                                                | \$0                                                            | <b>\$0</b>                                                     | 0.06 | 0.09         | 0.07            | 0.11  | 0.08  | 0.12            |
| <300      | 113               | \$7,340                                                         | \$8,883                                                         | \$9,926                                                         | \$46,599                                           | \$56,396                                                       | \$63,014                                                       | 0.08 | 0.10         | 0.09            | 0.11  | 0.09  | 0.11            |
| <400      | 135               | \$72,680                                                        | \$88,065                                                        | \$98,283                                                        | \$34,643                                           | \$41,976                                                       | \$46,846                                                       | 0.91 | 1.18         | 1.01            | 1.27  | 1.07  | 1.33            |

Table I-7. Revised Benefit/Cost Ratio Based on ADT 150-299 and ADT 300-399.