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EXECUTIVE SUMMARY 

The standard model for programming traffic safety improvements uses estimated crash 

rates to identify potential high-hazard sites, and estimated crash reduction factors to select the 

most effective safety projects. When one needs to consider neighborhood traffic control 

measures on local or residential streets, however, the standard model is not applicable because of 

(a) difficulties in obtaining routine, site-specific measures of pedestrian exposure, and (b) the 

sparsity of pedestrian collisions, especially on local streets. Similar problems are encountered 

when attempting to program roadside safety improvements, and the recommended solution is to 

simulate the effect of a proposed improvement by coupling a deterministic model of a run-off-

road event with probability distributions on the model’s variables. 

This report illustrates how a similar approach can be used to assess the effect of vehicle 

traffic volumes and speeds on pedestrian safety. In particular, it is shown how analogue of the 

estimated crash rate, the probability a standardized pedestrian conflict results in a collision, can 

be computer given data on the distribution of vehicle speeds and headways on a residential street. 

This method was applied to data collected on a sample of 25 residential streets in the Twin 

Cities, and it was found that the collision rates varied between 4 and 64 collisions per 1000 

pedestrian conflicts depending primarily on the street’s traffic volume. Next, by developing a 

model relating the impact speed of a vehicle to the severity of injury suffered by the pedestrian, it 

WAS shown how to compute the probabilities of a severe collision. The severe collision rate 

varied between 1 and 25 collisions per 1000 conflicts and was sensitive to both traffic volume 

and traffic speed. 

It was also shown how an analogue of the crash reduction factor, called the “Probability 

of Necessity”, can be computed using the same data. This was used to assess the potential safety 

effect of 25 mph speed limit on the sample residential streets. The estimated crash reductions 

ranged between 0.2% and 46% depending primarily on the degree to which vehicle speeds 

currently exceeded 25 mph. Finally it was shown how computation of “Probabilities of 

Necessity” could also be incorporated in the reconstruction of actual vehicle/pedestrian collisions 

to assess the degree to which the vehicle might have been speeding and if speeding could be 

considered a causal factor in the collision. This method was applied to a sample of 8 collisions 



 

occurring in 60 km/h (37 mph) in Adelaide and Australia; and it was found that speeding could 

be considered a casual factor in about half of these. 

The probability calculations were carried out using Monte Carlo simulation. For the 

collision probabilities, standard Monte Carlo methods are adequate and implementation using 

stand-alone programs or spread sheets should be relatively straightforward. It is recommended 

that this method could become a standard analysis tool for traffic engineers. For computing 

probabilities of necessity however, more sophisticated Markov Chain Monte Carlo methods are 

needed and these can be difficult to use correctly absent a solid understanding of probability and 

statistics. It is recommended that these methods be limited to special studies possibly conducted 

by qualified consultants or specially trained personnel. 
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CHAPTER ONE 

SETTING THE STAGE 

In this report, “Neighborhood Traffic Controls” (NTC) will offer to engineering 

modifications applies to local and residential streets in order to reduce traffic volumes or speeds. 

Such modifications might include regulatory actions, such as creation of reduced speed zones or 

installation of stop signs and physical changes to the roadways such as construction of speed 

humps, traffic circles, or cul-de-sacs or more innovative actions such as the use of photo 

enforcement. These modifications include those traditionally known as “traffic calming”. 

Although requests for NTC usually originate from local resident (Wallwork 1993), the use of 

NTC can become highly politicized with organizations such as the National Motorists 

Association opposing measures which “… inconvenience and hinder the legitimate travel of 

responsible motorist”, to the extent of providing advices on how to organize opposition to NTC 

measures (NMA 2001). As with most traffic engineering actions, NTC must be physically 

realized on particular streets and traffic conditions on some streets may make them more 

promising candidates for NTC than others. Pedestrian safety, especially the safety of child 

pedestrian, is often mentioned as a reason for applying NTC but, at present, there is no 

commonly accepted procedure for rationally assessing the risk of pedestrians generated by 

vehicle traffic volumes and speeds. In the remainder of this chapter, we will review the problem 

of relating vehicle traffic speed and volume to pedestrian safety on local of residential streets, 

while the rest of this report will describe a procedure for making just such assessments. 

A basic distinction central to highway and traffic engineering practice is that of the four 

functional classes of roads: freeways, arterial, collectors and local streets (Minnesota Department 

of Transportation (Mn/DOT) 1996a, p.2-5 (3)). Further, a road is said to provide high mobility 

when it can support a high volume of traffic moving at high speeds, while it supports high access 

when vehicles can move directly from the road to most, if not all, adjoining land uses. It is 

generally recognized that these two features conflict with each other with no road design 

providing simultaneously high mobility and access. As one moves from left to right in the least 

functional classes, one roughly goes from facilities high mobility but low access, to facilities 
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providing high mobility but low access and to facilities providing low mobility but high access. 

The primary function of local streets then is to support access to adjacent land and to provide 

connections with streets higher in the functional hierarchy. Local streets generally have low 

speeds and volumes and the use of the street for through movement may be deliberated 

discouraged (Mn/DOT 1996a, p.2-5 (4). Constraints on vehicle mobility can become even more 

prominent on local residential streets in urban and suburban areas, where in addition to serving 

motor vehicles the street might provide the main (or only) corridor for pedestrians and cyclists, 

and may also serve as an area where neighbors socialize or children play (Homburger et at. 

1989). For such streets, it has been recognized that “ … the overriding consideration is to foster a 

safe and pleasant environment. The convenience of the motorists is a second consideration.” 

(AASHTO 1994, p.428). 

One can conclude that as vehicle speeds and volumes increase on a local or residential 

street, the ability of the street to serve these basic functions will be impaired. Figure 1.1 

illustrates trends in Minnesota’s population, vehicle registration and vehicle-miles of travel over 

the past 35 years (Mn/DPS 2000). Here we see that while the population has increased by about 

40% the number of registered vehicles more than doubled, while the total vehicle-miles of travel 

more than tripled. Figure 1.1 shows not only a trend of increasing population but also that each 

person is increasingly more likely to have vehicle and each of these vehicles is likely to travel 

greater distances. If this trend continues, we can expect increasing congestion and delay on urban 

arterials resulting in more drivers being tempted to divert onto residential or local streets in 

pursuit of personally optimal routes. This in turn would lead us to expect increasing pressure to 

apply to serve its primary functions. 

Regulation vehicle-speeds has long been and continues to be a contentious topic (TRB 

1998). In Minnesota, the legislated speed limit in urban districts, which include most urban local 

and residential streets, is 30 mph (50 km/h) but in the early 1990’s consideration was given to 

legislating a 25 mph speed limit on residential streets. This was dropped, at least in part because 

of concerns about the resulting enforcement problems but also because of uncertainty concerning 

what, if any, safety benefits might result. The Commissioner of Transportation has the 

responsibility for determining variances from the legislated speed limits, and consideration of a 

variance begins with a spot speed study to estimate the street’s 85th percentile speed – the speed 

that is exceeded by only 15% of the vehicles using that street. The recommended speed limit is 
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then determined by rounding the 85-percentile speed to the nearest speed evenly divisible by 5. 

A posted speed limit 5 mph (10 km/h) below the 85th percentile speed may be justified if 

“… there is a high accident record involving accidents of a type that would be reduced by 

enforcement of a lower speed limit.” (Mn/DOT 1996b, p.6-40). 

The use of the 85th percentile speed in determining speed limit is recommended by the 

traffic engineering profession (ITE 1993), is supported by motorists’ lobbying groups (e.g. NMA 

2001) and is used by state and local governments across the United States (Parker 1985). This 

practice avoids the enforcement dilemma of having either to cite unpopularly large numbers of 

drivers for speeding or to tolerate widespread violation of speed limits. It is justified by the belief 

that a majority of drivers on a road are capable of choosing a speed that is “reasonable and 

prudent” for that road. Although it is not clear what exactly is meant by “reasonable and 

prudent”, the essence of this notion appears to be that most drivers are able to reasonable balance 

the benefits obtained by the shorter travel times provided by higher speeds against the expected 

costs associated with higher speeds including the costs of traffic crashes. An important 

assumption of this view is that all costs and benefits related to a speed choice are economists call 

“internal” – that is paid to or by the driver alone. In this case, it can be argued that the speed 

selected by the driver is an optimal one. However, if some of the costs are “external” – that is 

paid by other road users, then it can be argued that the speed selected by the driver, although 

optimal for him or her, will be higher than the socially optimal speed which takes into account 

the welfare of other road users. When we consider crashes between vehicles and pedestrians, 

physical injuries are born primarily by the pedestrian while other monetary costs of the crashes 

are often distributed over the customers of the driver’s insurance company. Thus on residential 

streets where an important source of costs associated with higher speeds is that resulting from 

collision with pedestrians, it would be predicted that vehicle speed will be “over-consumed”, 

with the burden for avoiding collision falling primarily on pedestrian. 

Some indirect support for this view comes from studies of driver behavior in the presence 

of pedestrians. Field studies from different countries have found that in vehicle/pedestrian 

interactions, a substantial fraction of the drivers will not slow down or stop for pedestrians unless 

the pedestrian is actually in the vehicle path and that this tendency is more prevalent among 

drivers traveling at higher speeds (Katz et al. 1975; Thompson et al. 1985). This has been 

observed even where drivers are required by law to stop for pedestrians (Britt et al. 1995), and 
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despite the fact that in surveys most drivers claim to yield the right-of-way to pedestrians 

(Varhelyi 1998). Varhelyi also reported a significant tendency for some drivers to increase their 

speed as a pedestrian approaches a zebra crossing, apparently to intimidate the pedestrian from 

asserting right-a-way. A recent crackdown on speeding and failure to yield to pedestrians on an 

arterial in St. Paul, Minnesota, even caught a state legislator driving at 42 mph in a 30 mph zone 

(Burson 1999). 

When significant externalities exist, closing the gap between individual choices and 

socially optimal choices generally requires some sort of regulatory intervention. Although 

economic theory indicates that it should in principle be possible to apply an optimal toll or tax to 

the drivers to cause their individual decisions to match the social optimum, the practical 

difficulties arising in implementing such schemes are often prohibitive. For the interventions 

characteristic of traffic engineering, a more tractable alternative to optimal taxation is to optimize 

a specific measure of effectiveness subject to various constraints. For example, at the intersection 

of two streets the individual decision that summarizes delay is to enter the intersection as soon as 

one arrives. This requires though that drivers on other approaches do not do the same thing at the 

same time because if they do a situation that maximizes each person’s delay by closing the 

intersection with wrecked vehicles, can result. In designing a regulatory scheme for the 

intersection, the objective could be to minimize total approach delay during peak-period 

operation subject to constraints on the maximum acceptable delay on minor approaches and on 

the overall cost of the project. For another example, using the 85th percentile speed for the speed 

limit on a tangent section leading to the inside lane of a horizontal curve may lead to speeds at 

which the curve cannot be successfully negotiated. A driver who fails to negotiate the curve and 

collides with a vehicle traveling the other way imposes costs not only on himself but also on the 

agencies, which must respond to the crash, on other customers of his insurance company and on 

the occupants of the other vehicle. A regulatory intervention then may seek to restrict approach 

speeds to the maximum, which keeps either the frequency of crashes or the probability of a crash 

below some acceptable level. Note that in both examples, selecting the engineering intervention 

requires knowledge of how the intervention would be expected to affect the performance 

measure. 

On local or residential streets where a primary source of external costs can be of those 

resulting from collisions between vehicles and pedestrians, a legitimate regularly objective can 
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be to manage vehicle traffic volume and/or speed so that the risk of a crash to a pedestrian is 

acceptably low. Determining an appropriate volume or speed thus requires being able to relate to 

levels of these variables to pedestrian crash risk, which in turn requires that we be specific about 

what we mean by crash risk. The first thing to note is that crash risk is not the same as crash 

frequency. To take an extreme example, Davis and Wessels (1999) reported that in Washington 

State between 1990 and 1995: out of a total of 11,160 vehicle/pedestrian collisions 

approximately 3% occurred on freeways while 65% occurred on city streets. If risk is equated 

with crash frequency one would be tempted to conclude that freeways are safer for pedestrians 

than are urban streets, which most would agree, is false. A given pedestrian is more likely to be 

struck trying to cross a busy freeway than when crossing a city street and the source of the 

increased risk is the very much higher traffic volume and speed on the freeway. The reason for 

this supposed paradox is that the opportunities for vehicle/pedestrian crashes are much lower on 

freeways because pedestrians are generally prevented from being there. Similarly, a residential 

street may have no reported pedestrian crashes not because the traffic volume and speed 

conditions are benign but because pedestrians, in self-defense, never enter the street. Although 

exclusion of pedestrians is appropriate on freeways, such a situation would generally be viewed 

as inconsistent with the stated goal “… to foster a safe and pleasant environment” where “The 

convenience of the motorist is a secondary consideration.” 

In more standard traffic safety programming, a key measure of crash risk is a location’s 

estimated crash rate: 

 
e
xr =  (1.1) 

Where: 

r  = Estimated crash rate 

x = Total reported crashes occurring over some time 

e = Total exposure to crashes during that same period of time 

 

The exposure is in turn usually estimated at intersections as total entering vehicles or as 

total vehicle-miles of travel for road sections. By comparing estimated crash rates for a number 

of similar locations, those with atypically high estimated crash rates can be identified and 

designated as potential high-hazard sites. Crash patterns at these high-hazard sites are then 
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studied in more detail together with results from other pertinent engineering studies to identify 

plausible causes from these crashes. Countermeasures appropriate to these causes can then be 

identified and the crash reduction expected to occur without the countermeasure by an 

appropriate crash reduction factor (RF). That is: 

 

 x Reduction pθ=   (1.2) 

Where 

xp  = Predicted crash count 

θ   = Crash reduction factor 

 

The predicted crash count is in turn obtained by applying the estimated crash rate to a 

predicted level of exposure while the RF is usually an estimate computed from a previously 

conducted before and after study via the equation. 

 

 
r

rr
B

AB −
=θ  (1.3) 

 

Here rB and r
A

 respectively denotes crash rates estimated before and after application of 

the countermeasure (Mn/DOT 1996b, pp. (11-10)–(11-14)). The value of the countermeasure can 

then be assessed by using the predicted crash reduction in a cost-benefit analysis (Mn/DOT 

1996a, p.2-4 (3)). 

From the above, it is clear that the standard model for programming safety improvements 

relies heavily on estimated crash rates. However, when we attempt to use this model to program 

traffic management interventions on local and residential street two difficulties arise. First, 

although ideally the denominator of the estimate crash rate should be a complete count of entities 

using the facility, in practice even complete counting of vehicle traffic is not possible for most 

roads and intersections. Instead, portable traffic counts are used to obtain sample counts to traffic 

volumes on a facility. These sample counts are used to estimate the facility’s average daily traffic 

(ADT) that in turn is used to compute exposure estimates. For pedestrian activity there is, at 

present, no cost-effective method for obtaining reliable automatic counts so routine development 
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of pedestrian exposure measures is not possible. Second, using estimates of crash rate to identify 

potential high-hazard locations works best when crashes tend to be unevenly distributed across 

locations but for pedestrian crashes on local streets this is not the case. For instance, Hoque and 

Andreassen (1986) found that the 192 crashes occurring on local streets in Melbourne, Australia 

during 1981 took place on 189 separate road sections. This means that in one year, the 

overwhelming majority of local streets had zero or one pedestrian crashes making it difficult to 

use crash counts to clearly identify high-hazard locations. 

Similar sorts of difficulties arise when one attempts to estimate benefits due to roadside 

safety improvements where the frequency of collisions with any specific object, such as a tree or 

a bridge abutment, tends to be too low to support reliable estimate of crash rates. An alternative 

solution is to use a deterministic model to describe whether or not a vehicle strikes a roadside 

object after encroaching onto the roadside, depending on the shape and location of the object as 

well as on variables such as the vehicle’s speed, point of encroachment, encroachment angle and 

deceleration rate. By placing probability distributions on these variables, it is then possible, at 

least in principle, to compute the probability that an encroaching vehicle strikes the object. This 

method has been implemented in the computer program ROADSIDE (AASHTO 1996) and an 

enhanced version is current being developed and tested as the Roadside Analysis Program 

(RSAP) (Mak et al, 1998). 

We will use a similar approach, in place of unavailable crash counts, to develop estimates 

of pedestrian crash rate and crash reduction effects on local and residential streets with structural 

knowledge of how a crash occur. Chapter 2 will describe development of a model relating the 

speed of the striking vehicle to the severity of injury suffered by a stuck pedestrian. Chapter 3 

will then describe how to estimate pedestrian collision probabilities on local or residential streets 

and apply the method to a sample of 25 streets from the Twins Cities. Chapter 4 will then 

describe a similar method for estimating the effect of speeding in individually actually occurred 

pedestrian/vehicle crashes. Chapter 5 will present our conclusions and recommendations. 
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Figure 1.1 

Proportional Change in Minnesota’s Population, Total Registered Vehicles 
and Estimated Vehicle-Miles of Travel from 1965-1999.  
(1965 is the Base Year) 
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CHAPTER TWO 

MODELING THE RELATION BETWEEN IMPACT SPEED AND INJURY 

The objective of this chapter is to develop a method for predicting the probability 

distribution across categories of pedestrian injury severity given the vehicle’s impact speed. 

Vilenius et at. (1994) show, at least to the first approximation, that the deceleration experienced 

by a pedestrian’s head when contacting a vehicle is roughly proportional to the speed at which 

the head is traveling at the time of contact. Since Wood (1988) has shown that this speed is in 

turn roughly proportional to the speed of the impacting vehicle when the pedestrian is originally 

stuck, we can hypothesize that the “damage” suffered by the pedestrian in a crash is on average 

roughly proportional to the impact speed. More formally, 

 

 ebvDamages +=  (2.1) 

Where 

v = Vehicle’s speed at impact 

b = Average increase in damage for each unit increase in impact speed 

e = Random damage due to individual differences 

 

Now suppose that the severity of the injury suffered by the pedestrian can be classed into 

one of the n ordered categories, defined by n-1 “damage thresholds”, denoted by a1, a2, … an-1. 

Injury severity is then determined by the rule: 

Severity = 1 if damage ≤ a1 

  i if ai-1 < damage ≤ ai 

  n if damage > an-1 

For a given impact speed the probability distribution across injury severity categories is 

then: 

[ ] [ ] [ ] ( )∫
−

∞−

=−≤=≤+==
bva
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Where f (e) denotes the probability density function of the random damage. The model 

specification is completed by identifying values for the parameters b, a1, …, a
n-1

, and a functional 

form for the probability distribution of the random damage. For example, if the random damages 

are assumed to be normal we obtain an ordered form of the prohibit model, while if the random 

damage has a logistic distribution we obtain an ordered logit model. 

Since neither the values for the model parameters nor the functional form for the random 

damage distribution are likely to be know as a priori, these must be identified from the data. In 

principle, measurements of impact speed and injury severity in a random sample from the 

population of all pedestrian/vehicle crashes should be sufficient to carry out this identification 

but in practice two technical difficulties arise. First, except in certain special cases (e.g. as 

described in Randles et at. (2001)), direct measurements of the vehicle’s speed at impact will not 

be available so these values must be estimated from a reconstruction of the crash. Several data 

sets containing impact speed estimates and injury severity classifications have been published 

over the years (Tharp and Tsongas 1977, Pasanen 1992, MacLaughlin et al. 1993) but before 

using these data one must seriously consider whether or not they were collected according to an 

outcome-based sampling scheme. For instance, in the late 1970’s the National Highway Traffic 

Safety Administration sponsored crash investigation teams to collect information on 

vehicle/pedestrian crashes in several U.S, cities but it was simply not possible to investigate all 

crashes occurring during the study period. Efforts were made to investigate all crashes in which a 

pedestrian was fatally injured while crashes producing less severe injuries were samples so that 

the probability a given crash was included in the sample depended on the severity of the injury it 

caused (Lawrason et at. 1980). Outcome-based sampling allows one to use limited resources in 

order to collect acceptable samples on relatively rare events, such as fatal crashes or rare 

diseases, and is often used in epidemiology and econometrics. An outcome-based sample of 

vehicle/pedestrian crashes can be used to directly estimate the conditional probability of the 
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vehicle’s impact speed given the pedestrian’s injury severity, P [v ‌ severity] but for prediction of 

the effects of speed policies we need the prospective conditional probability p [severity ‌ v]. 

Because the probability that a crash is included in the sample depends on the resulting injury 

severity, naively fitting a prospective model using an outcome-based sample will almost always 

produce inconsistent estimates of the model’s intercept parameters leading in turn to biased 

predictions (Manski and Lerman 1977, Prentice and Pyke 1979). So unless it can be ascertained 

that a given impact speed/injury severity data set was generated using a representative sampling 

plan, these data cannot, by themselves, be used to fit a prospective model. Fortunately, if one can 

supplement the outcome-based sample with data that allow consistent estimate of either the 

marginal distribution of injury severities in the population or the marginal distribution of impact 

speed, methods do exist which five consistent estimates of the prospective model’s parameters 

(Hsieh et al. 1985). 

The availability and quality of supplemental data then determines the usefulness of an 

outcome-based sample. Ashton (1982) and Ashton et al. (1977) describe crash investigation 

studies conducted in Great Britain, in which estimates of the impact speed of vehicles involved 

in pedestrian crashes were made using accident reconstruction methods. The pedestrian injuries 

were classified as slight, serious or fatal by consultant police and hospital records. A serious 

injury was one resulting in either hospitalization or in one (or more) of a set of particular injury 

types even if not resulting in hospitalization. A fatal injury produced death within 30 days and a 

slight injury as then any injury not judged as serious or fatal (Ashton, 1982 p. 613). These data 

are reproduced here in Table 2.1 and were used by Pasanen (1992, Pasanen and Salmibaara 

1993) to fit a prospective model relating impact speed to fatality risk. It must be noted though 

that Pasanen does not appear to have accounted for the possibility of outcome-based bias in his 

fitted model, while Ashton himself pointed out that the marginal distributions of injury severity 

in these data tended to show greater proportions of more severe injuries when compared to 

nationwide tabulations indicating that outcome-based sampling has probably operating. 

Nationwide tabulations for 1976 were also given (Ashton 1982) and these are reproduced in 

Table 2.2. If one makes the plausible assumption that the marginal distribution of injury severity 

for the sample areas is similar to the nationwide distribution, these data can be used to fit the 

prospective model. 
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The second technical difficulty stems from the fact that it is generating not possible to 

make a precise estimate of the vehicle’s impact speed in an accident reconstruction, at best, one 

can only determine a plausible range of speeds and the widely of this range depends on the 

circumstances of the individual crash (Niedere 1991). If, for model fitting, one picks a 

representative value from this range. This leads to an error-in-variables regression problem and 

fails to account for the resulting co-variable measurement error. This can also produce 

inconsistent parameter estimates (Carroll et al. 1995). This difficulty is compounded somewhat 

since in Table 2.1 the speed data have been grouped into 10 km/h bins and failure to account for 

this grouping can lead one to overstate the precision of a parameter estimate (Armstrong 1990). 

In this study, we will (partially) account for measurement error issues by assuming that a crash’s 

unobserved actual impact speed is uniformly distributed within the speed bun to which that crash 

was assigned. The probability of an injury severity in category i, given that the impact speed is in 

bin k, is then:  

[ ]
[ ]

vv kk

v

v
dvviseverityP

kbinviseverityP

k

k

,1,2

,2

,1

−

∫ =

=∈=  (2.3) 

 

Where v k,1
 and v k,2

 are the lower and upper limits defining speed bin k. 

The data given in Table 2.1 and 2.3 are sufficient to fit threshold models with three injury 

severity categories: the models being determined by the slope parameter b, and two thresholds, a1 

and a2. Speeds in the 71 + km/h bin were taken to be uniformly distributed between 70 and 100 

km/hr. The conditional maximum likelihood method described by Heieh et at. (1985) was 

implemented using MathCAD 6+ (Mathsoft 1995) by numerically solving the resulting 

likelihood equations. The covariance matrix for the parameter estimates was then estimated 

using the expressions given in the Appendix A of Hsieh et al. (1985). Both logit and probit 

model were fit. For the logit models closed form expressions for the integrals appearing in 

equation (2.2) and (2.3) are available leading to expressions of the form: 
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While for the profit models the integrals were evaluated numerically. Goodness of fit was 

assessed using the deviance statistic: 
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Where: 

 m ki,
  =  Number of investigated crashes with severity i in speed bin k 

 mi +,
 =  Total number of investigate crashes with severity i 

 [ ]kbinviseverityPp ki
∈==

,
 evaluated at the maximum likelihood estimates 

(MLE) for b, a1 and a2 

 π k  =  MLE of the marginal probability of an impact speed falling in bin k 

 qi
 =  MLE of the marginal probability of injury severity i 

 

Large values for the deviance statistic indicate a lack if fit between the data in Table 2.1 

and what would be predicted by our threshold models. Table 2.3 displays the deviance measures 

for each pedestrian age group and for both the logit and probit models together with significance 

levels from an approximate chi-squared test of the null hypothesis that the proposed models fits 

the data. Both the logit and probit models provide acceptable fits with the deviance values for the 

logit models being slightly lower. Since the resulting prospective models for both logit and 

probit turned out to be very similar, in what follows, we will focus on the logit models. 
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Table 2.4 gives the parameter estimates and corresponding standard error for the fitted 

logit models while Figures 2.1, 2.2 and 2.3 show the distribution of injury severities as functions 

of impact speed for each pedestrian age group. To see how the values in the figures were arrived 

at, consider a child pedestrian who is struck by an automobile traveling at 50 km/hr, using the 

parameter estimates from Table 2.4, the probabilities of slight, serious and fatal injuries would 

be: 
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    (2.6) 

 

Inspection of Table 2.4 and Figures 2.1-2.3 shows that while the “Children” and “Adult” 

groups have essentially similar injury severity distributions, that for the “Elderly” group is 

noticeable different, with older pedestrians being much more likely to suffer severe injuries at 

lower impact speed. This accords with the increased “frailty” of older persons identified by 

Hauer (1988). 

It should also be noted that the injury severity models for the ‘Children” and “Adult” 

presented in Figures 2.1 and 2.2 are noticeable different from models presented elsewhere in the 

literature. In Figures 2.1 and 2.2, the impact speed at which the chance of fatal injury is 50% 

occurs between 70 and 75 km/h, as opposed to 53 km/h (Pasanen and Salmivaara 1993) or 

45 km/h (Anderson et al. 1997). On the other hand, the model for “Elderly” pedestrians, 

presented in Figure 2.3, is similar to the previously published curves. The same data were used 

here as were used by Pasanen (1992) in developing his model, the main differences being that in 

our application the data were not aggregated across pedestrian age groups and estimation 

methods which explicitly accounted for outcome-based biases were employed. The resulting 

differences between Pasanen and Salmivaara’s model and our Figures 2.1 and 2.2 must then be 

due to a combination of aggregation and outcome-based biases. The pedigree of the data used in 

Anderson et al. (1997) is less clear cut but given the similarity of their curve to that of Pasanen 
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and Salmivaara one should at least suspect that similar factors were present. Thus, although the 

previously published curves are consistent with what we obtained for the aged 60+ pedestrian 

group, they do not appear representative of what one can expect for younger pedestrians. 

Finally, as noted in Chapter 1, there has been discussion in Minnesota as to whether or 

not 25 mph (40 km/h) is more appropriate than 30 mph (50 km/h) as a speed limit for residential 

streets, but that was not possible to identify the predicted safety benefits resulting from this 

change. Knoblauch (1977) indicates that on local residential streets the most frequent type of 

pedestrian crash involves a child running in front of a moving vehicle. If one assumes that such 

streets should function as mixed-use facilities rather than solely as avenues for vehicle travel, 

then a residual baseline frequency of such crashes is to be expected. A rational speed limit policy 

might then seek to keep the chances of severe injuries resulting to the pedestrian to an acceptably 

low level. Looking at Figure 2.1, we can see that for impact speeds below 25 mph (40 km/h) it is 

most likely that the pedestrian injuries will be slight; but that for impact speeds above 25 mph 

(40 km/h) serious injuries becomes most frequent and above about 47 (75 km/h) fatal injuries are 

most likely. Since dart-out type crashes often give the driver little time to react to the emergence 

of the pedestrian, one can argue that the initial and impact speeds should be similar, and so 

Figure 2.1 suggests that 25 mph (40 km/h) provides a plausible limit for vehicle speeds on local 

residential streets. 
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Table 2.1 

Tabulations of Investigated Pedestrian Crashes Reported in Ashton (1982) 
 
Children (Ages 0-14 years) 

 

Estimated Impact Speed (km/h) Injury 
Severity 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71+ 

Slight 9 18 25 12 5 2 0 0 

Serious 0 2 18 25 18 9 0 0 

Fatal 0 0 1 0 5 3 2 1 
 

 

Adults (Ages 15-59 years) 
 

Estimated Impact Speed (km/h) Injury 
Severity 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71+ 

Slight 2 5 11 10 2 1 0 0 

Serious 0 1 18 14 14 7 1 0 

Fatal 0 0 3 1 3 11 8 9 
 

 

Elderly (Ages 60+ years) 
 

Estimated Impact Speed (km/h) Injury 
Severity 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71+ 

Slight 6 1 3 0 0 0 0 0 

Serious 0 2 13 16 6 1 0 0 

Fatal 0 0 3 2 15 10 3 1 
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Table 2.2 

Pedestrian Casualties by Age and Injury Severity for Great Britain in 1976 
(from Ashton 1982) 
 

Age Group 
Injury Severity 

0-14 years 15-59 years 60+ years 

Slight 21,072 17,873 7,272 

Serious 7,461 6,276 6,276 

Fatal 405 720 1,208 
 

 

 

Table 2.3 

Goodness of Fit for Logit and Probit Models 
 

(D = Computed Deviance Statistic; df = Degree of Freedom; p = Significance level) 

Logit Models Probit Model 
Age Group 

D Df P D Df P 

0-14 11.37 10 0.33 11.55 10 0.32 

15-59 9.62 10 0.47 11.97 10 0.29 

60+ 11.48 10 0.32 12.61 10 0.25 
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Table 2.4 

Parameter Estimates for Logit Models 
 

(Estimated Standard Errors in Parentheses) 

Model Parameter 
Age Group 

B a1 a2 

0-14 0.120 (0.019) 4.678 (0.543) 8.846 (0.809) 

15-59 0.127 (0.018) 4.971 (0.531) 8.866 (0.822) 

60+ 0.204 (0.035) 5.290 (0.811) 9.728 (1.433) 
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Figure 2.1 

Injury Severity Versus Impact Speed for Pedestrians Aged 0-14 Years 
 

Key: 

P [slight]: _______ 

P [serious]: +++++++ 

P [fatal]: - - - - - - - 
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Figure 2.2 

Injury Severity Versus Impact Speed for Pedestrians Aged 15-59 Years 
 

Key: 

P [slight]: _______ 

P [serious]: +++++++ 

P [fatal]: - - - - - - - 
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Figure 2.3 

Injury Severity Versus Impact Speed for Pedestrians Aged 60+ Years 
 

Key: 

P [slight]: _______ 

P [serious]: +++++++ 

P [fatal]: - - - - - - - 
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CHAPTER THREE 

DEVELOPMENT AND APPLICATION OF PEDESTRIAN CRASH MODEL 

As noted in Chapter 1, pedestrian crashes on local and residential streets tend to be 

spatially diffuse with the large majority of such streets likely to show, at most, one crash in any 

reasonable time period. It was also noted that crash risk is not synonymous with crash count so 

that a low crash count does not necessarily guarantee that traffic conditions are such as to 

provide a “safe and pleasant environment” for pedestrians. But the sparseness of pedestrian 

crashes makes it difficult to compute reliable estimates of crash rates which in turn make it 

difficult to use estimated rates to measure crash risk and to prioritize sites as to their suitability 

for NTC. To get out of this impasse we can begin by taking note of Hauer’s (1997) distinction 

between safety of a site and a method for estimating safety. In particular, an estimating equation 

such as (1.1) does not define what is meant by crash rate. Rather a site’s crash rate is better seen 

as an underlying property of the site which the equation (1.1) attempts to measure. This 

underlying property may in turn depend on other features of the site such as traffic volumes and 

speeds, road geometry or pavement condition. Once we distinguish between crash rate and a 

method for estimating it we can ask whether or not it is possible to find some other method for 

estimating the crash rate, but this requires getting a clearer view of what the crash rate is. 

Imagine for the moment that for a residential street we knew what over the course of a year, 

pedestrians entered the street a total of n times and that there were x collisions between 

pedestrians and vehicles, we can ask: “Under what conditions would the ratio x/n give us a 

reasonable estimate of crash risk?” Probably the simplest mechanism for justifying this estimate 

arises by assuming that each entering pedestrian has the same probability, p, of being hit and that 

each pedestrian’s chance of being hit is independent of what happens to other pedestrians. It 

follows, then, that the crash count x can model as the outcome of a binomial random variable, 

and then x/n estimates the underlying crash probability p. Given two streets with significantly 

different values for their estimated crash probabilities, we would be inclined to conclude that the 

street with the higher crash probability is, other than equal, more dangerous for pedestrians. The 

question is then how to obtain an estimate of this probability when reliable values for x or n are 

unavailable. 
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In the simple binomial model the crash probability, p, is taken as an irreducible 

characteristic of the site in the sense that while it may be possible to identify other measurable 

variables which allow us to predict how these probabilities vary across sites, no attempt is made 

to explain (or derive) these probabilities from more fundamental mechanisms. As noted in 

Chapter 1, although engineers seeking to prioritize roadside improvement projects have 

encountered difficulties similar to ours and have developed a solution which has been 

implemented in computer programs such as ROADSIDE and RSAP. In essence this solution uses 

a deterministic model to describe whether or not a vehicle after encroaching onto the roadside 

will strike a roadside object as a function of the shape and location of the object as well as of 

variables such as the vehicle’s speed, point of encroaching, encroachment angle and deceleration 

rate. By placing probability distributions on these variables, it is then possible, at least in 

principle, to compute the probability that an encroaching vehicle strikes the object. 

We will use a similar approach to determine pedestrian collision probabilities but before 

moving to the details of our procedure, it may be helpful to take a closer look at its underlying 

rationale. Most would agree that crash risk to pedestrians increase as vehicle traffic volumes and 

speeds increase. Consider the risk to a pedestrian trying to cross a 12-foot lane of an urban 

freeway when the traffic volume is 2000 vehicle/hour and the average speed is 60 mph in 

contract to the risk to the same pedestrian trying to cross a 12-lane of a residential street when 

the traffic volume is 10 vehicle/hour and the average speed of 20 mph. Lying between these 

extremes is a variety of intermediate cases and the problem at hand is to somehow rank these 

intermediates cases as to pedestrian risk. One way we might try to solve this problem would be 

to develop a standardized test procedure. This could involve first specifying the properties of a 

standard “test pedestrian” then having a specified number of test pedestrians attempt to enter the 

street of interest and finally recording the number of collisions. The ratio of collisions to entries 

would then give an estimate of that street’s crash probability and the number of entries could be 

chosen beforehand so that a given level of precision for this estimate could be guaranteed with a 

given confidence. Like any test procedure this one does not encompass all possible scenarios but 

achieves its validity by being (1) standardized so that different streets could be evaluated on the 

same criteria and (2) representative of the type of event of practical importance. The obstacles to 

implementing such a test however are obvious even if we could replace the human test 

pedestrians with robots. 
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Given that such a standardized test is not feasible, one alternative is to notice that entries 

and collisions do in fact occur even if we cannot stage them, so that we simply need to record the 

number of pedestrian entries and collisions produced by such “natural” tests. This, in essence, is 

what is done when safety programming is based on estimated crash rates. Some care needs to be 

taken so to guarantee that nature’s tests occur under approximately similar conditions and to 

make appropriate corrections when they have not. As noted earlier though this approach is 

foreclosed for pedestrian crashes on local and residential streets because (1) unlike vehicle 

volumes, measures of pedestrian street entries cannot at present be collected automatically and 

(2) pedestrian crashes do not tend to show spatial clustering. If we were completely ignorant 

concerning the underlying mechanisms governing traffic crashes we would be at a stand. But if 

such knowledge were available, another alternative would be to simulate the outcome of a 

standardized test on a computer. This is the approach used in assessing roadside improvements 

and the one we will develop. 

The first task is to define a standardized test. Pedestrian crashes tend to fall into several 

different types depending primarily on what the pedestrian is doing prior to the crash. These 

include when a pedestrian is walking along a road when a pedestrian is working on a stopped 

vehicle or when a pedestrian is crossing at an intersection (Zeeger 1993). Thus, no single 

physical model is likely to give an accurate representation of all crash types. The most common 

crash type (around 30% of pedestrian crashes) is a midblock dart-out in which the pedestrian 

runs into the street at some midblock location (Knoblauch et al. 1984, Baltes 1999) and these 

most commonly involve a child running onto a two-lane local street (Knoblauch 1977). Since, as 

noted in Chapter 1, local and residential street often function a multi-use facilities. A non-zero 

baseline of dart-outs by children is to be expected and the probability that a dart-out action by a 

child pedestrian results in a crash should then be indicative of the safety on a local or residential 

street. 

Figure 3.1 illustrates a dart-out crash in which a car is traveling at an initial speed of v
1 

when the pedestrian begins moving toward the street at a speed v2. At the time the driver notices 

the pedestrian the vehicle is a distance of x1 from the point of collision while the pedestrian is at 

distance x2. If it is possible, without changing speed, to pass the collision point before it is 

reached by the pedestrian. This is what driver does. Otherwise after a perception/reaction interval 

t
p
, the driver brakes to a stop at a constant deceleration a. It is assumed that if the pedestrian 
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reaches the collision point before the vehicle the pedestrian stops at this point, while if the 

vehicle reaches the collision point first the pedestrian stops before running into the vehicle. This 

analytic approach to characterizing vehicle/pedestrian crashes appear to have first been treated 

by Mayne (1965) who also considered a more complicated case where the pedestrian continues 

to moving and could be struck by cars traveling in the far lane. Howarth et al. (1974) 

subsequently used this approach to develop a rough measure of children’s exposure to crash 

events. More recently, similar models have been used by Pasanen and Salmivaara (1993) to 

consider the likelihood of fatal pedestrian crashes as a function of vehicle speed and by Vaughn 

(1997) to identify the point at which a pedestrian could first seen by a driver. 

In figure 3.1, ( ) vvvxN 221=  is the maximum distance the vehicle can be from the 

collision point and still avoid the collision by arriving before the pedestrian while 
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If values for the variables x1 , v1 , t p , a , x2 , and v2, were known then whether or not 

a collision occurred and the resulting impact speed should be determined. If the age of the 

pedestrian were also known then a probability distribution over pedestrian injury severities could 

be obtained using the appropriate model from Chapter 2. In practice, though all of these variables 

are likely to differ from encounter to encounter and although one could select plausible nominal 

values, these would always be to some extend arbitrary, as would the conclusions reached from 

using them. On the other hand, if we knew a probability distribution ( )vxtvx aF p 2211 ,,,,,  over 

the values of the collision variables then the probability of a collision could in principle be 

computed via multivariate integration: 

[ ] ( ) ( )vxtvxxxxxxx adFIProbp pSNSN 221111 ,,,,,∫ 〈〈=〈〈=  (3.2) 
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Where  I (.) denotes the indicator function 

  I (x) = 1 if statement x is true 

  I (x) = 0 if statement x is false 

Similarly the probability that the collision speed is less than some value v′, given that a 

collision occurs can be computed as: 

( ) [ ] [ ]
[ ]xxx

xxxxxx
SN

SN
SN Prob

vviProb
vviProbvF

〈〈
〈〈∧≤

=〈〈≤=
1

1
1

'
''  (3.3) 

Where 

[ ] ( ) ( ) ( )vatvxxxxxxx adFIvviIviProb pSNSN 221111 ,,,,,'∫ 〈〈≤=〈〈∧≤  (3.4) 

Finally the probability an injury of severity category I results given that a collision occurs 

could be computed as: 

[ ] [ ] ( )∫ === vidfviiseverityProbiseverityProb  (3.5) 

Although the deterministic model of a pedestrian vehicle crash together with a probability 

distribution on the model’s input variables should allow us to compute the desire probability 

evaluating the integrals appearing in equation (3.2–3.5) tends to be numerically difficult and to 

date all attempts at implementing this approach have been forced to allow only some of the input 

variables to be random with the others being fixed at plausible, but arbitrary, nominal values 

(Davis and Corkle 1997; Davis 1998). 

Rather than attempting to find closed form expressions for above integrals or to evaluate 

them numerically using multidimensional quadrature we will use Monte Carlo (MC) methods. In 

a standard MC implementation a pseudo-ransom sample of values from the input variables’ 

distribution is generated on a computer and then relevant integrals are evaluated by simply 

averaging over the appropriate functions of these random outcomes. Monte Carlo methods have 

in fact been employed in the RSAP model for evaluating roadside improvement (Mak et al. 

1998). Tradition MC methods are limited though in the degree to which probabilities can be 

conditioned on crash-specific information. Although this is not a problem when computing the 

crash and injury severity probabilities in equations (3.2–3.5) it will become more important when 

we seek to compute analogues of crash reduction factors. During the last 15 years or so a more 
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flexible set of techniques called Markov Chain Monte Carlo (MCMC) methods have been used 

by statisticians to solve increasingly more difficult estimation problems (Carlin and Louis 1996). 

In an MCMC method, a pseudo-random sequence of outcomes from a type of stochastic process 

called an ergondic Markov chain is simulated on a computer. With the Markov Chain being 

constructed so that its long run or stationary, distribution is the same as that for one desires 

probability statements. Since one of the properties of an ergotic Markov Chain is that averages 

taken over a sequential realization converge to averages computed from it stationary distribution, 

probability estimates can again be computed by averaging over the simulated outcomes. MCMC 

methods have recently been used to estimate crash rates while accounting for uncertainty in the 

exposure measures (Davis 2000) and to identify intersections where older drivers appear to have 

increased crash risk (Davis and Yang 2001). MCMC methods are even more attractive because a 

computer program called BUGS can carry out the necessary computations for a wide variety of 

estimation problems including the more standard MC problem (Gilks et at. 1995) 

Figure 3.2 shows a representation of the pedestrian/vehicle collision model as a directed 

acyclic graph (DAG). In Figure 3.2, circles represent variables, while the arrows represent the 

fact that the values of some variables cause the values of others. For example, the arrow leading 

from v1 to vi indicates that the vehicle=s initial speed is a causal determinant of the value for vi. 

Variables for which no arrows enter are called exogenous variables, since their values do not 

depend on other model variables, while the variables that are dependent are called endogenous 

variables. To specify a model for BUGS, it is necessary to specify a functional relationship for 

each of the endogenous variables, and a probability distribution over the exogenous variables. 

The functional relationships have already been defined above, so all that remains is to determine 

plausible probability distributions for x1, v1, tp, a, x2, and v2. 

In an earlier study, investigating the relationships between landscape design variables and 

vehicle speed (Giese 1996), spot speed data, as well as data on a number of physical measures, 

were collected on 50 residential street segments located in the Twin Cities metropolitan region. 

Since it was desired, capitalize on this earlier work if possible, these segments were also chosen 

as the initial sample for this study. However, locating the segments on a street map revealed that 

often two or more segments were contiguous, and so could not be treated as independent entities. 

Eliminating contiguous segments produced 25 segments for this study=s final sample. The 

locations of these segments, together with the average building setback determined in the 
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previous study, are presented in Table 3.1. During the summer of 2000, a TimeMark Delta III 

portable traffic counter was placed on each of these segments for at least 24 hours on a typical 

weekday. From the raw pulse data collected by the counter, TimeMark=s TMWin software 

extracted measurements of individual vehicle speed, individual vehicle headways, hourly traffic 

volume by direction, and total traffic volume. The resulting 24-hour, two-directional traffic 

volumes are also presented in Table 3.1. From these data, it was possible to identify, for each 

segment, the hour and direction showing the highest traffic volume, and for this peak hour, the 

measurements of individual vehicle speeds and headways were extracted. Summary measures for 

the peak-hour, peak-direction traffic at each site are shown in Table 3.2.  

In earlier work, (Davis 1998) it was assumed that vehicle speeds on residential streets 

followed a normal probability distribution, while vehicle-headways followed an exponential 

distribution. The first task then was to test the plausibility of these assumptions. Figure 3.3 shows 

histograms for the speed and headway distributions from site 17, while Figure 3.4 shows a 

normal and an exponential probability plot for the speed and headway data, respectively. It can 

be seen that while the speeds appear to be normally distributed, the headways are not 

exponential. The skewed shape of the headway distribution suggests the possibility that the 

headways are log-normally distributed. Table 3.3 shows the results of statistical tests of the 

hypothesis that the speeds and the log headways are normally distributed, for the peak-hour, 

peak-direction at each site. The Ryan-Joiner test implemented in Minitab (Minitab 1995) was 

used, with a significance cutoff of 0.05. This test in essence checks for the existence of a linear 

relationship in a normal probability plot, with a linear relationship being consistent with the 

hypothesis that the data are normally distributed. The statistic R in Table 3.3 is a correlation 

coefficient which measures the deviation from linearity, R=1.0 indicating a perfectly linear 

relationship, while R=0 indicates no relationship. The column P in Table 3.3 gives the 

corresponding significance levels, and for P<0.05 we would reject the hypothesis that the data 

are normally distributed. For the speeds, at sites 4 and 18 the computed value for R falls below 

the critical level, but since at the 0.05 level, out 25 tests, the probability of two or more rejections 

by chance alone equals 0.36, we can plausibly conclude that overall the speeds tend to be 

normally distributed. For the log-headways, we would reject the normal hypothesis for five of 

the 25 sites, and the probability of five or more rejections by chance alone is equal to 0.007. This 

second probability is low enough that we must conclude that at least some sites the lognormal 
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model does not fit. Thus while in most cases a lognormal model is plausible for vehicle 

headways, one should check the degree to which one’s conclusions are sensitive to that 

assumption. 

Using the distributions for vehicle speeds and headways, the distribution for the initial 

distance x1 can be determined, as follows. The assumption that the test pedestrian is heedless, 

and so darts out without looking at traffic, can be formalized by if the time point at which the 

dart-out begins is uniformly distributed between successive vehicle arrivals. That is, if we let t1 

denote the time between when the dart-out begins and when the vehicle would arrive at the 

collision point when traveling at speed v1, then t1 is uniformly distributed between 0 and the 

duration of the inter-vehicle gap. The initial distance is then given by tvx 111 = .  

Using portable traffic counters, data relevant to vehicle speed and headway distributions 

can be collected automatically at a site, but data concerning the model’s other exogenous 

variables, tp, a, v2 and x2, are more difficult to come by. However, researchers at the Texas 

Transportation Institute have recently completed a study of driver behavior in emergency braking 

situations, and have published data relevant to drivers’ reaction times and deceleration rates 

(Fambro et al. 1997). In particular, in 21 tests where the subject was driving his or her own car 

and had to make an emergency stop to avoid an obstacle appearing suddenly in the roadway 

(studies 3 and 4 in Fambro et al 1997), the average time between appearance of the obstacle and 

the driver’s application of the brakes was 1.07 seconds, with a standard deviation of 0.248 

seconds. Although a detailed analysis of the reaction time distribution was not provided, the data 

did show evidence of positive skew, consistent with a lognormal distribution. Since prior work 

has suggested that reaction times tend to be approximately log-normally distributed (Olson 

1996), we used a lognormal distribution for the reaction times, with mean and standard deviation 

equal to the values listed above. In tests where an average deceleration was recorded (study 2), 

the average (of these averages) was about -0.63g, with a standard deviation of about 0.08g (g = 

32.2 feet/sec2 being the acceleration due to gravity). Although the reported results were not 

sufficient to determine a distribution for the braking rates, there was again some evidence of 

positive skew. Taking the braking drag factor f = -a/g as our primary variable, we modeled f as 

being a lognormal outcome, with mean equal to 0.63 and standard deviation equal to 0.08. 

The variables v2 and x2 refer the pedestrian’s movement speed and the pedestrian’s 

distance for the point of collision when noticed by the driver. As with driver reaction time and 
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braking rate, site-specific data on these tend to be difficult to collect without special experiments. 

However, measurements of the average setback (distance from the street curb to building front) 

were available from the previous study, and were listed in Table 3.1. Absent any more detailed 

information on when drivers tend to notice and react to pedestrians, and taking the point of 

collision as being 1.5 meters (4.9 feet) from the curb, a reasonable solution is to treat the 

pedestrian’s initial distance as being uniformly distributed between the point of collision and the 

building front. Finally, pedestrian movement speeds depend both on the pedestrian’s age and 

whether or not he or she is running or walking. As noted earlier, Knoblauch (1977) has reported 

that on dart-out crashes most frequently involve child pedestrians. Times to run 50 yards by for 

fourth, fifth, and sixth grade children, collected in their physical education classes, were obtained 

from a Twin Cities elementary school. A running fifth grade boy was selected as our test 

pedestrian, with an average speed of 5.4 meters/sec (17.7 feet/sec) and a standard deviation of 

.45 meters/sec (1.5 feet/sec). Treating these running speeds as normal random variables then 

completed the specification of our model. 

Using the WINBUGS implementation of the BUGS software, the probability that a 

pedestrian running into the street and hit by a vehicle, under the scenario described above, was 

estimated. In each case, a 4,000 iteration burnin was followed by 20,000 iterations used to 

compute the estimates. In addition, the probability of a collision with a severe (serious or fatal) 

injury was also estimated, and these values were in turn used to compute the conditional 

probability of a resulting severe injury, given that a collision occurs. These results are presented 

in Table 3.4, under the “Parametric Model” columns. As an example of how they interpret these 

results, at site #11 a typical heedless fifth grade boy running into the street would be hit by a car 

with probability 0.037, and with probability 0.013 he would be hit and severely injured. 

Considering only the population of occurring collisions, about 36% of these would result in 

severe injuries. As noted earlier, for some sites the assumption that the headways are log-

normally distributed is questionable, and so the sensitivity of the results to deviations from log 

normality should be investigated. To do this, the various collision probabilities were re-

computed, this time using the empirical speed and headway distributions generated by the actual 

samples. That is, at each iteration of the Gibbs sampler, instead of sampling from a normal or 

lognormal distribution, we randomly picked a speed/headway combination from the site’s 

sample. In this way, the speed and headway distributions are identical to those collected at the 
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site, and we also dispense with the assumption that speeds and headways are independent. The 

results of these computations are also displayed in Table 3.4, in the “Nonparametric Models” 

columns. 

The first thing to note is the magnitude of the collision probabilities, which range from 

0.004 to 0.064 for the parametric models, and from 0.004 to 0.077 for the nonparametric models. 

That is, we would expect that for every thousand times a heedless test child runs into the street, 

between 4 and 64–77 collisions with a car would result, depending on the site. These are similar 

to results presented by Howarth et al (1974), who found estimated collision rates of between 23 

and 60 per thousand when neither the driver nor the child pedestrian takes evasive action. The 

second thing to note is that while the results developed using the parametric and nonparametric 

models are similar, they are not identical. This tendency is shown clearly in Figure 3.5, which is 

a scatter plot of the parametric collision probabilities versus their nonparametric counterparts. 

Since the primary practical use of the estimated collision probabilities will be to rank sites with 

respect to hazard to pedestrians, it is useful see if the two computational models yield similar 

identifications. The parametric model picked sites 27b, 55, 27a, 17, and 2 as the five with highest 

collision probabilities, while the nonparametric model picked sites 27b, 55, 46, 4, and 27a. 

Looking now at the 10 sites with highest collision probability, the parametric method added sites 

4, 11, 12, 18, and 50 to the list, while the nonparametric method added sites 11, 2, 17, 12, 50. So, 

the two methods have three sites in common in their top five, and nine sites in common in their 

top ten. For the purposes of ranking sites the two different models for speed headway 

distributions tend to produce similar results, especially if the sample sizes were small. 

Finally, before moving to the problem of estimating crash reduction effects, it may be of 

interest to consider the relative contributions of traffic volumes and average traffic speed to 

pedestrian risk. Figure 3.6 shows the collision probabilities, computed for both methods, plotted 

against the peak-hour peak-direction traffic volume for each site, and against average speed. 

Overall, we can see that while collision probability tends to increase as traffic volume increases, 

it is relatively independent of average vehicle speed. Figure 3.7 shows similar plots, but this time 

for the conditional probability of a severe injury given that a collision occur, and in Figure 3.7 

we see an opposite pattern, with severe injury probability being relatively uninfluenced by traffic 

volume, but definitely tending to increase as average traffic speed increases. Thus, at least for 

these sites, traffic volume apparently influences the chance that our test pedestrian is hit, but has 
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little influence on the severity of any resulting injuries. Average vehicle speeds on the other hand 

strongly affect the likelihood of severe injuries. 

In Chapter 1 it was noted that two probabilistic quantities are commonly used in standard 

traffic safety programming: the estimated crash rate, which is used to identify potential high-

hazard sites and to predict future crash experience in the absence of substantive change at a site, 

and the crash reduction factor (RF), which is used to predict the effect of a safety 

countermeasure. Like crash rate, reduction factors are usually defined operationally via a formula 

for estimating them, such as (1.3). With regard to crash rate, we found it important to distinguish 

between a feature or property of a site, and a method for measuring or estimating that property. 

This led us to identify the probability of a crash as the underlying property of interest, which the 

standard crash rate formula estimates. This then leads to the question: What is the underlying 

property that the RF formula estimates? 

As noted elsewhere (Davis 2000b), reduction factors are used to predict the effect that a 

countermeasure is expected cause when implemented, so we need to be precise about what we 

mean by a “causal effect”. Since we are interested in the “causal effect” of speed management, 

we will couch the discussion in those terms, although the approach is more generally applicable. 

Imagine then a street, and an event consisting of a pedestrian entering the traveled way. Define 

the response variable: 

 h1 = 1 if the pedestrian is hit by a vehicle 

  = 0 if the pedestrian is not hit by a vehicle 

Now image a similar event except that speed controls are present on the street. Define 

response variable: 

 h2 = 1 if the pedestrian would have been hit if speed controls had been present 

= 0 if the pedestrian would not have been hit if speed controls had been 

present 

Clearly then, speed controls reduce the crash count at the site (by one) if h1=1 and h2=0. 

Hudea Pear (2000) has presented an extensive analysis of causal ideas in empirical research and 

three aspects of Pearl’s work are relevant here. First Pearl calls conditional probabilities of the 

form P [h2=0 ‌ h1=1], the probability that a struck pedestrian would not have been hit if the speed 

controls have been in place –“Probabilities of Necessity”. That is, if the probability that the 
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absence of speed controls is a necessary condition for the occurrence of the crash. Second pearl 

shows that formulas of the form: 

 
r

rr
B

AB −
=ϑ  (3.6)  

can be interpreted when data are collected under appropriately controlled conditions as 

estimating Probability of Necessity. 

Third, Pearl shows how structural knowledge of situation such as that used to define the 

pedestrian crash test in the previous section can also be used to compute Probabilities of 

Necessity. To compute an alternative estimate of the reduction factor due to speed management 

this would involve: 

(1.) Using Bayes Theorem to compute posterior distributions for the exogenous 

variables given that a crash has occurred. 

(2.) Setting the value of the vehicle’s initial speed to what it would have been 

under speed management. 

(3.) Compute the crash probability using the results of (1.) and (2.). 

Balk and Pearl (1994 have also pointed out that these computations can be carried out 

more or less automatically for graphical models by augmenting the model to include 

counterfactual variables. 

As noted in Chapter 1 several years back there was informal consideration in Minnesota 

of 25 mph speed limit for residential streets but there as uncertainty concerning the safety effects 

of the new limit. To illustrate how Pearl’s methods could be applied in practice, we will BUGS 

to compute for each of our sample sites the probability that a pedestrian crash would be 

prevented under strict adherence to a 25 mph speed limit. The variable h1 is determined by the 

exogenous variables via: 

 h1  = 1 if ( ) ( )avtvxvxv p 22

111221 +〈〈  

  = 0 otherwise 

The variable v*

1  is determined by the speed limit and the v1  

 v*

1  = v1  if mphv 251 ≤  

  = 25mph if mphv 251 〉  
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 h2  = 1 if ( ) avtvxvxv p 2*
1

2*

1

*

122

*

1 +〈〈  

  = 0 otherwise 

Where tvx 1

*

1

*

1 =  

Table 3.5 shows the results of these computations for each of the 25 sites along with the 

peak-hour peak-direction traffic characteristics and collision probabilities that were reported in 

previous tables. As noted above, P [h2=0 ‌ h1=1] is the crash reduction factor for a 25 mph speed 

limit. This is the probability that, other things being equal, a crash occurring to a test pedestrian 

under the street’s current operating conditions would be avoided under a 25 mph maximum 

speed. Looking at this column the crash reductions vary from a low of 0.002 for site 58 to a high 

of 0.463 for site 22. Comparing the reduction probabilities to the average speed, we see that sites 

having an average speed below 25 mph tend to have low reduction probabilities and sites having 

higher average speeds tend to have higher reduction probabilities. This is as would be expected 

since a 25 mph speed limit should have little effect on a street where the majority of vehicles are 

already traveling at or below this limit. 

The column P [h1=1] is simply the probability that a test pedestrian is hit and the entries 

in this column are identical to the collision probabilities appearing in Table 3.4. The last column, 

P [h2=0 and h1=1] gives the probability that a test pedestrian would be hit under the current 

conditions and that the same pedestrian would not be hit when 25 mph is the maximum speed. 

Since, in principle, the product of this last probability and the number of pedestrian entries would 

give a predicted number of crashes prevented we can call this last probability the crash potential 

of the speed policy. For example at site 11 we would expect 37 collisions per 1000 test 

pedestrian entries under the existing conditions, and other things equal, we would expect 25 mph 

speed limit to prevent 4 of these 37 collisions. The site with the greatest reduction potential is 

number 27b where the speed limit we would currently expect 64 collisions per 1000 entries, of 

which 9 would be prevented by the lower speeds. Increasingly, while P [h2=0 ‌ h1=1] depends 

primarily on average vehicle speed, while P [h1=1] depends primarily on traffic volume, P [h2=0 

& h1=1] depends nontrivially on both of these traffic characteristics. 

To summarize, estimated crash rates are often used to prioritize roadway sites as 

candidates for safety improvements. In roadside safety design where traffic crashes tend to be 

spatially sparse, an alternative method based on a physical model of a run-off-road crash, is used 
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to help identify safety improvement projects. A similar problem arises when we attempt to 

prioritize local and residential streets with regard to traffic management activities because (a) 

measurements of pedestrian exposure are difficult to obtain in a cost-effective manner and (b) 

pedestrian crashed also tend to be spatially sparse. We have shown how the probability values 

related to a hypothetical pedestrian crash in which a selected type of pedestrian sets the stage for 

a midblock dart-out crash can be computed using (1.) vehicle speed and headway data collected 

automatically at the site of interest, (2) driver reaction time and braking rate data obtained from 

the literature, (3) building setback data measured from aerial photographs for the site of interest, 

and (4) pedestrian running speed data. The chief technical difficulty involves performing the 

numerical integrations that the method requires, but this is take care of by exploiting recent 

development of Monte Carlo computational method. 



 

 37

Table 3.1 

Locations, Average Setbacks and Daily Traffic Volume for Sample Sites 
 

Site ID Street From To City Setback 
(ft) 

Daily 
Traffic 

11 Arden Bridge Country Club Edina 53.3 1042 

12 Drexel SunnySide Bridge Edina 51.1 499 

13 Bruce SunnySide Bridge Edina 52.8 360 

17 Irving Lincoln Franklin Minneapolis 41.8 1143 

18 Fremont Franklin 22nd Minneapolis 47.8 951 

2 Humboldt 22nd 24th Minneapolis 39.0 565 

20 Princeton Savannah Ticonderoga Eagan 42.5 301 

21 Savannah Gibraltor “bend” Eagan 57.4 530 

22 Pennsylvania States “bend” Eagan 41.0 176 

24 35th Ave 53rd 54th Minneapolis 41.0 126 

27a Highland EB Cleveland Cretin St. Paul 46.7 755 

27b Highland WB Cleveland Cretin St. Paul 46.7 911 

3 Edina Blvd Bridge Country Club Edina 66.8 973 

32 Hill Crest Davern Fairview St. Paul 47.7 209 

34 16th Ave 69th 70th Richfield 49.4 179 

38 Boardman 34th 38th Minneapolis 45.2 245 

4 Wooddale Bridge Country Club Edina 62.6 1512 

40 Chicago 84th 86th Bloomington 46.9 188 

45 10th Ave 86th 88th Bloomington 51.8 154 

46 Parkwood Rd Schaefer Blake Edina 74.7 503 

49 17th Ave 67th 68th Richfield 48.6 148 

50 31st Ave 55th 56th Minneapolis 46.6 388 

55 Bryant 24th 25th Minneapolis 37.6 1328 

58 Bayard Wheeler Fairview St. Paul 50.0 296 

61 11th Ave 88th 90th Bloomington 45.0 174 
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Table 3.2 

Peak-Hour, Peak-Direction Characteristics of Sample Sites 
 

Peak Hour Peak-Direction Speed (mph) Headway 
(Log-sec) Site 

ID Date Hour Direction Volume 

Sample 
Size Mean S.D. Mean S.D. 

11 9/10 5 PM NB 61 57 27.8 3.8 3.5 1.3 

12 9/10 5 PM NB 67 64 25.4 4.4 3.4 1.2 

13 9/12 6 PM NB 21 17 22.4 4.0 4.3 1.3 

17 8/11 7 AM NB 75 46 20.7 3.3 3.0 1.1 

18 8/10 5 PM NB 70 57 24.8 4.5 3.4 1.0 

2 8/10 5 PM SB 41 33 25.8 4.3 3.6 1.3 

20 8/1 5 PM SB 29 27 26.7 4.6 4.1 1.3 

21 8/1 5 PM EB 41 33 22.6 4.9 3.5 1.3 

22 7/31 5 PM NB 10 9 42.0 11.5 5.4 1.2 

24 8/15 6 PM SB 8 5 27.5 2.6 4.3 1.5 

27a 7/18 5 PM EB 78 78 28.3 3.8 3.3 1.2 

27b 7/18 5 PM WB 125 120 28.5 4.0 2.8 1.1 

3 9/10 10 AM NB 55 53 26.8 4.0 3.8 1.0 

32 7/28 9 AM WB 11 10 23.4 5.0 5.2 1.0 

34 7/25 4 PM SB 18 17 23.1 6.2 4.7 1.5 

38 8/12 5 PM WB 17 15 28.2 6.0 4.5 1.5 

4 9/10 12 PM SB 82 68 28.2 3.9 3.0 1.1 

40 7/31 4 PM SB 12 11 30.3 4.8 4.9 1.3 

45 7/30 12 PM NB 17 15 25.7 6.7 4.7 1.5 

46 9/12 5 PM EB 80 76 29.3 3.9 3.3 1.3 

49 7/24 6 PM NB 10 4 22.2 3.3 5.0 0.5 

50 8/12 4 PM NB 26 25 29.0 3.4 4.0 1.5 

55 8/11 1 PM NB 86 81 20.9 4.7 2.8 1.2 

58 7/28 9 AM EB 24 18 20.2 2.8 3.8 1.4 

61 7/29 5 PM NB 10 9 21.0 5.8 5.4 1.5 
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Table 3.3 

Normality Tests for Speed and Log-Headway Distributions 
 

Speed Distribution Log-Headway Distribution  
Site ID 

Sample 
Size Correlation (R) Significance (P) Correlation (R) Significance 

(P) 
11 57 0.984 0.099 0.971 0.015 

12 64 0.986 >0.1 0.977 0.031 

13 17 0.970 >0.10 0.980 >0.10 

17 46 0.987 >0.10 0.990 >0.10 

18 57 0.978 0.028 0.997 >0.10 

2 33 0.973 0.054 0.990 >0.10 

20 27 0.985 >0.10 0.974 >0.10 

21 33 0.987 >0.10 0.957 0.023 

22 9 0.936 >0.10 0.969 >0.10 

24 5 0.936 >0.10 0.924 >0.10 

27a 78 0.993 >0.10 0.987 0.099 

27b 120 0.997 >0.10 0.993 >0.10 

3 53 0.982 0.093 0.984 >0.10 

32 10 0.984 >0.10 0.954 >0.10 

34 17 0.954 0.086 0.976 >0.10 

38 15 0.965 >0.10 0.939 0.055 

4 68 0.972 <0.01 0.086 >0.10 

40 11 0.968 >0.10 0.968 >0.10 

45 15 0.950 0.078 0.923 0.027 

46 76 0.991 >0.10 0.979 0.021 

49 4 0.981 >0.10 0.987 >0.10 

50 25 0.981 >0.10 0.983 >0.10 

55 81 0.988 0.094 0.987 0.097 

58 18 0.983 >0.10 0.989 >0.10 

61 9 0.937 >0.10 0.969 >0.10 
 



 

 40

Table 3.4 

Probability of Collision, Probability of Severe Collision and Probability of 
Severe Injury Given a Collision Computed Using Parametric and 
Nonparametric Models for Speeds and Headways. 

 

Site 
ID Parametric Model NonParametric Model 

 P [collision] P [severe] P [severe|collision] P [collision] P [severe] P [severe|collision]
11 .037 .013 .360 .037 .015 .401 
12 .034 .010 .308 .034 .012 .360 
13 .013 .003 .225 .013 .003 .235 
17 .044 .009 .210 .043 .009 .207 
18 .032 .010 .302 .030 .0008 .278 
2 .041 .013 .328 .045 .014 .306 
20 .027 .009 .330 .031 .009 .300 
21 .026 .007 .253 .024 .006 .256 
22 .010 .006 .593 .009 .006 .628 
24 .027 .009 .341 .023 .007 .282 
27a .046 .017 .375 .047 .017 .357 
27b .064 .025 .393 .069 .027 .392 
3 .018 .006 .318 .018 .006 .364 
32 .004 .001 .287 .005 .001 .275 
34 .013 .004 .274 .011 .003 .279 
38 .022 .008 .371 .034 .014 .406 
4 .039 .014 .361 .038 .015 .395 
40 .011 .004 .398 .011 .004 .382 
45 .013 .004 .314 .015 .004 .241 
46 .030 .012 .404 .034 .014 .414 
49 .004 .001 .267 .003 .001 .247 
50 .032 .013 .391 .037 .016 .429 
55 .059 .014 .237 .069 .016 .233 
58 .025 .005 .195 .025 .004 .162 
61 .007 .001 .209 .004 .001 .264 
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Table 3.5 

Peak-Hour Peak-Direction Traffic Conditions Versus Collision-Related 
Probabilities 

 

Peak-Hour Peak-Direction Collision-Related Probabilities 
Site ID Setback (ft) 

Volume Average S.D. P [h2=0|h1=1] P [h1=1] P [h2=0 and 
h1=1] 

11 53.3 61 27.8 3.8 .116 .037 .004 

12 51.1 67 25.4 4.4 .080 .034 .003 

13 52.8 21 22.4 4.0 .029 .013 .000 

17 41.8 75 20.7 3.3 .006 .044 .000 

18 47.8 70 24.8 4.5 .070 .032 .000 

2 39.0 41 25.8 4.3 .085 .041 .003 

20 42.5 29 26.7 4.6 .110 .027 .003 

21 57.4 41 22.6 4.9 .040 .026 .001 

22 41.0 10 42.0 11.5 .463 .010 .005 

24 41.0 8 27.5 2.6 .106 .027 .003 

27a 46.7 78 28.3 3.8 .113 .046 .005 

27b 46.7 125 28.5 4.0 .140 .064 .009 

3 66.8 55 26.8 4.0 .110 .018 .002 

32 47.7 11 23.4 5.0 .058 .004 .000 

34 49.4 18 23.1 6.2 .069 .013 .001 

38 45.2 17 28.2 6.0 .167 .022 .004 

4 62.6 82 28.2 3.9 .136 .039 .005 

40 46.9 12 30.3 4.8 .204 .011 .002 

45 51.8 17 25.7 6.7 .125 .013 .002 

46 74.7 80 29.3 3.9 .156 .030 .005 

49 48.6 10 22.2 3.3 .017 .004 .000 

50 46.6 26 29.0 3.4 .151 .032 .005 

55 37.6 86 20.9 4.7 .021 .059 .001 

58 50.0 24 20.2 2.8 .002 .025 .000 

61 45.0 10 21.0 5.8 .041 .007 .000 
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Figure 3.1 

Hypothetical Crash between a Vehicle and a Pedestrian 
 

 

 

 

 



 

 43

Figure 3.2 

Directed Acyclic Graph (DAG) Model Showing Inter-relationships or 
Collision Model Variables. 
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Figure 3.3 

Histograms Showing the Distribution of Individual Vehicle Speeds and 
Headways at Site 17. 
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Figure 3.4 

Probability Plots for Individual Speeds and Headways at Site 17 
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Figure 3.5 

Parametric (phit1) Versus Nonparametric (phit2) Estimates of Collision 
Probabilities at Sample Sites. 
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Figure 3.6 

Parametric Collision Probabilities (phit1) Versus Traffic Volume and Average 
Traffic Speed at Sample Sites 
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Figure 3.7 

Probabilities of Severe Injury Given a Crash Occurs (psev1) Versus Traffic 
Volume and Average Speed at Sample Sites 

 

 
 

 
 



 

 49

CHAPTER FOUR 

ESTIMATING THE CASUAL EFFECT OF SPEEDING IN ACTUAL 

VEHICLE/PEDESTRIAN COLLISIONS 

As noted earlier we are in the midst of a vigorous international debate concerning the 

relationship (if any) between speed, speed limits and the probability of being involved in a crash. 

In Chapter 3 we saw that the commonly used measure of a countermeasure’s safety effect, the 

crash reduction factor, can be interpreted as a probability of necessity, estimated from data 

collected with good experimental controls. We also saw that the lack of reliable measures of 

pedestrian exposure together with the sparsity of pedestrian crashes making it difficult to develop 

empirical estimates of the effect of speeding in pedestrian crashes. The solution proposed in 

Chapter 3 was to use a structural model of how such crashes occur in order to simulate the effect 

of a standardized by hypothetical test. This was used to compute estimates of collision 

probabilities and the Probabilities of Necessity corresponding to a 25 mph speed limit. In this 

Chapter, we will show how to use a similar structural approach to compute Probabilities of 

Necessity for actually occurring rather than hypothetical pedestrian crashes. 

A formal statement of the problem at hand can be given using Rubin’s Causal Model 

(Rubin 1974, Holland 1986). Let j = 1, …, N index a set of vehicle/pedestrian conflicts which 

include actually occurring collisions as well as all instances where a driver had to brake in order 

to avoid hitting a pedestrian. For each conflict, define the potential response variables: 

h1j  =1 if pedestrian j was actually struck 

  =0 if pedestrian j was not struck 

h2j  =1 if pedestrian j would have been struck under strict adherence to the posted 

speed limit 

  =0 if pedestrian j would not have been struck under strict adherence 

Assuming enforcement of the speed limit causes obedience to the limit the change in 

crash frequency that would result if speed limits had been enforced would then be: 

( )
( )

( ) ( )( )( )∑ ∑∑ = =
=

−+==−=∆
1: 0:

1 1 1 212121 h hj j
j j jjjj

N

j
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With the first sum on the right hand side of equation (4.1) giving crashes prevented by 

enforcement, while the second sum give crashes caused by enforcement. If drivers who were 

normally traveling at or below the speed limit would not have increased their speeds under a 

condition of strict enforcement, the mechanic of vehicle braking indicates that the monotonic 

condition h1j  ❙ h2j is plausible and the total crashes caused by enforcement will be zero. The 

change in crash frequency then becomes: 

( )( ) ( )∑∑ ==
−=−=∆

1:1: 11 221 hh n
jj

j jj jj hhh  (4.2) 

Where n is the number of observed crashes.  

The h2j reflect counterfactual outcomes and so cannot be directly observed and the 

problem becomes one of producing a defensible estimate of their sum. As noted earlier, the most 

common solution employed in traffic engineering is based on the assumption that under speed 

limit enforcement each crash has a common probability h = P [h2j = 0 | h1j = 1] of being 

prevented. The h2j can then be modeled as Bernoulli outcomes and the expected reduction would 

equal to nh. The quantity h is an example of what traffic engineers call a “Crash Reduction 

Factor” and what Pearl (2000) calls a “Probability of Necessity”. The availability of an estimate 

h from a previous study which (a.) satisfies the conditions of exogeneity and montonicity (Pearl 

2000, p292) and for which (b.) the road in question could be considered as exchangeable with the 

units of the study (Draper et al. 1993) would then justify the standard practice of using )1 = nh 

to estimate the crash reduction. Unfortunately, the majority of available estimates of crash 

reduction factors have been based on observational studies for which the validity of condition 

(a.) is questionable (Hauer 1980, 1997; Davis 200b), and even more troublesome is the fact that 

studies of speeding and pedestrian crashes on minor or local streets satisfying condition (b.) are 

simply unavailable (TRB 1998, p58). 

A still actively debated topic in philosophy concerns the relation (if any) between general 

casual claims, such as “Drinking poison kills”, and particular casual claims, such as “Socrates 

was killed by drinking hemlock”. Although resolution of this debate should not be expected any 

time soon, Pearl (2000) has argued that different types of casual claims can be usefully 

distinguished according to the degree to which they presuppose situation-specific information. 

Then generic crash reduction factor: h = P [h2j = 0 | h1j = 1] which assumes very little about 
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either the details concerning crash j or about the mechanisms underlying this type of crash is thus 

closer to a general rather than a specific causal claim. It may be however that crash 

investigations have produced data relevant to the conditions of this crash and by coupling this 

with prior knowledge about crash mechanisms it may be possible to compute individual 

probabilities of necessity, P [h2j = 0 | h1j = 1, yj] where yj denotes the data available for crash j. 

This leads to an alternative estimate of the expected crash reduction: 

( )( )∑ ∑∆ = = 



 ===


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Questions concerning individual crash causation frequently arise in legal contexts where 

a jury must assess “Cause in Fact”, (Robertson 1997) and so it is not surprising that over the past 

60 years the discipline of traffic accident reconstruction has developed primarily to assist the 

legal system in answering such questions (Hicks 1989). The definition of “Cause” is generally 

accepted in reconstruction work has been given by Baker (1975) who first defines a casual factor 

as “… any circumstances contributing to a result without which the result could not have 

occurred”, (p.274), and then defines the cause of a crash as the complete combination of factors 

which, if reproduced, would result in another identical crash (p.284). Although determination of 

the complete cause is often impossible, the more limited objective of identifying salient casual 

factors can sometimes be accomplished. Accident reconstruction has also, on occasion, been 

employed in support of traffic safety research (e.g. Treat et al. 1979) and, in fact, researchers at 

the University of Adelaide’s Road Accident Research Unit have used standard deterministic 

reconstruction methods to assess the degree to which speeding was a casual factor in fatal 

vehicle/pedestrian crashes (Anderson et al. 1997). 

To illustrated how deterministic accident reconstruction might be used to answer 

questions concerning individual causation. Consider vehicle/pedestrian crashes that occur as 

follows: 

The driver of a vehicle traveling at a speed, v, notices an impending collision with a 

pedestrian when the front of the vehicle is a distance, x, from the potential point of impact. After 

a perception/reaction time of tp the driver locks the brakes, the vehicle decelerates with braking 

coefficient of friction equal to f and after a transition time of ts, (Neptune et al. 1995) the tires 

begin making skid marks. The vehicle comes to a stop leaving skid mark of length sl. Before 
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stopping, the vehicle strikes the pedestrian at a speed of vi and the measured skid mark from the 

point of impact to the vehicle’s stopping point is s2. Variants of the kinematical formula: 

   s = vt + at
2
)/2   

Giving the distance, s, traveled during time interval, t, by an object with initial velocity, 

v, and undergoing a constant acceleration of a can then be used to determine whether or not 

speeding was a factor for this crash. For example: suppose that tire skid marks left at the scene 

indicated that the vehicle began skidding 20 meters (65.6 ft) before hitting the pedestrian and 

after impact continues to skid for another 10 meter (32.8 ft) before coming to a stop. Using 

f = 0.7 (so that a = – 6.9 meters/second
2
 (–22.6 ft/sec

2
)) gives the speed of the vehicle at the start 

of the skid mark as 20.3 meters/second (66.6 fps) and using ts = 0.2 seconds gives the speed at 

the start of braking as 21.7 meters/second (71.2 fps). Then, using tp = 1.5 seconds, one deduces 

that the vehicle was 56.7 meters (186 ft) from the collision point when the driver notices the 

pedestrian. If the vehicle has been traveling instead at the posted speed of 60 km/h (37 mph), the 

driver would have needed only 45.4 meters (149 ft) to stop and so, other things equal, would not 

have hit the pedestrian. At this point though it must be pointed out that there is no privileged 

status attached to the values f = 0.7, ts = 0.2 seconds and tp = 1.5 seconds, and that if one uses the 

not unreasonable values f = 0.5, ts = 0.2 seconds and tp = 1.0 seconds, one finds that the vehicle 

still hits the pedestrian when the initial speed is 60 km/h (37 mph). So, whether or not speeding 

was a casual factor in this crash remains uncertain. 

It is often that the variables appearing in a casual assessment are underdetermined by 

variable measurements and constrains, and the problem of how to proceed when one cannot 

defend a particular nominal value for an unmeasured causal variable has received consideration 

in the accident reconstruction literature. The standard recommendation is to perform a sensitivity 

analysis in which estimates are recomputed as selected input variables vary over selected ranges 

(Fricke 1990, Niederer 1991). When the basic conclusions of the reconstruction (e.g. that the 

driver was speeding) are insensitive to this variation they can be regarded as well supported but 

if the basic conclusion differ for different but plausible combinations of input values, as 

happened above, this approach is inconclusive. It has been recognized though that when 

uncertainty is described using probability measures (Lindley 1987) more discriminating 

approaches are available. Brach (1994) illustrates how the method of statistical differentials can 
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be used to compute the variance of an estimate if one has a differentiable expression for the 

desired estimate and if one can specify means and variances for distributions characterizing the 

uncertainty in the expression’s arguments. Kost and Werner (1994) and Wood and O’Riordain 

(1994) illustrate how Monte Carlo simulation can be used for more complicated models where 

differentiable, closed form solutions are not available and where different measurements 

combine to provide information on a target variable. This approach also produces approximate 

probability distributions characterizing the uncertainty of estimates rather than just variances. 

Particularly interesting is the method used by Wood and O’Riordain where simulated outcomes 

inconsistent with measurements were rejected, in essence, producing posterior conditional 

distributions for the quantities of interest. 

The deterministic assessment of whether or not obeying a special speed limit would have 

prevented a pedestrian crash consisted of three steps: 

(1.) Estimating the vehicle’s initial speed and location using the measured skid 

marks and nominal values for f, ts and tp  

(2.) Setting the vehicle’s initial speed to the counterfactual value 

(3.) Using the same values of f, ts and tp along with the counterfactual speed to 

predict if the vehicle would then have stopped before hitting the pedestrian. 

Step (1.) falls under what is generally regarded as accident reconstruction proper but step 

(2.) and (3.) are examples of what has been referred to variously as avoidance analysis (Limpert 

1989), sequence of events analysis (Hicks 1989) or the hypothetical crash outcome method 

(Kloeden et al. 1997). Uncertainty assessment in accident reconstruction has for the most part 

been limited to step (1.) but the process outlined in steps (1-3) above can be seen as a special 

case of a method for counterfactual analysis that has been formalized by Pearl and his associates 

(Balke and Pearl 1994, Pearl 2000). In fact, Pearl refers to the operations in steps (1-3) as 

respectively abduction, action and prediction. To apply Pearl’s method to the pedestrian crash 

problem an analyst would have to supplement the deterministic model with a prior probability 

distribution for the variables x, v, tp, ts and f along with a directed acyclic graph (DAG) model for 

the dependency structure among the model variables forming a Bayesian network. Bayes 

theorem could then be used to compute a posterior distribution conditioned on the skid mark 

length. The initial speed would then be set to its counterfactual value and the probability that the 

vehicle stops before hitting the pedestrian could then be computed using the posterior 
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distribution for tp, ts, x and f. Balke and Pearl (1994) have further pointed out that technical 

difficulties arising from the need to describe or store the posterior distribution can be 

circumvented by applying methods for updating Bayesian networks to a DAG model that has 

been augmented to include nodes representing counterfactual outcomes. 

An alternative estimate of the crash reduction due to prevention of speeding can be 

summarized by computing the corresponding “Probability of Necessity” for each set of crashes. 

This is an instance for assessing the “Cause of an Effect” which is generally not possible absent 

of some prior knowledge of causal structure (Dawid 2000, Pearl 2000). For traffic crashes, such 

prior knowledge is often available and forms the basis of the discipline of accident 

reconstruction. 

In what follows, we will use an extended version of the collision model described above 

which allows for data on pedestrian injury and throw distance as well as skidding distances. As 

before, the driver of a vehicle traveling a speed of v notices an impending collision with a 

pedestrian when the front of the vehicle is at distance x from the potential point of impact. After 

a perception/reaction time of tp the driver locks the brakes and after a transaction time to ts the 

tires begin making skid marks. The vehicle comes to a stop leaving skid mark of length sl. 

Before stopping, the vehicle strikes the pedestrian at a speed of vi, the pedestrian is thrown into 

the air and comes to rest at a distance of d from the point of impact. The pedestrian is injured and 

the severity of injury can be classed as in Chapter 2 and 3 as slight, serious or fatal. In addition, 

if the pedestrian was struck after the vehicle began skidding it may be possible to measure a 

distance of s2 running from the point of impact to the end of the skid mark. Figure 4.1 illustrates 

the collision scenario with xs denoting the distance traveled during the braking transient. The 

basic inference problem is to characterize the posterior uncertainty in causal variables such as v, 

vi and x given some subset of the measurements d, sl and the pedestrian’s injury severity. Figure 

4.2 displays a DAG summarizing the conditional dependence structure of the collision model. To 

complete the model it is necessary to specify deterministic or stochastic relations for the arrows 

appearing in Figure 4.2 and prior distributions for the background variables x, v, tp, ts and f. 

As noted above, it is assumed that the vehicle’s braking occurs in three stages, the first 

consisting of the driver’s perception/reaction time, denoted tp during which the vehicle continues 

traveling at its original speed. Given the initial distance between the point of perception and the 
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point of impact, x, it can be determined if the impact occurs during this first stage, in which case 

the impact speed is equal to the initial speed. The second stage consists of a transient time, ts, 

during which deceleration occurs but no skid mark is left, while the third stage consists of the 

locked-wheel stop which leaves a visible skid mark. A constant deceleration characterized by a 

friction coefficient, f, is assumed to apply to both the transient and skid mark phases and if the 

impact occurs during one of the later phases the impact speed is computed by decelerating the 

vehicle at a constant rate over the distance running from the end of the perception/reaction phase 

to the point of impact. More explicitly: 
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Where g denotes the gravitational acceleration. The theoretical length of the skid mark is 

then computed as the difference between the total braking distance and the distance traversed 

during the transition phase: 

( ) 












−−= 22

22 fgtvtv s
sfgmarkskidlTheoretica  (4.5) 

Most commonly in reconstruction practice the measured skid mark is treated as a 

deterministic function of the speed at the beginning of the skid mark, that is, the possibility of 

measurement error is discounted. However, Garrot and Fuenther (1982) described results from a 

series of controlled braking tests reported that the standard deviation of measured skid marks 

tended to increase as the initial speed increased and that the average coefficient of variation for 

the difference between the measured and theoretical skid lengths was approximately equal to 

0.11. In the reconstructions described later the measured skid mark, denoted by sl, was assumed 

to be a lognormal random variable with an underlying normal mean equal to the natural log of 

the theoretical length and underlying normal variance equal to 0.01 giving a coefficient of 

variation of the measurement error in the skid marks of about 0.10. This yields approximate 

consistency with the Garrot and Guenther findings. For those collisions where impact occurs 

after the vehicle starts to skid, a theoretical value for the length of skid beginning at the point of 
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impact is computed by applying the braking distance formula to the impact speed, vi. The 

measured second skid, s2, is then also assumed to be lognormal with underlying normal mean 

equal to the natural log of the theoretical value and underlying variance equal to 0.01. 

Next, in accident reconstruction “throw distance” is usually taken to mean the distance 

measured parallel to the vehicle’s path between a pedestrian’s final resting point and the point of 

impact with the vehicle. Although in principle a deterministic simulation model of a pedestrian’s 

trajectory can be developed by careful application of the principles of mechanics (Van Wiji et al. 

1983), in practice both the computations and especially the data needed for such simulations 

make them ill suited for most accident reconstructions. A considerable effort has been expended 

on trying to develop tractable physical models with acceptable accuracy, which relates throw 

distance to the speed of the vehicle at impact. Probably the most sophisticated treatment of this 

problem has been given by Wood (1988, 1991) while Eubank and Hill (1998) have assembled a 

non-critical compendium of these efforts. Rather than attempting to resolve this issue, the tactic 

used here will be to employ statistical modeling to relate impact speed and throw distance. 

Measured throw distances and impact speeds from 55 crash tests between cars and adult 

pedestrian dummies reported in several earlier studies and tabulated in Eubanks and Hill (1998, 

pp.704, 708, 710-711) were plotted and are shown in Figure 4.3. The increasing scatter in 

measured throw distance as impact speed increases suggested the possibility of a lognormal 

relationship and ordinary least-squares was used to fit a linear model relating the natural log of 

the measured throw to the natural log of the measured speed. The residuals from this fit passed a 

test for being normally distributed and the final fitted model took the form of: 

( ) ( ) ( ) ( )
( ) )09.0(30.0

61.143.3 evilogdlog ++−=
 (4.6) 

Where: 

d = Throw distance in meters 

vi = Vehicle speed at impact in km/h 

e = Normal random variable with mean equal to 0 and estimated variance equal to 0.06 

Estimated standard errors for the regression parameters are shown in parenthesis below 

the corresponding parameter values. 
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Modeling the relationship between impact speed, vi, and degree of injury severity was 

treated in detail in Chapter 2 and the ordered logit model developed there was used here. 

Weighted exogenous sample maximum likelihood estimates of the model parameters were used. 

For the adult (ages 15-59) pedestrian group when the impact speed is in km/h these were 

a1 = 4.07 (0.73), a2 = 7.21 (1.01) and b = 0.095 (0.02) where the approximate standard errors are 

given in parentheses after each estimate. 

Finally, the Bayesian network requires prior distributions for the background variables: x, 

v, tp, ts and f. Although prior distributions for the background arbitrariness of using fixed nominal 

values, they bring with them the problem how to select these distributions in some reasonable 

manner. Because in most cases the background variables will be under-identified by the available 

data, objectivity arguments based on variants of Jefferys’ prior or on stable estimation are not 

applicable and it is to be expected that the conclusions will depend on the chosen priors. Like the 

problem of general versus specific causation, the appropriate representation and use of prior 

information lead to foundational issues that are still being actively debated (Freedman 1997). 

Absent a resolution to this debate, one can, at least, use priors that on their face are consistent 

with accident reconstruction practice and then follow Berger’s (1985, p112) recommendation of 

reporting models, priors, data and Bayesian conclusions. In deterministic sensitivity analysis, it is 

often possible to identify defensible prior ranges for background variables (Niederer 1991). 

Wood and O’Riordain argue that in the absence of more specific information uniform 

distributions restricted to these ranges offer a plausible extension of the deterministic sensitivity 

methods (1994, p137). Following Wood and O’Riordian’s suggestion, the reconstructions 

described in this paper used uniform prior distributions. Specifically, the range for f was (0.45, 

1.0) and was taken from Fricke (1990, p62-14) where the lower bound corresponds to a dry, 

travel polished asphalt pavement and the upper bound to a dry, new concrete pavement. The 

range for the perception/reaction time, tp, was (0.5 seconds, 2.5 seconds) which brackets the 

values obtained by Fambro et al. (1997) in surprise braking tests and the midpoint of which (1.5 

seconds) equals a commonly chosen nominal value (Stewart-Morris 1995). For the braking 

transient time, Neptune et al. (1995) reported values ranging between 0.1 and 0.35 seconds for a 

well-tuned braking system while Reed and Keskin (1989) reported values in the range of 0.4–0.5 

seconds, so the chosen range was 0.1–0.5 seconds. The strategy for the initial distance and initial 

speeds was to use wide enough ranges that no reasonable possibility was excluded a prior. The 
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range for v was [5 meter/second, 50 meters/second] (16.4 fps, 164.1 fps) and that for x was 

[0 meters, 200 meters] (0 ft, 656.2 ft). The upper bound for x is approximately the recommended 

design stopping sight distance for a speed of 100 km/h (62 mph) (AASHTO 1964). Since this 

uses a 2.5 second reaction time and braking friction of 0.29, initial distances outside this range 

should almost always result in stopping before collision. Finally, uncertainty in the parameters 

for the throw distance and injury severity models were incorporated by treating the actual 

parameter values as normal random variables with means and standard deviations equal to the 

estimated presented earlier. In Figure 4.2 the nodes labeled, p1 and p2 represent these parameters. 

As indicated earlier, accident reconstruction proper involves using data collected from an 

individual crash to estimate unmeasured quantities of interest such as initial and impact speeds. 

Uncertainly analysis for reconstruction proper has received some attention in the literature but 

the connection between this problem and that of updating a Bayesian network does not appear to 

have been recognized. As a check on the reconstruction model described above and to illustrate 

the use of Bayesian network methods in reconstruction proper, a random sample of crash tests 

involving vehicles and pedestrian dummies detailed in Eubanks and Hill (1998) was drawn. 

Since a number of these tests involved side-wipe impacts, post impact braking or were otherwise 

inconsistent with the scenario described as above. These were rejected when drawn and the 

sampling continued until 15 crash tests consistent with the scenario were obtained. It should be 

noted that these crash tests were not part of the sample used to develop the throw distance 

relationship given in Equation 4.6. Skid mark lengths and throw distances were obtained from 

the data tabulated for each crash test and for each tests a measurement of the vehicle’s speed at 

impact was also available. The pedestrian collision model was specified for the Gibbs sampling 

program BUGS with the two skid measurements and the throw distance providing the data. For 

each test, a 5,000 iteration burnin was followed by a 50,000 iteration Gibbs sample with the 

results from every 10th iteration being saved for analysis. Figure 4.4 displays the measured 

impact speeds from each of the sample tests along with posterior medians for the impact speeds 

and posterior 95% credible intervals. Note that in 10 of 15 crashes the measured impact speed 

was lower than the posterior median while the posterior 95% credible intervals captured the 

measured values in 14 out of 15 crashes. Although not exhaustive, these results are consistent 

with what one would expect if the collision model were reasonably well calibrated. 
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To estimate the crash reduction due to speed limit adherence one requires values for the 

individual Probability of Necessity appearing in equation (4.3) where yj denotes measurements of 

some subset of sl, s2, d and the injury severity. These can be computed by (i.) updating the 

distributions for x, tp,  ts and f using the data yp (ii.) setting the initial speed equal to the speed 

limit and (iii.) computing the probability that vi = 0 (since h2 = 0 and only if vi = 0) using the 

updated distributions for x, tp,  ts and f together with the condition that v is set to the speed limit. 

For DAG models that have casual interpretations, Balke and Pearl (1994) describe how by 

appropriately augmenting the DAG with additional nodes representing counterfactual variables 

Bayesian network methods can be used to compute counterfactual probabilities. Figure 4.2 also 

shows the augmented DAG needed to evaluate Equation 4.3 for the pedestrian collision model 

where v*, vi* denote the counterfactual variables. 

Detailed investigation of vehicle/pedestrian crashes from the Twin Cities were 

unavailable so the application of this approach will be illustrated using data collected by Kloeden 

et al. (1997) where accident reconstruction methods were used to estimate the speed of 

crash-involved vehicles as part of a study seeking to relate speed to crash risk. The crash study 

were carefully selected to exclude possible confounding due to alcohol use, medical conditions, 

illegal maneuvers and weather and all the investigated crashes occurred on roads with a 60 km/h 

(37 mph) speed limit. A sample of speeds from vehicles not involved in crashes showed an 

average speed of about 60 km/h (37 mph) with an 85% percentile speed of about 80 km/h (50 

mph) so it could be argued that the speed limit on these roads should be raised to 80 km/h (50 

mph). The question then is how many vehicle/pedestrian crashes would have been prevented if 

all vehicles had obeyed the 60 km/h (37 mph) speed limit. 

The sample of investigated crashes included eleven collisions between vehicles and 

pedestrian and eight satisfied the conditions of the collision model described above, being frontal 

impacts by a single vehicle with evidence of pre-impact braking. Information on each of the 

investigated crashes was published in Volume 2 of Kloeden et al. including scale drawings 

showing the rest positions of pedestrians and vehicles, the length and location of skid marks and 

an approximate point of impact. From this information, measurements of sl, s2 and d were 

obtained along the degree of injury suffered by the pedestrian, and Table 4.1 displays these data. 

As a comparison, deterministic estimates of the initial speed, the impact speed and the impact 

speed that would have occurred if the initial speed had been 60 km/h (37 mph) were computed 
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using the midpoint values tp = 1.5 seconds, ts = 0.3 seconds, f = 0.725 and assuming sl and s2 

were measured without error. Using BUGS, posterior distributions were estimated with the 

collision model augmented to include the counterfactual variable v* and vi*, and with v* set 

equal to 60 km/h (37 mph). Again, a 5,000 iteration burnin was followed by 50,000 iterations 

with every 10th iteration being saved for analysis. Three separate Gibbs sampling chains were 

generated from different initial values and random number seeds, convergence was checked 

using the Gelman and Rubin (1992) test and sample size was checked using the Raftery and 

Lewis (1992) test, as implemented in CODA (Best et al. 1995). Table 4.2 displays results from 

these simulations along with the corresponding deterministic estimates. 

Looking first at the deterministic estimates in Table 4.2, it can be seen that a standard 

deterministic analysis would conclude that in three of the cases: 025, 027 and 154, the vehicle 

was clearly speeding and that had it been traveling at 60 km/h (37 mph), other things being 

equal, then the crash would have been prevented. For case 218, the vehicle was clearly traveling 

at below the speed limit, while for the remaining four cases the vehicle was traveling near the 

speed limit. For these last five cased speeding would not be regarded as a causal factor. Looking 

next at the results from the Gibbs sampler, it appears that the vehicles in cased 025, 027 and 254 

were probably speeding and these crashes would probably have been prevented had the vehicle 

been traveling at 60 km/h (37 mph). The vehicle in case 218 was probably not speeding and the 

crash would probably not have been prevented by speed limit enforcement. For the remaining 

four cases the effect of speeding is uncertain. Of particular interest is the rightmost column of 

Table 4.2, which gives the individual probabilities of necessity for each of the crashes required 

by the estimator given in Equation 4.3. Summing the entries in this column gives an estimated 

crash reduction due to speed limit adherence of 3.8 compared to the deterministic finding that 

three crashes would have been prevented. Overall, the results from the Bayesian network 

approach were consistent with the results form a more standard deterministic analysis that used 

midpoints of the priors for ts ,  tp and f as nominal values. This is expected since both approaches 

use the same braking model. The results from the Bayesian network approach are arguably more 

robust however since they are not tied to specific nominal values for un-identified variables. If 

one admits the existence of crashes that were either not investigated or could not be 

reconstructed, the estimate of 3.8 crashes gives a lower bound on the crash reduction due to 

speed limit adherence. Although not addressed here, it would, in principle, be possible to 
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compare the benefits derived from this estimated crash reduction to the overall increase in 

motorist travel time produced by speed limit adherence. 
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Table 4.1 

Data for the Reconstruction of Eight Vehicle/Pedestrian Collisions 
 

Case s1 (meters) S2 (meters) d (meters) Pedestrian Injury 
Cn015 15.0 5.0 9.0 Fatal 
Cn025 22.2 5.9 7.8  Serious 
Cn027 20.0 7.8 11.5 Serious 
Cn057 15.6 5.0 --- Serious 
Cn074 13.4 1.1 4.2 Serious 
Cn121 11.2 2.1 5.0 Serious 
Cn154 21.0 10.0 16.3 Serious 
Cn218 11.1 4.6 3.6 Serious 

 

 

Table 4.2 

Posterior Estimates for Eight Vehicle/Pedestrian Collisions 
(All speeds are in km/h) 

 

 Gibbs Sampler Estimates Deterministic 
Estimates Initial Speed (v) Impact Speed (vi) Probabilities 

Case V vi vi* Mean 2.5% 97.5% Mean 2.5% 97.5% P [v>60] P [vi*=0]

cn015 60 30 30 64 49 79 32 26 39 0.71 0.45 

cn025 72 33 0 73 55 91 33 26 40 0.90 0.76 

cn027 68 38 0 71 54 87 39 31 46 0.87 0.65 

cn057 61 30 26 63 47 78 31 24 38 0.64 0.43 

cn074 57 14 14 62 50 73 16 13 18 0.63 0.55 

cn121 57 21 21 59 45 73 24 19 28 0.42 0.29 

cn154 70 43 0 72 55 89 45 36 59 0.91 0.63 

cn218 53 29 29 50 39 65 28 22 34 0.09 0.03 
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Figure 4.1 

Graphic Representation of a Vehicle/Pedestrian Collision 
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Figure 4.2 

Directed Acyclic Graph (DAG) of Inter-relationships of Variables in the 
Reconstruction Model 
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Figure 4.3 

Fitting and Measured Throw Distances Versus Impact Speed for 55 
Pedestrian Dummy Collisions. 

(Throw is in meters. Speed is in Kilomer/Hour) 
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Figure 4.4 

Measured Initial Speeds, Posterior Median Speeds and 95% Credible 
Intervals for 15 Pedestrian Dummy Crash Tests 

(Speeds are in Kilometers/Hour) 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

Neighborhood traffic control or “Traffic Calming” refers to engineering interventions 

expressly designed to lower vehicle speeds or volumes on residential streets. Consideration of a 

street for NTC is usually initiated by residents and the decision of whether or not to implement 

NTC measures often has a strong political component with both vigorous local support and 

opposition being a not uncommon occurrence. Traffic engineers can find themselves caught 

between opposing sides and their position is made more difficult by the fact that the profession 

lacks clear out warrants identifying those situations where NTC might have an overall beneficial 

effect. This is at least in part due to the difficulties inherent in quantifying the relationships 

between traffic conditions and safety on residential streets which arise primarily because the 

sparsity of crashes on residential streets, coupled with the problems inherent in estimating the 

exposure of non-vehicle road users making it difficult to estimate crash rates. 

The primary objective of this research project has been to show how readily measured 

traffic characteristics, in particular the distributions of vehicle speeds and headways, can be 

coupled with a structure model of a standardized pedestrian/vehicle conflict in order to simulate 

how these traffic characteristics influence the outcome of the conflicts. In essence, one uses the 

structural model to define those combinations of initial conditions that lead to a crash and then 

computes the probability attached to this set. This is not a new idea but the approach has had 

limited practical application because of the computational difficulties arising when one attempts 

to compute the probabilities. We have hopefully shown, however, that these problems can be 

overcome by employing Monte Carlo simulation methods. In particular, we have shown how to 

compute the probability that a standardized vehicle/pedestrian conflict results in a collision and 

the probability that such a collision results in a severe injury to the pedestrian. These 

computational procedures were applied to data collected on 25 residential streets in the Twin 

Cities showing a range of peak-hour directional traffic volumes (between 10 and 125 

vehicles/hour) and a range of average peak-hour speeds (between 20 and 42 mph), but with the 

majority of sites having average speeds lower than the nominal 30 mph speed limit. At least as 

far as our sample of streets is concerned the probabilistic measures were sensitive to traffic 
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conditions. The collision probability estimates tended to increase as traffic volume increased but 

were fairly insensitive to changes in the average speed. On the other hand, the proportion of 

collisions resulting in severe injuries tended to be insensitive to traffic volume but very sensitive 

to average speed. It is suggested that the marginal probability of a crash with a severe injury 

might be used as a composite measure combining the effects of traffic volume and traffic speed. 

We have also shown how these probabilities could change as the result of a hypothetical 25 mph 

speed limit. In particular, the so called “Probability of Necessity”, the conditional probability 

that, other things equal, a crash which occurs without under existing conditions would have been 

prevented with the speed limit, turns out to be (roughly) equivalent to the more commonly used 

crash reduction factor. As might be expected, those streets with average speeds above 25 mph 

showed the greatest reduction effect and this reduction was relatively insensitive to traffic 

volume. However, another composite measure, the probability of a preventable crash appears to 

be sensitive to both traffic volume and traffic speed. 

The methods described in Chapter 3 can be used to “put a number” on the degree to 

which traffic conditions on a residential street pose a risk to child pedestrians. The methods do 

not, however, provide guidance as to which level of risk is acceptable or when risk is so great 

that some form of intervention is called for. This moves us beyond technical engineering into the 

area of social decision-making. As is well recognized, a genuinely zero-risk environment is 

neither feasible nor particularly desirable but we have, at present, little guidance as to where a 

line should be drawn. In the standard model for traffic safety programming, a road’s risk is 

assessed relative to what appears to be typical on similar facilities. That is, crash rates for a large 

number of roads are estimated using crash and traffic count data and those roads with atypically 

high estimated rates are designated as potential high-hazard sites. A similar approach could be 

applied to residential streets using estimation methods described in Chapter 3. Automatic traffic 

recorders would be used to collect speed and headway data for a large, representative sample of 

residential streets and then standardized crash probabilities would be computed as described 

above. These results would provide a baseline against which the traffic conditions on some 

problematic streets could be evaluated. 

This brings us to issues of implementation. In carrying out these computations we used 

the Markov Chain Monte Carlo software BUGS. However, for the collision probability 

computations reported in Table 3.4 this is something of an over-kill. Standard Monte Carlo 
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simulation is sufficient to compute these probabilities and stand-alone computer code would not 

be that difficult to develop. In fact, the computations could probably be carried out using a 

reasonable sophisticated spreadsheet program as long as it supported random number generation. 

One would simply generate values for v1, t1, f, tp, x2 and v2 from the appropriate distributions and 

then test whether or not a collision occurs (and compute the impact speed) using Equation 3.1. 

The degree of injury suffered by the pedestrian could then be simulated by sampling from a 

multinomial random variable and then computing probabilities using Equation 2.6. For 

Probabilities of Necessity that appear in Table 3.5 and in Chapter 4, however, MCMC methods 

are required because the desired probabilities are conditional on the occurrence of a collision. 

Unlike standard Monte Carlo methods MCMC methods are more difficult to use and it is usually 

recommended that potential users have a good working knowledge of probability and statistics. 

Thus, computation of collision probabilities and injury severity distributions could be done 

routinely by most traffic engineers in order to rank sites with regard to pedestrian risk. 

Computation of potential casual effects however should probably be relegated to special studies, 

carried out either by qualified consultants or by personnel who have received special training. 

In support of the above work, this project also developed a quantitative model expressing 

the probability of a slight, serious or fatal injury to a pedestrian as a function of the speed of an 

impacting vehicle. Interestingly this modeling work revealed that for child pedestrians, the 

impact speed at which slight or severe injures are equal is about 25 mph suggesting that 25 mph 

is a reasonable speed limit for residential streets. In addition, we have shown how a modified 

version of the structural model can be used to compute Probabilities of Necessity for individual, 

actually occurring, vehicle/pedestrian crashes. This approach requires information from the sort 

of detailed investigation usually done to support a reconstruction of the crash. When applies to 

data from eight crashes from Adelaide, Australia that occurred on streets with a 60 km/hr 

(37 mph) speed limit, the method revealed that speeding was probably a factor in at least three of 

the crashes and the expected crash reduction due to adherence to the 60 km/h (37 mph) speed 

limit was 3.8 out of eight crashes. 

Finally, it is worth emphasizing that the probabilities appearing in Chapter 3 have a 

standard frequent interpretation as limiting relative frequencies from an infinite number of 

repetitions of a random experiment. The probabilities reported in Table 4.2 do not, but rather, 

reflect degrees of belief accorded to propositions such as “The initial speed of the vehicle in case 
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015 was between 48.5 and 78.1 km/h” or “If the vehicle in case 154 had been traveling at 60 

km/h, the driver would have stopped before hitting the pedestrian.” Because these probabilities 

are specific to individual accidents for which the available information is limited, objective 

claims based on convergence of belief are not available and the product of this analysis should be 

seen as an expert opinion. This accords with the view of accident reconstruction expressed by 

Baker and Frick (1990): “Opinions or conclusions are the products of accident reconstruction. To 

the extend that reports of direct observations are available and can be depended on as facts, 

reconstruction is unnecessary.” (p. 50–4). Thus, the methods presented in Chapter 4 have less in 

common with traditional statistical analysis than they do with recent applications of Bayesian 

methods to forensic problems (e.g. Aitken at al. 1997, Dawid and Evett 1997, Kadane and Terrin 

1997) in which probability calculations are used to bind what can reasonably be concluded from 

imperfect evidence. 
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APPENDIX 

EXAMPLES OF CODE AND OUTPUT FOR BUGS MODELS 
 
Example: WINBUGS Code File  
Used to Compute Probability of Necessity for Site 27b in Chapter 3 

 
model pedhit5 
{ 

a <- f*9.81 
x1pass <- (x2*v1)/v2 
x1stop <- v1*tp + pow(v1,2)/(2*a) 
hit.bar  <- step(x1-x1pass)*step(x1stop-x1) 
phit <- .99999*hit.bar 
hit ~ dbern(phit) 
start <- (sb+instreet) 
 
v1.tau <- 1/(pow(v1.sigma,2)) 
v1 ~ dnorm(v1.bar,v1.tau) 
 
x1 <- v1*t1 
 
t1.bar ~ dunif(0,1) 
t1 <- t1.bar*gap 
 
logap.tau <- 1/(pow(logap.sigma,2)) 
gap ~ dlnorm(logap.mu,logap.tau) 
 
x2 ~ dunif(instreet,start); 
v2tau <- 1/(pow(v2sig,2)) 
v2 ~ dnorm(v2bar,v2tau) 
 
tp.sigma2 <- log((pow(tp.sd,2)/pow(tp.bar,2))+1) 
tp.mu <- log(tp.bar)-0.5*tp.sigma2 
tp.tau <- 1/tp.sigma2 
tp ~ dlnorm(tp.mu,tp.tau) 
 
f.sigma2 <- log((pow(f.sd,2)/pow(f.bar,2))+1) 
f.mu <- log(f.bar)-0.5*f.sigma2 
f.tau <- 1/f.sigma2 
f ~ dlnorm(f.mu,f.tau) 
 
v1.star <- min(v1,11.2) 
x1.star <- v1.star*t1 
x1pass.star <- (x2*v1.star)/v2 
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x1stop.star <- v1.star*tp + pow(v1.star,2)/(2*a) 
hit.star <- (step(x1.star-x1pass.star)*step(x1stop.star-x1.star)) 
nohit.star <- 1-hit.star 

} 
 
Data list(v1.bar=12.731 
v1.sigma=1.808, 
logap.mu=2.778, 
logap.sigma=1.111, 
sb=14.2, 
instreet=1.5, 
v2bar= 5.4, 
v2sig=.45, 
tp.bar= 1.07, 
tp.sd= 0.248, 
f.bar=0.63, 
f.sd=0.08, 
hit=1) 
 
Inits  list( 
gap=40.0, 
t1.bar=.5, 
x2= 7.5, 
v2= 4.6 , 
f=.63, 
tp=1.0, 
v1=15.0 ) 
 
 

 

Example: Statistical Output from WINBUGS 
The mean of Nohit.star estimates the Probability of Necessity at Site 27b 

 

Node Mean Sd 2.5% Median 97.5% Start Sample 
Nohit.Star 0.140 0.3478 0.0 0.0 1.0 4002 20000 
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Example: Classic BUGS Code and Output  
Used in Reconstruction of CN015 in Chapter 4. 
 
 
Welcome to BUGS on 6 th Jun 2000  at 13:18:0 
BUGS : Copyright (c) 1992 .. 1995 MRC Biostatistics Unit. 
All rights reserved. 
Version 0.600 for 32 Bit PC. 
For general release: please see documentation for disclaimer. 
The support of the Economic and Social Research Council (UK)- 
is gratefully acknowledged. 
Bugs>compile("cntrfac3.bug") 
model cntrfac3; 
 
const 
    M=1; 
 
var 
a, x.brake,x.tran,  
x.prt,xx,x.init,nohit,fullhit,skidmark, v2.imp, vi,vi.kph, v.kph, speeding, 
a1, a2, b, a1.bar,a2.bar,b.bar,a1.sig2,a2.sig2,b.sig2,a1.tau,a2.tau,b.tau,  
pt1, pt2, psev[3],injury, ahat, bhat,ahat.bar,bhat.bar,ahat.sig2,bhat.sig2, 
ahat.tau,bhat.tau,throw.bar,throw.sig2, throw.tau,throw, 
skid1.bar, logskid1.bar, lvi, logskid2.bar,skid.tau,skid1,skid2, 
tp.lower,tp.upper,tp, ts, ts.lower, ts.upper, 
x.lower,x.upper, x, v.lower,v.upper,v, f.lower,f.upper,f, 
v.star, xbrake.star, xprt.star, xstop.star, nohit.star; 
 
data  in "cntrfac.dat"; 
 
inits in "cntrfac.in"; 
{ 
 
# counterfactual world 

xbrake.star <- pow(v.star,2)/(2*a); 
xprt.star <- v.star*tp; 
xstop.star <- xbrake.star + xprt.star; 
nohit.star <- step(x.init-xstop.star); 

 
# data models 

logit(pt1)<- b*vi.kph-a1; 
logit(pt2) <- b*vi.kph-a2; 
psev[1]<- (1-pt1); 
psev[2]<- (pt1-pt2); 
psev[3]<- pt2; 
injury ~ dcat(psev[]); 
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throw.bar <- ahat+bhat*log(vi); 
throw.tau <- 1/(throw.sig2 + .01); 
throw ~ dnorm(throw.bar,throw.tau); 
 
skid1.bar <- max(0.1,x.brake-x.tran); 
lvi <- max(0.1,log(vi)); 
logskid1.bar <- log(skid1.bar); 
logskid2.bar <- 2*lvi-log(2*a); 

# skid2.bar <- pow(vi,2)/(2*a); 
skid1 ~ dnorm(logskid1.bar,skid.tau); 
skid2 ~ dnorm(logskid2.bar,skid.tau); 

 
# braking model 

a <- f*(9.807); 
x.brake <- pow(v,2)/(2*a); 
x.tran <- v*ts-(a*pow(ts,2))/2; 
x.prt <- v*tp; 
xx <- max(x,-x.prt); 
nohit <- step(x-x.brake); 
fullhit <- step(-x); 
skidmark <- step(x.brake-x.tran); 
v2.imp <- (1-nohit)*((fullhit*pow(v,2)) +  

(1-fullhit)*(pow(v,2)-2*a*(x))); 
x.init <- xx + x.prt; 
vi <- sqrt(v2.imp); 
vi.kph <- (3.6)*vi; 
v.kph <- (3.6)*v; 
speeding <- step(v-v.star); 

 
# prior distributions  

tp ~ dunif(tp.lower,tp.upper); 
ts ~ dunif(ts.lower,ts.upper); 
x ~ dunif(x.lower, x.upper); 
v ~ dunif(v.lower, v.upper); 
f ~ dunif(f.lower, f.upper); 
a1.tau <- (1/a1.sig2); 
a2.tau <-(1/a2.sig2); 
b.tau <- (1/b.sig2); 
ahat.tau <- (1/ahat.sig2); 
bhat.tau <- (1/bhat.sig2); 
a1~dnorm(a1.bar,a1.tau)I(,a2); 
a2~dnorm(a2.bar,a2.tau)I(a1,); 
b~dnorm(b.bar,b.tau); 
ahat~dnorm(ahat.bar,ahat.tau); 
bhat~dnorm(bhat.bar,bhat.tau); 
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} 
 
 
Parsing model declarations. 
Loading data value file(s). 
Loading initial value file(s). 
Parsing model specification. 
Checking model graph for directed cycles. 
Possible directed cycle or undirected link in model 
Generating code. 
Generating sampling distributions. 
Checking model specification. 
Choosing update methods. 
Metropolis method choosen for node ts 
Metropolis method choosen for node x 
Metropolis method choosen for node v 
Metropolis method choosen for node f 
compilation took  00:00:00  
Bugs> 
Bugs>inits() 
list(tp=.5, 
x=0, 
v=10, 
f=.45,  
ts=.1, 
a1=2.6, 
a2=5.2, 
b=.05, 
ahat=-1.8, 
bhat=1.4, 
seed=123456789) 
 
Bugs> 
Bugs>data() 
list(skid1=2.71, 
skid2=1.61, 
injury=3, 
throw=2.20, 
v.lower=10, 
v.upper=25; 
f.lower=0.45, 
f.upper=1.0, 
x.lower=0, 
x.upper=30, 
ts.lower=0.1, 
ts.upper=0.5, 
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tp.lower=0.5, 
tp.upper=2.5, 
a1.bar=4.07214, 
a1.sig2=0.5266, 
a2.bar=7.20865, 
a2.sig2=1.02124, 
b.bar=0.0948, 
b.sig2=.000519, 
ahat.bar=-1.3662, 
ahat.sig2=.0399, 
bhat.bar=1.6078, 
bhat.sig2=.00781, 
throw.sig2 = 0.0616, 
skid.tau= 100, 
v.star=16.667) 
 
 
Bugs> 
Bugs>update(5000)      time for    5000   updates was  00:00:18  
Bugs> 
Bugs>monitor(tp,10) 
Bugs> 
Bugs>monitor(ts,10) 
Bugs> 
Bugs>monitor(f,10) 
Bugs> 
Bugs>monitor(v,10) 
Bugs> 
Bugs>monitor(x,10) 
Bugs> 
Bugs>monitor(xx,10) 
Bugs> 
Bugs>monitor(v.kph,10) 
Bugs> 
Bugs>monitor(vi.kph,10) 
Bugs> 
Bugs>monitor(x.init,10) 
Bugs> 
Bugs>monitor(nohit.star,10) 
Bugs> 
Bugs>monitor(speeding,10) 
Bugs> 
Bugs>update(50000)      time for    50000  updates was  00:03:00  
Bugs> 
Bugs>diag(tp) 
                  mean       sd       mean       sd        Z       sample   
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                1.46      7.23E-2   1.49      1.60E-3  -4.83E-1     5000 
Bugs> 
Bugs>diag(ts) 
                  mean       sd       mean       sd        Z       sample   
                3.02E-1   7.56E-3   2.96E-1   2.82E-4   2.89E-1     5000   
Bugs> 
Bugs>diag(f) 
                  mean       sd       mean       sd        Z       sample   
                7.97E-1   1.97E-2   8.10E-1   1.08E-3  -4.53E-1     5000   
Bugs> 
Bugs>diag(v) 
                  mean       sd       mean       sd        Z       sample   
                1.79E+1   6.81      1.78E+1   3.06E-1   2.24E-1     5000   
Bugs> 
Bugs>diag(x) 
                  mean       sd       mean       sd        Z       sample   
                1.55E+1   8.59      1.50E+1   2.93E-1   9.62E-1     5000   
Bugs> 
Bugs>diag(xx) 
                  mean       sd       mean       sd        Z       sample   
                1.55E+1   8.59      1.50E+1   2.93E-1   9.62E-1     5000   
Bugs> 
Bugs>stats(tp) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.494E+0   5.759E-1   5.438E-1   2.442E+0   1.500E+0     5000   
Bugs> 
Bugs>stats(ts) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                2.969E-1   1.154E-1   1.097E-1   4.890E-1   2.931E-1     5000   
Bugs> 
Bugs>stats(f) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                8.095E-1   1.338E-1   5.138E-1   9.922E-1   8.332E-1     5000   
Bugs> 
Bugs>stats(v) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.779E+1   2.050E+0   1.358E+1   2.153E+1   1.786E+1     5000   
Bugs> 
Bugs>stats(x) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.500E+1   2.767E+0   1.009E+1   2.058E+1   1.480E+1     5000   
Bugs> 
Bugs>stats(xx) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                1.500E+1   2.767E+0   1.009E+1   2.058E+1   1.480E+1     5000   
Bugs> 
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Bugs>stats(v.kph) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                6.407E+1   7.381E+0   4.892E+1   7.751E+1   6.429E+1     5000   
Bugs> 
Bugs>stats(vi.kph) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                3.240E+1   3.116E+0   2.579E+1   3.782E+1   3.264E+1     5000   
Bugs> 
Bugs>stats(x.init) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                4.160E+1   1.159E+1   2.219E+1   6.415E+1   4.096E+1     5000   
Bugs> 
Bugs>stats(nohit.star) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                4.500E-1   4.974E-1   0.000E+0   1.000E+0   0.000E+0     5000   
Bugs> 

Bugs>stats(speeding) 
                  mean        sd       2.5% :  97.5%  CI    median      sample 
                7.188E-1   4.495E-1   0.000E+0   1.000E+0   1.000E+0     5000   
Bugs> 
Bugs>q() 
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